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I. INTRODUCTION

Multiplication of the complex numbers x and y, where

x = a+jb and y = c+jd requires the computation of ac-bd and

ad+bc. If computed directly, this requires four real

multiplications and two real additions. It is well known, as

frequently attributed to Golub, that the identity

xy = (ac-bd)+j(ad+bc)

= (a(c-d)+(a-b)d)+j(b(c+d)+(a-b)d) (i)

could be used, requiring three real multiplications and five real

additions instead. This identity could result as a special case

of application of an efficient algorithm of polynomial

multiplication as discussed elegantly by Winograd in [I], page

18. Let a real multiplication be computationally equivalent to r

real additions. Clearly, application of (1) is of interest only

if r>3, as indicated by Moharir in [2]. With the advent of

distributed computing, and the increased computational power

available on individual VLSI chips, the value of r approaches

unity in some cases. This is the case, for example, in

applications where the predominant factor in the computational

cost is that of the I/O requirements and data manipulation.

An important field in which multiplication is inherently

more costly than addition is that of matrix arithmetic. For nxn
3

real matrices, a multiplication requires O(n ) operations, while

only On 2 ) are needed for addition. Fortunately, commutativity is

not required for (1) to hold, and (1) is therefore applicable to

complex matrices with compatible dimensions. In Section II, the

case of square complex matrices is considered where application 4
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of (1) is shown to result in saving up to 1/4 of the N

computations, even if r =. I
The three additions in (1) depend on either x or y, but not

both. The quantity (a-b) depends only on x, while (c+d) and (c-d)

require only y. Such computations have the desirable feature that

they do not require data communication to combine x and y. In

addition, if either x or y is fixed, such quantities could be

precomputed only once. There is an asymmetry in above quantities

since only one of them depends on x, while the other two depend

* on y. This asymmetry suggests the existence of a dual form, where
h:i

the roles of x and y are interchanged, but without requiring

commutativity. This form is

xy = ((a-b)c+b(c-d))+j((a+b)d+b(c-d)) (2)

which is of importance for rectangular matrices and applications

with fixed data as discussed in Section III. The Conclusion in

Section IV, Comments on some applications and on the possibility

of combining this work with other matrix multiplication

algorithms are presented.

II. SQUARE MATRICES

In this section, the x and y of (1) and (2) represent nxn

complex matrices. Direct multiplication of x and y requires A

real additions and M real multiplications, where
n2  2 =n 3  2

.% A = 2n2+4n (n-1) = 4n-2n

LU M = 4n3  (3) N

On the other hand using (1) or (2) requires

A = 5n2+3n2 (n-i) = 3n3 +2n2 "

M =3n 3  (4

2
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The cost of computing xy in equivalent additions is

C = 4n3 (1+r)-2n2  (5)

for direct computation, and

C' 3n3 (l+r)+2n2  (6)

for computation using (1) or (2). To compare the two approaches

we use either

S (C-C')/C = (n(l+r)-4)/(4n(l+r)-2) (7)

V which represents the relative reduction in computational cost

when (1) or (2) is used for complex square matrix multiplication,

or J
R = 1-S = C'/C = (3n(l+r)+2)/(4n(l+r)-2) (8)

the ratio of their costs. It is clear that as n(l+r) increases, S

approaches 1/4, while R approaches 3/4. The following table

should be of value in assessing the range of values of r and n

for which the approach is of interest. The values of R in the

table are rounded to two decimal locations. Even if

multiplication is considered computationally equivalent to

addition, i.e. for r = 1, appreciable savings are possible for

modest values of n. For n = 2 direct computation is equivalent to

the proposed approach, for which R = .91 and decreases further

with increasing n to approach 3/4.

r\n 1 2 3 4 5 6 7 8 9 :10 I :12 :13 14 15

1 1.3 1 1.911.87:.841.831.811.811.80:.79:.791.79:.78 .78:.781

2 1.1 .91 .85 .83 .811.80 .79 .79: .78 .78 .78 .77: .77 .77 .77:

3 1 .87 .83 .81 .79 .79: .78 .78 .77 .77 .77 .77 .77 .77 .76:

i0 .83 .79:.78 .77 .77 .76 .76 .76 .76 .76: .76 .76 .76 .76 .76 V

Table for R as a Function of n and r.
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III. THE GENERAL CASE

For the general case of complex matrices x and y of

dimensions pxn and nxm, respectively, direct computation requires

A = 2pm+4pm(n-1) = 4pmn-2pm,

M = 4pmn (9)

For non-square matrices (1) and (2) yield different results. If

(.) is used we get

A = 2pn+mn+2pm+3pm(n-1) = 3pmn+2pn+mn-pm,

M = 3pmn (10)

while (2) results in

A = pn+2mn+2pm+3pm(n-1) = 3pmn+pn+2mn-pm (11)

and the same value of M = 3pmn. One pn in the expression of A in

(9) is replaced by an mn in (11). Therefor, (1) should be used

for matrix pairs with p<m and (2) for those with m<p. Direct

computation requires

C = 4pmn(l+r)-2pm (12)

equivalent additions, while the proper choice of (1) or (2)

results in

C'= 3pmn(l+r)-pm+mn+pn+n(min{p,m}) (13)

equivalent additions. From (12) and (13) we obtain the ratio

R = C'/C

= (3pmn(l+r)-pm+mn+pn+n(min(p,m}))/(4pmn(l+r)-2pm) (14)

which approaches 3/4 as pmn(l+r) increases.

In some cases, one of the two matrices either remains

constant or changes infrequently, while the second matrix

changes frequently. Let x be fixed, and y frequently changing.

For direct computation, C is the same as in (13) since every

4



multiplication or addition involves at least one element of y.

Computation based on (2) requires the calculation of a+b and a-b

which involves only the elements of x and could be precomputed

and are therefore not included in assessing the computational

cost next. All other computations involve y and require

A = mn+2pm+3pm(n-1),
J.

M = 3pmn (15)

resulting in

C' = 3pmn(l+r)+mn-pm (16)

and

R = (3n(l+r)+n/p-l)/(4n(l+r)-2) (17)

which does not depend on m. Even for r = 1, R in (17) is always

<1 with the limit R = 1 attained for n = p = 1, in which case a

complex multiplication costs three real additions and three real

multiplications.

The case of an inner product is of particular interest. For

p M = 1, r = 1, and large n we get R = 7/8 from (17). This is

in comparison to the case where both x and y are not fixed,

resulting in R = 1 from (14).
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IV. CONCLUSION

Extension of (1) and (2) to complex matrices resulting in

computational savings of up to 1/4 could be of interest in a

variety of applications. In digital signal processing, inner

products, vector-scalar and vector-matrix multiplications are

some times encountered with complex entries. This is the case,

for example in polyphase filters and filter banks and some signal

transforms. This is also the case in radar and communication

applications, with digital processing in the base-band.

Efficient algorithms for real matrix multiplication could be

advantageously combined with this work. For example, th.
1og2 7

coefficient of the O(n ) algorithm of Strassen in [3] would

be reduced by up to 1/4.
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