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EFFECTS OF RADIATION DAMPING ON BEAM QUALITY
.4 IN THE INVERSE FREE ELECTRON LASER ACCELERATOR

Introduction

Electron beam quality as measured by the transverse emittance is usually

determined by the gun and propagation configurations in accelerators. Under

idealized conditions, the transverse normalized beam emittance remains a

constant of motion as the beam propagates through the accelerator. Therefore,

to improve the quality of the beam, it is necessary to decrease the beam

emittance at the injection point. However, since the normalized beam

emittance is essentially the transverse area in phase space for the collection

of beam particles, one can in principle reduce the emittance if a dissipative

mechanism is introduced. A natural candidate for such a dissipation mechanism

is the induced synchrotron radiation damping due to the transverse motion of

the particles in an external periodic transverse magnetic field. It is this

mechanism that we will focus on when the external magnetic field is chosen to

be a helical wiggler field. Since this radiation damping effect is small at

low energies, it is in the context of the recently proposed high energy IFEL

accelerators1-11 that we will concentrate in this paper.

We begin by obtaining the electron orbits in an IFEL accelerator.

A fully relativistic formulation of the equations of motion which include A.

a. radiation damping force is considered. The damping coefficients are obtained .

from the transverse dynamics of the particles while the axial dynamics A.

describes the acceleration of the particles. In the second section, a
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relativistic envelope equation for the average radius of the electron beam is

derived, assuming continuous emission of the synchrotron radiation. It is

apparent from this envelope equation that the normalized transverse emittance

decays exponentially a. a rate given by the radiation damping coefficient.

The envelope equation is solved using a WKB method in the third section and

the spatial evolution of the beam radius is obtained. Quantum excitation sets

a minimum value on the normalized transverse emittance in an IFEL accelerator

and it is derived in the fourth section. Strong focusing is found to be

necessary to reduce such minimum to an acceptable value. An example is given

in the last section for a set of proposed IFEL accelerator parameters. It is

found that radiation damping does reduce the emittance of the accelerated

electron beam while resulting in an insignificant loss in particle energy.

I. Single Particle Driamics

We shall consider the motion of an electron under the influence of a

helical wiggler field and a circularly polarized electromagnetic wave with the

inclusion of the radiation reaction force. The fully relativistic equation of

motion is

.

vdp v x B R
- = -e(E + c +F ("z" dt -cl( - 1

where

R.£._ 2 _ dIp, 2 dP 2 +

R 2 dt dt dt dt
m c

0

2 /3moC 3  2- 2 2

is the radiation damping force, T R -2ej , and Y 1 + c2- /M •

The radiation field is given by its vector potential A =A (cos~e - sintey),
L L x y

where ¢ kz-wt. We shall assume z-dependence for both the magnitude and

period of the wiggler field. The vector potential A for the helical wiggler
^ Z

field is given by Aw=A wcosex +Sine where Aw = A (z) and 0 = f k (z')dz.
- y w 0o



The requirement that the wiggler field satisfies both V • B = 0 and
-w

V x B = 0 introduces transverse variation as well as a nonzero z-component of-W

the magnetic field.15

Since we shall be primarily interested in laser driven accelerators, the

2

!!normalized wiggler field strength aw = eJAw/moc2 is assumed to be much

greater than the corresponding quantity aL = IeIAL/moc2 for the radiation,

i.e., a >> aL .  It can then be shown that the major contribution to thew L
radiation damping is from the wiggler field.

We shall first look at the radiation damping term in Eq. (1). By

neglecting the transverse dependence of the wiggler field for a beam that is

confined sufficiently close to the axis, we have the immediate consequence

that the canonical momenta in the x and y directions are constants of motion

and may be chosen to be zero. The mechanical momenta are then given by

Px = L where A = A + A Also, in the zeroth

c Tex Py c :T y' -T -w -V

order approximation, the total relativistic energy is conserved which leads

to Y = 0 and Pz = 0. Therefore, the only significant term remaining in the

radiation reaction force is

R d2 P 2 d 20F RY[---t2]
- 272 (d-tR d t2 nc0

Neglecting terms of order aL/aW << 1, the components of the radiation reaction

R R R
force are Fx v cp x F - V cp y F = V cp , where

T= RYk 2c(a 2+1), (2a)
Rw w

2 2
V= TYk ca (2b)

° " ' . . . .i • - . - • • o - . . ., -° ° " " • .. ... . .



are respectively the spatial decay coefficients due to radiation damping in

the transverse and axial directions. Note that v V for a2 >> 1 which isi I w

the case in the IFEL accelerator.

C. The most significant feature of the transverse motions of the electrons

is the betatron oscillation caused by either the inhomogeneity of the wiggler

field in the transverse plane or other focusing mechanisms. It can be shown

that, for small oscillations about the axis of the wiggler field, the

transverse equations of motion are,

d 2x + K2x -( - + V dx (3a)
dz2 Y dz'
dz:5,: 2

d2 2 Y' (3b)

dz2  Y J dz

where d/dt -v z3/3z, vz = c, ' -/az have been used, and KB is the wave

number of the longitudinal betatron oscillation. For betatron oscillations

that are originated from the v x B force due to the nonzero magnetic field in

the z-direction of the realizable wiggler field, 15 K a k w/(/2Y)B w

The axial motion of the electron is governed by

dpz dv
'Ym dY _ _ v(4

= z + my (vxB) - P v p) (v4)
dz dz z dz 2 - - I

where

(vp2  
2 ~

dY - el
v  

_ E ( p 2 + P 21
dz 32 3y

m c mcY

It is straightfcrward to show that the axial electron acceleration i s

dv a2  2awaLkwc 2k 3via aZ C W w L w LW
dz T 2  - y2 sin - V + 2 co (5

.1" Y ~Z Yk

'p....

A J1
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where 6 = + = [k + k (Z') - w/v z(z')ldz' + 0o is the phase between the
0

electrons and the ponderomotive wave generated by the beating between the

radiation and wiggler fields, and o is the initial phase at the entrance of

the interaction region. Equation (5) can be transformed into the following.

pendulum equation

2 dk 3a 2  2 aakk 2vk 3v
w k s . Cos . (6)

2 dz 23z 2 a
dz 2Y cy2

* .1 The rate of change of relativistic energy may be obtained from Eq. (4) and is

d aak sin - + via L a - 2) cos - (a 2+ 2 ) (7)

dz Y Y kY w L

Equations (3), (6) and (7) will be the basic equations we shall use in

studying the effects on beam quality due to radiation damping. The terms

containing cos , in Eqs. (5), (6) and (7) as well as the last term in Eq. (7)

2 2 2 Ia
may be neglected when the conditions aw >a a> ,k>>k , and

Y2 >> 1 are satisfied. These conditions are easily achieved in high energy

IFEL accelerators.

II. Derivation of Envelope Equation with Radiation Damping

The single particle equations of motion that we have developed in the

last section will enable us to study the macroscopic behavior of the beam.

This is accomplished by considering the evolution of various averaged

quantities associated with the single particle variables. 1 2 ,13  We begin by

multiplying Eq. (3a) by x' and x, and Eq. (3b) by y' and y, where '

denotes a/az. Combining the resulting equations yields the following set of

equations

,-=--. %5



2
2 KB d 2 2 (8a)

2 dz J1 2 -dz r = i1,(a

1d2 2 2 2 2 jd 2
- -r +~ K r --- r(b
2 dz2  B 2 dz (8b)

dtd- P (8c)

2 x, 2 = 2 x + Y , -i s h

where r2  x2 + 2 2 2, = Y'/Y + V and Z- (x'y - y'x) is the

normalized angular momentum. We eliminated 6 by substituting Eq. (8b) into

Eq. (8a). By taking transverse ensemble averages over beam particles in Eq.

(8), and denoting the ensemble average of r2 by a2 = <r2 >, we obtain an

equation which governs the evolution of the root-mean-square radius of the

electron beam,

2 d 2 d2  2 2 2 d dd2 d3a2  d 2 2
Id a + 2 a + 2KB a +a + dz3- + z(K a

dz d- 2 2 dB dz2d2zB
2d 2

+ a  = 0 (9)
B dz

It is easy to show that the integration factor for Eq. (9) is g a where

2 2
g = Y exp(2J v.dz') . Equation (9) can now be put into the form0

d/dzL g2(a a + wa a' + KB)] = 0 , and can be integrated to give

3 4 2 2 2
g2[a a Ia a' + a K = H where H is a constant of motion associated

with the beam. It can be shown that, using the following representation for

the particles' normalized transverse velocities,
1 2

a' Lr
= r e + - e + 6BJ a r a2 e -

where 6B is the normalized transverse velocity spread, and L = <) from

Eq. (8c), the constant H2 is given by

JAC.

9 6



- z

H2  Y (0)L2 (0) + Y2a2<16 1 >exp(2f v dz')
01

where Y(0) = Y(z=O) and L(O) = L(z=O). We may therefore define the squared

normalized beam emittance 12 ,16 as E2(Z) = f2a2 <16B 12> and arrive at the

following envelope equation

__ + d_ + a 2 [€ (z) + y2L2(z)]

d2a 1dY da K2 E n + Kza 0 (10)
dz 2  Ydz dz B Y2a3

The spatial dependence of the normalized emittance and average angular

momentum are given respectively by

z
E n(Z) = n (O)exp(-f  v dz') (11a)n n'

0

z
L(z) =(-Y(0)/y) L(O)exp(-J V dz') (11ub)

01

where E (0) = C (z=O). Equation (10) together with Eq. (11a,b) constitute the
n n

beam envelop, equation with radiation damping terms included.

One can see that when v 0, Eq. (11a) shows that E remains constant
n

V." and Eq. (10) reduces to the usual relativistic beam envelope equation where

n is the familiar normalized beam emittance. 12,16 Therefore, in the presence

of radiation damping, the root-mean-square beam radius is still described by

an envelope equation but the normalized beam emittance is no longer constant

but decays exponentially according to Eq. (11a). However, the decay of the

normalized beam emittance will eventually be limited by quantum excitation due

to the discrete nature of the synchrotron radiation. It is shown in a later

section that when an equilibrium is reached between these two competing
'95

S.,

p°" '- - .
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processes, the minimum normalized emittance achievable through radiation

damping in the IFEL accelerator is given by (E m-3a 3 kw/(/2m K
nn w w o B

In the presence of radiation damping, the average angular momentum also

decays exponentially as given by Eq. (11b). However, one may choose L(O) = 0

for beam generation schemes that do not impart an average angular momentum to

the electron beam, i.e., zero magnetic field at the cathode. We shall assume

that this is the case in our study of beam quality. We shall also not

distinguish between v and v , and will denote both by v.

III. Evolution of Beam Radius

The equation for the root-mean-square radius a in Eq. (10) is nonlinear.

It is found, however, that the mean square radius a2 satisfies Eq. (9), which

- . is a linear differential equation. For beam focusing provided by the wiggler,

Eq. (9) may be solved exactly for untapered wiggler fields when Y' = 0.

If Y' * 0 or when the tapering is known, it can be solved using a WKB method

if we assume the coefficients are slowly varying. Equation (9) can be

3implified in certain limits of accelerator designs to facilitate analytical

study. It can be shown that, Y'/Y << KB and v K B9 which allow us to arrive

at the following approximate equation

l t + 2SI F W

S' S l S , 
+ [4 K2B +2(K2 )']S 0 (12)

where S a .

In order to obtain net acceleration of the electrons trapped in the

ponderomotive potential, the wiggler field must be spatially tapered. In such

a case, the envelope equation, Eq. (12), is a linear differential equation

with spatially dependent coefficients. We solved it by using the WKB-method

which assumes these coeffients to be slowly-varying functions of longitudinal

. 8



distance. By assuming both K /KB and p << KB, the general solution to

Eq. (12) is found to be

K (0)
-M B

S = e KB(z) [ A + B cos 2E + C sin 2E ]

zi z
where M = f p(z')dz',and E = f KB(z')dz'. The coefficients A, B, C can be

0 0

found by using the initial conditions for a matched beam, a(z=0) = a
• ,,.,0,

a (z=O) = 0, a (z=O) = 0 . The matched beam radius ao is related to the

4 2 2 2
initial transverse emittance ao = cn (0)/(K ()y (0)) . Using the initial

conditions, we arrive at the following expression for the root-mean-square

beam radius,

M/ [K B(0) V/2[ W(O) + K'(O)/KB (0)-M/2 KBO I1 +KB B

a = a e K + sin 2E] I/2
B o 2KB(0)

*Equation (13) shows that the beam radius does not remain constant even when

the beam is matched at injection. In addition to the exponential decay from

the radiation damping, the beam envelope developes an induced betatron

oscillation. However, the normalized emittance is just an exponential decay

given by Eq. (1a).

We may gain some insight into the general effect of radiation damping on

the transverse emittance by studying Eq. (12) in the case of untapered wiggler

field. We shall first consider the case where Y' = 0. This could be the

situation when the acceleration mechanism is saturated by the radiation

damping and the beam energy is constant. The evolution of' the beam radius is

then given by the appropriate limit of Eq. (13). Since there is no tapering

of the wiggler, the solution is exact and given by

9K
ON-i

I
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vz/2 v 1/2a = a e [ 1 + - sin 2K z Io 2 KB sn2BZ

The beam radius again exponentially decays with an induced betatron

oscillation. Since Y is constant, the damping rate v is constant, and the

normalized emittance e is given by En (z) = n (0) exp(-vz).
En n

Next, we consider the situation when an accelerated beam is cooled by

w•

passing it through an untapered external wiggler field. Since the beam

decelerates due to the synchrotron radiation damping, we have Y'/Y = -v.

This gives = 0 and since K = a k /(/-2Y), the betatron wave number KB is a
B w w

V.-. function of z. The spatial dependence of Y can be evaluated using Y'/Y = -v,V,. 22

and Eq. (13) reduces to a = a ( + v ), where = a k Y c. Although theo R o wwo

beam radius remains constant up to order of O(z2), the normalized beam

emittance decreases algebraically, En = Cn (0)/(+v 0oZ).

The relevance of the above analysis depends on the magnitude of the

damping rate v . For the following set of accelerator parameters,
2

EL = 1.5xi0 9 V/cm. Bw = 50 kG., A = 1 m, it is estimated that the e-fold'.PL = ,xO =/m. 1w 05 Teefr u

length, 1/v , could be as short as < 600 m for Y = 10 . Therefore, our

results show that one can improve, by induced synchrotron radiation, the

'quality of an electron beam by passing it through an external wiggler field.
-

IV. Quantum Excitation

An estimate for the minimum transverse normalized beam emittance due toiF quantum excitation in an IFEL accelerator can be obtained from the following

qualitative treatment. Similar arguments can be made for electron beams in

storage rings.17 ,18  The normalized transverse velocity and radial

displacement of an electron in a wiggler field are given by w=a w/Y, and

r =a A /(27Y). For a fluctuation 6E in the energy of the electron, the
w w

corresponding fluctuations in rw and 6 are 6r =n6E/E, and 6B =6E/E, where- w w w

- . . .. •*.*-.*.- *"J~ -' ., - & -" " ," . ." " 4 " ." "..0



n-a A /(2rY) and &=a /Y. The increase in normalized emittance due to such
w w w

fluctuations is17 ,1 9 AEn = Y[KB<6r2> + <68>/KB], which for a weakly focusing

channel, KB<<k w , can be approximated by An wY<62>/KB (Y 2 /K )<6E 2>/E2

Due to the discrete nature of the synchrotron radiation, <6E 2> is given
by N(Aw ) where N=Pz/(c w ) is the number of photons emitted in a distance z,

c c

P is the synchrotron radiation power, and 6w is the energy associated with a
c

quantum of synchrotron radiation. We can therefore obtain the rate of change

of n due to quantum excitation,

d! 2 Phwn C
dz Q.E. KB cE2

'.iow&;oer, with radiation damping, the total change in E is given by

dE de
n) -n)

dz n dz Q.E.

The normalized emittance, En' reaches a minimum, dc /dz=O, when the two

2
effects are balanced. This gives E n=Y cw /(K BE) for the minimum normalized

emittance, where we have used vcfP/E. For synchrotron radiation,

r1c =36cY 3 /(2p) where p=Y/(a k ) is the radius of curvature of the electronc w w

orbit in the wiggler. The minimum transverse normalized beam emittance is

then approximately given by

( n 3min T 3 k/(2mocKB) (14)

In the case of weak focusing due to wiggler transverse gradients,

K = a 2 w I(Y), and the minimum normalized emittance is

wI W

3 Ya2 /("2m c) (15)n min w o

Using the accelerator parameters at the end of section III, Eq. (15)

gives the value of the minimum normalized emittance to be -1.8 cm-rad.

Such a large value of the minimum emittance indicates the inadequacy of the

II I



weak focusing from the wiggler transverse gradients. Strong focusing from,

for example, a rotating quadrupole field produced by a pair of (or four)

helical current windings 20' 2 1 may be required. The betatron wavenumber for
k-'.-sucha focsingmechanism22 is given by K

such a focusing KB i Ieg(aB/r)/Ym c , where aB/r is

the magnetic field gradient of the quadrupole field on axis. For

3B/ar-250 G/cm, aw:600, Xw=1Gm, and y=4xI0 5 ' Eq.(14) gives a minimum

normalized emittance of E -0.13 cm-rad. Another possible strong focusing
n

force could be the electrostatic radial electric field of an ion column. Such

a column could be created by the ionization of the residual gas by a low

energy, high current electron beam pulse preceeding the main accelerating beam

?' ~ "pui. 23-25 The betatron wavenumber for such a focusing mechanism can be

2 2 2
easily shown to be K B  W (m./m )/(2Yc ), where w is the ion plasma

frequency and (mi/m o ) is the mass ratio between the ions and the electrons.

For ni=10 12/cm3 aw= 600, Xw=10m, and Y=4x05 Eq. (14) gives a minimum

.normalized emittance of -0.04 cm-rad. An additional benefit of having ion
n

focusing in the IFEL accelerator is that the radial plasma electron density

profile in an ion column can also be a focusing medium for the laser beam.

V. Numerical Example

We shall consider only resonant particles whose phase 1i satisfies the

conditions d p/dz = 0 and d 2/dz2  0. The first condition gives

Lk= B k -3/2 (16a)
12m 2 w w

C

"/2 B4 -3
R'" H k -R B k (16b)

R 1 w 2 w w'

1 ,iB3 k - 3/2 -k (16c)
3 8 w w k

m c 0I
1" 12



where RI = /-IeELsinipR/(mocV) R2 -- k/(3m c is the resonance

phase, EL the laser electric field strength, and k the laser wave number. The

second condition together with the pendulum equation, Eq. (6), provide the

spatial dependences of kw and Bw,

k4E L  k3  3
2kw w 2/-2mc 2  w

3 k' -B B' + - sin -R -- R w . (17)w B w k ~ RB R2 = .(7w w je I V /k-
w

Equation (17) shows that the required tapering of the wiggler field may

be obtained by prescribing PR and a relationship between kw and Bw in

Eq. (17). As an example, we assume the tapering of the wiggler field to be

that of a maximum rate IFEL accelerator.2  For such a case the wiggler

strength and the wiggler period are related by the following power law,

1/14 7/8
B = (R 1/6R ) k

Equation (17) may then be solved to give

B - Bw (0)[1 + R 4z]-7/9 (18a)

kw k (0)[1 + R Z-8/9 (18b)

: .w w 4

where

R4  9V' mc2 R (R /6R )
3/7B (0)9/7

4 e/ 2 1 2 wIlV -

Evaluating Eq. (11) and (16a) with (16c) and (18a,b) gives the normalized

transverse emittance and the resonant energy of the beam as functions of the

propagation distances.

134'
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For our example, we will consider the following set of accelerator

parameters 2 : EL = 1.5x10 9 V/cm, Bw(O) = 50 kG, Aw(O) = 100 cm, A = 10.6 om

and a resonance phase of sin R = 0.6. The initial conditions are for a

matched beam with a radius of 1 mm , a normalized emittance of

Eo.205 cm-rad, and the required beam injection energy is - 52 GeV. The beam

is allowed to propagate for I km without depleting the laser radiation. We

repeated the calculation by assuming there is no radiation damping but with

the same power law tapering of the wiggler field.

The results are represented in Figs. (1), (2), and (3). The open squares

denote the presence of radiation damping, wriile open circles denote its

absence. From Fig. (1), we can sep tnit the final energy is not significantly

reduced by the radiation dampir.g. Figure (,) snows the exponential decay of

the normalized emittance. At tht - nI ;f the ne-<Iiometer accelerator, the

normalized emittance i3 reluco t .P or,-rad 4hich is very close tD the

minimum normalized emittdnce Pf -. r-r i it thit point i f ion column

focusing is assumed in trw i,eratr. In Fig. (3), the appropriate tapering

of kw and Bw for the two cases are sh3rwn.

, :Conclusion

We have studied the evolution of transverse emittance and the beam radius

due to the radiation damping effect in an IFEL accelerator. We derived the

beam envelope equation, Eq. (10), which includes the effects of radiation

damping, and have demonstrated that the normalized transverse emittance

decreases exponentially with a damping rate given by the radiation damping

coefficient v until it reaches a minimum value due to quantum excitation

The beam envelope equation was solved analytically for a slowly-varying

wiggler field. We have derived an expression for the minimum normalized

emittance in the IFEL accelerator and showed that strong focusing is essential

14
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in reducing this minimum emittance due to quantum excitation. We have shown

that radiation damping can play an important role in improving beam quality

without a significant sacrifice in beam energy.
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