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I. STATEMENT OF PROBLEM

1. The Need for New Anafxgical Approaches
The dové]opmont of suitabie techniques for the detection and

jdentification of bialogical agents is among the most challénging
amalytical problems faced by biomedical and physicochemical scientists

today. In recent years, outbreaks of previously unrecognized jnfectious

syndromes, e.g., Legionaires Disease [1], have highlighted the
difficulties encountered in the identification of unknown infettiqus
agents by highly specific, ﬁénventional microbiological tochnidues geared -
towards detection and identification of known organisms.

In comparison with agents of natural origin, the detection and
identification problems associated with biological uarefar§ agents are
even more complex. Because of rapid deve]dpmonts in the field of genetic ‘
engineering during the past few years, the likelihood that hitherto
unknown organisms or toxins will be encountered under biological warfare
conditions is aver increasing. Moreover, under warfare con&itions |
biological agents may ba expectad to be deliberctory or accidentally
concealed among high background levels of‘other materfals of biolegical
origin. |

Obviously, reiiable detection and QubsequcntAﬁdehtif1cat10n of
biological warfare agents will require hovel analytical approaches which
combine high sensitivity to a broad range of organises and toxins with
sufficient specificity to‘distiﬁguish Seﬁween‘biologica1 aerasols of

different nature and origin.



2. A Universal Approach to Biological Pattern Recognition

Ideally, one would like to use a rapid, sensitive analytical technique
with almost universal applicability to complex biological materials and
capable of providing detailed information on the biochemical composition
of any aerosol. Figure 1 provides a schematic illustration of an
idealized analysis approach to biological pattern recognition.

Assuming that the composition of biological combounds in inientionally
dispersed aeroﬁols will generally be quite distinctive from aerosols
produced by natural causes, e.g., forest fires, or unintentionally
disparsed by war re]afed avents, e.g., expiosions in swamp areas, then the

approach outlined in Figure 1 should be able to distinguish between these

different origins. The ability to establish the presence of intentionally

p dispersed biological aerosols with confideﬁce is obviously of great
military, medical and political significanca, even if the precise identity

E§ of the biological agent involved would not be known immediately. General

protective measures could be taken and decontamination and quarantine

procedures started while collected aerosol samples could be investigated
further in central analytical facilities. Fortunately, it is quite likely
that the abovedescribed universal analytical approach will also provide
important clues with regard to the nature and possible identity of the
bio1dgica1 agents involved. Such cluaes would mainly be provided by the
absence or presence of specifiz compounds or classes of compounds known to

be characteristic‘for certain groups of organisms. For instance, the

TP (omiuia | - T3 ta opis

e

absence of nucleic acids would rule out the presence 2f any organisms

LA

os

where as the absence of muramic acid moieties would exclude the presence

of bacteria [2], etc.
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A preliminary exampie of a hierarchical aerosol identification scheme
based on this approach is shown in Figure 2. It should be pointed out
perhaps that hierarchical "decision tree” approaches are often less
reliable than nonhierarchical multivariate classification techniques such

as SIMCA, a multiclass principal component modelling techniques developed

' by Wold et al. [3]. Therefore,’Figure 2 is only intended as an

illustrative example of a universal approach to identification of
biological aérosols based on recognition of specific classes of

biochemical compounds.
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Figure 2. Tentative, hierarchical "decision tree* for classification of
biological aerosols (questions-underlined; check
questions-hyphenated; conclusions-encircled). 1P01ynuclear
aromatic compounds. ZKetodeoxyoctonic acid.
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IT. SELECTED APPROACH

1. Selection of a Suitable Analytical Technique

Only relatively few analytical methods are potentially capable of
~ distinguishing between the various tlasses of Biochemic;1 compounds shown
in Figure 2. Among these are chromatographic methods such as gas
chromatography (GC) or liquid chromatography (LC) and spectrometric
technigues such as infrared spectrometry (IR) or mass spedtrometry (MS) as
wel’ as‘variou$ combinations of tﬁese metﬁods (e.g., GC/MS, GC/IR,
GC/IR/MS, LL/MS, MS/HS, GC/MS/MS,.etc.). The Tatter group of so-called
"hyphenated" methods [4] includes many of the most powerful éna]ytical
* methods for ﬁomplex organic materials presently a&ai1ab1e. |

" 0f the basic methods, onty IR can be applied more or less directly to
all biologica] materials. LC will often require "solubilization" of
insoluble materials (e.g., by hydrolysis) whereas GC and MS require,
"volatilization" of nonvolatile materials (e.g., by pyrclysis). Other
impprtant differences exist between thesé techniques with regard to

sensitivity, specificity, speed and computer compatibility.

2. Potential Applicability of Pyrolysis Mass Spectrometry

Based on our experience with different analytical methcds for cempiex
biological materials, pyrolysis MS appears to be superior to GC, LC and IR
with regard to sensitivity, speed and computer cbmpatibility. Figure 3
provides a schematic overview of the fu1iy automated and computerized
pyrolysis MS system developed at the FOM Institute for ‘Atomic and

Molecular Physics in Amsterdam [5] and capable of analyzing up to 36
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samples per hour. A somewhat modified pyrolysis MS system with automated

sample inlet has been constructed in our laboratory at the University of
Utah [6].

Pyrolysis MS systems such as shown in Figure 3 have been successfully
applied to the cha~ icterization of a broad range of biolegical compounds,‘
including bacteria, viruses, mammalian cef1s and tissués, body fluids,
biopolymers, plant tissues, humic compoundé.coa1s and shales [7].
Furthermore, Voorhees gg al. [8] have reported the characterization of air
particulates of biological origin. An overview of these applications is
given in a monograbh by‘Meuze1aar Haverkamp and Hileman [7] which also
contains an atlas of reference spectra from biological compounds

Although hyphenated methods such as GC/MS and MS/MS enab]e a far more -
detailed L?smica1 analysis than single stage MS, sing]e'stage pyro.ysis MS
if often quite successful in identifying structural moieties, jndividua1 |
compounds or compound classes in complex biological materials [9]. This
{s largely due to the exceptional degree of computer compatibility of tﬁe

pyrolysis MS techniqué.

3. Selected Pyrolysis Mass Spectrometry Approach

In the original proposal to ARO the instrumental approach selected to
achieve time-resolved Py-MS conditions consisted of CO; laser pyrolysis
in combination with a miniature Mattauch Herzog MS system with
simultaneous ion detection cipabilities by means of electro-optical ion
detection. This so-called MMH-EQID system was expected to be obtained
from Nuclide Inc. (State College, PA) with DOD/University Instrumentation
funding (Grant No. DAAG29-83-G-0070) shortly after the start of our ARQ

grant. Unfortunately, Nuclide Inc. proved unable to deliver the




instrument dﬁ; to financial problems which resulted in a bankrﬁptcy fiiing
under Chapter 11 in 1985. As soon as it became clear that Nuclide Inc.
would not be able to deliver the iystem on time, the P.I.'s started to
look for alternative instrumental solutions. The Finnigan lon Trap
Detector {1TD) wis found to be a promising candidate system and in
September 1985 a Finnigan ITD was obtained on loan from CRDEC (Dr. Peterl
Snyder). After suitable modifications, the 1TD systcm was demonstrated to
be a high1y sensitive 1nstrum¢nt for Py-MS [10] and Py-GC/MS [11] studies,
enabling Py-MS analysis of po1ymor samples in the low nanogram range as
well as identification of GC peaks in thq Tow picogram range [12]. |

. Recently, DOD peimission was obtained to use some remainihg funds from
the DOC/University Instrumcntatiqn grant to purchase an infrared |
micrdscopo accessory capable of focussing a COp laser beam in the vacuum
system of the ITD, 1ﬁ’order to pursue time-resolved COz 1as§r pyrolysis
experiments with the ITD technique. 'These experiments will be carried out
_in 1987 with expected continuation funding from CRDEC.

~In conclusion, although major delays were experienced the develcpment
of a suitable CO7 1aser MS system due to bankruptcy of the manufacturer
of tha MS instrument, this part of the project is now schedu1ed for
continuation in 1987 with CRDEC funding. As a result of the delays in'the
iaser MS equipment tasks, the main emphasis of the work carried out under
the ARO Eontract reported here shifted to the deve]opmcn; of advanced
chemical pattern recogﬁition methods for pyrolysis mass spectfa of

bio]ogital materials, as will be discussed in the next few paragraphs.




- 4. The Role of Pattern Recognition Methods

The key challenge in the Py-MS approaches described above is how to
retrieve the chemical information of the samples as given in Figure 2.
The logical choice for assigning a certain type of aeroso} to a spectrum
seems to be a library search approach. A library with all possible
spectra for biodetection purposes is not feasible. Since the spectra
often represent complex mixtures, data reduction by mixture analysis is a
promising approach. The extreme complexity of|the spectra that will be
obtained in mo#t biodetection situations and t%e lack of suitable

| .
reference spectra make mixture analysis on a single spectrum impossible.

Mixture analysis approaches that do not require reference spectra are
available [13,14]. Among these approaches thel variance diagram technique

has been developed especially for complex spec#ra, such as obtained by

l

pyrolysis mass spectrometry [15]. Thase type;of techniques, however,

require sets of spectra. Consequently, the si—ca11ed "unsupervised"
i
mixture analysis methods can be appiied if a set of spectra from a single

sample, analyzed under different experimental ‘conditions, is available.

|

One of the most promising methods is time-resolved analysis. During
desorption and/or pyrolysis the composition of the product mixture will
change, as a result of different volatilizatiﬂn/pyrolysis behavior of the

components in the sample. The spectra of these components can be
|

extracted mathematically and assigned to a cértain ¢lass of compounds
using a relatively small library.

\
The mixture data obtained can be used in §utomated and/or expert

systems to assign the sample to a certain c]ass of aerosols or

. microorganisms.

10.
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III. WORK PERFORMED

-MS
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The reason is th
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solvent extracti
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Biomaterials Pro

polymers 1n vari

Although this tec

sample, ft invel

n reviewed [16,17].

filing Center has focussed on the determination of the

or laser pyrolysis studies, rubber samples were chosen.

at with the proper selection of the analysis conditions,

of the rolitivcly volatile additives and the actual

The use of mass spectrometry in thermal and

on methods for analysis of polymers and their additives

Previously published work at the

ous rubber compounds by Curie-point Py-MS [18,19].

hnique was also a "direct" method applied to tha whole

ved a significant effort to grind the vulcanized rubbers .

into very fine particles for solvent suspensions. Lasers have previously

been used for pa

detection of add

pyrolysis and i

lymer pyrolysis with electron lonization MS, but without

itives [20,21]. Lasers are also. used as the combined

nization source in LAMMA experiments where polymer

analysis has giﬂen extensive fragmentation with poor molecular jon yield

and again virtu4
|

11y no additive information [22,25].

A. Laser Py-MS Technique - The mass spectrometer consists of a basic

electron fonizat
modified vacuum
. IR window. Low
fon'fragmontatia
tunable continuo

|
1ines. Most of!

n and simplify spectra.

the spectra were ghtained on a strong 10.21 um line.

jnr gquadrupole instrument (Extranuclear 5000-7) in a

housing with a cryopump, solids probe and sodium chioride

electron energies (typically 15 eV) were used tc minimize

The carbon dioxide Taser was a-

us wave model capable of 5 watt operation on several

The

1.




laser beam was focussed from its original 1.6 mm diameter to a spot'ca.
0.5 mm diameter on the sample 26 cm from the 30.5 cm focal length lens.
The relative positions of tie laser beam, sample and ion source are shown
schematically in Fioure 4 vo indicate how products were volatilized/-
pyrolyzed directly from the sampla into the ionization region.

The laser Py-MS experiments were run by pulsing the laser beam with an
e]ectro-mechan{cal shutter. The shutter was opened for 50 to 250 ms at 1
s intervals for 9 conseéutive pulses. The sample was movec across the
beam path between pulses to permit exposure of fresh sample to each shot.
During this time the mass spectrometer was repetitively scanned at 1000
amﬁ/s through the desired mass range 100 to 150 times andythe data signal
was averaged to give a single spectrum. The multiple laser pulses
increased sensitivity and averaged the variations which might océur in a

single exposure.

B. Qualitative Laser Py-MS Analysis - The spectra in Figures Sa and b

were obtained from a preliminary setup in which the Samp1es were more than
2 cm from the center of a very open ion source. The laser pyrolysis
. spectra of the SBR sample (Fﬁgure 5a) and a SBR and natural rubber (NR)
biend (Figure‘Sb) show predominantly the fragment and molecular jons of
monomers and small oligomers from the thermaily degraded polymers. The
,spectra are very similar to those obtained by Curie-point Py-MS [18,19]
where most of the less volatile additives were either condensed out hefore
reaching the ion source or were simply too low in relative concentration
. to be seen. One additive which can be observed is the sulfur, as
indicated by peaks at m/z 34 and HyS and m/z 43 and 64 from SOp (and

possibly Sy for 64),

12.
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Figure 5. Laser pyrolysis mass spectra of vulcanized SBR {a) and SBR-NR
(b) rubber compounds. Spectra consist primarily of fragment
and molecular jons from monomers and dimers of styrene (S)
butadiene (B) and isoprene (I). For these preliminary sampies
most of the additives condensed out before reaching center of
ionizer.
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- Figure 6 shows a Curie-point (volatilization) mass spectrum of the
dichloromethane extract from the SBR compound. The molecular and fragment
jons from sovcrai additives are indicated with the most intense signal
from the HPPD antiozonant molecular ion at m/z 268 and a fragment ion
cluster around m/z 211 from the loss of CqHg. The portion‘of the
spectrum above m/z 300 is expanded x5 to indicate the TMDQ dimer ions (m/z
346 and 331) and the DODPA peak at m/z‘393. The accelerator decomposes
during vuicanization and is thus observed only aS two of its decomposition
products; mercaptobenzothiazole at m/z 167 and benzothiazole at m/z 135.
The m/z 135 jon could leo be the fragment ion with'the structure shown in
figure 6 from a t-octylphenol-formaldehyde resin pyrolysis product with
molecular weight 206. However, the lcw voltage ratio of m/z 206vto m/z‘
135 is normally much larger than that observed hers. The small peaks at
m/z 129, 185 and 284, which were more intanse in other samples, are due to
stearic acid.” The ion at m/z 256 could represent unvulcanized sulfur Sg
or the impurify palimitic acid in stearic acid [17].

The Tlaser pyrolysis spectrum in Figure 7 was obtained with the sample
closer to a less open ion source which directs more of the pyro]ys%s/-
volatilization products through the ionization region. This analysis was
also run with a weaker laser beam power (ca. 3 to 4 watts) and longer
pulse times (150 ms). Additive ions as indicated in Figure 6 are clearly
visible with relatively weak signals from the SBR monomers at m/z 54 and
104. In addition to these pezks, many other fragmént jons can be seen

resulting largely from the higher molecular weight (MW 400 to 600)

hydrocarbon processing oil.

15.
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Figures 8 a-c show triplicate lasar pyrolysis spectra at 4.5 Watts and
100 ms pulse times of the SBR compound. Note the very good reproduci-
bility of the spectra which show much stronger monomer and oligomer
molecular ions containing styrene and butadiene units (labeled as_S and B
respectively). Also note that, other than the abundant fragment ions
which may be from the oil as well as po]ymer'pyro1ysis, the spectra are

relatively simple with very‘11£t1e evidence of the additive ijons éeen in

Figures 6 and 7.

C. Quantitative Laser‘Py—MS Analysis - Butadiene rubber (BR) and
natural rubber (NR)‘samples and three mixtures of the two were pyrolyzed
using the laser beam scanning technique (see Figure 4). Factor and
discriminant analysis were performed on the replicate spectra of these

five samples and the scores of the main discriminant function are plotted

. versus their relative composition (Figure 9). The non-linearity of the

bivariate plots is apparently due largely to the. lower decompositicn

temperature for the polyisoprene (NR) than the polybutédiene.

2. Curie-noint Py-MS with lon Trap Detector

Though’the,Finnigan lon Trap Detectdr (1ITD) is designed and used
ﬁrimari]y as a detector system for gas chromatography, it has several
features which make it attractive for development as a stand-alone MS,
e.g., for pyrolysis mass spectrometry‘(Py-MS) studieSL Among )
attractive features are its ease of operation, high scanning speed,
ability to detect all jons produced in a single, transient event {e. 3.,

flash pyrolysis), and possibilities for CI and tandem MS (MS/MS) operation

18.
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Figure 9. Plot of discriminant function scores versus % NR composition.
Two or three spectra were run for each of the 5 samplias. The
lack of discrimination of the 80 and 100% NR samples seems %o
be preduminantly due to the lower decomposition temperature of
the NR compared to the BR. )
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modes. Moreovar, the ITD;s small size, low price and its user-friendly
operating software make it-well suited for environmental monitoring (!i;;,
poilutants or aeroso:.s), industrial process monitoring, biomedical and
forsnsic applications. By interfacing a Curie-point pyrolysis inlet to
theIITD,‘a bench top Py-MS systam can be developed which can analyze
nonvolatile organic matefid]i in several different Fy-HS modes including
Py-EIMS, Py-CIMS and Py-MS/MS. |

‘nitial experiments involved conracting a Curie-point pyrolysis inlet
directly to the heated, open-split GC interface of the ITD. Fyrolysis in
this configuration was carried ~ut .1 an inert (He) atmosphere, and the
products of pyrolysis wcfe swept into the ITD by the He carrier gas.
Ana]ysgs of synthetic polymers (g.g.; poly/methimethacrylate)) gave
spectra with characteristic molecular and fragmeﬁt-ions of the respective
monomers and other pyrolysis products. The time information abouf the
relative thermal stabilities of these p61ymers'was also présgrved.
However, the elution of the pyrolysis products into the ITD was
accompanied by éxtensive peak broadening and tailing. This resulted in
the pyrolysis products from a ca. 2 s heating profile (temperature rise
time ca. 2 s, total heating time 10 s, equilibrium temperature of the
filament 610°C) giving a total fon current curve-thét was approximately
12 s wide at half maximum. Analysis of biopolymers (deoxyribonucleic aciq
DNA, bovine sérum albumin BSA, and glycogen), however, resulted in the
less of polar pyrolysis products. These losses were apparently due to
condensation in the transfer line or the pvrblysis inlet. Moreover, the
1§ng residence time of the pryolyzate in the hot (2509C) transfar line
ma, have led to undesirabie rearrangements‘or secondary reactions among

the pyrolysis products [24].

21.




To overcome these difficulties, the pyrolysis reactor was modified in

order to connect directly to. the ITD via a 3 inch glass lined tube. This
configuration is shown in Figure 10 (Py-ITD). Analysis of a polymer
mixture of nitroceilulose, poly(styrene) and poly/ -methylstyrene) showed
significant reduction in peak broadening and tailing and preservation of
time (temperature) resolved information. The direct interface also
resulted in improved sensitivity as was seen in the analysis of 5 ng of a
'poly(ether urethane urea) {Biomer [25]) under standard ionization
conditions. Analysis of Biomer yie1ded spectra which contain peaks
characteristic of the diisocyanate and polyol components [26] and refect
the temperature-dependent nature of the pyrolysis process (Figure 11).
Analysis of DNA, BSA, and glycogen produced spectra which compare
favorably with low voltage Py-EIMS and Py-APCIMS. These differences are
apparently due to the different ionization and mass analysis techniques
used in the ITD and are not clearly understood at this time.

Future studies on this system will investigate the sénsitivity and
reproducibility of the system using Py-EIMS and Py-CIMS. Also the

information content of the spectra will be studied.

3. lon Trap Dynamic Range and Sensitivity Testing

We avaluated the new Automatic Gain Control (AGC) ITD software which
provides aﬁtomatic variation of ionization time [i2]. AGC maximizes
sensitivity for low levels of analyte, and prevents saturation of the ion
trap at high levels of analyte. The results are impressive, with full
scan EI mass spectra easily obtained at .ow picogram levels, while linear

response is maintained up to low microgram levels.

22.
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Figure 10. Schematic of the Curie-point pyrolysis Ion Trap Detector system
(Py-1TD). Sample is coated onto the tip of a ferromagnetic
filament which is inductively heated to its Curie-point by the
high frequency coil. Helium is introduced through the sample

probe at a rate of 1 mi/min.
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Figure 11. Spectrum and total jon current curve from the analysis of 5 ng

of Biomer.

characteristic of the diisocyanate (m/z 208, 221, and 250) and

In the mass spectrum, note the peaks which are

polyol (m/z 71 and 73) components. The peaks which are

characteristic of the diamine chain extender (m/z 86) and the

poiyol dimer fragment (m/z 143 and 145).
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The dynamic range of any device which converts analyto# into charged
particles (e.g., flame ionization detectors or mass spectrometers) will be
l1imited by the onset of space charge. These space-charge effects lead to

saturation of instrument response when the density of charged particles

(ions) rises so high that ion-ion repulsions become significant. These

effects are especially evident in devices which trap or store ions. In
the ion trap, these effects are manifest when too large an analyfe
céncontration leads to lcss of mass resolution and degradation of mass
spectral quality (e.g., self-chemical jonization to .form (M +:1)* ions).

The new ITD AGC software provides a solution to this problem. Whereas

‘ear1ier versions of ITD software have used a fixed (1 ms) ionization time,

the new version automatically selects an icnization time from 0.078 mS to

25 ms (a range of 320) for each microscan, debending on the amount of

-analyte in the trap. For low levels (e.g., for baseline or small GC

peaks) a maximum ionization time of 25 ms is selected, offering an
improvement of approximately 25 times in thg sensitivity over operation
without AGC. 'As the amount of analyte increases, the ionization time is
automatically decreased in order to prevent overfilling the trap with
jons. The ion signals in each microscan are automatically scaled to
correct for the variation in jonization time. The new scan function is
shown in Figure 12. A short "prescan", consisting of a 0.2 ms jonization
provides an estiﬁate of the number of ions formed in the trap. This‘va1ue
Jis then used to caliculate the optimum ionization time for the actual mass
scan which follows.

In order to evaluate the performance of this new software, a set.nf

serial dilutions of exo-tetrahydrodicyciopentadiene the major component of

25.
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JP-10 jet fuel in n-hexane were analyzed by'GC/EIHS on the ITD. This
component is a tricyclodecane of formula CjgH1g and molecular weight'
136. Tricyclodecane 1 Qas analyze& with a 15 m x 0.32 m ID, 0.25 m film
thickness, DB-5 open tubular column (programmed from 300C to 130°9C at
209C min-1 4.4 psig inlet pressure, 1 ul on-coiumn injections),
scanning from m/z 40 to 160. Standard solutions ranged form 15 pg 1-1
to 1.5 ug 1-1 for a solvert blank and the 15 pg solution are compared
in Figures 13 and 14. The tricyclodecane 1 poak at a retention time of
3:20 is clear at the 15 pg level in the recon- structed'ioﬁ chromaﬁogram
(RIC), as well as in the mass chromatograms for the molecular jon (m/z
136) and the most abundant fragment ion (m/z 67). The
background-subtracted mass spectrum for the 15 pg GC peak is shown in
Figure 15a. This spectrum compares favorably with that obtained for 150
ng {10,000) times more analyte), sﬁown in Figure 15b.

The clearest indication of the superior perfomance of the AGC software
is the 1inear dynamic range indicated in the calibritiqﬁ curves for tri-
. cyclodecane 1 shown in Figure 16. Over 6 decades of concentration, the
calibration curves for the RIC, m/z 67, and m/z 136 (M*) show excellent
agreement and linearity (slope of‘the lug=log plots,ivl.o.). The
. decreases in slope in the picogfam range are those typically observed ih.

all GC/MS calibration curves just above the detection limit.

4. Aerosol Precipifation‘Experihents

For field sampling purposes, aerosol precipitation was studied. One
of the first studies was with a homebuilt system, which could be used for

precipitation on wires or quarti slides, see Figure 17. After successful

27.
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Figure 15. Background-subtracted mass spectra from GC peaks of

tricyclodecane 1: {(a) 15 pg; (b) 150 ng.
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feasibility studies with this approach, commercially available instruments
(TSI 3100) and custom built instruments were bought for aerosoi generation
and procipitation. Succassful precipitation‘on a Curie point wire
followed by analysis by Py~-MS was achieved. Currently, thec aerosol

sampling is being tested under field conditions.

5. Development of Advanced Chemical Fattern Recognition Methods

The techniques deeloped for the evaluation of the data are a]]\based
factor analysis bzsed techniques followed by the VARDIA technique.
Therefore, an overview of this technique will be given with‘exaﬁp}es for
regular and time resolved data. The last part consists of an adaptation

of the VARDIA' technique for time-réso1vod data, which basically is an
| approach éhat can be done in a more automated way and can be used as a

' monitoring tool.

A. The Variance Diagram Technigue - The Variance Diagram technique

needs to be preceeded by multivariate analysis: i.e. factor analysis
and/or discriminant ané1ysis.

Factor analysis (princ{pa1 component analysis) appiied to a data set
results in independent linear combinations of the original variables

according to the equation:

Fj 291321 *+%2322 + . . . 2380, | (1)

where Fj = factor j and ajj = the loading (= correlation coefficient)

of variable Zj with Fy [27,28].

33.
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This generally results in a substantial data reduction, due to
correlated bchaviér of the‘ﬁass variables. In order to compare the linear
combination with the orginal dafa, the loadings are multiplied by the
standard deviation of the mass variable involved. The intensities
obtained can be represented in the form of bar plots ("factor spgctra“
[29]). Since a limited number (e.g., 100) variables have to be selected
for multivariate analysis due to Jimitations of the computer software
and/or h;rdware, chemical interpretation of the factor spectra may be
severely hindered. Invorder to involve the §ther méss varables in.the
facfor spectrum, their contribution is determined by calculation of the
ﬁovariance of the variables with the standardized scores. The factor
scores are the relative contribution of the orginal spectra in the

facots. The scores are standardized; i.e., the average intansity equals 0

.and the standard deviation is 1.

Discriminant analysis is a related technique. The independent linear

combinaticn resulting from discriminant analysis, hoﬁever, describe the

" maximum of the ratio of between-group to within-group variance [27,28,30]

where the between-group variance is the differencebetween groups of data
(in our applications a group cons%sts of replicatas analysis of the same
sample) and the witﬁin-group variance represents the differences.withiﬁ
the groups ("noise"). The results are presented in the form of |
discriminant spectra and scores, similar to those resulting from factor
analysis. After factof analysis, the VARDIA technique [15] can be app}ied
on the data. The VARDIA method showé the strength of the correlatad
behavior of the mass variables in all directions in two-dimensional factor

or discriminant subspaces. The equation for this procedure is:

34.




n
var (W =8 ), = I a42, for a;> (a412 + 4422)1/2 cos 8, (2)
. i=1 - 2

where aj = ajjcos + ajpsiny and var(W =8jr is the variance i the
diregtion in the space at an angle of vy degrees with the first facﬁor (or
the discrimiant function) using a window W of B degrees. Furthermore,
aj is the loading of mass variable‘ilon the rotatad function, n is the
total number Qf mass variables, and ajj are the loadings of the mass
variables in the unrotated factor j. Expressed in terms that are easier
to visualjzl, expréssion"(Z) accqmplishes the following task: in a
two-dimensional system the sum of the squares of the Tenghts of all mass
axes prisont in a pie-shapod wind.w of B degrees (genor$11y 109 or

20°) is calculated while th§ window "scans“'the‘whole two-dimensional

space in discrete steps (generally 109).

B. Examg1es of Variance Diagram App’ications - As an example, the

results obtained on a data set of grass 1eavés ire given [31). Because of
the complex biochemical composition of recent plant materials, spectra of '
the grass leaves ;how a complex pattern, as can be seen in Figu&evla. The
‘diagram after normalization correction (Figure 19) reveals a complex
pattern between 609 and 1400 with three.loéaf maxima. Examination of

the discriminant spectra (not shown) ﬁnd the'Toadings showed a weak
protein-1ike pattern in this direction in the discriminant space. This
possibly indicates changes in several partjal]y correlated proteins or
amino acids. Another explanation is that protein is involved in
intermoleuclar interactions, such as shown‘previohsly in a mixture

analysis study on Py-MS data [32].

35.
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Figure 18. Typical pyrolysis mass spectra form the grass leaves data set.

The spectra show a complex mixture of (poly)hexoses, e.g., at
m/z 31,32,43,60,74,96,98. 110 112, and 126; (poly)pentoses,
e.g., at m/z 85 and 114 and' severa1 other component classes.
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The component axis at 2000 represents a change in (poly)hexose
(e.g., cellulose) content, as‘can be deduced from Figure 20. The
discriminant spectrum of this component axis also shows m/z 85 and 114,
which indicates a partial correlation with a change in a (poly)pentose
(e.g., hemicellulose) comporent as deduced form the loadings of these and
other pentose related mass values.

The: component axis at 3409 shows the optimal representation of a
relativefy pure {poly)isoprenoid pattern, as can be deduced from Figure 20
c,d. From these regults it‘is obvious again that factor analysis
techniques can greatly simplify complex spectroscopic patterns.

The component axes obtained were the same as those found with
graphical rotation [30].

This procedure can easiTy be extended to more than two dimensions.

For ins’ ;, let us assume that a certain component is described by three
functions. Then the first step is to find the maximum of this component
axis in the spacé of the first two functions Ly and Lp. If the local
maximum of component axis is found at an‘angle of o degrees with L1, the
next step is to study the variance diagram of a the space described by
((cos @)Ly + (éin a)ly) and L3. A variance diagram determined in

the above described way in a moréfdimensional space can be found élsewhere
[33]. Our experience with Py-MS data is that rarely ever more than five
or six linear combinations are needed to describe the bulk of the data.

As an example of time-resolved analysis, data from analysis of a
biopolymer mixture are presented below. For details on this see reference

34.
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Frbm preliminary experiments and literature [29,35,36] it is known
"that DNA has a lower pyrolysis temperature than glycogen which, in turn,
has a Tower pyrolysis temperature than BSA.(bovine serum albumin). Figure
21 shows the total ion current profile. The two unreso]ved maxima
correspond to glycogen and BSA, respectively. The DNA maximum is not
visible due to a dominant glycogen change. Although the biopolymer
mixture has only three components, the number of factors with an
eigenvalue >1 was 6 (i.e., 64.0, 24.0, 4.9, 2.7, 1.7, 1.3), describing
96.3% of the total variance. This indicates the complex pyrolysis
behavior of these polymers. Since the eigenvalues clearly level off after
the third factor, only the first three factors were used fof further
evaluation by the VARDIA technique.

The VARDIA plot of F1 vs. F2 (not shown) did not give a separation of
the three components. Since the major change 1& this data set is the TIC
(tota) ijon current), the TIC represented by the first factor. ODue to the
large variance described by F1 (64%), tendencies other than those
described by the F1 are not visible in the VARDIA plot. The VARDIA plot

- of F2 vs. F3, however gave a clear separation of the three components, as
can be judged from Figure 22. Subsequently, the VARDIA technique was used
to " calculate the linear combination describing the three components.

vFor the final determination of the linear combinations to describe the
component axes, Fl was also included. This was done by taking the 5-10
variables with the highest loadings from each of the maxima in the VARDIA
plot iﬁ the F2-F3 space. The loadings of these peaks on the first three
factors were averaged. The resulting averages were used as the directions

of the component axes in the factor subspace. The scores of the
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Figure 20. Discriminant spectra of grass leaf component axes and relevant mode)
compound spectrum: (a) discriminant spectrum of the component axes
at 2009 which optimally represents a hexose pattern (compare with
typical hexose pattern of gelatin in Figure 40); (b) discriminant
spectrum of the component axis at 3409 which optimally represents
a {poly)isoprenoid pattern (compare with the typical pattern of
natural rubber in Figure 1lc¢).
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components are presented in Figure 23 and show a complete deconvolution of
the three time-resolved curves (TRC's) of the components, despite the
overlapping behavior as shown in the total jon current curve (Figure 21).

The spectra associated with the component axes were calculated by
using the inverse transformation matrix used for thé scores. As can be
seen from a copparison with the spectra of the pure components in Figure
24, there are cléaf similarities although some differehces, discussed
below, are also obeserved. The DNA compohent axis shows a significantly
higher (on the scalq used, the intensity of m/z 98 is 17.6) m/z 98 peak
than the orignal‘DNA component. The single ibn curve (SIC) of m/z 98 (not
shown) shows that it ;eaches its maximum even before the DNA TRC. The
reason for this is not yet clear.

The glycogen component spectrum shows the presence of ﬁ/z 64 (S02).
From the SIC of this ion (not chown) it is obvious that this ion indeed
arises early in time. It is very likely that the S0 signal originates

from BSA.

The lack of an m/z 98 peak in the factor spectrum of gI&cogen can only
be partly due to the fact that the representation here is ofthogon;l to
the DNA axis. If m/z 98 arises from DNA as well as glycogen, the mass
variable representing m/z 98 in the factor spacelies between the two
cﬁmponents and, consequently, should contribute to the spectrum shown in
Figure 18. Thus m/z 98 shows unexpected behavidr in DNA as wel] as in
g1ycoggn. A possible explanation may be a nonlinearity in the ion
counting system for high count rates. The last spectrum, that of the BSA
component axis, shows a high degree of similarity with its model spectrum

in Figure 24,

41.

U KN W R A i w Cw Nt T W ORS W S S




TIME (s)

100-

TOTAL ION CURRENT

0 0o 20 30 40
SPECTRUM NUMBER

Figure 21. Total ion current (TIC) obtained from time-resolved analysis of
the biopolymer mixture.
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Figure 23. TRC's of the three components of the biopolymer mixture.
‘Despite the heavy overlap of the three components as revealed
by the TIC (Figure 4), a compiete deconvolution has been
obtained.
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C. Use of the Variance Diagram as a Monitoring Tool - Although the

VARDIA technique as described above is a powerful tool to find the
component axes (scores), presentation of the occurrence of these component .
axes as a function of time gives a more appropriate representation of the
data. This is possible by calculating the variance not in 100

rotational steps in a 2-dimensional subspace but invthe directions of the
sequential spectra in n-dimensional factor space [37].

Normally, the calculated éveraga spectrum of a data set is used as the
reference point (the "origin”) in n-dimensional space for rotationa]l
procedures such as graphﬁca] rotation and the VARDIA technique. This is
done because the 1ﬁterest is generally in the relatively minor differences
between spectra rgther than in the absolute intensities of the signals.

In the case of time-resolved spectra, however, the absolutes cﬁntribution )
of each spectrum to the data set is of interesi. Thus the "permanent”
background spectrum‘seen by'the mass spectrometer is a more appropriaté
reference point. Thue for the time-resolved VARDIA method, the variance
as calculated by-equation 3, in the direction of the samp}e spéctra with a
background spectrum as the reference point can be used. In contrast to
the yarianca values calculated‘by equafion 2, which only considers two

~ dimensional (sub)spaces, the variance in the directions of the sample
spectra‘can be calﬁu]ated in an n-dimensional space containing all
significant factors. The equation describing this procedure reads as

follows:

3

m ‘ 2
Vary = I aj ¢2 for ag ¢ 22 a5 3 *L (3)
i=1 Jj=1

n
Where a; ¢ = I{(S¢ j=S¢r j)/(
j=1

.

b1 3

(e,375tr, 08 *ai g
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Where: m is the number of variables.
n is the number of factors,
aj ¢ is the loading of mass variable i from spectrum t on the rotated

function.
a5 is the loading of mass variables i on the original factor j,
St score on factor j of spectrum t
St, is score on factor j of reference spectrum
L is"the cosine of the angle between the mass-axis and the rotat1on under

consideration.

' Expressed in words, the procedure accompiishes the following tasks:
(a) subtraction of thé scores of the reference spectrum from the n scores
of each spectrum, (b) normalization of the new scores (f.e., the sum of

‘tho squares of then scores of each spectrum are made equal to 1.0); (¢)
calculation of linear combinations of factors for each spectrum; (d)
selection of all mass axes that are within a certain anglo.(ang1e =
cos™l L) of the rotated functions; and (e) summation of the squares of
the selected loadings of each factor to give the variance as defined by
the equation. |

Thus, only miss variables whose projected direction in n-dimensfona1
factor space makes a relatively small angle (15-20 degrees) with the
direction of the selected 1inear combination of factors are included in
this a&apted variance calcul;tioﬁ. A high variance value indicat#s a
relatively high loading of included mass variables on the selected linear
qoﬁbinatidn of factors, thus indicating which maSS‘variables are |
responsible for the observed correjated behavior.

Initial application of this technique showed that the results improved
considerably after smoothing the scores with the following triangular
windaw: . ‘

St,3" = 1/8 % S(g-1),5 * 1/2 * S¢ 5 * 1350441y (4)

where St,J* is the smoothed score.
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Since the time-resolved VARDIA uses a subspace of the original factor
space, the question may arise if the overiap between the two spaces is
suffitiently high to regard the subspace as representative of the original
space. In order to check this, the % variance covered by the serial
subspace was calculated with the following equation:

. ,
zl (max(aj 1, aj,2....a§,k))2 * 100% (5)

Vars

=+

where k is the number of spectra.

The maximum of a loading aj j (J = 1,k) for all Tinear combinations
in the direction of the spectra in the factor subspace may be cénsidered
as the "length™ of that mass variable in the subspace (the standardized
length of each mass variable in the orginal factor sﬁace is 1.0). Since
the communality [38] is the square of the length of a variablé, the above

formula calculates the sum of all the communalities from which the

" relative variance can be calculated by dividing this sum by the number of

variables involved.

As an example, a time-resolved data set of a wood samp]é will be
shown. This data set has been studied Sefore with the VARDIA technique
[34,39]. For the study, the 155 spectra recorded between 3009 and
5000 were used. Prior to multivariate analysis, sequences of five
spectra were averaged in order to reduce noise and the size of the data
matrix. Three significant factors (describing 97% of the total variance)
resuited in three maxima using the VARDIA technique, which allowed a
complete deconvolution into three processes. From this study [34] it was
concluded that the first process was dominated by hemicellulose ﬁyro1ysis,

the second by cellulose pyrolysis and the third by lignin pyrolysis. The
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pyrolysis of lignin, however, does not only take place in the third ‘
pyrolysis step process. It appeared that there were three separate’1ignin
pyrolysis processes, of which the first two were highly correlated with
the hemicelluloses and cellulose pyrolysis steps [34]. These findings
were in agreement with a time-resolved MS study on biomass samplés by
Evans et al. [40].

The TIC curve of the time-resolved wood data set is given in Figure 25
whereas the time-intagrated spectrum of this data set is shown in Figure
26. The VARDIA-S technique resulited in the curve given in F1gure 27. As
can be seen, the VARDIA-S technique gives a considerably ihproveq |
resolution. The céntribution of the hemicci1ulosevand lignin components
were only minor. Partial (25%) subtracﬁion of the first factor, however,
showed the significance of these two components ¥n the VARDIA-S curve.
The mathematically extracted spectrum of describing the main lignin
pyrolysis process and a model sboctrum of lignin are presented in Figure

28.

6. Computer-Enhanced Py-MS Analysis of Simulated Biological Agent/-

Interferent Mixtures

The purpose of this experiment was to demonstrate the feasibility of
detecting and quantifying two different microorganims (B. anthracis and

Streptococcus type B) in the presence of varying concentrations of a

natural background material (Dugway soil) by means of pyrolysis mass
spectrometry and multivariate analysis techniques.
In view of the model experiment nature of the tests, no- ai:empt was

made to obtain multidimensional MS data. Obviously, great’y improved
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Figure 25. TIC-curve of the time-resolved TG/MS analysis of wood, which

does not show clearly resolved processes.
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Figure 28. The mathematically extracted spectrum a of the wood data set

shows typical lignin peaks at m/z 110, 128 and 138 (a). The
softwood lignin spectrum (b) shows additional lignin peaks at
m/z 150, 152 and 164. The absence of the latter peaks in (a)

is due to the complex behavior of lignin.
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detection and identification performance is possible-whe# using MSN,

GC/MS or time-resoived pyrolysis MS techniques. Moreover, a relqtive]y
narrow mass range was used, thereby excluding most 1ipid peaks. Finally,
the present data were obtained on a conventional quadrupole MS systém
rather than on an ion trap MS system with Curie-point pyrolysis inlet. In
the latter configuration sansitivity improvements by 2 or 3 orders of
magnitude have been demonstrated [10] fhereby a11ohing the use of sample
sizes in the low nanogram range. However, one-dimensional spectral data
obtained on a conventional quadrupole Py-MS system were judged adequate to
test the performance of the pyrolysis techniques and of the muitivariate

analysis methods.

A. Experimental Procedure - Samples of the twa microorganisms and the
Dugway soil were received frdm CRDEC. Samples were prepared by suspending
in methanol (1 mg/mi) followed by mixing various proportions of each
suspension for a total of 10 different mixtures. As shown in Figure 29
the various concentrations have been chosen in such a way as to simulate
systematic varjations along a hypothetic time axis. Thus, the 10 mixtures
provide a model for time-dependent changes in concentrations, e.g., in

consecutively collected aerosol samples. Then ul aliquots of each

suspension (10 ug dry weight were analiyzed by means of direct pyroiysis MS
using an Extranuclear 5000-1 quadrupole system with Curig-point pyfo]ysis
inlet developed at UUBPC. Pyrolysis MS conditions were as follows:
Curie~point temperature 6109C, heating rate approx. 1009K/s, total

heating time 10 s, electron energy 14 eV, mass range m/z 20-140, scanning
rate approx. 500 amu/s, total scanning time 20 s. Multivariate data
analysis was performed on an [BM 9000 microcémputer system using the SIGMA

progirams developed at UUBPC.
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Figure 29. Relative concentrations of 10 ternary mixtures containing
simulated biological agents’ Streptococcus group B +
Bacillus anthracis) and interferents (Dugway Soil).

55.

RIS M KR A GRS X R M R B KA Roa K



B. Results and Discussion - Pyrolysis mass spectra of the three pure

materials are shown in Figure 30. Notice the differences between the
pyrolysis patterns of the two bacteria (Figures 30a and b) as well as the
major differences between the soil sample and both bacteria. The
streptococcus B péttern in Figure 30a is characterized by strong’signa1s
representing neutral sugars from cell wall constituents, e.g., at m/z 57,
74;‘82, 84, 96, 98, 102, 110, 1i4 and 128. Especially the signal at m/z
128 is notewortny, since it is likely to represent rhamnose, a biomarker
for microoganisms in general and a characteristic constituent of certain
streptococcal gréup and type antigens. The identity of the peak at m/z

128, which corresponds to the rhamnose “monomer” minus H20 can be

confirmed by MS/MS.

By contrast, the Bacillus anthracis pattern in Figure 30b is dominated
by protein»signals, e.g., at m/z 92/104 (phenylaianine fragments) and m/z
94/108 (tyrosine fragments). In addition, the relatively inconspicuous
peak at m/z 79 can be confirmed by MS/MS to contain pyridine, a
décarboxy1ation product of the characteristic spore wall component
di-picolinic acid. The Dugway soil pattern is characterized by relatively
high HC1*- peaks at m/z 36/38, apparently representing the high NaCl
content of the Utah desert (sce also the marked Na+ peak at m/z 23}.
Furthermore, the high peaks at m/z 64 (502+) and 94 (probably phenol)
are likely to represent sulfates and soil humic acids, respectively.

Two different multivariate analysis approaches, namely supervised and
unsupervised analysis, were followed in order to demonstrate several
pnssibie appiication of muitivariate techniques to agent interferent

mixture data.
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Figure 30.
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In the supervised analysis approach, the mixture data set was
subjected to factor analysis while including the spectra of the three pure
compounds. This enables numerical extraction of component patterns and

estimation of relative concentrations by target rotation and can be

compared to a situation where the key chemical patterns of known
biological threats and interferents are aiready present in a comouter
library.

Figure 31 shows the relationships betﬁeon the 10 mixture and 3 pure
("target") spect}a in F1/F2 space. As expected, all mixtures lie within a
tri;ngle sﬁahnedvby the three target spectra. The triangle represents a
so-called “ternary diagram" and is due to ﬁhe normalization of the total
ion signal in each spectrum to iOO%. As shown in previous studies [41j,
ternary diagrams qbtained by factor analysis allow a direct estimate of
the relativel concentrations of the three components.

Calculated relative concentrations are shown in Figure 32. A direct
comparison between Figure 32 and 29 reveals a high degree of
correspondence with regard to the re1atiyé concentrations of the three
components, thereby confirming the high degree of linear additivity of
pyrolysis mass spectra obtaihed by the Curie-point pyrolysis technique.
Moreovgr, the factor analysis approach shown in Figure 31 allows direct
visualization of the chemical parameters responsible for the observéd‘
relationships between the mixture spectra and the pure target compounds.

Finally, a numerically "extracted” spectrum of the chemical component
responsible for the high score of mixture sample #3 on the streptococcus
axis in Figure 31 is shown in Figure 33a, revealing nearly all of the mass

peaks found to - be characteristic for streptococcus group B in Figure 30a.
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‘Figure 31. Factor scores of the mixture spectra showing the ternary diagram
‘ configuration. The three library (“target") spectra are indicated
by *. Note that all 10 mixture spectra lie within the boundries
he pure target spectra.

of the triangle formed by -t
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Figure 32. Relative concentrations of mixture components calculated from
library target rotations.
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How can the supervised target spectrum approach be used in a practical
biodetection situation? First, let us assume that our biodetection system
computer contains library of known threat agents and background
interferents and that this library is a true chemical library (i.e.,
containing information ab?ut biomarkers and other characteristic chemical
components) rather than af]ibrary of ;fingerprints" (i.e., patterns
without chemical meaning). In that case the normalized chemical
signatures ("spectra") of‘pure threat agents and interferents will lie

inside the hypertetrahedran or on its various vertices and triangular

surfaces.

1f the chemical patteﬁn of an actual aerosol sample is found to 1lie
within (or on) the boundaqies cf the hypertetrahedron its composition can
be readily and totally expla1ned by known agents and/or interferents.
Alternatively, if the new %hem1ca1 pattern lies outside the boundaries of
the hypertetrahedron it mu;t contain some unknown component(s). The
relative concentration of ;he unknown fraction can be deterﬁined by
subtracting the contrwbut1ons of known components (which can be measured
through orthogona] prOJections on the surfaces of the hypertetrahedron).
In general, it can be statgd that the greater the distance between the
unknown pattern and the hyﬁertetrahedron, the smaller the contribution of
known library components wﬁ]] be.

If so desired, the pogition of the "pure" unknown component can be

\
calculated, according to a method described by Windig et al. [42], thus

i
forming a new apex which enlarges the volume of space spanned by the
hypertetrahydron and serves to help recognize future occurrences of

similar components. This makes the recognition process self-learning.
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The mathematics of tnis mixture analysis approach as outlined in
several UUBPC publications are straightforward and can be applied o any
set of mixture patterns. However, the accuracy and reliabiiity of this
procedures depends entirely on the precision with which the locations of
the hypertetrahedron apices are known in multidimensional space. Since
each apei represents a biological agentc or interferent material which is
highly variable by nature, : so-called “fingerprinting" approach is doomed
to fail. Usa of biochemical marker signals, hcwever, serves to “anchor"
the positions of the apicas more firmly in space.

The ahovedcs;ribed'mothods are primarily “supervised” in nature (i.e., -
dependent on prior “uwiedge} but flexible enough to be adaptable to a
self-learning mode. A typical iesu't of such a supervised analysis will
be a list or histogram showing the estimated concentrations of known
-biologica? agents and/or interferents as well as any “unexplained -
residue™. Genora1}y, the latter will then be incorporated into the
library for future reference pdrposes.

As discussed in the previous paragraphs, the supervised method will
fail to 1dentif§ library components if the distance between the aoroso}
pattern and the hypertetrahedron is too ?arge (i.¢., the orthogonal
distance to the nearest triangular surface is large in comparison to the
s;ze of the triangle). In this case, unsupervised mathods may produce
more reliable results, especially if a series of new aerosol patterns is
found to form a more or less coherent cluster well outside the
hypertetrahydron. This could be due to the occurrence of an unknown {or
unanticipated) class of agents or interferents as well as to a loss of

instrument calibration or other systematic malfunctions. Also,
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unsupervised methods can be used to detect and characterize unknown
aerosol components if the system library has been lost or damagéd..‘

_ The first challenge for an unsupervised approach is to provide

reliable “event" detection, where an “event" is defined as any significant

change in the relative concentration of aerosol components over time.

When using the so-called Sequential Variance Diagram (VARDIA-S) metnod
de;cribed in the previous section [37], two distinct events are observed,
as shown fn Figure 34. Since the VARDIA-S method can be used in é "moving
‘time window" fashion, Figure 34 represents the results when using the
first mixture (80% soil) as a reference point and the entire set of 10
spectra as the windéw.

Events are detected as saoon as correlated changes occur in mass peak
intensities of spectrﬁ within the window. Consequently, most noise
contributions are filtered out. Moreover, as soon as correlating
tendencies are detected and characterized (e.g., variations in sdi1
background concentrations), such components can be effectively subtracted
out. Since the "event" peaks observed in Figure 34 represeﬁt summed
correlations (“1oadin§s“) rather than summed peak intensities
("concentratiohs"), Figure 35 shows the calculated relative‘concentrations
‘using co-variance as a measure of peak intensity, according to a procedure
described by Windig et al. [15,42].

Eaéh of the two ' concentration maxima in Figure 35 was calculated by
using the opposite maximum (as defined by the event detaction procedure in
Figure 30) as a reference point, thus effectively ceconvoiuting any
remaining overlap between the two components. Finally, after detecting

the two events and determining the relative concentrations of the
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Figure 34. Event detection approach using the VARDIA-S method
(see text). Note maxima at samples 3 (event 1)

and 9 (event 2).
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Figure 35. Relative concentrations of component 1 (Streptococcus B)
and component 2 (Bacillus anthracis) calculated from
unsupervised (“autotuning”) rotatjons. Dashed lines indicate
actual con-centration curves (relative to Dugway soil

concentrations).
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components involved (absolute concentrations can be determined only if the

weight and pyrolysis yield of each sample are known) the remaining
question is: what can be learned about the identity of the components
detected and measured by this unsupervised approach?

Although t!are are no library spectra in this case, it is possible to
extract the spectra of the unknown components represented by the various
events froﬁ the series of mixture spectra using graphical rotation
methods. The results of this approach for the first maximum in Figures 34
and 35 (caused by the increased concentration of the streptococcus B ’
component) are shown in Figure 33c. Not only is fhe spectrum so obtained
nearly identical to the spectrum in Figure 33b obtained by target rotation
to the library spectrum of streptococcus B, the numericélly extracted
spectrum retains all of the most characteristic peaks.

Thus numerical extraction of chemical patterns from unkﬁown mixtures
can provide valuable 1nd1catiohs for more specificlchémica1 analyses,
| e.g., by MS" in combination with speciaf CI methods, in order to achieve
a more complete chemical characterization. By following gpneralized
biochemical classification rules such as outlined in the hierarchical
scheme presented in Figure 2 a significant level of identification of .
unknown aerosol components may be achieved, even if library patterns are
compietely unavailable. In previous submissions our téam members at SRI
have provided a detailed discussion of the role of advanced Al-based
classification methods in such situations. The algorithmic approaches“
described in the previous paragraphs provide the means of optimizing the
spectral data for final Al-based evaluation by removing'redundant data,
deconvoluting overlapping events, subtracting baékground interferences and

maximizing signal-to-noise ratio's.
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