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A PROPOSED SOLITON MECHANISM  IN WIND-WAVE SURFACE  GENERATION AND SCATTERING* 

DAVID MIDDLETON** 

l^___Jntroductj^orv^Ba^ 

It has been widely observed that underwater acoustic scattering 

from wind-wave surfaces is much more intense 0(10-20 db) at small grazing 

angles cj) = o(< 25°), large Rayleigh numbers (the "high-frequency" cases, 

f = o(5-30 kHz, or more), and often rather strong mean surface winds 

[J = O(5-10 m/sec), than classical scattering models, which are based 
d 

on a surface combination of gravity and capillary wave components, can 

predict [1], [2], [3].  In almost all cases up to now it has been sug- 

gested that a near-surface bubble mechanism, engendered by foaming or 

breaking waves, is responsible for the larger observed (acoustic) scat- 

tering cross sections [4], [5]. However, -the recent, very precise work 

of Roderick et al. [6], [7] has shown experimentally that these large 

(backscatter) cross sections occur without significant near-surface bubble 

structures, under otherwise the same geometric and physical conditions. 

A possible surface mechanism which can account for these signifi- 

cantly larger scatter returns, ajid the observed linear doppler shifts, when 

bubble structures prove empirically ignorable, has been proposed by Middleton 

([1]; [2]). It likewise appears as a critical product in the generation 

of wind-wave surfaces, in the model proposed by Mellen [cf! Sec. II of 

[3]], and outlined in [9] and summarized in the supporting evidence cited 

in Part II ff. The scattering mechanism in question is an ensemble of 

solitons, or "hydraulic bumps" [9]-[Il] (also [12]-[14]), which, in this 

model, are produced on the wave surface by the interaction of local 

atmospheric shock waves, with the disturbed wave surface, impinging on 

a resultant thin wind-driven water surface layer. This latter is a thin 

0(mil1imeters) moving surface layer which is developed when a nonzero 

mean wind speed (U > 0) is established, [l5], as the fetch of the sea 
a 

surface becomes larger [16]. Accordingly, the proposed scattering inter- 

face consists of a single wave surface (usually artificially divided 

into so-called "gravity" and "capillary" wave components), and a truly 

additional component, namely the soliton "ripples," which now constitute 

*Work supported under NUSC (New London Laboratories) Contract N00140-83-SK59, 
Delivery Order N 403 (1985), with Sonalysts, Inc., 215 Parkway North, 
Waterford, CT 06385. [Also based in part on earlier work, supported under 
NUSC Contracts N00140-84-M-NM 82 and N66604-85-B09.] 

**Contractor, Physics and Applied Mathematics, 127 E. 91 St., New York, NY 10128. 

1 
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the moving wind-driven surface portion, i.e., the wind-drift layer, of 

the gravity-capillary wave surface [l]-[3], [8]. 

It has been further shown in [1], [2] that the various analytic 

approaches and approximations used in earlier analyses of scattering 

intensities are essentially valid and produce quantitative results which 

differ little from one another. The observed discrepancies between 

experiment and theory, therefore, must be attributable to the choice of 

physical model ([l], [2], Sec. 1, and [17]). In addition, we note that 

radar data (see [18], [19] and refs. therein) indicate that the level 

of the wavenumber intensity spectrum of the sea surface (in the ultra- 

gravity and capillary regimes (k = 0.5-5(+) rad cm' )) depends markedly 

on the near-surface wind conditions. This means not only U,, but var U^, 
a        a 

etc., namely, all appropriate statistics, say, the first-order pdf of U, 
a 

of the turbulent atmosphere, become important for a proper description 

of the sea surface. Observations made at these wavelengths will depend 

on the particular spectrum (i.e., sea surface) actually generated. 

[This point is discussed more fully in [3], Sees. I, III; and [8], and 

in [19], Fig. 4, [20], Fig. 11, where it is evident that the empirical 

wave spectrum is unsaturated, and thus dependent on U^, cf. remarks in 
  a 

[21], Sec. 6, as well.] 

Although our proposed model of a surface-layer,, wind-produced en- 

semble of hydraulic solitons has been originally advanced [l]-[3], as a 

likely candidate mechanism to account for the observed anomalies in 

underwater acoustic backscatter intensities, this model has both quan- 

titative and qualitative implications which extend to the general wind- 

wave interaction phenomenon itself, including, for example, surface doppler 

effects on the one hand and hydrodynamical and oceanographic effects on 

the other. Since current studies [l]-[3] and particularly [8] have empha- 

sized the empirical aspects of, our model, and its (for the most part 

acoustical) supporting evidence, our principal purpose here is to 

provide the analytical details, briefly noted elsewhere ([2], [3], [8]). 

This we do in Part I, while Part II concisely summarizes the supporting 

evidence, with comparisons of theory and experiment taken from [2] and 

[8] in particular.  (For analytic derivations of the acoustical results, 

see [2] and references.) In this respect, the present Report is a com- 

plement to NUSC Tech. Doc. TD 7583, [8]. 
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Accordingly, this Report is organized as follows: Part I is devoted 

to the author's proposed analytical model of surface soliton ensembles, 

with Section 2 providing the elements of the soliton surface model, while 

Section 3 describes the soliton ensemble process. Section 4 completes 

the analysis with a discussion of the assumptions and approximations. 

Part II follows with a concise summary and analysis of the supporting 

empirical evidence: thus. Section 5 provides a qualitative description 

of the nonlinear wind-wave-wind interactions which ultimately generate 

the soliton field on the wave surface, while Section 6 supports the gen- 

erally non-dispersive character of this field, by showing various per- 

tinent experimental surface doppler shifts. Section 7 further illustrates 

the model's effectiveness in accounting for the observed backscatter 

cross sections. Section 8 shows typical observed doppler spreads, and Sec- 

tion 9 completes our study with a short critique and summary, which includes 

a qualitative comparison of various proposed surface scatter models via 

their observed doppler and scattering mechanisms. Finally, a number of 

topics for further investigation are briefly noted. 

Part I. Analytical Models 

2_^^__ The_Surface_Sol i ton Model--A Pre! iminar^__Formulation 

Although we shall ultimately be concerned with sets of solitons, let us 

begin by considering a single, typical soliton,* moving as part of the thin 

wind-drift surface layer of the sea surface. Such a soliton, here a 

"hydraulic bump," is well known to be a limiting solution of the famous 

Korteweg-de Vries (KdV) equation ([9], pp. 453-468); [lO], [ll], [13], 

[l4],**here derived by appropriate approximations of the "long-wave" 

equation (e.g., waves long compared to water depth) in hydrodynamics. 

We quote Eg. (2.21) of [l4], which provides an outline of the procedure, 

yielding explicitly 

*We limit our analysis throughout to one-dimensional solitons. For two- 
dimensional cases, the Kadomtsev-Petviashvi]i (KP) equation [42], [43] 
governs propagation. 
**We remark that dimensionality has been removed from the formulations in 
[11] and [13]; also, in [10], Sec. 5.3, cf. remai^ks after Eq - (5.3-16). 
(See also (3.1) of [14], in arriving at Eq. (2.21), and Sec. Ill therein.] 
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KdV 
one-dimensional e 

(2.1) 

where c = /gh , ? = v^ > etc., and ^ = water displacement height over 
0    e  X  9x ^ 

reference ^ = 0. Here h is the depth of the "channel," or effective 

thickness of the moving wind-drift layer, of which the typical soliton is 

part.  Equation (2.1), or (2.1a) and its transformations ff. , represents 

a balance of nonlinear forces (~ c^v)' enbodying the gravitational force 
A 

shaping the steepness (~ ^ ) of the wave, against dispersive forces 
A 

(~ c;  ), when there is negligible friction (viscosity) in the fluid. 
A X A 

The KdV equation (2.1) does not, however, include the effects of 

surface tension, which for these small "ripples" or "bumps" o(mm's) in 

height, typically, must now be introduced. As Dodd et al. have shown 

([10], Section 5.3, and comments following Eq. (5.3-41) therein), surface 

tension acts to diminish the dispersive forces.  Following their ap- 

proximative procedures (Sec. 5.3), the result is the following (dimensional 

KdV equation here: 

:2.1a) 

showing how surface tension, which is ignorable for large solitons, 

like tidal bores, for example, modifies the KdV equation. Here J is the 

surface tension (=72.75 dynes/cm at 20°C) is the density of water. 

1 gm/cm at 20°C, and g = 980 cm/sec , of course.  If we write 

/gh. :2.2; 

and note that a must be positive for there to be dispersive forces 

(- j;  ) balancing the nonlinear forces 
xxx'       ^ 

C^ ) steepening the hydraulic 

"bump" or "wavelet," then this fact sets a condition on the minimum layer 

thickness, h  . , which can support propagation, either of cnoidal waves e-min '^^   r- r a 

or solitons, namely 

o, > 0   or h > /3J/P g = h 
e    ' w^   e-min 

0.47 cm {3 20 C, :2.3) 
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when surface tension is specifically taken into account. We observe 

that for rather "thick" layers, e.g., h = 5.0 cm, the coefficient of 

c h /6 in (2.2) becomes 9.1-10 « 1, so that surface tension effects 
0 6 

are negligible, and (2.1) rather than (2.1a) is the proper KdV equation 

to use in such cases. 

By making the simple transformation* 

V = (3cQ/2hg)c, (2.4) 

we obtain from (2.1a) the propagation equation (also a KdV equation) 

for the excess speed, v, due to nonlinear effects (cf. p. 463, [9]), 

namely 

c V + V, + vv + a^v        =0,  a-r > 0. 
0 X    t     X    J XXX J 

:2.5) 

Using a moving coordinate system where X = x-c t, t' = t, so that, 

since 

9x 8X 3x at' 9x ' at at ax at' at ' 

ax ax'  at 'S ax ^ at ' ^^' " ^^' 

we see directly that (2.5) reduces to 

;2.6) 

^ " ^^x ^ Vxxx = 0- (2.7) 

With the help of  (2.4)   in  (2.7), or using   (2.6)  directly in  (2.1a), we 

also obtain 

3CQ 

H ^ 2ir ^SX ^ ° ^XXX " ° (2.8) 

for the KdV equation governing the displacement, L;(x,t), now in the 

moving coordinate system (X,t). 

*This is readily found on starting with (2.7) following, cf. Lighthill ([9], 
Eq. 96, p. 464), and setting V = CL;, followed by comparison of the result 
with (2.8). 
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2.1 Canonical Forms 

For many analyses [10]-[13] it is convenient to develop canonical 

forms of the KdV equation, which eliminate the explicit dependence on 

the physical parameters, (c , h , o,, etc.). For this purpose let us 

introduce the transformations 

x' = A(x - c t) = AX;  t' = Bt 
^    0 ' 

(2.9) 

in (2.8), so that this relation becomes 

^h'  '^K'^'^A.'.'.'  =0, or 
e 

(2.io: 

Next, we choose A/B and A such that: 

3c 
° ^ - 6;  aj(|) A^ = 1 

2h B 
e 

;2.11a) 

(this  is, of course, arbitrary), so that 

■5/2 
A = /3/2h^(l-Yg)   ; B - c^h^-^'^ v/3/2(l-Yg) 

Y    E 3J/P gh^ 'e w^  e Oj =   o^(l-Y^) 
ch2 

0 6 

;2.iib) 

This puts  (2.8) finally in the canonical  form 

h'  " 6   CC,,   +  C^,^,,,   = 0. (2.12a) 

On setting $ = -r,{x',t') we reduce  (2.12a)  to  the more familiar canonical 

relation  [ll],   [13] 

^t'   - ^^\'  ^  \'x'x'   '- ° 
2h^(l-T,; 

:x-c^t) 

witho = -i;(x' ,t' )   ;       t' 
c h-5/2/r 

0 e  

/2rwp" 

(2.12b) 
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for the KdV equation. 

We can also readily show that if ^ is a solution of the KdV Eq. 

(2.12a), then so also are r^.,, t;^,,  or $^,, $^, of (2.12b). For example, 

starting with (2.12a) we have: 

(i). f^of (2.12a):  ,^,^, . 6^c,,,, + 6,,,,^, + ,^,^,^,^, = 0 

(ii). if c.^. = sol, of (2.12a)  -•• c^,^, = 5c^,^^,^, + C^.^'x'x' ^ ° 

;iii). Combine (i), (ii): ^^^^^^^'^  " ^^t'^t'x' " ° 

(iv). Use (2.12a) for 1st term 

and (ii ) for 2nd term: 

3t' ^^t'^^x'x'x'^ ^^t't'^^t'x'x'x'^ " °1 

:2.13) 

O'^  I^^t't'^^t'x'x'x'^ - ^^t't'^^'x'x'x'^ "  0' 

as required (ii): c..,   = sol. of (2.12a). 

In a similar way we may proceed for t;  ,, $.,, $ ,. The importance of 
A     L     X 

this result is that not only are hydraulic "jumps" {r,  ,) solutions of 
A 

the KdV Eq., but so also are their spatial and temporal derivatives, or 

hydraulic "bumps," which is what we have here physically. Here c repre- 

sents the surface elevation of a soliton "bump," so that /^(dt or dx) = 

Z(t,x) is the corresponding "jump," or "dc" impulse solution, cf. Fig. 1, 

and p. 1444 of [11]. 

2.2 Soliton Solutions 

In general, the soliton solution of (2.12) is obtained by assuming 

that 

'5(x',t') = $(x'-vt'),  V = a speed to be determined. 

(;(x',t') = E(x'-vt'). 
(2.14) 

This postulation converts the partial differential equation (2.12b) to 

an ordinary differential equation: 
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A  A A  A 
(2.15) 

long recognized as the differential equation of (the position of) a non- 

linear pendulum, [9], [l4]. 

The solutions of (2.7) and (2.8), found by the procedures noted 

above (see also pp. 464, 465 of [9]), are 

v(x,t) = 3v^ sech^ U||^ [X - (c^ + v^)t][,  a,> 0 
J J 

(2.16) 

and directly from (2.4), 

(2.17) 

where 

c    = c    + V    = /gh    + V 
s        0        0        ^ e        0 

■2.17a' 

is the constant soli ton speed, with v = the incremental excess speed in 

the (X,t'=t) coordinate system.  [Note that v = Bv, ^ = B?;, B 7^ 1, is 

not a solution of the KdV Eqs. (2.7), (2.8): the scaling of sech Y in 

(2.16), (2.17) is not arbitrary.] If we set 

i,ro 
^S = iV^ = ^We(^-^e)'  (^"^■')' (2.18) 

as a kind of characteristic wavenumber, or inverse "wavelength," we 

can rewrite (2.16), (2.17) somewhat more compactly as 

2 2 
v(x,t) = 3v sech K ^(x-c t); (;(x,t) = i,    sech K ^(x-c t), 

^  '    0      oS   s 0      oS   s 

^„ =   2h v„/c = 2v /h /g. 
^0   e 0 0   0  e 

:2.i9: 

Certain conditions, however, must be obeyed with respect to layer 

thickness (h ), amplitude (C^), and "wavelength," A^ ~ K^^, for solitary 

solutions to exist, in addition to the basic requirement that the 
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dispersive forces are nonvanishing, e.g., Oj > 0, cf. (2.3). With wave 

length X defined as the distance between approximately 2% values of 

the bump c> this condition is 

c A„/ h-^ > 32 
^0 0  e 

^max ^trough =max 
a^ (Lighthill) =     ^ 

for solitons, cf. Fig. 116 and Eq. (100), [9].' 
:2.20) 

Periodic cnoidal waves are now damped out, and solitons only can recur, 

p. 465-466, [9]. Equation (2.20), with (2.3), hg>0.47 cm, when surface 

tension in critical, as it is in the thin drift layers encountered in our 

surface model, governs the production of solitons here. As we shall 

see below (Sec. 4 ff.), the range of allowed numerical values of these 

structural parameters appears consistent with existing data. Figure 2.1 

shows a typical soliton on the wave surface, in direction a, along the 

line r, traveling at speed c = c +v along this line, when initiated at 

:^j'^j' 
e.g. 

i;(r-rj,t-tj) = t,^  sech K^^Cr-r^-c^ (t-t^ )] :2.2r 

Figure ZA   Schematic of a (one-dimensional) soliton, initiated at (r-,t-), 

traveling along the line r(a), with speed c +v =c , Eq. (2.21), 

We note the following important features of the soliton (2.21' 
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(1). 

(2), 

(3). 

(4). 

(5), 

(6) 

The effective (two-sided) spread of the hydraulic bump is 

AQ = 2bK^^n, (2.24b) ff., which is ~y ^%  i.e., ^g ~ l/v^ 

cf. (2.17). Thus, the spread is essentially proportional 

to the depth (or thickness) of the surface layer, h^^;. 

The height of the bump, i,  ,  is ~v and h|, cf. (2.19): thus, 

the larger v the faster the soliton travels and the larger 
^0 

it is. Also, the thicker the effective layer (h ), subject 

to (2.20), the larger is the soliton. 

The larger v , the steeper the bump, i.e., the greater its 

slope. 

The speed of travel Cg is constant (v = const.) (2.17a), 

so that propagation is nondispersive, a reflection of the 

fact that dispersive forces are balanced by the nonlinear 

forces, cf. (2.1), (2.1a). 

Although not obvious here, it can be shown (see [11]) that 

solitons pass through each other without distortion. This 

allows us to regard them as mutually independent, when con- 

sidering them in the ensemble, cf. Sec. 3 ff. 

The solitons represented by (2.16), (2.17) are either gener- 

ated by a locally plane wavefront, or have traveled a dis- 

tance from a more local source, i.e., we are assuming here 

essentially one-dimensional (along a line) propagation.* 

:2.22) 

2.3    Approximate Wave Forms 

The rather complex waveforms for c,, or v,  cf.   (2.19),  can  be greatly 

simplified  for subsequent analysis  by approximating them with a  simple 

gaussian  "bump."     In  Figure 2.2, we  show the approximation 

sech  (2x/L)  = e = e bL  = L^; 1.073 or 1,     (2.23) 

along with the case b = 1, which is also reasonable. 

Accordingly, the typical soliton (2.21) is reasonably approximated 

by 

' ^0 = 2h,v^/c^, 

*See footnote, page 3. 

10 

:2.24a: 
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e-x2/{bL/2)2  .    ^ __ ^_Q^3 

x2/(L/2)2 b =  1.0 

sech  (2x/L):   "exact' 

1.5 

Figure 2.2    Approximations to sech^(2x/L),  Eq.   (2.23). 

where now 

^0 = 'Kl ''' \ ' ^^ - 2nb/K^3 = 2nb{2/gh^/2(i.,^)/3v^}^a (2.24b) 

from (2.18), with Figure 2.3 showing the relationship between "wavelength" 

A   and width '     between e        points. 

e-^'( = 10-2)^ 

T 
e"" (=10'^) 

Figure 2.3 Pulse shape, "wavelength" A , and width L between e' poin' 

11 
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[Our choice of n will be made presently, vide (2.29)et seq.] Using (2.4) 

we see at once that the corresponding form of the excess speed soli ton 

is 

v(r-r..t-t.) = 3v exp {-4|r-r.-c^ (t-t.)|^/L^} c +v , 
0  0 

(2.25) 

In both cases, (2.23a) and (2.24), we observe that wavelength (~L„) de- 

pends on layer thickness h and on the incremental speed v , cf. (2.17a), 

(2.23) also. Now the soliton condition (2.20) becomes alternatively, 

from (2.24b) 

?  1      7 
r,\J-l\xi >  32/TI , 
'0 0 

;2.26) 

in terms of L , the distance between e -points, cf. Fig. 2.3. 

Next, let us combine the two "existence" conditions: (2.3) for the 

effects of surface tension, and (2.26), the condition for solitary 

"waves." The result is a single condition, independent of v , the excess 

wave speed, for the minimum effective thickness, h , of the wind-drift 

layer, which permits solitons. This is readily found with the help of 

(2.24a) for ZQ  and (2.24b) for L^, to be 

h > h 
e   e-min 

3J 

P,,g(l-2/nV: 
with (b = 1.073; ;2.27) 

whose numerical value depends, of course, onnb. 

Our next step is to select an appropriate value of n, and hence 

define the soliton wavelength X  via (2.24b). This is done by first defining 

the effective channel thickness hg from the following quasi-physical argument: 

we require continuity of wave phase speed at the "interface'' between the 

"drift layer" and the underlying gravity-capillary surface,_ for speeds 

where surface tension and gravity effects are just equal. This occurs at 

a minimum phase speed* c  ■ , and tlius we require that 

*This ties in with f^,,^^-^ (= ^ n[Zgy[pgJ)'^^^ = ^j^)^  13.5 Hz ~ the empirical 

16 Hz resonance of Fig. 6.9, which is larger than f^.j^^^ here because 

of the wind-drift velocity gradient at the air-water surface, cf. caption. 

Fig. 4, [16]. 

12 
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's-imn 
(4gT/P„ 23.2 cm/s = c o-min 

/gh e-unn 

-/c g(K3+JK2/p^ 

(2.28) 

which accordingly defines h      .    in our model. ^ -^ e-min 
[Here c       •     is obtained from the general   relations c 

K^ - oj^/Cg, giving  K^,^.^ =  (P^g/J)^' = 0.364 cm'^ cf.   [9],  p.  224,  Eq. 

(56).]    Using  (2.27)  in  (2.28) accordingly yields the surprisingly simple 

result 

nb = /8,        or n = /8/1.073 = 2.636, 
:2.29) 

for our approximating wave from  (2.24a).    This gives us finally the fol- 

lowing set of limiting values   (lower bounds)  for the existence of solitons 

associated with the drift layer: 

h    > h 
e        e-min 

/4j/p^g  = 0.55    cm;       c^> c^_^.^  =  23.1 cm/s 

(@ p,, =  1, J = 72.75 @ 20°C), 

5/2, X^  = 8b{/^h^^'^(l-Y^)/3v^}%       v^ > 0 

;2.30a) 

;2.30b; 

where again,  from (2.11b), y^ = 3j/p^ghg, with  (l-Yg_^-jr,i 

that Oj > 0  in  (2.1a),  as required. 

= 0.25, so 

3. The Soliton Surface Process 

The fundamental concept of the soliton surface process is that it 

represents the decomposition of the actual surface or drift layer into 

an ensemble of solitons ([9], bottom p. 467; also [13]), whose excess 

speeds (v ) and therefore heights and wavelengths are variable quantities, 

depending on the particular surface produced in the chaotic decay of 

the wind-wave interaction as fetch is increased (see II of [3], and 

Sec. 6.1 ff.). Thus, using the approximate form (2.24a), we see that 

the resulting surface, or "reduced" drift layer, is expressed as a repre- 

sentation of a soliton ensemble by 

13 
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;3.i) 

where c^j = ^o^^oj^' '■Qj " ^o^^oj^' ^^"^ ^ 3^^^" '^e" "^"^^ solitons z^ 
comprising this surface Cc' represent through (3.1) a decomposition into 

soliton "components," roughly analogous to a Fourier decomposition. 

The soliton ensemble is then {Cc}> over all allowed values of J. 

Our next task is to determine the first- and second-order statis- 

tics of Tc, in particular, Kii^y,  the covariance K<~(Ar,T), and associated 
boo '~-« 

spectra. To accomplish this, we proceed to make a variety of reasonable 

statistical assumptions; (see also Sec. 4 ff.). First, we observe that 

a plausiable distribution of values of the L . is provided by the "half- 

gaussian" pdf 

(L. 
TT  h' 

(3.2) 

Because of the many forces influencing the local surface at r a Central 

Limit Theorem argument may be invoked to suggest the half-gaussian pdf 

(3.2) (since LQ^O). Moreover, this pdf favors solitons with lengths 

shorter than (L2)'^ (= a, ), although comparatively large values of L 

(> o, ) are not improbable, and, indeed, are needed, to provide signifi- 

cant backscatter returns at the longer Bragg-scatter wavelengths 

(A^/2~15 cm, at f^ = 5 kHz; A^/2 = 7.5 cm, at f^ = 10 kHz), cf. Fig. 

5.1. [Another, supporting feature of our choice of pdf (3.2) is the 

perhaps fortuitous fact that it leads to a wavenumber intensity spec- 

trum, Up(J<,0)c-, which is 0(k ) as k becomes large, cf. Eq. (3.17).] 

An important characteristic of solitons is the unusual feature that 

they remain undistorted when interacting with one another [11], [13]. 

This suggests that the soliton ensemble, a representation (J) of which 

is given by (3.1), may be described be a poisson process in space and 

time, over all points (r.,t.): superposition does not change the 

individual "wave" forms. Accordingly, we can use recent results [22], 

[23] to write respectively for the mean and covariance of this poisson 

process: 

14 
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CO 

(3.4) 

(with z dimensionless, e.g., z = y/L here). Because we further postu- 

late local stationarity and homogeneity, <i,^>  is independent of (r,t), 
while K_ = K^(Ar,T), with Ar = r„-r •, T = t^-t^ in the usual way. Here 

A„ represents the "overlap" index for these (Class B) processes ([23], 
D 

Sec.   3), which in these cases  is 

^ = %  V      ^^^^     ^8 =  1'     1^'   '"I (3.5) 
= 0,     |T|  ^ °° f   cf.   Eq.   (3.5),   [23], 

where n~ = average number of solitons initiated per unit length (along 

any line r-r.,  cf. Fig. 2.1) and L = /TT/2 O, , cf. (3.2), is (proportion- 

al) to the mean wavelength X^ = 2 L~, (2.23b). 

3.1 The Semi-Isotropic Model 

We begin with the simplest directional model.  For this we assume 

that all soliton components move in such a way that the covariance K<~ 

depends on Ar = I Ar I = \v,.-r^ I, rather than on Ar. Then the soliton 

surface field is semi-isotropic, in that all components move downwind, 

independent of angle. At}), cf. Fig. 3.1 ff, and Eq. (3.23). 

Accordingly, we can write Ay E Ar - C^IT] for this initial, "semi- 

isotropic" model and use (2.24a) for c: i.e., ,i! -^f; (where all j- 

parameters have the same pdf's over the ensemble), e.g., specifically. 

Putting equation (3.6) into (3.3) then gives 

/ -   -4y^/L^ l\          _ 

-co 0   0 

/IT 1—   . /if 
0 

15 
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TR 7775 

Here we have made the two further assumptions: (i) that t, and L are 
0      0 

essentially independent in the soliton regime,  cf. the discussion in  (4), 

Sec.  4 ff., and  (ii)  that c^ - c    = constant,  i.e., c„>>v   , and  •'•                  _    '               so                                          0      0 
c    = c    = c    + V   , cf.   (3),  Sec.  4.    Similarly, we get for (3.4), using 

(3.6)  again:* 

S^^'v-hso 
 /-      ?    -4yVL^-4|y+Ay|VL^ 
"o Lo       </      ^0 ' dy/^A   ,L       (3.8a: 

^    -co ^0       0 ^X.a 
n    L 

_    0 0 
/F72 

2    2 

0 ^o'  0 
:3.8b) 

^^W^o<(V^)^ VL   '      Ay . Ar-c^T,   (3.8C) 
0 

once more with  the assumption that r     and L    are  independent,  cf.   Sec.   4. 0      0 
In such cases we have 

K3(0,0) = c2 = JlL„,2 > (3.9) 

for the variance of the process. The mean total intensity is 

^ 2 
C3 = K^(0,0) + <^2> o\ +1 (^r D^ 

S  4^0 00' :3.io: 

In general, (; > 0, since these solitons are one-sided. However, as we 

shall note presently, cf. Sec. 4, (6), only the variance a contributes 

to the effective scattering cross section, since ^'^^  simply represents 

a constant vertical displacement of the surface elevation vis-a-vis 

some reference level, which is arbitrary. 

Using (3.2) and the relation 

/ X 
0 

v-l,-6/x-7x^^ 
2(3/Y)''^^K,(2/3Y), ReB,Y> 0, :3.ii) 

[(9), p. 340, [24]], we get for (3.8c) the explicit result for these semi- 

isotropic cases 

*We can drop pn, (3.5), since K(-->0, jij or |Ar|^co, because of the 

finite extent of the typical soliton waveform. 

16 
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K3(Ar,x).^^=a2 2A,y 

^^( 

2Ay 
j  ,        Ay = Ar-C3T, (3.12) 

(with _^p xK^(x)^l), where K^ is a modified Bessel function of the 

second kind. From (3.12) we see at once that the associated point- 

covariance function is 

h^'^^hso-4 
2C2T / 20^1 

) ^h ^h 

2  I 2 
a, = L : 
h   0 

c +v . 
0 0 

(3.13) 

The associated point-intensity spectrum wd'^^)  of the soliton sur- 

face is now readily obtained from the Weiner-Khintchine theorem  ([25], 

p.   143): 

-103^1 

W^{f^) = 2 /      K2(0,T)e      ' dT ^S    =    ^TTf^, :3.13a; 

9        2 
h°S ""                                                          — 
  [ XKT(X)COS ax dx;      a = co a,/2c 
^s 0     ^                                         s h      s 

1 + 
Ksa^X 213/2 

(3.13b) 

,(3.14) 

since 'JJC-ZC    =  l<c-,  for these nondispersive solitons, where  K^ = 2-IT/X^ 

is  the associated  (average)  wavelength.     Note that 

/      V.(f.)df    = o^  : 
0+ 

fv'c(f ) is the spectral continuum, exclusive of any "dc"-component 

<Cs>26(f3-0), cf. (3.10) and (3.7). 

Alternatively, from (3.12) we find that for this semi-isotropic 

model that on setting i = 0, we get the corresponding spatial covariance 

function 

17 
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K-(Ar,0).       =  al 
S^'~-    'ISO        S 

2Ar hi 
\ 

2Ar 

% 
\ =  K^(Ar,0), (3.15) 

which reduces as expected to (3.9) when Ar-^0.  [Note that (3.15) is 

independent of the assumption (ii); vide (3), Sec. 4 ff.] 

From (3.15) we can obtain the desired wave number intensity spectrum 

Wp(k^,0)^.. Noting again the isotropy of our model (3.15), we have 

specifically 

W„(k,0), = // K,(Ar,0)e''^ ~''d(Ar) 
^    ^  [Ar] ^ ^ 

4TO^a^-l/ J^(kAr)K^(2Ar/a^  )(Ar)^ d(Ar), (3.16) 

which from  [25],  p.  410,  Eq.  2 becomes finally 

\^^{\i,0)^ 

2J TT a_ or 
S h 

[l+(ka^/2)^] 
2-2 = W2(k,0)^. :3.i7; 

[In backscattering applications, k = 2k sin9   (4) j = ^/2), cf. Sec. 2 

and Fig. 2.1 of [2], for example, and (5.1b), Sec. 5 ff.] 

3.2 Anisotropic Soliton Surface Models 

To handle general anisotropic wind-wave surfaces, we use the well 

known relation for the directional covariance of such surfaces [27], 

extended now from the usual large-scale wave surfaces to include, in 

principle, our soliton wave surface. The desired relation here is 

S = S' :3.i8: 

where   now 

Kc = ic^c = ic^c/Ce = \'^-nf/c^;      i^ = i^ cosa+ i„ sina; (3.19a; 

K^.Ar  =  K^Ar cos( Ac|)-a);       Ar  = l2'Ir       '^'^ "   ' ^r I '     Acf) =  4)2  "  (l?i, I (3.19b; 

18 
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and where the wind-, soli ton "wave", and other geometries are sketched 

in Figure 3.1. Here 

< > = / w.(a)( )da -TT/2 < a-^^ < TT/Z, (3.19c) 

where <l>    is the wind angle, for the mean wind direction, ^^ = 

i    cos$    + i    sin*  , and w,(a)  is the pdf of soliton wave directions on 
«^x w     ^y w 1 
the reference (x',y')-surface, cf.  Figure 3.1. 

Next, we apply  (3.14)  to  (3.18), using the nondispersive relation 

aa   = CTKC for solitons, cf.   (4) of  (2.22),  to obtain 

"/ coso) T(a)      \ ,„ 
K^(Ar,T)  = B  /< —mj)  <^^' T(a)   s x - :^ cos(A({,-a) 

S - n\ri+(a<. )2]3/2/       s r^ 0\[l+(aa33)^]        ^ 
(3.20) 

a E a^/2c^ 

Figure 3.1 Geometry of wind direction, wave angle a, Ar, A*, Eqs. (3.18), (3.19) 

19 
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which with the help of (2), p. 426, [24] reduces finally to the general 

result 

2 
K^CAT.T) = a^ <|B(a)|K^(|3(a)|)>^ 

2    
; B(a) = — [c T-Ar cos(A(i)-a)], 

o^  s 

Further evaluation of (3.21) depends, of course, on the appropriate 

choice of w^(a), which at this stage of our knowledge is unknown. 

Perhaps a pdf similar to that used for gravity-capillary wave surfaces 

may be appropriate, viz., 

n(fJ 
w,(a) = A^(f^)cos    a, -TT/2 < a ^ TT/2. 

where 

,   ^/2   n(f ) 
A  = /   cos    cc dct, 
"   -TT/2 

(3.21) 

(3.22) 

(3.22a) 

cf. Kitaigorodskii [27], Sec. 6.1, and Fig. 2.2 therein, with n(f ) = 2 

usually. 

For the semi-isotropic model developed above in Section 3.1 we see 

now that 

w,(a) = 6(a-A(|)) 

for all allowed a,  cf. (3.22). Then, 

inal covaria 

pendent of direction (~ Acj)), in the downwind regime 

= (2/o^) |Ar-c^T| = 2|Ay|/a^, 

and (3.12) is the directional covariance in this case: K<-(Ar,T) is inde- 

;3.23) 

4j;^^__Assumptions and Approximations 

In achieving our second-order results, e.g., the covariances and 

spectra of Sec. 3, we have made a series of more or less reasonable 

approximations and assumptions, whose plausibility needs at least to be 

discussed. 

These are: 

20 
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(1). Waveform: 

From (2.23) we replace the true waveform with a gaussian approxima- 

tion (2.24a), where, now wavelength A is defined according to the 

physical condition (2.28), which is equivalent to the distance between 

2% (of maximum) points in the true waveform, cf. (2.24b). This insures 

a minimum effective channel or drift layer thickness of h  • = 0.55 cm, 

cf. (2.30a). The main structure of the soliton waveform is otherwise 

preserved, in a much simpler form. 

(2).  Pdf of Lg (= n'^X^): 

The half-gauss pdf (3.2) for wavelength, or L , is suggested by a 

Central Limit Theorem argument, as noted above. The critical parameter 

here is the mean-square, <L >, in any case, regardless of the precise 

form of the pdf that is chosen. Another supporting feature of this pdf 

is that it ultimately leads to the wavenumber intensity spectrum (3.17), 

which has the expected k  behavior in the higher wavenumbers and leads 

to an observed f -dependence in the point intensity spectrum, cf. Figs. 

5.3, 5.4 ff. , as obtained empirically by Mitsuyasu and Honda [20]. 

(3). Small Excess Speed Assumption (c >>v ): 

In our evaluation here of <j; > and K^,, (3.7), (3.8) we make the 

important simplifying assumption that c >> v , so that c = c = c +v , '^ rj3       r            00 SSOO 

such that we can replace c by c in Ay and in the subsequent analysis 

(3.8) et seq., independent of v . This is justified if the atmospheric 

shock waves are "weak" so that the "strength" (3) of the hydraulic 

jump [associated with the soliton "bump"] is small (~ 0.05-0.1), cf. 

Sec. 2.12, [9]. 

(4). Statistical Independence of C and L : 

In our basic derivations of the mean <^^,   (3.7), and covariance, 

Kj-, (3.8c), we have assumed that soliton elevation c,    and wavelength 

(~ L ) are independent, when considered over the ensemble of representa- 

tions c-,, (3.1), e.g., ^; U = C^ L^ and A^ =  f;2 L^, even though c„ ~ v„. 
J  ^   '    ^^0 0    0  0      0 0    0  0 0   0 
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(2.24a), and 1- ~ v^, (2.24b). Our justification of this is pragmatic 

again*: it leads via the covariance (3.12) once more to the point-intensity 

spectrum (3.14), and associated wavenumber spectrum (3.17), which are 

empirically supported, cf. Figs. 5.3, 5.4 ff. 

(5). Semi-Isotropy: 
The soliton field is taken to be (semi-)isotropic, cf. (3.23) and 

Sec. 3.1, et seq., with soliton motion in the direction of "downwind." 

This semi-isotropicity is probably not often the actual condition: the 

soliton field is anisotropic, much like that of the gravity-capillary 

wave surface. However, we expect that numerical differences are subsumed 

(i.e., disguised) in the various scaling parameters, a, , a^,  and are not 
distinguishable at the present level of experimental refinement. Again, 

*Alternatively, it is possible to find a pdf of the incremental soliton 

speed V , such that the basic covariance (3.12) is once more obtained, 

taking into account the fact that now the average with respect to L in 

(3.8b) is truly an average over v , viz., 

,  -2Ay^/L^     4Ah^  ^,,        ^ _ 
<,^L^e     °>L =-/<v^/^ exp(-2vX/A)\ ' L^^/Zv^'    (i) 

0   c^ 0 

This pdf has the form [under the condition (3) above, viz., 

c >> V , with c ^ c = c +v  ] 0   0       s   s   0  0 

w^(vJ = (|^a)-l(a/v„)'/C'°; . =.  K^l'^f^ f' (ii) 

as determined by the author in an improved model, [^l],   Sees. 3.1, 3.2.  In any 

case, it is the covariance (3.12) that is fundamental here, as far as 

the overall statistical structure, e.g., K^,  Wp(k^,0), h'{f),  etc., is 

concerned, as suggested by the empirical evidence regarding W^{f  ), 
whatever may be the individual structure of the solitons themselves. 
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these effects need to be isolated in properly controlled experiments. 

(6). Constant Drift Layer Thickness, h : 

The thickness h of the effective drift layer is assumed constant 

for any given developed wind-sea interactions. In fact, in our present 

model we treat the soliton speed as c = v +c , where now c (» v , cf. 

(3) above) is taken to be the mean surface drift speed, v ,, so that 

c    = /gh    = v.,      and •'• c    = c +v    = v,+v    = c  . (4.1) o^ed soodos 

This follows from the observation here that the solitons are themselves 

part of the drift layer. The solitons "feel" the bottom of the channel 

(h ), and are produced consistent with the strength of the wind-wave 

interactions, as long as this layer is not so thick that the solitons can 

no longer sense the effective bottom. 

Only V , appearing in the amplitude c,    and wavelength (~ L ), cf. (4) 

and footnote, is randomly variable over the ensemble of soliton-surface 

representations {J}. The constancy of h for a particular, established 

(i.e., stationary) wind-wave environment, during which the ensemble of 

soliton-surfaces is generated, appears quite reasonable. 

In practice, it has been found that v , and mean wind speed, U (at 
Q a 

some reference height above the mean sea surface) are related rather 

loosely by 

vT = alT = aU ,   0.01 $ a < 0.05. (4.2) 
d    a   oo 

A common choice for a is 3% of U (= U ), but the requirement that h > 
a    °o e 

h  . , (2.30), from (4.1) says that c  • = /gh  T'  (= vTl ■ ) = e-min ^   ■*'     \      i      j o-min   ^ e-mm ^  djmin^ 
23.1 cm/sec, so that in our present model mean surface drift speeds must 

exceed ==23 cm/sec for there to be soliton generation. Moreover, the data 

of Wright and Keller [28], cf. Fig. 6.7 suggest that for wind speeds 

U^ = 0(8 m/sec) surface wave speed is nearly dispersionless, as required 

by the soliton model [cf. (4) of (2.22)]. 

Thus, we must have c > 23 cm/sec, so that if a ~ 3?', v , = c =24 cm/sec 

(~- 23 cm/sec) permits a soliton surface. Even at lower wind speeds, for exam- 

ple, at U = 5 m/sec, Ramamonjiarisoa. et al, [15], cf. Fig, 6.8, show essen- 

tially dispersionless surface wave propagation above about f, = 3 Hz. Here 

a = 3?:' is too small, but a = 5.:'. gives v , = c =25 cm/sec, permitting 
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a soliton surface here also. At still smaller values of U^, as Fig. 6.7 

shows, surface wave dispersion appears to dominate, so that soliton pro- 

duction is then probably negligible. The precise relation between v^ 

and U , and hence c and U , remains to be established here, however, 

as part of the nonlinear wave and wind interactions, cf. the discussion 

in Sec. 5 ff. 

(7). The "DC" Component of the Soliton Process: 

Although the constant elevation component <^s>, (3.7b), can be 

sizeable vis-a-vis the mean square fluctuation, o  (3.9), e.g., 

<^3^/a^ = ^ [7" (~ 1 or more), (4.3) 
S   S   0 0 

it plays no observable role in either the point spectrum (3.14) or wave- 

number spectrum (3.17). This is because we operate at signal frequencies 

such that the Bragg scatter occurs at wave frequencies f well above 

"dc." Moreover, direct calculation of the wave number spectrum by using 

the complete second-moment function 

M2(Ar,0) = K^(Ar,0) + <?2>^6(Ar-0) (4.4) 

in ■ 

Wp(k,0) = // M.(Ar,0)e'^'-d(Ar) (4.5a) 

gives 

P    °o      ik Ax+ik Ay 
= W  (k,0)^      ,3  ^7) + <C5>    / / e    ^ y    6(Ax-0)6(Ay-0)d(Ax)d(Ay: 

W2(k,0)  = W2(k,0)  + <C5>^ (4.5b) 

Again, we operate at frequencies k>0, so that subtracting the constant 

<;;<-> from W (k,0) gives the desired fluctuation term. The <^;^> repre- 

sents a constant vertical displacement from some arbitrary reference level, 
2 

which can be adjusted to make the contribution of <c,^    in W„ vanish. 
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(8). H1gh-Frequency Behavior 

From (3.14) and (3.17) we observe the limiting behavior of these 

spectra as frequency increases. Thus, we have (as f and k^^o): 

2 2 

showing the expected k' and f' structure. Both spectra exhibit this 
-4 

behavior, in excellent agreement with experiment ([5], [19] for k - 

dependence, for example. Fig. 5.3 here, as well as Fig. 16 of [8], and 

in [20] for f -dependence). Of course, ultimately these dependencies 

must fall off faster, in order to ensure the physically required finite 
-5    -4 

rms slopes. This implies a fall-off at least 0(k  or f ), or if 
/I '3 

fractional exponents are allowed, at least as o(k   or f   , e>0). 

Part II. Supporting Experimental Evidence 

To complement the analysis developed in Part I above, we now con- 

sider a wide variety of experimental evidence which supports the plaus- 

ibility of the soliton surface model. To do this, we make extensive 

use of the description presented in [8], as well as in [3] earlier. 

Thus, extensive experimental evidence for the soliton scattering mechanism 

already exists in the open literature and is concisely reviewed here. 

5. Backscattei^ Results^ 

Here we are concerned with the (underwater) acoustic backscatter 

cross section, where we postulate the surface-soliton component, riding 

on the gravity-capillary beneath [l]-[3]. The geometry is shown in 

Fig. 5.1.  In particular, small grazing angles and comparatively high 

frequencies are employed, so that the only significant component of the 

backscatter is obtained from this soliton surface, as discussed earlier 

[l]-[3]. Specifically, the Bragg or resonant backscatter cross section 

is given under these conditions by [l]-[3] 
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Figure 5.1. Acoustic backscatter geometry, source and receiver at 0-j. □. 

-(0) . 2 2 
inc   0 

0 M(0) 

16T 
'^GS-inc^2^^lO)' 

;5.ia: 

where, from (3.17), 

;o) 
'^inc  '^S-inc IT GS ^ oT' 0 

2 2,, 

[iHo^k^  sin6^^)2]2 
:5.1b) 

where N^°^ {=  N^°Vl6) is the "tilt factor" ([1], eq. (7.66a), sec. 3.1A), 

which accounts for the (amplitude) modulation of the small-scale surface 

waves by the gravity wave component of the surface, in the usual way. 

Specifically, 

■^(0) , 4    4      2    2     2       4 
Npc L ,  ^^  - 3ap sin e^T + 60^^ sin 9^^ ^os 9^^- + cos 9^^' GS backscatter   Gx    oT    Gx    oT    01      oT 

oT   ' '    Gx   Gy 

where J^,  _  ^ = (3.0 + 5.12iF)10'^ [29].  (The reflection and shadowing 
b(x-yj a 

:5.2) 
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2   2 
coefficients R^, S  in (5.1) are essentially unity here, e.g., ^Q - ^ - 1. 

as long as 0^-|.< 85°.) 

Backscatter results of experiment and the theory briefly summarized 

above are presented in Figure 5.2 for 9^^ = 81° (* = 9°) and Ng^ = 

1^ = I  and a +2.5 db has been 
o    — 2 

1.68- 10 , for U, = 10 m/s; here S 
a 

R' 

added for the Kirchoff correction at these small angles (all curves). 

The comparison, or more precisely, the fit of theory to experiment is 

made (for the above geometry) over 5-20 kHz. Narrow-band signal trans- 

mission and reception are used by Roderick et al. [6]; explosive charges 

were employed by Galubin [30] (see also [4], fig. 1.25), with narrow-band 

-20' 

mc 

■30 

dB  eQ-|.=81 

-40 

■50 

-60t 

Soli ton model parameters 

i  Ref. 6 (0^=2 cm; a^=5  cm; U^=10 m/s) 

o Ref. 30 (o^=0.8 cm; a^=1.5 cm; U^=9.5 m/s) 

10 15 20 fo(kHz) 

Figure 5.2 Incoherent backscatter strengths (Roderick [6], and Galubin 

[30]) as a function of frequency at small angles and high 

frequencies in "bubble-free" regimes. Solid lines; theory [l]-[3] 
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reception. Figure 5.2 also includes some typical theoretical backscatter 

cross sections (dotted line), based on purely gravity-capillary surface 

resonance returns as derived by Kur'yanov's method [31] (see also [4], 

sec. 9.11, sec. 1.6, p. 203, figs. 1.26, 9.10; [1], eq. (3.18)). In the 

figure the • represent the recent data of Roderick ([6], fig. 10) for 

coherent pulsed cw signals, while the o points are the data of Galubin 

[30], who used explosive sources. The added soliton component makes up 

the difference between the "classical" result [31] and the observed cross 

sections. (See also Sec. 5.3 ff.) 

It is evident that although the mean wind speeds U were essentially 
a 

the same (~ 20 kn = 10 m/s) in the two cases, different wind states were 

in force, as quantified by different values of var U (and higher moments 
a 

as well). This is evidenced by the different wavelengths of the solitons 

(~ a, ) and by the different (rms) soliton levels a^.     Fetch and 

wind duration, in addition,are also important factors at the low wave 

number end of the spectrum, while wind turbulence and drift current can 

have effect at the higher wave numbers. 

With two adjustable scaling parameters, there might appear to be 

much latitude in curve-fitting; however, the dependence of o- '  on mean 
inc     

wind speed, or some related parameter, should be systematic, which it 

is not here, cf. Fig. 5.2. Moreover, the soliton component can be ex- 

pected to show critical threshold effects, i.e., vanishing for mean wind 

speeds less than ~2 m/sec and saturating for speeds greater than -10 m/sec. 

Thus, as noted above, mean wind speed alone is not an adequate parameter 

and the effects of gusts may also be important. Evidence for this is 

observed, not only in scattering, but also in ambient noise. Both seem 

to show variations that are not strictly dependent on mean wind speed. 

5.1 A Check on the Backscattering Data 

In order to check the plausibility of the model used in matching 

the backscattering data, it would be useful to have actual wavenumber 

spectra taken under similar wind conditions as the experiments. Unfor- 

tunately, only point-frequency spectra are available for this purpose. 

Furthermore, measurements made at sea, under appropriate conditions of 

wind and fetch, do not adequately cover the high-frequency region of 
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concern. Therefore, laboratory point spectra of elevation will be used 

for comparison purposes. Thus, to check model plausibility here, the 

spectrum is simply added to the normal gravity-capillary wave surface 

spectrum. The backscatter strength'is then calculated by composite 

surface theory, as before. 

Figure 5.3 shows wave elevation spectra measured in a wind-wave 

flume by Mitsuyasu and Honda [20] for 8.25 m  fetch and mean wind veloci- 

ties of 5, 10, 15 m/s. The dashed line is the Pierson-Moskowitz [33] 

or P-M spectrum for the fully developed equilibrium sea, which is given by: 

^(^)p-M 
2.6 . 10"^ g^f;^ exp(-4.75 • 10"" g'f^U''')' (m"/Hz),  (5.3) 

-4 „4^-4,,-4, 
s 

where g = 9.8 m/s, f again (cf. (3.14)et seq.) is the frequency, and 

U^  is mean wind speed. Note that the P-M spectrum is saturated in the 

frequency range shown, its peaks falling well below 1 Hz (e.g., at U^ = 

10 m/s the peak is at f^.peak "" ^•'^^ ^^^'   '^^^  ^^^^ ^^^^^ ^^  decrease in 

A                  Spectrum Level   (dB/cm^/Hz) 

0 
A       As \ 
/ \    /   ( \ 

-10 

-20 ' A      A^\uN>. U^(m/s)= 

-30 Sl^          f-3 
/                         ^ Vi*'x./''''''*\      ^^ ^^^v        s 

^"^5^,10  ^^*^^                           f 
y               -^ \ V ^^rt               ^*V.                     AI 

-40 —'     '.X ̂ rxT^ UL 
-50 \ ^^\\        yT^/vv \j\ 

P^ i;    \><W^ ̂  
_<;n 1          1       1     1    1   1   1  1 1 ^^1.1   1  .-N. \ 1 

10 
Frequency (Hz) 

100 

Figure 5.3 Wave-flume point-intensity frequency spectra w{f  ) 

Mitsuyasu and Honda [20]. 
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frequency with increasing wind speed but the fetch is obviously far too 

small to approximate the fully developed sea. 

Transformation of the P-M asymptote to K-space using the gravity 

dispersion relation Kj- = (Zirf ) /g (neglecting azimuthal dependence) 
-4-4 

yields the asymptotic wavenumber spectrum W„(K(f ))= 6.5 • 10  K . 

At higher frequencies, the data fall well above the P-M asymptote 
_3 

and have roughly f  dependence. Clearly, these wave spectra are un- 

saturated at the higher frequencies [20], [21], [40]. Without dispersion, 

K = 2'fTf /C where C is a constant and the spectral asymptote would also 
-4 

be K . This is precisely the situation indicated in (4.6) above, and 

is the justification for our requirement that the associated covariance 

of the elevations have the form (3.13), cf. (4), Sec. 4 also. [The 

spectra also show several distinct peaks in the range 70-100 Hz, which 

may be due to the "capillary" ripples noted in Figure 6.10 ff. Effects 

on scattering are significant only at 100 kHz or greater.] 

Spectrum Level (dB/cm^/Hz) 

J I I I I L. 

10 m/s 

10 
Frequency (Hz) 

higure 5.4 Comparison of wave frequency spectra, Mel 1 en, Middleton, and 

Fitzgerald [8]. 
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Results are summarized in Figure 5.4. The curves labeled 10 and 

15 m/s are the spectra of Figure 5.3. The curve P-M is the asymptotic 

Pierson-Moskowitz spectrum. The spectra S, (Roderick et al. [5]) and 

S„ (Galubin [30]) indicate addition of the respective soliton com- 

ponents used in the backscatter intensity matching in Figure 5.2 to the 

P-M spectrum. The soliton components were calculated taking the propa- 

gation speed in the fixed-coordinate system to be 50 cm/s, which is in 

reasonable accord with measured values. 

The wind-flume spectra have the same general shape as the model 

spectra; however, above 10 Hz, the 10 m/s wind-flume curve is lower 

than the model by as much as 6 dB. This may not be too surprising, 

9.60 

2  3 ^-^^ 
[cm^-10-^/sec] 

6.40- 

4.80- 

3.20- 

1.60- 

_! 1_ 

0.25 0.50 
fs (Hz) 

0.75 1.00 1.25 

Figure 5.5 Experimental point-intensity spectrum of wave surface, 

Fig. 7 of Roderick et al. [6]. 
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in view of the very short fetch of the wind-flume experiment. In the 

backscattering experiments, fetches were of the order of kilometers. 

In the NUSC experiment (Fig. 7 of [6] and Fig. 5.5 here), for example, 

the spectral peak occurred at 0.2 Hz, which is much closer to the 

calculated P-M value f^ „„ , = 1.14 Hz above.  (The difference is 
S~pSaK 

explained by the fact that the observed sea was not fully developed.) 

The 15 m/s wind-flume spectrum is in much better agreement with 

the model, indicating that a higher wind-speed may tend to make up for 

the lack of fetch. We see from this that the present soliton model 

fitting the various backscatter data also agrees well with the wave 

frequency spectra, subject to the fetch limitations noted above, i.e., 

there is sufficient spectral energy to account for the observed back- 

scatter cross sections. 

6. Dispersion I: Doppler Experiments and 

a Proposed Wind-Wave Model 

In addition to the discrepancies observed in the backscatter 

cross sections at small angles and high frequencies for "bubble-free" 

regimes, discussed above in Sec. 5, anomalous behavior of surface 

waves was also observed in the doppler spectra. According to classical 

theory, the cw backscatter spectrum from a narrow acoustic beam should 

have sharp spectral lines corresponding to Bragg resonance. The dis- 

persion relation for phase speed c is given by c^ = g/K + JK/P^^' where 

g = 980 cm/s^ and J is surface tension (= 72.75 dynes/cm at 20°C). 

This relation was expected to hold over the entire surface-wave spectrum. 

However, experiment did not support this argument.  Instead of the 

predicted sharp line, a broad peak was observed with a doppler shift 

quite different from the predicted value. 
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A doppler experiment in the Thames River by Mellen [35] in 1963, is 

illustrated in Figure 6.1. In this experiment, the operating frequen- 

cies were 85 kHz and 1400 kHz, corresponding to resonance with the sur- 

face wavenumbers 5/cm and 40/cm respectively for the grazing angle 45° . 

The cw signal, backscattered from the illuminated surface, was band- 

shifted for spectrum analysis and the results plotted as a function of 

doppler shift 6f from the carrier frequency f (Figs. 6.2 and 6.3). 

The expected doppler shift is given by 6f = 2f (c /c)cos9 j,  where c 

is the sound speed. 

The mean wind speed for the experiment was estimated to be 10 m/s. 

Although a few "whitecaps" were noted, there was no evidence of any 

significant entrapment of air. Pulse measurements showed no subsurface 

return. Therefore, the observations are believed to be indicative of 

purely surface-wave phenomena and not bubbles. 

Figure 6.2 compares the measured doppler spectra with the expected 

resonances indicated by the dashed lines. Negative shift corresponds 

to the downwind conditions of the experiment. Much of the doppler spread 

can be attributed to modulation by the larger gravity waves. However, 

the doppler shift at 1400 kHz is much too small. 

Receiver 

Wind 

oT ^sj-y-x 

/y/ 

/ 

ransmitter 

Figure 6.1 Experimental arrangement, Mellen [35] (see also Fig. 5.1) 
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Figure 6.2 Doppler spectra, Mel 1 en [25]. 

In Figure 6.3, the spectra are scaled according to apparent phase 

speed. Both spectral peaks then coincide at approximately -35 cm/sec, 

and this indicates that the scatterers are traveling nondispersively. 

The doppler spectra of the Lake Seneca experiments by Konrad et al . 

[36], Figure 6.4, illustrate the effect of grazing angle looking upwind. 

■120 -80    -40 0 cm/s 40 

Figure 6.3 Phase speed spectra, Mellen [25] 
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 Gaussian 

-200 0 200 
Frequency Af (Hz) 

400 

Figure 5.4 Doppler spectra versus grazing angle, Konrad et al. [36] 

The relative speed of the scatterers varies as c sine j and the peak of 

the spectrum shifts upward by an amount corresponding to c =35 cm/s. 

Normal to the surface {<p  = 90°; 6 j = 0), the spectrum becomes sym- 

metric about zero and is very close to gaussian. This is characteristic 

of gravity waves, and modulation of the scatterers by gravity wave motion 

must be the dominant factor in spectral spreading. Calculations show 

that essentially all of the doppler spread is accounted for by this 

mechanism. The dominant surface-wave angular frequency was estimated 

to be oj - 3/sec. At cf) = 90°, the doppler spread around zero for the 

rms waveheight a = 10 cm is then 6f 
? 0 

Zf^f^aJc  = ±100 Hz, which is in 

good agreement with experiment. 

The shift of the spectral peak with angle is consistent with propa- 

gation of the scatterers in the downwind direction independently of the 

motion of the gravity waves on which they ride. The average downwind 

speed is approximately 35 cm/sec. Some variability of both speed and 

direction of propagation is to be expected,but the effect on spectral 

spreading at large grazing angles should be small. 
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Variation of angle with respect to wind direction also shifts the 

spectral peak, as seen in Figure 6.5. Crosswind, the spectrum is sym- 

metrical around zero, as expected. 

30r 

U 20- 

0) 

10 
CD 
-o 

(J) = 30°= (e^j = 60°) 

*oT 
(downwind) 

crosswind 

-400 
Frequency f (Hz) 

Figure 6.5 Doppler spectra versus azimuthal angle, Konrad et al. [36] 

Figure 6.5 shows similar effects observed by Boehme [37] in Lake Travis 

experiments, looking downwind at the frequency 455 kHz with mean wind 

speed 4 m/sec. The asymmetry of the spectrum indicates a velocity of 

~50 cm/sec, which is significantly greater than the other results. 

carrier freq. 

-300  -200  -100    0   +100   +200  +300 
Frequency (Hz) 

Figure 6.6 Doppler spectra versus grazing angle, Boehme [37]. 
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6.1 Tank Experiments: Phase Speed and Dispersion 

In ripple-tank experiments, Wright and Keller [28] used a wave 

gauge to measure effects of wind on the phase speed of mechanically 

generated surface waves. Figure 6.7 compares the dispersion formula 

(solid line) with data, which show negligible dispersion at high wind 

speeds. 

200 500       1000 
Wavenumber (1/m) 

2000 

Figure 6.7 Phase speed versus wavenumber, Wright and Keller [28]. 

Wave gauge measurements were also made by Ramamonjiarisoa et al. 

[16] in a large wind-wave flume. Figure 6.8 shows typical phase speed 

data compared to theory (solid line). Dispersion is evident only below 

3 Hz. 

In addition, frequency spectrum measurements were made as a func- 

tion of fetch, X. The spectra are sketched in Figure 6.9. For very 

short fetch X, the frequency spectrum shows a single line near 16 Hz, 

which increases in amplitude up to 1 m fetch. This is consistent with 

highly periodic ripples (catspaws). The fronts of these ripples evidently 

tend to steepen and the spectrum at 1 m shows a clear harmonic at 32 Hz, 

which is expected for such a distorted waveform.  In this regime, the 

cascade of energy is clearly toward higher frequencies. One may think 

of this as a cross modulation of wind and wave effects. However, 
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1.5 

c 
s 

1.0- 

0.5 

Phase Speed (m/s) U = 5 m/s 

- ° °2?-°a oo x>c^2o«.2o^y»eQoO<l%. 

(k \ A ^ I 1 1 i j 1 1 1 I I 
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Figure 6.8 Phase speed measurements, Ramamonjiarisoa et al. [16] 

12   16   20   24 
Frequency (Hz) 

28  32  36 

Figure 6.9 Wave spectra versus fetch X, Ramamonjiarisoa et al . [16 
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the 16 Hz line no longer increases in amplitude beyond 1 m. Instead, 

it broadens, and lower-frequency energy begins to appear below 16 Hz. 

This indicates that there must be a cascade of energy in the reverse 

direction as wel1. 

A chaotic process is a plausible explanation for the generation of 

big waves by little ones.  In the initial phase, one would expect to see 

a weak subharmonic at exactly half the ripple frequency, i.e., 8 Hz; 

however, rapid degeneration of the system can cause broadening of both 

the subharmonic and the 15 Hz fundamental. As the wave grows and the 

amplitude reaches a critical point, the surface becomes unstable, destroy- 

ing all the initial periodicity. This would explain the continuous 

spectrum seen at 2.2 m fetch. 

At short fetch, the ripple waveform simply becomes distorted. 

Figure 6.10 is a sketch of a typical waveform photograph made in a small 

tank by Schooley [38] for a mean wind speed of 10 m/sec. In this stage, 

the ripples are highly periodic and only one cycle of the continuous 

wavetrain is displayed. 

The waveform illustrates the typical distortion caused by non- 

linear steepening. The arrow at the front indicates the direction of 

water flow. The shock-like wavefront is also preceded by a small "cap- 

illary" ripple. This phenomenon can be readily observed in small tidal 

pools under conditions of high wind. However, the effects then are due to 

Wind_5». U^ =  10 m/s 

^^\A^ 

1 cm       L^— 

Figure 6.10 Surface waveform, Schooley [38] 
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shallow water, which is not the case above (which is now believed to be 

a drift-layer phenomenon, cf. Sec. 2). 

Growth of steep wavefrents requires some type of nonlinear amplitude 

effect. The waveform of Figure 5.10 is clearly similar to gravity waves 

in shallow water, where the bottom causes an overtaking effect that can 

eventually lead to breaking. However, in the case of small-scale waves, 

capillary attraction is evidently sufficient to keep the wave from 

actually breaking. Banner and Phillips [39] refer to this phenomenon 

as "micro-breaking" and point out its significant role in the exchange 

of momentum between wave and wind. 

Shemdin [15] proposed surface drift, illustrated in Figure 5.11, 

as the most likely nonlinear mechanism to account for wavefront steepen- 

ing. Just as gravity waves steepen when they feel the bottom, waves 

traveling on a moving water layer steepen when they feel the effects of 

the slower water below. The drift layer can be approximated by an exponential 

decaying current with peak magnitude about 2-4% (or 1-5%) of wind speed and an 

effective thickness (h ) of the order of millimeters in thickness [cf. Sec. 2.3] 

Nonlinear waves in a periodic system evidently encounter a potential 

well that stalls the advance of small-scale disturbances at the wave- 

front. A periodic steep-fronted wave consists of harmonics of the fun- 

damental. Their growth involves a cascade of energy to higher wave- 

numbers,and this does not explain how the sea develops. 

Water 

Figure 6.11 Di ift layer motion, bhemdin [15]. 
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Transfer of energy from wind to surface waves is, evidently, a high 

wavenumber phenomenon. A second mechanism, involving a cascade of energy 

in the reverse direction, is needed to explain the generation of low 

wavenumber energy. The most likely mechanism appears to be a similar 

transfer between the surface waves and the wind. Wave motion can no 

longer be considered "free" if it modulates the wind force that generates 

it. Initially, this type of feedback will produce subharmonics. How- 

ever, if the surface becomes unstable in the process, all periodicity 

will disappear and the wave motion will become chaotic. Transfer of 

energy from higher to lower wavenumbers is typical of chaotic systems. 

6.2 A Proposed Qualitative Wind-Wave Surface Model 

The qualitative model of the build-up of the wind-driven sea, pro- 

posed by Middleton and Mellen [3], is illustrated in Figure 6.12.  The 

four stages of wave development are: 

a. Initiation of linear periodic ripples (catspaws) at 16 Hz near 

the frequency of minimum phase speed. 

Waveforms Spectra 

1    2    3 
Length (cm) 

4   8  16  32 
Frequency [Hz] 

Figure 6.12 Wind-driven sea surface model, Middleton and Mellen [3], 

41 



TR 7775 

b. Development of surface drift, causing nonlinear steepening of 

the wavefronts. Propagation speed increases without dispersion. 

Cascade of energy is toward higher wavenumbers. 

c. Intermodulations between wind and water waves due to surface 

instability. Destruction of periodicity resulting in cascade 

of energy to lower wavenumbers. 

d. Final equilibrium state. Growth of longer gravity waves ceases 

because they travel faster and outrun their source. Smaller 

disturbances, continually generated on the surface, are no longer 

stable and decompose into sets of hydraulic "bumps" or solitons. 

Incoming wind energy is finally balanced by dissipation and the 

surface remains in equilibrium with continual development and 

decay of solitons. 

After the wave-wind interactions are sufficiently well developed, 

small-scale disturbances generated on the surface have no periodic "poten- 

tial wells" to trap them. Because of the resulting instability, they 

will decompose into elemental solitons or hydraulic "bumps" with specific 

amplitude and length relationships. The surface-drift layer provides a 

nonlinear balance, so that individual solitons propagate nondispersively. 

The proposed theoretical soliton model is described in Part I. Viscosity 

is neglected here, although it becomes an important effect in the later 

equilibrium stage. Surface tension effects, however, are specifically 

included. 

7. Dispersion II: Mean Doppler Shift 

We have developed two soliton-surface models so far: Model I, 

earlier [l], [2], without the effects of surface tension, i.e., J = 0, 

and Model II, where J > 0, in the present study. The significant 

features of each may be briefly summarized. 

Model I: J = 0: 

When surface tension is neglected, in effect J = 0, the result is that 

Y^ = 0, (2.11b);  oj - OQ = c^h^/e, cf. (2.2), (7.i; 
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the governing KdV equation is (2.1), and only the soliton condition 

(2.26) is in force. There is no minimum thickness h  ■• , and wave- 

length A = nL = 8b{/g h^'^^/Sv^}^', cf. (2.24b), with nb = /8 again, 

cf. (2.28), but now arbitrarily, such that X    is still defined between 

about the 2% of maximum points, as suggested by Lighthill [[9], Eq. (100), 

cf. (2.20)]. Correspondingly, there is also no minimum value of c 

(= /qh ).  In Model I the soliton speed is c^ = c„+v„, but c„ is not ^  -^ e s   0 0     0 
taken to be the mean surfact drift speed v ,, cf. (6) of Sec. 4. 

Model II, J>0: 

Here J=72.75 dynes/cm (>0 at 20°C), o, 0, cf. (2.3), channel thickness h^ 

has a minimum, cf. (2.30a), and the governing KdV equation is now given 

by (2.1a). This newer model is the one which we consider principally 

here (Sees. 2-4), as it is physically more meaningful and complete. In 

addition, it is important to note that in this model the channel propa- 

gation speed c - v,, so that soliton speeds are c^ = c^+v„ = v,+v^, ^ 0  d       s   0 0   do 
again with c >> v , so that c - c  = v ,+v here, cf. (5) of Sec. 4. ^       0   0        s   s    d 0 

Calculations of mean doppler shift, 6f , based on the "classical" 

relations (cf. Bass, Fuks, et al., [34], for example) and soliton Models 

I and II are now compared with the data [6] of Fig. 7.1. In particular, 

note the nondispersive nature characteristic of the soliton surface, i.e., 

|6f |~f , of the empirical data vis-a-vis that of the classical model, 

which is noticeably distant from the data for realistic wind speeds, i.e., 

vT = 1-3% of 10 m/s = 10-30 cm/s, say. [The size of the circles is a 

measure of the error.] 

The theoretical expressions for mean doppler shift (downwind) for 

the soliton (Sec. 3 of [2]) and Bass and Fuks models [32], [34] 

explicitly by 

2 sine j    _                
Model I:  6f = ^ —  (c + v sin* + v, sin $ }, (7.2;      0     X s   c   c   d    w 

2 sine 
Model II:  6f = - —-—°-^- (c. + v" sin« }, (7.3; 

0       A        Sec 

where now in Model II c^c = v,+v , as explained above. The "classical" 
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Figure 7.1 Doppler shut ->^ f , as a tunction of frequency, for the soliton 

Models I, II, Eqs. (7.2), (7.3), and the classical model, Eq. 

(7.4), including surface drift and deep current speeds. Theory 

(Middleton, [2], Sec. 3) and experiment, from the data of 

Roderick et al. [6]. 
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expression for the mean doppler shift (on neglecting the capillary terms, 

since A > 1 cm) is 

6f^^- 
TTA. 

2 sin( oT 
(v sind) + V , sin$ ) 
^ c   c   d   w^ 

(7.4) 

For the particular experiments involved here [6], v = mean drift current 

26 cm/s, c})^ = 51.5°, $^ = 116°; U^j = u/Z,  6^^ = 81°, ^  = 9°  grazing . 

angle, cf. Fig. 5.1).  (Mean surface drift speed v, was not measured.) 

Also, from the ensemble of measured 6f„'s it was found that (6f„) ^ = 
0 ^ o'exp 

12.4 Hz at f^ = 20 KHz (or X^ = 7.5 cm). Since, from (7.2), (7.3) 

of 
2 sine oT 

X oD exp oD xpt 
47.0 cm/s 

{ } of (7.2), (7.3) . 
:7.5) 

For Model I the inferred soliton parameters are, cf. [2], shown in 

Table 7.1 (cf. Table 3.1 of [2]): 

Table 7.1 Soliton Parameters of Model I 

v^(cm/s) c^(cm/s) hg(cm) v^(cm/s) 

10 17.7 3.2-10'^ 9.7-10'^ 

15 13.2 1.8-10"^ 2.3-10"^ 

20 8.7 7.7-10'^ 2.7-10'-^ 

25 4.2 1.8.10"-^ 7.2-10"^ 

In the moving current coordinate system, soliton speed becomes c 

v , sin(iJ + c + V 
d   woo 

27 cm/s. Adding the current component v sincj) 

20.3 cm/s gives the relative propagation speed := 47 cm/s, which is 

in reasonable agreement with other experimental values o(50-60 cm/s), cf. 

Figs. 6.7, 6.8. We note that h = 0(1-3 mm) here, much less than the 

h  . required in Model II, cf, 
e-mnn 

;2.30a' Moreover, c here is also less 
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than c  . (= 23.2 cm/s), as a result of our neglecting surface tension 

and considering the soliton speeds, c , as distinct from that of the 

surface drift speed. This is not done in ^iodel II ff. 

With Model II, on the other hand, the effects of surface tension 

are included, and thus (cf. (6) of Sec. 4), v^ is c^, so that c^ = 

vT+v~ = I V nl  , - v~"sin(b = 47.0 - 20.3 = 26.7 cm/s. Since v, was not d 0  1 oD'xpt  c  ^c d 
observed, we can only conclude from the constraints noted in Eq. (2.30a) 

that [23.2 <c <26.7-v^] cm/s, and [0.55 <hg = c^/g<0.73] cm. Accord- 

ingly, [3.5 > \r> 0+] cm/s, and if v^= 2.5% of U_^= 10 m/s, e.g. , 25 cm/s, 

then v~= 1.7 cm/s (<< c ), a not unreasonable value, along with effective 

layer thickness 0(7-8 mm). For example, from the data of Fig. 5.2 in 

(2.26), we see that for 0^-2 cm, a^  /LQ ~ 5 cm, h^ = 0.73 cm, Eq. (2.25) 

is well satisfied. Of course, further experiment is needed,- to determine 

both h and v", in addition to the primary task of direct, as opposed 
e    0 

to the present inferential, experimental establishment of the soliton 

model itself. 

8. Doppler Spread 

The Doppler spread for the soliton and classical models are shown 

in Figure 8.1. Spread is measured at the 10 log-ine  points of the 

spectrum. The'classical" model B/F (solid line) [32], [34] is given by 

Af3/p . 1 . 10-3 f^ .       (8.1) 

For the soliton models [2] (curve 1), the spread is given by 

Af^ - [{A^+B^)fl + 0^f\ ' (8.2; 

where the term A accounts for phase modulation by large-scale gravity 

waves, B accounts for the variations in soliton velocities, and D is a 

frequency-independent random amplitude modulation correction arising 

from variations in slope due to large-scale gravity waves. The data 

curve-fit values are A=3.3-10"^, B= 7.8-10- , and 0=15. The dashed 

lines 2 and 3 show the effects for D=0 and B = D = 0, respectively. 

46 



]R 7775 

f (kHz) 
0 

Figure 8.1 Doppler spread Af versus frequency (Middleton [2], Sec. 4). 

It is evident that, for small grazing angles and low frequencies, 

the soliton model ascribes most of the doppler spread to B and D. At 

larger frequencies, the phase modulation temi A becomes dominant and the 

two theories come closer together, but nevertheless remain asymptotically 

quite distinct 0(Af = 5 Hz).  It should be remarked, however, that AF 

does not depend explicitly on the soliton mechanism, since the explicit 

form of the surface soliton covariance K^,   (3.12), is not needed for 

determining doppler spread (see Sec. 8 of [2]). Only if the spectrum 

of the scattered return is required, or the backscatter intensity, is 

K^  explicitly needed, as is the case in the preceding analysis. 

9^^_ConcljJsj_ons, 

We summarize the principal results reflecting on the validity of 

the proposed soliton surface model. The mathematical details are de- 

scribed in Part I (Sees. 2-4), and the experimental support is presented 

in Part II (Sees. 5-8). 
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The present models, including [1], [2] based on soliton theory [10], 

describe essentially all of the known scattering phenomena at small 

grazing angles, high frequencies in bubble-free regimes, and for suit- 

able surface wind conditions, with mean wind speeds, U^, above o(2-4 m/s), 

cf. [28]. By adding a distinct component of roughness vis-a-vis the 

underlying single gravity-capillary wave surface to the surface-wave 

spectrum, the theoretical backscattering strength and doppler statistics 

all become consistent with experiment. Furthermore, the existence 

and behavior of the added component do not violate the known properties 

of the sea surface in any way. In fact, it appears to be a necessary 

condition on all counts. Critical to the soliton theory here is the 

existence of a thin, wind-drift surface layer (or channel) which permits 

the generation of solitons as described by the KdV equation. 

The soliton hypothesis presented here and extended to include the 

limiting effects of surface tension, cf. {2.1a), is a plausible mechanism 

for all the hydrodynamic phenomena involved. The evidence from scatter- 

ing and wave-gauge measurements points to specific characteristics of 

the small-scale roughness, and the soliton appears to be the only kind 

of wave that can satisfy all requirements. The hydrodynamic effects 

are similar to water flowing down an inclined plane where nonlinearity 

causes the formation of hydraulic "bumps" with irregular wavefronts. 

On the sea surface, the velocities depend on local conditions of both 

the wind and the surface slope. Doppler shift reflects the mean speed 

in the downwind direction. The soliton hypothesis, for which propagation 

is nondispersive, is consistent with doppler measurements in detail. 

With reasonable physical assumptions relative to the soliton component 

(cf. Sees. 3 and 4 above), predictions of both spread and shift of the 

spectra can be put into very good agreement with experiment. This is 

in addition to accounting for the discrepancy in backscatter cross sec- 

tions noted originally [l]-[3], [5]-[8], and Sec. 5 here. 

Wave spectra, either measured or inferred from Doppler measurements, 

show no dispersion at high frequencies, cf. Sees. 5-7. The "dispersion" 

relation becomes Oc-= g/2TTf for low frequencies (gravity regime) and 

c =constant for high frequencies (nonlinear regime). The wavenumber 
-4 

spectra are then asymptotic to K  in both regimes. However, the spec- 

trum levels can be much greater at high wavenumbers, depending on the 
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wind conditions. The spectrum, therefore, tends to be saturated only 

in the low-wavenumber regime. Greater levels at high wavenumbers are 

required to explain the increase in scattering strength, as noted in 

Sec. 5. 

With the supporting evidence of the wave-gauge spectrum data, [16], 

[20],[21], it seems clear that the extra roughness at high wavenumbers 

truly exists. From the theoretical standpoint, the soliton mechanism 

appears to be the most plausible one. See, in particular. Sec. 5 of [2] 

for an additional comparison of models. 

However, a number of questions remain to be answered. Full jus- 

tification of the model requires- more detailed knowledge of both the 

parametric dependence on wind conditions as well as the hydrodynamics 

involved. Proposed experimental and theoretical investigations, addressed 

to these questions, are outlined in Sec. 5 of [8], TD-7583. Specifically, 

the explicit, as distinct from the presently inferred, existence of the 

soliton surface needs to be demonstrated. 
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