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/ ~~~Abstract 7~ i'L

44re-tj-aress the problem of combining output of several detectors for the same feature of an image. -U

showhat if the detectors return likelihoods I can robustly combine their outputs. The combination has the

advantages that:

.--oThe confidences of the operators in their own reports are taken into account. Hence if an operator is

confident about the situation and the others are not then the reports of the confident operator dominates

the decision process'j

,.w priori confidences in the different operators can be taken into accoun -

* The work to combine 'N' operators is linear in 'N'.

This theory has been applied to the problem of boundary detection. Results from these tests are presented
here. /
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* The work to combine 'N' operators is linear in 'N'.

This theory has been applied to the problem of boundary detection. Results
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1. Introduction

Often in computer vision one has a task to do such as deriving the boundaries of objects in an
image or deriving the surface orientation of objects in an image. Often one also has a variety of
techniques to do this task. For boundary detection there are a variety of techniques from classical
edge detection literature [Ballard82] and the image segmentation literature e.g. [Ohlander79
For determining surface orientation there are techniques that derive surface orientation from
intensities [Horn70] and texture [Ikeuchi80] (Aloimonos85]. These techniques make certain
assumptions about the structure of the scene that produced the data. Such techniques are only
reliable when their assumptions are met. Here I show that if several algorithms return likelihoods
I can derive from them the correct likelihood when at least one of the algorithms' assumptions are
met. Thus I derive an algorithm that works well when any of the individual algorithms works
well.

The mathematics here were derived independently but are simila to the treatment in
[Good50]. and [Good83], using different notation. To understand my results first one must
understand the meaning of likelihood.

2. Likelihoods

In this paper I call the assumptions that an algorithm makes about the world a model. Most
models for computer vision problems describe how configurations in the real world generate
observed data. Because imaging projects away information, the models do not explicitly state how
to derive the configuration of the real world from the sensor data. As a result, graphics problems
are considerably easier than vision problems. Programs can generate realistic images that no
program can analyze.

Let 0 be the observed data, f a feature of the scene whose existence we are trying to
determine (like a boundary between two pixels) and M a model. Many computer vision problems
can be reduced to finding the probability of the feature given the model and the data, PfO&M).
However most models for computer vision instead make it easy to compute P(OIf&M). I call
P(Olf&M) (inspired by the statistical literature) the likelihood of f given observed data 0 under
M. As an example assume f is "the image has a constant intensity before noise". M says that the
image has a normally distributed uncorrelated (between pixels) number added to each pixel (the
noise). Calculating P(OIM&f) is straight-forward (a function of the mean and variance of 0).

A theorem of probability theory, Bayes' law, shows how to derive conditional probabilities for
features from likelihoods and prior probabilities. Bayes' law is shown in equation 1.

P(OIf& M)P(1M)
P(fO&M)= P(o0f&M)P(fAM)+P(0I-f&M)P(-M) (1)

f is the feature for which we have likelihoods. M is the domain model we are using. P(Olf&M) is
the likelihood of f under M and P(fOM) is the probability under M of f

For features that can take on several discrete mutually exclusive labels (rather than just true
and false) such as surface orientation (which can be a pair of angles to the nearest degree or "not
applicable" (at boundaries)) a more complex form of Bayes' law shown in equation 2 yields
conditional probabilities from likelihoods and priors.
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P(O 1&fM)P(UIM)
P(LIo&M)= P(oJl'&M)P(l'IM) (2)

VEL(n

I is a label for feature f and L(f) is the set of all possible labels for feature f.

Another important use for explicit likelihoods is for use in Markov random fields. Markev
random fields describe complex priors that can capture important information. Several people have
applied Markov random fields to vision problems EGeman84]. Likelihoods can be used in a Markov
random field formulation to derive estimates of boundary positions [Marroquin85b] (Chou87]. In
[Sher86] and [Sher87] I discuss algorithms for determining likelihoods of boundaries.

Let us call an algorithm that generates likelihoods a likelihood generator. Different models
lead to different likelihood generators. The difference between two likelihood generators' models

can be a single constant (such as the assumed standard deviation of the noise) or the two likelihood
generators' models may not resemble each other in the slightest.

Consider likelihood generators L, and L 2 with models M, and U2 and assume they both

determine probability distributions for the same feature. L, can be considered to return the
likelihood of a label I for feature f given observed data 0 and the domain model ML. Thus L,
calculates P(Ojf=l&M 1). Also L 2 calculates P(Olf=l&M 2). A useful combination of L, and L2
is the likelihood detector that returns the likelihoods for the case where M, or M2 is true. Also the
prior conidences one has in M, and M2 should be taken into account.

This paper studies deriving P(OIf=I&(M vM)). Note that if I can derive rules for
combining likelihoods for two different models then by applying the combination rules N times, N
likelihoods are combined. Thus all that is needed is combination rules for two models.

3. Combining Likelihoods From Different Models
To combine likelihoods derived under M1 and M2 an examination of the structure and

interaction of the two models is necessary. M, and M2 must have the same definition for the
feature being detected. If the feature is defined differently for M, and M2 then M, and Ms are
about different events, and the likelihoods can not be combined with the techniques developed in
this section.

Thus the likelihood generated by an occlusion boundary detector can not be combined with
the likelihood generated by a detector for boundaries within the image of an object ( such as
corners internal to the image). A detector of the likelihood of heads on a coin flip can not be
combined with a detector of the likelihood of rain outside using this theory. (However easy it may
be uing standard probability theory.)

If the labeling of a feature f implies a labeling for another feature g then in theory one can
combine a f detector with a g detector by using the g detector that is implied by the f detector. As
an example a region grower could be combined with a boundary detector since the position of the

regions implies the positions of the boundaries.

3.1. Combining Two Likelihoods
The formula for combining the likelihoods generated under M and M2 requires prior

knowledge. Necessary are the prior probabilities P(MI) and P(M2) that the domain models M, and

M2 are correct as well as P(WIAM 2). Often P(MI&Ms) = 0. When this occurs the two models
contradict each other. I call two such models disjoint because both can not describe the situation
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simultaneously. If U is a model with noise of standard deviation 4±e and Us is a model with
noise of standard deviation 8±e then their assumptions contradict and P(MI&M2) = 0.

Prior probabilities for the feature labels under each model (P(f=lIM 1) and P(f =1M 2)) are
necessary. IfP(Mt&M2)*O then the prior probability of the feature label under the conjunction of
M1 and M2 (P(f=lIM 1&M)) and the output of a likelihood generator for the conjunction of the
two models (P(Olf=l&(M 1&Ms))) are needed. If I have this prior information I can derive
P(Olf=l&(M IvM2)).

If I were to combine another model, M3, with this combination I need the priors P(M),
P(fIM3), P(M3&(MIvMI) and P(fIM3&(MtvM2)). To add on another model I need another 4
priors. Thus the number of prior probabilities to combine n models is linear in n.

Thus all that is left is to derive the combination rule for likelihood generators given this prior
information. The derivation starts by applying the definition of conditional probability in equation
3.

P(OIf=1&(M 1vM2)) = P(O&f=I&(M IvM2)) (3)
P(f=I& (M IvM2))

The formula for probability of a di~unction is applied to the numerator and denominator in
equation 4.

( V ) =P(O&f=I&M )+P(O&f=I&M $)-P(O&f=l&M t&M,)
P(O~f=1&(M 1vM)) = P If=&M 1 )+P(f=lEM 2)-P(f=&M ,&Ms)

In equation 5 the definition of conditional probability is applied again to the terms of the
numerator and the denominator.

P(OIf=I&M )P(f=IIM ,)P(MI)

P(O If= I&M ,)P(f-=--lIM .)P(M, 2)

P(Olf=1&(M vM2))= P(OIf=f&M i&M)P(f=LIM &M)P(M &M)

Different assumptions allow different simplifications to be applied to the rule in equation 5.
If the two models are ditoint equation 5 reduces to equation 6.

P(O If = I& ,)P(f= IIM ,)P(M,)6

P(l=1( VM olf =L&M .)P(f =lIM S)P(Mz)J (6)
P(Otf=l&(M vMa)) = p(flIM )P(M 1 )+P(f=lIM 2)P(M2)

Another assumption that simplifies things considerably is the assumption that prior probabilities
for all feature labelings in all the models and combinations thereof are the same. I call this
assumption constancy of priors. When constancy of priors is assumed
P(f=lIM1) = P(f=lIM2) = P(f=lIM 1&Ms). Making this assumption reduces the number of
priors that need to be determined. Since determining prior probabilities from a model is sometimes
a difficult task the constancy of priors is a useful simplification. With constancy of priors equation
5 reduces to equation 7.

A'
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P(0If = &M IOPM 0

( vP(O if= I&M 2 )P(M 2 ) (7)
(Of=l&M 1&M)P(M O&M2 )

P(Ml)+P(M2)-P(M &M2)

Equation 6 with constancy of priors reduces to equation 8.

P(Olf=1&M 1)P(M1)
+(8

P(o0f=&M 2)P(M2) (8)
P(OIf-l&(M ,vM2)) - P(M 1)+P(M2)

Thus equation 8 describes the likelihood combination rule with dsjoint models and constancy of
priors.

3.2. Understanding the Likelihood Combination Rule

The easiest incarnation of the likelihood combination rule to understand is the rule for
combining likelihoods from disjoint models given constancy of priors across models (equation 8).
Here the combined likelihood is the weighted average of the likelihoods from the individual models
weighted by the probabilities of the models applying. (The combined likelihood is the likelihood
given the disjunction of the models).

If models M1 and M2 are considered equally probable and the likelihoods returned by MI's
detector are considerably larger than those of M,'s detector then the probabilities determined from
the combination of M, and M2 are close to those determined from MI. Thus a model with large
likelihoods determines the probabilities. To illustrate this principle consider an example.

Assume that a coin has been flipped n + 1 times. The results of dipping it has been reported
for the first n times. The task is to determine the probability of heads having been the result of

the n + 1 flip. Consider the results of each coin flip independent. Let MI be the coin being fair so
that the probability of heads and tails is equal. Let M2 be that the coin is biased with the
probability of heads is w and tails 1-v with w being a random choice with equal probability
between p and I-p. Hence the coin is biased towards heads or tails with equal probability but the
bias is consistent between coin tosses. The probability of heads remains the same for all coin tosses
in both models. M1 and M2 are disjoint (the coin is either fair or it isn't but not both) and the

prior probability of a flip being heads or tail is the same for both, .5.

Under M, the probability of each of the possible flips of n+1 coins is 2 - - . Under M2 the
probability of n + flips of coins with h heads and t = n + 1 - h tails is:

iph(a -p), + pt(a -p)h

Let n=2 and p =.9. Assume the first two flips are both heads. Let H be "the third flip was heads"

and T be "the third flip was tails." The likelihood of H given the observed data is the probability
of all 3 flips being heads divided by the probability of the third flip being heads. The likelihood of
T given the observed data is the probability of the first 2 being heads and the 3rd tails divided by
the probability of the third flip being tails.

Under M, the probability of all 3 flips being heads is 0.125 and the probability of a flip being
heads is 0.5 thus the likelihood of H is 0.25. The likelihood of T is 0.25 by the same reasoning.

" i . . . . .s.-.-v ".".""".""""": "'''' ,.' ' .-.. -- - --.-- :- .- . ; ; - -- ? Y



NEW M-
-

MXN

5

Applying Bayes' law to get the probability of H under Mt one derives a probability of .5.

Under M2 the probability of all 3 flips being heads is 0.365 and the probability of a flip being
heads is 0.5. Thus the likelihood of H is 0.73. Under M2 the probability of the first two being
heads and the third being tails is 0.045 and the probability of a flip being tails is 0.5. Thus the
likelihood of T is 0.09. Applying Bayes' law under M2 a probability of H being 0.89 is derived.

If MI and M2 are considered equally probable then the combination of the likelihoods from
the two models is the average of the two likelihoods. Thus the likelihood of H for this combination
is 0.49 and the likelihood of T is 0.17 (likelihoods don't have to sum to 1). Bayes' law combines
these probabilities to get 0.74 for the 3'd flip to be heads.

The table in figure 1 describes combining various MS's with different values of p with MI for
the different combinations with n = 4

Observed Combined with ML Likelihood of H Likelihood of T Probability of H
Coin Flips or just M2 p -. 6 p -. 9  p =.6 p =.9 p =.6 p =.9

HHHH Just M2 0.088 0.5905 0.0672 0.0657 0.567 0.8999
Combined 0.07525 0.3265 0.06485 0.0641 0.537 0.8359

HHHT Just M2 0.0672 0.0657 0.0576 0.0081 0.5385 0.8902
Combined 0.06485 0.0641 0.06005 0.0353 0.5192 0.6449

HHT Just M2 0.0576 0.0081 0.0675 0.0081 0.5 0.5
Combined 0.06005 0.0363 0.06 0.0353 0.5 0.5

HI' Just Us 0.0576 0.0081 0.0672 0.0657 0.4615 0.1098
Combined 0.06005 0.0353 0.06485 0.0641 0.4808 0.3551

T'IT Just M2 0.0672 0.0657 0.088 0.5905 0.433 0.1001
Combined 0.06485 0.0641 0.07525 0.3265 0.4629 0.1641

Figure 1: Result of likelihood combination Rule

Look at the probabilities with p =.9 and the observed data is HEM. For this case the
observed data fits M2 much better than MI and the probability from combining MI and M2 is close
to the probability resulting from using just M2, .9. If we had a longer run of heads the probability
of future heads would approach exactly M,'s prediction, .9. On the other hand if we had a long run
of equal numbers of heads and tails the probability of future heads would quickly approach the
prediction of MU, .5. When the observed data is HHHT the observed data fits M1 about as well as
MI and the resulting probability is near the average of .5 predicted by MI and 0.8902 predicted by
M2. Thus when the observed data is a good fit for a particular model (like M2) the probabilities
predicted by the combination is close to the probabilities predicted by the fitted model. If two

models fit about equally then the result is an average of the probabilities 1

4. When No Model Applies
Given a set of likelihood generators and their models, using the evidence combination

described in section 3 we can get the likelihood for the feature labelings given that at least one
model applies. Thus if we have likelihoods of a boundary given models with the noise standard

lHowever the feature that the decision theory predicts is not the average of the features predicted under the two
different models in general.

S
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deviation& near to 4, 8 and 16 in them we can derive the likelihood of a given the noise standard
deviation is near to 4 or 8 or 16 (no matter which). Thus we can derive the probability distribution
over feature labelings given that at least one of our models applies. However what we are trying
to derive is the physical probability distribution over the feature labelings. This is the probability
distribution over feature labels given the observed data (estimated by the long run frequencies over
the feature labels given the observed data). The problem is that there may be a case where none of
the models assumptions is true. In the Venn diagram of figure 2 each set represents the set of
situations where a moders assumptions are true. The area marked NO MODEL is the set of
situations where all the models fail.

SM 3 NO MODEL

Figure 2: Venn Diagram of Models

What should the likelihood of a feature label be if no model applies? To answer this question
I examine the companion question of what should the probability of a feature label be if no model
apphea. Asume a prior probability for the label is available. If a posterior probability is different
from a prior probability for the feature then information has been added to get the posterior. (Only
information can justify changing from the prior.) Since having no model means intuitively having
no infliriatim then the posterior should be the same as the prior. If and only if the likelihoods of
all feature lbels are equal, the posterior probability is the same as the prior. Hence the
likelihoods of the feature labels should be equal for any particular piece of observed data. In this
section I assume a prior proability distribution is a available over feature labels. If no such
distribution is available an uninformative prior can be constructed [Frieden85].

To constrain the problem further, consider whether any piece of observed data should be more
probable than any other when no model applies. It seems unreasonable that one could conclude
that some observations are more probable than others without any model of how those observations
were produced. Hence all the likelihoods should be equal. This constraint is sufficient to
determine the likelihoods when no model applies. I think that this solution minimizes cross
entropy with the prior (since it returns the prior) (Johnson85].

To derive the physical probability distribution over feature labels, the "no model" likelihoods
should be combined with the likelihoods derived for the models. The probability of each of the
models and their combinations must have been available to use the combination rules from section
3. Hence the probability that one or more of the models applies is known. The probability of no
model is 1 minus that probability. The conjunction of some model applying and no model applying
has 0 probability. Hence combination rule 6 can be applied to derive the likelihoods under any
conditions from the likelihoods for any model applying.

As mample consider the problem of seeing HHHH and trying to derive the probability of a
fifth head given the equally likely choices that the coin is fair or is biased to .9 (biased either for
heads er taigs with equal probability). The combined likelihood of H is 0.3265 (from figure 1). The
combined hlkelihood of T is 0.0641. As an example, assume that the probabilities that the
asemptions of M, were true was 0.4 and similar for M2. Then 0.4 of the time we feel the coin is

-- --" I-.U._W 1 - %



7

fair, 0.4 of the time we feel it has been biased by 0.9, and 0.2 of the time we have no model about
what happened. The likelihood of HHHH under "NO MODEL" is .0625 regardless of H or T (Since
the likelihood of all 4 coin flip events are equal and must sum to 1). Combining the "NO MODEL"
likelihoods with likelihoods of 0.2737 for H and 0.06378 for T (see figure 1), the probability of H
from applying Bayes' law to these likelihoods is 0.811. This probability is somewhat nearer to .5
than the probability of 0.8359 derived without taking the possibility of all the models failing into
account.

Taking the possibility of all models failing lends certain good properties to the system.
Probabilities of 0 or 1 become impossible without priors of 0 or 1. Thus the system is denied total
certainty. Numbers near 0 or 1 cause singularities in the equations under finite precision
arithmetic. Total certainty represents a willingness to ignore all further evidence. I find that
property undesirable in a system. Denying the system total certainty also results in the property
that the system must have all probability distribution over feature labels between e and 1- e for
an e proportional to the probability that no model applies. Thus there is a limit to how certain our
system is about any feature labeling in our uncertain world.

5. Results
I have applied this evidence combination to the boundary detection likelihood generators

described in [Sher87]. Here I prove my claims that the evidence combination theory allows me to

take a set of algorithms that are effective but not robust and derive an algorithm that is robust.
The output of such an algorithm is almost as good as the best of its constituents (the algorithms
that are combined).

5.1. Artificial Images

Artificial images were used to test the algorithms described in section 3 quantitatively. I used
as a source of likelihoods the routines described in (Sher87]. Because the positions of the
boundaries in an artificial image are known one can accurately measure false positive and negative
rates for different operators. Also one can construct artificial images to precise specifications. The
artificial images I use is an image composed of overlapping circles with constant intensity and
aliasing at the boundaries shown in figure 3.



Figure 3: Artificial Test Image

The intensities of the circles were selected from a uniform distribution from 0 to 254. To the
circles were added normally distributed uncorrelated noise with standard deviations 4, 8, 12, 16,

* 20, and 32. The software to generate images of this form was built by Myra Van Inwegen working
* under my direction. This software will be described in an upcoming technical report.

In figure 4 1 show the result of applying the detector tuned to standard deviation 4 noise to
the artificial image with standard deviation 12 noise added to it. In figure 5 I show the result of
applying the detector tuned to standard deviation 12 noise to an image with standard deviation 12
noise added to it. In figure 6 [ show the result of applying the combination of the detectors tuned
to 4, 6, 12, and 16 standard deviation noise. The combination rule was that for disjoint models

* with the same priors. The 4 models were combined with equal probability. These operator output&
ane thm.holded at 0.5 probability with black indicating an edge and white indicating no edge.
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a: Image with a= 12 noise b: Output of combined detector
Figure 6: Comabied detector applied to 3 image with 6r= 12 noise

Note that the result of usng the combined operator is similar to that of the operator tuned to
the correc nois leveL Most of the false boundaries found by the v=4 operator are ignored by the
combined operator.

Using thi ortikiial image I have acquired statistics about the behavior of the combined
Y detector vs the tuned ones under varying levels of noise. Figure 7 shows the false positive rate for

the detector tuned to standard deviation 4 noise as the noise in the image increase.3 . Figure 8
shows the false positives for the standard deviation 12 operator. Figure 9 shows the false positive
rate for the operator tuned to the current standard deviation of the noise. Figure 10 shows the
false positive rate of the combined operator. Figure 11 shows the superposition of the 4 previous

* graphs.

'The qmiou an mwMWld at 0.1 prabaMlity to sak.e " drn absut where the b..adszee am.
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Note that the combined operator has a false positive rate that is as least as good as that of the
tuned operators.

I can also count false negatives. When I counted false negatives I ignored missed boundaries
that had an boundary reported one pixel off normal to the boundary (because such an error is a
matter of discretization rather than of a more fundamental sort). See figure 12 for an example of a
1 pixel off error.

MISS GOOD

MISS is recorded as a false negative

GOOD is recorded as a true positive
Figure 12: Example of one pixel off error

Figure 13 shows the false negative rate for the detector tuned to standard deviation 4 noise as
the noise in the image increases. Figure 14 shows the false negatives for the standard deviation 12
operator. Figure 15 shows the false negative rate for the operator tuned to the current standard
deviation of the noise. Figure 16 shows the false negative rate of the combined operator. Figure 17
shows the superposition of the 4 previous graphs.

4
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Here the combined operator is not always as good as the tuned operators. One must ask if
this tendency of the combined operator to miss edges offsets its better performance for false

positives. The next series of figures charts the total error rate for the same cases. Figure 18 shows

the error rate for the detector tuned to standard deviation 4 noise as the noise in the image
increases. Figure 19 shows the error rate for the standard deviation 12 operator. Figure 20 shows

the error rate for the operator tuned to the current standard deviation of the noise. Figure 21

shows the eror rate of the combined operator. Figure 22 shows the superposition of the 4 previous

graphs.
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Thus the superiority of the combined operator for false positives dominates the false negative
performance and the combined operator minimizes the number of errors in total. These results areevidence that my combination rule is robust.

5.2. Real Images
I have also tested these theories using two images taken by cameras. One of these images is

a tinker toy image taken in our lab. The other is an aerial image of the vicinity of Lake Ontario.
Figure 23 shows the result of the operator tuned to standard deviation 4 noise applied to the tinker
toy image and thresholded at 0.5 probability. Figure 24 shows the result of the operator tuned to
standard deviation 12 noise applied to the tinker toy image. Figure 25 shows the effect of
combining operators tuned to standard deviation 4, 8, 12 and 16 with equal probability.
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' .s- . . . .. I

.2.5

Figure 24: w=12 detector applied to tinkertoy image
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a: Tinkertoy Image b: Output of combined detector
Figure 25: Combined detector applied to tinkertoy image

Here, the result of the combined operator seems to be a cleaned up version of the standard
deviation 4 operator. Most of the features that are represented in the output of the combined
operator are however real features of the scome. The line running horizontally across tho image

o that the standard deviation 4 operator and the combined operator found is the place where the
table meets the curtain behind the tinkertoy. The standard deviation 4 operator was certain of its
interpretation and the other operators were uncertain at that point so its interpretation was used
by the combination.

Ite results from the aerial image arn also instructive. Figure 26 shows the result of the
operator tuned to standard deviation 4 noise applied to the aerial image and thresholded at 0.5
probability. Figure 27 shows the result of the operator tuned to standard deviation 12 noise
applied to the aerial image. Figure 28 shows the effect of combining operators tuned to standard
deviation 4, 8, 12 and 16 with equal probability.
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a: A ial Image b: Output of a= 12 detector
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a: Aerial Image b: Output f combined detector
Figure 28: Combined detector applied to aerial image

The results from the combined operator are again a cleaned up version of the results from the
standard deviation 4 operator. I believe this behavior occurs again because the features being
found by the standard deviation 4 operator are in the sene. However I do not have the ground
truth for the aerial image as I do for the tinkertoy image.

5.. Future Experiments
Soon, I will apply my evidence combination rules to operators that make different

assumptions about the expected image intensity histogram. The operator used so far in my
experiments expects a uniform histogram between 0 and 254. Currently, a likelihood generator
has been built that assumes a triangular distribution with the probability of an object having
intensity lees than 128 being one fourth the probability of an object having intensity greater than
or equal to 128. It is not clear that the probabilities calculated based on this assumption will be
significantly different from those based on the uniform histogram assumption. If there is no
difference in the output of two operators the effect of combination is invisible.

larger operators will soon be available. The likelihoods generated based on these larger
operators would be inely tuned. The same evidence combination can be applied to these operators

Likelihoods are used by Markov random field algorithms to determine posterior probabilities
[Marroquin85b] [Chou87]. Likelihoods resulting from my combination rules can be used by Markov
random field algorithms.

6. Previous Work
Much of the work on evidence and evidence combination in vision has been on high level

vision. An important Bayesian approach (and a motivation for my work) was by Feldman and
Yakimovsky [Feldman74]. In this work Feldman and Yakimovsky were studying region merging
based on high level constraints. They first tried to find a probability distribution over the labels of
a region using characteristics such as mean color or texture. They then tried to improve these
distributions using labelings for the neighbors. Then they made merge decisions based on whether
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it was safiiently probabl, that two adjacent regions were the same.

Work with a similar flavor has been done by Hanson aid Riseman. In (HanmonO] Bayesian
thearies are applied to edge relaxation. This work had merwus problems with its models and the
fact that the initial probabilities input were edge strengths nermalised never to exceed 1. Of
coursei such edge strengths have little relationship to probabilties (a goo edge detector tries to be
umemnic in its output with probability but that is abeut as far ait gets). In (Wesley82a] and
(WeuleyS2b] Dempeter-Shafer evidence theory is used to model and understand high level problems
in viewm especially region labeling. In [Weele82b] there is some informed crtiaism of Bayesian

Mpprachs. In (ReynoldaSS] They study how one converts low level (mature values into input for a
Denmwe-Shafor evidence system.

In (levitt85] Ted levitt takes an approach to managing a hierarchical hypothesis space that
is beyuin with some ad hoe assumptions. For the problem worked an here the paper would take
weighted sums of probabilities. He does not have ay way of taking an operators self confidence
into acount in the evidence combination. Since he was not approaching this problem in his paper
I can not huht it in this respect.

There has been much use of likelihoods in recent vision work. In particular work based an
Marker random fields [GemanB4] [Marrquin85a] [Marroquin85bl use likelihoods. A Markov
randoms field is a prior probability distribution for some feature of an image and the likelihoods are
used fto umpute the maginal posterior probabilities that are used to update the field. Haralick has
meatismed that his facet model (Haralick84] (Haralckg6bJ can be easily, used to build edge

* detectos that return likelihoods (Haralickgfia]. I w&se have built boundary detectors that return
likelboods and the results of using them is documented in (Sher8fl Paul Chou is using the
likuhiboods I produce with Markov random fields for edge relaxation (Chou87]. He is also studying
the use of likelihoods for information fusion. Currently, he is ccetrating em information fusion
from different sources of information.

7. Concluion
I have presented a Bayesian technique for information fusion. I show how to fuse information

from detectors with different models. I presented results from applying these techniques to
artificial and real images.

* Thes techniques take several operators that are tuned to work well when the scene has
certain particular properties and get an algorithm that works almost as well as the best of the
operators being combined. Since most algorithms available for macbine vision are erratic when
their assumptions are violated this work can be used to improve the robustness of many
algorithms.
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