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ABSTRACT

~“ Metabolic effects of an overnight fast (postabsorptive
/7

-state, [PA) or a 3.5-day fast (fasted state%iF) were compared in 8

healthy young men at rest and during exercise to exhaustion at
45% VO, max. Glucose rate of appearance (Ra) and disappearance
(Rd) were calculated from plasma glucose enrichment during a &
primed, continuous infusion of‘T676:3HT£glucose. Serum
substrates and insulin levels were also measured. Glycogen

content of the m. vastus lateralis was determined in biopsies

taken before and after exercise. At rest, glucose flux and whole
body carbohydrate oxidation determined from the respiratory
exchange ratio were lower in F than PA but muscle glycogen levels
were similar. During exercise, glucose flux, whole body
carbohydrate oxidatidn and the rate of muscle glycogen
utilization were significantly lower during the fast. In the Pa
state, glucose Ra and Rd increased together throughout exercise.
However, in the F state Ra exceeded Rd during the first hour of
exercise, causing an increase in plasma glucose to levels similar
to those of the PA state. The increase in glucose flux was
markedly less throughout F exercise. Lower carbohydrate
utilization in the F state at rest and during exercise was

n consistent with higher circulating fatty acids and ketone bodies,
lower levels of plasma insulin and the maintenance of physical
performance as reflected by similar time to exhaustion.

r .o .
Index Terms: Glucose flux, muscle glycogen,b

starvation, glucose,’
lactate, alanine, free fatty acids, glycerobf‘beta

hydroxybutyrate, respiratory exchange ratio, insulin.
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4 INTRODUCTION
"
o
% Exercise during a brief or prolonged fast may be undertaken
b . .
b as therapy for obesity, under circumstances of natural or man-
KR made disasters, in military environments, or under other
i)
+ conditions in which physical exertion is necessary despite an
} absence of food. At rest, a fast of a few days leads to
~ depletion of liver glycogen (27, 35), decreased glucose flux (29, 7]
N \'(:
N 40), enhanced gluconeogenesis (5, 13, 18), increased fatty acid :}
s W<
2 and ketone body mobilization and utilization (3, 7, 18), and 3
g increased release of amino acid from peripheral tissues (42). ff
o Similarly, prolonged low-intensity exercise increases rates of 7
- Ny
. gluconeogenesis (1), fatty acid mobilization and oxidation (20, }ﬁ
22), and amino acid release from muscles (15), while glucose flux ;’
o~ ‘
o
E increases (33), and muscle glycogen decreases (26). Recent gi
s . -3
3 studies of metabolic effects of exercise following a 24-hour fast Y
e ARt
. , . £
@ have shown that the lower carbohydrate oxidation in the fasted X
¥ NS
M state is maintained throughout exercise (8) and that the higher 3{
|
|‘ LY
ro levels of free fatty acids increase even further with exercise :v
y but the fast has no apparent sparing effect on muscle glycogen :
. o]
* ) o
3 (32). The present study was carried out under conditions of more Cj.
» L4 \ p
; prolonged fasting and less intense exercise, to determine what :f
. i gn,
X adaptations occur in the availability and utilization of fuels ™
ﬁ for muscular energy during a fast of 3.5 days in healthy men. ;j
X %
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. 0.
\.._'
; N
\:;
‘ ATy
e
-' \_"
2, J ...h.
J‘.q‘,.‘,.' '.'."- "l{ [0 -uf »~ )_ - { ( ’.".\‘,‘ : \ \' X ‘-.‘ '.- v.",. PRI TS “: ~.‘._.‘-:-: ::‘.-.‘. !

i ".’5.5'1{ . N -
DL ) c\-‘:" VN, t.. S ’h!h, \" 27 -"



WO WO W W WW W

£

METHODS

14

Subjects

Eight male soldiers participated in this study after giving

their written, voluntary consent. Their physical characteristics
are shown in Table 1. Body fat was estimated from skinfolds
(18), muscle mass from 24 hour urinary creatinine (23), muscle
fiber type from histochemical analysis of myofibrillar ATPase (6)
and VO, max using a discontinuous, incremental cycle ergometer

protocol.

Study Design

The study was approved by the Human Use Review Committees
of the Army Research Institute of Environmental Medicine and the
Massachusetts Institute of Technology.

All 8 subjects were tested in both a post absorptive (PAa)
state (14 hours without food) and a fasted (F) stéte (3.5 days
without food). Four men were studied first in the PA state and 4
were studi;é first in the F state. Testing in these 2 states
were separated by 14 to 35 days. Four days prior to each test
subjects consumed a balanced diet consisting of 12% protein
calories, 53% carbohydrates calories, and 34% fa. calories.

Prior to testing in the PA state subjects spent the night
in a metabolic ward and were studied the following morning.

Prior to testing in the F state subjects lived in the metabolic

ward for 3 days and were studied on the morning of the fourth
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day. Subjects were under the constant supervision of the nursing
staff and were allowed to consume only distilled water and
selected herbal teas. A 24h urine sample was collected in the
first 32h of fasting and analyzed for urinary creatinine.
Testing in the PA and F state was identical and the design
is shown in Figure 1. Subjects rested in bed for 3h then
exercised on a cycle ergometer at 45% VO, max until volitional
fatigue. Throughout rest and exercise subjects received a
continuous intravenous infusion of [6,6—2H]-glucose (0.28
umoles-kg‘l-min'l) following a bolus dose of 22.4
umoles-kg~l (80:1 ratio between the primer and infusion
rate). Samples of expired gas and venous blood were obtained at
intervals shown in Figure 1. Near the end of the rest period a

muscle biopsy sample was obtained from the m. vastus lateralis

(12) and a second biopsy was obtained from the same site 30
minutes after exercise.

Expired gas samples were analyzed for oxygen (Applied
ElectrochemistryR Model S-3a) and carbon dioxide concentration
(BeckmanR Model LB-2). Gas volumes were measured using a
tissot spirometer. Respiratory exchange ratios (RERs) were
calculated as VCO,/V0Oy without correction for urinary
nitrogen loss.

Substrates and insulin were analyzed in aliquots of blood,
plasma or serum, Lactate was determined on whole blood (RocheR
autoanalyzer). Glucose was determined by the glucose oxidase
method (Beckman® Glucose Analyzer). Serum aliquots were

analyzed for glycerol (49), alanine (31), beta-hydroxybutyrate
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(B-OHB,5@0) and free fatty acids (FFA, 9, 31, 36). 1Insulin was

determined by radioimmunoassay (Serono Laboratories kit). Plasma

aliquots were derivatized and analyzed for isotopic enrichment of

glucose by gas chromatography and mass spectrometry (4).

Muscle biopsy samples were rapidly separated into 3 to 5

smaller samples, and stored in liquid nitrogen until analyzed for .

glycogen content (39). A sample from the PA session was

sectioned and stained for myofibrillar ATPase for muscle fiber

type classification (6).

Calculation and Statistical Analysis

Glucose flux was determined using the nonsteady state

equations of Steele (47) modified by Radziuk et al. (43) where:

Ra=i-pV [(Gt1+Gt2)/2]) [(IEt2-1Et1)/ At] e

[y

1\-

(IEt1+IEt2)/2 NS

where: g.

Rd=Ra- (pV(Gt2-Gtl)/A t)

Ra=Rate of appearance (umoles-kg‘l-min‘l)

<
Rd=Rate of disappearance (umoles-kg-l-min-1) oy

i=Infusion rate (umoles-kg‘l-min‘l) E}t

L]

p=Pool fraction (a constant = @.65)

V=Volume distribution of glucose (taken at 25% of body :}
Y

weight (43)) (ml-kg-1l) -

Gtl=Serum glucose at time 1 (umoles-ml-1l)

Gt2=Serum glucose at time 2 (umoles-ml-1l) A
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4 3 IEtl=Isotopic enrichment of [6,6-2H]-glucose at time 1
g
N (AE)
4 L]
v)Q IEt2=Isotopic enrichment of [6,6-2H]-glucose at time 2
N
o (AE)
'h‘ 3
: At=Time over which measurements occurred (min).
g
;é Resting and exercising data were analyzed separately using -
M <
L N
:3 appropriate repeated measures analysis of variance statistics.
I‘ ( \
When significant differences were found in multilevel variables ;
Y the Tukey test was used to isolate the differences. Values are :
3 reported as mean * standard error. :
. y
N RESULTS 2
. '
4 '-;: :
‘ Muscle glycogen values are shown in Figure 2. PA and F i
L)
;ﬁf muscle glycogen levels did not differ before or after exercise. .
B '; / :
%‘; However, there was a difference in the percent change in muscle y
e y
) glycogen from pre to post exercise: there was a 44% decrease in )
YW ‘
':J the PA state and a 28% decrease in the F state (p<0.0l). Average t
. \
o A . . . -
:V glycogen utilization rates during exercise, calculated as the
b\
e difference in glycogen before and after exercise divided by the
Ca
.j time to volitional fatigue on the cycle ergometer, was 0.31+0.04 4
u, — [}
W3 2
_{:- umoles+gm~l-min~1 in the PA state and 0.19+0.02 .
.- o " $
- umoles-gm=l.min=l in the F state (p<@.01). :
N .S o
{g The pattern of glucose enrichment at rest and during \
\;-\ .‘
.-f exercise is shown in Figure 3. The data show that isotopic .
1 , . . ;
. steady state was achieved during the hour of rest before exercise
n\ n
rb- in both the PA and F states. During exercise, analysis of
]
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,ﬁg glucose enrichment over time showed that subjects were not at

. isotopic steady state and non steady state egquations were used to (
E%E calculate glucose kinetics (43, 47). :
é;%- Glucose flux was consistently lower in the F state compared ,
.5; to the PA state as shown in Figure 4. For statistical purposes

SRS

xﬁi exercise was arbitrarily divided into a @ to 60 minute period and

%&t a 60 minute to exhaustion period. Exhaustion occurred at 139+13

A min in the PA state and 118+18 min in the F state (28). At rest,

TE% the Ra and RdA were about 23% lower in the PA state compared to

é@; the F state (p<@.006l1). During exercise in the F state, the rate E
?JE of increase in glucose flux was lower (p<@.001) and the pattern |
'Q§§ of change in the Ra and Rd was different, compared to the PA ;
Tf; state. In the PA state the Ra and Rd changed together at all

o y times. In the F state the Ra and Rd were of similar magnitude at
‘5§5 rest and the second hour of exercise; however, during the first '
L;f hour of exercise the Ra was greater than the Rd (p<0@.0l). ‘
Zi)' Figure S5 depicts the changes in substrates in the PA and F

3? sessions over time. 1In the F state, exercise was associated with ?
%53 greater fluctuations in levels of all 6 measured substrates.
1»; Af.er the 3.5 day fast, blood glucose at rest was 3.93+0.18 mM |
-

i;g which was 18% lower than in the PA state (p<@.0681). During PA E
233 B exercise blood glucose remained constant through the first hour 1
,?4‘.' then declined at exhaustion to below resting values (p<0.01).

'%ﬁ Conversely, in the first hour of F exercise glucose increased

Fg& progressively and at 60 minutes blood glucose values were similar )
Eij in the F and PA states. Glucose had again decreased by

Jt& exhaustion but not bhelow resting values for the F state.
P
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Blood lactate levels were higher in the F state than in the
PA state at rest and throughout exercise (p<8.8l1). This
difference became greater within the first 10 to 30 min of
exercise. Serum alanine did not differ between the PA and F
states at rest or during exercise. However, in the F condition
there was a progressive rise in alanine; levels became greater
than resting values at 3¢ min (p<@.65) and stayed elevated over
resting values for the remainder of the exercise period. There
was a significant correlation between serum alanine and blood
lactate during exercise (R=0.85 (p<@.0l) in PA state and 0.96
(p<@.001) in the F state).

Serum FFA, glycerols and B-~OHB values were higher in the F
state compared to the PA state both at rest and during exercise
(p<@.081). For FFA the pattern of change in the 2 conditions was
identical although of greater absolute magnitude in the F state.
At 10 min of exercise FFA declined from 0.30+0.65 mmoles-1-1
to 9.23+0.04 mmoles+1-1l in the PA state and from 6.78+0.07
mmoles-1~1 to 0.53+0.07 mmoles-1-1 in the F state. For
B-OHB there was no change in the PA state until exhaustion when
values were elevated (p<@.¢l). During F exercise B-OHB declined
sharply in the first 10 min (p<@.001) and remained depressed
throughout exercise.

Serum insulin values were lower in the F state than in the
? PA state both at rest and during exercise (p<@.063) as shown in
Figure 6. Respiratory exchange ratios were also consistently

lower in the F state both at rest and exercise (p<0.05) as shown

in Figure 7.
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DISCUSSION

The major finding of the present study was that the
substantial alterations that have been described in whole body
fuel utilization with fasting (3, 7, 18, 29) were maintained
during submaximal exercise. There was a greater use of fat as a
substrate and decreased production and utilization of

carbohydrates during exercise in the F state.

Metabolism of Carbohydrates and Fats at Rest

Carbohydrate utilization at rest was markedly decreased by
the 3.5 day fast. Despite this, muscle glycogen levels were
unchanged. This contrasts with the 24% muscle glycogen decline
reported for a single subject after a 3 day fast (25). Exercise
is the main determinant of muscle glycogen utilization whereas
food and diet play an important role in its resynthesis (26). 1In
the presenﬁ‘study, subjects were confined to a metabolic ward
throughout the fast, limiting their opportunities for physical
activity and muscle glycogen depletion. In the study of Hultman
and Bergstrom (25) the normal daily activity of the subject may

have been sufficient to lower muscle glycogen reserves.

Whole body glucose Ra and Rd decreased by about 23% after
the 3.5 day fast while circulating glucose decreased 18% and
insulin 16%. The glucose Ra in the F state was 434 + 26
umole5°kg"l'h'1 which agrees with flux values obtained in

other fasting studies (29, 40) but is higher than the value of
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353 umole5°kg‘l°h'1 calculated for splanchnic output from
3 arterio-venous difference in 3 day fasted subjects (18). Since "
' liver glycogen stores are essentially depleted after the first
o
<

day without food (35), glucose appearance in the F state wculd be

- the product of hepatic and possibly renal gluconeogenesis (18, ~3
o @
;iE 37). In the present study fasting gluconeogenesis supported a 4
. -
-ﬁf glucose flux (Ra) equal to 77% of the flux in the PA state. The ’
Y decrease in glucose Rd was consistent with the lower rate of i
3 ,1--': -
f: whole bcdy carbohydrate oxidation suggested by a decrease in the -
v A
b, RER from 0.84 + 0.062 to 0.79 + #.02, lower circulating insulin ’

= and higher circuvlating FFA. '
‘ ,\‘ ¥
;;{ It is likely that increased fatty acid availability was the
ff{ main factor accounting for the lower glucose utilization and
irﬁ oxidation. Circulating glycerol, FFA and B-OHB were elevated -
w~‘" -
15, ) .
)xj about 1.6, 2.6 and 4.6 times, respectively. Studies of arterio- -
S '
i ) venous differences across peripherial tissues have shown that o
2 :
L, glucose uptake declines as the availability of these substrates
) "‘!,
:Qz increases (38). Even in a post absorptive state, a 4-week
) - -~
:::, adaptation to a ketogenic diet producing similarly high levels of ;
¥ 4 [ 3
- FFA, ketone bodies and lactate, has been shown to lead to a 29% m
’ﬁ? reduction in the rate of whole body 13C-glucose oxidation (41). .
g -
PV R
.
W Metabolism of Carbohydrates and Fats Durinag Exercise h
4":- :'-
i{ Early in F exercise, carbohydrate utilization was reduced p
o |
o when compared to similar exercise in the PA state. The 3
e significantly lower muscle glycogen utilization in the F state
iﬁ {n<1.01) was the result of 107 lower alycogen stores at rest, 1° ﬁ
A :
>4 .
W h
(2 )
.
-’,:-
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: % higher glycogen after exercise, and a 15% lower time to faticue
T
T compared to the PA state, although none of these changes were
- .‘ h\' - . . . . . .
AN individually significant. At the end of exercise, muscle
L -
A
Pt glycogen levels were between 53 and 60 umoles-gm~l for both
RS
S ALY
3 the fasted and post absorptive state.
jiﬁ One important cause of fatigue during submaximal exercise
' r_‘.-:
Y is depletion of muscle glycogen (26). In exercise at mocre than

65% VO, max, a 24 hour fast significantly reduced time to

fatigue without changing glycogen utilization (32). The present
study showed that during exercise at 45% VO) max similar time

to fatigue occurred in both the PA and F states despite a reduced
utilization of muscle glycogen in the F state. This has also
been seen after adaptation to a eucaioric ketogenic diet in which
a similar exercise time to exhaustion at 65% VO, max was seen
despite pre-exercise muscle glycogen values that were
substantially reduced (41). It is also interesting to note that

post exercise glycogen values at fatigue were similar to those

found with other dietary conditions or training status (19, 32,

SN

2 T

1.2 Exercise stimulates glucose utilization by muscle,

e

;?ﬂ increases hepatic glucose production, and increases the hepatic
25;; uptaxe of agluconeogenic precursors such as lactate, alanine and
N

a‘; glycerol (1, 15, 48). 1In the present study, a 3.5 day fast

AkA

§{s chansed the magnitude and pattern of glucose appearance and

E%k disappearance during exercise. In the PA state, glucose Ra and

Pd increased by a factor of 2.5 by the end of 90 minutes of

excroisc, and romained hiah until fatigue. However, in the F
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el :
:5 state, glucose Ra and Rd at fatiqgue had increased only by a j
2 factor of 1.9 compared to already low resting values. Early in F %
éiﬁ exercise, the increase in R4 did not match the increase in Ra. .
’?ﬁ' In the first hour of F exercise, glucose Rd remained low, not j
'Gq significantly different from resting values, while glucose Ra E
»Eg increased 52%, leading to blood glucose levels 28% higher than at
la? rest. ASimilar increases in circulating glucose in the first 30
-, minutes of exercise have been reported in the post absorptive
?Eé state after adaptation to a ketogenic diet (41) or after a 24-
1oV S
§$; hour fast in subjects adapted to a normal diet (32). Tracer
‘gk studies in men fasted for 3 days have shown that exercise
LN
}EE, increases the production of ketone bodies and produces an even
,ix' greater increase in their rate of disappearance and oxidation
2;. (3). In these studies, high levels of free fatty acids and
3 ketone bodies may have contributed to lower peripheral uptake and
" oxidation of glucose, In the present study, during the first
:{\ hour of F exercise, there was an increase in glycerol, a marked
‘EE decline in free fatty acids and ketone bodies, with no increase
xr in peripheral glucose uptake, suggesting that the higher energy
1£i needs of exercising muscles were met mainly by increased lipid
E%ﬁ mobilization, uptake and oxidation (3, 20, 22). During exercise,
e .
,tﬁ the RER remained lower than in the post absorptive state,
?Ji* supporting an increased reliance on fat oxidation in the F state.
Eis However, since gluconeogenesis and ketone body utilization
f‘ respectively decrease or increase the respiratory exchange ratio
;& (16) the effects of fasting plus exercise on substrate oxidation
vﬁé estimated from respiratory data must be interpreted with caution.
et
e
1~i
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N ,
R b3 j
|
s j
o The high levels of blood lactate and alanine observed _5
‘}y during F exercise are consistent with increased availability and’ !
w o . . )
A oxidation of FFA and ketone bodies. In muscles with a large .
B *\ .-
' Y
" capacity for oxidizing fats, high levels of FFA and ketones can
(; inhibit glucose oxidation (44, 45). Acetyl-COA from fat
Lo}
o,
Wg& oxidation inhibits pyruvate oxidation forcing pyruvate carbons
\ .
.: into alternate metabolic pathways resulting in production of .
' b
26 alanine, lactate and other substances (44). Correlations between N
w, < i
>
&y alanine and lactate were higher during F exercise than PA
K
€ 4
‘ exercise indicating a closer relationship between these

substrates during the fast.

ﬂ: In the F state, the glucose Ra increased during the first
hour of exercise, despite unchanging glucose utilization. This

R could be due to an increase availability of gluconeogenic

precursors coupled with enhanced gluconeogenic capacity. Hepatic

Ty
I S | | LRSS , . S SR A

K- and renal gluconeogenesis increase with a greater supply of
Yy precursors: intravenous infusion of alanine into fasting men "
1 _,.": v
e resulted in increased splanchnic glucose output and arterial

. \
{?2 glucose while glycerol infusion enhanced renal glucose output and '
?E arterial glucose (5, 14). Liver gluconeogenesis is accelerated ”
E? ' by both short term fasting (18) and exercise (34): activities of
:’ the key hepatic enzymes pyruvate carboxylase (17) and M
E;.“' phosphoenolpyruvate carboxykinase (46) are increased. Renal %
AT .
. °d

gluconeogenesis is stimulated by the metabolic acidosis (2) that

.
A A e

4

w can be induced by fasting (21) or acute exercise (24) although
- exercise alone has not been shown to increase renal glucose

output (48) .
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After the first hour of F exercise, the balance between the
glucose Ra and Rd was restored. Despite a further increase in
circulating FFA and decrease in insulin, glucose uptake and whcle
body carbochydrate oxidation tended to increase, for reasons not
entirely clear but possibly related to the normalization of blood
glucose by the end of the first hour of exercise. 1In addition,
subjects in the present study had an unusually low proportion of
Type I muscle fibers. It has been shown that Type 1 fibers,
which have a high capacity for fat oxidation (1ll1), are primarily
recruited in the early stages of cycle exercise (19). As their
glycogen stores are depleted Type II fibers are recruited. These
fibers have a much lower capacity for fat oxidation (1ll1) and use
glucose and glycogen as their primary fuel. It is likely that in
the subjects of the present study, Type I1 fibers were recruited
early due to the low proportion of Type I fibers. This shift in
muscle fiber recruitment may account for the increase in glucose
R] and whole body carbohydrate oxidation in the second hour of F
exercise and for the relatively brief duration of the exercise
bout in both the PA and F states.

The changes observed in substrate utilization in this study
may be specific to the duration of the fast and the intensity of
exercise. 1In obese men exercising at 60% VOp max after a 2
week fast, plasma glucose increased very little during 45 minutes
of cycling, and Ra exceeded -Rd only during the first 15 minutes
of exercise (33). In men exercising at 70-75% VO, max after a

24 hour fast, the increases in blood glucose and lactate after 60
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while values for free fatty acids, ketone bodies and respiratory
exchange ratio did not indicate any marked increase in lipolysis
or fat oxidation (3).

At an exercise intensity of 45% VOp max, a 3.5 day fast
did not lead to hypoglycemia nor early fatigue. In fact, the
reduced utilization of muscle glycogen and blood glucose during
exercise, together with the exercise-induced increase in
gluconeogenesis, tended to shift circulating glucose levels
toward values found in the post absorptive state. This study
showed that a 3.5 day fast enhanced fat utilization and had a

glycogen-sparing effect during low-intensity exercise.
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. TABLE 1. PHYSICAL CHARACTERISTICS OF THE SUBJECTS

(yrs) (cm) (kg) FAT MASS ~ MUSCLE FIBERS  (l-min~!) 4

“

AN AGE HEIGHT WEIGHT  BODY  MUSCLE TYPE II VOo M2X
-~
N (%) (%) %)

M 22.5 172.5 76.8 16.4 43,1 76.3 3.25 4

o
ji SD 2.5 5.4 14.1 4.6 15.8 7.9 g.62
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