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ELECTROMAGNETIC DESCRIPTION OF THE TWO STREAM
INSTABILITY IN A RELATIVISTIC ELECTRON BEAM

Han S. Uhm
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The influence of electromagnetic effects on the two stream instability in

a relativistic electron beam propagating through a collisionless plasma

channel is examined, and closed algebraic dispersion relation for the complex

eigenfrequency w is obtained. It is shown that electromagnetic effects can

have a strong stabilizing influence on the two stream instability in a

relativistic electron beam, drastically enhancing the critical beam current

for instability.
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One of the most basic instabilities that characterize a relativistic

electron beam propagating through a collisionless plasma is the two stream

instability, ' 3 which resulted from the relative drift motion between the beam

electrons and the background plasma particles. Although the two stream

instability is relatively familiar in the plasma physics community, most of

the previous studies '2 on this instability have been limited to one

dimensional calculations. In recent literature, Bogdankevich and Rukhadze

investigated the two stream instability of a relativistic electron beam,

including the finite radial geometry effects on stability behavior. Thus,

they were able to determine the limiting beam current due to the two stream

instability. However, their calculation has been based on the electrostatic

approximation. Although this is a reasonable approximation for a mildly

relativistic electron beam, a significant modification to the stability

behavior is expected for a ultrarelativistic beam; where the electromagnetic

effect often plays an important role. In this letter, the influence of

electromagnetic effects on the two stream instability is investigated for a

relativistic electron beam propagating through a collisionless plasma channel.

The analysis in this paper is carried out within the framework of a

macroscopic cold fluid model assuming that the beam-plasma fluids are immersed

."':2 in a uniform axial magnetic field. For purposes of analytic simplification,

the stability analysis is specialized to the case of a sharp-boundary

equilibrium in which the beam and plasma channel have rectangular density

profiles, i.e.,

(rn const., 0 < r < Rb,

nU(r) :(1)

0, Rb < r Rc,
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where the subscript j = b, i, e denote beam electrons, plasma ions dnd

electrons, respectively, r = Rc is the radial location of a grounded

conducting wall. Since the unstable mechanism of the two stream instability

is mostly due to the fluctuations of the axial electric field, the stability

analysis in this article is restricted to perturbations of the transverse

magnetic mode polarization. In addition, it is further assumed that the

4. perturbations are axisymmetric (a/3O = 0). This is a reasonable assumption

because the axisymmetric perturbation is the most unstable mode for this kind

of instability. Combining all of these assumptions and restrictions, it is

straightforward to show that the eigenvalue equation of the two stream

instability is expressed as

2
1rd r Tr - k2) 6Ez(r) = 4nik [Sp(r) -- Q (r)] . (2)

c c k

where 6E (r) is the perturbed axial electric field, 6p(r) = . e.6n. and

63 (r) = Z ej(Vz6nj + nO6Vjz) are the perturbed charge and the axial

0
component of the current densities, respectively, ej is the charge, n. is the

equilibrium density, V 0is the mean equilibrium axial velocity, 6n. is the
i.

perturbed density and 6V.z is the perturbed axial velocity, of species j, w is

the complex eigenfrequency and k is the axial wavenumber.

Consistant with polarizations of the two stream instability, the

transverse component of the perturbed electromagnetic field is neglected on

the present analysis. This approximation tremendously simplifies the

linearized fluid calculation of the equation of motion and continuity equation

for the beam and plasma fluid element. Thus, after a straightforward

calculation, the perturbed axial velocity is expressed as

{ .
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6 =1 e 6i (3)

= 0z

where mj is the rest mass of particles of species j. Similarly, the perturbed

density is given by

n9
6nj = k 6V jz.* (4)

w - kV jz

More detail calculation including the transverse component of the

electromagnetic fields are currently under investigation by the author and

will be presented elsewhere. Note from Eqs. (3) and (4) that both the

perturbed density 6n and axial velocity 6Vjz profiles can eventually be

expressed in terms of the perturbed axial electric field 6E . Substitutiny

Eqs. (3y and (4) into Eq. (2) and carrying out a straightforward calculation,

the eigenvalue equation in Eq. (2) is expressed as

2 3
1d d 2 .()W Aj

" {l~r r  Fr" ( k 2  C+ pji ij2--r TF -F ZJ 6Ez(r) 0 , (5)
cJ (w - kVjz 0

2 0

where w (r) = 4wn0(r)e./mj is the nonrelativistic plasma frequency-squared of

particles of species j. Note that w .() = p = const., for 0 r • Rb and

zero, otherwise.
'S'

For the present purposes, the eigenvalue equation (5) is solved for long

wavelength perturbations characterized by

2  2 2

d22w 2 12 w 21 wik IRc< < lk Rb1 . (6)

_W kV 0J
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Within the context of Eq. (6), the physically acceptable solution to Eq. (5)

can be approximately given by

1, O r Rb,
6E (r) = nn(7)

-Xn(r/R c)/X~n(R c/R b),  Rb < r 4 Rc,

where a is a constant and Rc > > Rb is assumed in order to satisfy Eq. (6)

self-consistently. Multiplying Eq. (5) by r6E (r) and integrating over r fromZ

r =0 to r = Rc, it is straightforward to obtain the dispersion relation

-2 3 -22
+'= (k - ) + - (8 )

kBbc)2 + (k2. c R Ln(Rc/Rb)

where use has been made of Eq. (7). In Eq. (8), 2= 4 nb/r is the

nonrelativistic plasma frequency-squared for beam electrons, f = n /n and
e e'b'9

the ion contributions are neglected. In obtaining Eq. (8), it is assumed that

the beam electrons have the same axial velocity abc which is related to the

mass ratio Yb by y2 = (1 -_ 2) Axial velocity of the plasma electrons is

assumed to be zero. Within the context of Eq. (6), the term k2 - 2/c2 in the

right-hand side of Eq. (8) can be neglected. However, I keep this term for

the clarity in the subsequent stability discussion, without affecting the

final results in this letter.

Two points are noteworthy from Eq. (8). First, it is obvious that the

term 2/RbZn(Rc/Rb) in Eq. (8) represents the influence of finite radial

geometry. Somehow, neglecting this term recovers the familiar one dimensional

dispersion relation for the two stream instability. Second, the influence of

electromagnetic effects are incorporated into the terms proportional

2 2
to /c2 in Eq. (8). Neglecting these terms gives the dispersion relation

• ,b



efp 2Sb + 1] kc = 2 (9)
(w- kRbC) b Rbn(Rc/Rb)

for the electrostatic approximation. Paralleling the standard method

developed in the previous literature, the critical beam current for

iistability is analytically found from Eq. (9) and is given by

I A Ob/fe 
(10)ce 2 n(Rc/Rb) (1 + I/Ybfe 1/ 3

* for the electrostatic approximation, where IA = mc /e - 17000 ampere is the

Alfven critical current. The electron beam with current below the critical

current is stable whereas the beam with current above the critical current is

unstable. Note from Eq. (10) that the critical current is inversely

proportional to the plasma electron density(fe).

In order to demonstrate the influence of electromagnetic effects on

stability behavior, Eq. (8) is numerically solved for complex eigenfrequency

w= r + iwi, determining the stability boundaries in (WpYb) parameter space

for specified values of fe* The critical current Icm of the electromagnetic

calculation is obtained from these stability boundary curves. For convenience

in the subsequent analysis, we define the electromagnetic current enhancement

by

= 'cm/ ce (11)

which is a function of Yb and fe in general. Shown in Fl. I is the

electromagnetic current enhancement versus the beam energy Yb obtained from

6 6



Eqs. (8) and (11) for Rc/R = 7.4, and fe I and fe 10. Obviously from

Fig. 1, the critical current for the electrostatic approximation is valid only

for a mildly relativistic electron beam. The electromagnetic current

enhancement & increases drastically with increasing values of energy *b and

plasma density fe, thereby exhibiting a substantial enhancement of the

critical current by the electromagnetic effects for a relativistic beam.

It is instructive to rewrite Eq. (8) by

2Y 3 2c2/R Xn(R/Rb
eP) Y~b +=2 2 221, (12)f(w) - kObC) + ,2 k2 c2

which is plotted in Fig. 2. When the value of the local minimum point labeled

P is less than unity, Eq. (12) has six real roots and the system is stable.

It is noted from Eq. (12) that when 13b approaches to unity, the strength of

the destabilizing term proportional to p/Yba

with the stabilizing term proportional to 2c2/R Xn(Rc/Rb). In Fig. 2, the

influence of vertical line w = kc drastically pull down the local minimum

point P as the line w = k~c approaches to w = kc, eventually providing strong

stabilizing effects. The stabilizing influence of electromagnetic effects

originates from the perturbed axial current density U b(r) in Eq. (2).

a-.,
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FIGURE CAPTIONS

Figure 1. Plot of electromagnetic current enhancement versus Yb

obtained from Eqs. (8) and (11) for Rc/Rb = 7.4, and

fe = 1 and fe = 10.

Figure 2. Plot of function f(w) defined in Eq. (12) versus w.
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