
AD-RI79 947 INTERACTIVE INSTRUCTIONAL SYSTENS BASED ON NODULAR 11
SYSTEMC PMRSERS(U) QUINTUS COMPUTER SYSTEMS INC

UNCLSSIIEDMOUNTAIN VIEW CA E P STABLER 16 MAR 87

7 N R Sf# E D N S O S I4-C -C
- 6 6 1 F / 0 1 2 / 5 N L

MEOMONEE~hE

mhmhhhhhm

'Ibill

MICROCOPY RESOLUT10ON TEST CHART
NATIONAL BUREAU OF STANDAROS-1963-A

MIL-STD-847 B (~
7 November 1QlV1

29CURITV CLASSIPICATIOft OF TNIS PAGE

0') REPORT DOCUMENTATION PAGE
I& AEP0ORT SECURITY CL.ASSIFICATION Il. RESTRICTIVE MARKINGS

0') unclas-ii
A% 2& SECURITY CLASSIFICATION AUTI4ORITY 2. OISTRIOUTIONIAVA&LASILJTV OF REPORT

20. OECL.ASSIPICATIONIOOWNGRAOINO SCHEOULE unrestricted

4. PERPGmINI2mC ORGANIZATION REPORT NIJMUERIS) S. MONITORING ORGANIZATIONRPU #JJ

SNAME OF PERFORMING ORGANIZATION SeL OFFICE SYMOOL 7. NAME Of MONITORING 0 Ah :IE~ r
(git~ b.

Quintus Computer Systems, Inc 1 .MY 18
6 c AOOR IESS (C tl. 3Mwt -4j ZIP C O")j

7b. AOOR IESS C.y. Saet -ad Z!

Mountain View, ZA 94041 _________________________

.. NMOPFI.NOING/SPONSORING jbOFICE SYMBO0L 9. PROCUREMENT INSTRUM".,OfiNTIPICATION NUMBER'
ORGANIZATION die"

Off ice of Naval Research I.
Sc. AOORES53 IC~ty. State -. ZIP Coast Ia. SOURCE OF PUNOINO Nos

PROGRAM PROJECT TASK- WORK UNIT
800 N. Quincy Street ELEMENT NO . NO. NO0 No.

Arlington, VA 22217-5000
1%. TI TLE (I-fl-~d S-c..,.Y C....I-c.I,...

Interactive Instructional Systems... _________________

12. PERSONAL AUT.ORIS)

9:rdr P_ Srph1pr Ir
13 TYPE OP REPORT 13b, TIME9 COVEREO 14. DATE OF REPORT - D. .,! I5 PACE COUNT

Final FROM 86 Nov -To 87 Mal 87 March 16 47
16. SUJPPLEMENTARY NCTATION

I? CCSATI COOIS IS. SUBJECT TERMS (C-1-II.. 0 -W .(n. ss,, .. d Ido-tIfY 6) &1.01 6. 1.

PIE 10 GROCUP I suB. GA.

- 10. ABSTRACT CdI,,4 O M w I'W CVtM7 "d IdNIIIbp 67 61OCk A-I..b

Th~ si te ialreportr x'Interactive Instructional Systems Based on
*odular Systemic Parsers, Phase I SBIR. This Phase I report proposes a

design for a modular, principle-based parser that can formulate the various,
independent functional descriptions of an utterance using independent
systems of principles of the' sort found in systemic and other grammars.
This parsing system is embedded in a similarly modular framework for
epresenting discourse information and conducting instructional dialogues
ased on work that has been done in computer-aided instruction. Phase 11
f this project will develop a completed prototype of the design proposed
ere.-

1420. OISTRI8UIO'4,AVAIL.A8ILITV OF ABSTRACT 21. ABSTRACT SECURITY CL.ASSIFICATION

UNCLASSIP1IBOUNLIMITIO QSAME AS APT. 0 Oric UoSERS

22& NAME OF RIESPONSIBLE INOIVIOUAL 32 YELEPNONE NUMBER 22c. OFFICE SYMBOL

Robert M.Keller, 11.cld. Am@ Cast.
Director, Researc 415- 65-7700

D FORM 1473, 83 APR 1OITION OF I JAN 72 it OBSOLETE.

SECUiRY CLASSIFICATION OF 71415 PAGC

fDISTRIBrn N STA7'Iwit_Approved for public reloae,
Ditribution tjflhiirto

QUINTUS COMPUTER SYSTEMS, INC.

Final Report on

Interactive Instructional Systems

Based on Modular Systemic Parsers

U.S. Office of Naval Reseach

SBIR Contract N00014-86-C-0817

March 16, 1987

Edward P. Stabler, Jr.

Principal Investigator

|4

QUINTUS COMPUTER SYSTEMS, INC.

Final Report on
Interactive Instructional Systems Based on Modular Systemic Parsers

U.S. Office of Naval Reseach
SBIR Contract N00014-86-C-0817

March 16, 1987

Edward P. Stabler, Jr., Principal Investigator

Table of Contents

1. Overview .. 1

2. Product Motivation: The Interaction Problem in lISs........... 2

3. MQP and 115 Product Definition ... 4

4. MQP Software Issues ... 7
4. 1. Systemic Insights and Parsing 10
4. 2. Formalization of the Grammar 11

4. 3. Computational Approach... 15
4. 4. Rightmost Normal Form.. 20

4. 5. Pronouns and the Discourse Model................................... 24

4. 6. Logical Query Optimization... 25

4. 7. Summary of MQP Design Features................................... 25

5. Additional IIS Software Issues... 26

6. Conclusions... 26

References.. 28

Appendix 1. Compiling Parser Representations 31

Appendix 2. A Listing and Session with a "Compiled" Parser 38

EcL-ioni For

rNJIS CRA&I #
D hC TAB L

.Iv

a 1or
Di t ,

QUINTUS COMPUTER SYSTEMS, INC.

Final Report on
Interactive Instructional Systems Based on Modular Systemic Parsers

U.S. Office of Naval Reseach

SBIR Contract N00014-86-C-0817

March 16, 1987

Edward P. Stabler, Jr., Principal Investigator

List of Figures

3.1. IIS A rchitecture ... 3
4.1. M QP Architecture ... 10
4.2. A Rightmost Normal Form Parse ... 22

ii

) g f--~ # ~"/'' ~ ~ S

1. Overview

Phase I ONR SBIR funding has aided Quintus in specifying two products: a modular nat-

ural language query processor (MQP) designed for maximum portability and efficiency, and a

package of tools for the implementation of Interactive Instructional Systems (IISs). These two

products can be used separately, but they are designed to work together in facilitating the imple-

mentation of IISs with sophisticated natural language processing capabilities that will enhance

the quality of the student-IIS interaction.

The market for efficient, portable natural language query processing systems and for inter-

active instructional systems is certainly present. Even fairly crude and expensive IISs have al-

ready demonstrated their value and are being deployed at many universities and technical train-

ing programs. The goal of this project has been to specify an approach to natural language query

processing and instructional systems that will reduce the cost of such systems by maximizing

portability and extensibility. These features have been enhanced in the products specified here

by enforcing a rigorous modularity in design, isolating domain-dependent features clearly, and

by implementing the entire system in a high-level declarative language (Quintus Prolog). Since

increasing modularity can reduce efficiency, specialized optimizing techniques have been devel-

oped for compiling the modular IIS components into provably equivalent but much more efficient

Prolog code which can in turn be compiled and executed efficiently on a wide range of standard,

general-purpose computing machines.

Since there are obviously many differences between potential IIS domains, the IIS tools and

MQP specified here will be sold with engineering support. An envisioned breakdown of the pack-

age as a product includes the following basic parts:

1. Quintus Prolog [33]

2. Interfacing tools (graphics, menu systems)

3. A complete MQP system in which domain-specific components are identified, together with

thorough documentation of design and porting strategies

4. A complete IIS system that illustrates the coordination of interfacing tools, the MQP, and

rule-based instructional capabilities, with thorough documentation of design and porting

strategies

45. Installation service

6. Consulting service

.. .. 1

The remainder of this report focuses on the technical description of the MQP and of the US,

rather than on the business aspects. When we refer to the MQP and IIS we will not mean the

complete list of services, but only the core technology and tools.

2. Product Motivation: The Interaction Problem in liSa

There is a tremendous demand for viable IISs that can relieve human teachers of part of the

burden of instructing students without degrading the learning experience for the student. It is

no surprLe that most of the automated tutoring systems currently in use show real benefits in

reducing teacher workload, but they are less successful in achieving the second goal of providing

a satisfying and stimulating interaction for the student [1] [38] [39]. For example, in a recent re-

port on the use of the "Lisp Tutor" system to instruct novice programmers at Carnegie-Mellon

University [1], Anderson and Swarecki point out that although their system represents one of the

most extensively developed approaches to intelligent computer-assisted instruction, it still is ca-

pable of only a rather severely limited range of interaction with the student. One limitation is

that in worked examples and exercises, the student must write his program from left-to-right and

in strictly top-down style. It is true that this is good programming style, but as psychological

studies have shown [38], this style of programming presupposes knowledge about the basic capa-

bilities of the programming system, a knowledge that a novice programmer will not have. How-

ever, interaction with the Lisp Tutor has a more serious limitation as well: the students' interac-

tion with the instructional system is limited at all points by restrictions on the system's ability

to enter into a dialogue. At many points the student is able to choose only one of a limited set

of alternatives, and the system will not reliably respond to a general question the student might

have about the tutor's explanations, or about how the current problem relates to the previous

one. Consequently, this is among the important issues that Anderson and Swaricki identify as be-

ing raised by their experience with tutoring systems. They point out: "Improving the dialogue

capability would improve instruction." The problem with providing better dialogue capabilities,

though, is obvious: "To produce high-quality dialogue, however, considerable amounts of compu-

tation are required; and this conflicts with the need for rapid response.'

The Lisp Tutor is one of the best efforts in IIS development, and it begins with a number of

significant advantages that some other projects lack: it is a well-funded effort that is in high and

growing demand; it is used by large numbers of students every year; the subject area is relatively

simple and easy to represent in the computing system; and there have been numerous studies

2

MQP

user instructinaat interface IIS control strategyterminaltemplates

model of model of
individual C= ideal
student student

error domain
diagnosis knowledge

Figure 3.1. US Architecture

3

of novice programmers and their errors. So it is no surprise that the problems in the Lisp Tu-

tor system, and in particular the problems with providing less restrictive interaction with the

student, are problems that other practical IIS s3 stems share. In their review of recent work in

this field [35], Sleeman and Brown list this as one of four major shortcomings of all available IISs:

"User interaction is still too restrictive, limiting the student's expressiveness and thereby limiting

the ability of the tutor's diagnostic mechanisms." Less restrictive, more efficient natural language

processing components would significantly improve interactive instructional system performance.

3. US and MQP Product Definition

The objective of this research was to design an interactive instructional system (IIS) based

on a modular, natural language query processor (MQP) that makes use of the best available

grammars of natural language in feasible query processing. In the MQP, modularity in design

and a high-level, declarative implementation language are used to maximize extensibility and

portability. The details of the IrS architecture itself may vary substantially from one domain to

another, but the problems of providing an MQP that can help alleviate the "interaction prob-

lem" in IISs are similar across domains. Consequently, we have settled on the architecture illus-

trated in Figure 3.1. We will briefly describe each of the components depicted in this Figure.

The MQP interface. Notice that the MQP is embedded as a distinct component in the IIS.

English input from the user will be directed immediately to the MQP by the IIS control compo-

nent. The MQP will in turn be able to query the IIS control system for information about the

state of the instructional system. The MQP will also be given independent access to the domain

knowledge component. In this way, the student will be able to ask, at any point in the tutorial

interaction, about material previously presented or about material that has not yet been pre-

sented.

In an IIS for teaching Prolog programming for example, the student may sometimes simply

want access to reference information:

Query: Explain the builtin predicate, name/2.

ref-8-11 - name(?X.?L)

name(X,L) is a relation between an atomic object X and a list L which
consists of the ASCII character codes for the printed representation
of X. Initially, either X must be instantiated to an atomic object.
or L must be instantiated to a list of character codes (containing no

4

variables). Otherwise the call simply fails.

If X is initially instantiated to an atom or number. L will get bound

to the list of character codes that make up its printed

representation. If X is uninstantiated and L is initially

instantiated to a list of characters that corresponds to the correct

syntax of a number (either integer or float), then I will get bound

to that number; otherwise X will be instantiated to an atom
containing exactly those characters. If neither argument is bound,

the goal fails.

Here are some examples of its use:

I ?- name (foo. L).

L- [102.111,111)

S7 - name ('Foo', L).

Lu [70.111.111]

I name(431,L).

L- [52.51,49]

I- name(X,102.111,111]).

X - foo

I ?- name(X, [52,51,49]).

X = 431

1 ?- name (X,"15.Oe 12").

XI 1.5e+13

In other cases, the MQP should be able to answer queries about the current training, where

responding to these queries involves an analysis of the student's work or responding to general

questions about the topic. For example, in working an exercise the student may produce a pro-

gram that goes into an infinite loop on a certain input. A good debugging system will catch the

infinite loop, analyze the computation to find the looping segment of the computation, and ad-

vise the student of its results. Tools for doing this in Prolog are well-known and have been im-

plemented at Quintus Computer Systems. In such a case, the student may be prompted to ask a

general question about this sort of difficulty, such as:

Query: Does every procedure that calls itself cause an infinite loop?

5

Most IISs simply have no facilities for dealing with queries like this one. Although it is not feasi-

ble to expect an IUS to be able to answer every such question intelligently, responses to questions

about common difficulties like this one can be prepared in advance. And as more common ques-

tions like this one are found, the IIS should be extended to provide helpful responses to these as

well. For this reason, extensibility is important, and has proved to be a difficult problem for ex-

isting flSs [1] [38].

The MQP technology proposed here is carefully designed to allow for the extensibility

needed for gradual improvement and adaptation of 11S query processing capabilities. A detailed

account of the capabilities and internal structure of the MQP will be provided below.

Instructional strategy templates. All feasible tutorial systems, like university classes, are set

up around carefully designed programs of instruction, which in this U1S are called "instructional

templates." Using text and graphic presentations, these templates present the pertinent informa-

tion about the domain in a systematic way, as if to an "ideal student." User responses to page

prompts and exercises are used to control the rate of presentation, and sometimes even the con-

tent of the presentation: for example, extra material may be prepared in advance for students

that have difficulty with certain sections, or for students that want additional, optional material

on advanced topics. Some IISs provide nothing more than a set of templates, but recent work

has shown how these can be usefully supplemented with capabilities for providing more special-

ized, individualized tutorial assistance to each student. These capabilities are provided by addi-

tional components that will be called by the IIS control system, perhaps in response to a trigger

from an instructional template.

Models of the student. As noted above, some students may exhibit particular difficulty with

certain material (which will be indicated by, e.g., errors in exercises), or they may exhibit par-

ticular interest in material that is optional. The H1S can often note these facts and incorporate

them into a model of the individual student, which can then be used both in controlling the ac-

tion of the basic instructional templates, and in dir acting error diagnosis routines to an appro-

priate level of sophistication. One approach to individual student modeling involves noting dif-

ferences between the individual being tutored and an "ideal student." A system whose templates

are designed for the ideal student can then be appropriately adapted for those students who are

more or less sophisticated in aspects of the material being presented. This simple idea allows for

substantial improvements in the quality of instruction: the students having more difficulty can be

6

.% * D~

given extra assistance in areas of difficulty, and those students doing unusually well can be given

the material at an accelerated rate so they do not have to endure the tedious presentation of ma-

terial they have already mastered. This capability is one of the real advantages of U1S education

over even classroom instruction: individualized instruction can easily be provided, and it should

be expected by IUS users.

Error diagnosis and domain knowledge. It is a trivial matter to provide the 1IS user with im-

mediate feedback on the correctness of responses to exercises, but recent work in U1S technology

has shown feasible techniques for providing helpful diagnosis of the errors and corrective instruc-

tion in a range of domains. In most domains, well-developed IISs will make use of this technol-

ogy. This aspect of IISs, which will obviously vary enormously from one domain to another, will

be discussed in greater detail below, when we focus on a particular domain for our prototyping

efforts, viz., Prolog programming.

4. MQP Software Issues

As noted above, intelligent natural language processing can make heavy demands on compu-

tational resources (memory and time), but in real, practical systems, U1S components must not

slow system performance to an unacceptable level. This requirement is not peculiar to IISs. In

fact, many natural language processing applications face exactly this obstacle, and so the op-

tions have been extensively researched. The work by Codd and his associates on a comfortable

database query system [8] [9] has almost exactly the same goals: they tried to develop a system

that can respond quickly and in a cooperative way to relatively unrestricted queries from a "ca-

sual" user (i.e., a user who cannot be expected to rigorously formulate his questions in a formal

query language). Many of the strategies used in such work are applicable in the U1S domain as

well.

One of Codd's strategies for improving the natural language interface is to try to make sense

of user queries which are not completely analyzable by their limited English parser. This is an

important idea because it is impossible at this point in natural language processing technology to

design a system which can properly recognize perfectly grammatical English sentences, let alone

the "almost grammatical" strings that one often gets in practical situations. Codd's approach is

to assign structure to as much of the user's query as possible, and then try to make an educated

guess about the query which is then paraphrased back to the user for verification.

Some of the recent work on interpreting what linguists call "telegraphic messages", i.e., ab-

breviated messages of the sort commonly found in professional and technical communications,

7

.& 'e

uses a similar strategy of, in effect, guessing what the missing parts of the communication are.

Significant progress has been made in this area in work done for the Office of Naval Research [101

and elsewhere. This work appears to be applicable to many IIS domains as well.

Some of the strategies which initially appear most effective in optimizing the performance of

natural language processing systems turn out to have unacceptable costs. An example of this is

the idea of fully integrating semantic and discourse processing into the initial syntactic process-

ing of a user's question. This strategy, the 'semantic grammar" approach, has been used in some

instructional systems, such as the SOPHIE system which was developed in a number of places

including XEROX PARC [6]. The problem with this approach is that it sacrifices modularity

and increases complexity enormously. As a prominent investigator has pointed out, not only does

this approach produce an enormously complex natural language system, but the system becomes

rigidly domain-specific: "...it must be written anew if the domain of discourse changed, and it

would be extremely impractical to attempt to write such a grammar for anything but a limited

application area" [2].

To deal with a reasonable range of student performances, IISs must be quite large and com-

plex, and so a high degree of modularity in design is essential to reduce development and mainte-

nance cost. Anderson and Swaricki report that their system, the Lisp Tutor, is being redesigned

and rebuilt largely in an effort to obtain a higher degree of modularity. We have accordingly

avoided a large, complex, non-modular, and inflexible natural language processor in our design.

The motivation behind semantic grammars, and in fact the general motivation behind re-

ducing modularity in natural language systems, is easy to illustrate with a simple example of the

need to resolve ambiguities. One source of ambiguities in natural language comes from various

"attachment" possibilities for prepositional phrases. Consider the sentences "Show me the fault

in the program" and "Show me the fault in the upper left hand window." In the former sentence,

the more plausible interpretation is that the prepositional phrase ("in the program") modifies

the fault, but in the latter sentence the prepositional phrase ("in the upper left hand window")

most plausibly modifies the verb show. Notice that the appropriate decision about what a prepo-

sitional phrase modifies in a sentence like either of these can be influenced by discourse context.

If I am using the Lisp Tutor with a windowing display system, the interpretation of the latter

sentence will be different than if I am using a glass-manufacturing instruction system that has

only teletype input and output capabilities. So if we could make use of this information about

8

the context of the discussion at the earliest possible point, then the parser would not have to for-

mulate the inappropriate representation at all. In more complex cases, the savings in processing

time that can come from early resolution of ambiguities can be quite dramatic.

This same kind of situation arises within the parsing component. For example, we want the

system to know that it can accept sentences that have both forms [show [the fault in the pro-

gram// and [show [the fault//in the program/i, and these structural configurations could be defined

with rewrite rules of some kind. But sometimes one of these structures, although allowed by the

rewrite rules, is ruled out by other grammatical principles. The verb put, for example, requires

both a direct object and a locative phrase, so "Put the fault in the window" has only one accept-

able structure, [put [the fault! [in the windowil. We would like to apply this restriction on the use

of the rewrite rules as soon as possible to rule out the alternative structure, but this threatens to

remove the modularity in the representation of the rather different grammatical principles.

An approach to this problem has been developed in this Phase I effort, based on earlier work

by the Principal Investigator of this project [40] [41] and others. Notice that the character of

the dilemma here is very similar to the problem of finding solutions to "constraint satisfaction

problems" [23]. There has been research on representing these problems in a modular, declar-

ative notation (viz., logic), and then automatically folding the various modular components of

the problem into each other to improve efficiency [4] [12]. In this way, modularity can be main-

tained in the system without substantial loss in efficiency because the system does an automatic

optimization. These techniques can be applied to the natural language parsing problem if we can

begin with an appropriately modular representation of the language. They can also be applied

to integrate aspects of semantic processing and discourse modeling without removing modular-

ity. This approach has been adopted in the design proposed here, and it has proven to be feasible

even when the system is extended to handle "telegraphic" and other "almost grammatical" user

queries. Preliminary treatments of these difficult inputs has been introduced into the prototypes

developed in this Phase I effort, described below.

The modular design depicted in Figure 4.1 will provide for efficient processing of user queries

while maximizing portability and extensibility. We will briefly discuss the most important as-

pects of this design, explaining in some detail one of the most difficult examples of the automatic

"folding together" of grammatical principles.

9

user input

IIS

user querY for MQP

~syntactic

parser user confirmation

discourse rightmost normal form parse

semantic
processor

logical query

query check paraphrase

and optimizer generator

query for evaluation

and IIS
response generator

response to the user

Figure 4.1. MQP Architecture

10

4.1. Systemic Insights and Parsing

The approach to providing an efficient natural language processing system that has just

been sketched (in the previous section) requires that we have a modular representation of the

language we want to deal with. And of course, if we want to make use of semantic information

and discourse context in our structural analysis of the user input, this semantic and discourse

information must also be represented by independent, modular sets of principles that can be ap-

plied at appropriate points (where those points are determined by the character of those prin-

ciples and the optimization strategy). The emphasis of systemic grammar has always been on

the semantic and pragmatic features of language, rather than on the details of the surface con-

stituent structure [3] [14]. This emphasis is most valuable in the present project, because, while

there are a number of well-developed grammatical approaches to surface constituent structure,

some of which have even incorporated aspects of systemic grammar in the form of modular sys-

tems, the study of semantic and pragmatic features is relatively undeveloped.

The other feature of systemic grammar that is appropriate for an approach like the one

sketched above, is its use of relatively independent sets of principles to describe different aspects

of utterances and texts. Indeed, this has led previous investigators in systemic grammar to the

same dilemma of modularity versus efficiency that motivates our particular design. For exam-

ple, Winograd points out that "The problem of describing the realization of simultaneous choices

along different dimensior- is quite complex" [51], and Mann and Matthiessen have suggested that

any implementation of systemic principles must have "a collection of processes that can work to-

gether" [27]. Our approach will use modular, declarative statements of the role of each of the

grammatical processes, and their orchestration will be managed according to our specialized op-

timization strategy. In this way, modularity can be preserved while we incorporate systemic in-

sights of recent work on discourse and pragmatic features of language [7] [3] [24] [25].

4.2. Formalizing the Grammar: Phrase structure and realization

In language understanding systems it is important to be able to deal with a fairly complete

subset of the language. In this respect, language generation systems have an easier task. A lan-

guage generation system need only be able to generate some sentence to convey each message,

to perform each communicative act, whereas a language understanding system should, ideally,

be able to deal with every sentence that might convey that message. Consequently, it is impor-

tant to have a fairly all-encompassing grammar of the language. And on the other hand, it is

.11

important that the grammar not accept strings that are not part of the language, since this will

aggravate the already very serious ambiguity problem that is posed by natural languages.

Since getting an adequate representation of the grammar of the language is a critical

desideratum on the success of this project, we have chosen to follow the approach of Winograd

[51] and others: we use well studied parsing techniques, building insights from systemic grammar

and other linguistic theories into a system that does not deviate too substantially from the stan-

dards in the field. Winograd uses an ATN formalism for his grammar. We will use an extended

version of Definite Clause Grammars(DCGs) which have been shown to be an elegant formalism

capable of representing ATN systems in a declarative, logical language [311 [32].

One significant advantage of using a logical representation of the grammar is that we can get

an automatic resolution of the realization problem: we can use modular representations of each

system of the grammar, and just require that every string satisfy the principles of every system.

Unfortunately, the most straightforward approach to incorporating such principles into a logic

grammar are not generally feasible, as noted in the following section on the parsing algorithm.

As a result, we use an "optimization" step to enforce the grammatical principles. The principles

are enforced, in the optimized representation, in one of the following ways: dependencies that are

naturally stated as conditions on nodes that are sisters are "built in" to the argument structure

of the grammatical categories, whereas dependencies that span more of the tree-representation

are explicitly stated and their enforcement is "folded into" the tree-building process. This dis-

tinction can be illustrated by an example.

Consider a grammar which uses a phrase structure rule that says that a vp ("verb phrase")

node can dominate a v ("verb") node and a np ("noun phrase") node. We would like to incor-

porate principles that tell us which verbs can occur in this kind of structure and which verbs

will assign "objective case" to the np. These principles could be stated explicitly, but we get a

much more efficient grammar by building these principles directly into the phrase structure rules.

In a DCG, these restrictions can be imposed directly in the structure of the arguments to the

grammatical categories. 1 The following grammar these relationships with argument structure;

1 Actually, some of the feature restrictions cannot be handled with unification of argument structures. Extensions

to standard unification techniques can be made to handle disjunctive features more efficiently, as noted in recent

research on systemic parsing at the University of Southern California [17). In most practical grammars, though,

standard unification techniques will suffice.

12

. .. , :. ..

it is shown in the "rewrite rule form that is accepted by Prolog and transformed into a "Definite

Clause Grammar" parser that will run in Prolog [31]:

a -- > np(subjective.,Person. Number).vp(Person.Number).

vp(Person. Number) -- > v(Person, Number).

vp (Person, Number) -- > v(Person, Number, npcomplement). np(obj ective .,Number).

v(3, singular, npcomplement) -- > [likes].

v(3,singular) -- > [glows].

np(subjective.3,singular) -- > [he].

np(subJective.3.singular) --> [she].

np(subjective.3,plural) --> [they].

np(objective.3,singular) -- > [her].

np(objective.3, singular) -- > [him].

np(obj ective. 3. plural) -- > [them].

This grammar will accept "he likes her" and "she glows", but will not accept "her likes he" or

"she glows her". Notice that this grammar also enforces agreement in person and number be-

tween the subject np and the v, even though these nodes are not sisters. This is nevertheless

quite natural, since the respective positions of the subject np and the v can be specified precisely.

These sorts of relationships between precisely specified nodes in the tree contrast with rela-

tionships which are considerably less restricted. It is well known that a question that begins with

a wh-word (what, who, which, when) is well-formed only if that wh-word can be seen as having

been moved from another position in the sentence. For example, in the following sentence we

mark the position from which the wh-word came with "A", the symbol for the empty terminal

string:

who do you like A.

The "A" is the object of the verb. But in the following string, there is no "empty position" from

which the wh-word could have come, and hence the string is not a good sentence:

who do you like john.

So a grammar must enforce this restriction on the relation between initial wh-words and

empty positions in the sentence. However, this restriction is difficult to enforce, since the empty

position can occur in many positions, and those positions can be arbitrarily far from the initial

wh-word:

who A like8 john.

who do you like A.

13

who did you say that john liked A.

who did you say that john liked A.

who did you say that john liked A.

who did you say that john told frank mary liked A.

This relation is covered by principles that must be considerably more flexible, and which

must go well beyond conditions on sister nodes in the structural representation. This relation

also interacts with the operation of the case and theme systems in complex ways. This is an ex-

ample of one sort of condition on acceptable sentences which will be stated explicitly, rather than

being built in to the phrase structure rules directly.

This last type of relation is what motivates the "HOLD list" in ATNs like the ones used by

Winograd and others. This type of relation is given special treatment in most of the standard

approaches to parsing. Representations of these relations in logical systems have been studied by

the Principal Investigator of the project and others [40] [41] [30]. The approach proposed here,

though, is unique in having the enormous advantage that the restrictions on the relation can be

stated explicitly in a declarative language. These statements are necessarily rather intricate, but

they are nevertheless far preferable to the intricate and largely implicit mechanisms used by some

other approaches to parsing. Our approach to such relations will be discussed further in the fol-

luwing section.

A The emphasis of systemic grammar has always been on the semantic and pragmatic features

of language, rather than on the details of the surface constituent structure [3] [14]. Indeed syn-

tactic, semantic and pragmatic features are given a quite uniform and balanced treatment in

the systemic tradition. The "transitivity system" corresponds quite closely to the principles of

semantic interpretation that determine the argument structure of predications, and the "infor-

mation system" corresponds to a certain level of discourse analysis. This emphasis on the non-

syntactic aspects of language is most valuable in the present project, because, while there are

a number of well-developed grammatical approaches to surface constituent structure, some of

which have already incorporated aspects of systemic grammar in the form of modular systems,

the study of semantic and pragmatic features is relatively undeveloped. These semantic and

pragmatic principles can be stated explicitly and independently just like the other grammatical

relations, and then automatically integrated into the parsing process using the techniques de-

scribed in the following section.

14

y ,V. v; -'

In sum, the formalization we have selected will be a logical representation of phrase struc-

ture rules with a variety of systemic dependencies built into them, together with explicitly stated

dependencies which will be stated explicitly. The explicitly stated principles can be kept com-

pletely modular, which means that there representation can be kept closer to the form preferred

by linguists. Independent systems of grammar can be represented independently and automati-

cally integrated in the course of parsing.

4.3. Computational Approach

The dilemma of modularity versus efficiency motivates our design. Our design uses a mod-

ular representation of the language and yet has an efficient query processing engine suitable for

our interactive instructional system.

Let's consider how a formalization of the restriction on placement of "empty categories' or

"traces" (A) can be implemented, since this is probably the most difficult relation between nodes

in a structural representation that needs to be enforced. We show how a direct logical represen-

tation of such conditions can be provided and efficiently used by left-to-right Horn clause theo-

rem provers, like Prolog, SLD resolution with a leftmost selection rule, or Earley deduction. 2

On this approach, linguistic constraints are represented as constraints on logical derivations in

the parser to ensure that a string is proven to have a well-formed structure just in case the lin-

guistic theory entails that it does.

Consider the following grammar:

a -- > np(F, Index), vp.

np(-wh. Index) -- >name.

np(-wh, Index) -- > det, n.

np(-wh,Index) -- > de, n, sbar.
np(F. Index) -- > trace(Index).

np(+wh, Index) -- > rel-pro.

trace(Index) -- > U].
sbar -- > comp, a.
comp -- > np(+wh, Index).
vp -- > verb, np(FIndex).

2 See Lloyd [181 for a presentation of SLD resolution techniques for Horn clause theorem proving, substitutions,

computation rules, Prolog, etc. Earley deduction, basically an "all paths at once" generalisation of SLD resolution

inspired by Earley's context-free parsing algorithm, is described in [321.

15

name--> ary].

dot --> [the].
n -- > (man].
rel-pro -- > [who].

verb -- > [likes].

In this simple grammar, special subclasses of np are singled out by the +wh and -wh features,

with trace as the only category that is in both subclasses. The category trace expands to the

empty terminal string. Also, notice that every np has an uninstantiated argument, Index, which

will play a special role in enforcement of the constraints.

According to this grammar, the set of sentences includes "mary likes the man", "the man

who mary likes likes mary", "the man who likes mary likes mary", "the man who likes the man

who likes mary likes mary", and so on. Notice, though, that the set also includes: "likes", "likes

mary", "likes the man likes", and other strings that are not English sentences. We eliminate the

acceptance of these latter strings by imposing three simple constraints on derivations.

The context free derivation trees for the grammar correspond to logical derivation or proof

trees in the definite clause representation, and so it is natural to attempt to represent constraints

on acceptable structural representations as constraints on logical derivations. Since G6del's work

on providing a proof predicate for arithmetic in arithmetic, it is well known that we can repre-

sent logical derivations and constraints on derivations in the same logic that we use to represent

the basic axioms used in the derivation.

The nature of the constraints that we would like to impose can be indicated by the following

simple examples [451:

1. A theta condition. If comp immediately dominates an np, that np must be coindexed with a

trace that is not dominated by comp.

2. A trace-binding condition. A trace must be coindexed with a preceding np that is immedi-

ately dominated by comp.

3. A complex-NP constraint. An np dominated by sbar cannot be coindexed with an np that is

not dominated by that sbar.

These simple constraints suffice to block the acceptance of the ungrammatical strings mentioned

above. Notice that these constraints are expressed in terms of structural relations (immediately

dominates, dominates, precedes) and special relations between nodes in the structure (coindezed).

Such constraints can be expressed as predicates on derivations in the logical representation of the

rewrite grammar.

16

To formalize constraints like these, we first define terms that can represent derivations. We

can define a function r that will transform a logical theory expressed in Horn clauses into an-

other theory which is "equivalent" except that derivations in the new theory build representa-

tions of themselves. The transformation is really quite simple: we add a variable as an argument

to every predicate in the body of a clause, and add a term as argument to every predicate in the

head of a clause, as illustrated in the following example:

S={ :-p,

p:-q, r,

q:--s,

r,

T(S) = { :-p(Proof),

p(p/[Q, R]):-q(Q), r(R),

q~q/[S]):-s(S),

r(,'),

,(s) }

The instance of p(Proof) which we can prove in S is the one in which Proof is instantiated to

the proof tree: p/[q/[s], r]. This proof tree indicates that, in S, p (the root of the tree) can be

proven by proving q and r, q can be proven by proving s, and s and r can be proven directly

from atomic propositions.

We can formally define this transformation and provide proofs of its correctness. In particu-

lar, we can prove following two propositions which specify exactly the sense in which the output

of the transformation is "equivalent" to the input:

Proposition 1. (Noninterference) S VG if and only if r(S) Vr(G)q, where q is a

substitution restricted to variables that do not occur in C.

Proof Since SLD-resolution is sound and complete, it suffices to prove that there is an

SLD-refutation of S U {:-G} with the correct answer substitution e iff there is an SLD-refutation

of r(S)U{r(:-G)} with a correct answer substitution v7 which is restricted to variables introduced

by r. This is easily done with an induction on the length of the SLD proofs. *

17

VV

F7.
Proposition 2. (Representation Correctness) Let G be an atom. Then S = VG if and only

if r(S) Vr(G)tl where q is a substitution {Proof/Tree} U such that Proof is the variable

introduced into r(G) by r, and (Tree) corresponds to a derivation of G from S.

Proof- Again, an easy induction on length of the SLD proofs. I

In other words, if the original theory entails that a relation holds among some objects in the do-

main, then the transformed theory entails that a new relation holds among exactly the same ob-

jects together with one additional object, viz., a sound derivation of the claim that the original

relation holds. And conversely.

Now that we have provided terms representing derivations in our theory, we can define pred-

icated that will enforce conditions on those derivations. Consider again our first constraint:

1. A theta condition. If comp immediately dominates an np, that np must be coindexed with a

trace that is not dominated by comp.

This first, simple theta condition is satisfied by any Tree if for every NP in Tree, if NP is dom-

inated by comp then there is a coindexed trace in Tree that is not dominated by comp. If the

arguments of each grammatical predicate uniquely specify a node in the tree, we can represent

the constraint as follows: 3

VTree(theta(Tree) 4-

V(parent(comp(LO, L1), np(F1, l1, L2, L3),Tree)

subtree(trace(12, L4, L4), Tree)A

-,ancestor(comp(L5, L6), trace(12, L4, L4), Tree)A

coindexed(II, 12)))

The "V" with no variables signifies the universal closure. A predication ancestor(Nodel, Node2,

Tree) is true just in case Nodel is an ancestor of Node2 in the tree Tree; in other words, Nodel

dominates Node2 in Tree. The parent and subtree predicates also have the standard interpreta-

tion. The coindezed predicate is an equivalence relation, standard in linguistic theory [45].

The other constraints can be handled similarly. Notice that this formulation of the theta

condition on trees is not a Horn clause: it is not a clause that can be used by Prolog. It contains

3 The last two arguments of each grammatical predicate are introduced by the translation of the rewrite rule

format into 'definite clauses', as described in [31). Prolog does this translation automatically.

18

universal quantifiers in its antecedent (i.e., its "body"), implication and negation. However, we

have defined a transformation from this sort of representation to an equivalent "compiled" formu-

lation that can be handled efficiently by Prolog (and by other left-to-right Horn clause theorem

provers with the negation-as-failure rule). 4

We can now formulate a logically correct representation of our parsing problem. In the most

natural formulations, the constraints must apply to completed trees representing the proof that

a string is an a. The most straightforward way to do this is to apply the transformation r to the

grammar, and then embed the transformed grammar in another theory that contains the con-

straints and a predicate (conatraineds) which is satisfied only by completed trees that satisfy
~the constraints:e c:conetrained.s(LO,

L, Tree):-s(LO, L, Tree),

theta(Tree),

trace-bound(Tree),

complex.np(Tree)

This definition of the parsing problem is correct and can be transformed into equivalent represen-

tations that can be efficiently used by left-to-right Horn clause theorem provers with negation-

as-failure. The more efficient representations check partially built trees representing proofs of

s(LO, L) in order to cull derivations that do not satisfy the constraints at the earliest possible

point. This is similar to what is done by "backtracking strategies" in other constraint satisfac-

tion problems [23]. An example of this transformation to a very efficient representation is pro-

vided in Appendix 1.

Our strategy can really be seen as a quite direct generalization of the work of Pereira [32].

Pereira uses an "extraposition list" which is basically a concise representation of left context in-

formation and global constraints. We have just used two separate data structures to represent

left context and global constraints rather than one. In our example, we also enforced more com-

plex constraints on the derivations, and as a result our compiled approach does not run as effi-

ciently as comparable XG grammars would, but it covers more of the language. Our approach is

4 "Negation- as failure' is a non-monotonic inference rule which says that we can infer -0 if there is no finite SLD

proof of #. See [181 for a discussion of this rule, and for proofs of the soundness and completeness of SLD-resolution

augmented with this rule.

1%

N. . P " ON~*q~'.%'

F--
more easily extended to capture more sophisticated constraints on derivations, though, and our

representation of those constraints is explicit and more intuitive.

Our logical representation of basic features of syntax makes the parsing problem very much

like standard problems using "controlled deductions," that is, problems in which unnecessary

search for proofs is eliminated. For example, it is well known that, without sacrificing complete-

ness, standard resolution systems can terminate any derivation in which a clause is derived that

is identical to an ancestor of that clause [37]. Rules of this sort can be trivially implemented with

strategies of the sort described here. It is anticipated that this sort of control over deductions

may be valuable in a range of problems.

In summary, the principle features of the design of the parsing algorithm are the following:

* basic phrase structure is computed using an extension of the Definite Clause Grammar

framework

o "local" and relatively restricted principles of grammar are built into the phrase structure

rules, and consequently enforced by the basic parser operation

* explicitly stated grammatical principles are folded into the parsing process if they will help

prune the parser search space, otherwise they can be applied after the parse is complete

without loss of efficiency

4.4. Rightmost Normal Form

It is well known that the ambiguity of English is one of the major difficulties for practical

computer understanding systems. Most ambiguities are never noticed by fluent human speakers,

but they are very difficult for a computer to resolve. For example, consider the "attachment"

ambiguity in a sentence like:

Display the first rule of the procedure for append in window1.

A human speaker has no problem immediately interpreting this request to display a rule in a

window, but a computer using the following simple grammar rules will find 9 different structures

with 9 different interpretations:

vp -- > v.
* vp--> v. np. ppx.

* np --> name.

np--> det, opt-adj. n. ppx.

opt-adj -- > [].

20

opt.adj -- > [first].

ppx -- > [].
ppx -- > pp. ppx.

pp -- > prep, np.

v -- > [display].

name_--> [append].

name_--> [windowl].
det -- > [the].
n--> [procedure].

n--> [rule].
prep--> [in].

prep -- > (of).

prep -- > [for].

A computer does not have the common sense to realize, for example, that "in windowl" does not

modify "the rule" or "the procedure" but the verb "display".

When this "attachment" ambiguity is multiplied by other dimensions of ambiguity (lexical

ambiguity, ambiguity in quantifier scope, etc.), sentences the same size as our example could have

nearly a hundred readings. Building all of these representations and examining them is just not

feasible.

Standard strategies for avoiding the ambiguity problem are available in small domains. We

have chosen first, to build only one parse tree, but one from which any needed alternative struc-

tures can, in effect, be computed. This does not remove the problem of attachment ambiguities,

but postpones it to the semantic analysis stage, allowing a more modular grammar.

The "rightmost normal form" constraint which allows only rightmost normal form parses to

be formulated does not require any modification in the basic grammar rules. In fact, the gram-

mar notation is not adequate to define the condition; but the condition is easily defined over

derivation trees, and can then be compiled into an arbitrary grammar using the techniques ilfus-

trated in Appendix 1. This approach is similar to the approach used in the CHAT-80 system for

processing queries about geography [30]. As the performance of that system shows, the enforce-

ment of this sort of constraint allows parsing to produce very quickly a structural representation

of the users query that can be subjected to efficient semantic analysis.

In the semantic processor, the ambiguity problem is handled by imposing very strict condi-

tions on what can serve as arguments to each verb and on what can modify any particular noun

or verb. These restrictions are imposed primarily on the basis of lexical specifications, i.e., on a

21

.I., * ie NI

np

ppx

ppx*

ppx e

pp ppx*

np

det adj n p det n p nameII III I I I
the first rule of the procedure for append

4

Figure 4.2. A Rightmost Normal Form Parse

22

4 ,,., ,,,- ,,,.. ".. > ?;... ;:.: . .. :> : ?

word-by-word basis. We will briefly describe and illustrate the syntactic and semantic processing

techniques.

As illustrated with the example above, it is computationally very expensive to build every

acceptable complete parse tree for every input. Instead, we build a "rightmost normal form"

which actually represents a set of parse trees. This normal form is quite close to the parse tree

that is, in fact, often the preferred interpretation. However, in cases where it is not the appropri-

ate structure, the semantic analyzer can immediately move to an alternative that is specified in

the normal form. For example, the rightmost normal form for

the first rule of the procedure for append

can be represented as in Figure 4.2. In this representation, the prepositional phrases are attached

as deeply in the tree as possible, but the alternative attachment points for the lower phrases eas-

ily be computed. (They are marked with asterisks.) The semantic analyzer will notice that these

attachments are acceptable in this case. In processing our first example, an attempt would be

made to interpret the phrase

the first rule of the procedure for append in window1.

This attempt will fail unless "in windowi" can be attached to some higher node in the tree, viz.,

to a point where it is a modifier of the verb.

The whole task of using domain-specific information to determine the correct interpretation

of an input is left to the semantic processor. This allows the domain-specific information to be

isolated in one component, maximizing portability. The basic mechanism for handling the at-

tachment ambiguities discussed above is to use "slots" which specify, on a word-by-word basis,

specific restrictions on what can modify what. For example, the word "procedure" is associated

with the following entry:

property (procedure, obj, Relation, rule(Proc,Relation), [slot(prep(for),obj,Relation)]).

This indicates that "procedure" is to be translated as a relation between two things, Proc and

Relation, where Proc and Relation are both (abstract) objects, and where Relation is the object

named by the object of a prepositional phrase beginning with "for". Clearly this translation for

"procedure" is preferable, if only for reasons of efficiency, to the translation which treats "proce-

dure" as an object that is described by the prepositional phrase beginning with "for":

procedure(X), for(X,append)

When we attempt to interpret a phrase like "the procedure for...", these restrictions on mod-

ifiers will be enforced. When a prepositional phrase cannot be interpreted as modifying the noun

23

a

V #'

phrase in which it is attached in the rightmost normal form, it is ;A1ssed up" the tree for inter-

pretation at one of the other possible attachment sites.

4.5. Pronouns and the Discourse Model

A system that cannot resolve pronoun references cannot provide a comfortable interface for

the user. The following simple queries, for example, require the interpretation of pronouns:

What procedures call themselves?

Is every computation with a goal identical to one of its ancestors nonterminating?

Display the proof of p(a). Which rules does it use?

The determination of the relationship between "themselves" and "procedures" in the first of

these queries is dictated by syntax, but the appropriate interpretation of the pronouns in the

latter two queries is not so simple. It is well known that resolving pronoun references properly

in unrestricted English text requires essentially complete understanding of the text and relevant

background knowledge, but fortunately there are very simple and efficient pronoun resolution al-

gorithms that get better than 90% of the resolutions correct in technical writing [16]. Notice that

the pronoun "it" in the last query shown above refers to the subject of the previous sentence. In

cases like this a simple "discourse model" must be used to extend the sentence-bound syntactic

processing.

Discourse analysis is conventionally treated as a problem that is quite separate from syntax

and semantics, but as we noted above, this is not the approach of systemic grammar. And even

in other traditions, it is becoming clear that discourse processing principles interact with other

systems, and this interaction can be exploited in natural language processing. For example, the

interpretation of noun phrases must take into account the information system distinction between

"new" and "given" objects of discourse. In the case of descriptive noun phrases, this corresponds

roughly to the syntactic distinction between definite and indefinite descriptions. An indefinite

description like "a procedure" usually introduces an object to the discourse, as in "A procedure

called itself. It was right recursive." The indefinite description introduces a new object which the

listener is not presumed to know about yet, and this object is referred to by the later pronoun

"it". A definite description like "the procedure" in the same context would indicate a reference

to an object that is already introduced into the universe of discourse, and interpretive principles

would be required to determine which object this was. This determination can influence even

24

syntactic processing, since sometimes the type of thing referred to can be used to eliminate spuri-

ous syntactic structures. Hence, in accord with the basic strategy stated in the last section, prin-

ciples of discourse analysis are stated just like other principles of grammar and folded into the

basic phrase structure parsing.

4.6. Logical Query Optimization

The queries formulated by the semantic component of the MQP will not in general be fea-

sible, since the semantic processing should not have to take into account such things as the size

of the relations being queried. An optimization step is essential. Domain-independent techniques

for optimizing logical queries based on basic facts about the knowledge base being queried have

been developed in a number of different contexts by the Principal Investigator of this project

and others [46] [47] [43] [36] [29]. These can be deployed in the MQP to appropriately optimize

queries according to the knowledge representation, whether it is a foreign database system, a text

file, or a Prolog-internal database.

4.7. Sunmmary of MQP Design Features

The MQP design proposed here has the potential to significantly improve student-IIS inter-

action by providing the portable natural language processing capabilities that will make the de-

velopment of query processors for IISs feasible and cost-effective. The innovative features of this

effort include the following main points:

* modular representations of the natural language component expressed in logic are very effi-

cient when specialized optimization techniques are used

" domain-dependent features of the language processor can be isolated in specific components

of the system, and tools can be developed to facilitate the tailoring of these components to

new domains

* the representation of principles of discourse analysis can, to a large extent, be isolated from

parsing and semantic processing, but they may be folded back into "earlier" processing by

the optimization steps for substantial improvements in efficiency

" the basic MQP design has been shown feasible by earlier work and by Phase I prototyping

efforts in which the novel features of the approach were tested

25

9e

5. Additional IIS Software Issues

Because the emphasis of the present project is on improving the IIS-student interaction us-

ing a modular systemic parser, we have decided to base our Phase II efforts on the development

of an 1US for a tutorial domain that has been studied and that appears promising. In Phase II, if

funding is provided, a Prolog Tutor will be built to illustrate the capabilities of our IIS and MQP

technology. This will allow us to make use of the university research on the Lisp Tutor, since the

basic programming styles of Lisp and Prolog are quite similar. This choice of Prolog has other

advantages as well. In the first place, some preliminary efforts on Prolog IISs have had some suc-

cess [19] [20] [21] [11] [22]. And in the second place, the Prolog evaluation strategy is simple and

intuitive, so effective interactive debugging methods have already been developed for it [34]. So-

phisticated debugging tools of this kind have been implemented at Quintus. This previous work

will allow us to focus our efforts on improving the ability of our IIS to interact with the user us-

ing our Modular Query Processor. Another advantage of this choice of domain is that Quintus

Computer Systems has some of the world's leading experts in the development of Prolog systems,

so there will be no shortage of Prolog programming expertise.

This choice of a tutorial domain for the development of the Phase II prototype is one in

which a sophisticated IIS will be feasible. Extensive documentation of both reference and tutorial

information has already been developed at Quintus Computer Systems, and so the representation

of domain knowledge can be quite thorough and comprehensive. Furthermore, Quintus has also

developed specialized, intelligent debugging tools that can be deployed in error diagnosis. With

this technology, the student can be given much more helpful feedback on his performance on ex-

ercise material than current IISs provide. This most difficult aspect of IIS capabilities, reliable

diagnosis of student errors, will be relatively tractable in this domain.

6. Conclusions

The principal features of the IIS and MQP designed in this Phase I project include the fol-

lowing:

" the improvement of user-IIS interaction will be achieved with a MQP that can handle a wide

range of user queries appropriately

" the MQP will be highly modular so that development and maintenance costs will be re-

duced, and so that many components of the system will be domain-independent and trans-

portable

26

%

" the MQP will be expressed in Prolog, and efficiency will be obtained without sacrificing

modularity through the use of specialized optimization techniques

" US capabilities will include tools for sophisticated domain representation and error diagnosis,

as well as for efficient access to catalogued reference material

By implementing this system in the general-purpose language Prolog, a great deal of flexibility

is afforded in rapidly prototyping a system. The efficiency of Quintus Prolog ensures that a pro-

totype is very likely to be usable in a production-level environment as well. All of the features

mentioned in our Phase I proposal seem to be feasible. Quintus intends to follow up with a pro-

posal for Phase I funding to further research and prototype the US and MQP products.

27

7 . d* .~r.~.-. ~' ,%%% %

References

[1] Anderson, J.R. & Swarecki, E. (1986) The automated tutoring of introductory computer

programming. Communications of the A CM 29(9):842-849.

[2] Bates, M. (1978) The theory and practice of augmented transition network grammars. In

L. Bolc, ed., Natural Language Communication with Computers, Lecture Notes in Computer
Science, 63. New York: Springer-Verlag.

[3] Benson, J.D. and Greaves, W.S. (1985) Systemic Perspectives on Discourse, Volumes 1-2.

Norwood, New Jersey: Ablex.

[4] Bowen, K.A. (1985) Using Prolog to build expert systems. Expert Systems and Prolog, IEEE

Videoconference, December 4, 1985.

[5] Bowen, K.A. and Kowalski, R. (1982) Amalgamating language and metalanguage in logic

programming. In Logic Programming, edited by K.L. Clark and S.-A. Tarnlund, NY: Aca-
demic Press, 153-172.

[61 Brown, J.S., Burton, J.R. and de Kleer, J. (1982) Pedagogical, natural language and knowl-

edge engineering techniques in SOPHIE I, II and I1. In Sleeman, D. and Brown, J.S., eds.

(1982).

[7] Butler, C.S. (1985) Discourse systems and structures and their place within an overall sys-

temic model. In [3].

[8] Codd, E.F. (1974) Seven steps to rendezvous with the casual user. Technical Report RJ

1333, IBM Research Laboratory, San Jose, California.

[9] Codd, E.F., Arnold, R.S., Cadious, J.M., Chang, C.L. and Roussopoulos, N. (1978) REN-

DEZVOUS Version 1: An experimental English language database query formulation system
for casual users of relational databases. Technical Report RJ 2144, IBM Research Labora-
tory, San Jose, California.

[10] Fitzpatrick, E., Bachenko, J., and Hindle, D. (1986) The status of telegraphic sublanguages.

In Grishman, R. and Kittredge, R., eds., Analyzing Language in Restricted Domains: Sub-
language Description and Processing. Hillsdale, New Jersey: Lawrence Erlbaum Associates,
Publishers.

[11] Fogel, E. (1982) A Prolog Tutor. M.Sc. Thesis, University of British Columbia.

[12] Goebel, R., Furukawa, K. and Poole, D. (1986) Using definite clauses and integrity con-

straints as the basis for a theory formation approach to diagnostic reasoning. Procs. of
the 3rd Int. Con. on Logic Programming, edited by E. Shapiro, pp.211-222. New York:
Springer-Verlag.

[13] Grosz, B.J., Jones, K.S. and Webber, B.L. (1986) Readings in Natural Language Processing.

Los Altos, California: Morgan Kaufmann.

[14] Halliday, M.A.K. (1976) Halliday: System and Function in Language. Edited by G.R. Kress.

London: Oxford University Press.

[15] Halliday, M.A.K. and Martin, J.R., eds. (1981) Readings in Systemic Linguistics. London:

Batsford Academic and Educational Ltd.
[16] Hobbs, J.R. (1978) Resolving pronoun references. Lingua, 44: 311-338.

28

il ' % ". --"_%pb

[17] Kasper, R. (1987) "A unification method for disjunctive feature descriptions." Presentation

to the Center for the Study of Language and Information, Stanford University, March 11,
1987.

[181 Lloyd, J.W. (1984) Foundations of Logic Programming. New York: Springer-Verlag.

[19] Lynch, L. (1986) A thesis proposal for a computer program to teach Prolog. University of

Edinburgh Department of Artificial Intelligence Discussion Paper 10.

[20] Lynch, L. (1986) Finding bugs in Prolog code. University of Edinburgh Department of Arti-

ficial Intelligence Note 308.

[21] Lynch, L. (1986) A first attempt at building an analyser for Prolog. University of Edinburgh

Department of Artificial Intelligence Note 277.

[22] Maler, 0., Z. Scherz & E. Shapiro (1986) A new approach for introducing Prolog to naive

users. Weizmann Institute of Science Technical Report CS86-03.

[23] Mackworth, A. (1985) Constraint satisfaction. Forthcoming in the Encyclopedia of Artificial

Intelligence.

[24] Mann, W.C. (1982) The anatomy of a systemic choice. University of Southern Califor-

nia, Information Sciences Institute, Report No. ISI/RR-82-104, Government Accession No.

AFOSR-TR-83-0135.
[25] Mann, W.C. (1983) Inquiry semantics: a functional semantics of natural language grammar.

University of Southern California, Information Sciences Institute, Report No. ISI/RS-83-8,

Government Accession No. A135153
1261 Mann, W.C. (1985) An introduction to the Nigel text generation grammar. In t3].

[27] Mann, W.C. and Matthiessen, C.M.I.M (1985) Demonstration of the Nigel text generation

computer program. In [31.
[28] Matthiessen, C.M.I.M. (1984) Systemic grammar in computation: the Nigel case. University

of Southern California, Information Sciences Institute, Report No. ISI/RS-83-121, Govern-

ment Accesion No. AD-A139351.
[29] Naish, L. (1985) Automating control for logic programs. Journal of Logic Programming, 9:

167-183.

[30] Pereira, F.C.N. (1982) Logic for Natural Language Analysis, Ph.D. thesis, University of Edin-

burgh, Scotland.

[31] Pereira, F.C.N. and Warren, D.H.D. (1980) Definite clause grammars for natural language

analysis. Artificial Intelligence, 13: 231-278.

[32] Pereira, F.C.N. and Warren, D.H.D. (1983) Parsing as deduction. Proca. of the 2lat Ann.

Mtg. of the Assoc. for Computational Linguistics, 137-144.

[33] Quintus Computer Systems, Inc. (1987) Quintua Prolog User's Guide, with Releaae Notes

for Quintus Prolog 2.0 Beta-Test. Quintus Computer Systems, 1310 Villa Street, Mountain
View, CA, 94041.

[34] Shapiro, E. (1983) Algorithmic Program Debugging. Cambridge, Massachusetts: MIT Press.

[35] Sleeman, D. and Brown, J.S., eds. (1982) Intelligent Tutoring Systems. New York: Aca-

demic Press.

29

- **jI ' &'

[36] Smith, D.E. and Genesereth, M.R. (1985) Ordering conjunctive queries. Artificial Intelli-
gence, 26: 171-215.

[37] Smith, D., Genesereth, M. and Ginsberg, M. (1985) Controlling recursive inference. Techni-
cal Report STAN-CS-85-1063, Stanford University, Palo Alto, California.

[38] Soloway, E. (1986) Learning to program = learning to construct mechanisms and explana-

tions. Communications of the A CM 29(9):850-858.

[39] Soloway, E. and Iyengar, S. (1986) Empirical Studies of Programmers. New York: Ablex.
[40] Stabler, E.P., Jr. (1986) Restricting logic grammars. Proc.. of the 5th Nat. Con. on Artifi-

cial Intelligence, AAAI-86, 1048-1052.
[41] Stabler, E.P., Jr. (1986) Parsing with government-binding constraints. 1986 Annual Meet-

ing of the Artifical Intelligence and Robotics Program of the Canadian Institute for Advanced
Research, Banff, Alberta, 1986.

[42] Stabler, E.P., Jr. (1987) Restricting logic grammars with government-binding theory. Forth-
coming in Computational Linguistics.

[43] Stabler, E.P., Jr. and Elcock, E.W.E. (1983) Knowledge representation in an efficient deduc-
tive inference system. Proc.. of the Logic Programming Workshop '83.

[44] Sterling, L. and Shapiro, E. (1986) The Art of Prolog. Cambridge, Massachusetts: MIT

Press.
[45] van Riemsdijk, Henk and Williams, Edwin (1986) Introduction to the Theory of Grammar.

Cambridge, Massachusetts: MIT Press.
t461 Warren, D.H.D. (1981) Efficient processing of interactive relational database queries ex-

pressed in logic. Procs. 7th Int. Con. on Very Large Databases.
[47] Warren, D.H.D. (1982) Issues in natural language access to databases from a logic pro-

graxnming perspective. Procs. of the 20th Ann. Mtg. of the Assoc. for Computational
Linguistics:63-66.

[48] Warren, D.H.D. and Pereira, F.C.N. (1982) An efficient, easily adaptable system for inter-
preting natural language queries. Amer. J. of Computational Linguistics, 110-119.

[49] Webber, B.L. (1986) So what can we talk about now? In [13].
[50] Winograd, T. (1976) Understanding Natural Language. New York: Academic Press.
[51] Winograd, T. (1983) Language as a Cognitive Process, Volume I: Syntaz. Reading, Mas-

sachusetts: Addison-Wesley.

30

Appendix 1. Compiling Parser Representations

In the text we provide a definition of a parsing problem in terms of rewrite rules and con-

straints. That definition is correct but must, for practical purposes, be transformed into a more

efficient but equivalent representation. The original formulation would be terribly inefficient with

any left-to-right proof strategy: we do not want to have to go through proving that a string is

an np followed by a vp and then rule out the derivation because of a violation of the complex-

NP constraint in the first np. Since the constraints really rule out lots of derivations which would

otherwise be allowed by the context free component, we want to apply those constraints as soon

as possible. We will describe a two-step process for getting to an efficient "compiled" represen-

tation. First we describe how to cull unsatisfactory parses as soon as possible with a special-

ized metainterpreter, and then we describe how to eliminate the overhead of metainterpretation.

Throughout these steps, our first order formulation can be used as an intuitive specification of

the problem to be solved.

The Metainterpretation Strategy. It is a simple matter to define a basic "metainterpreter"

or provability predicate for Horn clause theories. The following is a standard formulation of a

Prolog metainterpreter:

demo(true).

demo((P, Q)):-demo(P), demo(Q)

demo(P): - clause(P, Body), demo(Body)

It is easy to modify this simple provability predicate so that checks at each step to make sure

that the constraints are satisfied:

demo(true).

demo((P, Q)):- demo(P), demo(Q)

derno(P):- clause(P, Body),

demo(Body),

8atisfy.-constraints(P)

This new strategy requires (i) a different representation of the derivations, one which is available

and efficient at every point in the proof, and (ii) a reformulation of the constraints themselves so

that they can be applied at arbitrary points in the computation.

31

% . 4r r...

Formalizing derivation left-contexts. In the course of a left-to-right proof, we need to be able

to inspect the parts of the proof tree that are already completed. In general, a constraint applied

at any point in the proof tree should be able to test its left siblings, its ancestors, and left sib-

lings of its ancestors, i.e., its "left context". The transformation r which was introduced in the

text of this report is not feasible for this use. Another problem with the representation of the

proof provided by r is that it makes the root node and its daughters most accessible. Since we

would like to apply the constraints at the earliest possible point, we will typically be interested

not in the root node, but in the left siblings and ancestors of the current node. Fortunately,

there are a number of well-known tree representations that do not have these problems. A re-

versed, sequential representation of the proof tree will allow the left context to be built up incre-

mentally, and it will make the current node most accessible.

We will move to a specialized representation below, but we can get a version of a simple re-

versed "preorder sequential representation" by simply flattening our original representations, in-

troducing special terms that will serve as structural indicators with the obvious meaning, and

reversing the result. Thus we represent p/[q/[s],r] as [[,r, [,s,]\ ,q,]\ ,p].

Since we want to build our trees in the course of doing a proof, we will need a slightly more

complex program transformation: the left context representation when proving some subgoal

should not be the same as the left context when proving the next subgoal. So we use a pair of

arguments to represent the left context before the proof and the left context after the proof, re-

spectively. We can define a transformation r, that will do this. A proof begins with with a neg-

ative clause, and so such clauses will have the empty left context as their initial representation,

and a variable to be instantiated with the completed proof tree. Consider our previous example,

repeated again for convenience, and our transformation of it:

S={ :-p,

p:-q, r,

3,

8 }

€3

r(s) = { :-p([],Proof),

p(Proo fO, [[lProof]):-q([J\ , pi Proo 101, Proof 1), r(Proof l, Proof),

q(ProofO, [IProof]):-a([1\, qlProofO], Proof),

r(Proof , [rlProo f]),

s(Proof, [sIProof1) }

At every point in a left-to-right proof in this theory, we are provided with a reversed sequential

representation of the left context with the most recently completed nodes or structural indicators

at the front. Notice that these left context representations do still correspond to trees, but the

trees correspond to initial segments of derivations rather than to completed derivations.

Clearly there is definition of r1 that will provide our required features: noninterference and

representational correctness.

Formalizing constraints for early application Formalizing the constraints so that they will be

applicable at arbitrary points in the proof is not trivial. The basic idea is straightforward: we

represent the constraints in terms of conditions on right and/or left contexts, testing the left con-

text immediately, and providing a special mechanism that will pass constraints on right context

to the right. Let's consider our three simple constraints.

Notice that our first two constraints, the theta condition and the trace-binding condition,

in their original first-order formulation, say that if there is a node of a certain kind, then there

must be another node of a certain kind. So we can use the following strategy: test every node at

completion; if it is of the kind mentioned in the antecedent of one of these constraints, then check

the left context for the other required node; if it is not in the left context, then pass the existence

condition to the right; and ensure that all conditions passed to the right are satisfied before the

parse is complete. The third constraint, on the other hand, sometimes introduces a requirement

that must be satisfied by every node in the tree. For this type of constraint we can test every

node at completion; if it is of the kind mentioned in the antecedent of this third constraint, check

the left context immediately, and if the left context does not already violated the condition, pass

the global constraint to the right. This means that we can have two different types of constraints

passed to the right: existence requirements that can be removed as soon as possible after they

have been satisfied; and conditions on every node that must be carried throughout the parse and

applied as soon as possible after every point at which a violation may occur.

This approach requires that the demo predicate be able to carry constraints to the right. A

simple approach distinguishes "local constraints" which are applied at every node from "global

33

constraints" which may be collected in the course of the parse and "passed to the right." We can

distinguish the two different kinds of constraints in the global constraint lists by placing them

in one of the two forms: exists(Constraint) and all(Constraint): the former constraints can be

removed as soon as they are satisfied; the latter must apply everywhere. After satisfying each

local constraint, we can try to satisfy any of the global existence constraints, and then we can

impose the requirement that no unsatisfied existence constraints remain at the end of the parse.

The following demo predicate captures this approach:

demo(P):-demo(P, 0, G),

global-contraintsnatisf ied(G).

demo(true, G, G).

demo((P, Q), GO, G):-demo(P, GO, Gl), demo(Q, G1, G).

demo(P, GO, G):-clause(P, Body),

demo(Body, GO, G1),

satisfyJocal-constraints(P, G1, G).

global.constraints.satisf ied(G) :--member(ezists(), G).

satisfydocal-constraints(P, GO, G):-theta(P, GO, G1),

trace-binding(P, G1, G2),

complexznp(P, G2, G3),

try-global-constraints(P, G3, G).

Now let's consider how we might formulate each of the "local" linguistic constraints within

this approach. Again, we will concentrate on the theta condition:

VTree(theta(Tree) 4-

V(parent(comp(LO, Li), np(F1, II, L2, L3),Tree)

-ubtree(trace(12, L4, L4), Tree)A

-dominates(comp(L5, L6), trace(12, L4, L4), Tree)A

coindexed(Il, 12)))

34

We assume that a transformation like r, has applied to add two arguments to every grammat-

ical predicate. These arguments represent the proof before and after the predication is proven,

respectively. Then a first reformulation for our strategy of testing at every node is the following:

theta(np(_, I1,_,_,., LC), GO, G):-parent(LC, comp(., -, _ -),

lef t-or-right-trace(I1, LC, GO, G).

theta(P, G, G): - P = np(..,,, _).

left.or.rightJrace(I1, LC, G, G):-precedes(LC, trace(12, _, _), TraceLC),

-"ancestor(TraceLC, comp(, -, .,

coindezed(I1, 12).

lef t.or _rightirace(I, , G, [exists(trace(I1))IG).

The first rule for left.orright-trace checks the left context for the required trace; the second rule

passes the requirement to the right by adding the exists(trace(I)) condition to the global con-

straint list G. This indicates that an appropriace trace must have its index bound to I before the

parse is completed.

The other constraints can be handled similarly.

Specializing the left contexts. Building and testing complete representations of left context is

an unnecessary computational burden if we can show that there are parts of these trees which no

constraint will ever test. Ideally, we would like a provably adequate but minimal representation

of the proof, relative to the grammar and the constraints that will actually be imposed. Notice

that since testing the trees for satisfaction of the constraints may be much more expensive than

the construction of the trees, it may be worthwhile to keep the minimal representation of the left

context for use in these tests even if a complete representation must also be built for other pur-

poses. We accordingly use a transformation r2 which adds three extra arguments to each gram-

matical predicate: the argument that would be added by r and the pair of arguments that would

be added by r1 , except that we now subject the latter pair of arguments to specialization. The

first argument builds a representation of the completed tree as the output of the parser; the lat-

ter pair of arguments holds just enough left context to be able to enforce all of the constraints.

We can reduce the representations of left context in the following ways: unneeded nodes can

be removed from the tree, and unneeded parts of node labels can be removed. For our grammar

35

and constraints, we can remove (i) all leaves except trace(Indez); (ii) all vp and s nodes, and

(iii) all np nodes that dominate the single node name, or the pair of nodes det, n, or the triple of

nodes det, n, sbar. A thorough justification of this reduction in the left context can be provided.

The metainterpretation approach has real advantages. It preserves complete modularity in

the rewrite rules and the various constraints. This is valuable for getting the constraints imple-

mented correctly before specializing the left context representations, constraint applications, etc.

And this approach is much more efficient than the "naive" representation.

The Compilation Approach The overhead expense of metainterpretation is unnecessary. The

role of the metainterpreter is (i) to apply the local constraints after each grammatical predica-
tion is proven, (ii) to carry the global constraint list through the proof, and (iii) to apply the

global constraints upon completion of the grammatical proof. All of these tasks can be carried

out without metainterpretation. We describe one very straightforward way to do this.

We can easily achieve (i) without metainterpretation. We can simply apply the local con-

straints as a final condition in each rule of the grammar. But we can do better than this by not-

ing that the local constraints have nontrivial application only when we have used a rule that ex-

pands a node in a position that could satisfy the antecedent of one of the constraints. In our ex-

ample, there are only three such rules: the rule that expands trace to the empty string; the rule

that expands np to trace, and the rule that expands np to rel-pro. We can add the condition

satisflyJocal.-constraints(Goal, GO, G)

to just these three rules, where Goal is the head of the rule itself, GO is the "previous" list of

global constraints, and G is the new list of global constraints.

While this approach suffices, it is easy to do even better. We know which constraint has

the possibility of an active role at each of these three kinds of nodes: the trace.binding condi-

tion applies only to trace nodes, and none of the other constraints apply there. At the np nodes,

both the theta condition and the complez.np condition may be relevant. So we can condition the

three rules accordingly: the rule expanding trace is conditioned only by trace-binding, and the

other two rules can be conditioned only by the theta and complez.np constraints.

The remaining roles of the metainterpreter are also easy to cover. We can accomplish (ii) by

using a pair of lists to carry the global constraints from one grammatical predicate to the next,

in the way we have used the pairs of lists to hold the string to be parsed (as DCG's do also) and

36

-.. *,** 4 * * i4

the representation of left context. And finally, we can accomplish (iii) by introducing a predicate

that will check the global constraints after the grammatical proof is complete:

constrained.s(LO, L, Tree, LCO, LC, GO, G):-s(LO, L, Tree, LCO, LC, GO, G),

satisf y-global-constraints(G).

The constraints can then remain exactly as they were for the metainterpretation strategy, and

the resulting system runs much faster. A listing of the compiled representation of our example is

provided in Appendix 2.

Automating the Transformation to "Compiled" Form. It is clear that substantial parts of the

transformation from the natural first-order representation to "compiled" form can be automated.

We have in fact developed such techniques.

Given a first order formulation of the rewrite rules (the grammar) and of the constraints, we

can get to a compiled formulation as follows:

(a) reformulate the constraints so that they have the form of conditions on right and left con-

texts, optimizing these formulations where possible; testing with metainterpretation;

(b) specialize the representations of left context based on an analysis of the grammar and the

constraints formulated by (a);

(c) using an analysis of the grammar and the constraints formulated by (a), determine which

constraints should apply at which nodes;

(d) transform the grammar:

-add 5 arguments to each predicate in the grammar: an argument holding the standard

parse tree, a pair of arguments to build the specialized representation of left context ac-

cording to (b), and a pair of arguments to carry any global constraints which are added

by local constraint application;

- condition the relevant rules according to the results of (c).

Some progress has been made in automating this "compilation" step, though some parts of the

transformation will be very difficult to automate satisfactorily. We have preliminary implemen-

tations of (b), (c), and (d). The output of the transformation is guaranteed to have the basic

features of the trees and left contexts built properly, and this output can always be subjected to

further modification by a competent logic programmer.

37

~ ~ (-%. 5.4 ~ ~ *~* .- \''*i..'.-.. - .. "

Appendix 2. A Listing and Session with a 'Compiled" Parser

We provide a listing of Quintus Prolog code, followed by a brief, edited session log that

shows this code running after being compiled by Quintus Prolog Version 2.0 and running on a

SUN 3/50.

% THE GRA - this is the output of the "compiler"

constraineds(LO. L. Tree. ProofO. Proof. GO. G) -

s(LO.LTre*.ProofOProof. .0.).

global.constraints.satis ied(G).

s(LO.L.s/CNP.VP] .ProofO.Proof. GO.G)
np(... .LO. L1, NP, ProofO. Proof 1. GO .G1)

vp(L1. L. VP. Proof 1, Proof, G1. G)

np (-wh, Index. LO, L, np (Index)/ [Name] ProofO. Proof GO,G)

name(LO.L.Name.ProofO,Proof.GO.G)

np(-wh. Index, LO, L.np(Index)/ [Det, N] ProofO, Proof. GO. G)

det(LO.L.Det.ProofO,Proofl.GO,G1)
n(L1.L, N, Proof1, Proof, G1, G).

np(-wh. Index, LO. L.np(Index)/ [Det,N.Sbar] ProofO. Proof. GO, G)

det (LO. Li, Det, ProofO. Proof1. GO .G)

n(L1.L2.N.Proofl.Proof2.G1.G2).
sbar(L2, L, Sbar, Proof2, Proof. 02, .)

np(_. Index. LO. L.np(Index) /[Trace] ,ProofO. [down I Proof]. GO,)

trace (Index. LO. L. Trace, [up,np(Index) I ProofO] Proof. GO. GI)

theta(np(. Index-ProofO .downu Proof]) G1. G2) ,

complexnp(np(-. Index,...... .ProofO. [downIProof). 2,)

np(+wh, Index. LO, L, np (Index)/ [Rel-pro] Proof0, [downl Proof], ., G)

rel-pro(LOL.Rel-pro. (upnp(Index) IProofO],Proof,GOGl)

theta(np(. Index ProofO,[downProof]),G1.G2)

complex-np(np(_. Index ProofO, [downi Proof]), G2, G)

trace (Index. L. L. trace/[e] Proof, [trace (Index) I Proof] GO.G)

trace-binding(trac(Index...... Proof_).G. .O.Gi).

try-global-constraints(trace(Index....... Proof.,_) .GI,).

sbar(LO, L. sbar/[Comp. S], Proof0, [downI Proof] GO, G) -

comp(LOLI.Comp. [up.sbarl ProofO] ,Proofl,0O.GI)

s(L1,LSProof1,ProofG1,G).

comp(LO, L. comp/ [NP], Proof 0, (downi Proof, O, G)

np(+wh. -, LO, L. NP, [up.compl ProofO , Proof GO, G)

38

vp(LOL. vp/[Verb, NP]. ProofO, Proof, GO, G)

verb (LO, Li. Verb. ProofO, Proof 1. GO. Gi)

np(.... Li. L NP, Proofl. Proof. GI .G)

name ([mary I L], L. name/[mary] .Proof, Proof, G. G).

det([thelL], L.det/[the] .ProofProofG.G).

n([manIL].L.n/[man] .Proof.Proof.G,G).
rel.pro ([who I L] .L. relpro/[who], Proof. Proof, G. G).

verb([likes IL], L.verb/[likes] Proof Proof. G. G).

% THE CONSTRAINTS

global-constraints-satisfied(G): -

\+member(exists(_).G).

try-global.constraints (Goal, [exists (Constraint) IGs], G):-

exists (Goal .Constraint).

try.globalconstraints (Goal. Gs, G).

tryglobalc onstraints (Goal, [Constraint I Gal, [Constraint I G : -

try.global.constraints (Goal. Gs, G).

try-global-constraints(_, . []).

% Theta: If current node is np. and current is immediately dominated by comp,

% then current must be coindexed with a trace that is not dominated
% by comp.

theta(GoalG.G) :- \+Goal-np(.....).

theta(np(,..........LC,_),G.G):

\+parent(LCcomp,_).

theta(np(_, I.......LC,_),GO.G) -

parent (LC, comp. ParentLC).

left.orrighttrace(I1,ParentLC, GO,G).

% There must be either a preceding trace not dominated by comp, or

a following trace not dominated by comp. We catch these two

cases with the following two rules, respectively.

% A trace not dominated by comp leaves a.bound(Index) in the Global

% constraint list.
left.orrighttrace(I10LC,G.G) :-

preceding-node (LC, trace (I2),TraceLC),

\+ancestor(TraceLC.comp,_),

coindexed(I1 I.2).

% We add exists(trace(Index)) to the global constraints to signal that Index

% needs to be bound to a trace in A position

39

leftorright.trace(I1l._.G, [exists(trace(Il)) IG]).

coindexed(I.I).

% We look for the exists(trace (Index)) requirement of a preceding np,

% check to see if we have bound its index, and whether the current

% node is in A position (i.e.. not dominated by comp)

% We do this every time a new trace is created - if this requirement

% cannot be satisfied at any of those points, it cannot be satisfied

exists(trace(Index...,....TraceLC,_).trace(I))

I--Index, \+ancestor(TraceLC.comp.,).

% trace-binding: a trace must be coindexed with a preceding np that is

% immediately dominated by comp

trace-binding(Goal.GG) :-\+Goal-traceL......)

trace.binding(trace(Index,,......,LC._),GG) :-

preceding-node(LCnp(Index) .NpLC). indices unified here

parent(NpLCcomp._).

% complex-NP:An np dominated by sbar cannot be coindexed with an np that

% is not dominated by sbar.

% These non-co-reference conditions apply to both the right and to the
% left. so we add a global constraint with the Index and a term

% that is not shared by any two distinct sbars (viz, the left context):

% restrict_ tosbar(Index, SbarLeftContext)
complex-np(np(_,Index....... NpLC.LC).GOG):-

first-ancestor(NpLC, sbar.SbarLC),% the first abar suffices

G- [all(restrict-to-sbar(IndexSbarLC)) I GO].
\+existscnp_violation(LC .G).

complexnp(np(..........,NpLC,LC),G,G):-

\ ancestor(NpLC. sbar,),

\+exists.cnp.violation(LC,G).

complex-np(Goal, G. ,G) : -
\ Goal-np (-).

% To find a violation we must find two indices which are coindexed (by

one of the other principles). The test "coindexed(I1,I2)" will

% not make this distinction, because all indices are vars, and any

% two vars can be unified in such a test. So we get the desired

% effect by using "\+anti_index(I1 .12)" instead.

% We have a cnp violation if there is an Indexl restricted to SbarLC

% and i) there is no first sbar ancestor of the current NP

40

%yet Indexl and the current index are already coindexed, or

% (ii) there is a f irst sbar ancestor which is dif ferent f rom the
%one associated with 1ndex1 and yet Indexl and current index

%are already coindexed.

exists..cnp-.violation(LC ,G)-

member(all(restrict-to-..bar(Indexl .SbarLC)) ,G).

current-.node(LC.np(Index2) .NpLC).

C\+first-.ancestor(NpLC , bar. SbarLC2)

first-ancestor(NpLC.sbar.SbarLC2),
\+SbarLC=SbarLC2

\+antiindex(Index1, Index2).

anti-index(O.1).

% THE UTILITIES

cuirrent-.node ((down heat) ,CurrentNode ,Remainder) :-I.

revtree ((downlIRest) .CurrentNode/..ide)
cuzrent-.node((] ,unlabelled,[1).

% For any node with left context LC, Parent is the imm dominating node with

% left context Remainder
parent(Cup ,Doulode iRemainder) ,DomNode, Remainder) :-I.
parent((downlRestJ .DomNode.Remainder)

revtree([downi Rest) ..,Rmainderl),

parent (Remainderi ,DomNode .Remainder).

parent(C(1 unlabelled. [J).

% For any node with left context LC, Ancestor is a dominating node with
% left context Remainder
ancestor([J ,Ancestor. Remainder) I ., Ancestorinunlabelled, Remainder-[J
ancestor(LC,Ancestor.Remainder)-

parent (LC ,Parent.,Remainderi).

CAncestor-Parent,
Remainder-Remainderl
ancestor(Remainderi ,Ancestor,Remainder)

% For any node with left context LC. Ancestor is the first ancestor with

% left context Remainder
% (Typically used with LC and Ancestor instantiated)

first-.ancestor(LC,AncestorRemainder)-

ancestor(LC.Ancestor.Remainder), 1.

* 41

%For any node with 1.eft context LC, Node is a preceding node with

% left context Remainder
preceding-.node ([downlIRest]. Node, Remainder)

left-.sibCRest.NodeRemainder).
%~ Ancestors (i.e.., the anon var) do not count as preceding nodes

preceding-.node ([up. -I Rest]. PrecedingNode, Remainder): -

preceding-.node (Rs,PrecedingNode. Remainder).

4 left-.sib([up I Rest]. Node. Remainder) :- 1.

domcat(Rest.Node .Remainder).

lef t-.sib([down IRest], Node, Remainder) :- .

preceding-.node ([down I Rest], Nodel ,Remainderl).

(Nodel-Node,
Remainderl-Remainder
leift-.sib(Remainderl ,Node ,Remainder)

left-.sib([Sib IRest] ,NodeRemainder) -
CSib-Node,
Rest-Remainder
left-.sib(Rest ,d, Remainder)

% revtree(RWree, Tree, [J) transforms a completed, reversed sequential RTree

% into our standard nested Tree
revtree([down I Rest], Domcat/ListSibs ,Remainder)-

collect-.sibs (Rest, [0 ListSibs,Remainderl),
domcat (Remainder .Domcat .Remainder).

collect-.sibs ([uplIRest], List, List, Rest) :- .

c ollect-.sibs Udown IRest]. ListO, List, Remainder) I,
revtree ([downlIRest] ,Tree.*Remainderi),

collect-.sibs([Tree lRemainderl] , ListO, List, Remainder).

collect..sibs ([Sib IRest]. ListO. List, Remainder) :-
collect-.sibs (Rest, [SibIListO] ,List, Remainder).

domcat([DomcatIRestl .Domcat.Rest).

% append and select are given the following def s at initialization

% append([0] .X) .

% append([AIL].M. [AIN]) append(L.M.N).

% select(X,L.R) : - append(L1, [X1L2),L), append(L1,L2,R).

42

U W ~ ~*u$%~ h~ '~%%V

The following is an edited session running the code listed above, with the addition of i/o

routines to prettyprint the structures formulated.

I ?- constrained..s likes]j.0.-. 0 0.[~j

no
? ?- constraine..s((mary. likes, the. man][..E. G.0. .l

np(A)
name mary

VP
verb likes
np (B)

det the
n man

GJ
Oms

yes

I ?- constrained.s([the,man,who.mary~likes.likes~mary.l.1,.........f)j
S

np (A)
det the
n man
sbar

c omp

np (B)
rel-pro who

np (C)
name mary

VP
verb likes
np (B)

trace e
VP

verb likes
np (D)

name mary

[down~down,traceL-1928) .up.npL-1928) ,down.down,up,np(-1Q26) ,up.comp,up~sbar]

1 7ms

yes

I ?- constrained.a((the,inan~who.likesmary~likes~mary.J..]...J,

np (A)

det the

43

SIMN

n man
abar

np (B)

rel-pro who

np (B)
trace e

VP
verb likes
np (C)

name mary
VP

verb likes
np (D)

name mary

[down,down.trace(.1926) .up~npL-1926) .down~down.up.np(-.1926) .up.comp.up.sbarJ
4 l7ms

yes

I ? - constraineds (theman. who marylke, mke, ikes]jkegj.jj[)0[D

no
I ?- constraineds (the. n hmarwh.miesm1± kesmary] . U D .))(

no

44

%ftJ~tF~~ftL.1 LM LM S %A

