
ADM $23 DIMECTORY REFERENCE PATTERNS IN A UNIX ENYXRONNENT(U us
ROCHESTER UNIV NY DEPT OF COMPUTER SCIENCE R FLOYD
AUG 96 TR-1?9 N90014-62-K-0193

UNC L SSII E D F / O 2/5 M

7 m hhOhh NN
mW hEEEEmhEmhEE

Iommosmo



1.25 1.4 I
M= mU .

Mlk W f~i Pf AOL OTIlON It - HARI



* '.'
OIC -EILELCOPY

0
oi

I.

Directory Reference Patterns
in a UNIX Environment

Rick Floyd
Computer Science Department
The Universitv of Rochester
Rochester, New York 14627

TR 179
August 1986 ...

-.-- .-

STIC

MAY O?17D 

Department of Computer Science
University of Rochester

Rochester, New York 14627

I~ ~ ~~"- *x nd P"I 7
,. .,..=, , .9 " 7 / -



II
Directory Reference Patterns

in a UNIX Environment

Rick Floyd
Computer Science Department
The University of Rochester
Rochester, New York 14627

TR 179
August 1986

Abstract

-- Data on directory references made in opening files have been collected from a 4.2BSD UNIX system
supporting university research. An analysis of these data shows that paths are relative "ilongj(an average
of 2.7 components to resolve per path) and that, in the absence of caching, name resolution overhead

accounts for over 70% of the disk blocks referenced to open and use files. Directory references show strong
locality, though, making caches an effective way to decrease this overhead. Simulations of an LRU whole
directory cache show that a cache holding just 10 nodes achieves an 85% hit ratio.

A number of other results on directory reference patterns are presented in this paper, along with a
discussion of their implications for both local and distributed file systems.

This work was supported in part by the National Science Foundation under grant number DCR-8320136
and in part by the Office of Naval Research under grant number N00014-82-K-0193. %

, L T

A



SECURITY CLASSIFICATION OF THIS PAGE (Whien Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT-S CATALOG NUMBER

TR 179

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Directory Reference Patterns in a UNIX Technical Report
Envi ronment G. PERFORMING ORG. REPORT WInmEl

7. AUTHOR(e) S. CONTRACT OR GRANT NUMEE.I.)

Rick Floyd N00014-82-K-0193

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Computer Science Department
The University of Rochester
Rnchpstpr. N~w York 14 27 __

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

August 1986
DARPA/1400 Wilson Blvd. 13. NUMBER OF PAGES

_1Arl i q ._VA_. 22220 116
14. mM{ITO'RiNG AGENCY NAME & ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of thie tepat)

Office of Naval Research Unclassified
Information Systems OECLASSIFICATION/DOWNGRAOING

Arlington, VA 22217 Is.SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Distribution of this document is unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)

IS. SUPPLEMENTARY NOTES

None

I9. KEY WORDS (Continue on reverse aide if neceeeary and Identify by block number)

Directory, reference-patterns, UNIX file system, name resolution, Cachimg
distributed file systems.

20. ABSTRACT (Continue an reveree side II necessary nd Identify by block number)

Data Directory references made in opening files have been collected from
4.2BSD UNIX system supporting university research. An analysis of these data
shows that paths are relatively "long" (an average of 2.7 components to
resolve per path) and that, in the absence of caching, name resolution over-
head locality, though, making caches an effective way to decrease this over-
head. Simulations of an LRU whole directory cache show that a cache holdirg
just 10 nodes achieves an 85% hit ratio.

JN 7 1473 EDITION OF I NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE ("ien Date Etersd)



20. ABSTRACT (Continued)

A number of other results on directory reference patterns are presented in this
paper, along with a ciscussion of their implications for both local and
distrubuted file systems.

Aecession For

NTIS GRA-&I
DTIC T,.B
Unanno -red 13
Justif .Catio

By

Avaii 1IjtV Codes
'Avafl1 and/or

Dist special

"Nov-a ' %a'' Y*~ %, %aa '



I

1. Introduction

File systems that provide a flexible hierarchical directory structure are rapidly becoming the norm rather
than the exception. This is particularly true for distributed file systems (DFS's). Many recent DFS's

[Ellis 83, Satyanarayanan 85,Tichy 84, Walker 831 use a name space modeled after the hierarchical UNIX 1

file system (Ritchie 781. Understanding and improving the behavior of these hierarchically structured file
systems has been hampered by a lack of information on the ways that they are used. In particular, there is
very little data available on directory reference patterns.

Our recent study of short term file reference patterns on a 4.2BSD UNIX system [Floyd 86] found that
referenced files tended to be small (under 1000 bytes long) and that some of the most commonly referenced
files required as many as 4 path components to be resolved to reach the descriptor for the file. These two
results suggest that even in a single site file system, name resolution can be an important factor in
determining the overall performance of the file system. Reports that 40% of BSD UNIX system call
overhead is due to name resolution [Leffler 84] support this. For a DFS, name resolution cost may be even
more critical. If path components are resolved individually across the net, as they are in many DFS's,
network overhead can make the cost prohibitively high.

There are a number of ways to decrease the name resolution cost. One of the simplest is to cache directory
information. 4.3BSD UNIX caches individual directory entries. Sheltzer et al. [Sheltzer 861 have had good
results with page level caching in the LOCUS distributed file system. Finally, entire directory nodes may be
cached or replicated. Treating directories as a whole is the approach used by the Roe distributed file
system [Ellis 83, Floyd 871 and is the one that we will be addressing here.

Our earlier paper describes modifications that were made to a local UNIX system to collect a log of
accesses to files. This log does not capture all directory operations (for example, calls such as Istat that
request information about a file but don't access file data are not logged). It does, however, include a
complete record of the paths used to create, open. execute and delete files, to open directories, and to
create, delete, and modify directories. This paper uses that path information to examine the overhead of
name resolution in accessing files, the rate of change of directory nodes, the effectiveness of whole directory
caches, and so on. We hae generally tried to present the information in a way that gives a qualitative feel
for the way that directories are used on our UNIX system. Quantitative fits and distributions are, for thL
most part, sacrificed in favor of observations that would aid in developing and operating file systems.
These results, along with our earlier file reference study and a simulation driven by the data we have
collected, will be used to investigate the performance of the Roe distributed file system.

Section two of this paper describes the environment in which our measurements were made and presents a
brief overview of the data collection method. Section 3 outlines the approach we used in analyzing the data.
Section 4 presents some of the major results of this analysis. In section 5. we discuss the implications that
these results have for file system design. Section 6 describes further analysis that could be done and section
7 summarizes our results.

Familiarity with UNIX [Ritchie 781 is assumed. Knowledge of 4.2BSD UNIX [Joy 83) may also be useful.

'UNIX ts a trademark of AT&T Bell LAboratones

4 w ," " • ",Q " q" ," " ,% .m% % % % % % Z% 
,

'.. .".



2

2. Data Collection

2.1. Data Collection Environment

The data used in this paper were collected from a VAX 11/7802 on the University of Rochester Computer
Science Department network. At the time that the data was collected (September 1985), the network
consisted of a VAX 11/780, 4 VAX 11/750's, 7 Sun workstations, 13 Xerox Dandelion workstations, 3
Symbolics LISP machines, and a number of special purpose devices. The 11/780, called Seneca, was
selected as the primary machine for data collection because it was far and away the most heavily used of
our systems. Seneca had, at the time, 4MB of memory, 560MB of disk storage and was running 4.2BSD
UNIX. The system supported roughly 200 users. The primary user activities were program development (as
part of our research effort), text editing and formatting, reading news and reading personal mail. Seneca
also acted as a USENET news and UUCP mail relay [Nowitz 781. There was relatively little database
activity.

Data were also collected from two of the 11/750's. Preliminary analysis of the 11/750 data merely
confirmed the importance of Seneca in our environment. Neither of the 11/750's had file system activity
levels greater than 15% of that seen on Seneca. Because of this, only the Seneca data were fully analyzed.

2.2. Data Collection Method

In this section we briefly describe the data collection package. A more detailed description may be found in
[Floyd 861. When we refer to "the file system" in this section (and in the rest of the paper), we will
generally be considering the overall file name space on Seneca. On UNIX machines, the file name space is
actually made up of a number of physical file systems. each of which stores files. directories, descriptors.
and device information for a subtree of the overall naming tree. If we are discussing a particular physical
file system, it will be mentioned explicitly.

Two types of data were collected: 1) a static "snapshot" of the file system and 2) a running log of file
system activity.

The static snapshot provides a picture of the entire file structure on a machine at a given point in time. The
snapshot includes information on the name, file id (device/inode), and size of files. It also includes the
name, file id, and children of directories. A static snapshot was taken of the Seneca file system when file
system logging was started. This snapshot was uged as a starting point for the analysis programs (section 3)
and also provided information on the static directory size distribution.

The 4.2BSD UNIX kernel was modified to log system calls that accessed file and directory data or modified
directories. Logged calls that resulted in directory references can be classified as follows:

(1) Directory structure modifications: mkdir, reaiame, rmdir, symlink.

(2) File data references: execv/execve, link, open/creat truncate, unlink.

(3) Process context: chdir, chroot.

2VAX is a trademark of Digital Equipment Co'poraton.

%'.,.,, .."..r ., ,. . , V,,: .": ., :"'~:. 'r:'"ZP;¢.;.;' .... . . . ... "":";-";:;'":, -- .. ,< . ..' .' ,,': :":-:



3

The first four records (mkdir, rename, rmdir and symlink), combined with the results of the static snapshot
taken at the start of logging, allow us to construct and maintain a model of the directo: y tree for the file
systems on the machine. Mkdir creates a new directory. Rename changes the path used to reach an object.
Rmdir deletes a directory. Symlink creates a symbolic link containing a path to a file or directory. When a
symbolic link is encountered during path resolution, the path in the symbolic link is substituted into the
partially resolved path before resolution is continued. This is the only way in 4.2BSD UNIX to make links
across file systems.

Calls in the second category (execute, link, open, truncate, and unlink) are the actual references to files.
Execute (execv and execve system calls) executes a file, replacing the current process with the image given
in the file. Link and unlink add and delete director entries for files. While these calls don't refer to file
data explicitly, if unlink removes the last directory entry for a file, the file will be deleted. Open (open and
creat system calls) opens or creates a file or opens a directory. Processes access files either by explicitly
opening them or by inheriting open files from their parents. Truncate shortens a file.

The remaining records (chdir and chroot), along with information on process creation and destruction (not
shown), allow us to keep track of the location in the directory tree of each process. Chdir changes the
directory used to resolve relative references made by a process (those not starting from the root of the file
system tree). Chrooi changes the root of the file system as seen by a process.

Each log record includes the time that the call finished (with a resolution of 10ms), the process identifier
(pid) of the process making the request, and information describing the call arguments and result.

Our original purpose in collecting data was to track references to files. Because of this, some calls that
cause directories to be referenced (for name resolution) were omitted from the log. These calls were:

(1) Protection: chmod, chown.

(2) Status: readlink, Istat, stat, utimes. access.

(3) Administrative: acct, mknod, mount, setquota.

(4) UNIX domain IPC (side effect of the 4.2BSD implementation): bind, connect.

Of these calls, only Istat and stat are likely to occur with any frequency. These two calls retnese status
information on a file (size, protection, access date, and so on) from the file inode. Mogul found
[Mogul 86b], in studying another 4.2BSD system. that Istat and stat were used nearly twice as often as the
calls that we logged. Most of these status calls were made, though, by an administrative process that
scanned the entire file system on a regular basis. A similar program is run on our system, but only half as
often and on a smaller, busier file system. Based on this, we estimate that Istat and stat calls occur about
half as often as open and creat calls on Seneca. Further, these status calls are generally tightly clustered in
time (most will occur during the 4AM scan of the file system) and so we expect that they will haNe little
effect on the results we will be presenting.

Another potential contribution to directory references that we have not logged is from system calls that fail.
We logged only successful calls.

-S% f

#i.'J *.%b.'W.A..'...'../** -.. A! *~J~.



4

3. Analysis Method

3.1. Basic Approach

To analyze a file reference log, we first set up a model of the original file system using a snapshot taken
when logging was enabled. We can then interpret log records in the context of this model, updating the
model as necessary. This approach gives us information such as directory sizes, owner, and reference histo
that is not available from the raw log (see [Floyd 861 for more on this).

When we encounter a record in the log that contains a path to resolve, we take each path component in
turn, resolving it individually. Each directory used in the resolution is marked as having been referenced
and the appropriate histograms are incremented. Resolution starts either at the root of the file system (for
an absolute path) or in the current working directory of the process that generated the record. So, for
example, an OPEN record that specifies a path of "/u/rickl/.login" generates 3 directory references: to "I"
to resolve "u"; to "u" to resolve "ri.. and to "rick" to resolve "ogin."

There are a few conventions that are used in the analysis:

(1) AD of the analysis presented here is at the node (entire directory) level. We haven't attempted
to analyze references to individual directory entries or pages. See [Floyd 86] (particularly the
file interopen interval and lifetime distributions) and [Leffler 841 for information on individual
entries.

(2) Directory sizes include entries for "." (the directory itself) and ".." (the parent). These entries
are always present in a UNIX directory and so the minimum directory size is 2 entries.

(3) Directory sizes given in bytes or blocks assume that the 4.2BSD directory layout is used (that
is, an 8 byte header, space for the name itself, and a 1 byte trailer, padded out to a 4 byte
boundary) and that there are no "empty" entries. This last assumption means that we probably
understate somewhat the number of blocks required to read a directory.

(4) All component resolutions are marked as having taken place at the time the system call being
analyzed finished. In real life, of course, these resolutions won't occur simultaneously. Because
of this, intervals of less than lOOms should not be taken seriously.

(5) All components in a path are resolved. No attempt is made to short-circuit degenerate
components or path segments. So. for example, resolving "./.login" requires two references
(one for "." and one for ".login") and resolving "/u/rick/.login" would require 3 references
even if the working directory of the process making the request is "/u/rick." This is consistent
with the approach used by 4.2BSD.

3.2. Cuts

One expects that directory reference patterns will be different for user vs. system processes, user vs. system
directories, batch vs. interactive work, and so on. This is certainly the case with file references [Floyd 86).
We have developed a set of data cuts that allows us to isolate and compare various contributions to the
overall activity on Seneca. We use 4 basic types of cuts:

(1) Cuts on the ruid (owner) of processes making requests (the categories are UUCP/USENET
network, system, and user).

4



5

(2) Cuts on the owner of the referenced directory (UUCP/USENET network, system, and user).

(3) Cuts on the owner of the referenced object (UUCP/USENET network, system, and user).

(4) Cuts on the UNIXfile system of the referenced directory. As we mentioned in section 2.2. the
overall file name space on a UNIX machine is actually made up of a number of physical file
systems. There were 5 physical file systems on Seneca at the time data was collected, mounted
as follows: "/," '/u," '/usr," "/usr/spool," and "/tmp".

Some of these cuts may be combined to give other more specific cuts. 9 cuts are used in this paper:

(1) no cut: This cut passes all records in the log to the user analysis routines.

(2) ruidNET: Passes references by what we term net processes. Net processes are those running
under UUCP. USENET news or notes accounts. Most of these processes run in batch mode
and so this cut gives us a sample that is considerably different from an interactive one. This
category has been broken out from the system and user categories because of the batch-
oriented nature of the references and the large number of system calls by net processes
(roughly 1/3 of the calls in this study and as much as 70% of the non-system calls in earlier
studies [Floyd 851). We don't include activity due to Seneca being on the Rochester network
in the midNET category.

(3) midSYSTEM: Passes references by system processes (those running under root. daemon.
games and other miscellaneous system accounts). System processes are primarily daemons that
provide widely used services (such as spooling and network status reporting), processes created

on behalf of users to perform privileged operations, and periodic maintenance processes.

(4) midUSER: Passes references by processes running under user accounts.

(5) dir_ownerNET: Passes references to directories owned by UUCP, USENET news, and notes
accounts. These are primarily directories holding news articles, UUCP spool files, and news
and UUCP activity logs.

(6) dir_ownerSYSTEM: Passes references to directories owned by the system accounts mentioned
above. This includes directories holding major administrative and status files (for example.
/etc), system libraries, system include files, the root of each mounted file s~stem, and so on.

(7) dir_ownerUSER: Passes references to user directories.

(8) ownerUSER+ruid_LSER: Passes references made by user processes. but onl if the leaf
object is owned by a user. This gives a trace of directories accessed in resolving user references
to user files. The ownerUSER + midUSER cut is interesting because it gives us a measure of
activity that is relatively independent of the underlying system.

(9) midUSER + /u: Passes references made by user processes to directories in the /u file system
(this is the file system on Seneca that holds all user directories). While the

ownerUSER+ midUSER cut includes all directories that are referenced in accessing user
files (including, for example, "/tmp" for temp files and "/" for absolute path names), the
mid_- USER+/u cut only includes that subset of files and directories on /u. This cut will be of

particular interest to DFS designers who combine a global user file space with local system
directories [Satyanarayanan 851.



6

4. Directory Reference Patterns

This section presents the results of our analysis. A full analysis of the data was done using 21 different cuts
(the 9 cuts listed in section 3.2 plus cuts on other file systems and on ruid, file system, and directory owner
combinations). It is clearly impractical to present results for the full set of cuts. We have generally included
only those tables and histograms that are particularly characteristic or striking.

Overall system activity and per call results are presented using ruid cuts. These cuts show the overall

contribution from each of the user classes and point out some of the differences in the way that these
classes use the file system. Analysis that concentrates on individual directories is presented using directors
owner cuts. Directory owner cuts show us roughly where in the file system activity is concentrated and
allow us to investigate the activity on a directory by directory basis.

In some cases we give more detailed results on user activity using the ownerUSER+ruidUSER and
ruid_USER + /u cuts. These cuts give us a data sample that allows us to investigate reference patterns that
a DFS dealing primarily or wholly with user files would see (Roe [Ellis 831 and the ITC DFS
[Satyanarayanan 851 are examples of such a DFS).

4.1. Basic Statistics

Roughly 7 days of data were collected on Seneca (168.82 hours, from 3:21AM on Monday, September 16,
1985 to 4:10AM on Monday, September 23). During this period there were 142 active users of the system.
There were generally 20 to 30 logged in users at any given time on weekday afternoons, with load averages
running between 5 and 10.

A sumnary of the records collected that reference directories is given in table 1. The first 3 columns give
the number of records of each type collected, the average rate for that type of record, and the percentage of

"S

no cut ruidNE- ruidSYSTEM ruidUSER

count per hr fraction count fraction count fraction count fraction

mkdir 936 5.5 0.07% 795 0.19% 2 0% 139 0.03%
rename 3211 19 0.23% 1946 0.46% 408 0.08% 857 0.19%
rmdir 913 5.4 0.06% 780 0.19% 0 133 0.03%
symlink 16 0.1 0% 0 - 3 0% 13 0%

chdir 136063 806 9.7% 19102 4.5% 71854 13.5% 45106 10.0%
chrUt. 0 - - 0 0 0

.execute 125064 741 9.0% 26761 6.4% 38093 7.2% 60209 13.3%

link 42929 254 3.1% 25694 6.1% 7301 1.4% 9934 2.2%
open 965087 5720 68.7% 277350 65.9% 393661 74.1% 294070 64.9%
trunte 0 7 9 0 0 - 0 1

unlink 130929 776 9.3% 68342 16.2% 19861 3.7% 42726 9.4%

tota 1405148 8323 100% 420770 100% 531183 100% 453187 100%

Table 1: Records loged

*4



7

collected records that this represents. The remaining columns show the number of records collected cut b
the ruid of the calling process and the percentage of the total for the ruid class. Opens accounted for 2/3 of
the path requests we logged. Chdir, unlink, and execute calls accounted for most of the rest of the requests.
There were relatively few directory structure modification requests.

Opens may be further broken down b.y the type of object being opened (table 2). While most requests
were to open regular files, there were also a significant number of directory opens. Processes open
directories in UNIX to scan the contents (as opposed to resolving a single name). This is commonk done
by user processes to satisfy interactive requests to list directory contents. Directory open acti'it bv system
processes was due to daemons examining spool directories for work and to housekeeping scans of the file
system. In our analysis we have counted the open of a directory as a single reference to the directorn.

Each of our ruid classes accounted for roughly 1/3 of the path resolution requests (table 3). Most of these
paths were specified absolutely (that is, were resolved starting at the root of the naming tree). Overall, only
about a quarter of the objects being referenced were listed in the working directory of the process making
the request. This is a reflection, in part, of the high level of activity to system files. As we saw in
[Floyd 86]. over half of all file opens went to system files. 4.2BSD makes heavy use of system files to store
system configuration and status information. Since these files are often opened as an incidental part of other
activity, they are usually not the current working directory and so are referenced absolutely.

Our compound user cuts eliminate this activity to system files. If we look at just user activity to files on /u
(the user file system), we find that 2/3 of the paths we saw specified an object in the working directory of
the process making the request. Note. though. that user references to objects on /u accounted for only a
third of the overall user paths and a tenth of the system activity. For references by users to all user objects

no cut ruid NET ruidSYSTEM ruidUSER
type opens fracuon opens fraction opens I fraction opens fraction

regular file 754285 78.2% 249825 90.1% 298186 75.7% 206268 70.1%
directory 170448 17.7% 17275 6.2% 72625 18.4% 80548 27.4%
block special 922 0.1% 0 60 0.02% 862 0.3%
character special 39432 4.1% 10250 3.7% 22790 5.8% 6392 2.2%
total 965087 100% 277350 100% 393661 100% 294070 100%

Table 2: Opens, by object type

c absolute leaf in
cut paths % paths path working dir

ruidNET 4.48e5 30.8% 74.2% 17.1%
ruid._SYSTEM 5.39e5 37.0% 70.9% 28.3%
ruid USER 4.69e5 32.2% 66.6% 32.8%
ownerUSER + ruidUSER 2.55e5 17.5% 54.3% 45.9%
ruidUSER +/u 1.57e5 10.8% 35.2% 64.7%
no cut 1.46e6 100% 70.5% 25.9%

Table 3: Path statistics



8

(those on /u plus user files in shared system directories such as /tmp and /usr/spool/mail). the fraction of
paths specifying an object in the working directory drops to less than 1/2.

Each path resolved may (and usually does) ha'e more than one component. Table 4 gives some
information on the number of components per path for each of our ruid classes. Note that each path had,
on average, almost 3 components, each of which required a directory reference to resolve. Paths for net
processes were particularly long. 'his was caused by the relative depth of the net directory trees (rooted in
/usr/spool/news. /usr/spool/uucp, and so on) coupled with the heavy use of absolute path names b\ net
processes.

User paths specifying user objects were generally shorter, with an a'erage of slightly more than two name
components to resolve per path. If the target object was on /u, an average of 1.57 of the components
resolved were on the /u file system (note that this doesnt include references to "/" for absolute paths. since
"/" is not on the /u file system).

While each of the ruid categones accounted for a roughly equal number of references, nearls 3/4 of all

references went to system directories (table 5). Ihis is not surprising, since most references were absolute

4 >

cut mean median o2 3>4 max

ruid_NET 3.45 4 8.0% 34.9% 6.3% 25.7% 25.2% 8
ruid.SYSTEM 2.48 2 28.4% 31.0% 6.3% 33.5% 0.7% 8
ruidUSER 2.22 2 32.5% 34.7% 19.2% 8.9% 4.7% 11

ownerUSER+ruidUSER 2.11 2 42.2% 25.3% 18.2% 10.5% 3.8% 11
ruid_USER +/u 1.57 1 61.9% 26.7% 6.5% 2.7% 2.1% 9

no cut 2.70 2 23.4% 33.4% 10.5% 23.2% 9.5% 11

Table 4: Components/path

total reads .rites reads/

references fraction references fracuon references fraction w rites

ruidNET 1.59e6 37.5% 1.44e6 36.4% 1.42e5 52.1% 10.1
midSYSTEM 1.48e6 34.9% 1.44e6 36.4% 4.03e4 14.8% 35.7
ruidUSER 1.17e6 27.6% 1.08e6 27.2% 9.01e4 33.1% 12.0

dirownerNET 7.42e5 17.5% 6.17e5 15.6% 1.25e5 46.1% 4.9
dir_owner_SYSTEM 3.09e6 73.0% 2.96e6 74.7% 1.23e5 45.4% 24.1
dir ownerUSER 4.060e5 9.6% 3 83e5 9.7% 2.32e4 8.6% 16.5

ownerUSER + ruidUSER 6.16e5 14.5% 5.36e5 13.5% 7.99e4 29.4% 6.7
midUSER +/u 3.07e5 7.2% 2.86e5 7.2% 2.20e4 8.1% 13

no cut 4.24e6 100% 3.96e6 100% 2.72e5 100% 14.6

Table 5: Reference statistics



9

and so this implies that even references to files in user or news subtrees often required two or three system
directories to resolve. There was relatively little activity to user directories. Overall, 93.4% of the references

were directory reads and 6.6% were directory writes3. Nearly half of the writes were to system directories
(mostly to /tmp and /usr/spool/mqueue), with most of the rest going to net directories. Net directories
were not heavily used overall, but had a particularly low read/write ratio and so a high fraction of the
writes.

User references to their files and directories accounted for only 14.5% of the references on the system and
about half of the references made by users. Relatively few user writes were to user directories. As we will
see in section 4.3, most were to system temporary and spool directories.

Most directories belonged to users (table 6) but, as we saw above, there was relatively little activity to these
directories. Again, this is a reflection of the heavy activity to system directories.

cut directories % directories references/directory
dirowner NET 1275 23.5% 582
dirownerSYSIEM 427 7.9% 7230
dir ownerUSER 3713 68.6% 109
no cut 5415 100% 782

Table 6: References/directory

4.2. Per Reference Results

The directory reference activity over time is shown in figure 1. References followed a daily pattern with a
busy period between 9am and 6pm, overlaid by bursts from net activity (news reception) and a strong peak
in the early morning (news expiration and the housekeeping scan of the file system). Weekends were
relatively quiet. Except for the strength of the early morning peak, this pattern follows closely the one we

". saw for file opens [Floyd 861. The relative strength of the morning peak is due to the long length of paths
used by net processes and the inclusion of directory opens (the primary housekeeping activity we logged).

User activity to user files (figure 2) showed a busy period during the day, with activity tapering off in the
late evening. This is typical of a university environment. There was some early morning activity due to user
background jobs.

3Note that directory writes in NIX represent changes in the naming tree (such as adding and deleting files) Information on the
objects named (size. last use and so on) is kept elsewhere



10

25
midUSER

............. ruid_NUT

.......... ruid_SYSIFM
20 _no cut

15
average

.4.

references
per second 10

uPN,

. .

6.0
.......... owner-USER + ruidUSER

.......... ruidUSER + /u
mridUSER

4.0 -

average

references t
per secondD reu

FA

2. - . ,.

0.0

0:00 (Tue) 0:00 (Thu) 0:00 (Sat) 0:00 NMort)
uoe of reference

Figure 2: Directory references per second ('2 hour resolution. user cuts)

r id

4 r i n d _ U S ER ' " " " * " • " , # " • ." . . . ." " .. " " " " " " ' . " J' . ', ' " ' ' '



I1

1.0
........... dirownerUSER
....... dirowner NET
- - dirownerSYSTEM ,

0.8 no cut

stauc
/

0.6 /
fraction /of/ ..'" .. °

of... -

references /
0.4

/

0.2 / ." .- -

/ . --.- -

-. . . .. ... I I

0.0 - - - -

1 5 10 50 100 500
directory size (entries)

Figure 3: Size of referenced directories (cumulative, in entries)

distribution min max mean median std deviation

dirownerNET, dynamic 2 500 63.1 51 65.3
dirownerSYSTEM, dynamic 2 471 55.1 26 63.3
dir-ownerUSER. dynamic 2 327 34.2 20 40.2

ownerUSER + ruidUSER 2 484 60.8 29 64.2
ownerUSER + /u 2 282 82.9 40 80.6
ruidUSER 2 484 66.0 33 69.8

all, dynamic 2 500 54.5 26 62.2
all, static 2 471 15.8 8 27.3

Table 7: Directory size distributions (in entries)

Figure 3 shows the size (in entries) of referenced directories, weighted by the number of references made
and cut by the owner of the referenced directory. Note that these are cumulative distributions. At any point
on a curve, the y value is the fraction of directories with sizes less than or equal to the x value. For
comparison purposes, we have included here the static directory size distribution (this is the distribution

that would result if each directory on the system were referenced once). Table 7 gives some statistics on
these distributions.

.,-... ., - .. ..- ,,U .- ,-. . ...-.-.-.- ,.,,. . .- .. ...,,,,... -. - .- . . , ,,- -. .-, , , -. -, - . , , - -, . . ,. ,, , .- ••



12

1.0
... ownerUSER + ruidUSER

ruid_USER + /u

ruidUSER

0.6fraction

of
references 0.4

0.2 -

0.0

1 5 10 50 100 500

directory size (entries)

Figure 4: Size of referenced directories (cumulative, in entries, user cuts)

From figure 3 we see that most directories on Seneca were small (half had under 8 entries). Referenced
directories were considerably larger (median of 26 entries), but still small by most standards. Since "/,"
"/usr," and "/usr/spool" had 26, 35 and 26 entries respectively and accounted for nearly half of the
references, this result was inevitable. The median size of 26 entries implies that, in the absence of other
factors, the median number of comparisons needed to resolve a component was 13. This agrees with
4.2BSD measurements done elsewhere [Mogul 86a]. The small static median is also typical of 4.2BSD
systems [Mogul 86b]. These distributions all have long tails and so the means are considerably higher.

Directories on /u referenced by users (weighted by the number of references) were generally somewhat
larger than referenced directories on the system as a whole (figure 4 and table 7). This was due, in part. to
the relatively high level of activity to /u (at 200 entries) and the absence of the heavily referenced system
directories (at 26 entries).

*1

d7

v.,,



13

.................... dir_owner_USER -. . . .

dirownerNET .

....... dir -ownerSYSTEM '. .-

0.8 no cut ' ""

0.6
fraction

of
directories

0.4

0.2

0.0 ----- 1
10 100 1000 10000

number of references to directory

Figure 5: Number of references per directory (cumulative)

distribution min max mean median std deviation

dirownerNET 8 1.45e5 582 28 5.9e3
dirownerSYSTEM 28 1.06e6 7230 28 6.3e4
dir ownerUSER 2 1.38e4 109 28 4.1e2

owner_USER + ruidUSER 1 1.44e5 327 12 4.0e3
ruidUSER +/u 1 7.18e4 219 18 2.0e3
ruid USER 1 3.24e5 582 20 8.1e3

no cut 2 1.06e6 782 28 1.8e4

Table 8: Number of references/directory

4.3. Per Directory Results

The number of references to a directory over a period gives an indication of the potential benefits of
caching or, for a DFS, of migrating or replicating a directory (update activity and sharing are also
important factors). If we ignore scans of the entire file system (at least 28 references per directory over the
course of the week) we see that half of the directories on the system were not referenced at all (figure 5 and
table 8). Many of the rest were referenced a few tens of times.

I

"1

%*



1.04

1.0..... _i ownerUSER

-........ dir-ownerNET

0.8 ------ dir _ownerSYSTEM
0.8 no cut

0.6
fraction

of
references.

0.4

0.2

0.0 - -- ------ ------

1 10 100 1000 10000 1000001
number of references to directory e

Figure 6: Fraction of references per active directory (cumulative)

distribution mean median std dcv

dir-ownerNET 6.09e4 4.47e4 5.6e4
dir _ownerSYSTEM 5.54e5 6.17e5 4.1e5
dir-ownerUSER I 67e3 4.68e2 2.9e3

*no cut I4.15e5 Il.78e5 I4.2e5

Table 9: Reference distribution (as a function of references/director)

There were some net and system directories, though, that were referenced tens of thousands of Limes. ON er
half of the references, in fact, went to system directories referenced more than 100.000 times each. "Ibis is,
shown in figure 6 and table 9, where we have weighted the distributions in figure 5 by the number of'
references made. This gives us the fracti-i of overall references as a function of directory actr. it>. Note
that 85% of the references went to directories referenced more than 10,000 tumes.



15

1.0 .................... ownerUSER + ruidUSER

.......... ruidUSER + /u
0.8 - ruid_-USER

1...

0.6 ../. - .
fraction

of
directories 0.4

0.2

0.0 I I

1 10 100 1000 10000
number of references to director)

Figure 7: Number of references per active directory (cumulative. user cuts)

Figure 7 and table 8 show, for each of the user cuts, the number of references made to active directories
(those actually referenced given the cuts). If a directory was referenced at all by users (only 37% were), it
was likely to see enough activity to make trying to minimize the access overhead (through caching.
migration, or other mechanisms) worthwhile.

The most frequently referenced directories are listed in table 10. Note that the four busiest directories
accounted for over half of the references and received, between them, just 9 wntes in a week. These
directories are clearly 'er) good candidates for extensive replication in a )FS, since update overhead is not
an issue. The 15 most acti'e directories accounted for 76% of the references. This suggests that even in a
local environment, special treatment of a small number of directones could result in substantial
improvements in name resolution performance.

lie directories most frequently referenced by users in accessing their files and data are listed in table 11.
Most are shared user directories.



16

references fraction reads wntes I reads/writes path

1058380 25.0% 1058374 6 176400 /
587013 13.9% 587013 0 /usr
395132 9.3% 395129 3 131700 /usr/spool
168205 4.0% 168205 0 - /usr/spool/rwho
145318 3.4% 118865 26453 4.49 /usr/spool/uucp
136363 3.2% 136121 242 562 /etc
114227 2.7% 104485 9742 10.7 /usr/spool/news
105239 2.5% 51857 53382 0.97 /mp
85579 2.0% 85566 13 6580 /usr/lib
78696 1.9% 786% 0 /U

76778 1.8% 22820 53958 0.42 /usr/spool/mqueue
74590 1.8% 74590 0 /bin

71037 1.7% 71037 0 /dev
69093 1.6% 69093 0 /usr/spool/news/net
47737 1.1% 38770 8967 4.32 /usrflib/news
35091 0.82% 35085 6 5800 /usr/spool/notesl.nyu

Table 10: Frequently referenced directories (no cut)

references fraction reads wntes reads/writes path

143956 23.4% 143954 2 72000 /
63235 10.3c 63235 0 /U
58955 9.6% 22917 36038 0.64 /mp
27744 4.5% 27744 0 /usr
20988 3.4% 20988 0 /usr/spool
14836 2.4% 4614 10222 0.45 /usr/spool/mqueue
13138 2.1% 11770 1368 8.6 /u/ken
12286 2.0% 5521 6765 0.82 /usr/spool/mail
8967 1.5% 8963 4 2240 /u/ken/Src
6358 1.0% 4712 1646 2.86 /usr/spool/uucp
5980 0.97% 5336 644 8.29 /u/goddard/c400/assg2/coding
5328 0.86% 5233 95 55 /u/lee
5159 0.84% 4823 336 14.4 /usr/spool/neA s
3665 0.59% 3456 209 16.5 /u/scott/src/window
3510 0.57% 3510 0 - /usr/local

Table 11: Frequently referenced directories (o*ner_'SFR + ruid_USER cut)



17

1.0

0.8

0.6
fraction

of
intervals

0.4

0.2..... dirownerUSER
S........ dir owner NET

dir_ownerSYSTEM
no cut

0.0
0.01 0.1 1 10 100 1000

time since last reference (seconds)

Figure 8: Directory inter-reference intervals (cumulative)

distribution min max mean median std dev

dir ownerNET 0 8.7e4 351 0.33 4.1e3
dir.ownerSYSTEM 0 8.7e4 73 0.27 2.2e3
dirownerUSER 0 8.7e4 4680 0.15 1.8e4
no cut 0 8.7e4 560 0.27 6.4e3

Table 12: Directory inter-reference intervals (seconds)

Knowledge of directory inter-reference intervals (the time from one reference of a directory to the next) is
useful in estimating both the appropriate time scale for migration and the possibilities for caching. Figure

8 and table 12 show that inter-reference inter~als were short (opens to directories were strongly clustered).
When a directory was referenced, the following reference (if any) had a 50% probability of occurring in the
next 1/4 second. Part of this may be attributed to the heavily used system directories, but net and user

directories also had short median inter-reference times4. There is strong reference locality in both time and
space.

*The large fraction of zero length intervals for user directones was due to redundant references and opens to the current work
ing directory, and to routines such as getwd that find the path of the current working director by traersing up the directorn tree to
the root and then back down That these are all binned at zero is partly an artifact of our analysis technique (ee section At



18

1.0

0.8s

0.8 ,-. ..................

0.6
fraction

of
versions

* 0.4

02 ............. dir ownerUSER

02...... dirowner_NET

----- dirownerSYSTEM
no cut

0.0 -

0.01 0.1 1 10 100 1000 10000 100000
version lifetime (seconds)

Figure 9: Directory version lifetimes (cumulative, versions living beyond log period binned at right)

Directory version lifetimes (the time from one write of a directory to the next) are shown in figure 9.
Versions whose lifetime extended beyond the logging period were given infinite lifetimes (lie to the right of
the histogram). Note that half of all directory versions exist for a second or less. This suggests that
indiscriminate caching of referenced directories can be a mistake. This is particularly true in a r)FS. where
caching a remote directory may be expensive. If cached copies are flushed when updates are made, this
effort will often have been wasted. Part of the reason for these short version lifetimes is hea~y write activity
to the system directories /tmp and /usr/spool/mqueue and to net spool directories. Most system directories
and the majority of user directories remained unchanged for relatively long periods of time.

P



19

1.0

0 . 8 ...................... . _ --_ : - ..- - .-. . - =. -__.. . .......

0 .8 " 

•.. .....................................

a0.

fraction 0.

of

versions
0.4

d............ irownerUSER........ dirownerNET

dir-owner.SYSTEM
no cut

0.0 1

0 5 10 15 20 25
number of reads to version

Figure 10: Reads per directory version (cumulative)

distribution min max mean median std de%

dirowner_NFT 0 6.91e4 4.88 1 220
dirownerSYSTEM 0 6.17e5 23.9 0 2800
dir.ownerUSER 0 3.90e3 14.2 1 74

ownerUSER + ruidUSER 0 1.04e5 6.6 0 470
ruidUSER +/u 0 7.18e4 12.2 1 470
ruidUSER 0 2.38e5 11.7 0 970

no cut 0 6.17e5 14.3 0 1870

Table 13: Reads/directory version

Figure 10 and table 13 present us with another view of directory versions: the number of reads that are
made to any given version. For distributed caches that discard stale copies of updated directories, this
distribution can be used to estimate the number of hits one can expect to get on a cache element before it
is discarded. Half of all versions are written again without being read. Roughly 4/5 of the remainder are
read only a few times before being updated. While there are directory versions that can be safely cached or
replicated regardless of the setup and update costs (some receive hundreds of thousands of references
without being changed), separating them out from the majority of relatively useless versions may be



20

1.0

0.6 ,
fraction

of
* versions. 0.4

0.2 ownerUSER + ruidLSFR
- ruidUSER +/u

ruidUSER

0.0 I

0 5 10 15 20 25

number of reads to version

Figure 11: Reads per directory version (cumulative, user cuts)

difficult. Very cheap caching mechanisms, semantic knowledge, or knowledge of recent reference history
would be useful here. For example, the knowledge that /tmp is used to store temporary files and so is

frequently updated could be used to avoid potentially wasteful caching of this director

If we consider only user references to active directories holding user objects. we see similar distributions for
reads per version (figure II and table 13). 86% of the versions received one or fewer user references before

* being updated by users. Directory versions on the /u file system sa% slightl more read act'.t (not
*." surprising, since heavily written system directories such as /tmp are not included here).

4

4'

- .**)** *'.* **.* *p .* * *P ? . .=*~



21

readers writers users (r I w) inversions
cut

mean >2 mean >1 mean >2 mean max

dirownerNET 3.23 28.0% 1.35 14.6% 3.33 28.2% 34.6 6.56e3
dirowner SYSTEM 8.53 26.9% 0.857 3.0% 8.55 27.2% 1750 3.01e5
dirownerUSER 1.60 9.0% 0.149 0.8% 1.60 9.0% 3.7 2.90e2
no cut 2.53 14.9% 0.487 4.2% 2.56 15.0% 149 3.01e5

Table 14: Directory sharing

readers writers users (r I w) inersions
cut mean >1 mean >1 mean >1 mean max

ownerUSER + ruidUSER 2.50 27.9% 0.609 1.3% 2.57 28.3% 41.2 2.9e4
ruidUSER +/u 1.47 18.8% 0.351 0% 1.49 18.8% 10.8 1.3e4

Table 15: Directory sharing (user cuts)

The first two columns of table 14 show the mean number of readers per directory, as indicated by the
account (ruid) of the reader, and the percentage of directories with more than two readers (we use two here
because every directory is referenced by the housekeeping process). The next 4 columns show similar
information for writers, but give the fraction with more than one writer, and for users (the overall number
of distinct readers and writers). The last two columns show the mean and maximum number of inversions
per directory. The number of inversions is the number of times that the most recent user of the director,
changes (this is basically the inversion clustering metric used by Porcar [Porcar 821). For a director% used
by only one user, the number of inversions will be zero.

From table 14 we can see that 15% of the directories had multiple users (users with separate accounts).
Multiple readers were much more common than multiple writers. Most of the shared directories bhelonged
to net and system accounts. These were predominantly directories containing news articles read b.r man%
users, spool directories accessed by a number of net accounts, and directories holding widely used s.stcrn
files. There was relatively little sharing of user directories. Shared system directones often had a number of
active users and so a high number of inversions. In a distributed environment, replication or caching of
these directories would be essential.

Statistics on the sharing of active directories holding user objects are given in table 15. 1/5 of thc actle
directories on the user file system were read by more than one user. None had multiple writers. Acti'e
directories used to resolve user objects sho'ked a higher degree of sharing (because of shared s.stem
directories).



22

1.0

0.8

0.6
fraction

Ofi
paths 0.4

0.4.

0.2 d_USER/ . ........ ruid_NEI
-.. -.," ruid SYSTEM

% no cut
iCUE

0.0
0 5 10 15 20

number of blocks accessed

Figure 12: Path resolution cost (cumulative, 512 byte blocks)

distribution min max mean median std de%

ruidNET 2 22 8.43 8 4.2
ruidSYSTEM 2 23 5.85 7 2.8
rid_USER 2 28 5.74 5 3.4
no cut 2 28 6.61 7 3.7

Table 16: Blocks accessed/path resolution (512 byte blocks)

4.4. The High Cost of Opens

Based on the relatively small file sizes seen in studies of 4.2BSD systems and the long pathnames we have
seen, it is reasonable to expect that directors overheads will be an important part of the cost of accessing a
file. If we assume for the moment that no caching is done. we can estimate both the number of disk blocks
that are required to resolve a path and how this compares to the number of actual file data blocks that are
read or written. Reading a UNIX directory requires reading a minimum of 2 blocks: one block containing
the file descriptor (inode) for the directory and at least one data block. Assuming a block size of 512 bytes.
directories with no holes (empty director) entries), an average of half the entries in a directory search for a
name resolution, and no caching gives the distributions shown in figure 12 and table 16. Thc median of 7
blocks to resolve a path is impressively large, especially when compared to the median file size of 710 bytes
seen in our earlier study. Paths used by net processes are particularly long and hence expensive.

9 ,.:,.-- -, .,.4-, ,-, , . -. '. .'. " '' ' " - " " ' " " . - - " - - "



23

1.0
r............ uidUSER

........ ruid NET
ruidSYSTEM

0.8 no cut

0.6
fraction
o f . "

opens 0.0.4 - " '

°,..,

0.010.•**.. .,.,** -- ,- : - . ##-

I .-

0.0 rt r*S

0.0 0.2 0.4 0.6 0.8 1.0

fraction of cost due to name resolution

Figuie 13: Name resolution overhead for regular file opens (cumulative, 512 byte blocks)

distribution min max mean median std dev

ruidNET 0.0005 0.99 0.71 0.77 0.19
ruidSYSTEM 0.002 0.98 0.68 0.81 0.20
ruidUSER 0.0001 0.99 0.55 0.59 0.26
no cut 0.0001 0.99 0.66 0.76 0.22

Table 17: Directory overhead (512 byte blocks)

Accessing file data once a path is resolved also requires a minimum of 2 blocks: one block containing the
file descriptor (we ignore indirect blocks here) and at least I data block. If we take the ratio of the blocks
required for resolving an open path to the total number of blocks required (resolution cost plus file data
cost based on the amount read or written and assuming contiguous access), we get the fraction of the cost
(in blocks accessed) due to the directory overhead. This is shown in figure 13 and table 17.

The directory overhead accounted for an average of 66% of the cost of accessing a regular file. This
overhead accounted for the majority of the cost in 80% of the file accesses. For references made by user
processes, the fraction of cost due to name resolution overhead is somewhat lower. This is due to users
specifying shorter path lengths, accessing larger files, and reading a larger percentage of accessed files.

.. ..- . . . , • . - -. . • € r. ' °. - ." ... i" . -... ,,. ' ,' . " . " "%' . @ ' '' . '. . ° -. ' '- &



kU

24

NONF ruidNET rind_SYSTEM rid_USER
type blocks fraction blocks fraction blocks fraction blocks fraction

file data 6.32e6 46.9% 1.45e6 34.1% 1.56e6 38.3% 3.30e6 66.2%
file inode 7.54e5 5.6% 2.50e5 5.9% 2.98eS 7.3% 2.06e5 4.1%
directory data 4.01e6 29.8% 1.58e6 37.2% 1.26e6 31.0% 9.94e5 20.0%
directory inode 2.39e6 17.7% 9.65e5 22.8% 9.50e5 23.3% 4.83e5 9.7%

total 1.35e7 100% 4.23e6 100% 4.07e6 100% 4.98e6 100%

Table 18: Block counts for regular file opens, reads, and writes (512 byte maximum block size)

The cost distribution weights all files equally. This give us useful infonnation on the average overhead to
access files (and so the effect of the overhead on response time), but is less useful in predicting the effect on
throughput. For this we need the fraction of overall block requests that directory overhead accounts for.
This information is given in table 18. Note that half of all accesses were to directory data and inode blocks.

512 bytes is a small block size by today's standards. The 4.2BSD file system on Seneca uses a block size of
4096 bytes. Figures 14 and 15 and tables 19 and 20 show what happens when we use the larger block size.
The number of blocks required to resolve a path has dropped by 18%, but the fraction of cost due to the
directory lookup overhead has risen sharply. It now makes up an average of 75% of the total cost and
accounts for at least half of the cost in 97% of the file references. Big block sizes help most when reading
file data. Directories and descriptor blocks are too small for the bigger block size to matter much.

distribution min max mean median std dev

ruid_NET 2 16 6.93 8 3.3
ruidSYSTEM 2 16 4.97 4 2.5
ruidUSER 2 22 4.44 4 2.5

ownerUSER + ruidUSER 2 22 4.22 4 2.5
ruidUSER -- /u 0 18 1.05 0 1.8

no cut 2 22 5.40 4 3.0

Table 19: Blocks accessed/path resolution (4K byte blocks)

distribution min max mean median std deN

mid_NET 0.004 0.99 0.80 0.84 0.11
ruidSYSTEM 0.01 0.98 0.76 0.81 0.10
midUSER 0.001 0.99 0.69 0.74 0.18

owner_.USER + ruidUSER 0.001 0.98 0.68 0.73 0.18
rid_USER +/u 0 0.99 0.21 0 0.32

no cut 0.001 0.99 0.75 0.81 0.14

Table 20: I)irectory overhead (4K byte blocks)

4- f.



25

1.0 - .- --

0.8 ..

0.6 ---

fraction .I

of
paths 0.4

0.4 :.1 ,-

0.2..... ruidUSER
I . . .... ruidNET'

------ ruid_SYSTEM
- no cut

0.0
0 5 10 15 20

number of blocks accessed

Figure 14: Path resolution cost (cumulative, 4K byte blocks)

1.0
....... ruidUSER-
..... ruidNH I

0.8- -- - - ruid SYSTEM
0.8 no cut *

0.6
fraction

of .

opens 0.4 
...- I

0.2

.. . . . . . . . . . . ......

0.0 - - - - -. .. .....

0.0 0.2 0.4 0.6 0.8 1.0
fraction of cost due to name resolution

Figure IS: Name resolution overhead for regular file opens (cumulative, 4K byte blocks)



26

NONE ruidNET ruidSYSTEM ruidUSER
blocks fraction blocks fraction blocks fraction blocks fraction

file data 1.26e6 17.3% 3.23e5 12.1% 4.07e5 15.4% 5.27e5 28.5%
file inode 7.54e5 10.3% 2.50e5 9.4% 2.98e5 11.3% 2.06e5 11.1%
directory data 2.90e6 39.7% 1.12e6 42.2% 9.94e5 37.5% 6.36e5 34.3%
directory inode 2.39e6 32.7% 9.65e5 36.3% 9.50e5 35.9% 4.83e5 26.1%

total 7.30e6 100% 2.66e6 100% 2.6536 100% 1.85e6 100%

Table 21: Block counts for regular file opens, reads, and writes (4K byte maximum block size)

Table 21 shows the no-caching breakdown of the number of blocks of various types accessed for a 4K byte
maximum block size. Note that directory data and inode blocks now account for about 3/4 of the blocks
accessed. The total number of blocks accessed has been reduced to 54% of the 512 byte maximum block
size figures.

Figure 16 and table 19 show the number of directory inode and data blocks accessed to resolve paths for
our user cuts (assuming no caching and 4K byte maximum block sizes). Figure 17 and table 20 give the
corresponding cost distributions, For the ruidUSER+/u distribution, we have included all regular file
references made by user processes, but only "charged" for blocks on the /u file system. References to files
on other file systems have zero resolution cost here and the cost of resolving in "" for absolute paths is not
included. Since 65% of the files referenced by user processes were actually on other file systems, the
average directory overhead for this cut is low.

It should be noted that the results in this section don't apply directly to BSD UNIX. 4.2BSD maintains an
extensive cache of inode, directory, and file data. 4.3BSD has added a cache of recently used directory

9,: entries. These results show, though, that "hidden costs" in UNIX file systems are significant and
demonstrate how rapidly their importance increases as the block size increases.

1*

'.

9,,

0"

4"
'p.

'p

"' -.p ' . ' .b " -e ~ .. .C° ' .. ' . .. ' _ ' -. ' -. ' . ' 'o€ " € " w -. '' . '''- . '. , °. . ', . '- . '. . - . . '/



27

1.0

0.8

0.6
fraction

of
paths 0.4

0.2..... ownerUSER+ruidUSER
- -- - ridUSER +/u

ruid-USER
0.011

0 5 10 15 20
number of blocks accessed

Figure 16: Path resolution cost (cumulativ'e, 4K byte blocks, user cuts)

......... ownerUSER +ruidUSER

- -- ridUSER + /u

0.8- udUE

fraction 0.
of

opens 0.4

0.2

..............

0.0
0.0 0.2 0.4 0.6 0.8 1.0

fraction of cost due to name resolution

Figure 17: Name resolution overhead for file opens (cumulative, 4K byte blocks, user cuts)



28

1.0 uUlR

........ ridNFl

0.8 - -- -uidSYSTENM

0.6
miss
ratio

0.4

0 10 20 3 0s

cache size (directories)

Figure 18: Whole directory cache effectiveness

nodes no cut ruidNET ruidSYSTEM ruidUSER owner_-USER + ruidUSER +
_____ _________________ ________ ruid USER /

5 0.37 0.46 0.17 0.34 0.25 0.14
10 0.15 0.12 0.072 0.18 0.11 0.079
15 0.099 0.070 0.045 0.12 0.076 0.065
30 0.050 0.042 0.031 0.050 0.047 0.051

Table 22: Miss ratio vs. cache size (in nodes)

4.5. Whole Directory Caching

The evidence for locality that we saw in section 4.3 suggests that a whole directory cache could be verx
effective in decreasing disk or net activ ity for name lookup. To test this idea, we simulated an LRU whole
directory cache using our reference trace as input (figure 18 and table 22). We found that even a cache
holding as few as 10 directory nodes achieved an 85% hit ratio. A 30 node cache gave a 95% hit ratio.



29

bytes no cut ruidNET ruidSYSTEM ruidUSER

5K 0.37 0.40 0.22 0.40
10K 0.20 0.16 0.11 0.24
15K 0.14 0.10 0.067 0.17
20K 0.10 0.079 0.052 0.13
30K 0.070 0.060 0.036 0.075
40K 0.052 0.043 0.030 0.047

Table 23: Miss ratio vs. cache size (in bytes)

User references to user objects also show a high degree of locality (figure 19 and table 22). A 10 node
LRU whole directory cache captured 92% of user references to /u and 89% of references required to reach
user objects.

Since directories are not generally very big, whole directory caches don't require much space (figure 20 and
table 23). For the overall trace. a 14K byte cache gave the 85% hit ratio seen with the 10 node cache. Using
a 41K byte cache raised the hit ratio to 95%.

As we mentioned in section 2, our log of file system activity doesn't include all directory references. Adding
in the Istat and stat calls we missed could be expected to increase the effectiveness of our cache. These calls
usually follow an open of the directory referencing the object of the status call and so they will all result in
"hits" on the cache. Using the estimates of Istat and stat frequency made in section 3 and assuming short
paths leads to a 15%-20% decrease in the miss ratios given above.

Two other studies of directory caching in UNIX environments focussed on page level caching [Sheltzer 861
and entry level caching [leffler 84. I effler 861. Sheltier et al. looked at page level caching for all references
(not just our subset) on a lOCUS system [Walker 831 (an enhanced, distributed version of 4.1BSD). Their

simulations assume, though, that directories fit in a single page. While this is true for most directories on a
BSD UNIX system, there are a fe% large hcdaily used system directories that typically contain in excess of
100 entries (see figure 3). -ihesc directories are referenced frequently enough to make the high hit ratios

found by Sheltzer et al. questionable for page sies one might typicalh use with directories (IK bytes or
less because of the small siue of directories). As figure 3 shows, inferring dynamic disuibutions from static

ones can be dangerous. Their simulations are actually, then, for a whole directory LRU cache. Their result
of hit ratios of 87%-96% (depending on the system) for a 40 page (node) cache agrees with our result of a
96% hit ratio for a 40 node cache.

Leffler et al.. in tuning and enhancing 4.2BSD, found that a system wide entry level cache containing 400
entries (about 18K bytes) gave a 60 hit ratio. This was coupled with a per process directory offset cache
having a 25% hit ratio (to catch directory scans), giving an overall hit ratio of 85%. This is effectively an
entry cache and a per process single directory cache, with invalidation on update. We saw a hit ratio of 89%
for an 18K byte whole directory cache. Our hit ratios are higher because we effectively "read ahead" for
processes scanning directories by caching the entire node on Ist reference, don't need to invalidate on
update or working directory changes, and cache globally. Maintenance and/or search costs may be a
problem for whole directory caches, though. Per entry caches are comparatively easy to search and
maintain.

1 ' ' 1 I '' " " '" "'+ ++" + '' ", -" "-,'.' -_ - " +", - , "'' %' ' N"



30

ownerLUSER + ruid_USER

- ruidUSER +/u
ruidUSER

0.6
miss
ratio

0.4

0.2

0.0 -- .Lt
0 10 20 30 40 50

cache size (directories)

Figure 19: Whole directory cache effectiveness (user cuts)

1.0
............ ruidUSER
-........ ruidNET

0 .8 ------ ruid-SYSTEM
0.8 ~________ no ct

0.6
miss
ratio '

I I

0.4

0.2

~~0.0 -,- -

0 10000 20000 30000 40000 50000

cache size (bytes)

Figure ZO: Whole directory cache effectiveness (byte size limit)



31

5. Implications

In this section we make some observations on local and distributed file system design, based on the results
we have presented. It should be emphasized that these observations and suggestions are most applicable to
systems that see reference patterns similar to ours. They will not necessarily carry over to other
environments.

We found that 70% of the logged paths were absolute references. This implies that deep directory trees
raise the cost of references. For distributed file systems in particular, the root of the file system must be
cheap to access, since it will be heavily used.

Nearly 3/4 of all references went to system directories. Less than 10% went to user directories. For DFS's
that support access to local file systems coupled with access to a global user file system, minimizing the
performance impact of adding the global file system on local accesses is clearly important. Conversely.
carefully coupling transparent access to a network file system holding user files with cheap access to ocal
files can result in a coherent distributed file system with good overall performance (at least for name
resolution), even in situations where net access is expensive

93.4% of references were for read in our data (the actual overall figure for the system was probably
somewhat higher). Clearly most directories should be optimized for lookup. Some directories are heavib
written and rarely read, though. Other organizations may be appropriate for these directories. The use of
semantic information or past history would be useful here.

Most directory versions were short lived (over half lasted less than a second). There is no point in writing
these versions back to disk and so delaying writes of directories will improve performance (although not.
perhaps, reliability).

Most directory versions received only a few references. This, combined with the short lifetime of most
versions, implies that caching these versions serves no purpose.

Directory inter-reference times were short (half were 1/4 second or less). Any strategy that attempts to
decrease the overhead for the next reference will have to act quickly. Migrating or caching at the time of
first access looks attractive here.

Large block sizes help when reading some files, but many files, most directories and all descriptor blocks
are too small to benefit from larger block sizes. Coupling larger block sizes with a file system design that
ties file descriptors, directories. and data together on disk could be expected to lead to substantial
performance improvements. The 4.2BSI) file system does this by attempting to allocate these related kems
close together on disk [McKusick 841. Further improvement (at the cost of increased crash recover
complexity) could be had by allocating inodes and at least the initial data in files contiguously on disk. On
a 4K block size file system, this could be expected to lead to about a 40% decrease in transfers for file open.
read, and write activity (table 21), given equivalent caching effectiveness for data, inodes and directories.

The combination of relatively long path names and small files means that, in the absence of caching. the
majority of UNIX file system activity is in support of name resolution. Optimizations in this area are likely
to produce significant performance improvements, particularly as the block size used for data transfers
increases.



32

Most references go to a handful of directories. Our studies show that, because of this locality, a small cache
gives good results. Since there are few changes to these directories, replication would be a cheap alternati~e
in a DFS.

Entry level caches, by themselves, are much less effective than node level caches because of the frequent
sequential access of entries in a directory. Caching strategies that recognize and exploit this sequentiality
will do well.

6. Further Work

* As we have shown here, the analysis of file system traces can soak up boundless amounts of time and
* energy. We have tried to stop at the point where we felt that we had enough information to understand

trace driven simulations based on the data. There is a great deal of related work that could be done. Some
* possibilities include:

(1) Further data collection and analysis for different environments and work loads. This would
give us a better feeling for where our data fits into the universe of file system usage.

(2) Examining in more detail the activity per user. This information would be useful in designing
DFS's that include personal workstations.

(3) Fitting curves to various distributions (inter-reference time, cache miss ratio, and so on). These
would be useful in writing synthetic drivers for use in simulating file systems
ISatyanarayanan 831.

(4) Using the trace data to drive other simulations investigating file system performance and
caching issues. A trace driven simulation of Roe is planned [Floyd 87].

(5) Investigating the correlation between directory depth and activity. Since most paths are
absolute, one would expect that directories close to the root of the director) tree will be
referenced more frequently than those towards the leaves.

(6) Simulations of the directory reference overhead cost taking into account cache hits

* (7) Most files and directories on 4.2 HSD systems are small. Given this, it is not clear that storing
mnodes separately is a good idea. A redesign of the UNIX file system to store inodes and data
together on disk (at least for the common case of small objects) could result in substantial
performance increases. The 4.2BSI) file system takes steps in this direction. How much better
can we do?

(8) Investigating other directory organiz.ations. As block sizes increase, the directory organization
* used by UNIX becomes less and less appropriate. "Cheaper" ways of representing and using
* hierarchical directories are needed.

7. Summary

This paper has analyzed in some detail directory reference patterns resulting from primarily open actikity
P on a 4.2BSD UNIX system supporting university research. Our major findings:

(1) Directories are mostly small, with half holding under 8 entries. Referenced directories are
somewhat larger (median of 26 entries).

P6



33

(2) 3/4 of all references are made to system directories. Most references go to a few very active
system directories.

(3) Reads account for 93.4% of the references we see and writes for 6.6% of the references.

(4) 70% of all paths are specified absolutely. Relatively few paths (26%) reference objects in
current working directories.

(5) Paths are "long", having an average of 2.70 components.

(6) Inter-reference times are short. Half are 1/4 second or less.

(7) Directory versions are usually sort lived (half live less than a second) and receive few reads.

(8) The combination of small file sizes and long access paths means that name resolution overhead
is high. In the absence of caching and using a 4K byte maximum block size, 72% of the blocks

accessed in opening and using files are for name resolution.

(9) There is a high degree of locality in directory references. A 10 node (14K byte) cache achieves
an 85% hit ratio and a 30 node (41K byte) cache has a 95% hit ratio.

Overall, our results show that hierarchical directories can be expensive, but that there is a high degree of
locality in reference patterns. This locality allows the use of caching to dramatically reduce the expense of
directory lookup.

As is true with all studies of this sort our results can be guaranteed to be valid only for our system at the
time of data collection. Care should be taken in applying the results to other situations.

8. Acknowledgements

Carla Ellis and Stuart Friedberg made a number of useful suggestions on the analysis and presentation.

Both their help and patience are gratefully acknowledged. Speculations by Ousterhout et al.
[Ousterhout 85] on 4.2BSI) directory overheads helped inspire parts of this study. Jeff Mogul convinced me
that I really should do the whole directory caching studies that I kept avoiding. Lee Moore's efforts in
maintaining and enhancing our press software [Kahrs 85] made the plots shown here possible. Finally, I
would like to thank the 4 VAXen that worked so hard to produce the results shown here and to

commemorate the one that died tr ing.

"" ""'"""-""" S-".-.-'"-'.



34

References

[Ellis 831 Ellis, C. and Floyd. R.. "The Roe File System." Proceedings of the Third Symposium on
Reliability in Distributed Software and Database Systems, October 1983, 175-81.

[Floyd 851 Floyd, R. A., "Short Term File Reference Patterns in a UNIX Environment: Preliminary
Results," Internal Note, Department of Computer Science, University of Rochester, August 1985.

[Floyd 861 Floyd, R. A., "Short-Term File Reference Patterns in a UNIX Environment." TR 177,
Department of Computer Science, University of Rochester, March 1986.

[Floyd 87] Floyd, R. A., Transparency in Distributed File Systems, Ph.D. Dissertation, Department of
Computer Science. University of Rochester, February 1987. (in preparation).

[Kahrs 85] Kahrs, M. and Moore, L., "Adventures with Typesetter-Independent TROFF," Technical
Report 159. Department of Computer Science, University of Rochester, June 1985.

[Leffler 84] Leffler, S., Karels, M. and McKusick, M.. "Measuring and Improving the Performance of
4.2BSD." 1984 USENIX Summer Conference Proceedings, June 1984, 237-52.

[Leffler 861 Leffler, S., Private Communication, August 1986.

[McKusick 841 McKusick, M.. Joy. W.. Leffler, S. and Fabry, R., "A Fast File System For UNIX," ACM
Transactions on Computer Systems 2:3. August 1984. 181-197.

[Mogul 86a] Mogul, J., Private Communication, July 1986.

[Mogul 86b] Mogul. J.. "Representing Information about Files," STAN-CS-86-1103. Ph.D. Dissertation.
Department of Computer Science, Stanford University, March 1986.

[Nowitz 781 Nowitz, D. and Lesk, M., "A Dial-Up Network of UNIX Systems," in The UNIX
Programmer's ManuaL Seventh Edition, vol. 2, Bell Laboratories, August 1978.

[Ousterhout 851 Ousterhout, J., Da Costa. H., Harrison, D., Kunze. J.. Kupfer. M. and Thompson. J.. "A
Trace Driven Analysis of the UNIX 4.2BSD File System," UCB/Computer Science Department 85/230,
EECS Department, University of California, Berkeley. April 1985.

[Porcar 82] Porcar, J., "File Migration in Distributed Computer Systems," LBL-14763, Lawrence Berkelc\
Laboratory. July 1982.

[Ritchie 78] Ritchie, D. and Thompson. K., "The UNIX Time-Sharing System," Bell System Technical
Journal 57:6, Part 2. July-August 1978. 1905-30.

[Satyanarayanan 831 Satyanarayanan. M.. "A Methodology for Modelling Storage Systems and its
Application to a Network File System." CMU-CS-83-109. Department of Computer Science. Carnegie-
Mellon University, March 1983.

(Satyanarayanan 851 Satyanarayanan, M., Howard, J., Hichols, D., Sidebotham. R.. Spector, A. and West.
M., "The ITC Distributed File System: Principles and Design," Operating Systems Revwew 0:5. December



35

1985. 35-50. (SOSP 10).

[Sheltzer 861 Sheltzer, A., Lindell. R. and Popek, G., "Name Service Locality and Cache Design in a
Distributed Operating System," Proceedings of the 6th International Conference on Distributed Computing
Systems, May 1986, 515-522.

[Tichy 84] Tichy. W. and Zuwang. R., "Towards a Distributed File System," 1984 USENIX Summer

Conference Proceedings. June 1984. 87-97.

[Walker 831 Walker. B.. Popek. G., English, R.. Kline. C. and Thiel, G.. "The LOCUS Distributed
Operating System," Operating Systems Review 17:5. December 1983, 49-70. (SOSP 9).

I



'1

A

I

I
LW


