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N 1. INTRODUCTION 4
N

This report contains a simplified calculation of the absorption and photo-
luminescence spectrum of modulation-doped gallium arsenide for energies below
this material's direct band gap. The calculation was motivated by the results

}D of optical experiments [1]* on these systems which, in some cases, revealed a
ﬁ% two peak structure in the photoluminescence spectrum whose origin was unclear.
%F The work described below, representing a first attempt at clarifying this

situation, is divided into three sections. Section 2 is an overview of the
problem beginning with background material and ending with a description of

@5 the electronic states used in the calculation. 1In section 3, the absorption E
ﬁg spectrum, the photoluminescence spectrum, and the relationship between them

ﬁf are derived. Finally, section 4 contains a discussion of the theoretical pre- g
g‘. dictions along with critical comments on various simplifications made in the W
B analysis. 0
A 2. OVERVIEW "
R

ﬁ% The systems from which photoluminescence spectra were obtained consist of s
:.’ approximately 1-um-thick wafers of gallium arsenide which were grown by mole- ¢
N cular beam epitaxy. During growth these samples were selectively doped with '
“ donor (Si) and acceptor (Be) impurities at densities in the neighborhood of

"$ 10!'® em™®. A typical doping profile appears in figure 1, where a positive 2
RO ordinate refers to donor (n) doping and a negative one refers to acceptor (p) K,
b doping. The abscissa denotes position in the sample measured along a cubic !
:' axis (GaAs is a cubic crystal with the zinc blende structure). The periodic g
4 nature of the doping profile has led some to refer to these systems as super-

e lattices because of the additional periodic potentialt imposed on electrons by .
mg the ionized donor and acceptor atoms. }
¢! v
e ]
ﬁ@ DOPING :
.!"' / 4
— 1

'

o DONOR .
‘l' DENSITY g
ﬁé. (x 10" cm® o o ) - &

Ry ACCEPTOR

DENSITY

et .
“* 1" “
Q::lvo '
Y i
ﬁf; Figure 1. Doping profile along (1,0,0) direction X
s of gallium arsenide crystal.

e ,
r.‘l ————— N
.'::,‘ *References appear at end of text.

::c‘.‘ 1’Strictly speaking, the potential is not pertiodic. Since the impurity atoms are thought to (

occupy atomic sites in a random manner (at least at these doping .ensities), the added potential '
can only be viewed as periodic in the growth direction 1if one is willing to average over the

- random distribution of impurities in the transverse directions. This point will be addressed
later.
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In order to understand the optical properties of this system, one must
have a clear picture of the electronic states, and for this, a brief qualita-
tive description of the effects of doping in a single crystal of GaAs is
appropriate. Consider first the case of a single donor. Such an impurity
differs from the atom it substitutes. 1In particular, when neutral, it has one
extra electron occupying a localized orbital. This electron can be weakly
bound to the impurity: its energy might be only 6 meV below the bottom of the
conduction band. In such a circumstance, the effective mass theory [2] tells
us that all characteristics of the localized state are determined by the
nature of the low-energy conduction-band states. For instance, the "Bohr
radius™ of the impurity wave function is given by ag = hzcc/mce2 = 100 A, where
k (=12.5) is the static dielectric constant and m, is the conduction-band
effective mass (mC = 0.067 m; m = electronic mass) of gallium arsenide. At a
doping level of 10'® em™?, the impurities are separated by an average distance
of about 107® em (-~100 A), so that the wavefunctions of impurity states on
nearby sites have a substantial overlap. This means that electrons are no
longer localized to one impurity but are able to move about throughout the
crystal, much like normal conduction-band electrons. This mobility enables
electrons to more effectively screen the impurity/electron interaction, weak- g
ening its effect. The density of states (DOS) in such a heavily doped system, %
along with the DOS in the undoped case, is given schematically in figure

| B L ETRA | mmrnan. | rerIEE P

2(a). The heavy doping changes the behavior of p(e) near the band bottom a
£,(0): in the undoped case p(e) behaves as [e - ec(O)]’/z, while in the doped &
case p(e) gets a Lorentzian-like contribution to the intrinsie behavior, y
decreasing the effective band minimum by a small amount (a few milli-electron E
volts) and adding to the overall DOS above the minimum. As is evident from
figure 2(b), the situation is altogether different at these doping densities "
for acceptor impurities. Unlike donors, acceptors are neutral when their s
localized state (which lies just above the valence band edge) is unoccupied. !
Theory predicts the acceptor state in GaAs to have a Bohr radius of about 18 & )
(m, = 0.35 mo), leading to very little overlap between acceptors separated by
100 A. The states would retain their localized nature and would contribute a
relatively sharp peak to the DOS function at an energy above the valence band .
edge equal to their "binding energy." b
Having discussed these simpler cases, we are now in a position to consider R
a p-n Jjunction and then a superlattice. Figure 3 shows the energy bands Y
versus position along a (1,0,0) direction in GaAs which is p-doped to the left B
and n-doped to the right of z = 0. The horizontal dash-dot line represents M
the Fermi energy of the system whereas the heavy dashed line represents the :
acceptor impurity levels. The manner in which the charges redistribute them- R
selves is responsible for the appearance of figure 3. When the p- and n-doped e
systems are joined togelher at z = 0, the mobile electrons in the extended e
impurity states (z > 0) move into the p-type region (z < 0) occupying acceptor f
levels. By doing this, electrons can initially lower their energy by -1.5 eV Q
(the energy gap E, in GaAs). As more electrons fill states, the vicinity of W
the junction changes its character: the n-type region becomes positively &
charged and the p-type region becomes negatively charged. This charge separa- E
tion creates an electric field which eventually prohibits further charge :é
flow. The total depletion region (where the bands "bend") in this system is ‘
about 650 A wide. This width leads to electric field strengths of about b
i 6 S
Q,
-
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1.5 V/650 A ~ 10%° V/em. While these fields are large, they are not large
enough to invalidate the semiclassical theory [3] of electron dynamics (which
goes into the arguments leading to fig. 3). This theory allows us to assume
that the spectrum of single-particle states at a position z; is the same as
that found at z,, with the exception of an overall constant shift in all

energies by e[¢(z,) - ¢(z4)] where e is the magnitude of the electronic charge b
and ¢ is the electrostatic potential set up by the ionized impurities. The
validity of the semiclassical approach implies, among other things, that the ¢
DOS above the conduction-band minimum in figure 3 is like that shown (roughly)
in figure 2(a) for all values of z. In particular, a continuum of single-
particle states begins at the band bottom even for a z-coordinate within the o
depletion region. -
b
We are now in a position to consider the nature of the electronic states
in a crystal of GaAs which has been doped according to the profile in figure .
1. Because the n and p doping densities are equal and because the doping '

period & is significantly less than the normal depletion width (650 A) in a M
GaAs p-n junction at these doping densities, the lowest energy configuration '
of this system would correspond to completely ionized donors and acceptors:
no region of the superlattice will be charge free. The results of a semi-

classical approach to obtaining the electronic structure for this system are oy
displayed in figure 4. The conduction-band bottom (and valence-band to P) in .
this figure is obtained by adding to the unperturbed band structure ¢ ) (k) 't
the potential energy U(z) = -e¢(z). This potential energy can be obtained by ﬁ%
"smoothing out" the localized ions to form alternating layers (of thickness <+
2/2) of uniform positive and negative charge density.* We then need to. solve ,
V3¢(z) = =Ump(z) with pl(z) = teNy, where the upper (lower) sign refers to n- —
doped (p-doped) regions and Nq is the donor (and acceptor) density. This e
calculation is simple, and leads to figure 4, with UO given by Uo = nNdezl /8k ‘ﬁ
(which for the parameters of fig. 1 equals 290 meV). i
Unfortunately, the semiclassical approach is easily shown to be inadequate 3
in this case. A calculation of the kinetic energy (KE) required by an elec-
tron localized in one of the conduction-band wells of figure 4 gives KE ~ 3 v
meV. This energy would represent the typical separation between low-lying Qﬂ
states inside the well, leading to a DOS far below that predicted by the semi- g&
classical picture where the states are more dense by a factor of at least gs
500. We are thus forced to employ the effective mass theory in order to Qu
obtain the electronic states. This has been done for the conduction-band o
states by Ruden and Dohler [u]. Their results show that near the bottom of 3
the wells in the conduction band (and the top of the valence-band wells), the p.
electronic states are harmonic oscillator-like in the z-direction and free ;:?
electron-like in the transverse directions. An electron in one of these gif
states is confined in the z-direction and free in the x-y plane. The effec~ b3
tive oscillator frequency 1is easily obtained via the identification ;

1/2(mcm622) = 1/2(udee2/K]zz, giving wg = (4nNge?/mek)'/2. The valence band

*The approximation of replacing the impurity potential ¢(r) by its average ¢ Ve(r) is probably
a good one because the typical difference between the two, <|¢ave(r) - ¢(r)| , is less than the
kinetic energy gafned from one electron in tts delocalization (which is proportional to the
impurity-impurity overlap). T
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is more complicated because in GaAs, the valence-band maximum (at q = 0) is
four-fold degenerate (including spin). In addition, the effective masses are
quite different from the conduction-band mass. These two facts complicate the
structure. In the present work this complication is ignored (comments regard-
ing its importance will be made in sect. 4). 1In figure 5 a schematic of the
electronic structure is given along with a DOS profile in the conduction and
valence bands (the valence-band profile is included only to emphasize its
qualitative difference from the DOS profile of fig. 2(b)). Note in particular
the step-like nature of these profiles, which is characteristic of a two-
dimensional system (the DOS in a two-dimensional system of free electrons is a
constant). The acceptor state energies are represented by a dashed line whose
position should not be taken too seriously since our treatment of the valence-
band states [5]* has been approximate.

—t—

DOPING
PROFILE
—_———— ~ CONDUCTION

T SEMICLASSICAL BAND STRUCTURE

VALENCE
Wﬂm

Figure 4. Energy band diagram of system in semi-
classical approximation.

Figure 5. Energy band diagram
of system in effective mass
approximation including den-
sity of states profiles in the
conduction- and valence-band
wells., For clarity, finite
width of minibands has been
ignored.

*A preliminary calculation of acceptor binding energies versus position in a superlattice
(which 1ignores valence-band structure) was made by Leavitt and Simpson [5] and supports
qualitatively the positional dependence of the binding energies which is displayed in figure 5.
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In light of this electronic structure, the novel optical ‘and electrical
properties of this system are readily understood in a qualitative way. The

oy
el ground state has all acceptor levels filled with electrons, ani the

' conduction-band states are empty. If one excites electron-hole pairs with an
B above-direct-band-gap cw laser (e.g., a He-Ne laser), electrons will scatter
"-_::: off phonons on a 107!'% s time scale [6], eventually relaxing into the lowest
I’,‘.‘: conduction-band states possible. Similarly, holes will relax to the highest
'._‘, . acceptor states available. The radiative recombination time for electrons and

holes, which in a uniformly doped semiconductor is of order 107° s [6]), is
dramatically increased because of the reduced overlap between 1low-energy

\.-:: electron states and acceptor states whose wave functions are separated by up
-:-‘;\ to a superlattice half period (200 A in this system). As a result of this
.\:_: reduction in recombination rates, a cw laser will initially create electron-
'-,,: hole pairs more rapidly than they can recombine, leading to a filling of
i electron states in the conduction band and hole states in the acceptor levels.
. As this filling proceeds, the recombination rate rapidly increases for two
w-" reasons. First, higher oscillator states in the well extend further out,
t-., giving them greater overlap with acceptor wave functions. Second, and more
‘;;" important, as the steady-state nonequilibrium charge density in the conduction
-\j_« band (and acceptor 1levels) increases, the effective potential seen by an
}" electron is weakened by the carrier's increased ability to screen the space
,~ charge field of the ionized impurities. Any weakening of this potential will
Bt dramatically increase conduction-band-state/acceptor-state overlap, resulting
o in higher radiative recombination rates. When the generation and recombina-
- tion rates are equal, a steady state will be reached. This steady state will
::-::' be characterized by an effective potential that differs markedly from the
ok gotential seen in the absence of excitation. This means that each pump laser F
v intensity will correspond to a specific steady-state charge density in the
:::-f-: conduction band, n(z), and its corresponding effective potential. Figure 6
- schematically shows the situation one obtains in this system at two different
S pump laser intensities (I, > I,). The higher charge density in b results in a
“-.'- substantially weakened potential and increased effective gap Eg. X
2 o
:. )
._*: 2u,®
R
5
. Figure 6. Energy band dia-
grams representing two
PUMP LASER INTENSITY la steady-state nonequilibrium
configurations of super- )
(b) lattice., Pump laser inten-
= sity which maintains steady
),.:. __L state is higher in (b) than \
o 70,6 — ge— TN €O in (a), resulting in a larger !
L _¥_ effective gap. 4
e Eg® X
‘oY
30 PUMP LASER INTENSITY |,
{
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OO T S T P Gellret an tee ey L0 recumilnation radiation falling ']
M AL L AL SRV PG AR peroounit o ovolume, per unit time;. It is ﬁ
WAl T et o e it o STeady state there 13 a sharp quasi-Fermi H
) : L1 elertronic states are occupied. }1
number of empty acceptor states %
1 numzer of necupied conduction-band tQ
mrirnaticrn raziation is due to electrons n

.oradiat

ion=band states into the unoccu-
in a ecornduction-band well will
transition into acceptor levels

B ). |

of this, we first fix our atten- i
level wnhose center is located a o
ot

The STates 17 Sre weo . are Zescrided in tne =ffective mass theory by wave H
functions 2f trne form '.;1

el s

L (1)

;i3 tne mloen funetion corresponding to the lowest energy conduc-
state ant F 'r. i3 a m>aiurating function that satisfies the equation

\ ﬁz =2 ! 2.2' [ \
T EL T MRl e (@)

where ¢ 13 the energy measurel Wwith respect to the conduction-band effective
vz !

4
potential minimum (a = D) and m, is the conduction-band effective mass.
Because of the translational invariance of this Hamiltonian in directions
normal to the z-axis, Fp ~an he Wwritten
- iker , .
gor = e rizy o, (3)
where K = 'k, <., D) Wwith k. = ‘em/Ling fny o= 0, £1, 22, ...; i = X,¥).

Unless otherwise  stated, kK will a.ways refer to a two~dimensional vector
(kz = J). We taxks a system composed of Nl periods of length ¢ such that QNQ =
L. The eross-sectiona. area »f each layer is L?, so that the total volume of
the system is Q2 = L. Substituting equation (3) into equation (2) leads to

the harmorni~ sseillator equationn for n

R L L , L h2k?

$— — 4= otz [z = - (z

| 2m_ dz? 2 e’n sm - om " b (%)
c ¢

whose sn0lutions

-u/2  =1/2 =174 -1/2  -z%/2p?
/L2 Y e T ’ e 27720 Hv(z/b) , (5)




where b = Cﬁ/mcmo)‘/z, Hv(Y) are Hermite polynomials, and v labels the oscil-
lator energy levels. The eigenvalues e in equation (4) take the form e (k) =
‘nzkz/Zmc + fiwg(v + 1/2). We have chosen to normalize the wave function
according to the requirement

[ arlue)]z =1,
Q
N fnodpluc’o(p)lz =1 ’

where N is the number of unit cells in the system and the second integral is
over the volume occupied by a unit cell Q-

A particularly simple form has been chosen for the acceptor states: one
which ignores entirely the previously mentioned complications in the valence
band by treating the highest energy valence-band state as nondegenerate
(except for spin). The wave functions are of the form

Va(r) = F (Muy o(r) (6)

where u, (r) is the highest energy valence-band Bloch function, and F, is a
modulating function* satisfying a hydrogen-like Schroedinger equation. For
simplicity, F, is taken to have the hydrogenic form

Q\'/? -r/a
Fv(r‘) = (HE) e » (7)

v

where a is the acceptor-state Bohr radius and ; measures position with respect
to the impurity.

3. CALCULATION

We begin an analysis of this system's optical properties by determining
its absorption coefficient. 1In this calculation we assume that a monochroma-
tic plane wave is incident on the superlattice which is in its ground state.
The Hamiltonian of the system is given by H = Hy + H;, where HO gives rise to
the harmonic oscillator-like and acceptor states described earlier, and H,,
given Dby H1 = (e/mc)A-P, represents the interaction of an electron with an
external electromagnetic field. The field, which is assumed to be linearly
polarized in the € direction (€+z = 0) and propagating through the sample in
the z-direction, can be expressed in the form

E - Eg(we ellaz-wt) + ce. (8)

*More properly, one would have ¢a(r) =} Fu(r)uv 0 u(r) for the acceptor level, where the sum
u ’ ’

on v is over all degenerate (q = 0) valence~band states (and maybe even other nearby bands) and
the F,(r) are modulating functions satisfying a set of coupled differential equations. See
reference 2.
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N where q = (w/¢)n and n is the refractive index of GaAs. This field is deriv-
' able from the vector potential
%
0
g A= aplw)eel(@z-wt) v ool (9)
A
v
"3‘.:
with E = =(1/¢c) 3A/3t and Ag(w) = cEg(w)/iw.
Y
Vgt
:::l For absorption we are interested in the rate at which H, induces transi-
,{:: tions between the acceptor levels and the conduction-band states. Labelling
--:ft.: an acceptor state, which is centered at (0, O, zo). by "a" and conduction-band
ol state by "v,k" we obtain, using Fermi's Golden Rule [7], the rate of induced
transitions from |a> to |v,k>:
Q"‘l
:::" 2w
3, . &nm 2 - -
::;} Woka T |<v,k|H, (w)|a>] d(ev’k e, (%0) flw) , (10)
‘l\;l
l?(b"
s where sa(zo) is the energy of the acceptor state (measured with respect to the '
4{8- effective potential minimum of the conduction band). Since we want to deter- )
“;{I mine the rate at which energy is taken out of the radiation field, we should 1
:\ multiply this by fw and then sum over all final states |\),k>. The delta
D : function will ensure that only states with the proper energy are included in
13»:', the sum. (Inspection of fig. 7 shows that for a given fw, a set of pairs
{V'k\)} will conserve energy.) Therefore we can write
€ §
%)
‘;»;‘ 2
iy - cr 2 - - Ay
y W= A % Iz( 7 [ <vik|H (W) ]a>] 6(Ev,k €, (%0) hw) , (1)
DO,
;..:5
)
"Q, ¢ €
3
Y N\
‘ "'3 de
A TN
S\
-"-' V-H\ ‘\\ 2mc
e x Lot
::::: V=0 \\ Ime €:hw
LS
N 2mg
, A :
L) +
‘-"' 2, z pe)
\ \:
N Figure 7. Conduction-band-well effective oscillator
Mg and density of states along with a single hydrogenic
. acceptor wavefunction located a distance L2 from well
W minimum.
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where W is the rate at which energy is absorbed from the radiation field via
transitions out of one acceptor level. If we use the relation

L2 L%m

dk c
1= (2n)2 [ 2k de de, k = Zm? J de, k
k v,k

and include a factor of 2 for spin, equation (11) becomes

2L2mcw
= 2 2
WEo) = —FT— E |<vk |H, () |a>] e(kv) , (12)

where k2 = (ch/‘hz)i‘hw - ‘hwo(v + 1/2) + ea(zo)z and 6(x) 1 for x > 0 and

0 for xv< 0.

In order to determine the effects of all the impurity states, we can refer
to figure 8, where we have schematically plotted the acceptor levels versus
position along with the neighboring conduction-band wells. The contribution
from transitions out of an acceptor to its neighboring two wells will be W(zg)
+ Wi - zo). The number of acceptors in the slab with thickness dzy at zj is
dezoNd. We can then integrate over z, from 2/4 to 32/4 and multiply the
result by No, the number of periods, to get

32/4
N, | dzONsz[W(zo) RO zo)] :

|
T

2 | Z
2

2=1nr

L]
*: Figure B. Acceptor energy profile along with neigh- Iy
>, boring conduction-band wells. &
Y



Because of the obvious symmetry about z = £/2, this becomes

Iz/u .
2N N L2 ax W(% + x)
af 2/} 2

Using le = L and dividing by L*®, we obtain the total rate of energy loss per
unit volume

dx w(% + x) . (13)

-%/4

This rate is simply connected to the absorption coefficient a(w). Imagine a

wave entering a slab of thickness t. On entering, the wave's intensity is I,

(=(nc/8m) |Eg|?), while on leaving it is Ije ®“. So, the net energy into the

slab per unit time is I,L? - Ioe-“ L? = IsatL?2. This gives Ioe for the net
energy into the slab per unit time, per unit volume. Equating this to the
expression above gives

2N L/74

alw) = T_% I dx w(% + x) . (14)
0

-./4

To proceed further, we need to evaluate W(;O) as given in equation (12).
Consider first the matrix element <v,k |H;(w)|a>.” This can be written

<k [, (w)]a> = é ar ul o (PFA(e) (52 AW -P)u, ((PF, (r - 2g2) . (15)

If we now make the replacements
r>R *p , IQ dr » ) IQ dp ,
i 0

and, in the spirit of the effective mass theory, ignore changes in the mod-
ulating functions on the length scale of a lattice constant, we obtain

e * - *
<v,kv|H1(w)|a> = = A(m)-gg Fc(Ri)PFV(Ri - zoz) fno dp uc,O(p)uv,O(p)

(16)

* - *
+ % Fc(Ri)Fv(Ri - zoz) IQO dp uc’o(p)Puv'O(p)
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&

K
52 The first term in braces is zero because in GaAs, the functions Us 0 and uy g
0 have different symmetry* and so are orthogonal. Keeping only the second temrm
and using Agj(w) = cEj(w)/iw leads to )
¢ i
B __9 -, 1 * _ .2 e
,, <k JH (@)]a> = = (e 1>c,v(0))Q IQ dR FX(RIF (R - 2,2) (17 §
;!! :'A
where we have defined! Po,y(0) = N IQ dp uc o(p)Puy o(p). The integral in
N equation (17) can be done more ea511y if we flrst Fourier transform Fv, re-
;o;: placing it with
s
":: i
e F(x) = ] cl@e ™% .
q
@
' The transform C(Q) is easily shown to be
;
4na\/? 1
:t C(q) = (_6%8_) —_
(1 + qzaZ)z
}ﬁ and when used in equation (17) gives
{ﬁ
a eEq ~ ~iqzzg
"! <\))k\)lH1(‘D)|a> = '{m—m (E'PC,V(O)) czl C(k\)’qz)n\)(-qZ)e ’ (19)
Z
. il
- where
-
H ~ 1 ® -iqzz
[n = - =
j n,@,) =T f_w dz n (z)e and C(kv,qz) C(kv K, ,qz)
o X y
! .
:.n Consider now the calculation of nv(qz). If we define
4
,::.
pY N, = /L 27V y1mt/2 gmi/e pmi/e
'.\
;% and use the dimensionless variable y = z2/b, Wwe can write
"
o N Db iq b
L © 2 =1 y
' ~ _ v -y</2 vA
n@y) = J_ave H (y)e : (20)
88
S -
9
N *s-1ike and p-like, respectively.
N tBecause of the normalization convention chosen for the u's, the factor of N is needed to make
' the result finite,
f&
K'l
e‘.’
I\ 16
K
“w

e
N

st e At A e T T a7 . PR PR a1, € ¥ o, n, HIRK )
4-::"'&’ Uyttt tl’ . ‘A’ PAChCRY ..'.'; } e & J‘\" ) A '- wald W 9.. A ' % '-‘l‘. . -: ,, }'l:. A |>‘t' N -l’ o, u"
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Although this integral can be done, it is more useful at this point to define
ﬁv(qz) in terms of derivatives of the Hermite polynomial generating function.
For this we define

(-]
- -y%?/2 -iay
Iv(a) I_m dy e e Hv(y)
|
and its generating function F(s,a):
®» I (a)S¥ ® Ce2se H (y)s¥
F(s,a) = J = ‘ - f dy e y*/2 o oy y v (21) !
V. - v!
v=0 Y ¥
y
H (y)<¥ .2 ‘
Since § —2—37__ -3 *esy [7], we obtain after doing the integral,
: !
P
2 - h
F(s,a) = v21 &% /2-2las . (22) I

Using this expression along with the generating function allows for a deter-
mination of I (a) with the rule

qV
Iv(a) == F(s,a)
ds

s=0 ° (23)
Combining these results in equation (20) then gives

N b -a2p? V [ 82-2{q_bs
e 920772 4 (e 2 ) (24)

v(qz) 2 asV 8=0

After n (- q, ) is substituted into equation (19), the matrix element

becomes
eE v
.o e, c ¥ (,s?
<v,kv|H1(w),a> = Tom (s Pc,v(oa e N, e (e f(s)) 5=0 ° (25)
where
-y 2
® e v /Zcos(v(2s + zo/m)
£(s) = [ _av — (26)

2
(1 + kt‘a2 + gy v’)2

This result can be further simplified by using the chain rule to replace
dV7dsV (e® f(s))]g.q by

' v=-2p
) T d f(s)
0 (v - 2p)!p! dsv-2p 3=0
17
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We then obtain

eE v-2p
0 c(0) v! d
<v,k [H (w)]a> = — (e«P  (0)) = N § —— , —— f(s)
v 1wm ( e,v ) /35 Vo (v - 2p)!p! asV 2p =0
(27
Also, if we let w = (a/b)v and u; =1 + kéa’. fy can be written
- 2 2 2

f£(s) - - 22 d [ aw & (b%/2a% )w cos (Iw) (28)

a aﬁ: “3 + Wt ’

where T = (2b/a)s + Zp/a. This integral can be done [8] and the expression
differentiated with respect to “3 to obtain

£ mb b2u$/2a2 2 2,2 [ ruv - uv ]
s) = na_uz e (1 - b uv/a) e Erf‘c(xw) v e Erf‘c(xv_)
_mpr_ Duyeal [“v N ]
“aué e e Erfc(xv+) - e Erfc(xv_) (29)
2 2 2 -yY2
+ (n/2)4/2 52;;3 eb uv/2a [;ruve Xv+ + e‘Tuve’Xi_] ,

where X , = [(b/a)uv + zo/b]//§ and Erfc is the complementary error func-
tion [8]. We can now use these results to obtain for W

b4a’m e?|Ey|® . T 1 g P ?
= . 2 ~ 2
W e € P (@17 L g oY) |l vz = RACH I
(39)

This is our final result for W, which can be used in equation (14) to obtain
the absorption coefficient alw).

Before examining these results in any greater detail, we now consider the
case of photoluminescence. For this, we assume that a steady-state non-
equilibrium condition is maintained in the superlattice which produces a sharp
quasi-Fermi level in the conduction band. Below this level, all conduction
band states are occupied. Spontaneous emission of photona will result from
transitions of these electrons into empty acceptor states. For photolumines-
cence, we need to determine the rate at which these photons are emitted.
Detailed balance arguments given in appendix A lead to a relationship between
microscopic induced and spontaneous transition probabilities, which can be
expressed through the equation*

dN 1:_».
dN B TR e
q,} _ _ _dt lind.abs. (31) ' 1

dt |spont.em Nq,x

*In this equation, statistical factors are assumed equal to values which would maximize each i)
ratio (see app A). '53\
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where N is the number of photons in mode q,A of the radiation field. To
obtain tpe photoluminescence spectrum R(e), which was defined earlier, Wwe need
to multiply equation (3!) by fiw, sum over all photon modes q,) consistent with
their energy being in the interval de at e, and divide the result by the
volume of the system. This gives

Rle)de = @ 5" _ QA , (32)

dt

spont.em.

where the prime on the sum i{s a reminder of the energy restriction. But Nq.x
= (u ,Aﬂ/ﬂm), where u A is the q,X contribution to the energy density in the
field!" If we use this ‘together with equation (31), we obtain

-qu'A
2 ' i .abs.
R(e) de = (ﬁg) gt QJ“d abs. . (33)
. .

The quantity -fiwdNq 3/dt|jnd.abs. 1S the rate at which energy is absorbed from
the radiation field, which is precisely the quantity Ioa(m)ﬂ calculated
earlier (provided we take q = (0,0,q) and choose the same polarization
e). Thus we can write

dN

YR .3
Toag, 2 (@) = ~he —4=1 1 .abs.  ° (34)

Using this result in equation (33) along with the relation u = nly/c gives

R(e) de = — Voa. (w) . (35)

The only dependence of a x(“) on & and i comes from the square of the matrix
element which contains the factor IEK(q)-Pc.V(O)Iz. Here ¢,(q) (A = 1,2) are
the orthonormal polarization basis vectors which are orthogonal to q and de-
fined according to some arbitrary (but definite) prescription. With this in

mind we consider the sum

[ ~ 2 9& ~ ~ 2
qix ERCIR AMIIEE % (5377 o de [ qa e, (@), (O] . (36)

D=

Using ¢ = fiw = ficq/n, this becomes
3 qu Je(@)+P, [(O)]? = sty % Py ,(0)em, «RL (0) (37)

where we have defined ?X = 1/U4q f da gx(q)gx(q).
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S One can replace dj by de and easily obtain ¥, = [1/3)61&J61J. If this is
Ny used in equation (37), one obtains
et 1 TP 2 _ w?n’de 1 2
2:‘::: §qu IE)‘(Q) Pc,V(O)l * T’ 3 ch,v(O)l . (38)
et
&
"
'kx Substituting this result into equation (35) then gives
A ny?
K Re) = 2% <y (0)> (39)
q,)
4
&)

where <aq )(w)> (=1/4n f daq “q,x(“)) is the angular average of aq,A(w), which
is given by equation (14) for the case q = (0,0,q) and polarization = €. As

) shown above, <a(w)> can be obtained simply from expressions for a(w) by re-
3? placing the quantity IE-P'C,V(O)I2 which appears in the squared matrix element
(l‘

iS by the expression 1/3 |Pc,v(0)|2'
,?ﬁ Equations (14), (30), and (39)* are the central results of this work.
27 Under appropriate circumstances they can be used to gain insight into the
3 photoluminescence and absorption spectra of doping superlattices.

.2

.

o 4, PREDICTIONS AND DISCUSSION

Ky Before the results obtained above are examined, a few comments will be
2 made regarding their applicability.

) The absorption spectrum given by equation (14) represents contributions to

) absorption from electronic transitions between localized acceptor states and
h. extended (in two dimensions) conduction-band states. When Tw is large enough
o to induce transitions between extended valence-band and extended conduction-
{ﬁ band states, equation (14) will no longer apply, as these contributions were
RN ignored in the analysis, It is also important to remember that this formula

is applicable only when the exciting field is reasonably weak.! An intense

external field will generate electron-hole pairs more rapidly than they can

recombine, leading to a finite steady-state conduction-band charge density

g n{2) and an altered effective potential. 1n this instance, the potential used

5% in obtaining thne approximate eigenstates will be inappropriate, and equation
(14) will provide only a qualitatively correct account of the spectrum.

zg» *Care should be exercised in using equation (39) for the photoluminescence spectrum. In our
tﬁ calculation of a{w) we considered contributions from all acceptor levels. For photoluminescence,
ﬁ? all acceptor states cannot be final states since some are already occupied. Instead, one should
éﬁ 1imit the range of integration in equation (14) to the distance required to contain a number of
o, states equal to the total number of occupied states in the conduction barnd.

- Tin view of the nonlinear optical properties of this system, this constraint could be severe.

a:

“

’c,‘, 20
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In the case of photoluminescence, similar considerations will apply. In
particular, high pump laser intensities will produce steady states whose cor-
responding effective potentials are substantially different from the effective
potential used in the calculation (which corresponded to n(2) - 0). Despite
these limitations of the theory, the more serious electronic structure calcu-
lations of Ruden and Dohler [4] sugport the qualitative picture presented in
the model, at least for values of n 2) which are not excessive (>50 percent of
the available acceptor charge).

In what follows we examine the photoluminescence spectrum predicted by
equation (39) for a superlattice characterized by a doping density of 1 x 10'®
em™? and a period of 800 A. We will consider a range of charge densities n(2)
since the spectra can be rather sensitive to this density. In order to apply
equation (39), we need to determine two things. First, we need a reasonable
representation of the manner in which the acceptor binding energies vary with
distance from the center of the p regions. Variational calculations [5]
support qualitatively the use of a binding energy profile similar to the one
displayed schematically in figure 8. The binding energies are largest in the
center of the p regions and decrease to small values near the edge of the p
regions where the space charge field is largest (they can never go lower than
the v = 0 oscillator level in the valence band since this marks the beginning
of a continuum of states). To represent this state of affairs, the binding
energies were modelled by the expression gy (z) = gy ., e~Yz?, where z measures
distance from the center of the p regions and the parameters Y and €pmax are
chosen judiciously. Finally, a choice must be made regarding the way in which
empty acceptor states are distributed (among the occupied acceptor states)
when charge is elevated into the conduction band in order to represent a
specific steady-state configuration. We will assume that the empty acceptor
states are those acceptors which occupy a region of finite thickness centered
on the p regions (i.e., the highest energy states). The thickness of these
regions is determined from the nonequilibrium charge density in the conduction
band. For instance, if 50 percent of the available acceptor charge (electrons
ocecupying acceptor states in the ground state) were elevated intc the conduc-
tion band, then one half the thickness of the p layers would be neutral (200 A&
for a superlattice period of 800 R). We remind the reader that in such a case
the binding enerzy profile would change since the "background" potential would
be flattened in the central halves of the p regions.* The Gaussian profile
function given above is flexible enough to account for this effect qualita-
tively since decreasing Y {or ep,..) would flatten out the profile.

For the parameters we will consider, the quasi-Fermi energy ep will always
lie below the v = 2 oscillator level. In this case equation (30) simplifies
considerably and can be combined with equations (14) and (39) to give, after
some manipulation, the expression

R(e) = DE?F(g) , (40)

*Another aspect of the binding energy profile which we have ignored in the present calculation
is the inevitable dependence of the average acceptor wavefunction radius on its binding energy
and hence position, Our present lack of information regarding the acceptor wavefunctions
necessitates this.
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where D is a constant,* § is the photon energy in units of ﬁwo, and F(g) is
given by the integral

F(g) = [:2 dw {1 e(k )[1 - G)(k f)] =1 e(kz) [1 - O(k;f)]} . (41)

1

where 0 is the step function defined below equation (12),
kp = (2/b2)§£ - (n +1/2) + ea(w)/moi ,

and

: 2 : — -
k;f is ky with & = &¢ = ep/Twg

The functions [1 - O( )] prevent photoluminescence contributions from states
above the quasi-Fermi level while the functions @( n) prevent contributions
from below the nth oscillator levels. The functions I0 and I1 are given by

b2u2/2a? Ty
b 0 0 1 b
I = —_— - 2. 2 2 -
0" ha e e Erfc(XO+) [éuz @ b uo/a ) Say wJ
0 0 0
u?/2a® -ru
b o 0 1 a2 b
t5ra e e Erfc(xo_)[éuz (1 - b? uo/a ) - oy ﬁ} (42)
0 0 0
pi/2a? My, -X2 -Tu. -X2
2 -
+ (w/2)172 232 T e Yo [; O 0+, e oe 0
Yo
b2u?/2a?
_ _ _Tb 1 T'u b2 (b
I1 = 5;: e € 1Erfc(x1+) [Zaz (5 W, + w)]
b2p2/2a? -Tu
b 1 1 b2 (b _
+ ;ET e e Erfc[x1_)[§gf (; Uy w)] (43)
b2y2/2a? Ty, -X? -Ty, -X2
1 -
- (n/2)/2 —bg-e (1 - b2u2/a%)|e e T -e e | ,
au1 1

where )(\)+ [(b/a)uv +w|]//2 and T = (b/a)w. To define ep we decide what
fraction of the available acceptor charge is to be placed in the conduction
band. The maximum available density négi (per unit area, per layer) is simply

given by Nd /72, while €p is given by the solution to the equation
2 - _ L (2)
(mc/wﬁ ) (eF fug/2) = n

*) is given by D = (1024a/3%°/2n)(Nga®)(e?/tme?)(Ng/Lmh)| Py ,(0)|? where a (equal to eZ/Me)
is the fine structure constant.
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when e lies between the v = 0 and v = 1 oscillator levels or
2), _ - L (2)
(me/m?)fug + (2me/m?) (ep - 3/2h) = n

when ep lies between the v = 1 and v = 2 oscillator levels. In these
expressions m,/mh? is the DOS (per unit area) in a two-dimensional system
{3]. Finally, the limits of integration in equation (42) are given by

_ . (2, (2)y &
w1,2 h (2 *on /nmax) kb (44)

In figure 9 a sequence of E)hotoluminescence spectra is displayed for
successively higher values of n 2) Each curve is 1labelled by the ratio
n(2)/nr$]§))(. Because of the theory's inability to accurately predict the
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effective gap, all effective gaps were set arbitrarily to 1.3 eV. Hence only
differences in the horizontal axis are significant. The vertical scales are
in arbitrary units. The curves were obtained by numerical evaluation* of F(f)
witii the use of the parameters eppax = 20 meV and A (=1/Y?) = 75 A. The
nature of the curves is readily understood if attention is paid to two general
considerations:

(a) The square of the matrix element of H, decreases exponentially with
separation between the "centers" of the two wavefunctions involved. This
implies that for a given acceptor position, higher oscillator levels will have
significantly larger squared matrix elements since their wavefunctions extend
further out from the oscillator center.

(b) For a given acceptor position and oscillator level, the squared matrix
element of H, will decrease with increasing fw since this larger energy will
go into conduction-band wavefunction phase oscillations, resulting in smaller
overlap with the hydrogenic orbital.

Let us consider in detail the features of figure 9, curve a. The thresh-
521ld for photoluminescence begins at 1.3 eV and rises exponentially to a maxi-
mum at 1.312 eV, This rise occurs because at threshold only states near the
top of the acceptor profile (and hence further away from the oscillator well)
are permitted to contribute. After hw has increased to above 1.312 eV, the
entire range of acceptor energies is included, and a further increase in hw
l2ads to a decay in the contributions due to consideration (b). This decay
will continue until the threshold condition for the next (v = 1) oscillator
level is reached. One then gets an exponentially increasing contribution
wnich Wwill persist until either the quasi-Fermi energy is reached or hw has
increased by 0.012 eV (1,312 eV - 1.300 eV), where another decay will begin.
Tnis is what happens as one goes from curve a to d. As the quasi-Fermi level
inecreases, the second peax grows relative to the first until (in d) the second
peax completely dwarfs the contributions from the v = 0 level, leaving only an
asymmetric peac. The behavior in figure 9§ is generic and can be reproduced
for a variety of parameter sets.

[ R
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Figure 10 displays experimental photoluminescence results of Simpson et al

1] on a superlattice sample characterized by parameters similar to those

2onsi fered trecretically. The photoluminescence intensity is in arbitrary

units. when an attempt is made to compare the theoretical predictions with

this spectrum, a 3erious difficulty arises, In the experiments, a pump laser

is wmployed whose penetration depth into the superlattice is approximately

199@ to 2000 A. We are thus fiaced with the difficulty of choosing values of

n <! for each sucressive conduction-band well. Each well's effective gap (and

. reiavant matrix elements) will then be changed by different amounts, and the
i totil luminescenre will be the sum of contributions from all layers. Such a
:_ caltouration involves t20 many unknown parameters and would be unconvineing.

N *The Fortran codes used are given in appendix B.
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Figure 10. Experimental photoluminescence data of
Simpson et al [1].

Because of this difficulty, we will postpone serious comparisons between
theory and experiment until a less restrictive theory (or more compatible ex-—
periment) exists.

In concluding this report we list below a number of criticisms and com-
ments relating to this model.

1. We have considered only the case where Nd = Na' but this precise
eyuality is experimentally unlikely. If Na were greater than Nd’ the poten-
tial in the p regions would be flattened out in the ground state. On the
other hand, if Nd were greater than Na’ the n region potential would flatten
and the ground state would be characterized by a nonzero conduction-band
charge density n(2), The qualitative features of the theory would remain
unchanged in these cases.

2. We have ignored details of the valence band in the analysis. It is
hard to see how qualitative differences would arise because of this neglect.
Although the effective mass theory would present more formidable mathematical
problems in obtaining the acceptor state wavefunctions, the wavefunctions
would still be qualitatively hydrogenic, with some distortion in shape--
possibly flattened spheres with the thin dimension normal to the layers (these
wavefunctions could also be obtained variationally if desired). The only
aspect of this result which could be qualitatively important is that if the
long dimension of the wavefunction became sizable, overlap with similar wave-
functions might produce extended (in two dimensions) acceptor states. This
possibility remains to be adequately addressed.

3. We have ignored the effects of randomness in the analysis. It is
clear that since the acceptors are at random positions throughout the

25
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p-regions (with an average separation of 100 A), an electron in the immediate
neighborhood of a specific acceptor will feel a "background potential" (the
potential due to all other changed acceptors and donors) which differs from
one acceptor to another at a fixed z-coordinate., This variance in background
potential was ignored in the analysis, and only the average background poten-
tial was included (which varied quadratically with distance from the center of
the p-region). It is difficult to estimate the size of this variance since
charge carrier screening of the potential is probably substantial. (A simple
model inecluding screening is currently being studied to give some idea of this
variance in background potential. The results of this investigation will be
presented in a future publication.) In any event, this phenomenon will lead
to a distribution of binding energies at each coordinate zg. One would then
have to integrate over this impurity band for each z,, leading to obvious
changes in the photoluminescence spectrum.

4, In the analysis we ignored the fact that decreasing binding energy
will mean 1increasing acceptor state extension. A more accurate treatment
would have allowed the acceptor Bohr radius a to be a function of z.

5. Homogeneous line broadening was ignored in the analysis but would
result in a smoothing out of sharp spectral features in figure 9.

6. The reader is reminded that the spectra displayed in figure 9 are very
sensitive to the distribution of occupied acceptor states. In particular, the
101° factor in figure 9(d) comes primarily from the fact that higher densities
provide empty acceptor states closer to the conduction-band wells. A differ-
ent acceptor state distribution would result in an entirely different
spectrum.
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APPENDIX A.--RELATIONSHIP BETWEEN INDUCED AND SPONTANEOUS
TRANSITION PROBABILITY
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APPENDIX A

The principle of detailed balance permits one to establish a relationship
between the microscopic transition probabilities for induced emission and
spontaneous emission in a physical system without resorting to the otherwise
unnecessary procedure of quantizing the electromagnetic field.

Consider a superlattice in thermal equilibrium with the radiation field,
and focus attention on two specific states in the superlattice, say "1" and
"2" with energies e, and ¢, (<s1), respectively. We assume that electrons
making transitions between these states will be accompanied by emission and
absorption of photons of type q,) changing the state of the radiation field.
If we let N represent the number of photons in this mode of the field, we
can write for the total rate at which Nq,x changes because of occupancy
changes in states 1 and 2:

dN

N N Q)

9,2 _

dt dat

. Q)

spont.em. dt ind.abs.

ind.em.

The induced absorption and emission rates are proportional to the number of
photons present and to the probability that the appropriate initial states are
occupied and final states unoccupied:

dN
__q,} - -

dt lind.em. BNq,prz(1 P1) !
Ne

3t lind.abs. - “PNg P (1-Py) -

The fact that both have the same coefficient B follows from microscopic re-
versibility. On the other hand, the spontaneous emission rate simply depenas
on the probability that state 2 is occupied and state 1 unoccupied:

= AP2(‘I - 91) .

spont.em.

0 or

When thermal equilibrium prevails, qu x/dt

AP2(1 - Pj) + BNq’AP2(1 - P1) = BN, P, (1 - P2) ,

which gives

P, - P

A = BN _— .

1~ P
A P, (1 - Py)

B (E-u)/kT|™?!
ut in equilibrium P(§&T= 1 + e and a little algebra reduces the

bracketed term to ehw 1, which is precisely the inverse of the Planck

K
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APPENDIX A

distribution Nq j = (éﬁw/kT - 1)7'. Thus A = B, and for a system in which we
know from first principles the rate qu,A/dtlind.abs , We can write

dN

- _ 9,2
qu,A dt ind.abs.
&t =B = N '
spont.em., q,A

where the statistical factors are assumed equal to P1 =1, P2 = 0 for induced
absorption and Py = 0, P, =1 for spontaneous emission.
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APPENDIX B.--FORTRAN CODES FOR PHOTOLUMINESCENCE CALCULATION
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APPENDIX B

Appendix B lists the Fortran code used in the numerical evaluation of the
integral given by equation (41) in the main body of this report.

C®e%sessossssecese DHOTOLUMINESCENCE CALCULATION ®¢eveccccecccocee
C$ SCREEN

C$ WRITE SYS$OUTPUT “COMPILING"

C$ FORT PLSPEC

C$ WRITE SYS$OUTPUT “LINKING"

C$ LINK PLSPEC,XYPLOT . HDL$LIB/L.CNLIB/L,D1SSPLA/L,GH/L

C

C eeeees RFGIN MAIN PROGRAN **csee
C
IMPLICIT REAL®*8 (A-H.0-2)
REAL®4 SENERGY(1000),SPLSPEC(1000),YB(1000)
CHARACTER®*1 NANS )
DIMENSION ENERGY(1000),PLSPEC(1000), IWORK(100) ,WORK( 400)
COMMON/CONSTANTS /X ,A,B.P1,SP12,STWO, SEP, EGPEXP , EBMAX , SP, ALPHA
COMMON/EXTRA /UPL IM, GANMA
EXTERNAL F ,DERFC.EA

DEFINE FUNCTIONS

nNnon

YY(X,W)=2 *(A/B)**2*(X-0.5+(EA(W)/SEP))
AMU{X ,W)=DSQRT(1.+YY(X.¥W))
EB(Z)=EBMAX®*DEXP(-ALPHA®Z**2)

ENTER DOPING PARAMETERS

ke Ne!

TYPE *, ENTER DOPING DENSITY IN UNITS OF 1.0X10(18) CM-3'
ACCEPT *,DD

DD=1.0D18°DD .
TYPE *, ENTER SUPERLATTICE PERIOD IN UNITS OF ANGSTROMS'
ACCEPT *,SP

SP=1.0D-8°SP

DEFINE VARIOUS CONSTANTS

NN

EG=1.424
AK=12.5 i
AMO=9 . 1095D-28 ;
AMV=0.50D0* AMO o
AMC=0.087D0*AMO Py,
HBAR=1.05459D-27 ¢
EC=4.80324D-10 )
CONV=1.680219D-12 M
A=((HBAR/EC)**2)*AK/AMV -
BBEEV=(AMV/(AMO*AK®**2) )*13.60568D0 -
BBMEV=1000 . DO*BBEEV ,

BBE=CONV*BBEEV o)
PI=4.DO*DATAN(1.D0O) A
SP12=DSQRT(PI/2.D0)

STWO=SQRT(2.D0)

CALCULATE OMEGAO, OSCILLATOR ENERGY HBAR®OMEGAO, ¥
AND ZERO POINT AMPLITUDE B "

nnna

OMEGAO=EC*DSQRT( 4 .DO*PI*DD) /DSQRT( AMC*AK) it
SEP=HBAR®OMEGAO 'ﬂ
SEPEV=SEP/CONV j
SEPMEV=1000 .DO*SEPEV )
TYPE 1,SEPMEV

1 FORMAT(/,20X, ' HBAR*OMEGAO=" ,F7.3, 'mev’ , /)
B=SQRT(HBAR/( AMC*OMEGAO ) )
BANG=1.0D8°*B
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CALCULATE U0 AND EEG(EFF ENERGY GAP)

N

b U0=( AMC® ( OMEGAO®*SP)**2)/(32.D0*CONV)

; EEG=EG-2.D0*U0

IF(EEG.GE .0.D0)GO TO 2

TYPE *,'STOP IN PLSPEC: EFF ENERGY GAP IS NEGATIVE'
sTOP

CONTINUE

DETERMINE 2-D DENSITY OF STATES

(NOTE THAT BECAUSE OF UNITS, HBAR®**2 IS TOO SMALL
AND SO HAS BEEN REPLACED WITH HBAR. CORRECTIONS ARE
MADE IN APPROPRIATE PLACES)

ARANANOAN

' RHO2D=AMC/(P1*HBAR)
STATES=RHO2D*SEP/HBAR

DETERMINE NON-EQUILIBRIUM CHARGE DENSITY

nNnan

TYPE 4,AVAILC
4 FORMAT(/.* MAX. NON-EQUILIBRIUN CHARGE DENSITY=',D8.3, cm-2°,/)
. TYPE *,'ENTER ACTUAL NON-EQUILIBRIUM CHARGE DENSITY AS A FRACTIO
. CN OF THE ABOVE STATED MAXINUM (NUMBER BETWEEN 0. AND 1.)°
ACCEPT ¢ ,FRAC
L CHDENS=FRAC®AVAILC

)
1}
\ AVAILC=DD*SP,/2.D0
L}
[]
[}

CONSTRUCT MODEL BINDING ENERGY PROFILE

nan

TYPE 23,BBMEV
' 23 FORMAT(' ACCEPTOR BINDING ENERGY IN UNDOPED CRYSTAL IS',F7.3, 'me
Cv'./.' ENTER MAX BINDING ENERGY IN SUPERLATTICE IN mev’,/)
' ACCEPT *,EBMAX
EBMAX=EBMAX *CONV /1000 . DO
TYPE 24,BANG
24 FORMAT(® OSCILLATOR ZERO POINT AMPLITUDE 1S’ ,F7.2, angstroms',/,
* ENTER LENGTH SCALE FOR BINDING ENERGY DECREASE IN angstroms',/)
ACCEPT *,ALPHA
ALPHA=ALPHA/BANG
ALPHA=1.D0/{ALPHA®*2)

a

C
J C DETERMINE INTEGRATION LIMITS AND MAX. ACCEPTOR ENERGY
. C RANGE TO BE ENCOUNTERED
| c
: ACCTHK=FRAC®*SP/2.D0
WMIN=0.5D0* (SP-ACCTHK) /B
WMAX=0.5D0*(SP+ACCTHK)/B
TYPE *, 'WMIN=" ,WMIN, "' WMAX=", WNAX
WZ=WMAX-0.5D0*SP/B
: ERANGE=EBMAX-EB(WZ)
: ERANGEMEV=1000 . DO*ERANGE /CONV
TYPE 333, ERANGEMEV
333 FORMAT(® ENERGY RANGE=',F6.2,'MEV')
C
: C DETERMINE FERMI LEVEL
. C

CHMAX=3 .DO*STATES

IF(CHDENS .GE . CHMAX ) THEN

TYPE *, 'STOP IN PLSPEC: PROGRAM WONT PRESENTLY HANDLE SITUATIONS
CINVOLVING OSCILLATOR LEVELS 3 OR HIGHER'

STOP

END IF
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IF(CHDENS .LT.STATES ) THEN
EFERM | sHBAR * CHDENS /RHO2D+SEP/2 . DO
ELSE
X1=0.5D0*{ ( CHDENS/STATES)-1)
EFERM1=(1 .D0+X1)*SEP+SEP/2.D0
END IF
EFEV=EFERMI /CONV
EFMEV=EFEV*1000 .D0
TYPE 8,EFMEV
8 FORMAT{/,' FERMI ENERGY=',F7.3,'mev’',/)
c
C DETERMINE RANGE OF ENERGIES FOR PL SPECTRUM
c
TYPE 11,EEG
11 FORMAT(' EFFECTIVE ENERGY GAP (THEO)=‘,F5.3,'ev’./)
TYPE *, ENTER EXPER'MENTAL EFFECTIVE GAP IN ev’ N
ACCEPT * ,EGPEXP Ha
EGPEXP=EGPEXP*CONV ‘q
EMIN=EGPEXP/SEP-1.D0/10.D0 A4
EMAX=( EGPEXP+EBMAX ) /SEP+EFERMI /SEP—1 .D0/2.D0+1.D0/10.D0 i
RANGE=EMAX-EMIN o
UPL IM=( EGPEXP+EFERMI-SEP/2 . D0 ) /SEP 1
c
c SET ENERGY STEPS IN PL SPEC -
c b
STEPS=200.D0 K
1STEPS=STEPS 2
DELTAE=RANGE/STEPS P
C ‘s,
c DEF INE PARAMETERS FOR INTEGRATION ROUTINE \
C
EPSABS=0.D0 g?
EPSREL=1.0D-2 o
LIMIT=100
LENW=400
C .
C BEGIN LOOP TO PRODUCE PLSPEC o
C st
NUM=ISTEPS+1 =
DO 22 I=1,NUM "
Al=1-1 "
ENERGY (1 )=EMIN+A1°*DELTAE g
X=ENERGY (1) "
CALL DQAGS(F,WMIN,WMAX,EPSABS,EPSREL ,RESULT ,ABSERR,NEVAL, IER, 0
C LIMIT,LENW,LAST, IWORK, WORK ) N
TYPE *,'1ER=",IER,"’ ITER=",1 '
PLSPEC( I )=RESULT*X**2 "
22 CONTINUE b
C %
c DEFINE SINGLE PRECISION VARIABLES FOR PLOT ROUTINE :§
c :
PO 75 I=1,NUM 3
- SPLSPEC( 1 )=PLSPEC(1)
o SENERGY( 1 }=SEP*ENERGY ( I ) /CONV E
o YRITE(32,*)SENERGY(1),SPLSPEC(1) 3
KX 75 CONTINUE Kl
o ¢ ':‘
o c BROADEN PL SPECTRUM ?? )
i c 3
TYPE *,’ DO YOU WISH TO BROADEN LEVELs ? (Y/N)' v
ACCEPT 44 ,NANS N
44 FORMAT{A1) b
d

-

~,l'.!._(vﬁ"yQ.A\u.tlnl\i 0
LN -54¢=,Nc’u )

OO0 DO M ORI DY ORI B0 - )
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i IF(NANS .EQ. 'Y’ ) THEN
" TYPE *,' ENTER BROADENING WIDTH IN mEV *
" ACCEPT *,GAMMA

¢ GAMMA=GAMMA /1000 .DO
’ CALL BROADEN(SENERGY, SPLSPEC,YB,NUM)

v CALL XYPLOT(SENERGY,YB,NUM)
2 ELSE
N c
,g C PLOT WITHOUT BROADENING
‘ C
. CALL XYPLOT(SENERGY,SPLSPEC,NUM)
END IF
. TYPE *,' DO YOU WISH TO BROADEN THE SPECTRUN ? (Y/N)’
K ACCEPT 44 ,NANS
3 IF(NANS .EQ. 'Y’ ) THEN

TYPE *,’ ENTER BROADENING WIDTH IN mEV °
: ACCEPT *,GAMMA
a GAMMA=GAMMA /1000 . DO
CALL BROADEN(SENERGY ,SPLSPEC,YB,NUM)
CALL XYPLOT(SENERGY,YB,NUN)
ELSE
' END IF

END OF MAIN PROGRAM

-
ann

TYPE *, 'FORTRAN STOP’
. END

sesess BEGIN SUBROUTINES ®¢¢sses

v d¥ s s g 2
leXoKe]

REAL*8 FUNCTION F(W)

IMPLICIT REAL®*8 (A~-H,0-2)

COMMON/CONSTANTS/X ,A,B,PI,SP12,STWO, SEP, EGPEXP
COMMON/EXTRA /UPLIM , GAMMA

DEFINE FUNCTIONS

i iy
[oNeKe]

YY(X,W)=2.D0*(X-0.5D0+EA(W)/SEP)*(A/B)**2
AMU(X,W)=DSQRT(1.DO+YY(X,W))

DETERNINE IF Y(X) > O :1F YES, EVALUATE FIRST TERM OF
INTEGRAND. IF NO,SET INTEGRAND TO ZERO AND RETURN

>
aaaa

: F=0.DO
i Y=YY(X,W)

$0=YY(UPLINM,W)

5, IF((Y.LE.0.DO) .OR.(Y.GE.YO0) ) THEN

F=0.DO

RETURN

ELSE

T1=AMU(X,¥)

T2=DEXP( ((B*T1)/(STWO®A))**2)

GAN=W*B/A

T3=DEXP(GAN®*T1)

XOP=B*T1/(STWO*A)+W/STWO

XOM=XOP-STWO*W
Z1=P1*B*T2*T3*DERFC(XOP)*((1.D0-(B*T1/A)**2)/2.D0/T1°**2-GAN/2.D0/T1)
Z1=21/(2.DO®T1%A)

Z2=P1*B*T2*DERFC(XON)*( (1.D0~(B*T1/A)**2)/2.D0/T1**2+GAN/2.D0/T1)
722=22/(2.DO*T1°T3%A)
Z3=SPI2*(B**2)*T2*(T3*DEXP(-X0P**2)+DEXP(-XOM®**2)/T3)/2.D0/(T1°A)**2
T4=21422+23

F=T4**2

END IF

LXK,

c
-

-A-..

P X X

- -

-
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c
C DETERNINE IF Y(X-1) > 0 : IF YES EVALUATE SECOND TERM OF
C INTEGRAND. IF NO, RETURN
c
Y=YY(X-1.DO,W)
Y1=YY(UPLIM-1.DO,W)
IF((Y.LE.0.DO).OR.(Y.GE.Y1))THEN
RETURN
ELSE
T1=AMU(X-1.DO,W)
T2=DEXP(((B*T1)/(STWO*A))**2)
T3=DEXP(GAM*T1)
XOP=B*T1/(STWO*A)+W/STWO
XOM=XOP-STWO*W
Z1=P1*B*T2*T3*DERFC(XOP)/(A*T1)
Z1=21*(B**2*(B*T1/A+¥)/(2.D0%*A%*2))
, 72=(P1*B*T2/T3)*DERFC(XOM)/(A*T1)
W 722=72+*(B**2*(B*T1/A-W)/(2.D0%A**2))
K Z3=SPI12*B*T2*(1.D0-(B*T1/A)**2)/(A*T1**3)
4 Z3=Z3* (T3*DEXP(—XOP**2)-DEXP(~X0M**2) /T3)
4 T5=-Z1+22-23
0 F=F+0.5D0*T5%*2
' END IF
. RETURN
: END
REAL*8 FUNCTION EA(W)
IMPLICIT REAL*8 (A-H,0-Z)
COMMON/CONSTANTS/X ,A,B,PI,SF12,STWO0, SEP, EGPEXP, EBMAX , SP, ALPHA
EB(Z)=EBMAX*DEXP(-ALPHA®*Z**2)
W¥=W-SP/(2.DO*B)
EA=EB(WW)-EBMAX-EGPEXP+SEP/2.D0
RETURN
END
SUBROUTINE BROADEN(X,Y,YB,NUN)
IMPLICIT REAL®*8 (A-H,0-Z)
REAL*4 X(1000),Y(1000),YB(1000)
COMMON/CONSTANTS/DX ,A,B,PI,SP12,STWO, SEP, EGPEXP, EBMAX , SP, ALPHA -
COMMON/EXTRA /UPL IM , GAMMA o8
LORENTZ({A,B)=(GAMMA/PI1)/( (A-B)**2+GAMMA**2) 0
RANGE=X (NUM)-X(1) i
WEIGHT=X(2)-X(1) Nt
IDEL=1 IDINT(RANGE /GAMMA ) J@
ANUM=NUN o
AIDEL=1DEL &
L=11DINT(ANUM/AIDEL)
DO 12 I=1,NUN
vn(x):g.no
XC=X(1
J=I+L '\
: DO 12 M=J-L,J+L iy
2 IF(((M-L).LE.0).OR.((N-L).GT.NUM) ) THEN )
') YB(I)=YB(1)+0.DO |
;.:. ELSE
.'..l YY-'-'Y(N-L) "
"W XX=X(M-L) o
v YB(1)=YB()+YY*WEIGHT*LORENTZ( XX, XC)
END IF 2
v CONT INUE ~
y RETURN A

*e END

o= ol
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