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A technique is presented for determining the probability of an edge at a point in an image. The image is
modeled as an ideal image that is convolved with a linear blurring function and also with uncorrelated
Gaussian additive noise. The ideal image is modeled by a set of templates for local neighhorhoods. Every
neighborhood in the ideal image is assumed to fit one of the templates with high probabilitv. A
computationally feasible scheme to compute the probability of edges is given. The output of several of the
iikelihood generators based on this model can be combined to form a more robust !ikelithood generator
using the results described in Developing and Analyzing Boundary Detection Operaturs ! sing Probab:listic
Models presented in the first Workshop on Probability and Uncertainty in Aruficial Intelligence by the
author [13).
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1. Edge Detection: The Problem and Previous Approaches

The major problem of low-level vision is that images are ambiguous: two different scenes can result
in the same image. The major source of ambiguity that | am concerned with is noise. Noise is generally
the result of imperfections of the sensors used to produce the image. Because of noise the same scene can
result in any observed image whatsoever. It is much more likely however to result in some images than
others. My work is about techniques for combating noise and the resulting ambiguity and thus is applicable
to vision tasks where noise presents a significant problem.

My approach to low level vision is unusual for such research. Consider the problem of segmentation,
in particular, consider the problem of finding regions of uniform reflectance. The image is modeled as a set
of regions of constant reflectance with occlusion boundaries between them. Most approaches to this
problem try to return an answer that is best, in the sense that the probability of the given answer differing
from the correct answer in a significant way is minimized. Such an algorithm applies estimation theory to0
the problem of low level vision.

Instead, this paper derives algorithms that attempt to calculate the probability of a boundary passing
between two points. In low-level vision usually one can acquire a sufficiently specific model for the
probability to be uniquely defined, even through the image is ambiguous. One advantage of this approach
is that a variety of different estimates of the segmentation can be derived from these probabilities by simple
operations.

This paper concentrates on the problem of deriving the probability of a boundary from a window on
the image. Classically this task has been cailed edge detection. [ am using a template based model for this
work: It is assumed that if the image was viewed through a noiseless sensor then every window on the
image would match one element of a set of templates. Since the image wasn't produced by noiseless
sensors its windows look like some template followed by noise according to the model.

Recently two works have been published that take an approach similar to mine. One that is similar is
by Art Owen [12] on pixel classification for Landsat images. The operator he derives returns likelihoods for
neighborhoods instead of pixels. Owen’s work uses a somewhat more sophisticated model t denve his
priors (a Poisson model of boundaries). The work has no noise model and does not consider combination
rules. Likelihoods are derived by training on test cases. Owen can use training to get his likelihoods
because of the small number of categones ne uses and because he uses binary (thresholded) images. This
reduces the number of cases he had to deal with so the operator can be conveniently trained.

Another work that takes an approach similar (o mine 1s that of Li and Dubes [9] on matching small
templates in binary images. They use MNcyman-Pierson statistics. Neyman-Pierson statistics are used
because there is a well defined nuil hypothesis (the object is not in the scene). Li and Dubes derive a
likelihood ratio test. Such a test has maximal power if it is based on a complete and sufficient statistic. The
way they derive the likelihood ratio is to derive likelihood generators. They approximate the likelihoods
deriving operators much in the same spirit that I derive mine in section 3.

There has been some work on using Bayesian techniques (tecaniques using likelihoods and prior
probabilities) to estimate edge positions. In particular the work described in [3] and (6] use Bayesian
techniques for image reconstruction and (8] uses Bayesian technique for reconstruction and edge detection
tas a side effect). These techniques have the weakness that they look for the maximum a posterion
likelihood (the /AP assumption). The MAP assumption only hoids when a small set of answers are the
only ones acceptable as correct with 0 loss and all other segmentations have the same loss (1 loss). [ believe
that 2 0-1 loss function is unrealistic for most applications. A (-1 loss function is realisuc if getting a
houndary wrong at a single point is as bad as getting it wrong everywhere. because both possibilities resuit
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in 1 loss according to the 0-1 loss function. In low-level vision the usefulness of an estimate drops off
gradually as errors accumulate. Some good results have been gained using these techniques.

Much work has been done using signal detection theory for deriving operators. However most work
based on signal detection theory is limited to operators that compute linear functions on the image.
Because of this limitation the operators generated are the optimal linear operators given a figurc : 1 - ¢rit.
In particular the Wiener filter is optimal for reconstructing images given a least squares cost function and a
correct noise model and image model. [1].

Canny [5] has developed an operator that is optimal according to a figure of merit that contains
detection and localization. He limited himself to linear shift invariant operators. His operators looked a
great deal like difference of gaussian operators. He modeled edges as a template and developed a
technique for generating an operator for an arbitrary template. | intend to generate optimal detectors
under my system with the same models.

Canny (5] Lunscher and Beddoes [10] and Torre and Poggio [15] limit the class of functions that they
consider for edge detection to linear shift independent operators. Thus their operators are convolutions.
When they indicate that their operators are optimal they mean that they do the best job for functions in the
class of linear shift independent operators. The class of functions ! use is the class of functions of a
window on the image. Such operators are shift independent but they are not necessarily linear. The
optimal operator from this class theoretically is the best possible edge detector for a specified window size.

Much of the work done in computer vision has been developed with idiosyncratic objectives. Because
of the their objectives differed from mine the algorithms some people developed have serious shoricomings
from my viewpoint. One alternate set of objectives is those held by researchers inspired by biological
modeling. An excellent work in biological modeling is that of Fleet (7). His work is on the temporal and
spatial characteristics of center-surround operators. Torre and Poggio’s work {15] also is of this form.

When working on modeling one tries to develop algorithms whose behavior closely approximates that
of a4 human vision svsiem. An example of such approximation is to have only band limited vperators
because the ceils on the mammalian opuc nerve have been shown to be band limited. [ only band limit
operators if 't 15 shown that the phenomena being detected are band limited or that a band limited operator
is sufficient to detect the phenomena without loss of accuracy.

Much work has been done on segmentation without considering opumality or probability. A
summary of work on edge detection and relaxauon occurs in [4] Recenuy some good work on edge
detection has been done by Canny [5] and Nalwa [11}.

2 The Image Model

In the image restoration literature much work has been done on a particular form of noise. The noise
introduced by the sensor is modeled by a linear blurring function followed by gaussian additive mean 0
noise 2} The log image from a photograph has gaussian additive noise in its linear region from the
randomness inherent in film grain. Gaussian additive noise occurs in any system whose noise is a result of
many small perturbations added together (by the central limit theorem). Blur can result from vibrations in
the camera. motion in the scene and the physics of light. | make a standard simplification in that [ assume
the blur is linear and shift invariant. Blur from vibrations in the camera and the physics of light has this
property. Blur from motion in the scene tends to be linear and shift invariant within a ngid object. Thus |




model the noise as convolving the image with a blur function and then adding a gaussian additive mean 0
random factor.

[ also need a model of an image to derive a likelihood generator. A likelihood generator is an
intermediate stage in an algorithm that calculates the probability of a boundary at a point. More details on
likelihood generators are in the next section.

Here, 1 derive the optimal likelihood generator that looks at a window in the image. Thus [ need
only model windows in the ideal image. I model the ideal image as consisting of windows that each match
an element of a set in a set of sets of templates. Thus if I can derive the likelihood of the observed window
given that its ideal counterpart matches each template in a set and the a priori probability of each template
then [ can derive the likelihood of the window belonging to the set of templates. As an example consider
the set of templates that consist of a uniform intensity (figure 1).

Figure 1. A template of uniform intensity.
100 [ 100 [ 100 | 100 |

This set of templates models the interior of a region of uniform intensity. Consider what an occlusion edge
between two such regions looks like. Such an event can be modeled by a template of the form in figure 2.

Figure 2: A template of a step edge.
100 | 100 | 200 | 200 |

This tempiate is often called a step edge in the edge detection literature. | aiso need to model the event
that there is an off center edge in the window. [ call this event a near edge event. The near edge events
are modeled by templates like those of figure 3.

Figure 3. Templates for a near edge.
{100 [ 200 [ 200 | 200 |

(100 | 100 [ 100 | 200 |

So 3 useful sets of templates are templates like those in figure 1. 2, and 3 with all possible intensities
substituted for 100 and 200. These templates model all possible configurations of a 1 bv 4 window in an
ideal image where ail regions are at least 3 pixels wide. If 1 can derive the likelihood of an obseried
window having a counterpart in each of these sets then | can derive the probability of a boundary n the
middle of the window using Bayes' law (see next section).

3. Likelihood Generators

Often it is easier 10 state and solve the inverse vision problem (which 1s why computer graphics can
generate realistic images that current image understanding systems can't analyze). For low level vision it is
easier 1o describe the probable structure of an observed intensity image in the presence of a boundary than
to describe the probability distribution on the boundary given an observed image. In particular the models
described in the previous section have this property.

The probability that the observed window’s pixels are assigned a set of values o when a feature f
takes on value v is the likelihood of v for a. | use Ly(a|v) as shorthand notauon for the likelihood. A
likelihood generator is an algorithm that uses 2 model D to estimate the likelihood of v for a. Thus | use
Lia{vdD) a8 ootation for the output of a likelihood generator. Given a likelihood generator for D and a
prior estimate of the distribution of 1's values then one can make a feature detector tor ¢ using Baves'

i APt - et o
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Rule:
_ Lgla|v&D)priors(v)
Pr(viadD)= S Ly(a}v'&D)priors(v’) (1)
vev

I call the feature detector thus derived a Bayesian feature detector for model D.

The set of likelihoods for a feature f given an observation a contains more information than (1) uses.
The denominator in (1)
S Ly(alv'&D)priors(v’) Q)
vEV
is the probability that awould occur given the prior estimate of the distribution on /s feature space. If the
probability is too low then the model being used probably is not correct. I use this information combined
with a priori information about the reliability of the model to derive an evidence theory in [14].

4. Likelihoods for a Single Template
The problem | address in this (Ter is to find the likelihood of an observed window given a template

and a model for the noise. Let O={o;} represent the window that was observed. Let T={t;} represent the

template. Then I need P(O|T&D(o,B)) where o is the standard deviation of the gaussian mean 1
additive noise and B represents the blurring function. Assume that B is negligible outside a window of
size (wp,/3) pixels and the template is of size (wr,/r). Then the effect of the blurring function B®&7 (@ is
correlation where the template never falls beyond the window’s edge, X ®X is a single number that is the
sum of squares of X's elements) is completely determined in a region of size (wr—wg+ 1./~ 5+ 1) pixels
(see figure 4).

Figure 4: Effect of 2 Blur Function on a Template.
T:
L 100 ! 100 | 100 © 200 | 200 | 200 |

A

@

H
wh
H

T;B:
{100 | 125 | 175 [ 200 |

I assume in the rest of this paper that the observation window O lies completely within the determined
region. So the only remaining probabilistic element is the gaussian additive noise. If / is the identity

function then I need to determine P(O | T@B4&D(c./)). 1 refer w the elements of TR 8 as the set Il'kl.

Since the only noise left in the problem is the uncorrelated gaussian additive noise (since blur has
been handled) the likelihood is the product of the likelihoods at each pixel.

P(O |T@B&D(o.l)=]] Ploi| ' 1&Dl0.l)) (3)
i

Since the noise is gaussian the likelihood at a point has this form:
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P(Oill ,&D(C.I)F ‘/2‘”0

exp

-

Thus the equation for the likelihood of the window can be stated as:

- bl

/[202] (4)

P(O | T@B&D(0.1))=-—ei——exp
v2uol"

The likelihood can be restated mathematically as:

expl[OG(T@B)]/[czl
[-/i;a]" En(0.0)EN(T®@B.0)

Where En(X.0) is eé¥®%12 which [ refer to as the energy of X relative to o. Note that En(0.0) is
independent of the template while En(T® B8.0) is independent of the observed window. These results
mean that En(7® B .0) can be precomputed while the cost of computing En(0.0) can be amortized over
the entire set of templates.

(6)

5. Likelihoods for Sets of Templates

Here. { examine efficiently calculating the likelihood of a set of templates given an observed image.
In particular | examine the set of templates whose elements are all linear functions of a characteristic
template. To. Thus I describe such a set as aTy+b. [ call such a set a linear set of templates. The set of
step edges with a fixed step point can be described as a linear set. The set of symmetric peak edges are
linear functions of a prototypical peak edges hence are a linear set. The linear slopes are linear functions of
the function f(x)=x hence are a linear set t00.

[ limit my blur functions to blurs that leave uniform intensity images unchanged. Then my ser of
B®T is of the form aB®&Tg+b. The likelihood of the observed image given a member of a linear set ts:

exp [zwo R(T,@B b0 1 >]/[202|
(7)

[v’ﬁo]" 7[Em().a)llEn(aTg®B+b.a)l

The triplet (En(0.0).0RT,@B.OR]/) is sufficient tor determining the iikelihood of this set of templates.
The class of templates is indexed by a and b. To find the likelihvod [ need a priori probabilities for the
different templates. I describe these probabilities with Pr (a.b).

The likelihood of a linear set is:

1 exp[[(ao @ ToﬂBHbOQI\]/[a’] ®)

']Ti;c'["En(o.a)E;, T Enal@B+b.o)
Let Fr, be defined in equauon (9).

PTo(a cb)

.
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exp[[(aC+bS )]/[02”

9
Fr{CSF 2 —gar.@Bv5.0) [Td@P)
Then equation (7) can be rewritten as equation (10).
: Fr{OR(T,@B).081) (10)

[«iu‘al"En(o.o)
This implies an algorithm for deriving the likelihood of a linear set of templates.

Let V be the variance of the noise o?
Let K be {v ngj"
For each window W in the image do
{
S: Let S be the sum of the pixels in W
SS: Let SS be the sum of the squared pixels in W

C: Let C be the correlation of W with the T® B
F: Let F be Fr,(C.S)
E: Let E be exp( SS /7 (2*V))
O: Output F /(K *E)
}

If there are N pixels in the image steps S and SS require O(N) operations counting adds and
muitiplies. Step C requires O(NlogN) operations. Steps E and O are also O(N) operations steps. Thus
the algorithm requires O(Nlog/N') operations plus whatever is required to execute step F. [ propose to
calculate Fr, by table-lookup on the values of S and C. Thus step F is just a table-lookup.

The size of the table that holds F is the product of the number of possible values ot C and S. Both
of these can be calculated given the number of gray-levels in the image, . and the number of pixels in the
window. n. and T;®B. The number of possible values for S is nt7 and the number of values that C can
be is G(T,®B). Thus the number of elements in the table is n(TH® B)G.

For a central step edge with a 1 by 8 window n=8 and 7,8 8=4. Thus the size of the wable is 32G2.
Table 1 is a table of G values and resulting table sizes.

Table 1: Table Sizes to calculate F;
G Number of  Storage for l'able in bytes

Table Entries (in double precision)
4 512 4K
16 8192 64K
64 131072 M
256 2097152 16M

The more gray-levels the more difficult it becomes to store the table. It also becomes more work to
calculate the entire table. Thus to handle 64 or more gray-levels I suggest that a smailer table be used with
interpolation. If there are symmetries in Fro a smaller table is sufficient to store the funcuon. As an
example if FrfS.C F Frf{S+16.C) then only Fr, ueed only be calculated for S between 1 and 16. At this
moment no such symmetries have been discovered.

‘-_..-
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6. Detecting 1-D Step Edges Optimally

For the model of regions of uniform intensity with step edges between them I need only calculate the
likelihoods for two linear sets of templates. One template is the uniform intensity template. The likelihood
of this template can be calculated from the standard deviation of the observed window. The other is the
step edge template with the step in the middle. If I have a prior on the probability of a boundary then |

have the tools necessary to build an optimal edge detector for my model.
The near edge templates can be approximated by the likelihoods calculated :t}\”nejghboring
(overlapping) windows for the central step edge linear set. Since I am deriving a 1 dimensional edge
detector, the likelihood of an edge in the center of an overlapping window is the likelihood of an edge
directly to the right or the left of the center of the window. In the step edge model all regions are at least
w/2 pixels wide given a template width of w. Thus the near edge events are exclusive of the central edge

events,

I assume a cost function that simply counts the number of points mislabeled as boundaries or
nonboundaries when the opposite is the case. The prior probability of a central edge and any near edge
event is equal under models that do not have a prefered position for objects. Thus if the likelihood of a
central edge is not maximal among all the overiapping windows then the optimal estimate does not have an
edge at this point. Only local maxima among the likelihood of step edge function are reported. Thus
multiple reporting of an edge is precluded. Also only edges that satisfy the inequality (11) are reported:

PO VEYPeIP(O | U)Py (11)

where £ represents the event that there is an edge in the center of the window and Pr is the prior
probability of that event while U represents the event that there is no edge anywhere in the window and
P+ is the prior probability of that event.

[ can also use my work on evidence combination to combine likelihood generators that make different
assumptions about the noise and blur. Many of the operations I use to evaluate the likelihood of a linear
set of templates under one kind of noise can he used for many different kinds of noisc. As an example
En(O .o) is used by all likelihood generators based on linear sets of templates. Also all templates that have
the same value for En(To@B,0) and (7o® B8R/ and have the same values for Pr, can share the same

wable to calculate Fr, since it depends only on these parameters. Thus if all the differently oriented edge

templates have the same sum of pixel values and the same sum of squares of pixel values they can share
the same table for Fr

7. Conclusions

In this paper I demonstrated an aigorithm for edge detection that is mathematically optimal for a
popular model. Since Fr is increasing in O @(T,® B) this algorithm thresholds using a function of the

sum of the pixels in the window and the sum of the squares of the pixels in the window. The algonthm
only reports an edge if there are no nearby edges with greater likelihood. That test is similar to edge
thinning in standard work. Thus the algorithm is similar to algorithms that run a thresholded convolution
and then thin. Currently this algorithm is being implemented and experimental resuits will soon be
forthcoming.
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