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Abstract

Decision rules for segmenting scenes and for detecting the presence of distin-
guished objects in digital images can be based on classical principles of statistical
inference if appropriate mathematical models are developed for observable pictures. 'e'

The main goal of this research was to devise and analyze alternative image mod-
els for digitized FLIR images. The work has been done in close cooperation with
the Advanced Modeling Team of the U.S. Army Night Vision and Electro-Optics
Laboratory, Ft. Belvoir, Virginia. This report concentrates on hierarchical Markov
Random Field models and their application to restoration and segmentation of FLIR
images.
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1 INTRODUCTION.

Our primary goal has been to construct a mathematical foundation for the rational
choice of decision functions for image analysis. This has included structured models
for the background against which certain objects, such as tanks, trucks, or armored
personnel carriers, appear. The backgrounds are "complex" in that their composition
is highly variable and cannot be known in advance. The objects are "simple" in that
they can be characterized by a small number of parameters. While the emphasis has
been placed on the logical and mathematical foundations,considerable effort has been
given to the construction of algorithms. It is important to keep the algorithmic issues in
mind so that we arrive at decision procedures that work and that can be computed with
reasonable resources.

This report focuses on a strategy for image modeling that has been developed fora number of practical settings. Here we develop it for the analysis of FLIR images.

Indeed, this project-while it is immediately concerned with problems suggested by the
U.S. Army Night Vision and Electro-Optics Laboratory-has had a tremendous impact
on the development of a general Bayesian methodology for automatic analysis of digital
images. Today that methodology is successfully addressing practical problems in medical
imaging (computed tomography, ultrasound), remote sensing (interpretation of SAR

images), automatic inspection (analysis of textured optical images of silicon wafers), and
image understanding (optical character recognition, boundary finding, segmentation).

In the interest of presenting a self-contained and coherent report on mathematical
models for FLIR images, we shall concentrate this paper on the general Bayesian model
and its adaptation to FLIR imagery. Our interactions with the Advanced Modeling Team
at NV&EOL have had many other facets, including frequent on-site working sessions,
supervision of the development of computer algorithms, direction for the formation of a
data base of features of FLIR images, statistical analyses, and assistance with providing
information on other mathematical modeling efforts. These interactions are all directly
related to the overall project on image modeling, and are documented elsewhere. In

particular, the internal working memoranda listed in Appendix A provide additional
details on both theoretical and practical aspects of the effort.

Section 2 of this paper gives an overview and basic examples of the Bayesian modeling
strategy. It covers the range of issues from specification of the probabilistic framework
to the design of computational algorithms.

Section 3 describes the adaptation of the general Bayesian paradigm to digitized FLIR

images. Here we describe a specific heierarchical probabilistic model which is useful for
FLIR image restoration and segmentation.

Section 4 presents a FORTRAN implementation of the image restoration algorithm.

3
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Program listings are included.
Section 5 briefly describes the application of the restoration algorithm to eight ex-

amples of FLIR images provided to us by NV&EOL.
Finally, two appendices include, respectively, (i) a list of internal working papers

developed during the project and previously shared with the Advanced Modeling Team
at NV&EOL and (ii) pictures illustrating the examples cited in Section 5.

We gratefully acknowedge the contributions made to this research effort by Frank
Shields and Vince Mirelli of the Advanced Modeling Team at NV&EOL. The discussions
of the fundamental mathematical issues with Dr. Mirelli have provided a tremendous
stimulus for focusing our efforts on meaningful ways of bringing mathematics to bear on
challenging practical problems.
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2 BAYESIAN PARADIGM.

In real scenes, neighboring pixels typically have similar intensities, boundaries are usually
smooth and often straight, textures, although sometimes random locally, define spatially
homogeneous regions, and objects, such as grass, tree trunks, branches and leaves, have
preferred relations and orientations. Our approach to picture processing is to articulate
such regularities mathematically, and then to exploit them in a statistical framework
to make inferences. The regularities are rarely deterministic; instead, they describe
correlations and likelihoods. This leads us to the Bayesian formulation, in which prior
expectations are formally represented by a probability distribution. Thus we design
a distribution (a "prior") on relevant scene attributes to capture the tendencies and
constraints that characterize the scenes of interest. Picture processing is then guided
by this prior distribution, which, if properly conceived, enormously limits the plausible
restorations and interpretations.

The approach involves five steps, which we shall briefly review here (see [41 and
[9] for more details). This will define the general framework, and then, in the following
sections, we will concentrate on the analysis of samples of FLIR images, as an illustrative
application.

.1"

2.1 Image Models.

These are probability distributions on relevant image attributes. Both for reasons of
mathematical and computational convenience, we use Markov random fields (MRF) as
prior probability distributions. Let us suppose that we index all of the relevant attributesU by the index set S. S is application specific. It typically includes indices for each of the
pixels (about 512x512 in the usual video digitization) and may have other indices for
such attributes as boundary elements, texture labels, object labels and so-on. Associated

/. . with each "site" s E S is a real-valued random variable X,, representing the state of the

corresponding attribute. Thus X, may be the measured intensity at pixel s (typically,
X, E {0,...255}), or simply 1 or 0 as a boundary element at location s is present or
absent.

The kind of knowledge we represent by the prior distribution is usually "local," which
is to say that we articulate regularities in terms of small local collections of variables.
In the end, this leads to a distribution on X = {X,}.Es with a more or less "local
neighborhood structure" (again, we refer to [41 and [9] for details). Specifically, our priors
are Markov random fields: there exists a (symmetric) neighborhood relation G = {G },IEs,

wherein G, C S is the set of neighbors of a, such that

11 (X* x& Xr = xIr E S,r s) lT(X. x.lX) = x,,r E G.)

r2.d
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I(alb) is conditional probability, and, by convention, s G,. G symmetric means
s EG, * r E G,. (Here, we assume that the range of the random vector Xis discrete;
there are obvious modifications for the continuous or mixed case.)

It is well-known, and very convenient, that a distribution .defines a MRF on S with
neighborhood relation G if and only if it is Gibbs with respect to the same graph, (S, C).
The latter means that H has the representation

!U(Z)

(2 .1) n (X ) = e _cZ': 
'~:

where

(2.2) U(X) = V(z)
cEC

C is the collection of all cliques in (S, G) (collections of sites such that every two sites
are neighbors), and V(x) is a function depending only on {x,},E. U is known as the
"energy," and has the intuitive property that the low energy states are the more likely

- states under H. The normalizing constant, z, is known as the "partition function". The
. Gibbs distribution arises in statistical mechanics as the equilibrium distribution of a

system with energy function U.
As a simple example (too simple to be of much use for real pictures) suppose the

pixel intensities are known, a priori, to be one of two levels, minus one ("black") or plus
one ("white"). Let S be the N x N square lattice, and let G be the neighborhood system
that corresponds to nearest horizontal and vertical neighbors:

0 0 0 ... Z

I II I I I- .

For picture processing, think of N as typically 512. Suppose that the only relevant
regularity is that neighboring pixels tend to have the same intensities. An "energy"
consistent with this regularity is the "Ising" potential:

U() = -3 E ,ze > 0

where E(,t) means summation over all neighboring pairs , t E S. The minimum of U is
achieved when x, = xt VS, t E S. Under (2.1), the likely pictures are therefore the ones

6
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that respect our prior expectations; they segment into regions of constant intensities.
The larger /3, the larger the typical region. Later we will discuss the issue of estimating
model parameters such as /3. (With energy (2.2), [1 in (2.1) is called the Ising model.
It models the equilibrium distribution of the spin states of the atoms in a ferromagnet.
These spins tend to "line up," and hence the favored configurations contain connected
regions of constant spins.)

One very good reason for using MRF priors is their Gibbs representations. Gibbs
distributions are characterized by their energy functions, and these are more convenient
and intuitive for modelling than working directly with probabilities. See, for example,
[3], [4], [5], [9], and [13] for many more examples, and Section 3 below for a more complex
and useful MRF model.

2.2 Degradation Model.

The image model is a distribution IT(.) on the vector of image attributes X {X.},es.
By design, the components of this vector contain all of the relevant information for the
image processing task at hand. Hence, the goal is to estimate X. This estimation will be
based upon partial or corrupted observations, and based upon the prior information. In

V" emission tomography, X represents the spatial distribution of isotope in a target region
of the body. What is actually observed is a collection of photon counts whose probability
law is Poisson, with a mean function that is an attenuated radon transform of X. In the
texture labelling problem, X is the pixel intensity array and a corresponding array of
texture labels. Each label gives the texture type of the associated pixel. The observation
is only partial: we observe the pixels, which are just the digitized picture, but not the
labels. The purpose is then to estimate the labels from the picture. In a generic model
for FLIR images described in Section 3, X is a hierarchical model built from the pixel
intensity array and from a superimposed array of unobservable edge elements. Again, the
observation is only partial: we observe the pixels, degraded as they are by atmospheric
effects and the sensor, but not the edge elements that are combined to form boundaries
between objects and background. A purpose of image segmentation is to estimate the
boundaries from the observed picture.

The observations are related to the image process (X) by a degradation model. This
models the relation between X and the observation process, say Y = {Y},ET. For texture
analysis, we will define X = (X P , XL), where X P is the usual grey-level pixel intensity
process, and XL is an associated array of texture labels. The observed picture is just
X', and hence Y = X': the degradation is a projection. More typically, the degradation
involves a random component, as in the tomography setting where the observations are
Poisson variables whose means are related to the image process X. A more simple, and

7
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widely studied (if unrealistic) example is additive "white" noise. Let X {X,},es be
just the basic pixel process. In this case, T = S, and for each s E S we observe

Y, = X, + r7,

where, for example, {fa}sES is Gaussian with independent components, having means 0

and variances a2

Formally, the degradation model is a conditional probability distribution, or density,

for Y given X: fl(ylx). If the degradation is just added "white noise," as in the above
example, then

H~ylx) =exp{---Z(Y. _X.) 2}

For labelling textures, the degradation is deterministic: 11(ylx) is concentrated on y xP ,

where x = (x P , xL) has both pixel and label components.

2.3 Posterior Distribution.

This is the conditional distribution on the image process X given the observation process
Y. This "posterior" or "a posteriori" distribution contains the information relevant to the
image restoration or image analysis task. Given an observation Y = y, and assuming the

image model (11(x)) and degradation model (TI(yjx)), the posterior distribution reveals
the likely and unlikely states of the "true" (unobserved) image X. Having constructed X

to contain all relevant image attributes, such as locations of boundaries, labels of objects
or textures, and so-on, the posterior distribution comes to play the fundamental role in
our approach to image processing.

The posterior distribution is easily derived from "Bayes' rule"

(xly) - f X(y X)11(X)

The denominator, 17(y), is difficult to evaluate. It derives from the prior and degrada-
tion models by integration: 11(y) = f. r1(yJx)H(dx), but the formula is computationaly
intractable. Happily, our analysis of the posterior distribution will require only ratios,

not absolute probabilities. Since y is fixed by observation, ' is a constant that can be
ignored (see paragraph below on "computing").

As an example we consider the simple "Ising model" prior, with observations cor-
rupted by additive white noise. Then

H1(X) =1 p{# Xt
z (8,t)

8
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and 1

ii(ylx) (212 exp{- 2 2D(y _ xS)}.

°... 

S

The posterior distribution is then

Il(X1y) , X'Xt - (Y, -X,21
zp (S't) 2a' ES

We denote by zP the normalizing constant for the posterior distribution. Of course, it
depends upon y, but the latter is fixed. Notice that the posterior distribution is again
a MRF. In the case of additive white noise, the neighborhood system of the posterior I t

distribution is that of the prior, and hence local. For a wide class of useful degradation
models, including combinations of blur, added or multiplicative "colored noise," and a
variety of nonlinear transformations, the posterior distribution is a MRF with a more -p..

or less local graph structure. This is convenient for our computational schemes, as we
shall see shortly. We should note, however, that exceptions occur. In tomography, for
example, the posterior distribution is associated with a highly non-local graph. This
situation incurs a high computational cost (see [5] for more details).

2.4 MAP Estimate.

In our framework, image processing amounts to choosing a particular image x, given an
observation Y = y. A sensible, and suitably-defined optimal, choice is the "maximum a
posteriori," or "MAP" estimate:

choose x to maximize H(xly)

The MAP estimate chooses the most likely x, given the observation. In most applications,
our goal is to identify the MAP estimate, or a suitable approximation. However, in some
settings other estimators are more appropriate. We have found, for example, that the
posterior mean (f xl(dxjy)) is more effective for tomography, at least in our experiments.
Here, we concentrate on MAP estimation.

In most applications we can not hope to identify the true maximum a posteriori image
vector x. To appreciate the computational difficulty, consider again the Ising model with

added white noise:
(2.3) H(xly) -exp{- ,- E E - z)2

zp (,, 2 r2 E(S.-)

* 9
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This is to be maximized over all possible vectors x {X,},es E {-1,1}ISI. With
S - 10' , brute force approaches are intractable; instead, we will employ a Monte

Carlo algorithm which gives adequate approximations.
Maximizing (2.3) amounts to minimizing

1
(( t) 2r2  (ye )2

(8j3 - ES

which might be thought of as the "posterior energy". (As with zp, the fixed observation y
is suppressed in the notation Up(x).) More generally, we write the posterior distribution
as

1
(2.4) -exp{-Up(x) }

Zp

and characterize the MAP estimator as the solution to the problem

choose x to minimize Up(x)

The utility of this point of view is that it suggests a further analogy to statistical me-
chanics, and a computation scheme for approximating the MAP estimate, which we shall
now describe.

2.5 Computing.

Pretend that (2.4) is the equilibrium Gibbs distribution of a real system. Recall that
MAP estimation amounts to finding a minimal energy state. For many physical systems
the low energy states are the most ordered, and these often have desirable properties. The
state of silicon suitable for wafer manufacturing, for example, is a low energy state. Phys-
ical chemists achieve low energy states by heating and then slowly cooling a substance.This procedure is called annealing. Cerny [1] and Kirkpatrick 112] suggest searching for

*good minimizers of U(.) by simulating the dynamics of annealing, with U playing the
role of energy for an (imagined) physical system. In our image processing experiments,
we often use "simulated annealing" to find an approximation to the MAP estimator.

Dynamics are simulated by producing a Markov chain, X(1), X(2),... with transi-
tion probabilities chosen so that the equilibrium distribution is the posterior (Gibbs)
distribution ('2.4). One way to do this is with the "Metropolis algorithm" 14.. More
convenient for image processing is a variation we call stochastic relaxation. The full story
can be found in 4 and 9. Briefly, in stochastic relaxation we choose a sequence of sites

10
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s(1),s(2),... E S such that each site in S is "visited" infinitely often. If X(t) = X, say,
then X,(t + 1) = x, Vr 6 s(t), r E S, and Xa(t)(t + 1) is a sample from

I(X(t = . x,, r $ s(t)),

the conditional distribution on X,(t) given X, = x, Vr - s(t). By the Markov property,

[I(X(t) = IX, = x,,r s(t)) = H(X.(t)= IX, = x,,r E G (t))

where {GP}s is the posterior neighborhood system, determined by the posterior energy
Up(.). The prior distributions that we have experimented with have mostly had local
neighborhood systems, and usually the posterior neighborhood system is also more or
less local as well. This means that IG (t)I is small, and this makes it relatively easy to
generate, Monte Carlo, X(t + 1) from X(t). In fact, if fl is the range of X,(t), then

(2.5) 1I(X.() a X. Z,, r EGGC,1) - Zn H(&, i(,))

where
a if r =s(t)
X, if r $ s(t)

Notice that (fortunately!) there is no need to compute the posterior partition function
zP. Also, the expression on the right hand side of (2.5) involves only those potential
terms associated with cliques containing s(t), since all other terms are the same in the
numerator and the denominator.

To simulate annealing, we introduce an artificial "temperature" into the posterior
distribution:

Zp T)

As T -- 0, HT() concentrates on low energy states of Up. To actually find these states,
we run the stochastic relaxation algorithm while slowly lowering the temperature. Thus
T = T(t), and T(t) ' 0. 7T(1)(-) replaces [I(.) in computing the transition X(t) -a7

X(t + 1). In !4' we showed that, under suitable hypotheses on the sequence of site visits,
s(1), s(2),.

If T(t) > c.io '(1 , T(t) 0, then for all c sufficiently large X(t)

converges weakly to the distribution concentrating uniformly on
{x: U(x) = m in, U (y)}.

More recently, our theorem has been improved upon by many authors. In particular,

the smallest constant c which guarantees convergence of the annealing algorithm to a

-1
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global minimum can be specified in terms of the energy function Up (see 6 and 10 .

Also, see Gidas '7' for some ideas about faster annealing via renormalization group

methods.

In the experiments with FLIR images to be described here. MAP estimates are ap-

proximated by using the annealing algorithm. This involves Monte Carlo computer-

generation of the sequence X(1), X(2). terminating when the state ceases to change awl,

* substantially.
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A GENERIC OBJECT/BACKGROUND
MODEL.

The general modeling strategy described in Section 2 has been implemented for FLIR
images with immediate objectives of' image restoration (i) to "smooth" and enhance FVI
homogeneous subregions corresponding, for example, to an object or to a large component
of an object of interest, and (ii) to highlight boundaries between separate homogeneous
subregions as a precurser to object detection and recognition. We have designed and
implemented a two-level hierarchical MRF model combining the directly observable pixel
process and a linked unobservable binary process indicating the presence or absence of 4*01
edge elements. Models like the one described here were suggested and illustrated in [2].

3.1 Scene Model.

The image process X comprises the pixel process XP and the edge process XE, X -
S{XP , XE}. As usual, the pixel sites form an R x C array of points (R rows and C
columns) in a square lattice arrangement. We denote this R x C array by S'. The
sites for the edge process, collectively denoted SE, also form a regular graph structure,
envisioned as fitting between the sites in SP . Let u,v denote pixel sites in the square
lattice S ' , For each pair u,v of horizontally or vertically adjacent pixels, there exists
an "edge site" denoted < u,v > in S E . The edge site s =< u,v > corresponds to the

* location of possible edge or boundary element between pixels u and v. The edge variablesXE
are binary, with X equalling 1 or 0 to indicate the presence or absence of an edge
element at < u,v >. The process XE consists of R(C - 1) + C(R - 1) variables X E ,'>.

The totality of edge and pixel sites is denoted by S. (The generic point s may refer to
a pixel or to an edge site < u,v >.) The neighborhood system G = {G.,,s E S} governs

-' the Markovian dependence structure of X =- {X, XE}. The size of the neighborhood
"" determines the range of interactions. We restrict our design of the process to "small"

or "local" neighborhood sets G,, to keep the mathematical models as simple as possible
and to assure feasibility of computational procedures. * ml

We adopt the following neighborhood system. Each pixel site has eight pixel neigh-
bors, the nearest ones, and four edge neighbors. Each edge site < u,v > has six edge
neighbors-corresponding to possible continuations of a boundary from < u, v >-and
the two pixel neighbors u and v. Sites near the boundary of the lattice have fewer
neighbors. The canonical pixel neighborhood G, and edge neighborhood G<,,t> are
depicted in the figure below, where circles represent pixels and pluses represent edge

13
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sites. (We believe this edge graph originated in [11].)

0 0 0 +

+ + +I
0 + 0 + 0 0 + 0

+ + +

0 0 0 +

To illustrate the functional form of the models, suppose first that we are only in- I
terested in modeling "smoothness" or "regularity" in the intensity array X', i.e., the
tendency of nearby pixels to have similar intensities. Then a suitable model might be
X = X P with

fl(X = x) = Z exp{O E C(,, (X, - Xt)
(,,)

where the sum extends over all neighboring pairs (s, t) of pixels. (Thus each interior
pixel is included in eight terms in the summation.) Here = ¢(6) is an even function,
decreasing for 6 > 0; 0 is a parameter which corresponds to "inverse temperature" and
it governs the degree of regularity. It is distinct from the "artificial temperature" T
introduced for the annealing algorithm (Section 2.5). The coefficient C(,,t) is introduced
to allow different weighting of pixel pairs oriented in different directions. We commonly
fix C(,,t) = 1 for the horizontal and vertical pairs and C(,.t) = 1/V'2 for diagonally
adjacent pairs. A renormalization argument shows that this weighting is "asymptotically
correct" in order for the discrete digital images X P to approximate rotationally invariant
(isotropic) images on a continuous background [8]. The weights also permit accurate
modeling of anisotropic FLIR images.

A flexible and well-tested choice for is of the form

(3.1) (6)= 1+

where B is a parameter depending on the dynamic range of the image. An attractive
feature of this 0-function-in contrast to one that decreases without bound-is that it
does not attach ever increasing penalties to larger differences 6, and thus it will allow
sharp gradients in intensity across region boundaries. A choice such as 0(6) = -62 would
a priori inhibit, indeed prohibit, adjacent, internally homogeneous subregions with highly _1

separated intensities.
With the inclusion of the edge process XE we incorporate our expectations about

both the interactions between intensities and edges-i.e., where the edges belong-and
about clusters of nearby edges. We are not exactly modeling entire boundaries with this
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two-level model, but rather segments of boundaries; except in the simplest imagery and
with larger neighborhoods, it is essentially impossible to distinguish actual boundary
segments from intensity gradients due to lighting, texture, etc.

For the pixel-edge process, the complete energy function U = U(X', XE) is decom-
posed into two components:

U(XP, XE) = Ul(XP,XE) + U (XE).
We construct U' so that the most likely configurations will have X - 1 (respectively

<S,t:> 1- rspciv l

0) when the intensity difference Ix' - xlI between neighboring pixels is large (resp.
small). Put differently, we want to "break" the bond between pixels s and t when their F1W
values are "far" apart. Thus we choose

(3.2) Ul(XP,XE) - 0,C(,)( X, - Xp) - 02) X (1 - I(.t)(XE)) . 4

where 01 > 02 > 0. The value of 6 for which 01C(.,t)O() = 02 represents an intensity
difference for which we have "no preference" in regard to the on-off state of an edge; such
interpretations of the model parameters are helpful when one is setting or estimating
values of the parameters. Finally, in equation (3.2), I(,t)(XE) = 1 when the XE process
"breaks" the bond between pixels s and t, and I(,,t)(XE) = 0 otherwise. In particular, if
s and t are horizontal or vertical neighbors, then I(,,)(XE) = X t and if s and t are
diagonal neighbors, then I(,t,)(XE) is a Boolean function of four edge elements between
s and t requiring, for its value to be 1, that at least two of the edge elements are "on" Irk
and that they connect to form a segment separating s from t.

The remaining component U2 of the total energy function governs the organization
of nearby edges. We define

U2(xE) -03 E VD(X)...-'

D
where 03 > 0 and where the sum extends over all subsets D of four neighboring edge
sites-the maximal "cliques" in the edge graph. The clique function VD assigns weights
in accordance with our expectations about edge behavior. More specifically, there are
six possible clique states, up to rotational equivalence:

0 0 0 0 0 0 0 10 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

Here the bars indicate that the edge variable at the indicated site is "on". Let VD =
for i = 1,. .. ,6, denote the weights assigned to the six configurations above. If we
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assume that most pixels are not next to boundaries, that edges should continue, and
that boundary congestion is unlikely, then we might choose 2 3 b !4 < Es < 6."

J A specific image-dependent choice is made in the experiment described in Section 5.

One final point about the scene model: it is useful to write the total energy, up to
an additive constant, as

(3.3) -U(x) = 6, C(,,,)O(x P - xP)(1 - I(,,t)(XE)) + 92 Z l(,t)(XE) + 03 E VD(XE)( St) (,t) D

For inferential purposes, this shows that our model is an exponential family in 0

(01,02,03). In addition, the form in (3.3) is useful for parameter interpretation; for
instance, it becomes clear that 02 is a "reward" for edges. .

3.2 Degradations.

The Gibbs distribution determined by the energy function U in equation (3.3) models
the ideal scenes. There are several types of degradations that corrupt an ideal scene
before it is observed. Most of these effects are well understood and can be modeled
accurately in terms of the physical processes that underlie them. In the end, the first
approximation of the degraded observed image Y will reduce to the pixel process X.
plus additive noise. The approximation is a gross simplification, even if it is reasonably
effective as a basis for restoration algorithms. Ongoing research is exploring the use of
more accurate degradation models which incorporate degradations modeled by convo-
lutions; as we describe below, these latter degradations include atmospheric absorption
and scattering, diffraction from geometric optics, and blurring from signal averaging and
sampling by the IR sensor. J

Two useful references for understanding degradations of IR images are the NV&EOL
Technical Report [16] by J.A. Ratches et. al. and the NV&EOL internal working paper
[15] prepared for our project by V. Mirelli. Some of the basic physics of IR radiation and
detection is described in [17[.

The primary sources of IR image degradation are:

. The actual thermal radiation from the ideal scene is random and additive to X.

The random component has mean value 0 and has signal-dependent variance pro-
portional to X'. The exact distribution of the emitted radiation is well-modeled
by a Poisson process and a Gaussian approximation is justified by convergence of
the Poisson Law to the Normal.

9 During atmospheric transmission of the radiation, there is absorption--dependent
on air temperature and relative humidity-and scattering-dependent on visibility.
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The scattering is normally modeled by Beer's Law [16]. The effects of absorption
and scattering enter the mathematical model in the form of a convolution of the
signal with a kernel depending on atmospheric parameters and range-to-target.

9 At the sensor, the first degradation stems from optical diffraction. The geometrical

optical effect is modeled by a convolution of the signal with a kernel depending
on parameters of the optical system (lens diameter, focal lengths) and on the
wavelength of the electromagnetic radiation.

Black-body radiation from the positive temperature of the detector corrupts the
image incident at the detector. This effect enters the model as additive "noise" on
top of the signal.

* The electromagnetic energy in the IR radiation is converted to an electrical responseby the sensor. The response is a random process subordinated on the input. This

can be represented mathematically as signal-dependent additive noise, again with a
Poisson distribution, where both the conditional mean and variance of the response
(given the input) equals the input.

* The electrical response is digitized through a combination of averaging and sam-
pling. Conceptually, a scanning detector returns a continuous response which is
averaged in the direction of the scan and which is discretely sampled in the direction
orthogonal to the scan. The combination of averaging and sampling implies that
the observed process will not be isotropic. Digitization is described mathematically
through a convolution of the continuous signal with a singular kernel.

* Finally, electronic noise may enter at the last stage of actually observing the digi-
tized signal. The noise enters as an additive effect, independent of the signal.

-. 4-

4,-
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4 IMPLEMENTATION OF THE RESTORATION
ALGORITHM.

The following subsections give a complete listing of a standard FORTRAN77 program
that implements stochastic relaxation, with optional annealing, for the model described
in Section 3. The subroutine that computes the dependence of the total energy on the
edge process (SUBROUTINE DEE) actually implements a model that is slightly more
general than equation (3.3). It incorporates a parameter (CE2C) which inhibits the
occurrence of nearby parallel edges. The model of Section 3 is implemented by this
program when CE2C=O. F-

This program has been delivered to the Advanced Modeling Team at NV&EOL and %
has been used there for experiments with restoration of FLIR images. The presumptions
about formats of input and output files are best documented by the input and output
subroutines READIN and WRITEO, which are listed below. Experiments with the use
of this program are described in Section 5.

4.1 Main Program RESTOR.

The main program guides input, output and stochastic relaxation of the pixel and edge
processes.

PROGRAM RESTOR RESO0010 ,.,=
C SET UP DATA STRUCTURES RESO0020

INCLUDE (COMMON) RESO0030
C TYPES RESO0040

INTEGER NIT RESO0050
C GET INPUT RESO0060

CALL READIN RESO0070
C ITERATE RESO0080

DO 10 NIT-NSTART,NSTOP RESO0O9OO
PRINT *, 'ITERATION , NIT RESO0100

IF (NIT.LE.NO) THEN RESO0110 h*

T-TO RESO0120
ELSE RESO0130

T-TO/(1.O+LOG(FLOAT(NIT-NO))) RESO0140
ENDIF RESO0150

PRINT *, 'TEMPERATURE , T RESO0160
IF (IXP.EQ.1) CALL ITXP RESO0170
IF (IXE.EQ.1) CALL ITXE RES00180

10 CONTINUE RES00190
C OUTPUT RESULTS RESO0200
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*.
CALL WRITEO RESOO210

END RES00220 -*-*.

F
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4.2 Include File COMMON.

The "include" file declares global variables, sets parameter values, and defines COMMON
blocks.

GE1A is the model parameter 01 (equation 3.3).
CE11B is the model parameter B (equation 3.1).
GE2A is the model parameter 03 (equation 3.3).
CE2B is the model parameter 02 (equation 3.3).

CE2C is not used in model (3.3) and is set toO0.
PMIN is the minimum value of the range of the pixel process xl..
PMAX is the maximum value of the range of the pixel process xf'ISIGMA is the standard deviation of the additive noise corrupting the observed

processY.
J. MAXDA is the maximum number of equally spaced discrete levels used to quantiize

the range [PMIN,PMAXI of xP'
NDA is the actual number of equally spaced discrete levels used to quantize the range

[PMIN,PMAXI of xi'.

C CONSTANTS COMOOO1O

INTEGER NX. NY. MAXDA COM00020 -
REAL DIAG COM00030I PARAMETER CNX-84 .NY-84 .MAXDA-100,DIAG- .707) COM00040

C DECLARE PARAMETERS. WHICH WILL BE READ FROM UNIT 7 COM00050
REAL CE1ACElB.CE2A.CE2B.CE2C.PMIN,PMAX.SIGM4A COMOO06O

C VARIABLES AND ARRAYS COM00070
INTEGER IS. ID, IP, IXP. IXE. NO. NSTART. NSTOP. COMOO080
M NDA COMOOO9O
REAL TO.T.XPCO:NX+1,O:NY.1),XEC-1:NX+2,-l:NY+2,2),XPOCNX.NY), COMOO100

M ADSIGSIGSQD COMOOllO
DOUBLEPRECISION SEED COM00120

C COMMON GLOBAL DATA STRUCTURES COMO00130
COMMON SEED.CEIA.CElBCE2A.CE2BCE2C.PMIN.PMAX,SIGMA, COM00140

.jM TO.T.XP.XE.XPO.ADSIG.SIGSQD, COM00150
M IS.ID.IP.IXPIXENO.NSTART.NSTOPNDA COMOO160
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4.3 Subroutine READIN.

The input routine READIN prompts the user for interactive input of program and model
parameters and reads in files containing images, including the observed image and any "'
results that may be available from previous processing by the relaxation algorithm.

SUBROUTINE READIN REAO0010

C SET UP DATA STRUCTURES REA00020
INCLUDE (COMMON) REAO0030

C TYPES REAO0040

INTEGER I, J. K REAO0050

C EXTERNAL FUNCTIONS CALLED REAO0060

REAL GGUBFS REAO0070
."C READ PARAMETER VALUES FROM UNIT 7 REA00080

SREAD(7,*), CEIA REA00090 '

READ(7.*). CEB REA0100

READ(7.*). CE2A REA0110
READ (7*). CE2B REA00120 ,

SREAD(7 *).CE2C REA00130 "-
" "READ(7.*), PMIN REA00140 " -

.. READ(7,*). PMAX REA00150 "

READ(7.*). SIGMA REAO0180

CLOSE(UN IT-7) REAO0170
C DETERMINE IF GOAL IS IMAGE SAMPLING REAO0180

IS-O REAO0190

WRITE(8.*), 'ENTER 1 IF A SAMPLE IMAGE IS DESIRED, 0 IF PURPOSE' REAO0200

WRITE(6.*). 'IS RESTORATION' REAO0210

READ(5.*). IS REAO0220
C IF GOAL IS RESTORATION, DETERMINE IF ORIGINAL IMAGE IS RESULT OF REAO0230

C A DEGRADATION REAO0240 .. ,

ID-O REAO0250

IF (IS.EQ.0) THEN REAO0260

WRITE(6.*), 'ENTER 1 IF THERE IS A DEGREDATION, 0 OTHERWISE' REAO0270

READ(5,*). ID REAO0280
ENDIF REAOO290

C DETERMINE IF IMAGE HAS ALREADY BEEN PARTIALLY PROCESSED REAO0300

IPSO REAO0310

WRITE(8,*), 'ENTER 1 IF PROCESSING BEGAN WITH A PREVIOUS RUN.' REAO0320

WRITE(6,*), '0 OTHERWISE' REAO0330

READ(5,*). IP REAO0340

C DETERMINE WHICH LEVELS OF HIERARCHY ARE TO BE ACTIVE REAO0350

IXPSO REAO0360
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IXE=O REAO0370

WRITE(6,*), 'ENTER 1 IF PIXEL PROCESS WILL BE ACTIVE, 0 OTHERWISE'REAO0380

READ(5,*). IXP REAO0390

WRITE(6.*), 'ENTER I IF EDGE PROCESS WILL BE ACTIVE, 0 OTHERWISE' REAO0400

READ(5,*) IXE REAO0410

C DETERMINE NUMBER OF DISCRETE VALUES REAO0420
WRITE(6.*), 'ENTER NUMBER OF GREY LEVELS' REAO0430
WRITE(8,*), '(NO MORE THAN',MAXDA,')' REAO0440
READ(5,*), NDA REAO0450

C DETERMINE TEMPERATURE CONTROL PARAMETERS REAO0460

WRITE(6,*), 'ENTER STARTING TEMPERATURE, EVEN IF' REAO0470
WRITE(6'*), 'THIS IS FROM A PREVIOUS RUN' REAOO480O
READ(5,*), TO REA00490

WRITE(6,*), 'ENTER NUMBER OF ITERATIONS BEFORE INITIATION' REAO0500

WRITE(6,*), 'OF ANNEALING' REAO0510
READ(S,*), NO REAO0520

C DETERMINE STARTING AND STOPPING ITERATIONS REAO0530
WRITE(6,*), 'ENTER NUMBER OF FIRST ITERATION FOR THIS RUN' REAO0540
READ(5.*), NSTART REAO0550

WRITE(6,*), 'ENTER NUMBER OF LAST ITERATION FOR THIS RUN' REAO0580

READ(5,*), NSTOP REAO0570
C GET SEED FOR RANDOM NUMBER GENERATOR REAO0580

WRITE(B,*), 'ENTER SEED FOR RANDOM NUMBER GENERATOR' REAO059O
READ(5,*), SEED REAO000

C IF GOAL IS RESTORATION, AND THERE IS A DEGRADATION, THEN REAO0O61
C DETERMINE THE STANDARD ERROR OF ANY NOISE THAT HAS BEEN ADDED TO REAO0620

C THE IMAGE AND COMPUTE THE TOTAL SIGMA SQUARED ("SIGSQD") REAO0630
IF (IS.EQ.O.AND.ID.EQ.1) THEN REAO0640

WRITE(6,*). 'ENTER STANDARD ERROR OF ADDED NOISE (0 IF NO' REAO0650

WRITE(6,*), 'NOISE HAS BEEN INTRODUCED)' REAO0660

READ(5,*), ADSIG REAO0870
SIGSQD-ADSIG**2+SIGMA**2 REA080

ENDIF REAOO0
C READ IN DATA REAO0700

IF (IP.EQ.1) THEN REAO0710
DO 1 J-1,NY REAO0720

READ(,6) (XP(IJ),I-1,NX) REAO0730
I CONTINUE REAO0740 '

-U

DO 3 K=1,2 REAO0750
DO 4 J-1,NY REAO0760

READ(1,6) (XE(I,J,K),I=1,NX) REAO0770
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4 CONTINUE REAO0780
3 CONTINUE REAO070
6 FORMAT(IOF7.2) REAO0800

CLOSE(UNIT-1) REAO0810
ENDIF REAO0820
IF (ID.EQ.1) THEN REAO0830

DO 7 J-1,NY REAO0840

READ(2.6) (XPO(I,J),I-1,NX) REAO0850
7 CONTINUE REAO0860

CLOSE(UNIT-2) REAO0870

ENDIF REAO0880
IF (IS.EQ.O.AND.ID.EQ.O.AND.IP.EQ.0) THEN REAO080

DO 9 J-iNY REAOO0
READ(3.6) (XP(I.J).I-I.NX) REAOOlO

9 CONTINUE REAOO920
CLOSE(UNIT-3) REAO00930

ENDIF REAO040
C INITIALIZE DATA ARRAYS. ALL NONPIXEL STRUCTURES ARE REAOO5O
C INITIALIZED TO "NOT PRESENT", UNLESS THERE WAS REAO0O
C PREVIOUS PROCESSING. REAO00970

IF (ID.EQ.1.AND.IP.EQ.O) THEN REAOO80
DO 15 I1.NX REAOO9O
DO 20 J-1,NT REAOI00

XP(I.J)=XPO(IJ) REA01010
20 CONTINUE REAO1020
15 CONTINUE REAO1030

ENDIF REA01040

IF (IS.EQ.1.AND.IP.EQ.O) THEN REA01050
DO 60 I-1,NX REAO1060

DO 70 J-1,NY REA01070
XP(I.J)UPMIN+(PMAX-PMIN)*GGUBFS(SEED) REA01080

70 CONTINUE REA01090
60 CONTINUE REA01100

ENDIF REAO1110
IF (IP.EQ.0) THEN REA01120

DO 75 Ku1,2 REA01130
DO 80 J-1,NY REA01140
DO 90 I-1,NX REA0i150

XE(I,J.K)-O.O REA01160
90 CONTINUE REA01170
80 CONTINUE REA0I180
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75 CONTINUE REAO1190.. END IF REA01200

C INITIALIZE DUMMY BOUNDARIES REAO1210
DO 100 J=O.NY+1 REAO1220

XP(0,J)=1000.0 REAO1230
XP(NX+1 .J)=I000.0 REA01240

100 CONTINUE REA01250
DO 110 I=1,NX REA01260

XP(I .O)=1000.0 REAO1270
XP(I, NY+1)=1000.0 REAO1280

110 CONTINUE REAO1290 F,
DO 120 I=-1,NX+2 REAOI300

XE(I,-1,1)=0.0 REA01310
XE(I.-1,2)"0.0 REAO1320
XE(I,0,1)=0.0 REAO1330
XE(I0,2)=0.0 REAO1340
XE(INY,2)=O.O REAO1350
XE(INY+1,1)=O.O REAO1380
XECINY+1,2)=0.0 REA01370
XE(INY+2,1)=0.0 REA01380
XE(I .NY+2,2)=0.0 REAO1390

120 CONTINUE REAO1400
DO 130 J=-I.NY+2 REA01410

XE(- ,J,1)=0.0 REAO1420
XE(-lJ,2)=o.O REA01430
XE(OJ,1)=O.O REA01440
XE(0,J,2)=0. .REAO1450
XE(NX.J,2)=0.0 REA01480
XE(NX+1,J.1)=0.o REA01470
XE(NX+ I,J,2)=0.0 REAO1480
XE(NX+2,J,1)-0.0 REAO14O
XE(NX+2,J,2)=0.0 REAO1500

130 CONTINUE REA0i510
END REA01520

%-.,

>2-.
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4.4 Subroutine WRITEO.
,! The output routine WRITEO writes the output image file to the disk.

SUBROUTINE WRITEO WRIOO010
C SET UP DATA STRUCTURES WRIOO020

INCLUDE (COMMON) WRIOOO30

C TYPES WRIOOO40
INTEGER I, J, K WRIOOOSO

C WRITE OUTPUT TO UNIT 4 WRIOOO60
DO 1 J-1,NY WRIOOO70

WRITE(4,6) (XP(I.J),11,NX) WRIO0080
1 CONTINUE WRIOOO9O

- DO 3 K-1.2 WRIooloo
DO 4 J=1.NY WRIO0110

WRITE(4.6) (XE(I.J,K) I1.NX) WRIO0120
4 CONTINUE WRIO0130
3 CONTINUE WRI00140
6 FORMAT(1oF7.2) WRIOO1O

CLOSE(UNIT-4) WRIO0160
END WRIO0 170
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4.5 Subroutine ITXP.

The subroutine ITXP guides the execution of the relaxation algorithm for the pixel
process X'.

SUBROUTINE ITXP ITX00010
C SET UP DATA STRUCTURES ITX00020

INCLUDE (COMMON) ITX00030 ,

C TYPES ITX00040
INTEGER IJ,K ITXO000
REAL EP(MAXDA). SUM(MAXDA), TOT, EMIN, EMAX. NRAND ITXO0068

C EXTERNAL FUNCTIONS CALLED ITX00070 I44

REAL GGUBFS ITXO0080

C ITERATE PIXEL VALUES ITX0090.
DO 10 J-1.NY ITXO0100
DO 20 I-1.NX ITX0O0110

C COMPUTE ENERGY VECTOR FOR PIXEL (I.J) AND STORE IN EP EP(K) ITXO0120
C IS THE RELATIVE ENERGY FOR XP(I.J) AT THE K'TH DISCRETE VALUE ITXO0130

CALL PIXEN(I.J.EP) ITX00140
C PREVENT OVERFLOWS AND UNDERFLOWS BY ESCALING AND TRUNCATING EP ITX(/)150

EMIN -EPC1) ITX00160

DO 5 K-2.NDA ITXO0170
IF (EP(K).LT.EMIN) THEN ITXO0180

EMIN-EP (K) ITXOOl O
ENDIF ITX00200

5 CONTINUE ITX00210
EMAX-T*20.0 ITX00220
DO 8 K-1,NDA ITX00230 P

EP(K)-MIN(EMAX, EP(K) -EMIN) ITX00240
6 CONTINUE ITXO0260

C UPDATE VALUE OF XP(I.J) ITXOO260
SUM(1)-EXP(-EP(I)/T) I TX00270
DO 30 K-2.NDA ITX00280

SUM(K)-SUM(K-I) *EXP(-EP(K)/T) I TX00290
30 CONTINUE ITX00300

NRAND-GGUBFS (SEED) I TXO0310
TOTISUM(NDA) I TX00320 "
DO 40 K-1,NDA ITX00330 I

IF (NRAND.LE. (SUM(K)/TOT)) THEN ITX00340
XP(I, J)IPMIN+((PMAX-PMIN)*(K-1))/e( DA-1) ITX00350

GO TO 20 ITX00360
ENDIF ITX00370
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40 CONTINUE ITXO0380 []
20 CONTINUE ITXOO3QO
1z 0 CONTINUE ITXO0400

.END ITXO04tO ,

U..,
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4.6 Subroutine PIXEN.

The subroutine PIXEN is called by ITXP and returns the vector of (relative) energies
that determine the local conditional distribution of the possible values for the pixel
process at an arbitrary site.

C PIXEN(I.J.EP) COMPUTES THE RELATIVE ENERGY FOR THE NDA DIFFERENT PIXOOOlO
C POSSIBLE LEVELS OF PIXEL (I.J). THESE ARE RETURNED VIA EP(MAXDA). PIXO0020

SUBROUTINE PIXEN(I,JEP) PIX00030
C SET UP DATA STRUCTURES PIX00040

INCLUDE (COMMON) PIXO0050
C TYPES PIXO0060

INTEGER I, J. K PIX00070
REAL EP(MAXDA), ADIFF, XPTEMP. INC PIX00080

C INITIALIZE EP PIXOOO90

DO 10 K=1.NDA PIXO0100
EP(K)=O.O PIXO0110

10 CONTINUE PIXO0120
C COMPUTE DEGRADATION CONTRIBUTION TO ENERGY (IF ANY) PIXO0130

IF (ID.EQ.1) THEN PIXO0140
CALL PIXENO(IJ,EP) PIXO0150

ENDIF PIX00160
C COMPUTE PURE PIXEL CONTRIBUTION TO ENERGY PIXO0170

INC-(PMAX-PMIN)/(NDA-1) PIX00180
DO 20 K=1,NDA PIXO0190

XPTEMP=PMIN+INC*(K-i) PIXO0200
C PIXEL TO UPPER LEFT: PIX00210

IF ((XE(I-1,J,1)+XE(I-1.J-1,2))* PIX00220
M (XE(I-I,J-1.1)+XE(I.J-1,2)).LT..5) THEN PIX00230

ADIFF-ABS((XPTEMP-XP(I-I.J-1))/CElB) PIX00240
EP(K)-EP(K)-CEIA*DIAG/(I.O+ADIFF*ADIFF) PIX00250

ENDIF PIX00260
C PIXEL ABOVE: PIX00270

IF (XE(I.J-1.2).LE..5) THEN PIX00280
ADIFF-ABS((XPTEMP-XP(IJ-1))/CEIB) PIX00290
EP(K)-EP(K)-CElA/(i.0+ADIFF*ADIFF) PIX00300

ENDIF PIXO0310
C PIXEL TO UPPER RIGHT: PIX00320

IF ((XE(I.J-1,2)+XE(I,J-1,1))* PIX00330
M (XE(I.J,I)+XE(I+I.J-1.2)).LT..5) THEN PIX00340

ADIFF-ABS((XPTEMP-XP(I+1,J-1))/CEIB) PIX00350
EP(K)=EP(K)-CE1A*DIAG/(1.0.ADIFF*ADIFF) PIX00360
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END IF PIX00370

C PIXEL TO LEFT: PIX00380

IF CXE(I-1,J.1).LE. .5) THEN PIX00390
ADIFF-ABS((XPTEMP-XP(I-1,J))/CEIB) PIX00400

EPCK)-EP(K)-CElA/(1 .0+ADIFF*ADIFF) PIX00410

END IF PIX00420

C PIXEL TO RIGHT: PIX00430
IF CXECI.J.1).LE. .5) THEN PIX00440

ADIFF-ABSCCXPTEMP-XPCI+1,J))/CElB) PIX00450
EPCK)-EPCK)-CEIA/CI .0+ADIFF*ADIFF) PIX00460

ENDIF PIX00470

C PIXEL TO LOWER LEFT: PIX00480

IF CCXECI-1.J.2)+XECI-1.J,1))* PIX00490

M CXECI-1.J+1,1)+XECI.J.2)).LT. .5) THEN PIX00500
ADIFF-ABSCCXPTEMP-XPCI-1 ,J+i))/CE1B) PIX00510

EPCK)-EPCK)-CEIA*DIAG/(1.0+ADIFF*ADIFF) PIX00620
ENDIF PI1X00530

C PIXEL BELOW: PIX00540

IF (XE(I.J,2).LE. .5) THEN PIX00550

ADIFF-ABSCCXPTEMP-XP(IJ+1))/CElB) PIX00560
EP(K)-EPCK) -CEIA/Ci .0+ADIFF*ADIFF) PIX00570

END IF PIX00580
C PIXEL TO LOWER RIGHT: PIX00590

IF (CXE(IJ,2)+XE(IJ+1,1))* PIX00800

aM (XE(IJ.1)+XECI+1.J.2)).LT. .5) THEN PIX00610

ADIFF-ABSC(XPTEMP-XPCI+1 .J+1) )/CElB) PIX00820
EPCK)zEPCK) -CEIA*DIAG/(1 .04ADIFF*ADIFF) PIX00830

ENDIF PIX00840 p

20 CONTINUE PIX00650
END P1100660

29



,.'.

4.7 Subroutine PIXENO.

The subroutine PIXENO is called by PIXEN and returns that part of the local energy

vector attributable to the difference between the observed image and the current state
of the restoration.

C PIXENO(IJ.EP) COMPUTES THE DEGRADATION CONTRIBUTION TO PIX00010

C THE RELATIVE ENERGY FOR THE NDA DIFFERENT POSSIBLE LEVELS PIX00020

C OF PIXEL (I.J). THESE ARE RETURNED VIA EP(MAXDA). PIX00030

SUBROUTINE PIXENO(I.J.EP) PIX00040
C SET UP DATA STRUCTURES PIX00050

INCLUDE (COMMON) PIXO0060

C TYPES PIX00070
INTEGER I. J. K PIX00080

REAL EP(MAXDA). XPTEMP. INC. TSIGSQ PIXOOO9O

C COMPUTE DEGREDATION CONTRIBUTION TO ENERGY PIX00100

INC-(PMAX-PMIN)/(NDA- 1) PIX00110

TSIGSQ-2*SIGSQD PIX00120
DO 10 KoI.NDA PIX00130

XPTEMPoPMIN+INC* (K- 1) PIXO0140
EP(K)-EP(K) (XPTEMP-XPO(I.J))**2/TSIGSQ PIXO0150

10 CONTINUE PIXO0160

END PIX00170
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4.8 Subroutine ITXE. BM

The subroutine ITXE guides the execution of the relaxation algorithm for the edge
process V .

SUBROUTINE ITXE ITXOOO1O
C SET UP DATA STRUCTURES ITXO0020

INCLUDE (COMMON) ITXO0030 '-
C TYPES ITXO0040

INTEGER I. J, K ITXO0050
U'REAL PON.EXPO ITXO0060

C EXTERNAL FUNCTIONS CALLED ITXO0070
REAL DEE ITXO0080

C ITERATE EDGE PROCESS ITXO00O,
DO 10 K-1,2 ITXO0100

DO 20 J-I.NY*I-K ITXOO110

DO 30 I-1.NX-2+K ITXO0120
EXPO-MIN(IO.0.MAX(-l0.0,DEE(I .J,K)/T)) ITXO0130
PON-I/(+EXP(EXPO)) ITXO0140

IF (GGUBFS(SEED).LE.PON) THEN ITXO0150
XE(IJ,K)-I .0 ITXOO180

ELSE ITXO0170
XE(I.J.K)-O0 ITXO0180

ENDIF ITXO019O 1.
30 CONTINUE ITXO0200

..
20 CONTINUE ITXO0210
10 CONTINUE ITX00220

END ITX00230 F
3-.
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4.9 Subroutine DEE.

The subroutine DEE is called by ITXE and computes the energy difference between the
states "on" and "off" for the edge element at an arbitrary edge site.

C DEE CALCULATES THE ENERGY DIFFERENCE (DELTA ENERGY) BETWEEN DEEO0010

C EDGE ELEMENT (IJ.K) IN STATE I (ON) AND EDGE ELEMENT (I.J,K) DEEO0020

C IN STATE 0 (OFF). DEEO0030
a."- REAL FUNCTION DEE(IJK) DEEO0040

a... C SET UP DATA STRUCTURES DEEO0050
INCLUDE (COMMON) DEEO0060

C TYPES DEEO0070

INTEGER I. J. K. NON DEEO0080

REAL HOLD. RON, ADIFF DEEOOOg

a..; C INITIALIZE DEE DEEO0100

DEE-0.0 DEEOO110
C COMPUTE NONDIAGONAL PIXEL/EDGE CONTRIBUTION DEEO0120

ADIFF-ABS((XP(I.J)-XP(I+2-K.J+K-1))/CE1B) DEEO0130
DEE-DEE CEIA/(I.O+ADIFF*ADIFF) DEEO0140

C COMPUTE NONDIAGONAL "BOND-BREAKING" PENALTY DEEO015O

DEE-DEEzCE2B DEEO0180
C COMPUTE 4-CLIQUE TERMS, INCLUDING DIAGONAL PIXEL/EDGE DEEO0170
C TERMS AND DIAGONAL BOND-BREAKING TERMS DEEO0180

HOLD-XE(I.J.K) DEEO010
XE(I.J.K)-l.0 DEEO0200
IF (K.EQ.1.AND.J.GT.1) THEN DEEO0210

RON-XE(I.J-1,1)+XE(I+1.J-1,2)+XE(I.J,1)+XE(I,J-1,2) DEEO0220

NON-NINT(RDN) DEEOO230

IF (NON.EQ.1) THEN DEE00240
. DEE-DEE+3*CE2A DEEO0250

ELSEIF (NON.EQ.2) THEN DEEO0260
V.' DEE-DEE-2*CE2A DEEO0270

IF (XE(I,J-1,2).GT..5) THEN DEEO0280
a- c DEE-DEE-CE2B DEEO0290

ADIFF-ABS((XP(I.J)-XP(I 1,J-1))/CEIB) DEEO0300

DEE-DEE CE1A*DIAG/(I.O+ADIFF*ADIFF) DEEO0310

ELSEIF (XE(I+1,J-1,2).GT..5) THEN DEEO0320
DEE-DEE-CE2B DEEO0330

ADIFF-ABS((XP(I.J-I)-XP(I+1.J))/CEIB) DEEO0340
DEE-DEE+CEIA*DIAG/(IO ADIFF*ADIFF) DEEO0350

. ELSE DEEO0380

DEE-DEE-2*CE2B DEEO0370
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ADIFF-ABSCCXP(IJ)-XPCI+1.J-1))/CEIB) DEE00380
DEE-DEE+CEIA*DIAG/(1 .OADIFF*ADIFF) DEE0030
ADIFF-ABSCCXPCIJ-1)-XPCI+1.J))/CElB) DEE00400
DEE-DEE+CElA*DIAG/(1 .O+ADIFF*ADIFF) DEE00410

vENDIF DEE00420
ELSEIF CNON.EQ.3) THEN DEE00430 i

DEE-DEE+CE2A DEE00440
IF (XE(I+1,J-1.2).LT. .5) THEN DEE00450

DEE-DEE -CE2B DEE00460

ADIFF-ABS((XPCIJ)-XPCI+1,J-1))/CEIB) DEE00470
DEE-DEE.CElA*DIAG/C . O+ADIFF*ADIFF) DEE00480

ELSEIF CXE(I,J-1.2).LT. .5) THEN DEE00490
DEE-DEE -CE2B DEE00500
ADIFF-ABSCCXPCI,J-1)-XPCI+1.J))/CE1B) DEE00510
DEE-DEE+CElA*DIAG/C . O+ADIFF*ADIFF) DEE00520

ENDIF DEE00530
ELSEIF (NON.EQ.4) THEN DEE00540

DEE-DEE+CE2A DEE00550

ENDIF DEE00560
END IF DEE00570
IF (K.EQ.1.AND.J.LT.NY) THEN DEEOO58O

RaN-XECI.J.1)+XECI+1 ,J.2)+XE(I,J+1.1).XE(I.J,2) DEE00590
NON-NINT(RJN) DEE00600
IF CNON.EQ.1) THEN DEE00610

DEE=DEE+3*CE2A DEE00620
ELSEIF (NON.EQ.2) THEN DEE00830

DEE-DEE-2*CE2A DEE00640
IF (XE(I,J,2).GT. .5) THEN DEE00650

DEE-DEE -CE2B DEE00880

ADIFF-ABSC(XPCI.J)-XPCI+1.J.1))/CElB) DEE00670
DEE-DEE.CEIA*DIAG/(1 .O+ADIFF*ADIFF) DEE00880

ELSEIF CXE(I+1.J.2).GT. .5) THEN DEE00690
DEE-DEE-CE2B DEE00700
ADIFF-ABSCCXPCI,J.1)-XPCI.1.J))/CElB) DEE00710
DEE=DEE+CEIA*DIAG/(1 .O+ADIFF*ADIFF) DEE00720

ELSE DEE00730
DEE-DEE-2*CE2B DEE00740
kDIFF-ABS(CXP(IJ)-XP(I+1,J+I))/CEIB) DEE00750 .

DEE=DEE.CEIA*DIAG/(1 .O.ADIFF*ADIFF) DEE00760
ADIFF-ABS((XPCI.J+1)-XP(I+1,J))/CEIB) DEE00770
DEE.DEE+CElA*DIAG/C1 .O.ADIFF*ADIFF) DEE00780
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ENDIF DEE00790 RO
ELSEIF (NON.EQ.3) THEN DEEOO800

DEE-DEE+CE2A DEE00810
IF CXECI.1.J.2).LT. .5) THEN DEE00820

DEE-DEE-CE2B DEE00830
ADIFF-ABS((XPCIJ)-XP(I.1.J+1))/CElB) DEE00840
DEE-DEE+CEIA*DIAG/C1 .O+ADIFF*ADIFF) DEE00850

EA!;IFF4A:((2LIJ1iX:::l.J))/CElB) DEE00880

DEE-DEE+CEIA*DIAG/C1 .0+ADIFF*ADIFF) DEE00890IEND IF DEE00900
ELSEIF CNON.EQ.4) THEN DEE00910

DEE-DEE+CE2A DEE00920
END IF DEE00930

iENDIF DEE00940
IF CK.EQ.2.AND.I.GT.1) THEN DEE00950

RON-XE(I-1.J.1)+XECI.J.2)+XECI-1,J+1.1)+XECI-1.J.2) DEE00960

NON-NINT(RON) DEE00970
IF (NON.EQ.1) THEN DEE00980

DEE-DEE.3*CE2A DEE00990
ELSEIF CNON.EQ.2) THEN DEE01000pDEE-DEE-2*CE2A DEE01010

IF CXECI-1,J.1).GT. .5) THEN DEE01020
DEEwDEE-CE2B DEE01030
ADIFF-ABSCCXPCIJ)-XPCI-1,J+1))/CElB) DEE01040
DEE-DEE+CEIA*DIAG/(1 .o.ADIFF*ADIFF) DEE01050

ELSEIF (XECI-1,J+1,1).GT. .5) THEN DEE01060
DEE-DEE-CE2B DEE01070
ADIFF-ABS((XP(I-1,J)-XP(IJ+1))/CEIB) DEE01080
DEEuDEE+CE1A*DIAG/C1 .O+ADIFF*ADIFF) DEE01090

ELSE DEE01100
DEEmDEE-2*CE2B DEE01110
ADIFF-ABS((XP(I.J)-XP(I-1,J+1))/CEIB) DEE01120
DEEuDEE.CEIA*DIAG/(1 .O.ADIFF*ADIFF) DEE01130
ADIFF-ABS((XP(I-1,J)-XP(I34.1))/CElB) DEE01140
DEEUDEE.CElA*DIAG/(1 . +ADIFF*ADIFF) DEE01150

ENDIF DEE01160

rELSEIF CNON.EQ.3) THEN DEE01 170
DEEwDEE+CE2A DEE01 180
IF CXE(I-1.J.1.1).LT. .5) THEN DEE0110

4~w

3401N



I DEE-DEE- CE2B DEE01 200
ADIFF-ABS((XP(I,J)-XP(I-I.,J+1))/CEIB) DEE01210

* DEE-DEE+CElA*DIAG/(1 . 0ADIFF*ADIFF) DEE01220

ELSEIF CXECI-1.J.1).LT. .5) THEN DEE01230

DEE-DEE-CE2B DEE01240

ADIFF-ABS((XPCI-1,J)-XPCI.J+1))/CElB) DEE01250

DEE-DEE+CE1A*DIAG/C1 .0+ADIFF*ADIFF) DEE01260

ENDIF DEE01270
ELSEIF CNON.EQ.4) THEN DEE01280

DEE-DEE+CE2A DEE0 1290

ENDIF DEE01300

ENDIF DEE01310

IF CK.EQ.2.AND.I.LT.NX) THEN DEE01320

RON-XECI.J,1)+XECI+1 .J,2)+XECI.J+1 .1)+XECI.J.2) DEE01330

NON-NINTCRON) DEE01 340

IF CNON.EQ.1) THEN DEE01350

DEE-DEE+3*CE2A DEE01 380

ELSEIF CNON.E(Q.2) THEN DEE01370

DEE-DEE- 2*CE2A DEE01380

IF (XE(IJ.1).GT. .5) THEN DEE01390
DEE-DEE- CE2B DEE01400

ADIFF-ABS((XP(I,J)-XPCI+1.J+1))/CEIB) DEE01410

DEE-DEE+CE1A*DIAG/C1 .0+ADIFF*ADIFF) DEE01420
ELSEIF CXECI,J+1.1).GT. .5) THEN DEE01430

DEE-DEE-CE2B DEE01440

ADIFF-ABSCCXPCI.J+1)-XPCI+1.J))/CElB) DEE01450

DEEaDEE.CE1A*DIAG/(1 .0+ADIFF*ADIFF) DEE01480

ELSE DEE01470pDEE-DEE-2*CE2B DEE01480
ADIFF-ABSCCXPCIJ)-XP(I+1,J+1))/CElB) DEE01490
DEE-DEE+CElA*DIAG/C1 . +ADIFF*ADIFF) DEE01500U
ADIFF-ABSC(XP(I.J.1)-XPCI+1.J))/CElB) DEE01510

DEE-DEE.CE1A*DIAG/(1.O+ADIFF*ADIFF) DEE01520IENDIF DEE01530
ELSEIF CNON.EQ.3) THEN DEE01540

DEE-DEE+CE2A DEE01550
IF (XECI,J+1.1).LT. .5) THEN DEE01580

DEE-DEE- CE2B DEE01570 ;p~
ADIFF-ABS((XPCI.J)-XPCI+1.J+1))/CE1B) DEE01580
DEE-DEECEIA*DIAG/(1 .O+ADIFF*ADIFF) DEE01590

ELSEIF CXECI.J,1).LT. .5) THEN DEEOIGO0
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DEEwDEE- CE2B DEE01810
ADIFF-ABSCCXPCI.J+1)-XPCI+1.J))/CElB) DEE01620
DEE-DEE+CElA*DIAG/C1 .O.ADIFF*ADIFF) DEE01630

ENDIF DEE01640
ELSEIF CNON.EQ.4) THEN DEE01650

DEE-DEE+CE2A DEE01660
Irv

END IF DEE01670
ENDIF DEE01880

C CONTRIBUTION FORM INHIBITION OF PARALLEL LINES DEE01690
IF CK.EQ.1) THEN DEEOI.700

DEE-DEE.CE2C*CXECI-2.J.1).XECI-1.,1)+CE(I.1,J.1)+XE(I+2,.,1)) DEE01710
ELSE DEE01720Ov

DEEUDEE+CE2C*(XECI.J-2,2)+XECI.J-1.2)+XECI.J+1.2)+XECI.J+2.2)) DEE01730
ENDIF DEE01740

-XECI.J.K)-HOLD DEE01750
END DEE01760
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4.10 Function Subprogram GGUBFS.

The function subprogram GGUBFS is from the proprietary INISL Library and is used
to generate pseudorandom numbers that are independent and uniformly distributed on
(0, 1). The listing below should not be reproduced nor incorporated in any programs other

than the present one unless its use is licensed on the system on wl.ich such a program is
being developed.

C IMSL ROUTINE NAME - GGUBFS GGUOO10

C GGUO0020
c -------------------------------------------------------------------- GGUO0030
C GGUO0040
C COMPUTER - IBM/SINGLE GGUO0050

C GGUO0060
C LATEST REVISION - JUNE 1. 1980 GGUO0070

C GGUO0080
C PURPOSE - BASIC UNIFORM (0,I) RANDOM NUMBER GENERATOR - GGUOOO90
C FUNCTION FORM OF GGUBS GGUO0100

C GGUO0110
C USAGE - FUNCTION GGUBFS (DSEED) GGUO0120

C GGUO0130
C ARGUMENTS GGUBFS - RESULTANT DEVIATE. GGUO0140

C DSEED - INPUT/OUTPUT DOUBLE PRECISION VARIABLE GGUO0150
C ASSIGNED AN INTEGER VALUE IN THE GGUO0160 """

C EXCLUSIVE RANGE (1.DO, 2147483647.DO). GGUO0170
C DSEED IS REPLACED BY A NEW VALUE TO BE GGUOO180

C USED IN A SUBSEQUENT CALL. GGUOO19O
C GGUO0200
C PRECISION/HARDWARE SINGLE/ALL GGUO0210

C GGUO0220

C REQD. IMSL ROUTINES - NONE REQUIRED GGUO0230
C GGUO0240

C NOTATION - INFORMATION ON SPECIAL NOTATION AND GGUO0250

C CONVENTIONS IS AVAILABLE IN THE MANUAL GGUO0260

C INTRODUCTION OR THROUGH IMSL ROUTINE UHELP GGUO0270

C GGUO0280
C COPYRIGHT - 1978 BY IMSL, INC. ALL RIGHTS RESERVED. GGUO0290

C GGUOO300

C WARRANTY - IMSL WARRANTS ONLY THAT IMSL TESTING HAS BEEN GGUO0310
C APPLIED TO THIS CODE. NO OTHER WARRANTY, GGUO0320

C EXPRESSED OR IMPLIED. IS APPLICABLE. GGUO0330 -.-

C GGUO0340
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C-- GGUO035

C GGUO0360
REAL FUNCTION GGUBFS (DSEED) GGUO0370

C SPECIFICATIONS FOR ARGUMENTS GGUO0380

DOUBLE PRECISION DSEED GGUO0390

C SPECIFICATIONS FOR LOCAL VARIABLES GGUO0400
DOUBLE PRECISION D2P31MD2P31 GGUO0410

C D2P31M=(2**31) - 1 GGUO0420
C D2P31 =(2**31)(OR AN ADJUSTED VALUE) GGUO0430

DATA D2P31M/2147483647.DO/ GGUO0440
DATA D2P31 /2147483648.DO/ GGUO0450

C FIRST EXECUTABLE STATEMENT GGUO0460 -t

DSEED = DMOD(16807.DO*DSEED.D2P31M) GGUO0470
GGUBFS = DSEED I D2P31 GGUO0480 N

RETURN GGUOO49O
END GGUO0500
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FLIR EXAMPLES.

The algorithm described in Sections 2 and 3 and implemented by the program of Section
4 has been applied to a variety of FLIR images provided by the Advanced Modeling
Team at NV&EOL. The results of selected experiments are included here.

For these experiments, the model parameters were set on the basis of inspection of the
digitized FLIR images to determine attributes such as dynamic range and noise-variance
and on the basis of the insights and interpretations of the model parameters described
in Section 3.

In each of the photographs in Appendix B, the upper-left panel contains a 32 x 32
section of the observed image. The upper-right panel contains the result of fifty iterations
of the stochastic relaxation algorithm, with annealing. The lower-left panel contains the
original observed image plus additional noise having standard deviation 8. The lower-
right panel contains the result of fifty iterations of the stochastic relaxation algorithm,
with annealing, applied to the noise corrupted image.

The model and program parameters for the experiments are given in the following
table

Model Program Value
O CE1A 10.4

B CE1B 4.0
02 CE2B 1.66
03 1 CE2A 1.0

1 -4
C2 -3
C3 -2

C4 -1

CS -1

_~0 0
PMIN 40

PMAX 238
MAXDA 100

NDA 100
For the original observed images, the standard deviation SIGMA of the additive noise

presumed to be degrading the ideal image was set to 5.
For the images to which noise was added, the standard deviation in the restoration

algorithm was set to -/2 +64 = 9.43.
Eight figures are included in Appendix B.
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A COMPLEX SYSTEMS WORKING PAPERS.

During the course of the modeling project, a number of internal working papers were
prepared describing progress and research plans for specific aspects of the research effort.
These papers were not intended for general distribution. Nonetheless, because of the
direct cooperation with the Advanced Modeling Team at NV&EOL, the working papers
were all shared with the leaders of the team. Titles of the working papers directly related
to the image analysis problems at NV&EOL include:

" An entropy approach to relaxation time, April 1983.

* Updating schemes for image processing, June 1983.

" Parameter estimation for some Markov random fields, August i983.

" Synthesis of partition patterns, August 1983.

" Synthesis of surface patterns, August 1983.

" A computer experiment with sweep areas, October 1983.

" Some experiments with partition, shape, and network patterns, October 1983.

" Simulating cold patterns is difficult, November 1983.

" Stochastic relaxation for some continuous generator spaces, November 1983.

" Remarks on annealing schedules, December 1983.

* Recognizing objects, March 1984.

" Non-localized generators, May 1984.

* Parameter estimation for Markov random fields with hidden variables and experi- ii
ments with the EM algorithm, August 1984. 7.

" Aspects of image processing, September 1984.

" Software for image processing experiments, November 1984.

" Preliminaries to target identification in IR-pictures, April 1985.

" Recognizing patterns in the presence of nuisance parameters, February 1986.
4,
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" Modeling and recognition of textures, March 1986. "~

* Parallel logic under uncertainty, continued and applied to the car experiment, Au-

gust 1986.
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FIGURE 3

FIGURE 4
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FIGURE 5

FIGURE 6

46

'el............................................



47'



rwrrrr xnr an rr an an anan

U

II
I' _____

U
~ 1 __ .9

.~. 
'."p

I
I
Lm~


