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PREFACE 

This work is related to a research program on ocean bottom characterization being conducted by 
the Acoustics Media Characterization Branch at NRL. The program is motivated by the recent 
development of a variety of bathymetric measurement systems that resolve aspects of bottom variabil- 
ity heretofore beyond the realm of quantitative study. The general aim of the research is to develop 
statistical/stochastic representations of ocean bottom variability at scales that are relevant to underwa- 
ter acoustic systems. Such representations will allow the prediction of acoustic system performance 
and lead to the better design and use of underwater acoustic systems that either utilize or are sensitive 
to acoustic interaction with the ocean bottom. 

IV 



A METHOD FOR VALIDATING MULTIDIMENSIONAL 
FAST FOURIER TRANSFORM (FFT) ALGORITHMS 

INTRODUCTION 

In the physical sciences, many problems exist that lead to the analysis of a physical process in 
terms of the concept of a random process (Yaglom 1962). A key aspect of the theory of random 
processes is the spectrum of the process, which describes the distribution of energy associated with 
the process over wave number or frequency. The computation of the spectrum is often carried out by 
evaluating a discrete Fourier transform using a fast Fourier transform (FFT) algorithm. This report 
deals with some problems that arise in connection with FFT algorithms. 

Many potential difficulties arise in connection with the use of an FFT. 1. The usual situation is 
that the algorithm already exists as an available subroutine on the computer facility; however, the 
documentation of the algorithm may be incomplete and there may be questions as to which of several 
possible definitions of the transform is being utilized. 2. Another situation that arises is the writing of 
an FFT algorithm for a computer facility, possibly to take advantage of a new technique. In this 
case, the specific algorithm for the transform is presumably known, but it is desirable to have a 
means to check the validity of the calculation once the code has been implemented. 3. A further 
situation that may arise is that an FFT may be added to a computer facility as a built-in feature of an 
array processor. Again the question arises as to whether the array processor is doing the calculation 
correctly. 

We have mentioned three situations in which it is desirable to have a means to check the validity 
of the calculation of the FFT. This is especially important because such an algorthm will receive 
widespread application. This report provides a method for validating FFT algorithms. The method is 
specifically dealt with for one-dimensional and two-dimensional discrete Fourier transforms. The 
two-dimensional case demonstrates how the method can be easily generalized to multidimensional 
transforms of any dimension. 

TERMINOLOGY AND BASIC RELATIONS 

The discrete Fourier transform is at the core of any procedure that evaluates a spectrum from 
digital data. In this section we summarize those relationships that will be needed in the following 
analysis. A more extensive derivation and discussion of discrete Fourier transform properties can be 
found in several texts (Brigham 1974, Oppenheim and Schafer 1975). 

For one-dimensional data X(k), the discrete Fourier transform is defined as 
M-l 

Aim) =   ^ Xik)-^"'^^''   (m =0,1,...,M-1), (1) 
k=0 

where it is assumed that the original data consists of M discrete values. It is useful to extend the 
definition of Aim) and Xik) to all discrete values of m and ^ by a periodic extension of the previous 
set of values.   The discrete transform Aim) is in general complex.   For real data, however, we have 

X*ik)=Xik), (2) 

Manuscript approved January 16, 1987. 
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and this leads to 

A(m) =A*(-m) = A*iM-m), (3) 

for m = 0,1,... ,M - 1. 

A basic relation that exists between the transform and the data is given by Parseval's relation, 
which states that 

M-l 1   M-l 

E    1^(^)1' = "IT E   MC'")!'- (4) 
k=0 ^ m=0 

This relationship can be thought of as an energy relation and is usefial for establishing correspon- 
dences between the spectrum of the continuous process and the discrete Fourier transform, which is 
calculated from equally spaced measurements of the process. 

We now consider the two-dimensional case where we have data X(k,l) given over a two- 
dimensional grid.   The discrete Fourier transform is now given by 

M-l N-l 
Aim,n)=j:    ^  X(A:,/)e-2«'"*/^e-2™'/^ (5) 

k=0   1=0 

where the data Xik,l) is assumed given over a set of data points identified by k = 0,1,... ,M-1 
and / = 0,1,... ,iV - 1. It is again useful to regard the transform as defined for all integer values of 
m, n.   When the data X(k,l) are real, we obtain the symmetry properties 

A*(-m,-n) = A(m,n) = A*iM -m,N -n). (6) 

Parseval's relation for discrete data over a two-dimensional region takes the form 
M-l N-l 1       M-l W-1 
E    E   lX(m,n)|2 = -i-   E    E   \Aik,l)\\ (7) 

m=0 «=0 "^^^    k=0   1=0 

An important view to take toward discrete Fourier transforms of data that are defined over a 
multidimensional array of points is to regard the transform as a series of one-dimensional transforms. 
For example, the two-dimensional transform defined in Eq. (5) can be written as 

N-l    M-l 

/=o    it=0 

In this form, it can be regarded as the result of several one-dimensional transforms carried out first on 
the rows of the data array X{k,l). A series of one-dimensional transforms is then performed on each 
of the columns of the intermediate array to yield the two-dimensional transform of the original array 
of data. One could just as well begin with column transforms rather than row transforms in Eq. (8). 
This point of view is obviously capable of generalization to higher dimensions and is also the basis 
for computational algorithms (Robinson and Silvia, 1979). Thus one can regard the one-dimensional 
discrete Fourier transform as the fundamental ingredient for the higher dimensional transforms. 

We consider one-dimensional and two-dimensional transforms in this report because there are 
some aspects of higher dimensional transforms that become clear only when one deals with a 
transform of data defined over more than one dimension. 

DESCRIPTION OF THE METHOD 

The essenfial aspect of the method for validating discrete Fourier transforms is to use simple 
discrete functions for which the transform can be worked out analytically—by this we mean the sum- 
mation appearing in the transform relation can be carried out to obtain an expression involving ele- 
mentary functions whose number does not vary with the number of input values.   One then has a 
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means for checking the output of the transform algorithm. This procedure allows the transform algo- 
rithm to be viewed as a black box, which may be advantageous in some situations. We shall consider 
several simple functions that can be used as input and discuss their advantages and disadvantages as a 
test of the transform algorithm. The one-dimensional and two-dimensional transforms are considered 
because there are some potential difficulties with the multidimensional transform that do not arise with 
the one-dimensional transform. Further, the consideration of the two-dimensional transform will 
demonstrate how the method can be generalized to multidimensional transforms of any dimension. 

A simple test is provided by Parseval's relation, which relates a property of the original function 
to a property of the transform. This relation can be used to check the correctness of the transform 
algorithm by using a simple function as input.   Perhaps the simplest input function is 

X{k) = d(k)      (A: =0,1,...,M-1), (9) 

where 

8ik) = 1 if it = 0 (modM) (10) 

= 0 otherwise. 

The discrete Fourier transform is ^ 
M-l 

Aim) =   2   b{k)e-^^'"^'^ , ! 
ik=0 

which becomes 

A{m) = \       form = 0,1,...,M-1. 

Parseval's relation states that we must have 
M-\ 1    M-l 
D    \X{k)\^ = —   Y,    \A{m)\\       i 

*=0 ^   m=0 

The summation on the right is 
M-l 1 

^.=0 

which is also what the summation of the square of the input data values equals. 

This is easily generalized to higher dimensions as is seen for the two-dimensional case where 
one would use X(^,/) = 8(k)8(l) as the input.   The discrete Fourier transform is 

M-l N-l 

A{m,n)=   J^    "Y 8ik)8(l)e-^"'^^^ e-^""'^^ , 
k=0   1=0 

which becomes 

A{m,n) = 1     for w=0,1,...,M—1 " 

n = 0,l,...,N-l. 

Again Parseval's relation requires that 

Af-l N-l 1      M-l N-l 

L    E   \Xik,l)\^ = -^   5]    Y   \Aim,n)\\ 
k=0   1=0 ^^^   m=0 n=0 

where it is easily verified that each side of the equality has the value 1. 

These results provide one means of testing the validity of the discrete Fourier transform algo- 
rithm by indicating what results should be obtained from an input of a simple form. The disadvan- 
tage of this test is that the resultant transforms have all elements equal to one another. It is conceiv- 
able that a coding error could produce a constant entry in all array locations that would then yield a 
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false indication of a correct result for the simple preceding input data. It therefore seems desirable to 
use a more complicated input function to obtain a transform with sufficient variability that it would be 
unlikely to provide a false indicator. 

It is important to realize that Parseval's relation is a limited test based on a transform property 
that is not restricted to Fourier transforms. Some fiirther aspects of Parseval's relation that prevent it 
from serving as a detailed test are that the relation involves magnitudes, which do not preserve phase 
relations between various coefficients, and the summation is insensitive to a permutation of the order 
of the coefficients. These features of Parseval's relation imply that the relation is only useful as a 
global test. The most stringent test of an FFT algorithm will require examination of the specific 
values of transform coefficients and should involve the use of a fairly general input function. 

We now consider the advantages of the linear function 

X(k) = k      {k =0,l,...,M -I). (11) 

The transform is 
M-l 

Aim) =   Z  ke-^'"^'''    (m =0,1,...,M-1) (12) 

and can be evaluated explicitly in terms of simple functions as shown in the appendix of this report. 
The result is that 

^(0) = 
MiM - 1) 

Aim) = - Y+! ycot irm 
M 

(m = 1,2,...,M-l). (13) 

It is seen from the expressions in Eq. (13) that the various elements of the transform are different, 
thus the simple test function provides a useful means for validating one-dimensional discrete Fourier 
transforms. 

The test function appearing in Eq. (11) can easily be generalied to higher dimensions.   We 
explicitly consider the two-dimensional case in which 

Xik,l) = kl 
k = 0,... ,M - 1 

/ = 0,... ,A^ - 1 
(14) 

The two-dimensional discrete Fourier transform is given by 
M-l N-l -Inmk/M 

Aim,n) =   J^    "^  kle 
k=Q   1=0 

which can be written as 

Aim,n) = 

where 

m = 0,. .. ,M 1 
n =0,...,N -I j 

v-1    j^    -2irimk/M 
"N-I 

^ k=(} _> u- =0 

-liriml /N (15) 

m = 0,..! ,M - 1 
n = 0,...,N -I 
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The two-dimensional transform in Eq. (15) is obviously the product of one-dimensional transforms, 
which can be written out explicitly using the results obtained in the appendix of this report. The 
result is 

and 

where 

A(0,0) = -MiM - l)NiN - 1), 

A(0,n) = -M(M-l) 

A(m,0) = -N(N-l) 

N     .N 
—- -I-1— cot 
2        2 

M      .M 
— —- -I-1—-cot 

2        2 

■Kn 

N 

Trm 

M 
V ^ 

(n = 1,2,...,N-I), 

(m = 1,2,...,M-1), 

A(m,n) = 
M   ,  .M 
2  +'2^"' 

■Km 

M 
V,             y 

/^              ■~\ -| 
N  , .A^ 
—- -1- z—-cot 
2        2 

irm 

N 
^            .y J 

(16) 

(17) 

(18) 

(19) 

m = 1,2,...,M -I 
n = 1,2,...,N -I 

It is useful to think of the results in Eqs. (16) to (19) as providing various entries in a matrix as 
shown in Fig. 1. 

The two-dimensional test function, just as in the one-dimensinoal case, leads to a transform with 
variable entries and provides a useful means for validating two-dimensional FFT algorithms. The test 
function can easily be generalized to higher dimensions in which case the multidimensional discrete 
Fourier transform of the test function is given by the product of a number of one-dimensional 
transforms, entirely analogous to the two-dimensional case we have just considered. 

A(0,n) (n = 1.2 N-1) 

A(m,n)    f'"=-''2 ^^-"^ 
Vn  =1,2 N-V 

Fig. 1 — Matrix form of the two-dimensional transform A{rn,n) that is 
explicitly written out in Eqs. (16) to (19). The indexes m and n 
correspond to row and column indicators, respectively. The reason for 
exhibiting the transform in matrix form is to emphasize the structural 
aspects of the transform. 
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The function X(k,l) =kl we have been considering seems adequate for testing the validity of 
the general case. However, it has some disadvantages when M = N because in that case the 
transform A{m,n) becomes a symmetric matrix. Thus for the case M = N, the test function 
X{k,l) = kl has properties that are not shared in general by two-dimensional input functions. The 
symmetry of the transform makes it impossible to test whether or not rows and columns have been 
incorrectly interchanged in the program. This becomes an important consideration in testing the va- 
lidity of algorithms that are specifically written for multidimensional input with M = N. To have a 
means for testing this, we need to consider some other input functions that do not lead to symmetric 
transforms. 

Consider the following functions: 

X(k,l) = ak +bl, 

X(k,l) = ak +b , and 

Xik,l) = a +bl. 

(20) 

(21) 

(22) 

In each of these, a and b are constants. We shall deal with the general case with M ^N although 
our main interest is in the case when M = N. Again, the functions selected are of a sufficiently sim- 
ple form that their transforms may be worked out analytically. 

The transform of the discrete function given in Eq. (20) is 
M-l N-i 

A{m,n) =   Y,    E   («^ +bl)e 2-Kimk/M ^-l-Kinl/N 

k=0   1=0 

which can be written as 

A{m,n) =a 
M-l 
E ke -2mmk/M v-i       -2-KinllN 

1=0 

+ b 
M-l 

*;=0 

-Itrimk /M D le 
1=0 

-2nml /N (23) 

The two-dimensional transform is thus given by evaluating a series of one-dimensional transforms. 
Note that we have the simple result that 

^   ^-2mnl/N ^ N5(^n), (24) 
1=0 

where 

5(n) = lifn = 0 (modN) 

= 0 otherwise. 

The expression in Eq. (24) is the one-dimensional transform of the function that is equal to unity. 
The result in Eq. (24) allows Eq. (23) to be written as 

A{m,n) = aN 
M-l 

k=o 

-2nink/M b{n) + bM 
1=0 

■2Ttinl/N 8(m). (25) 

The general structure of this transform is best thought of in terms of a matrix where m designates 
row location and n designates column location. Figure 2 shows the general form of the result where 
nonzero entries only occur in the first row or first column.   These entries are given by 

.rM{m - 1)   , ,.,A^(A^-1) 
A (0,0) = aN—^  + bM—^ - 

Aim,0) = aN 
M   ,  .M     ^  h f-r cot 
2        2 M 

{m =1,2,...,M-l) 

(26) 

(27) 
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and 

A(0,n) = bM 
2        2 

/^             ~\ ~ 

^        in =l,2,...,iV-l), 

where use has been made of the resuhs obtained in the appendix of this report. 

(28) 

A(0,0) 

Fig. 2 — Matrix form of the transform A(^m,n) of the fiinction 
X{k,l)=ak+bl showing its structural form. Explicit row and 
column entries are given by Eqs. (26) to (28). 

When M =//, the only difference between the first row and first column are in the constants a 
and b. Thus, while the given test function allows a test of row and column placement, it does not 
involve much variability in the entries. 

The two-dimensional discrete Fourier transforms of the functions in Eqs. (21) and (22) can be 
evaluated by using the results that were used in the evaluation of the transform of Eq. (20). The 
transform of Eq. (21) leads to 

M-l 

k=0 

■2-Kimk/M Aim,n) = aN 

while the transform of Eq. (22) leads to 

A{m,n) ^aMN8{m)8in) + bM 

8{n) + bMN8{m)8in), 

N-l 

1=0 
8{m). 

(29) 

(30) 

The ranges of indexes in Eqs. (29) and (30) are m = 0,1,... ,M - 1 and n = 0,1,... , Af - 1. " 

Figure 3 is the matrix structure of the transform in Eq. (29).   The transform is of a very special 
form where nonzero entries appear only in the first column.   These are given by 

A (0,0) = aN^^^     ^^ + bMN 

Aim,0) = aN 
M  , .M    , 
~:r +^':rcot 
2        2 M 

(m =1,2,...,M-1). 

(31) 

(32) 
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Fig. 3 — Matrix form of the two-dimensional transform A(m,n) of the 
function X(k,l) = ak + b showing its structural aspects. The elements 
of the first column are given in Eqs.   (31) and (32). 

Consequently, even when M = N v/e obtain a very asymmetric transform with variable entries in the 
first column. 

The matrix structure of the transform in Eq. (30) is similar to that of Eq. (29), except that now 
we have the nonzero entries appearing in the first row. Figure 4 shows the structure. The elements 
appearing in the first row are given by 

A (0,0) = aMN + bM ^^^^    ^^ , and 

A(0,n) =bM 

r       -~\ -l 

N     .N 
— +i—cot 
2       2 N 

^ (n = l,2,...,N-l). 

(33) 

(34) 

It is clear from the results in Eqs. (31) to (34) that the constant terms appearing in the input 
functions of Eqs. (21) and (22) only contribute to ^(0,0) in each case. They only offer a limited 
degree of freedom so far as changing the transform and need not be included. The main reason for 
their inclusion here is to demonstrate what the general linear function leads to under the discrete 
Fourier transform relation. 

CONCLUSIONS 

The development of a validation procedure for the FFT algorithm expresses a general attitude of 
the author that algorithms should be checked by application to a case for which the results are known 
by other means. This is not always done. In many cases the reason for inadequate tests of an algo- 
rithm may be traced to a lack of known analytical results. 

We have presented some explicit analytical results for discrete Fourier transforms in the one- 
dimensional and two-dimensional situations. The results are easily generalized to any multidimen- 
sional situation. The primary motivation for the work was to establish a means for validating multidi- 
mensional FFT algorithms by establishing analytical results that can be compared to the output of 
FFT algorithms. The need for validating FFT algorithms arises in many contexts, such as when such 
an algorithm is first implemented on a computer facility or when modifications are made to take 
advantage of new techniques or new devices for the calculation of the discrete Fourier transform. 
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A(O.O) 

Fig. 4 — Matrix form of the two-dimensional transform A{m,n) of the 
function X{k,l) = a + bl showing the structural aspects of the 
transform. Elements appearing in the first row are given by Eqs. (33) 
and (34). 

The general idea discussed in this report is that of using simple discrete functions whose discrete 
Fourier transforms can be evaluated by direct analytical means. Several functions were considered 
explicitly for the one-dimensional and two-dimensional cases, and their advantages and disadvantages 
were examined in terms of a validation procedure. We note that such a procedure allows the algo- 
rithm to be viewed as a black box with only the input and output being of primary interest. 

The types of functions we have dealt with are of the form 

X(k)=ak+b     (/t = 0,1,... ,M-l)and 

X(kJ) =akl +bk+cl +d 
k =0,1,...,M-1 

/ = 0,1,... ,A^-1 

where one or another of the constants may be zero.   These functional forms appear to offer suffi- 
ciently general tests of FFT algorithms in one and two dimensions. 

I 

One could generalize the procedure by dealing with functions of the form 

X{k)=f{k)      (A; = 0, l,...,M-l)and 

^k = 0,1,... ,M-1 
X{k,l) =f{k)g{l) I - 0,1,... ,A^-1 

and so on for higher dimensions. A general property of such functions is that the multidimensional 
transform of such separable functions will be found to reduce to a product of one-dimensional 
transforms. One would then select f(k),g(l) so that their one-dimensional transforms can be ex- 
plicitly evaluated in analytical terms. The only difficulty in carrying out such a procedure is the 
analytical evaluation of the one-dimensional transforms. 
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Appendix 
ANALYTICAL EVALUATION OF A DISCRETE FOURIER TRANSFORM 

We here consider the analytical evaluation of a discrete Fourier transform of a specified function 
X{k) for k = 0,1,... ,M - 1. Despite the treatment of the general theoretical aspects of such 
transforms, the evaluation of specific results is rarely treated and there appears to be no extensive 
tabulation of transforms of simple functions that can be worked out analytically. The particular func- 
tion we are interested in is given by 

Xik) = k      (k = 0,\,... ,M-1). 

It is desired to evaluate the transform that can be written as 
M-\ 

Aim) =   2] ytg-2"*'"/^ (m = 0,1,...,M-1). (Al) 

For the sake of later convenience, we note the summation in Eq. (Al) can be easily evaluated for the 
special case m = 0 since 

^"1 M(M - 1) 
^(0)=   ^k =  ^^^     '^ . ■ .      (A2) 

Thus we now have to evaluate the expression in Eq. (Al) for m = 1,2,... ,M - 1. 

To carry out the summation in Eq. (Al), it is useful to regard the discrete functions in the sum- 
mand as defined for all values of k. Thus for each value of m we have a summation problem where 
it is desired to obtain a simple, anlaytical expression for the sum. Define the finite difference opera- 
tor A by 

A/i(^) = /i(fc -I- l)-Ai(fc), 

and note that it has the property 

^{,\Kv) - v^v^v{k^ l)A/t, (A3) 

where it is understood the independent variable is k in those terms where it is not indicated explicitly. 
We specify that 

ii{k) = k , (A4) 

and 

Avik) = e-2«*'"/^ (k = 0,1,. . . ,M). (A5) 

This allows the summation problem in Eq. (Al) to be expressed as 
M-l 

Aim) =   J2 M^)AJ', I 

which, by use of Eq. (A3), can be written in the form 
M-l M-1 

Aim) =   X; Aiixv)-  D  Pik + \), 

or, since the first summation can be summed explicitly, we have 
M-l 

Aim) = niM) viM) - ixiO) viO) - J2 "(^ + 1)- ' (A6) 
yt=0 

11 
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The reason for the change in summation is that the summation problem in Eq. (A6) will be able to be 
done in explicit terms. The method being used is analogous to integration by parts for continuous 
functions. 

We now determine v(k) which satisfies Eq. (A5).  We can define 

j'(O) = 0 

since Eq. (A5) is only a requirement on differences of v(k). 

Then, we find by evaluating the first few terms of the expression in Eq. (A5) that 

(A7) 

and 

K2) = e -2-Kikm /M 

It = 0' 

-lirikm/M 
\k=Q + ^ \k = l- 

On the basis of these results we can guess that 

vik) =  '^e-^"'""" (k = l,2,-.-,M). 
1=0 

(A8) 

This can be verified by forming 

which gives 

Apik) = v(k + \)~pik), 

AJ'(O) =v(l) = g-2T™'/M 1=0' (A9) 

and 

or 

k k—1 
Vik + 1)-Vik)   =   j^   g-2«m//Af _  j.^-2^iml/M 

1=0 1=0 

Av(k) =  v(k + l)-v(k) = e -l-Trikm /M (k = 1,2,...,M). (AlO) 

It is clear that the functions defined by Eqs. (A7) and (A8) solve the difference equation exhibited in 
Eq. (A5). 

We now find an explicit expression for the summation in Eq. (A8).  Write Eq. (A8) as 
k-l 

"('t) =  D {cos(27rm//M)-/sin(27rm//M))   (it = 1,2,... ,M). (All) 
/=o 

The summations appearing in Eq. (All) are known (Hamming 1962, p. 44) and m ^ 0, can be writ- 
ten as 

.   2Trm 
k-l M 
Y, cos (27rm/ /M) =   
/=0 

k-\ + 
1 

+ sin 
■Km 

M 

2 sin 
■Km 

M 

(A12) 

and 

k-\ 
Y, sinil-Kml/M) 
1=0 

cos 
l^Km 

M 
k -\ + 

1 
2 

+ cos 
■Km 

M 

2 sin 
■Km 

M 

(A 13) 

12 
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where k = \,2,... ,M.  This completes the" explicit determination of the function v(k). 

We now return to Eq. (A6) to find what simplifications can be made.   We note that n(0) and 
i'(O) both vanish.   Also, v(M) can be evaluated from Eqs. (All) to (A13).   We have 

sm- 

KM) 

2-Km 
M-1 + - 

2 
+ sin 

-Km 

M 
+ / cos 

2irm 

M 
M-1 + - 

2 
I cos • 

TTin 

M 

2 sin 
■Km 

and on simplification of the trigonometric terms, the result is obtained that 

v{M) = 0. 

Consequently, Eq. (A6) takes the form 
M-l 

A{m) = - Y, vik + 1) 
*=o 

Af-l 

*=0 

sm 
2-Km 

k + 
■Km 2-Km 

+ sm  cos • 
M M '^1 — cos 

■Km 

M 

2 sin 
■Km 

M 

+ i 

2 sin 
■Km 

M 

(A14) 

We now consider each term in Eq. (A 14) separately.  We obtain 

^-1 .   2-Km 
2 sin- 

k=Q M 
k + 

cos 
2-Km 

M 
M-1 + — 

2 
+ cos 

Trm       -Km 

2 sin 
-Km 

~M 

which is found to vanish on simplification.   Likewise, we get 

2J cos- 
k=Q M 

k + 
^J 

Eq. (A 14) then simplifies to 

M-l 
A{m) = -   Y, 

k=0 

/^               ^ -j 

1 
2 

. 1 
-I — cos 

2 
-Km 

M 

or 

Aim) 
M M -Km 

+ ? cot 
2 2 [M J (m = 1,2,... ,M-1). 

This is to be supplemented by the results indicated in Eq. (A2) that 

(A15) 

(A16) 

The expressions given in Eqs. (A 15) and (A 16) provide the explicit, analytical expression for 
the discrete Fourier transform of the function X{k) = k,{k =0,1,...,M-1), which is the result 
desired. It should be clear that even relatively simple discrete functions lead to rather difficult sum- 
mation problems when it is desired to obtain an explicit representation. 
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Figure Al shows a plot of the imaginary part of the discrete Fourier transform. When 
normalized by M the transform values fall on a continuous curve that is independent of M. The real 
part of the transform is of a simple form and is not exhibited in graphical form. 
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Fig. Al — The imaginary part of the one-dimensional 
discrete Fourier transform A{m) of the discrete function 
X(k)=k(k = 0, !,-■ ,M-1).    It  is  plotted  in  the 

form Im —A{m) 
M 

because when normalized by M 

the discrete values fall on a single continuous curve that 
is independent of M. The solid circles are discrete 
values of the imaginary part of the normalized transform 
for the case when M =2", where n > 4. For other 
choices of M, the values would still be along the 
continuous curve but not always at the circled points. 
The imaginary part of the transform always vanishes at 

■Km 
= 0.   The continuous curve is given by cot 

M 
with m regarded as continuous. Values of the imaginary 
part of the normalized transform outside the domain can 
be obtained by periodic extension of the values shown. 
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