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1. INTRODUCTION

This report contains a simplified calculation of the absorption and photo-
luminescence spectrum of modulation-doped gallium arsenide for energies below
this material's direct band gap. The calculation was motivated by the results
of optical experiments []* on these systems which, in some cases, revealed a
two peak structure in the photoluminescence spectrum whose origin was unclear.
The work described below, representing a first attempt at clarifying this
situation, is divided into three sections. Section 2 is an overview of the
problem beginning with background material and ending with a description of
the electronic states used in the calculation. In section 3, the absorption
spectrum, the photoluminescence spectrum, and the relationship between them
are derived. Finally, section 4 contains a discussion of the theoretical pre-
dictions along with critical comments on various simplifications made in the
analysis.

2. OVERVIEW

The systems from which photoluminescence spectra were obtained consist of
approximately 1-pm-thick wafers of gallium arsenide which were grown by mole-
cular beam epitaxy. During growth these samples were selectively doped with
donor (Si) and acceptor (Be) impurities at densities in the neighborhood of
1018 cm-

3. A typical doping profile appears in figure I, where a positive
ordinate refers to donor (n) doping and a negative one refers to acceptor (p)
doping. The abscissa denotes position in the sample measured along a cubic
axis (GaAs is a cubic crystal with the zinc blende structure). The periodic
nature of the doping profile has led some to refer to these systems as super-
latc:ices because of the additional periodic potentialt imposed on electrons by
the ionized donor and acceptor atoms.

DOPING

(x 10" cm) 0 ---

DENSITY

Figure 1. Doping profile along (1,0,0) direction
of gallium arsenide crystal.

*References appear at end of text.

tStrictly speaking, the potential is not periodic. Since the impurity atoms are thought to

occupy atomic sites in a random manner (at least at these doping .ensities), the added potential
can only be viewed as periodic In the growth direction if one is willing to average over the
random distribution of impurities in the transverse directions. This point will be addressed
later.



In order to understand the optical properties of this system, one must
have a clear picture of the electronic states, and for this, a brief qualita-
tive description of the effects of doping in a single crystal of GaAs is
appropriate. Consider first the case of a single donor. Such an impurity
differs from the atom it substitutes. In particular, when neutral, it has one
extra electron occupying a localized orbital. This electron can be weakly
bound to the impurity: its energy might be only 6 meV below the bottom of the
conduction band. In such a circumstance, the effective mass theory [2] tells
us that all characteristics of the localized state are determined by the
nature of the low-energy conduction-band states. For instance, the "Bohr
radius" of the impurity wave function is given by aB = ,1

2 K/mce 2 - 100 A, where
K (=12.5) is the static dielectric constant and mc is the conduction-band
effective mass (mc = 0.067 m; m = electronic mass) of gallium arsenide. At a
doping level of 1018 cM-3 , the impurities are separated by an average distance
of about 10-6 cm (-100 A), so that the wavefunctions of impurity states on
nearby sites have a substantial overlap. This means that electrons are no
longer localized to one impurity but are able to move about throughoot the
crystal, much like normal conduction-band electrons. This mobility enables
electrons to more effectively screen the impurity/electron interaction, weak-
ening its effect. The density of states (DOS) in such a heavily doped system,
along with the DOS in the undoped case, is given schematically in figure
2(a). The heavy doping changes the behavior of p(E) near the band bottom
Ec(0): in the undoped case p(c) behaves as [c - c(0)]1/

2
, while in the doped

case p(e) gets a Lorentzian-like contribution to the intrinsic behavior,
decreasing the effective band minimum by a small amount (a few milli-electron
volts) and adding to the overall DOS above the minimum. As is evident from
figure 2(b), the situation is altogether different at these doping densities
for acceptor impurities. Unlike donors, acceptors are neutral when their
localized state (which lies just above the valence band edge) is unoccupied.
Theory predicts the acceptor state in GaAs to have a Bohr radius of about 18 A
(mv  0.35 m 0 ), leading to very little overlap between acceptors separated by
100 A. The states would retain their localized nature and would contribute a
relatively sharp peak to the DOS function at an energy above the valence band
edge equal to their "binding energy."

Having discussed these simpler cases, we are now in a position to consider
a p-n junction and then a superlattice. Figure 3 shows the energy bands
versus position along a (1,0,0) direction in GaAs which is p-doped to the left

and n-doped to the right of z = 0. The horizontal dash-dot line represents
the Fermi energy of the system whereas the heavy dashed line represents the
acceptor impurity levels. The manner in which the charges redistribute them-

selves is responsible for the appearance of figure 3. When the p- and n-doped
systems are joined together at z = 0, the mobile electrons in the extended
impurity states (z > 0) move into the p-type region (z < 0) occupying acceptor
levels. By doing this, electrons can initially lower their energy by -1.5 eV
(the energy gap Eg in GaAs). As more electrons fill states, the vicinity of
the junction changes its character: the n-type region becomes positively
charged and the p-type region becomes negatively charged. This charge separa-

tion creates an electric field which eventually prohibits further charge
flow. The total depletion region (where the bands "bend") in this system is
about 650 A wide. This width leads to electric field strengths of about

6
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1.5 V/650 A - 10s V/cm. While these fields are large, they are not large
enough to invalidate the semiclassical theory [3] of electron dynamics (which
goes into the arguments leading to fig. 3). This theory allows us to assume

that the spectrum of single-particle states at a position z I is the same as

that found at z2, with the exception of an overall constant shift in all
energies by e[ (z 2 ) - (zl)] where e is the magnitude of the electronic charge

and is the electrostatic potential set up by the ionized impurities. The

validity of the semiclassical approach implies, among other things, that the
DOS above the conduction-band minimum in figure 3 is like that shown (roughly)
in figure 2(a) for all values of z. In particular, a continuum of single-
particle states begins at the band bottom even for a z-coordinate within the

depletion region.

We are now in a position to consider the nature of the electronic states
in a crystal of GaAs which has been doped according to the profile in figure
1. Because the n and p doping densities are equal and because the doping
period 9. is significantly less than the normal depletion width (650 A) in a
GaAs p-n junction at these doping densities, the lowest energy configuration
of this system would correspond to completely ionized donors and acceptors:
no region of the superlattice will be charge free. The results of a semi-
classical approach to obtaining the electronic structure for this system are
displayed in figure 4. The conduction-band bottom (and valence-band to ) in
this figure is obtained by adding to the unperturbed band structure E £ ) ( k )

the potential energy U(z) = -e (z). This potential energy can be obtained by

"smoothing out" the localized ions to form alternating layers (of thickness
t12) of uniform positive and negative charge density.* We then need to solve
V 2 4(z) = -4lTp(z) with p(z) = ±eNd, where the upper (lower) sign refers to n-
doped (p-doped) regions and Nd is the donor (and acceptor) density. This
calculation is simple, and leads to figure 4, with U 0 given by U 0 = wNde2i 2/8 K

(which for the parameters of fig. 1 equals 290 meV).

Unfortunately, the semiclassical approach is easily shown to be inadequate
in this case. A calculation of the kinetic energy (KE) required by an elec-
tron localized in one of the conduction-band wells of figure 4 gives KE - 3
meV. This energy would represent the typical separation between low-lying
states inside the well, leading to a DOS far below that predicted by the semi-
classical picture where the states are more dense by a factor of at least
500. We are thus forced to employ the effective mass theory in order to
obtain the electronic states. This has been done for the conduction-band
states by Ruden and Dohler [4]. Their results show that near the bottom of
the wells in the conduction band (and the top of the valence-band wells), the
electronic states are harmonic oscillator-like in the z-direction and free
electron-like in the transverse directions. An electron in one of these
states is confined in the z-directlon and free in the x-y plane. The effec-
tive oscillator frequency is easily obtained via the identification
1/2(mcwZ2) = 1/2( 4Nde2/ )z2, giving w0 = (47Nde /mc)/2 The valence band

*The approximation of replacing the impurity potential 4(r) by its average 0ave(r) is probably

a good one because the typical difference between the two, <!1ave(r) - *(r)I>, is less than the
kinetic energy gained from one electron in its delocalization (which is proportional to the
impurity-impurity overlap).

8
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is more complicated because in GaAs, the valence-band maximum (at q = 0) is
four-fold degenerate (including spin). In addition, the effective masses are
quite different from the conduction-band mass. These two facts complicate the
structure. In the present work this complication is ignored (comments regard-
ing its importance will be made in sect. 4). In figure 5 a schematic of the
electronic structure is given along with a DOS profile in the conduction and I
valence bands (the valence-band profile is included only to emphasize its
qualitative difference from the DOS profile of fig. 2(b)). Note in particular
the step-like nature of these profiles, which is characteristic of a two-
dimensional system (the DOS in a two-dimensional system of free electrons is a
constant). The acceptor state energies are represented by a dashed line whose
position should not be taken too seriously since our treatment of the valence-
band states [5]* has been approximate.

DOPING

CONDUCTION
BAND

2Uo 10

SEMICLASSICAL BAND STRUCTURE

Figure 4. Energy band diagram of system in semi-
classical approximation.

n

DOPING
PROILE

CON1NLA * CONoucTION BAND
I// ,Figure 5. Energy band diagram

///,','' /, of system in effective mass
approximation including den-

Esity of states profiles in the
conduction- and valence-band

o -- .-- -- - --"'"wells. For clarity, finite
width of minibands has been

ignored.

CONTINUUM VALENCE 8ANO

*A preliminary calculation of acceptor binding energies versus position in a superlattice

(which Ignores valence-band structure) was made by Leavitt and Simpson [5) and supports
qualitatively the positional dependence of the binding energies which is displayed in figure 5.

9



In light of this electronic structure, the novel optical 'and elec'tripa:
properties of this system are readily understood in a qualitative way. T he
ground state has all acceptor levels filled with electrons, anl the
conduction-band states are empty. If one excites electron-hole pairs with an
above-direct-band-gap cw laser (e.g., a He-Ne laser), electrons will scatter
off phonons on a 10-2 s time scale [61], eventually relaxing into the lowest
conduction-band states possible. Similarly, holes will relax to the highest
acceptor states available. The radiative recombination time for electrons and
holes, which in a uniformly doped semiconductor is of order 10" s [6], is
dramatically increased because of the reduced overlap between low-energy
electron states and acceptor states whose wave functions are separated by up
to a superlattice half period (200 A in this system). As a result of this
reduction in recombination rates, a cw laser will initially create electron-
hole pairs more rapidly than they can recombine, leading to a filling of
electron states in the conduction band and hole states in the acceptor levels.
As this filling proceeds, the recombination rate rapidly increases for two
reasons. First, higher oscillator states in the well extend further out,

giving them greater overlap with acceptor wave functions. Second, and more
important, as the steady-state nonequilibrium charge density in the conduction
band (and acceptor levels) increases, the effective potential seen by an
electron is weakened by the carrier's increased ability to screen the space
charge field of the ionized impurities. Any weakening of this potential will
dramatically increase conduction-band-state/acceptor-state overlap, resulting
in higher radiative recombination rates. When the generation and recombina-
tion rates are equal, a steady state will be reached. This steady state will
be characterized by an effective potential that differs markedly from the
potential seen in the absence of excitation. This means that each pump laser
intensity will correspond to a specific steady-state charge density in the

conduction band, n (2 ) , and its corresponding effective potential. Figure 6
schematically shows the situation one obtains in this system at two different
pump laser intensities (Ib > Ia). The higher charge density in b results in a
substantially weakened potential and increased effective gap Eg.

(a)

I 2Uo

F

Figure 6. Energy band dia-
grams representing two

PUMP LASER INTENSITY a steady-state nonequilibrium
configurations of super-

(b) lattice. Pump laser inten-

sity which maintains steady
. __state is higher In (b) than

21.1 (b) In (a), resulting In a larger

I '.. F'effective gap.

PUIMP LASER INTENSITY I
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where b = (1I/mc o)1/2, H V(y) are Hermite polynomials, and v labels the oscil-

lator energy levels. The eigenvalues c in equation (4) take the form c (k) =
2/2M V

112k/ c + twO(v + 1/2). We have chosen to normalize the wave function
according to the requirement

fJ drl(r)12 1 1

N fa dpluc,O(p)12 = 1

where N is the number of unit cells in the system and the second integral is

over the volume occupied by a unit cell 90 1

A particularly simple form has been chosen for the acceptor states: one

which ignores entirely the previously mentioned complications in the valence

band by treating the highest energy valence-band state as nondegenerate
(except for spin). The wave functions are of the form

a(r) = Fv (r)uv,0 (r) 
(6)

where uv o(r) is the highest energy valence-band Bloch function, and F v is a

modulating function* satisfying a hydrogen-like Schroedinger equation. For

simplicity, Fv is taken to have the hydrogenic form

f a_ )1 1 2 -rla
FV(r) - e a e (7)

where a is the acceptor-state Bohr radius and r measures position with respect

to the impurity.

3. CALCULATION

We begin an analysis of this system's optical properties by determining

its absorption coefficient. In this calculation we assume that a monochroma-

tic plane wave is incident on the superlattice which is in its ground state.
The Hamiltonian of the system is given by H = H0 + HI , where H0 gives rise to
the harmonic oscillator-like and acceptor states described earlier, and H1 ,
given by H, = (e/mc)A-P, represents the interaction of an electron with an
external electromagnetic field. The field, which is assumed to be linearly
polarized in the 2 direction (c.z = 0) and propagating through the sample in
the z-direction, can be expressed in the form

E = E0 (w) ei(qz-wt) + c.c. , (8)

*More properly, one would have *a(r) = F,(r)uv,O,1 (r) for the acceptor level, where the sum

on v is over all degenerate (q = 0) valence-band states (and maybe even other nearby bands) and
the FY(r) are modulating functions satisfying a set of coupled differential equations. See
reference 2.

12
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where q = (w/c)n and n is the refractive index of GaAs. This field is deriv-

able from the vector potential

A = Ao(w)ei(qz-wt) + c.c. , (9)

with E = -(/c) A/3t and Ao(w) = cEo(W)/iW.

For absorption we are interested in the rate at which H1 induces transi-
tions between the acceptor levels and the conduction-band states. Labelling
an acceptor state, which is centered at (0, 0, zo), by "a" and conduction-band
state by "v,k" we obtain, using Fermi's Golden Rule [71, the rate of induced
transitions from ja> to Iv,k>:

W)k,a = 2 1<,kIHl(w)Ia>I2 6(E ,k - ea(Z0) -Ti) (10)

where a (Z O ) is the energy of the acceptor state (measured with respect to the
effective potential minimum of the conduction band). Since we want to deter-
mine the rate at which energy is taken out of the radiation field, we should
multiply this by ,, and then sum over all final states Iv,k>. The delta
function will ensure that only states with the proper energy are included in
the sum. (Inspection of fig. 7 shows that for a given 15w, a set of pairs
[v,k I will conserve energy.) Therefore we can write

W = I v,klH1 (w)Ia>1 2 6(%i, - a(Zo) - fl) (11)
v k '()~ k:~O w

\N.z0 MC~ d

Zo Z pe)

Figure 7. Conduction-band-well effective oscillator
and density of" states along with a single hydrogenic
aceptor wavefunction located a distance z 0 from well
minimum.
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i

where W is the rate at which energy is absorbed from the radiation field via

transitions out of one acceptor level. If we use the relation

L 2  dk L2m Cfd

) (2r) 2  f 2irk - dE k 2 I
k v,k 2 v,k

and include a factor of 2 for spin, equation (11) becomes

2Lm W

W(z0 ) = C -<-- Z l<kIH1()la>120(k2) (12)

where k2' m c/t 2 tw - fiwO(v + 1/2) + Ea(ZO and O(x) 1 for x > 0 and

0 for x 
( 0.

In order to determine the effects of all the impurity states, we can refer

to figure 8, where we have schematically plotted the acceptor levels versus

position along with the neighboring conduction-band wells. The contribution

from transitions out of an acceptor to its neighboring two wells will be W(z0)
+ W(z - zo). The number of acceptors in the slab with thickness dz0 at z0 is

L2 dZONd. We can then integrate over z0 from Z/4 to 3Z/4 and multiply the

result by Nj, the number of periods, to get

Z f 32/1 dzoNdL 2[W(Zo) + W( - z0)]

IMPURITY

II

Figure 8. Acceptor energy profile along with neigh-

boring conduction-band wells. C

14



Because of the obvious symmetry about z = V/2, this becomes

2N dN .2  J/4 dx w( + X)

Using N it = L and dividing by L 3 , we obtain the total rate of energy loss per

unit volume

Wtotal 2Nd (/4

L 3-=T T S f W(2+ x) (13)

This rate is simply connected to the absorption coefficient a(w). Imagine a
wave entering a slab of thickness t. On entering, the wave's intensity is I0

(=(nc/81r) 1E012), while on leaving it is 0  e So, the net energy into the
slab per unit time is IoL 2 

- I0 e-atL2 -- I0atL . This gives I0c for the net
energy into the slab per unit time, per unit volume. Equating this to the
expression above gives

a(W) = f dx W +X (14)
1 0 1 -1/4

To proceed further, we need to evaluate W(z0 ) as given in equation (12).

Consider first the matrix element <v,kvIH1 (w)Ia>. This can be written

<vkIH1( w)la> f dr u* (r)F*(r)(,e A(w)P)u (r)Fv(r - z0z (15)
c,o c ,c /V,O ,.

If we now make the replacements

r 4R. +p , r dp
_J ~fdr 4 fl

and, in the spirit of the effective mass theory, ignore changes in the mod-

ulating functions on the length scale of a lattice constant, we obtain

<v,k IH1 (w)la> = e A(w).I Fc(Ri)PFv(R, - z02) f dp u, 0 (P)Uv (p)

0
(16)

+ . -(,)F(R-z 0Z) f dp u*0 (P)PUv,(P)! ic c,

15
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The first term in braces is zero because in GaAs, the functions uc 0 and Uv,0

have different symmetry* and so are orthogonal. Keeping only the second term

and using Ao(w) = cEo(w)/iw leads to
eE0

<v,k IHl(w)la> = -- 0 (Z'Pc,v(O)) 1  f1 dR Fe(R)Fv(R - ZoZ) (17)

where we have definedt Pc,v(O) a N 0 dp uO(P)PUv,O(p). The integral in

equation (17) can be done more easily if we first Fourier transform Fv , re-

placing it with

F v(x) = [ C(q)e iq'x
q

The transform C(q) is easily shown to be

C(q) = (6Lna')1/2 1
7 -5) I + q2 a2)2

and when used in equation (17) gives

<v,kvIH1(w)la> =eE (E'Pc,v(O)) I C(k%)'qz)-%(-qz)e- iqzZo (19)

i~m qz

where

1 -iqz
j(qz) f dz n%(z)e and C(klqz) C(kP k  ,qz)

Consider now the calculation of i(qz)" If we define

N m IL 2-v V!- 1/2 -1/4 b-1/2
V

and use the dimensionless variable y = z/b, we can write

N b -y /2H  -iq zby

nV (q z) = L dy e H (y)e (20)

*s-like and p-like, respectively.

tBecause of the normalization convention chosen for the u's, the factor of N is needed to make

the result finite.
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Although this integral can be done, it is more useful at this point to define

n,(qz) in terms of derivatives of the Hermite polynomial generating function.

For this we define

IV () = O V (y)

and its generating function F(s,a):

I 1 (a)SV 2 -ly H (y)SV
F(s,a) = 1 _ I = f dy e 2 e v (21)

VV =0 V

H (y)CV
Since y V -s2+2sy

vS n e 2 ' [7], we obtain after doing the integral,

V

F(s,a) = V ea 2 /2 - 2ias (22)

Using this expression along with the generating function allows for a deter-

mination of I v (a) with the rule

I (a) = d F(s,a) s=O (23)S ds'v

Combining these results in equation (20) then gives

v N2 e -qb 2 /2 dv (eS-21qzbs)
nv(qz ) = L 3s I s=O (24)

After n V(-q ) is substituted into equation (19), the matrix element

be comes

<vkH (wfla> ee (2PcQ,(O) v ( - N -- (e 2 f(S (25)1 i~m /Tf V dsv =

where

e-V2 /2cos(v(2s + Zo/t))

f(s) dv 2 + az v2) (26)
( 1 + k Va 7

This resul4 can be further simplified by using the chain rule to replace

dV/dsv (e3 f(s))1 3 =0 by

V! d v - 2p J

p (v - 2p)!p! dsv
2p s-0

17

,._...A



We then obtain

eE (! dV- 2P )
<vkIH1 (w)la> = j- P (cP,v(0)) C(O N v (v - 2p)'p! f(s)V I W / 2 - 1 p ( v - "p ) d s v -  2 p I s - 02 7(27)

Also, if we let w e (a/b)v and P2 - 1 + k2a2 , fs can be written
V V

-(b2/2a2 )w2

- 2b d dw e cos(rw)
a -J dw P2 + w

2  (28)

where r - (2b/a)s + zO/a. This integral can be done [81 and the expression
differentiated with respect to p 2 to obtain

V

b 2%.i/2a 2  [r 1r
f(s) = -- e v - baW2/a 2) [e VErfc(X) e VEfx

V

b 2 1A2 /2a2  e_ -rPEfTrbr V
4a e V L Erfc(X+ ) e vEf(Xv) (29)

b2  b 2 P2/2a 2 rep -V -rV -X2_-
+ (T/ 2 )1/2 b e [ Ve + e e ,

where X + = [(b/a)p ± Zo/b]/f2" and Erfc is the complementary error func-
tion [8]: We can now use these results to obtain for W

64a 3mce2 1 E0 12 O v- 2 p 12
W:2 (/2112m2b 1 1 ()j2 o 0(k 2 f(s) s.0

ds1-2P 2 / L1 (v 2p)!p! s=

(30)

This is our final result for W, which can be used in equation (14) to obtain
the absorption coefficient c(w).

Before examining these results in any greater detail, we now consider the
case of photoluminescence. For this, we assume that a steady-state non-
equilibrium condition is maintained in the superlattice which produces a sharp
quasi-Fermi level in the conduction band. Below this level, all conduction
band states are occupied. Spontaneous emission of photons will result from
transitions of these electrons into empty acceptor states. For photolumines-
cence, we need to determine the rate at which these photons are emitted.
DetaileJ balance arguments given in appendix A lead to a relationship between
microscopic induced and spontaneous transition probabilities, which can be
expressed through the equation*

dN71
dNq, A dt ind.abs.

dt Ispont.em N '(31

*In this equation, statistical factors are assumed equal to values which would maximize each IIratio (see app A).

18

* *~-. .... S.. . , *1 - . .. ,44P#



where Nq, is the number of photons in mode q,X of the radiation field. To
obtain tne photoluminescence spectrum R(E), which was defined earlier, we need
to multiply equation (31) by flw, sum over all photon modes q,A consistent with
their energy being in the interval dE at E, and divide the result by the
volume of the system. This gives

=~~d lnW (32)X
) dt Ispont.em. (32)

q 
t ,

where the prime on the sum is a reminder of the energy restriction. But Nq,X
m- (u_, A), where u q is the q,X contribution to the energy density in the

%P fiell. If we use this together with equation (31), we obtain

-dN,

R(E) dc = (Iw)2  ' dt ind.abs. (33)a u

The quantity -1wdN ,A/dtlind.abs. is the rate at which energy is absorbed from
the radiation fied, which is precisely the quantity Io(o)i calculated
earlier (provided we take q = (0,O,q) and choose the same polarization
e). Thus w, can write

dN

I0 q,( dt ind.abs.

C Using this result in equation (33) along with the relation u = nIO/c gives

R(() dE =) A M (35)

The only dependence of a (w) on q and A comes from the square of the matrix

element which contains t%'e factor J k(q).Pc,v(0)j2. Here A(q) (A 1,2) are
the orthonormal polarization basis vectors which are orthogonal to q and de-
fined according to some arbitrary (but definite) prescription. With this in
mind we consider the sum

l (q)'c v(O~' ° ZdE f dq l X(q).l' v(O)l' (6
EAXr4)rf (P) e cq)p()12 = I --- de dq()1_ (36)

q,A A''A

Using c = f ficq/n, this becomes

I 'j(qP 0  (0)12 W n P (0)-i P () ,(7(q)-P -? 2,c Sev Po. (0) ,(37)

q'Xc A C c'v C

where we have defined w= X 1/4 dq Z A (A
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4+m

One can replace dq by d2 and easily obtain "A = (1/3)qjqj6ij. If this isused in equation (37), one obtains

1 Q-' W2n dE 1(38)

Substituting this result into equation (35) then gives

n2W3
R(E) = -r- < qA( )> , (39)

where <cq,A(w)> (=I/4w f dfq aq,A(M)) is the angular average of aq, X(w), which

is given by equation (14) for the case q = (0,O,q) and polarization = 2. As

shown above, <a(w)> can be obtained simply from expressions for a(w) by re-

placing the quantity I2.pc,v(0)j2 which appears in the squared matrix element

by the expression 1/3 IPcv(O)I.

Equations (14), (30), and (39)* are the central results of this work.
Under appropriate circumstances they can be used to gain insight into the
photoluminescence and absorption spectra of doping superlattices.

4. PREDICTIONS AND DISCUSSION

Before the results obtained above are examined, a few comments will be
made regarding their applicability.

The absorption spectrum given by equation (14) represents contributions to
absorption from electronic transitions between localized acceptor states and
extended (in two dimensions) conduction-band states. When 11W is large enough
to induce transitions between extended valence-band and extended conduction-
band states, equation (14) will no longer apply, as these contributions were
ignored in the analysis. It is also important to remember that this formula
is applicable only when the exciting field is reasonably weak. t  An intense
external field will generate electron-hole pairs more rapidly than they can
recombine, leading to a finite steady-state conduction-band charge density
n ( 2 ) and an altered effective potential. ln this instance, the potential used
in obtaining the approximate eigenstates will be inappropriate, and equation
(14) will provide only a qualitatively correct account of the spectrum.

*Care should be exercised in using equation (39) for the photoluminescence spectrum. In our

calculation of a(w) we considered contributions from all acceptor levels. For photoluminescence,
all acceptor states cannot be final states since some are already occupied. Instead, one should
limit the range of integration in equation (14) to the distance required to contain a number of
states equal to the total number of occupied states in the conduction band.

tIn view of the nonlinear optical properties of this system, this constraint could be severe.
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In the case of photoluminescence, similar considerations will apply. In
particular, high pump laser intensities will produce steady states whose cor-
responding effective potentials are substantially different from the effective
potential used in the calculation (which corresponded to n ( 2 ) = 0). Despite
these limitations of the theory, the more serious electronic structure calcu-
lations of Ruden and Dohler [4] support the qualitative picture presented in
the model, at least for values of n ( 2) which are not excessive (>50 percent of
the available acceptor charge).

In what follows we examine the photoluminescence spectrum predicted by
equation (39) for a superlattice characterized by a doping density of 1 x 1018
c- 3 and a period of 800 A. We will consider a range of charge densities n ( 2 )

since the spectra can be rather sensitive to this density. In order to apply
equation (39), we need to determine two things. First, we need a reasonable
representation of the manner in which the acceptor binding energies vary with
distance from the center of the p regions. Variational calculations [5]
support qualitatively the use of a binding energy profile similar to the one
displayed schematically in figure 8. The binding energies are largest in the
center of the p regions and decrease to small values near the edge of the p
regions where the space charge field is largest (they can never go lower than
the v = 0 oscillator level in the valence band since this marks the beginning
of a continuum of states). To represent this state of affairs, the binding
energies were modelled by the expression Eb(Z) = Ebmax e-yZ 2, where z measures
distance from the center of the p regions and the parameters Y and Ebmax are
chosen judiciously. Finally, a choice must be made regarding the way in which
empty acceptor states are distributed (among the occupied acceptor states)
when charge is elevated into the conduction band in order to represent a
specific steady-state configuration. We will assume that the empty acceptor
states are those acceptors which occupy a region of finite thickness centered
on the p regions (i.e., the highest energy states). The thickness of these

*: regions is determined from the nonequilibrium charge density in the conduction
band. For instance, if 50 percent of the available acceptor charge (electrons
occupying acceptor states in the ground state) were elevated into the conduc-
tion band, then one half the thickness of the p layers would be neutral (200 A
for a superlattice period of 800 A). We remind the reader that in such a case
the binding energy profile would change since the "background" potential would
be flattened in the central halves of the p regions.* The Gaussian profile
function given above is flexible enough to account for this effect qualita-
tively since decreasing Y (or Ebmax) would flatten out the profile.

For the parameters we will consider, the quasi-Fermi energy EF will always
lie below the v = 2 oscillator level. In this case equation (30) simplifies
considerably and can be combined with equations (14) and (39) to give, after
some manipulation, the expression

R(C) = DC2 F(C) , (40) 3

*Another aspect of the binding energy profile which we have ignored in the present calculation

is the inevitable dependence of the average acceptor wavefunction radius on its binding energy

and hence position. Our present lack of information regarding the acceptor wavefunctions

necessitates this.
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where D is a constant,* is the photon energy in units of fiwO, and F( ) is
given by the integral

F( ) = j2 w{Iek 1- 0 (k Of) ] + _ 12 E)(k 2) [1 - 0 (k 12f)] ('41)

where 0 is the step function defined below equation (12),

k2 = (2/b2)& - (n + 1/2) + ca(w)/ .wO

and

k2 is k2 with E = f = EF/T1a 0
nf n

The functions [I - G(k n )] prevent photoluminescence contributions from states

above the quasi-Fermi level while the functions O(k n) prevent contributions

from below the nth oscillator levels. The functions 10 and I are given by

o b 2b4 2/2a 2 Frfcp2
1= 2ijoa e ~/ 2 e EfcXO+J (I - baji/a 2 ) -2av±o w]

b b 2 /2a 2 -r0  b 22/a2 b w
+ 2 o e e Erfc XoL 2  (1 - b2 j/a 2 ) 2 w(o

0b 2  e b 2  /2a 0O-
+ 0rO-- i 0b 12/2a2  r 0

ebW/ae 'IErfc(X1
+ ) [2 ( I + wj

bb 2  0 0/2a - 1  b[2 2
e e Erfc(X 1 _)[ (1 - w (43)

b Ff 1p -0 1-i2pow

b 2 jj/2a 2  rI2 -r x2

- (U/2) / 2 e (1 - e/a e -e e

and dfn deid whatlrc( bil

where X 0= (b/a) 2a + w]/ d r = ( b/a)w. To ei F we

fraction of the available acceptor charge is to be placed in the conduction

band. The maximum available density n (2 ) (per unit area, per layer) is simply
max

given by Nd 9/2, while CF is given by the solution to the equation

(mc/irfi2) (EF - flw0 /2) = n ( 2 )

*D Is given by D = (1024a/313/2ln)(Nda')(e/tme)(Nd/.mfl?)IPc,v(O)I' where a (equal to e2/ c)

is the fine structure constant.

,'I
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when EF lies between the v = 0 and v = 1 oscillator levels or

(M/rt2)wo+ (2mc/Tiil) (EF - 3/2fiwo)=

when 5F lies between the v = 1 and v = 2 oscillator levels. In these

expressions m0 /i is the DOS (per unit area) in a two-dimensional system
[3]. Finally, the limits of integration in equation (42) are given by

Wl, 2 F n (2) /n (2) 1(4

(2 max) 4b

In figure 9 a sequence of photoluminescence spectra is displayed for
successively higher values of n (2 ) . Each curve is labelled by the ratio
n(2)/n (2 ) .  Because of the theory's inability to accurately predict themax
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effective gap, all effective gaps were set arbitrarily to 1.3 eV. Hence only
differences in the horizontal axis are significant. The vertical scales are
in arbitrary units. The curves were obtained by numerical evaluation* of F( )
with the use of the parameters £bmax = 20 meV and X (=l/Y 2 ) = 75 A. The
nature of the curves is readily understood if attention is paid to two general
considerations:

(a) The square of the matrix element of H1 decreases exponentially with
separation between the "centers" of the two wavefunctions involved. This
implies that for a given acceptor position, higher oscillator levels will have
significantly larger squared matrix elements since their wavefunctions extend
further out from the oscillator center.

(b) For a given acceptor position and oscillator level, the squared matrix
element of H, will decrease with increasing -w since this larger energy will ,
go into conduction-band wavefunction phase oscillations, resulting in smaller
overlap with the hydrogenic orbital.

Let us consider in detail the features of figure 9, curve a. The thresh-
Dld for photoluminescence begins at 1.3 eV and rises exponentially to a maxi-

mum at 1.312 eV. This rise occurs because at threshold only states near the
top of the acceptor profile (and hence further away from the oscillator well)
are permitted to contribute. After w has increased to above 1.312 eV, the
entire range of acceptor energies is included, and a further increase in Thu
Iads to a decay in the contributions due to consideration (b). This decay
will continue until the threshold condition for the next (v = 1) oscillator
.evel is reached. One then gets an exponentially increasing contribution
-which will persist until either the quasi-Fermi energy is reached or Tiw has
increased by 0.012 eV (1.312 eV - 1.300 eV), where another decay will begin.
Tnis is what happens as one goes from curve a to d. As the quasi-Fermi level
increAses, the second peak grows relative to the first until (in d) the second
peak completely dwarfs the contributions from the v = 0 level, leaving only an
asymmetric peaK. The behavior in figure 9 is generic and can be reproduced
for a variety of parameter sets.

Figire 10 displays experimental photoluminescence results of Simpson et al
on a superlattice sample characterized by parameters similar to those

ojnsidered theoretically. The photoluminescence intensity is in arbitrary
units. When an attempt is made to compare the theoretical predictions with
this spectrum, a s3erious difficulty arises. In the experiments, a pump laser
is employed whose penetration depth into the superlattice is approximately
1000 to 2000 A. We are thus faced with the difficulty of choosing values of

2) for each successive conduction-band well. Each well's effective gap (and |
relevant matrix elements) will then be changed by different amounts, and the
tota- l luminescence will be the sin of contributions from all layers. Such a
caoulati on involves too many unknown parameters and would be unconvincing.

*The Fortran codes used are given In appendix B. .
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Figure 10. Experimental photoluminescence data of
Simpson et al [l].

Because of this difficulty, we will postpone serious comparisons between

theory and experiment until a less restrictive theory (or more compatible ex-
periment) exists.

In concluding this report we list below a number of criticisms and com-
ments relating to this model.

1. We have considered only the case where Nd = Nat but this precise
equality is experimentally unlikely. If Na were greater than Nd, the poten-
tial in the p regions would be flattened out in the ground state. On the
other hand, if Nd were greater than Na' the n region potential would flatten
and the ground state would be characterized by a nonzero conduction-band

charge density n(2 ). The qualitative features of the theory would remain
"'Vi unchanged in these cases.

2. We have ignored details of the valence band in the analysis. It is
hard to see how qualitative differences would arise because of this neglect.
Although the effective mass theory would present more formidable mathematical
problems in obtaining the acceptor state wavefunctions, the wavefunctions

-'-. .. would still be qualitatively hydrogenic, with some distortion in shape--
possibly flattened spheres with the thin dimension normal to the layers (these
wavefunctions could also be obtained variationally if desired). The only
aspect of this result which could be qualitatively important is that if the
long dimension of the wavefunction became sizable, overlap with similar wave-
functions might produce extended (in two dimensions) acceptor states. This
possibility remains to be adequately addressed.

-. '=.

3. We have ignored the effects of randomness in the analysis. It is
clear that since the acceptors are at random positions throughout the
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p-regions (with an average separation of 100 A), an electron in the immediate

neighborhood of a specific acceptor will feel a "background potential" (the

potential due to all other changed acceptors and donors) which differs from

one acceptor to another at a fixed z-coordinate. This variance in background

potential was ignored in the analysis, and only the average background poten-

tial was included (which varied quadratically with distance from the center of

the p-region). It is difficult to estimate the size of this variance since

* charge carrier screening of the potential is probably substantial. (A simple
model including screening is currently being studied to give some idea of this

variance in background potential. The results of this investigation will be

presented in a future publication.) In any event, this phenomenon will lead

to a distribution of binding energies at each coordinate zO . One would then
have to integrate over this impurity band for each zO , leading to obvious
changes in the photoluminescence spectrum.

4. In the analysis we ignored the fact that decreasing binding energy

will mean increasing acceptor state extension. A more accurate treatment

would have allowed the acceptor Bohr radius a to be a function of z.

5. Homogeneous line broadening was ignorea in the analysis but would

result in a smoothing out of sharp spectral features in figure 9.

6. The reader is reminded that the spectra displayed in figure 9 are very

sensitive to the distribution of occupied acceptor states. In particular, the

10" ° factor in figure 9(d) comes primarily from the fact that higher densities

provide empty acceptor states closer to the conduction-band wells. A differ-

ent acceptor state distribution would result in an entirely different

spectrum.
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APPENDIX A

The principle of detailed balance permits one to establish a relationship

between the microscopic transition probabilities for induced emission and
spontaneous emission in a physical system without resorting to the otherwise
unnecessary procedure of quantizing the electromagnetic field.

Consider a superlattice in thermal equilibrium with the radiation field,

and focus attention on two specific states in the superlattice, say "1" and
"2" with energies cI and £2 (<l), respectively. We assume that electrons
making transitions between these states will be accompanied by emission and
absorption of photons of type q,X changing the state of the radiation field.
If we let NqA represent the number of photons in this mode of the field, we
can write for the total rate at which Nq,A changes because of occupancy
changes in states 

1 and 2:

dN q, dN q X+ dqA + d X

dq,X - q,A[ ___,_ q,

dt dt ind.em. dt +dt i
:d--t-id~mlspont.em, ind.abs.

The induced absorption and emission rates are proportional to the number of

photons present and to the probability that the appropriate initial states are

occupied and final states unoccupied:

dNAl = BN P'
dt ind.em. q,P2 )

_SA =-_BN P,( 1-
dt ' ind.abs. q,XPIk 2)

The fact that both have the same coefficient B follows from microscopic re-
versibility. On the other hand, the spontaneous emission rate simply depenas

on the probability that state 2 is occupied and state 1 unoccupied:

dN

dt spont.em. 2( 1)

When thermal equilibrium prevails, dN /dt = 0 or
q, A

AP2(1 - P1) + BNq,AP 2(1 - P BNq, PI (I - P2)

which gives

A = B N 1E / 2 --

But in equilibrium Pi [1 + e(E-)/kT] and a little algebra reduces the

bracketed term to e , which is precisely the inverse of the Planck
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APPENDIX A

distribution Nq,X= (el/kT - 1)-1. Thus A = B, and for a system in which we
know from first principles the rate dNq x/dtlind.abs, we can write

dN

dN B Ndt ind.abs.

dt spont.em. q,X

where the statistical factors are assumed equal to PI = 1, P2 = 0 for induced
absorption and P1 = 0, P2 = 1 for spontaneous emission.
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APPENDIX B

Appendix B lists the Fortran code used in the numerical evaluation of the
integral given by equation (41l) in the main body of this report.

CCCCCC@C~SPHOTOLUMINESCENCE CALCULATION @S ***

CS SCREEN
CS WRITE SYS$OUTPJT "COMPILING"
CS FORT PLSPEC
CS WRITE SYSSOUTPUT "LINKING"
CS LINK PLSPEC .XYPLOT.HDLSLIB/L.CNLIB/LDISSPLA/L ,GH/L
C
C 0000 BEGIN MAIN PROGRAM eg.
C

IMPLICIT REAL08 (A-H.O-Z)
REAL04 SENERGY( 1000) ,SPLSPEC( 1000) .YB( 1000)
CHARACTER'I NANS
DIMENSION ENERGY(1000).PLSPEC(1000).IWORK(100).WORX(400)
COMMON/CONSTANTS/X .A .BPI.SPI2.STUO.SEP.EGPEXP.EBMAX,SP.ALPIA
COMMON/EXTRA/UPL I U GAMMA
EXTERNAL F.DERFC.EA

C
C DEFINE FUNCTIONS
C

Y'Y(X.W)=2. .tA/B).02*(X-05+(EA(W)/SEP))
AMU4X,W)=DSQRT( I.+YY(X,W))
EB( Z )EBMAX0DEXP( -ALPHAZ92)

C
C ENTER DOPING PARAMETERS

T'IPE '.'ENTER DOPING DENSITY IN UNITS OF 1.OXIO( 18) CM-3'
ACCEPT *,DD
DD-I .GDIB*DD
TYPE *.*'ENTER SUPERLATTICE PERIOD IN UNITS OF ANGSTRbMS'
ACCEPT O.SP

.4 sP=IjoD-8*sP
C
C DEFINE VARIOUS CONSTANTS
C

EG=I .424
AI( 12.5
AMO=9. 1095D-28
AMV=0 .50D0*AMO
AMC=0. O87DO*AMO
HBAR=1 .05459D-27
EC=4 .80324D-10

CONV'=I.60219D-12
A=(IHBAR/EC)002)*AK/AMV
BBEEV=(AMV/(AMO.AK'.2) )13.60568D0
BBMEV= 1000. DOOBBEEV
BBE=CONVOBBEEV
PI=4.DOODATAN(l .DO)
SP12=DSQRT(PI/2.DO)
STWO--SQRT( 2. DO)

C
C CALCULATE OMEGAO, OSCILLATOR ENERGY HBAROOMEGAO.
C AND ZERO POINT AMPLITUDE B
C

OMEGA0=EC.DSQRT(4 .DO*PI*DD)/DSQRT(MC.M)
SEP=HBAR' OMEGAO
SEPEV=SEP/C0NV
SEPMEV= 1000 .DOOSEPEV
TYPE I ,SEPMEV

I FORMAT(/.20X, HBAROOMEGAO=' ,F7.3, 'mev ,/)
A B=SQRT(HBAR/(AMC*OMEGAO))

BANG=1I.0D8*B
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C
C CALCULATE UO AND EEG(EFF ENERGY GAP)
C UO=(AMC*(OMEGAO*SP)**2)/(32.DO*CONV)

EEG=EG-2.DO0U0
IF(EEG.GE.O.DO)GO TO 2
TYPE *,'STOP IN PLSPEC: EFF ENERGY GAP IS NEGATIVE'
STOP

2 CONTINUE
C
C DETERMINE 2-D DENSITY OF STATES
C (NOTE THAT BECAUSE OF UNITS, HBAR*'2 IS TOO SMALL
C AND SO HAS BEEN REPLACED WITH HBAR. CORRECTIONS ARE
C MADE IN APPROPRIATE PLACES)
C

RHO2D=AMC/(PIOHBARI
STATES=RHO2DOSEP/HBAR

C
C DETERMINE NON-EQUILIBRIUM CHARGE DENSITY
C

AVAILC=DDOSP/2.DO
TYPE 4.AVAILC

4 FORMAT(/.' MAX. NON-EQUILIBRIUM CHARGE DENSITY=',D8.3.'cm-2',/)
TYPE *,'ENTER ACTUAL NON-EQUILIBRIUM CHARGE DENSITY AS A FRACTIO

CN OF THE ABOVE STATED MAXIMUM (NUMBER BETWEEN 0. AND 1.)'
ACCEPT O.FRAC
CHDENS=FRAC*AVAILC

C
C CONSTRUCT MODEL BINDING ENERGY PROFILE
C

TYPE 23,BBMEV
23 FORMAT(' ACCEPTOR BINDING ENERGY IN UNDOPED CRYSTAL IS',F7.3,'me

Cv',/' ENTER MAX BINDING ENERGY IN SUPERLATTICE IN mev',/)
ACCEPT *.EBMAX
EBMAX=EBMAX*CONV/10O.DO
TYPE 24,BANG

24 FORMAT(' OSCILLATOR ZERO POINT AMPLITUDE IS',F7.2,'angstroms',/,
C' ENTER LENGTH SCALE FOR BINDING ENERGY DECREASE IN angstroms'./)

ALPHA=ALPHA/BANG
ALPHA=1.D0/jALPHA**2)

C
C DETERMINE INTEGRATION LIMITS AND MAX. ACCEPTOR ENERGY
C RANGE TO BE ENCOUNTERED
C

ACCTHK=FRACOSP/2 .DO
WMIN=O.5DO(SP-ACCTHK)/B
WMAX=0.5DO*(SP ACCTHK)/B
TYPE *,'WMIN='.WMIN,' WMAX=',WMAX
WZ=WMAX-O.5DOOSP/B
ERANGE=EBMAX-EB(WZ)
ERANGEMEV=1000.DO*ERANGE/CONV
TYPE 333,ERANGEMEV

333 FORMAT(' ENERGY RANGE=',F6.2,'MEV')
C
C DETERMINE FERMI LEVEL
C

CHMAX=3.DOOSTATES
IF(CHDENS.GE.CHMAX)THEN
TYPE 0,'STOP IN PLSPEC: PROGRAM WONT PRESENTLY HANDLE SITUATIONS

CINVOLVING OSCILLATOR LEVELS 3 OR HIGHER'
STOP
END IF
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I F( CIDENS. LT.STATES )TIIEN
EFERM I=HBAROCHDENS/RJIO2D+SEP/2.DO
ELSE
XI=O 5DO*jjCHDENS/STATES )-1)

EFERMI=l I.DO+X )*SEP+SEP/2.DO
EFEV=EFERM I/CONV
TYPE 8.EFMEV

8 FORMAT(/,* FERMI ENERGY= .F7.3i'mev,/)
C

CC DETERMINE RANGE OF ENERGIES FOR PL SPECTRUMI

11 FORMATI4 EFFECTIVE ENERGY GAP (THEO)='.F5.3,'ev',/J
TYPE *.'ENTER EXPER!MENTAL EFFECTIVE GAP IN ev'
ACCEPT 0,EGPEXP
EGPEXP=EGPEXP*CONV
EM IN=EGPEXP/SEP-1 Do/1o. DO
EMAX=( EGPEXP+EBMAX )/SEP+EFERM I/SEP-I .DO/2 .DO+ . DO/l .DO
RANG E=EMAX-EM IN
UPLIM=(EGPEXP+EFERM 1-SEP/2.DO) ISEP

C
C SET ENERGY STEPS IN PL SPEC
C

STEPS=200.DO
ISTEPS=STEPS
DELTAE=RANGE/STEPS

C
C DEFINE PARAMETERS FOR INTEGRATION ROUTINE
C

EPSABS=O. DO
EPSREL=I .OD-2
LIP4IT=IOO
LENW=400

C
c BEGIN LOOP TO PRODUCE PLSPEC
C

NUM= ISTEPS+ I
1DO 22 I=I,NUM
Akl-I
ENERGY( I)=EMIN+AI*DELTAE
X=ENERGYt I)
CALL DQAGSI F WMIN ,WMAX EPSABS ,EPSREL ,RESULT .ABSERR.NEVAL. IER,

C LIMIT,LENW.LASTIWORK,WORM
TYPE 0,'IER= ,IER.' lTER=' ,I
PLSPEC( I)=RESULTX*2

22 CONTINUE
C
C DEFINE SINGLE PRECISION VARIABLES FOR PLOT ROUTINE
C

DO 75 I=I.NUM
SPLSPEC( I)=PLSPEC( I)
SENERGY( I)=SEPOENERGY( I)/CONV
WRITE(32, *)SENERGY I) ,SPLSPEC( I)

75 CONTINUE
C
C BROADEN PL SPECTRUM ??
C

TYPE 0, DO YOU WISH TO BROADEN LEVELj ? (Y/N)'
ACCEPT 44.NANS

44 FORMAT(AI)
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IF(NANS.EQ. 'Y')THEN
TYPE *,' ENTER BROADENING WIDTH IN mEV
ACCEPT O.GAMMA
GAMMA=-GAMMA/l 000 .DO
CALL BROADEN( SENERGY ,SPLSPEC ,YB ,NUll)
CALL XYPLOT( SENERGY ,YB Null)
ELSE

CK
C PLOT WITHOUT BROADENING
C

CALL XYPLOT( SENERGY, SPLSPEC!,NUll)
END IF
TYPE 0.' DO YOU WISH TO BROADEN THE SPECTRUM ? (Y/N)'
ACCEPT 44,NANS
IF(NANS.EQ.,Y,)THEN 4
TYPE *' ENTER BROADENING WIDTH IN mEY
ACCEPT *,GAMMA
GAMMA=-GAMMA/1 000. DO
CALL BROADEN (SENERGY ,SPLSPEC ,YB ,Null)
CALL XYPLOT( SENERGY ,YB, NUM)
ELSE
END IF

C
C END OF MAIN PROGRAM
C

TYPE *,'FORTRAN STOP'
END

C
C "'000 BEGIN SUBROUTINES "*

C
REAL*8 FUNCTION F(W)
IMPLICIT REAL08 (A-H,O-Z)
COMMON/CONSTANTS/X ,A ,B,P , SPI2 ,STWO ,SEP,EGPEXP
COMMON/EXTRA/UPL Ill GAMMA

C
C DEFINE FUNCTIONS
C

YY(X,W)=2 .DO'(X-O. 5D0+EA(W)/SEP)'(A/B)0"2
AMU(X,W)=DSQRT(1 .DO+YY(X,W))

C DETERMINE IF Y(X) > 0 :IF YES, EVALUATE FIRST TERM OF
C INTEGRAND. IF NO,SET INTEGRAND TO ZERO AND RETURN
C

F=O.DO
Y=yy ( X,W)
tO=YY(UPLIM,W)
IF((Y.LE.O.DO) .OR. (Y.GE.YO))THEN
F=O .DO

RETURN

ELSE I
T2=DEXP( ((BOT1 )/(STWO'A) )002)
GAJ=W'B/A
T3=-DEXP(GAN'T1)
XOP=-BOT1/( STWOOA)+W/STWO
XOM=XOP-STWOoW
Z1=PI'B'T2'T3'DERFC(XOP)'((1 .DO-(B'T1/A)0"2)/2.DO/T1"2-GAM/2.D>0TFi)
Z1=Z1/(2.DOOTIOA)
Z2=PI'B'T2'DERFC(XOM)'((1 .DO-(B'Tl/A)"02)/2.DO/TI1"2+GAM/2.DO/T1)
Z2=Z2/( 2. DO*T1 T3*A)
Z3=SP12*(B*02)T2*(T3DEXP(-XOP*2)+DEXP(-XOM02)/T3)/2.D0/(TIOA)002
T4=Z1+Z2+Z3
F=T4002
END IF
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C
C DETERMINE IF Y(X-i) > 0 :IF YES EVALUATE SECOND TERM OF
C INTEGRAND. IF NO, RETURN
C

Y=YY(X-1 .DO,W)
Y1=YY(UPLIM-1 .DO,W)

IF((Y.LE.O.DO) .OR.(Y.GE.Y1))THEN
ELSE

T2=DEXP( ((B-TI )/(STWO'A) )"2)
T3=DEXP(GAI'Tl)
XOP=BOT1/( STWO'A)+W/STWO

XOM=XOP-STWO'W
Z1=PI 'B'T2'T3'DERFC(XOP)/(AOT1)
Z I=Z1'( B' '2' ( BTI/A+W )/(2 .DO'A' '2) )
Z2=Z2' (B' '2' (eTI/A-W)/(2 .DO'A' '2) )
Z3=SP12'B'T2'(1.DO-(B'T1/A)0"2)/(A'T1' '3)
Z3=Z3' (T3'DEXP(-XOP"02)-DEXP(-XoM' 2)/Ta)
T5=-Z I+Z2-Z3
F=F+O .5D0'T5' '2
END IF
RETURN
END

REAL'8 FUNCTION EA(W)
IMPLICIT REAL'8 (A-H.O-Z)
COMMON/CONSTANTS/X,A,B,PI ,SPI2,STWO,SEP,EGPEXPEBMAX,SPALPHA
EB( Z)=EBMAXODEXP( -ALPHAZ'2)
WW=w-SP/( 2. DO'B)
EA=EB ( WW)-EBMAX-EGPEXP+SEP/2.DO
RETURN
END

A SUBROUTINE BROADEN(X,Y,YB,NUM)
IMPLICIT REAL'8 (A-H.O-Z)
REAL'4 X(1000),YtloOO),YB(1000)
COMMON/CONSTANTS/DX .A,BPI ,SPI2 ,51WO, SEP,EGPEXP ,EBMAX ,SP,ALPHA
COMMON/EXTRA/UPLIM ,GAMMA
LORENTZ(A,B)=(GAMMA/PI )/( (A-B)"02+GAMMA"02)
RANGE=X(NUM)-X( 1)
WEIGHT=X(2)-X( 1)
IDEL=I IDINT(RANGE/GAMMA)
ANUMd=NUM
AIDLIEL
L=IIDINT(ANUM/AIDEL)
DO 12 I=1,NUM %

YB(I)=o.DO I

XC=X( I)
J=I+L
DO 12 M=J-L.J+L
IF( ((M-L) .LE.0) .OR. ((M-L) .GT.NUM) )THEN
YB(I)=YB(I)+O.DO
ELSE
YY=Y(M-L)
XX=X(M-L)
YB( I)=YB( I)+YY'WEIGHT'LORENTZ(XX,XC)
END IF
CONTINUE
RETURN
END
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