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I. STATEMENT OF PROBLEM

1. The Need for New Analytical Approaches

The development of suitable techniques for the detection and'

identification of biological agents is among the most challenging

analytical problems faced'by biomedical and physicochmical scientists

today. In recent years, outbreaks of previously unrecognized infectious

syndromes, e.g., Legionaires Disease [1], have highlighted the

"difficulties encountered in the identification of wumown infectious

agents by highly specific, conventional microbiological techniques geared

towards detection and identification of known organims.

In comparison with agents of natural origin, the detection and

identification problems associated with biological warefare agents are

even more complex. Because of rapid developments in the field of genetic

engineering during the past few years, the likelihood that hitherto

unknown organisms or toxins will be encountered under biological. warfare

conditions is ever increasing. Moreover, under warfare conditions

biological agents may be expected to be deliber:ztory or accidentally

concealed among high background levels of other materials of blological

origin.

Obviously, reliable detection and subsequent identification of

biological warfare agents will require novel analytical approaches which

combine high sensitivity to a broad range of organisms and toxins with

sufficient specificity to distinguish between biological aerosols of

different nature and origin.

I 1.



2. A Universal Approach to Biological Pattern Recognition

Ideally, one would like to use a rapid, sensitive analytical technique

with almost universal applicability to complex biological materials and

capable of providing detailed information on the biochemical composition

of any aerosol. Figure 1 provides a schematic illustration of an

idealized analysis approach to biological pattern recognition.

Assuming that the composition of biological compounds in intentionally

dispersed aerosols will generally be quite distinctive from aerosols

produced by natural causes, e.g., forest fires, or unintentionally

dispersed by war related events, e.g., explosions in swamp areas, then the

approach outlined in Figure I should be able to distinguish between these

different origins. The ability to establish the presence of intentionally

dispersed biological aerosols with confidence is obviously of great

military, medical and political significance, even if the precise identity

of the biological agent involved would not be known immediately. General

protective measures could be taken and decontamination and quarantine

procedures started while collected aerosol samples could be investigated

further in central analytical facilities. Fortunately, it is quite likely

that the abovedescribed universal analytical approach will also provide

important clues with regard to the nature and possible identity of the

biological agents involved. Such clues would mainly be provided by the

absence or presence of specific compounds or classes of compounds known to

be characteristic for certain groups of organisms. For instance, the

absence of nucleic acids would rule out the presence of any organisms

where as the absence of muramic acid moieties would exclude the presence

of bacteria [2], etc.
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A preliminary example of a hierarchical aerosol identification scheme

based on this approach is shown in Figure 2. It should be pointed out

perhaps that hierarchical "decision tree" approaches are often less

reliable than nonhierarchical multivariate classification techniques such

as SIMCA, a multiclass principal component modelling techniques developed

by Wold et al. [3]. Therefore, Figure 2 is only intended as an

illustrative example of a universal approach to identification of

biological aerosols based on recognition of specific classes of

biochemical compounds.
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IH. SELECTED APPROACH

1. Selection of a Suitable Analytical Technique

Only relatively few analytical methods are potentially capable oF

distinguishing between the various classes of biochemical compounds shown

in Figure 2. Among these are chromatographic methods such as gas

chromatography (GC) or liquid chromatography (LC) and spectrometric

techniques such as infrared spectrometry (IR) or mass spectrometry (MS) as

well as various combinations of these methods (e.g., GC/MS, GC/IR,

GC/IR/MS, LL/MS, MS/MS, GC/MS/MS, etc.). The latter group of so-called

"hyphenated" methods [4] includes many of the most powerful analytical

U methods for complex organic materials presently available.

Of the basic methods, only IR can be applied more or less directly to

all biological materials. LC will often require "solubilization" of

insoluble materials (e.g., by hydrolysis) whereas GC and MS require,

"volatilization" of nonvolatile materials (e.g., by pyrolysis). Other

important differences exist between these techniques with regard to

sensitivity, specificity, speed and computer compatibility.

2. Potential Applicability of Pyrolysis Mass Spectrometry

Based on our experience with different analytical methods for ccmplex

biological materials, pyrolysis MS appears to be superior to GC, LC and IR

_1 with regard to sensitivity, speed and computer compatibility. Figure 3

provides a schenmatic overview of the fully automated and computerized

pyrolysis MS syster' developed at the FOM Institute for Atomic and

Molecular Physics in Amsterdam [5] and capable of analyzing up to 36

6.,
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samples per hour. A somewhat modified pyrolysis MS system with automated

sample inlet has been constructed in our laboratory at the University of

Utah [6].

Pyrolysis MS systems such as shown in Figure 3 have been successfully

applied to the cha-icterization of a broad range of biological compounds,

including bacteria, viruses, mammalian cells and tissues, body fluids,

biopolymers, plant tissues, humic compounds coals and shales [7].

Furthermore, Voorhees et al. [8] have reported the characterization of air

particulates of biological origin. An overview of these applications is

given in a monograph by Meuzelaar, Haverkamp and Hileman [7] which also

contains an atlas of reference spectra from biological compounds.

Although hyphenated methods such as GC/MS and MS/MS enable a far more

detailec_ J.ýý,ical analysis than single stage MS. single stage pyroysis MS

if often quite successful in identifying structural moieties, individual

compounds or compound classes in complex biological materials [9]. This

is largely due to the exceptional degree of computer compatibility of the

pyrolysis MS technique.

3. Selected Pyrolysis Mass Spectrometry Approach

In the original proposal to ARO the instrumental approach selected to

achieve time-resolved Py-MS conditions consisted of CO2 laser pyrolysis

in combination with a miniature Mattauch Herzog MS system with

simultaneous ion detection capabilities by means of electro-optical ion

detection. This so-called MMH-EOID system was expected to be obtained

from Nuclide Inc. (State College, PA) with DOD/University Instrumentation

funding (Grant No. DAAG29-83-G-0070) shortly after the start of our ARO

grant. Unfortunately, Nuclide Inc. proved unable to deliver the



instrument due to financial problems which resulted in a bankruptcy filing

under Chapter 11 in 1985. As soon as it became clear that Nuclide Inc.

would not be able to deliver the system on time, the P.I.'s started to

look for alternative instrumental solutions. The Finnigan Ion Trap

Detector (ITD) was found to be a promising candidate system and in

September 1985 a Finnigan IlTD was obtained on loan from CRDEC (Dr. Peter

Snyder). After suitable modifications, the ITD system was demonstrated to

be a highly sensitive instrument for Py-MS [10) and Py-GC/MS [11) studies,

enabling Py-MS analysis of polymer samples in the low nanogram range as

well as identification of GC peaks in the low picogram range [12].

.Recently, DOD petmission was obtained to use some remaining funds from

the DOD/University Instrumentation grant to purchase an infrared

microscope accessory capable of focussing a CO2 laser beam in the vacuum

system of the ITO, in order to pursue time-resolved C02 laser pyrolysis

experiments with the ITO technique. These experiments will be carried out

in 1987 with expected continuation funding from CROEC.

In conclusion, although major delays were experienced the development

of a suitable C02 laser MS system due to bankruptcy of the manufacturer

of the MS instrument, this part of the project is now scheduled for

continuation in 1987 with CRDEC funding. As a result of the delays in the

laser MS oquipment tasks, the main emphasis of the work carried out under

the ARO contract reported here shifted to the development of advanced

chemical pattern recognition methods for pyrolysis mass spectra of

biological materials, as will be discussed in the next few paragraphs.

9.
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4. The Role of Pattern Recognition Methods

The key challenge in the Py-MS approaches described above is how to

retrieve the chemical information of the samples as given in Figure 2.

The logical choice for assigning a certain type of aerosol to a spectrum

seems to be a library search approach. A library with all possible

spectra for blodetection purposes is not feasible. Since the spectra

often represent complex mixtures, data reducti on by mixture analysis is a

promising approach. The extreme complexity ofi the spectra that will be

obtained in most biodetection situations and the lack of suitable

reference spectra make mixture analysis on a s ngle spectrum impossible.

Mixture analysis approaches that do not require reference spectra are

available [13,14]. Among these approaches the variance diagram technique

has been developed especially for complex spectra, such as obtained by

pyrolysis mass spectrometry [15]. These type 'of techniques, however,

require sets of spectra. Consequently, the so-called "unsupervised"

mixture analysis methods can be applied if a set of spectra from a single

sample, analyzed under different experimental conditions, is available.

One of the most promising methods is time-resolved analysis. During

desorption and/or pyrolysis the composition of the product mixture will

change, as a result of different volatillzation/pyrolysin behavior of the

components in the sample. The spectra of these components can be

extracted mathematically and assigned to a certain class of compounds

using a relatively small library.

The mixture data obtained can be used in automated and/or expert

systems to assign the sample to a certain class of aerosols or

microorganisms.

10.



III. WORK PERFORMED

I. CO2 Laser P -MS

As a model or laser pyrolysis studies, rubber samples were chosen.

The reason is t at with the proper selection of the analysis conditions,

separate spectr of the relatively volatile additives and the actual

polymer can be obtained. The use of mass spectrometry in thermal and

solvent extraction methods for analysis of polymers and their additives

has recently been reviewed [16,17]. Previously published work at the

Blomaterials Pr filing Center has focussed on the determination of the

polymers in various rubber compounds by Curie-point Py-MS [18,19].

Although this technique was also a "direct" method applied to the whole

sample, it involved a significant effort to grind the vulcanized rubbers

into very fine particles for solvent suspensions. Lasers have previously

been used for p lym-er pyrolysis with electron Ionization MS, but without

detection of ad itives [20,21). Lasers are also. used as the combined

pyrolysis and i nization source in LA1MA experiments where polymer

analysis has givIen extensive fragmentation with poor molecular ion yield

and again virtuailly no additive information [22,23).

A. Laser P-Y4S Technique - The mass spectrometer consists of a basic

electron iontzatioqn quadrupole instrument (Extranuclear 5000-1) in a

modified vacuum housing with a cryopump, solids probe and sodium chloride

IR window. Low electron energies (typically 15 eV) were used to minimize

ion fragmentation and simplify spectra. The carbon dioxide laser was a

tunable continudus wave model capable of 5 watt operation on several

lines. Most of the spectra were obtained on a strong 10.21 um line. The

11.



laser beam was focussed from its original 1.6 mm diameter to a spot ca.

0.5 mm diameter on the sample 26 cm from the 30.5 cm focal length lens.

The relative positions of tte laser beam, sample and ion source are shown

schematically in Figure 4 to indicate how products were volatilized/-

pyrolyzed directly from the sampla into the ionization region.

The laser Py-MS experiments were run by pulsing the laser beam with an

electro-mechanical shutter. The shutter was opened for 50 to 250 ms at 1

s intervals for 9 consecutive pulses. The sample was move6 across the

beam path between pulses to permit exposure of fresh sample to each shot.

During this time the mass spectrometer was repetitively scanned at 1000

amu/s through the desired mass range 100 to 150 times and the data signal

was averaged to give a single spectrum. The multiple laser pulses

increased sensitivity and averaged the variations which might occur in a

single exposure.

B. Qualitative Laser Py-MS Analysis - The spectra in Figures Sa and b

were obtained from a preliminary setup in which the samples were more than

2 cm from the center of a very open ion source. The laser pyrolysis

spectra of the SBR sample (Figure 5a) and a SBR and natural rubber (NR)

blend (Figure 5b) show predominantly the fragment and molecular ions of

monomers and small oligomers from the thermaily degraded polymers. The

spectra are very similar to those obtained by Curie-point Py-MS [18,19]

where most of the less volatile additives were either condensed out before

reaching the ion source or were simply too low in relative concentration

to be seen. One additive which can be observed is the sulfur, as

indicated by peaks at m/z 34 and H2S and m/z 48 and 64 from SO2 (and

possibly S2 for 64).

12.
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Figure 6 shows a Curie-point (volatilization) mass spectrum of the

dichloromethane extract from the SBR compound. The molecular and fragment

ions from several additives are indicated with the most intense signal

from the HPPD antiozonant molecular ion at m/z 268 and a fragment ion

cluster around m/z 211 from the loss of C4 H9. The portion of the

spectrum above m/z 300 is expanded x5 to indicate the TMDQ dimer ions (m/z

346 and 331) and the DOOPA peak at m/z 393. The accelerator decomposes

during vulcanization and is thus observed only as two of its decomposition

products; mercaptobenzothiazole at m/z 167 and benzothiazole at m/z 135.

The m/z 135 ion could also be the fragment ion with the structure shown in

Figure 6 from a t-octylphenol-formaldehyde resin pyrolysis product with

molecular weight 206. However, the low voltage ratio of m/z 206 to m/z

135 is normally much larger than that observed here. The small peaks at

m/z 129, 185 and 284, which were more intense in other samples, are due to

stearic acid. The ion at m/z 256 could represent unvulcanized sulfur S8

or the impurity palimitic acid in stearic acid [172.

The laser pyrolysis spectrum in Figure 7 was obtained with the sample

closer to a less open ion source which directs more of the pyrolysis/-

volatilization products through the ionization region. This analysis was

also run with a weaker laser beam power (ca. 3 to 4 watts) and longer

pulse times (150 ms). Additive ions as indicated in Figure 6 are clearly

visible with relatively weak signals from the SBR monomers at m/z 54 and

104. In addition to these peaks, many other fragment ions can be seen

resulting largely from the higher molecular weight (MW 400 to 600)

hydrocarbon processing oil.

is.
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Figures 8 a-c show triplicate laser pyrolysis spectra at 4.5 Watts and

100 ms pulse times of the SBR compound. Note the very good reproduci-

bility of the spectra which show much stronger monomer and oligomer

molecular ions containing styrene and butadiene units (labeled as S and B

respectively). Also note that, other than the abundant fragment ions

which may be from the oil as well as polymer pyrolysis, the spectra are

relatively simple with very little evidence of the additive ions seen in

Figures 6 and 7.

C. Quantitative Laser Pj-MS Analysis - Butadiene rubber (BR) and

natural rubber (NR) samples and three mixtures of the two were pyrolyzed

using the laser beam scanning technique (see Figure 4). Factor and

discriminant analysis were performed on the replicate spectra of these

five samples and the scores of the main discriminant function are plotted

versus their relative composition (Figure 9). The non-linearity of the

bivariate plots is apparently due largely to the lower decomposition

temperature for the polyisoprene (NR) than the polybutadiene.

2. Curie-goint Py-MS with Ion Trap Detector

Though the Finnigan Ion Trap Detector (ITD) is designed And used

primarily as a detector system for gas chromatography, it has several

features which make it attractive for development as a stand-alone MS,

- e.g., for pyrolysis mass spectrometry (Py-MS) studies. Among

attractive features are its ease of operation, high scanning speed,

ability to detect all ions produced in a single, transient event (e g.,

flash pyrolysis), and possibilities for CI and tandem MS (MS/MS) operation

18.
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Figure 9. Plot of discriminant function scores versus % NR composition.

Two or three spectra were run for each of the 5 samples. The
lack of discrimination of the 80 and 100% NR samples seems to
be predominantly due to the lower decomposition temperature of

l the NR compared to the BR.
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modes. Moreover, the ITD's small size, low price and its user-friendly

operating software make it well suited for environmental monitoring (viz.,

pollutants or aerosols), industrial process monitoring, biomedical and

forensic applications. By interfacing a Curie-point pyrolysis inlet to

the ITD, a bench top Py-S systam can be developed which can analyze

nonvolatile organic materials in several different Py-MfS modes including

Py-EIMS, Py-CIMS and Py-MS/MS.

.nitial experiments involved conr.cting a Curie-point pyrolysis inlet

directly to the heated, open-split GC interface of the ITO. Pyrolysis in

this configuration was carried rut 1.) an inert (He) atmosphere, and the

products of pyrolysis were swept into the ITO by the He carrier gas.

Analyses of synthetic polymers (e.g., poly(methlmethacrylate)) gave

spectra with characteristic molecular and fragment ions of the respective

monomers and other pyrolysis products. The time information about the

relative thermal stabilities of these polymers was also preserved.

However, the elution of the pyrolysis products into the ITO was

accompanied by extensive peak broadening and tailing. This resulted in

the pyrolysis products from a ca. 2 s heating profile (temperature rise

time ca; 2 s, total heating time 10 s, equillbrium temperature of the

filament 6100C) giving a total ion current curve that was approximately

12 s wide at half maximum. Analysis of biopolymers (deoxyribonucleic acid

DNA, bovine serum albumin BSA, 3nd glycogen), however, resulted in the

lcss of polar pyrolysis products. These losses were apparently due to

condensation in the transfer line or thp pyrolysis inlet. Moreover, the

long residence time of the pryolyzate in the hot (250 0C) transfer line

ma, have led to undesirable rearrangements or secondary reactions among

the pyrolysis products [24].

21.

I



To overcome these difficulties, the pyrolysis reactor was modified in

order to connect directly to the iTD via a 3 inch glass lined tube. This

configuration is shown in Figure 10 (Py-ITD). Analysis of a polymer

mixture of nitrocellulose, poly(styrene) and poly• -methylstyrene) showed

significant reduction in peak broadening and tailing and preservation of

time (temperature) resolved information. The direct interface also

resulted in improved sensitivity as was seen in the analysis of 5 ng of a

poly(ether urethane urea) (Biomer [25]) under standard ionization

conditions. Analysis of Biomer yielded spectra which contain peaks

characteristic of the diisocyanate and polyol components [25] and refect

the temperature-dependent nature of the pyrolysis process (Figure 11).

Analysis of DNA, BSA, and glycogen produced spectra which compare

favorably with low voltage Py-EIMS and Py-APCIMS. These differences are

apparently due to the different ionization and mass analysis techniques

used in the ITD and are not clearly understood at this time.

Future studies on this system will investigate the sensitivity and

reproducibility of the system using Py-EIMS and Py-CIMS. Also the

information content of the spectra will be studied.

3. Ion Trap Dynamic Range and Sensitivity Testing

We evaluated the new Automatic Gain Control (AGC) ITO software which

provides automatic variation of ionization time [12]. AGC maximizes

sensitivity for low levels of analyte, and prevents saturation of the ion

trap at high levels of analyte. The results are impressive, with full

scan El mass spectra easily obtained at ow picogram levels, while linear

response is maintained up to low microgram levels.
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Figure 10. Schematic of the Curie-point pyrolysis Ion Trap Detector system
(Py-ITD). Sa.-nle is coated onto the tip of a ferromagnetic
filament which is inductively heated to its Curie-point by the
high frequency coil. Helium is introduced through the sample
probe at a rate of 1 ml/min.
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Figure 11. Spectrum and total ion current curve from the analysis of 5 ng
of Biomer. In the mass spectrum, note the peaks which are
characteristic of the diisocyanate (m/z 208, 221, and 250) and
polyol (m/z 71 and 73) components. The peaks which are
characteristic of the diamine chain extender (m/z 86) and the
polyol dimer fragment (m/z 143 and 145).
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The dynamic range of any device which converts analytes into charged

particles (e.g., flame ionization detectors or mass spectrometers) will be

limited by the onset of space charge. These space-charge effects lead to

saturation of instrument response when the density of charged particles

(ions) rises so high that ion-ion repulsions become significant. These

effects are especially evident in devices which trap or store ions. In

the ion trap, thsse effects are manifest when too large an analyte

concentration leads to loss of mass resolution and degradation of mass

spectral quality (e.g., self-chemical ionization to form (M +1)+ ions).

The new ITO AGC software provides a solution to this problem. Whereas

earlier versions of ITO software have used a fixed (1 ms) ionization time,

the new version automatically selects an ionization time from 0.078 ms to

25 ms (a range of 320) for each microscan, depending on the amount of

analyte in the trap. For low levels (e.g., for baseline or small GC

peaks) a maximum ionization time of 25 ms is selected, offering an

improvement of approximately 25 times in the sensitivity over operation

without AGC. As the amount of analyte increases, the ionization time is

automatically decreased in order to prevent overfilling the trap with

ions. The ion signals in each microscan are automatically scaled to

correct for the variation in ionization time. The new scan function is

shown in Figure 12. A short "prescan", consisting of a 0.2 ms ionization

provides an estimate of the number of ions formed in the trap. This value

is then used to calculate the optimum ionization time for the actual mass

scan which follows.

In order to evaluate the performance of this new software, a set of

serial dilutions of exo-tetrahydrodicyclopentadiene the major component of

25.
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JP-10 jet fuel in n-hexane were analyzed by GC/EIMS on the IlTD. This

component is a tricyclodecane of formula Cl0 H16 and molecular weight

136. Tricyclodecane 1 was analyzed with a 15 m x 0.32 -m ID, 0.25 m film

thickness, DB-5 open tubular column (programmed from 300C to 1300C at

200C min" 1 4.4 psig inlet pressure, 1 ul on-column injections),

scanning from m/z 40 to 160. Standard solutions ranged form 15 pg 1-1

to 1.5 ug 1-1 for a solvent blank and the 15 pg solution are compared

in Figures 13 and 14. The tricyclodecane 1 peak at a retention time of

4:20 is clear at the 15 pg level in the recon- structed ion chromatogram

(RIC), as well as in the mass chromatograms for the molecular- ion (m/z

136) and the most abundant fragment ion (m/z 67). The

background-subtracted mass spectrum for the 15 pS GC peak is shown in

Figure 15a. This spectrum compares favorably with that obtained for 150

ng (10,000) times more analyte), shown in Figure 15b.

The clearest indication of the superior perfomance of the AGC software

is the linear dynamic range indicated in the calibration curves for tri-

cyclodecane 1 shown in Figure 16. Over 6 decades of concentration, the

calibration curves for the RIC, m/z 67, and m/z 136 (M*) show excellent

agreement and linearity (slope of the lug-log plots,= 1.0.). The

decreases in slope in the picogram range are those typically observed in

all GC/MS calibration curves just above the detection limit.

4. Aerosol Precipitation Experiments

For field sampling purposes, aerosol precipitation was studied. One

of the first studies was with a homebuilt system, which could be used for

precipitation on wires or quartz slides, see Figure 17. After successful

27.
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feasibility studies with this approach, comaercially available instruments

(TSI 3100) and custom built instruments were bought for aerosol generation

and precipitation. Successful precipitation on a Curie point wire

followed by analysis by Py-MS was achieved. Currently, the aerosol

sampling is being tested under field conditions.

5. Development of Advanced Chemical Fattern Recognition Methods

The techniques deeloped for the evaluation of the data are all based

factor analysis based techniques followed by the VARDIA technique.

Therefore, an overview of this technique will be given with examples for

regular and time resolved data. The last part consists of an adaptation

of the VARDIA technique for time-resolved data, which basically is an

approach that can be done in a more automated way and can be used as a

monitoring tool.

A. The Variance Diagram Technique - The Variance Diagram technique

needs to be preceeded by multivariate analysis: i.e. factor analysis

and/or discriminant analysis.

Factor analysis (principal component analysis) applied to a data set

results in independent linear combinations of the original variables

according to the equation:

Fj c'1jZ1 + zjz + ... JJZn, (1)

where Fj = factor j and alJ the loading ( correlation coefficient)

of variable Zi with Fj [27,28].
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i
This generally results in a substantial data reduction, due to

correlated behavior of the mass variables. In order to compare the linear

combination with the orginal data, the loadings are multiplied by the

standard deviation of the mass variable involved. The intensities

obtained can be represented in the form of bar plots (*factor spectra"

[29]). Since a limited number (e.g., 100) variables have to be selected

for multivariate analysis due to limitations of the computer software

and/or hardware, chemical interpretation of the factor spectra may be

severely hindered. In order to involve the other mass varables in the

factor spectrum, their contribution is determined by calculation of the

covariance of the variables with the standardized scores. The factor

scores are the relative contribution of the orginal spectra in the

facots. The scores are standardized; i.e., the average intensity equals 0

and the standard deviation is 1.

Oiscriminant analysis is a related technique. The independent linear

combinatlcn resulting from discriminant analysis, however, describe the

maximum of the ratio of between-group to within-group variance [27,28,30]

where the between-group variance is the differencebetween groups of data

(in our applications a group consists of replicate analysis of the same

sample) aoid the within-group variance representsthe differences within

the groups ("noise"). The results are presented in the form of

discriminant spectra and scores, similar to those resulting from factor

analysis. After factor analysis, the VARDIA technique [15] can be applied

Son the data. The VARDIA method shows the strength of the correlated

behavior of the mass variables in all directions in two-dimensional factor

or discriminant subspaces. The equation for this procedure is:

34.
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n

var (W =8 1 = a12 , for aiŽ ({a•Z + ai22)1/2 cos , (2)
i=1 2

where aj = ailCOS + a12siny and var(W = S )y is the variance i the

direction in the space at an angle of y degrees with the first factor (or

the discrimiant function) using a window W of B degrees. Furthermore,,

ai is the loading of mass variable i on the rotatid function, n is the

total number of mass variables, and atj are the loadings of the mass

variables in the unrotated factor J. Expressed in terms that are easier

to visualize, expression (2) accomplishes the following task: in a

two-dimensional system the sum of the squares of the lenghts of all mass

axes present in a pie-shaped windo..w of 8 degrees (generally 100 or

200) is calculated while the window "scans" the whole two-dimensional

space in-discrete steps, (generally 100).

B. Examples of Variance Diagram Applicati3ns - As an example, the

results obtained on a data set of grass leaves are given [311. Because of

the complex biochemical composition of recent plant materials, spectra of

the grass leaves show a complex pattern, as can be seen in Figure 18. The

diagram after normalization correction (Figure 19) reveals a complex

pattern between 600 and 1400 with three local maxima. Examination of

the discriminant spectra (not shown) and the loadings showed a weak

protein-like pattern in this direction in the discriminant space. This

possibly indicates changes in several partially correlated proteins or

amino acids. Another explanation is that protein is involved in

intermoleuclar interactions, such as shown previously in a mixture

analysis study on Py-MS data [32].
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Figure 18. Typical pyrolysis mass spectra form the grass leaves data set.
The spectra show a complex mixture of (poly)hsxoses, e.g., at
m/z 31,32,43,60,74,96,98.110,112, and 126; (poly)pentoses,
e.g., at m/z 85 and 114 and several other component classes. 9
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Figure 19. Smoothed variance diagram obtained from the grass leaves data

set: (a) before and (b) after normalization correction.

37.



The component axis at 2000 represents a change in (poly)hexose

(e.g., cellulose) content, as can be deduced from Figure 20. The

discriminant spectrum of this component axis also shows m/z 85 and 114,

which indicates a partial correlation with a change in a (poly)pentose

(e.g., hemicellulose) component as deduced form the loadings of these and

other pentose related mass values.

The component axis at 3400 shows the optimal representation of a

relatively pure (poly)isoprenoid pattern, as can be deduced from Figure 20

c,d. From these results it is obvious again that factor analysis

techniques can greatly simplify complex spectroscopic patterns.

The component axes obtained were the same as those found with

graphical rotation £30].

This procedure can easily be extended to more than two dimensions.

For ins ' , let us assume that a certain component is described by three

functions. Then the first step is to find the maximum of this component

axis in the space of the first two functions L1 and L2. If the local

maximum of component axis is found at an angle of a degrees with L1, the

next step is to study the variance diagram of a the space described by

((cos a)L 1 + (sin a)L2) and L3. A variance diagram determined in

the above described way in a more-dimensional space can be found elsewhere

[33]. Our experience with Py-MS data is that rarely ever more than Five

or six linear combinations are needed to describe the bulk of the data.

As an example of time-resolved analysis, data from analysis of a

biopolymer mixture are presented below. For details on this see reference

34.
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From preliminary experiments and literature [29,35,36] it is known

that DNA has a lower pyrolysis temperature than glycogen which, in turn,

has a lower pyrolysis temperature than BSA (bovine serum albumin). Figure

21 shows the total ion current profile. The two unresolved maxima

correspond to glycogen and BSA, respectively. The DNA maximum is not

visible due to a dominant glycogen change. Although the biopolymer

mixture has only three components, the number of factors with an

elgenvalue >1 was 6 (i.e., 64.0, 24.0, 4.9, 2.7, 1.7, 1.3), describing

96.3% of the total variance. This indicates the complex pyrolysis

behavior of these polymers. Since the eigenvalues clearly level off after

the third factor, only the first three factors were used for further

evaluation by the VARDIA technique.

The VARDIA plot of F1 vs. F2 (not shown) did not give a separation of

the three components. Since the major change in this data set is the TIC

(total ion current), the TIC represented by the first factor. Due to the

large variance described by Fl (64%), tendencies other than those

described by the F1 are not visible In the VARDIA plot. The VARDIA plot

of F2 vs. F3, however gave a clear separation of the three components, as

can be judged from Figure 22. Subsequently, the VARDIA technique was used

to calculate the linear combination describing the three components.

For the final determination of the linear combinations to describe the

component axes, F1 was also included. This was done by taking the 5-10

variables with the highest loadings from each of the maxima in the VARDIA

plot in the F2-F3 space. The loadings of these peaks on the first three

factors were averaged. The resulting averages were used as the directions

of the component axes in the factor subspace. The scores of the

39.
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Figure 20. Discriminant spectra of grass leaf component axes and relevant model
compound spectrum: (a) discriminant spectrum of the component axes
at 2000 which optimally represents a hexose pattern (compare with
typical hexose pattern of gelatin in Figure 4o); (b) discriminant
spectrum of the component axis at 3400 which optimally represents
a (poly)isoprenoid pattern (compare with the typical pattern of
natural rubber in Figure l1c).
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components are presented in Figure 23 and show a complete deconvolution of

the three time-resolved curves (TRC's) of the components, despite the

overlapping behavior as shown in the total ion current curve (Figure 21).

The spectra associated with the component axes were calculated by

using the inverse transformation matrix used for the scores. As can be

seen from a comparison with the spectra of the pure components in Figure

24, there are clear similarities although some differences, discussed

below, are also obeserved. The DNA component axis shows a significantly

higher (on the scale used, the intensity of m/z 98 is 17.6) m/z 98 peak

than the orignal DNA component. The single ion curve (SIC) of m/z 98 (not

shown) shows that it ,eaches its maximum even before the DNA TRC. The

reason for this is not yet clear.

The glycogen component spectrum shows the presence of m/z 64 (S02 ).

From the SIC of this ion (not rhown) it is obvious that this ion indeed

arises early in time. It is very likely that the SO2 signal originates

from BSA.

The lack of an m/z 98 peak in the factor spectrum of glycogen can only

be partly due to the fact that the representation here is orthogonal toI

the DNA axis. If m/z 98 arises from DNA as well as glycogen, the mass

variable representing m/z 98 in the factor spacelies between the two

components and, consequently, should contribute to the spectrum shown in

Figure 18. Thus m/z 98 shows unexpected behavior in DNA as well as in

glycogen. A possible explanation may be a nonlinearity in the ion

counting system for high count rates. The last spectrum, that of the BSA

component axis, shows a high degree of similarity with its model spectrum

in Figure 24.
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by the TIC (Figure 4), a complete deconvolution has been
obtai ned.
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C. Use of the Variance Diagram as a Monitoring Tool - Although the

VARDIA technique as described above is a powerful tool to find the

component axes (scores), presentation of the occurrence of these component

axes as a function of time gives a more appropriate representation of the

data. This is possible by calculating the variance not in 100

rotational steps in a 2-dimensional subspace but in the directions of the

sequential spectra in n-dimensional factor space [37].

Normally, the calculated average spectrum of a data set is used as the

reference point (the "origin") in n-dimensional space for rotational

procedures such as graphical rotation and the VARDIA technique. This is

done because the interest is generally in the relatively minor differences

between spectra rather than in the absolute intensities of the signals.

In the case of time-resolved spectra, however, the absolute contribution

of each spectrum to the data set is of interest. Thus the "permanent"

background spectrum seen by the mass spectrometer is a more appropriate

reference point. Thu. for the time-resolved VARDIA method, the variance

as calculated by equation 3, in the direction of the sample spectra with a

background spectrum as the reference point can be used. In contrast to

the variance values calculated by equation 2, which only considers two

dimensional (sub)spaces, the variance in the directions of the sample

spectra can be calculated in an n-dimensional space containing all

significant factors. The equation describing this procedure reads as

follows:

m n 2
Vart = ai,t2 for ai,t z aij * L (3)

n n
Where ai,t Z((St,j-Str,j)/(Z(St,j-Strj) 2 ) c ij

j:1 j=4
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Where: m is the number of variables.
n is the number of factors,
ai,t is the loading of mass variable i from spectrum t on the rotated
function.
ai.j is the loading of mass variables i on the original factor j,
St•j score on factor J of spectrum t
Strj is score on factor j of reference spectrum
L is the cosine of the angle between the mass-axis and the rotation under
consideration.

Expressed in words, the procedure accomplishes the following tasks:

(a) subtraction of the scores of the reference spectrum from the n scores

of each spectrum, (b) normalization of the new scores (i.e., the sum of

the squares of then scores of each spectrum are made equal to 1.0); (c)

calculation of linear combinations of factors for each spectrum; (d)

selection of all mass axes that are within a certain angle (angle =

cos"1 L) of the rotated functions; and (e) summation of the squares of

the selected loadings of each factor to give the variance as defined by

the equation.

Thus, only mass variables whose projected direction in n-dimensional

factor space makes a relatively small angle (15-20 degrees) with the

direction of the selected linear combination of factors are included in

this adapted variance calculation. A high variance value indicates a

relatively high loading of Included mass variables on the selected linear

combination of factors, thus indicating which mass variables are

responsible for the observed correlated behavior.

Initial application of this technique showed that the results improved

considerably after smoothing the scores with the following triangular

window:

St,j* = 1/4 * S(t.1),j + 1/2 * St,j 1/ 4 S(t+1),j (4)

where St,j is the smoothed score.
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Since the time-resolved VARDIA uses a subspace of the original factor

space, the question may arise if the overlap between the two spaces is

sufficiently high to regard the subspace as representative of the original

space. In order to check this, the % variance covered by the serial

subspace was calculated with the following equation:

m
Vars =E (max(ai,l, ai,2....ai,k))2 * 100% (5)

i=1

where k is the number of spectra.

The maximum of a loading ai,(j = 1,k) for all linear combinations

in the direction of the spectra in the factor subspace may be considered

as the *length* of that mass variable in the subspace (the standardized

length of each mass variable in the orginal factor space is 1.0). Since

the communality [38] is the square of the length of a variable, the above

formula calculates the sum of all the communalities from which the

relative variance can be calculated by dividing this sum by the number of

variables involved.

As an example, a time-resolved data set of a wood sample will be

shown. This data set has been studied before with the VARDIA technique

[34,39]. For the study, the 155 spectra recorded between 3000 and

5000 were used. Prior to multivariate analysis, sequences of five

spectra were averaged in order to reduce noise and the size of the data

matrix. Three significant factors (describing 97% of the total variance)

resulted in three maxima using the VARDIA technique, which allowed a

complete deconvolution into three processes. From this study [34] it was

concluded that the first process was dominated by hemicellulose pyrolysis,

the second by cellulose pyrolysis and the third by lignin pyrolysis. The
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pyrolysis of lignin, however, does not only take place in the third

pyrolysis step process. It appeared that there were three separate lignin

pyrolysis processes, of which the first two were highly correlated with

the hemicelluloses and cellulose pyrolysis steps [34]. These findings

were in agreement with a time-resolved MS study on biomass samples by

Evans et al. [40].

The TIC curve of the time-resolved wood data set is given in Figure 25

whereas the time-integrated spectrum of this data set is shown in Figure

26. The VARDIA-S technique resulted in the curve given in Figure 27. As

can be seen, the VAROIA-S technique, gives a considerably improved

resolution. The contribution of the hemicellulose and lignin components

were only minor. Partial (25%) subtraction of the first factor, however,

showed the significance of these two components in the VAROIA-S curve.

The mathematically extracted spectrum of describing the main lignin

pyrolysis process and a model spectrum of lignin are presented in Figure

28.

6. Computer-Enhanced Py-MS Analysis of Simulated Biological Agent/-

Interferent Mixtures

The purpose of this experiment was to demonstrate the feasibility of

detecting and quantifying two different microorganims (B. anthracis and

Streptococcus type B) in the presence of varying concentrations of a

natural background material (Dugway soil) by means of pyrolysis mass

spectrometry and multivariate analysis techniques.

In view of the model experiment nature of the tests, no attempt was

made to obtain multidimensional MS data. Obviously, great*y improved
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Figure 25. TIC-curve of the time-resolved TG/MS analysis of wood, which
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softwood lignin spectrum (b) shows additional lignin peaks atmlz 150, 152 and 164. The absence of the latter peaks in (a)
is due to the complex behavior of lignin.
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detection and identification performance is possible when using MSn,

GC/MS or time-resolved pyrolysis MS techniques. Moreover, a relatively

narrow mass range was used, thereby excluding most lipid peaks. Finally,

the present data were obtained on a conventional quadrupole MS system

rather than on an ion trap MS system with Curie-point pyrolysis inlet. In

the latter configuration sensitivity improvements by 2 or 3 orders of

magnitude have been demonstrated [10] thereby allowing the use of sample

sizes in the low nanogram range. However, one-dimensional spectral data

obtained on a conventional quadrupole Py-MS system were judged adequate to

test the performance of the pyrolysis techniques and of the multivariate

analysis methods.

A. Experimental Procedure - Samples of the two microorganisms and the

Dugway soil were received from CRDEC. Samples were prepared by suspending

in methanol (1 mg/ml) followed by mixing various proportions of each

suspension for a total of 10 different mixtures. As shown in Figure 29

the various concentrations have been chosen in such a way as to simulate

systematic variations along a hypothetic time axis. Thus, the 10 mixtures

provide a model for time-dependent changes in concentrations, e.g., in

consecutively collected aerosol samples. Then ul aliquots of each

suspension (10 ug dry weight were analyzed by means of direct pyrolysis MS

using an Extranuclear 5000-1 quadrupole system with Curie-point pyrolysis

inlet developed at UUBPC. Pyrolysis MS conditions were as follows:

Curie-point temperature 6100C, heating rate approx. 100 0 K/s, total

heating time 10 s, electron energy 14 eV, mass range m/z 20-140, scanning

rate approx. 500 amu/s, total scanning time 20 s. Multivariate data

analysis was performed on an IBM 9000 microcomputer system using the SIGMA

prog;ams developed at UUBPC.
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Figure 29. Relative concentrations of 10 ternary mixtures containing
simulated biological agents' Streptococcus group B +
Bacillus anthracis) and interferents (Dugway Soil).
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B. Results and Discussion - Pyrolysis mass spectra of the three pure

materials are shown in Figure 30. Notice the differences between the

pyrolysis patterns of the two bacteria (Figures 30a and b) as well as the

major differences between the soil sample and both bacteria. The

streptococcus B pattern in Figure 30a is characterized by strong signals

representing neutral sugars from cell wall constituents, e.g., at m/z 57,

74, 82, 84, 96, 98, 102, 110, 114 and 128. Especially the signal at m/z

128 is noteworthy, since it is likely to represent rhamnose, a biomarker

for microoganisms in general and a characteristic constituent of certain

streptococcal group and type antigens. The identity of the peak at m/z

128, which corresponds to the rhamnose "monomer" minus H20 can be

confirmed by MS/MS.

By contrast, the Bacillus anthracis pattern in Figure 30b is dominated

by protein signals, e.g., at m/z 92/104 (phenylalanine fragments) and m/z

94/108 (tyrosine fragments). In addition, the relatively inconspicuous

peak at m/z 79 can be confirmed by MS/MS to contain pyridine, a

decarboxylation product of the characteristic spore wall component

di-picolinic acid. The Dugway soil pattern is characterized by relatively

high HCI+. peaks at m/z 36/38, apparently representing the high NaCl

content of the Utah desert (sap also the marked Na+ peak at m/z 23).

Furthermore, the high peaks at m/z 64 (S02+) and 94 (probably phenol)

are likely to represent sulfates and soil humic acids, respectively.

Two different multivariate analysis approaches, namely suoervised and

unsupervised analysis, were followed in order to demonstrate several

pnssible application of multivariate techniques to agent interferent

mixture data.
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Figure 30. Curie-point pyrolysis mass spectra of the 'oDre",.>'xture
components; a) Streptococcus B, b) Bacillus anth-aic's, and
c) Dugway soil,
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In the supervised analysis approach, the mixture data set was

subjected to factor analysis while including the spectra of the three pure

compounds. This enables numerical extraction of component patterns and

estimation of relative concentrations by target rotation and can be

compared to a situation where the key chemical patterns of known

biological threats and interferents are already present in a computer

library.

Figure 31 shows the relationships between the 10 mixture and 3 pure

("target") spectra in Fl/F2 space. As expected, all mixtures lie within a

triangle spanned by the three target spectra. The triangle represents a

so-called "ternary diagram" and is due to the normalization of the total

ion signal in each spectrum to 1001%. As shown in previous studies [41],

ternary diagrams obtained by factor analysis allow a direct estimate of

the relativel concentrations of the three components.

Calculated relative concentrations are shown in Figure 32. A direct

comparison between Figure 32 and 29 reveals a high degree of

correspondence with regard to the relative concentrations of the three

components, thereby confirming the high degree of linear additivity of

pyrolysis mass spectra obtained by the Curie-point pyrolysis technique.

Moreover, the factor analysis approach shown in Figure 31 allows direct

visualization of the chemical parameters responsible for the observed

relationships between the mixture spectra and the pure target compounds.

Fioally, a numerically "extracted" spectrum of the chemical component

responsible fur the high score of mixture sample #3 on the streptococcus

axis in Figure 31 is shown in Figure 33a, revealing nearly all of the mass

peaks found to be characteristic for streptococcus group B in Figure 30a.
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Figure 31. Factor scores of the mixture spectra showing the ternary diagram

configuration. The three library ("target") spectra are indicated

by *. Note that all 10 mixture spectra lie within the boundries

of the triangle formed by the pure target spectra.
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Figure 32. Relative concentrations of mixture components calculated from
library target rotations.
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Figure 33. Example of a typical mixture spectrum (a - Mixture #6), and of two
numerically extracted component spectra (b.- Supervised Rotation;
c -Unsupervised Rotation).
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How can the supervised target spectrum approach be used in a practical

biodetection situation? irst, let us assume that our biodetection system

computer contains library of known threat agents and background

interferents and that this library is a true chemical library (i.e.,

containing information about biomarkers and other characteristic chemical

components) rather than ailibrary of "fingerprints" (i.e., patterns

without chemical meaning)I In that case the normalized chemical

signatures ("spectra") ofipure threat agents and interferents will lie

inside the hypertetrahedron or on its various vertices and triangular

surfaces.

If the chemical pattern of an actual aerosol sample is found to lie

within (or on) the boundaries of the hypertetrahedron its composition can

be readily and totally explained by known agents and/or interferents.

Alternatively, if the new chemical pattern lies outside the boundaries of

the hypertetrahedron it must contain some unknown component(s). The

relative concentration of the unknown fraction can be determined by

subtracting the contributions of known components (which can be measured

through orthogonal projections on the surfaces of the hypertetrahedron).

In general, it can be stated that the greater the distance between the

unknown pattern and the hypertetrahedron, the smaller the contribution of

known library components will be.

If so desired, the position of the "pure" unknown component can be

calculated, according to a method described by Windig et al. [42], thus

forming a new apex which enlarges the volume of space spanned by the

hypertetrahydron and serves to help recognize future occurrences of

similar components. This makes the recognition process self-learning.
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The mathematics of this mixture analysis approach as outlined in

several UUBPC publications are straightforward and can be applied *o any

set of mixture patterns. However, the accuracy and reliability of this

procedures depends entirely on the precision with which the locations of

the hypertetrahedron apices are known in multidimensional space. Since

each apex represents a biological agent or interfirent materi~l which is

highly variable by nature, r. so-called "fingerprinting" approach is doomed

to fail. Use of biochemical marker signals, however, serves to "anchor"

the positions of the apicas more firmly in space.

The abovedescribed methods are primarily "supervised" in nature (i.e.,

dependent on prior 'nuwiedge) but flexible enough to be adaptable to a

self-learning mode. A typical resu't of such a supervised analysis will

be a list or histogram showing the estimated concentrations of known

biological agents and/or interferents as well as any "unexplained

residue". Generally, the latter will then be incorporated into the

library for future reference purposes.

As discussed in the previous paragraphs, the supervised method will

fail to identify library components if the distance between the aerosol

pattern and the hypertetrahedron is too !urge (i.e., the orthogonal

dist3nce to the nearest triangular surface is large in comparison to the

size of the triangle). In this case, unsupervised mathods may produce

more reliable results, especially if a series of new aerosol patterns is

found to form a more or less coherent cluster well outside the

hypertetrahydron. This could be due to the occurrence of an unknown (or

unanticipated) class of agents or interferents as well as to a loss of

instrument calibration or other systematic malfunctions. Also,
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unsupervised methods can be used to detect and characterize unknown

aerosol components if the system library has been lost or damaged..

The first challenge for an unsupervised approach is to provide

reliable "event' detection, where an "event" is defined as any significant5

change in the relative concentration of aerosol components over time.

When using the so-called Sequential Variance Diagram (VARDIA-S) method

described in the previous section [37], two distinct events are observed,

as shown in Figure 34. Since the VARDIA-S method can be used in a "moving

time window" fashion, Figure 34 represents the results when using the

first mixture (80% soil) as a reference point and the entire set of 10

spectra as the window.

Events are detected as soon as correlated changes occur in mass peak

intensities of spectra within the window. Consequently, most noise

contributions are filtered out. Moreover, as soon as correlating

tendencies are detected and characterized (e.g., variations in soil

background concentrations), such components can be effectively subtracted

out. Since the "event" peaks observed in Figure 34 represent summed

correlations ("loadings") rather than summed peak intensities

("concentrations"), Figure 35 shows the calculated relative concentrations

using co-variance as a measure of peak intensity, according to a procedure

described by Windig et al. [15,42].

Each of the two concentration maxima in Figure 35 was calculated by

using the opposite maximum (as defined by the event detection procedure in

Figure 30) as a reference point, thus effectively aeconvoluting any

remaining overlap between the two components. Finally, after detecting

the two events and determining the relative concentrations of the
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Figure 34. Event detection approach using the VARDIA-S method
(see text). Note maxima at samples 3 (event 1)
and 9 (event 2).
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Figure 35. Relative concentrations of component I (Streptococcus B•

and component 2 (Bacillus anthracis) calculated from

unsupervised ("autotuning") rotations. Dashed lines indicate

actual con-centration curves (relative to Dugway soil
concentrations).
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components involved (absolute concentrations can be determined only if the

weight and pyrolysis yield of each sample are known) the remaining

question is: what can be learned about the identity of the components

detected and measured by this unsupervised approach?

Although ttare are no library spectra in this case, it is possible to

extract the spectra of the unknown components represented by the various

events from the series of mixture spectra using graphical rotation

methods. The results of this approach for the first maximum in Figures 34

and 35 (caused by the increased concentration of the streptococcus B

component) are shown in Figure 33c. Not only is the spectrum so obtained

nearly identical to the spectrum in Figure 33b obtained by target rotation

to the library spectrum of streptococcus B, the numerically extracted

spectrum retains all of the most characteristic peaks.

Thus numerical extraction of chemical patterns from unknown mixtures

can provide valuable indications for more specific chemical analyses,

e.g., by MSn in combination with special CI methods, in order to achieve

a more complete chemical characterization. By following generalized

biochemical classification rules sich as outlined in the hierarchical

scheme presented in Figure 2 a significant level of identification of

unknown aerosol components may be achieved, even if library patterns are

completely unavailable. In previous submissions our team members at SRI

have provided a detailed discussion of the role of advanced AI-based

classification methods in such situations. The algorithmic approaches

described in the previous paragraphs provide the means of optimizing the

spectral data for final AI-based evaluation by removing redundant data,

deconvoluting overlapping events, subtracting background interferences and

maximizing signal-to-noise ratio's.
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