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ABSTRACT

The present investigation expounds on the effect of a near-surface

cavity, when the solid surface is subjected to the Coulomb frictional

loading of an asperity moving at moderately high-speed. The medium under

consideration is represented by a solid half space which is coated with a

thin laver of solid wear coating. The cavity in the present report is

rectangular. The temperature field and its gradient in the vicinity of the

* cavity result from the traverse of the asperity over the wear surface near

the cavity. The cavity defect results in a material nonuniformity mathe-

maticallv modelled in terms of the material coordinates. The resulting

governing differential equation is time-explicit and transient. A general

finite difference formulation is developed, from which numerical solutions

,;ere obtained for problems with a cavity at various positions relative to

the surface-layer/substrate interface. Because of the poor heat transfer

characteristics of the cavity, the temperatures in the surface layer above

it are higher than those in the surrounding region. This phenomenon causes

a higher temperature gradient, especially at the trailing corner of the

rectangular cavity. There, the direction of the maximum temperature

gradient is at a significant oblique angle to the wear surface. The

combined effect of a higher temperature gradient and an oblique direction

would result in a much larger shear stress in the surface-layer/substrate

interface. This phenomenon could lead toward delamination of the coating

near the cavity.
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NO1ECLATURE

a asperity width

b substrate thickness

C specific heat

c(t) distance from xI origion to the center of the asperity

D dimensionless coating thickness (H/a)

d half width of the cavity

e depth of the cavity

H coating thickness

kIk,_  thermal conductivity of surface layer and substrate

L ligament thickness

P(ij) center of the finite difference cell

-i'- M,N,R,S surrounding points of P

P'(xlht) pressure over the contact area

q(xe,t) heat flux through the contact area

qo average heat flux through the contact area

QS heat flux from point S to point P

Q*(-q/q) dimensionless heat flux through the contact area
0

RIRI Peclet numbers of surface laver and substrate (R. va/r.)

T temperature

U internal energy

- v traverse speed of asperity

w width of the total rectangular finite difference region

- distance from xI origin to the center of the cavity

dimensionless coordinate (-xl/a)

dimensionless coordinate (-x 2 /a)

V



.

coordinates in transformed plane

* _ thermal diffusivity of surface layer and substrate

BIf Coulomb coefficient of friction

9 thermal diffusivity ratio (a" - ,/KI 1 )

B thermal conductivity ratio (B - k /kI)

0 dimensionless temperature (6 = TkI/q0a)

P mass density
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CHAPTER I
INTRODUCTION,4.

The present investigation constitutes a portion of the general problem

of the thermo-mechanical effect of a moving asperity over a solid medium

with a solid coating layer. The asperity, generally on the order of a milli-

meter, traverses over the solid surface at a uniform moderateiv-high speed,

approximately 15 ms .and excites the solid surface mechanically and %

thermally through Coulomb friction. When there is no flaw in the uniformly

coated region, the problem can be formulated with a asperity-fixed coordi-

nate system for steady-state solutions. Ju and Chen [11 first solved for

the case of a moderately thick coating. Later Ju and Liu [21 extended the

general formulation of Ii1 to study the thickness effect of the coating

layer for various mechanical and thermal impedance mismatching between the

surface coating layer and the substrate. In both cases, the results of

Huang and Ju [3) were verified that, at such a moderately high speed, the

stresses from the thermal effect of the asperity friction are an order of

magnitude larger than those from its mechanical traction effect. The

oresent investigation, therefore, will concentrate on the temperature field

and the temperature gradient surrounding a flaw in the form of a rectangular

cavity. This cavity is located in the surface layer or at the coating-

layer/substrate interface.

The physical model of asperity friction was based on the experimental

studies in works by Archard [4) and Bannerjee and Burton (5). Because of
-. , 

. .

the three-dimensional aspect of those observed "hot spots", Huang and Ju 3],-- 4-S

formulated the problem in three-dimensional theory of the thermo-mechanical'

effect owing to the Coulomb friction of moving asperities over a single

A 1l



solid wear medium. In its application to the problem of a sin_. high speed

asperity, it was observed that: (i) at an asperity traversing speed of
i-1

10-15 ms , the thermal stress as a result of high temperature gradients is

eight times the stress due to mechanical loading, (ii) at such asperity

speed, the maximum tensile stress is the largest at a deoth of about one

tenth the asperity size, i.e., at a depth of the order of 100 um, and (iii)

while the surface temperature is the same for the three-dimensional model as

compared wih that of two-dimensional model 6, the resulting maximum

stress is si:: times higher for the three-dimensional model due to much

hig..er temoerature gradient. Therefore, for the thermo-mechanical analysis

of the effect of an imbedded flaw. it is primarily important to obtain first

a temperature field solution.

In the previous works of the moving asperity problem, the analyses

e" dealt with basically uniform solid medium, that is, the material and

asperity properties are invariant in the direction of the asperity motion.

In such a case, the time effect can be rendered implicit in the Fourier and

S,avier eQuations bv using a coordinate system fixed to the asperity (called

the convective coordinate system) traversing therewith (1,2,31. The

resulting steady-state solutions are not explicitly time-dependent in such

coordinates. When a flaw, such as a cavity, exists in the medium, unifor-

mity in the direction of asperity motion no longer exists. A coordinate

sysstem fixed to the cavity, or to the material, (referred to as the material

coordinates) must be employed by necessity. As the asperity traverses over

the surface under which the cavity lies, the induced temperature field has

to be an explicit function of time. The solutions are transient. The

steady-state solution of the temperature field resulting from the moving

7-1
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asperity over an uniform medium has been dealt with by several .:hors

.1,2,3,6,7,8,9,l0], whereas the transient solution for a fla-ce,! medium is

lacking.
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CHAPTER II

ANALYTICAL MODEL

While the three-dimensional model gives a more accurate description, it

is considered that, for the purpose of studying the effect of a cavity, a

two-dimensional model is adequate, with considerably simpler mathematical

operation. The general geometry is shown in Figure 1.

2.1 Governing Mathematical Equations

The mathematical model is a semi-infinite body with a thin coating

layer and a rectangular cavity in the neighborhood of the coating-

laver/substrate interface. The half space surface is subjected to the

frictional heating of a moving asperity over the surface.

The governing equations are as follows: In the surface layer,

0 < n < D, denoted by the superscript (1),

(1)1
+ -I  -(1)

In the substrate region, D < n < -, denoted by the superscript (2),

"+ 2 RCI) (2) I
-J where o(-Tkl/qoa) is the dimensionless temperature, (&,n)(-x./a) are the

1o 0

dimensionless coordinates in the direction opposed to the asperity motion.

and the depth, direction respectively, T(-vt/a) is the dimensionless time,

D = H/a the dimensionless coating thickness, R. - va/r. the Peclet numbers

in the coating layer (i-i) and in the substrate (12), and Q*(-q/q ) is the

dimensionless heat flux from the asperity friction normalized by the average

.2-4,1
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heat flux q in the contact area, v is the asperity traversinq -zeed, a is
.0-

the asperity width in the traversing direction, r. is the thermal diffusiv-

ity in the region (i).

The temperature field 6 must satisfy the following conditions:

l the initial condition,

(i) n,) 0, = 1, (3)

24 the boundary conditions:

(i) at infinity, - + n o, the regularity conditions are

(1), 0(2) = 0,

(ii) in the asperity contact surface, c(r)/a S _ (c(T)la)+l, n = 0, the

heat input through the boundary is the rate of the frictional energy

S - -= q/qo-
an)

where q 4 IfvP', ,P' is the asperity friction force in the contact region,

(iii) outside the contact surface, . c(r)/a or > (c(T)/a)+l, n = 0,

-without loss of g=enerality, the surface is adiabatic

1) )
0 (5)

an

3' at the layer/substrate interface, n D, the continuity conditions for

the heat flux must be satisfied.

(1) (2)

~(2)
and an (6)an an

where B (-k2/kI) is the thermal conductivity ratio,

. adiabatic conditions at cavity boundaries,

0., at - ±d/a, L & n S (L+e)/a, (7)

6
7AA
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(2) 2 (2) + (2)( )i,j,n )  a ar I o 2)i-1 j n-1) + 6(2 (i+1.j.n-1)j + .

2 (2)+ [1 - 2a(rl+r, )0 (i,jn-1) +

9 (19) (2) (1
+ 2r2o (" i,j-l,n-1) + 0 (i,j+ln-1)J.

9 9 2

where & rI/(RI' '), r2 /(Rl'..-)' , - r21i, and (i,j,n) denotes

the two spatial indices and the time step respectively. The stability

criteria for the explicit scheme can be shown to be

1 - 2(r +r 2 ) Z 0, (12)

1 - 2c(r +r2 ) 0. (13)
%'

If Ct is less than 1, Equation (12) is the stability criterion, otherwise

Equation (13) is the stability criterion for the explicit scheme.

Based on the previous works [1,2,3,6,101, we know that the high

temperature and the high thermal stresses occur in the region near the

asperity. Therefore, in that region one must use very fine mesh to obtain

good results. But for those locations far away from the asperity, one can

use coarse mesh in order to save computing time. This non-uniform mesh can

be taken care of by applying the general coordinates transformation L131

(Fig. 3). The derivatives of a function f(T,r) in the transformed plane ..Q

(Cn) are:

f-(n- f- - C- f-)/J (15)

n 9

n 2  n 2  2
f (n- f-- - ni n- fu- + 2f--)/J

nCCC - n n~ rnn

2
*1(n-n-- 9 nn--- n ni--) (E-f--&T-f-)

TnC T CT Cnn n C n

22 3
+ (n- C -. 2,- Ti C[" + Ti C--)(1g f - n f-)J/J (16)

, -r . v .v < T ..C C C Ti C. n C y fl . .. "i , T 'i -, - " -'.C ] Z - -" ] -" -'



GENERAL COORDINATES TRANSFORMIATION

ri

ri.

AI

Figure 3. General coordinates transformation.
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+ i n 2T &- n + rn--
+ [( i:- - - T);- T--) q- "I.

+ (C- C- 2ET ,E- E- + & '"- -) (n f n- fT) ,/J (17)
n nT~T n nn n n

where J - E- - - nT is the Jacobian of the transformation, the
n T TIC

subscripts (&,n,,n) denotes partial derivatives in those coordinates

resvectivelv.

The heat conduction Equaticns (1,2) in the transformed plane can be

written as

- ik (i4 + 4 + A + A. )/J R. .
C- TI 3 nn 4 T) 5 C2

i - 1,2 (18)

where

A1 a C + n- , (19)

A, az +- n- n4 T . (20)

A3  = -" + ni , (21) ,

A a (T A. - C A )/J , (22) "

A- ( -A n- A )/J , (23)

A6 -A 2A -- 3 - A (24)

A- A n77 - An7 + A3 q-- (25)
n~-.A,;n- A3  nn~

At the outer boundaries of the rectangular region (excluding the

surface), • a 0 is the nominal value. The remaining conditions, on the

surface, the cavity boundaries and at the interface, shall be incorporated

with an energy balance scheme [14J.

11-..



2.3 Energy Balance

The cavity boundaries, the moving asperity and the interface of the

medium are taken care of with the use of the energy balance method.

(i) Energy balance at the interface (see Fig. 4).

For the material 1 (surface layer), the heat fluxes toward the point P-

at the interface from material points 4, R and S in the surface layer are

2x

Q( T(i- .- T( i) (
s-P A -

;% sO -. = k(Q) T( .i-!) - Tfi. .) 321) ;C "

For the material (substrate), the heat fluxes toward the interface

r point P from material points N. R and N in the substrate region are

.5,

O- k2(AI2) -x - T 'iJ) , (29)

-Q k (kl P) T(i+1 )- T+iP) (30)=

sum 2 A - Ax

k2 (A:) T(i.i+>) - Trij) (31)

x) A "y + k 21 AY

where Q is the heat fluxo indexed by the flow direction. a'an

n The total heat flux goes in the interface point P(i,j) is

s'.!'.5-.

(32)
I Ti j-) -Ti k T(i.jn1) T(i) "1

'€.' The rate of change of internal energy U in the time interval At and ,#

. ~in the neighborhood of P(i,j) is,..,

Ik- " (33) '-

"" A'A)JT(i j n) - Ti"';-1

(P 1c1 (0.5 Ax-av) + %c.(0. 5 Axay)] Iat

a. 12
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For conservation of energy, Q SUM' one obtains the equa-ion for

the continuity condition at the interface point P(i,j) at the rime step n

is

2(kl+k, )  .At 2(kl+k o  It] "

T(i,j,n) - - - - T(i,j,n-1) +

(0 C+02,2) Ax (PC +P 2 C) Ay-

(k +k2 ) At
+ 1-T tT(i-I,j,n-1) + T(i+1+j,n-1)J +

:,ci+P2c 2 )  Ax"

2k!  At
+ **-- T(i,j-l,n-1) +

(01 c1 +02 c2 ) Ay"

2) a..

(Pl0 c + 2c2) .vy"

Equation (34) in dimensionless form is

2(1+B) 2(1+8) 2o(i,j,n) 1r (ijn-1)
(1+B/c') (I+81/C-) -

+ + 9 rlLo(i-l,j,n-1) +  (i+l,j,n-)]
2 1+/C

(35)
2 28

+ r+(i'j-l,n-l) ' 9 ro(i,J+1,n-l)
(1+8/cC) - (!+9/c')-

where 8 k2 /k,.

(ii) Energy balance on the cavity boundaries (Fig. 5). The heat fluxes

toward the boundary point P(i,j) from the material points M, S and N are

VTi-l.J) - T(i,j)
01 k(AIv) (36)=" ~Ax '(3

Q k(Ax/2) T(i J-1) - T(i.i) (37)
s"PAy 3

T(i,j+l) - T(i,j) (38)
Ay

'S..

u, 14
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Figure 5 Energy balance on the cavity boundaries.,-,
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The total heat input at P(i,j) is then:

+ 'kA V) T(i-l.i) - TVi i)
. Qsum Q-P S-P +  N-4P A(y x

(39)

+ k(Ax/2) T(i.i+!) - T(i.i) + k(AIx/2) T(i'i+1) - T iAi
AV

The rate of internal energy increase in the neighborhood of P(i,j) is

- oc (0.5 Ax AV) T(i._i.n) - T(i.j.n-1) (40)
Fo nAt

From conservation of ener,,v, one can obtain the temperature at the boundary

point P(ij) at the time step n:

.-. ~ ~ ~ T ik __ n) T-( ,.j ,- )- -+(i . . -
T(i,j,n) -- T(ijn-l) + +

"i "  ~~~~+ 0.5 Ti-~-)- i . -.... o . ... .(41)

AV-

Equation (41) in dimensionless form is

o(i,j,n) = o(i,j,n-1) + 2r "o(i-I,j,n-1) - 0(i,j,n-i)] +

+ roio(i,j-I,n-) - 2o(i,jn-.) + 0(i,j+I,n-1)I ( ,2)

Similarly. other points on the cavity boundaries can be obtained.

(iii) Energy balance at the corner of the cavity.

The points at the four corners of the cavity are singularities because

at each of those four points there are two boundary conditions,

2- 0, with only one unknown T. However by applying an energy

balance scheme, one can resolve such problems at the corner (see Fig. 6).

The heat fluxes toward the corner point P(i,j) are:

"1': - k(Ay) T(i-l.i) - T(ij) ( 3)".,. Q .p - k(Ay) (43)

, ON_ k(Ax/2) T(i..4 1)A- Tij)
AV

16,W,
,% ~. ...................-- . . . - . . ~ .



MPi1,j j) R i l j

Figure 6.Energy balance on the corner point of t-he cavity.
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QR"2 k(A102) T(i+!,j) - T(ii i)

T(i,i-!) -T(i.i)

S-P k(x) A 46)

The total heat input at Pti,j) is therefore

Q = k(v) T(i-i) - T +iAc) T(ijtl) - T(W 
sum Av

- k:,!2) T(i+1 i - i j ''i h-:. -'

The rate of increase in internal ener;" is

U" = oc+O 5 + 0.25 A:, Ay) T(i..n) -Ti .n-i3t

From conservation of energy, the equation for boundary conditions at

the corner point P(i,j) is therefore

0 r

.9

T( ij ) =k7n- ) (4/3)) KlDc -(A.t/-x- (i-1 ,

- (3/2) T(i,jn-i) + (1/2) T(i,j+l,n-1)] ('9)

-utin -9) in dimensionless form is

i,j,n) o(i,j,n-1) + (4/3)r [/(i-),j A.5 ,n-) -+

+ 0.5 o(i+l,j~n-1)] + ( / )o ij ln l -

- /1.5 )(i,j,n-1) + 0.5 (i,j+ 1,-1) ] (50)

z tP id os

18 ,.
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Similarly, the boundary conditions at the other corner points Df the cavity

are obtained.

(iv) Energy balance on the surface boundary (under the moving asperity at

the time step n).

For the explicit scheme, the time step is limited by the stability

criterion. As a result, the moving asperity at some time may not be right

above the grid points. To alleviate this situation, one can also use the

energy balance method to describe the boundary condition (see Fig. 7). The

heat fluxes toward P from material points M, N and R are

T(i-1,I) - T(i.1)QM-' =  kAv/°(51)
P -Ax

QN- k( T(i,2) - T(i.l)Q yk(A)' (52 )
N-P 'A y

QR-.= k(Iv/2) T(i+l,!)- T(i,l) (53)

The exterior heat flux in the neighborhood surface of the boundary point

P(i,j), which is under the asperity at the time n. is

Qext-P q(0.5 Ix + h)/unit thickness

where h is less than Ax/2. The formulation thus takes care of all cases

when the asperity end points do not fall on a material grid point on the

boundary. The total heat input at P is therefore

Qsum k [(vy/2) T(i-1.1) - T(i,l) + (Ax) T(i.2) - T(i.l) +

" 5 . 5y

+T(i) - T(A02) + q(0.5 ax + h) (55)
+ (A/ N" AX J

jp "S"

', ,.'



ASPE:Y

Ix-

x 2 x

Figure 7. Engergy balance on the surface.
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The rate of increase of the internal energy in the neighborhoo: 3f P(i,j) is

- Qc o05A T(i,j.n) - T(i.i,n-1)
P 0 A (56)

The condition on the surface boundary with the use of the conservation

of energy becomes

T(i.i,n) a T(i,l,n-1) + (k/Pc) (At/Ax) [T(i-1,1,n-1) - 2T(i,l,n-1) +

+ Ti~-1, ,n-I)] + (2.%/c) (At!.IV 2 [Tii,2,n-) -T(i,l,n-l)) +
=,-c(0.5 1:: + h) .r

Oc Ax .1y

Equation (37) in dimensionless form is

oi4,in) ao(i,ln-1) + rjo(i-1,1,n-1) -2o(i,l,n-1) + o(i+i,1,n-!)] +

+ 2ro[o(i,2,n-1) - 6(i,1,n-1)] + (l+h') ,A(3

here h' a h/(Ax/2).

Equations (10,11,35,42,50,58) constitute the general formulation of the

problem with a complete set of difference equations for the solutions of the

discrete temperature field (J(i,j,n) at some specific time.
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CHAPTER III

NUMERICAL RESULTS

Numerical results are obtained by using the non-uniform rectangular

mesh corresponding to different cases of material properties and geometry.

For the surface layer of Silicon Carbide, k 1.047 J/cm.4C.s,

0-.9 cm Is, and c, 71. J/k-2.C. For the substrate of Aluminum,

k 2.02 J/cm. C.s, K2 = 0.961 cm-s, and c. = 917 J/k.°C. The other

numerical parameters on the asperity and the cavity are: v - 15 ms .

w - 4a, H - 1.2a, E 1.9a, d = 0.3a, e - 0.5a, a imm, the smailest A. and

.In are 0.02 and 0.01 respectively, and aT = 0.01. At the limiting case of

no cavity, the maximum dimensionless temperature at surface of the coated

media was found to be 0.124 by using the transform method (i. The result at

the same point by the current finite difference formulation is 0.123. The

error is less than I. The numerical scheme is therefore confirmed by the

benchmark problem.

The solutions for a single material with and without a cavity would

then be compared with two limiting cases. For the first case, the cavity is

located entirely in the surface layer, Figure 8a. In the second case, the

top edge of the cavity is at the layer/substrate interface, Figure 8b. The

solutions for the single material without and with a cavity are designated

as the third and the fourth cases respectively, included for the purpose of

comparison. In Case 1, three different values of the ligament thickness:

0.04 (Case 1A), 0.06 (Case IB) and 0.1 (Case 1E), are used to illustrate the

effect of the ligament volume. The temperature fields at two depths, for

all three Cases 1A, 1B and 1E are shown in Figure 9. In the figure, the
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A: L=0.04aa
B: L=0.06a

COATING
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8% CASE 2
(b) '

Figure 8.Numerical examples with different cavity pOsitions.
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cavity width is from C 1.6 to 2.2. The asperit" position, a-:.- d:Men-

sionless time T - 1.04, representing the worst case, is from 1.2 to 2.2.

The relative positions of the asperity and the cavity is shnwn in Figure 10.

The Case IA then is compared with Case 2 of the same liament thickness
A.[

for which the top edge of the cavity is at the layer/substrate interface.

The effect of the relative position of the cavity to the interface is shown

in Figure 11. it is noticed that when the too edge of tie cavity is at the

interface, the temnerature field in the re-ion immediate'v on the :railin'

edge of the asperity will be affect by the substrate material.

The effect of heat capacity and thermal conductivity of the surface

laver for Case IA is shown in Figure 12. The figure shows the original

value as Case IA. Case IC represents a reduction of thermal capacity of the

surface layer by half. Case ID shows the result of increase in thermal

conductivity of the surface layer by 75.. The thermal conductivity of the

surface laver is shown to have little effect cn the nondimensional surface

temperature. But the real temperature field, T - qoao/k I, is lowered with

increasing thermal conductivity k

Figures 13 and 1. illustrate the effect of a cavity on the direction of

heat flux. The figures show the nondimensional heat flux components in C

and n directions of single material without cavity (Case 3) and a layered

Tedium with a cavity (Case IA). From the figures, it is observed that with

no cavity the heat flux at C a 2.2, and n 0.04 has a magnitude of 0.7 at

an angle of 82' to the wear surface, with cavity, at the same location, "he

magnitude is increased to 1.5 at an angle 2 3' to the wear surface. Hence,

the existence of the cavity will increase the heat flux tremendously,

especially in the & direction near the upper trailing corner of the cavity.

Figures 13 and 14 demonstrate not only an increase in magnitude of the heat
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flux, hence the temperature gradient, but also the flux at a '-!: Jique

angle to the wear surface.

ju [ had studied the effect of thermal properties of a single

material subjected to the high-speed asperity excitation. It was pointed

out that thermal conductivity (k) and thermal capacity (Pc) are the para-

meters controlling the temperature field. For layered media similar effect
".as conc ,ued bv Ju and Liu u21. For the case of a layered medium with

, :'..:itv, the ther.al property variation in the coating liaver can be accord-

in~v ex:raoolaced. It is the effect of the substrate in the neighborhood

0- :he cavity that would be influential to the temperature field in the

_reicn. The effect of thermal property variation for the substrate

is thre-ore studied numerically for the Case 2, for which the coating,'

substrate interface is at the top edge of the cavity. For this case, the

thermal properties of the substrate will be immediately influential of the

:e-oerature field in the vicinity of the top trailing corner of the cavity.

.For the purpose demonstration of the individual effect, a benchmark case is

chosen for comparison that both the coating and the substrate are of silicon

carbide, K ., I .C47 J/cm.'C.s, = K= 0.49 cm-/s, p
J 3Oc= Dc 2.137 J/cm C), designated as Case 4. Figure 13 illustrates the

' temperature field near surface and at the coating/substrate interface for

cases with marked changes in thermal properties from those given in Case 4.

* zae 2B shows no change in the substrate diffusivity, but both the thermal

conductivity and the thermal capacity are doubled. The ensuing improved

conductivity and capacity in the substrate allow a significant heat flow

into the substrate thus a high temperature gradient. The Case 2C, at the

capacity halved, shows a reduced heat flow into the substrate thus a low
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temperature gradient. Cases 2D and 2E, with doubled diffusivi-v. but from

half capacity and double conductivity respectively, showed reduced and

increased heat flow into the substrate respectively. The heat flux being

proportional to the temperature gradient, is illustrated in Figures 16 and

17 for the surface region and at the interface. It is to be noticed,

however, that the temperature gradient and the heat flux are not of identity

especially across dissimilar materials. The normal component, to the

4nter:ace, of the heat flux must be continuous but not the temperature

aradient. The tangent component of the temperature gradient must be con-

tinuous across the coating/substrate interface. The tangent component of

the heat flux, however, is generally not continuous across the interface.

In the numerical computation, using the method of energy balance, Equation

(32), the xl-component of heat flux at the coating/substrate interface,

Figure 1.7, is the average of the heat flux components in the coating and the

substrate, that is -0.5(k1+k 2)aT/ax1 .-

Figure 18 shows the transient temperature for Case 1A (cavity in the

coating and ligament thickness of 0.04) in comparison to the case of a

single material without cavity (Case 3). The dimensionless temperatures,

Tk /q a, plotted against the time, T = vt/a, at surface and at the I
ligament depth, n - 0.04, for the position 2.2 where the temperature is

maximum in the vicinity of the cavity. It is shown that before the asperity

reaches the point, the temperature is low. Then the surface temperature

increases and reaches a maximum when the asperity just passes over the

trailing edge of the cavity. The temperature at the trailing corner of the

cavity lags in time for its peak value.

.%
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CHAPTER IV

CONCLUSION

The transient solution to a multiple-boundary problem is always

complex. In the current problem, the totality of the boundary is a union of '

the wear surface, the cavity boundaries, the material interface and

infinity. When the transient temperature solution is to be extended in the

near future to the transient thermo-mechanical stress solutions, the com- "

olexi:v can only be anticipated. The numerical solution becomes a necessity

for analyses in special cases. In the present report, it has been demon-

strated that

-. the transient governing differential equations, Equations (1,2), can

be formulated into difference equations, Equations (10,11);

2. variable grids (C,n), made necessary due to strong local effect, can

be transformed into a uniform grid space (P,n);

3. boundary conditions in temperature and/or heat flux can be expressed

through energy balance, thus avoiding the problem of singular points %

such as those of the cavity corners;

4. the numerical solution can be tested by benchmark with a known

analytical solution, showing an accuracy of within 17.

Like most numerical solutions of field problems, functional relationship is

not obtainable without volumnous computations. However, significant con-

clusions can be reached through a few data points. - -

The numerical variation in the thermal properties of the coating laver

confirms the effects of the thermal capacity (oc) and the thermal conduc-

tivity (k), Figure 12, as observed in Huang and Ju [10). Specifically for 9?
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the case when there is a cavity near the wear surface, we can :-a, the

following conclusions:
1. Because of the discontinuity in heat transfer across the void, the

temperature will rise higher in the ligament region than the case

without the cavity, Figures 9 and 11.

2. The temperature rise is inverse to the ligament volume, Figure 9.

3. When the interface is at the ligament depth, the thermal property of

the substrate will influence the temperature gradient, Figure 15.

4. Because of the necessary heat transfer in the lateral direction, the

heat flux will be at a large oblique angle to the wear surface. In

the case of a layered medium without a cavity the heat flux is in

the direction apDroximately 9' from the perpendicular to the wear

surface at a depth of 0.la. If the coating/substrate interface is

in the neighborhood, the resulting delaminating shearing stress is

up to 30" of the maximum principal stress, Ju and Liu t2j. With the

presence of a cavity, not only the magnitude of the temperature

gradient increases, but also the directibn of the maximum tempera-

ture gradient is rotated to a more oblique angle to the wear sur-

face, Figures 10 and 11. Shear stress in the layer/substrate

interface is expected to be huch higher. The temperature field

solution thus points to the possibility of a shear delamination

between the coating layer and the substrate, because of the presence

of a cavity flaw.

4.
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