

(a) a ten ten service in the service of the service in the serv

AFWAL-TR-86-3048

VISCID/INVISCID SEPARATED FLOWS

18. N.

T. Cebeci K.C. Chang R.W. Clark D.P. Mack S.M. Schimke

McDonnell Aircraft Company McDonnell Douglas Corporation P.O. Box 516 St. Louis, Missouri 63166

87

4

(J

DTC FILE COPY

THE REAL PROPERTY AND A RE

JULY 1986

Final Report for Period September 1983 - March 1986

Approved for Public Release; Distribution Is Unlimited

FLIGHT DYNAMICS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABS AIR FORCE SYSTEMS COMMAND WRIGHT PATTERSON AIR FORCE BASE, OHIO 45433-6553

NOTICE

× 33

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Albert J. Murn J. Hum Project Engineer

Bohdan G. Kuncin Bohdan G. Kunciw, Maj, USAF Chief, Aerodynamics and Airframe Branch Aeromechanics Division

FOR THE COMMANDER

DONALD A. DREESBACH, Colonel, USAF Chief, Aeromechanics Division Flight Dynamics Laboratory

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document. UNCLASSIFIED

artes d'artes artes addition (artes artes de l'artes de l'artes de l'artes de l'artes de l'artes de l'artes de Artes

.

DD FORM 1473, 83 APR

ADA179858

SECURITY CLASSIF	CATION OF TH	IS PAGE		n vni	000			
			REPORT DOCUM	ENTATION PAGE	E			
1. REPORT SECURITY CLASSIFICATION Unclassified			16. RESTRICTIVE MARKINGS					
2. SECURITY CLAS	SIFICATION A	UTHORITY		3. DISTRIBUTION/A	VAILABILITY O	FREPORT		
26. DECLASSIFICA	ION/DOWNGR	ADING SCHEE	DULE	Approved for distribution	r public re n is unlimi	lease; ted.		
4 PERFORMING OF	GANIZATION	REPORT NUM	BER(S)	5. MONITORING OR	GANIZATION R	EPORT NUMBER(S)	
MDC J3968				AFWAL-TR-86-	AFWAL-TR-86-3048			
6a. NAME OF PERF	ORMING ORGA	NIZATION	6b. OFFICE SYMBOL (If applicable)	78. NAME OF MONITORING ORGANIZATION				
McDonnel1	Aircraft (Company		AF Wright Ae	eronautical	Labs (AFWAL	/FIMM)	
6c. ADDRESS (City.	State and ZIP Co	ode)		76. ADDRESS (City,	State and ZIP Cod	le)		
P.O. Box 5 St. Louis,	16 Missouri	63166		Wright-Patterson Air Force Base Ohio 45433-6553				
8. NAME OF FUND	ING/SPONSOR	NG	86. OFFICE SYMBOL	9. PROCUREMENT I	NSTRUMENT ID	ENTIFICATION NU	MBER	
0102010	•			F33615_83C_	3026			
BC ADDRESS (City,	State and ZIP Co	ode)		10. SOURCE OF FUN	NDING NOS.			
				PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT	
11 TITLE Include Security Classification)			62201F	2404	10	81		
12. PERSONAL AUT	HOR(S)		JWS	l		L		
I. Cebeci.	<u>K.C. Char</u>	<u>a. R.W. (</u>	lark. D.P. Mack	S.M. Schimke	2			
Fin	al	FROM SE	P 83 TO MAR 86	July 198	6	15. PAGE CC		
16. SUPPLEMENTAF	Y NOTATION							
17 CO	ATI CODES		18 SUBJECT TERMS (C	ontinue on reverse if ne	cessary and identi	y by block number)	,	
FIELD GROU	P SU	B. GR.	Separated Flow	d Interpetions	-₩in Rou	g-Body Geome	etry; —	
04 02			Interactive Bo	undary Laver A	heorv Sub	sonic Flow		
19 ABSTRACT :Con	linue on reverse	f necessary and	I identify by block number	······································			· · · · · · · · · · · · · · · · · · ·	
A meth fighter air employs a v inviscid an The viscid inverse boo large sepan The me test data a	nod has be rcraft con viscid inv alysis an and invis undary lay ration reg ethod was are presen	en develo figuratic iscid int d a finit cid analy er theory ions, inc validated ted.	pped for calcula ons at flow cond eraction approa e difference bo yses are coupled . This approac luding both lea on three fight	ting subsonic itions includi ch, with a par undary layer m using an inte h allows effic ding and trail er aircraft ge	three-dime ing separat nethod for eractive te ient calcu ing edge s cometries a	nsional flow ion. The me used for the the viscous chnique base lation of fl eparations. nd compariso	vs over ethod analysis. ed on ows with ons with	
				ABSTHACT SECU	THE CLASSIFIC			
JNCLASSIFIED/UNLIMITED VY SAME AS RPT DTIC USERS 1.				o.d				
24 NAME OF RESPONSIBLE INDIVIOUAL				Unclassifie	<u>eu</u>			
	ONSIBLE INDIA	DUAL		UNCLASSIFIC 22b TELEPHONE NU Unclude Inte Coo	IMBER Ir	220 OFFICE SYME	10L	

EDITION OF 1 JAN 73 IS OBSOLETE

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE

Contraction of the second

FOREWORD

This report was prepared for the United States Air Porce by the Douglas Aircraft Company, Long Beach, California, and the McDonnell Aircraft Company, St. Louis, Missouri in partial fulfillment of Contract Number F33615-83-C-3026. This report describes a method for calculating the flowfield about fighter aircraft geometries in the presence of flow separation, and includes comparisons with test data for three fighter configurations.

ويحجزون

The contract was under the direction of Mr. Albert J. Murn of the Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio. His efforts and forbearance are gratefully acknowledged.

Accesion For	
NTIS CRA&I	
DTIC TAB	
Usamousiced 🔯	
Justification	
ely with the the	
in and the second	4
and the second s	:
A-1	

TABLE OF CONTENTS

Page

Ι.	INTRODUCTION	1
11.	DESCRIPTION OF THE INTERACTIVE BOUNDARY-LAYER METHODS	4
	2.1 Inviscid Flow Method	4
	2.2 Interactive Viscous Flow Method	8
	2.2.1 Boundary-Layer Equations	8
	2.2.2 Interactive Scheme	11
	2.2.3 Turbulence Model	13
	2.2.4 Transformed Equations	16
	2.2.5 Solution Procedure	19
111.	RESULTS AND DISCUSSION	21
	3.1 Wing Alone Configurations	21
	3.2 Application to Wing/Body Test Cases	22
IV.	PROGRAM DESCRIPTION	25
	4.1 Input Data Description	27
	4.1.1 Body Geometry	27
	4.1.2 Namelist Block Input	29
	4.1.3 Boundary-Layer Calculation Data Input	33
	4.2 Output Data Description	35
	4.2.1 Summary	35
	4.2.2 Format	36
	4.3 External Units	39
	4.4 CRAY JCL	39
۷.	TEST CASES	42
	5.1 Test Case 1 - F-15 with Laminar Bubble Wing	42
	5.2 Test Case 2 Advanced Navy Fighter (ANF)	43
	5.3 Test Case 3 - Unmodified F 15	44
VI.	CONCLUSIONS AND RECOMMENDATIONS	16
VII.R	EPERENCES	48

¢.....

1.0000

X

000000000

ŵ,

1.1

P.

F

F

rrE

G

a sin

LIST OF ILLUSTRATIONS

2222222

R

10.55.65

<u>No.</u>	Ē	age
1.	Representation of a three-dimensional lifting configuration	52
2.	Effect of alternate Kutta conditions	52
3.	Effect of wake on the separation region and displacement thickness for the NACA 0012 airfoil, $R_c = 6.0 \times 10^6$	52
4. ,	Notation for nonorthogonal curvilinear coordinate system on the body surface	53
5.	Comparison of computed and experimental lift curves for the RAB wing	53
6.	Effect of transition location on flow separation, displacement thickness and lift distribution for the RAE wing, $\alpha \approx 17.5^\circ$	54
7.	Computed transition location, flow separation, displacement thickness and lift distribution for the RAE wing, α = 18.5°	54
8.	Leading and trailing edge separation location for the RAE wing, α = 17.5°	55
9.	Computed viscous and inviscid lift curve for the NACA 0012 swept wing	55
10.	Comparison of calculated and experimental pressure distribution on the NACA 0012 swept wing, $\alpha = 19.35^\circ$	56
11.	Bffect of transition location on flow separation, displacement thickness and lift distribution for the NACA 0012 swept wing, $\alpha = 21.12^{\circ}$	57
12.	Comparison of 2-D strip theory and quasi-3-D methods for the F-15 with laminar bubble wing	57
13.	Comparison of the calculated and experimental pressure distribution for the P-15 with laminar bubble wing, $\alpha = 10.75^\circ$	58
14.	Comparison of pressure distribution obtained by the panel method and the transonic flow method for the F-15 with laminar bubble wing \ldots	59
15.	Comparison of computed and experimental lift curves for the ANF wing/body configuration without canard	61
16.	Comparison of computed and experimental pressure distribution for the ANF wing/body configuration without canard, $\alpha = 7.7^{\circ}$, M = 0.6	62
17.	Bffect of canard on the calculated lift curve of the ANF wing/body configuration, M = 0.6	64

10	Companies of computed and experimental life survey for the	
10.	unmodified F-15	65
19.	Comparison of computed and experimental pressure distribution for the unmodified F-15, $\alpha = 8.66^{\circ}$	65
20.	Flow structure of the three-dimensional viscous/inviscid interaction program	67
21.	Examples of correct and incorrect input	68
22.	Plan view of the input points on a body divided into sections	68
23.	Another possible division into sections	69
24.	Arrangement of panels for the sample test case	69
25.	Output from the sample test case	70
26.	Panel arrangement for test case 1	86
27.	Panel arrangement for test case 2	86
28.	Panel arrangement of the wing of test case 2	87
29.	Panel arrangement for test case 3	87
30.	Panel arrangement of the wing for test case 3	88

Page

<u>No.</u>

5

SECTION I INTRODUCTION

In past years aircraft configuration design was accomplished mainly by wind tunnel testing while flow-calculation methods contributed little because they were limited to simple geometries and restricted in the physical processes that they represented. This virtually exclusive reliance on testing had disadvantages which led to less-than-optimum designs. Each potential configuration had to be fabricated as a wind tunnel model with corresponding expense and time delay and, if the tests suggested design changes, the process should have been repeated, though on occasions this could not be done because of the time and expense involved in an iteration cycle. Moreover, tests provide incomplete information in that, for example, static-measurements may be restricted to a small number of locations. Force and moment data are seldom explained in terms of flow phenomena and the extent of separated regions is usually not determined. Finally, there is the necessary scaling from model to full-scale vehicle which can be uncertain so that, for example, separation observed on a model may be different from that encountered in full scale.

Intensive efforts have been pursued for many years to help to overcome the limitations of calculation methods and to develop them to represent accurately the flows over airplane configurations. Regardless of the specific algorithm employed, the cost and especially the elapsed time required to develop a numerical representation of a given configuration is much less than that required for an experimental test. Once such a basic numerical model has been developed, many variations on the design can be investigated computationally and only the most promising selected for wind-tunnel testing. A flow computation method is required to represent the geometry of the airplane and the essential properties of the fluid and, to achieve the objective, limitations of calculation methods have been removed in recent years by the development of new and powerful calculation tools.

There are three possible approaches which can be used for the calculation of the viscous flow over an aircraft configuration. The first approach makes use of the Reynolds-averaged Navier-Stokes equations and various reduced forms including the so-called parabolized and thin-layer Navier-Stokes equations. Significant advances have been made in this area, for example, by Shang and

Scherr [1] who made the first attempt to numerically simulate the flowfield around a complete aircraft by solving the Navier-Stokes equations. To demonstrate the feasibility of their approach, they chose the hypersonic research aircraft X24C-10D for which a detailed experimental database exists. Using a mesh system around 5 x 10^5 nodes, they performed impressive calculations at an angle of attack of six degrees with a nominal Mach number of 5.95, and indicated areas where future research should concentrate to make this approach more efficient and practical.

The second and third approaches both make use of solutions of inviscid and viscous flow equations coupled by special procedures. The second approach is based on the two-dimensional method developed by Gilmer and Bristow [2] in which an empirical inviscid flow model is used to represent the effects of flow separation [2,3]. A direct boundary-layer calculation is employed up to the point of separation. Downstream of this point, a free surface is introduced to model the separated flow region. The shape and the length of the separation zone are computed by satisfying a constant pressure boundary condition on the surface and very good results have been obtained for airfoils at a wide range of angles of attack including stall.

The third approach, which is referred to as the interactive boundary-layer approach, uses special coupling techniques between inviscid and viscous flows and novel numerical procedures. The particular form developed by Cebeci et al. [4] is very general and allows any inviscid flow method to be coupled with solutions of the boundary-layer equations. For example, in its application to two-dimensional subsonic flows over airfoils, it employs Halsey's inviscid procedure [5] based on the conformal mapping and Fourier analysis techniques and computes the flow over the airfoil and wake. Successive viscous sweeps are performed, after each of which the external inviscid solution is recomputed, until a converged solution is obtained. The boundary-layer method, which is an inverse finite-difference scheme developed by Cebeci [6], uses an algebraic eddy-viscosity formulation due to Cebeci and Smith [7] and is able to compute flows with large regions of separation without numerical problems. In regions of reverse flow, it uses the FLARE approximation [8] in which the streamwise convective term is set equal to zero in the recirculating region. A detailed description of the method and of its application to a range of airfoils at angles of attack up to and including stall is provided in [4]. The results

presented in Section 3.1 show that this procedure has removed a major obstacle in that flows with large regions of separation can now be computed accurately.

A comparison between the interactive procedure [4] and a method based on the thin-Navier-Stokes equation has been reported in [9] for the NACA 0012 airfoil. This study demonstrated that the Navier-Stokes approach and the interactive boundary-layer approach gave comparable results up to the stall angle. However, the interactive boundary-layer approach required much less computing time.

The purpose of the present work is to develop a general method for computing three-dimensional flows on wings with leading- and trailing-edge separation. The second and third approaches, described above, have been critically examined to determine the extent to which they can fulfill this purpose. It was considered that the second approach should be more suited to large regions of trailing-edge separation whereas the third approach should be more appropriate for leading-edge separation bubbles. Extensive tests showed that the second approach failed to converge in those situations for which it was intended and, although it was satisfactory for flows with small trailing-edge separation, considerable effort may still be required to overcome its limitations. The third approach on the other hand, has proved to be able to represent leading- and trailing-edge separation without limitations, as discussed further in Section 3.0.

The remainder of this report has been arranged in five sections. In ε tion 2.0, the inviscid method is briefly described prior to more extensive descriptions of interactive boundary-layer methods based on strip theory and quasi-three-dimensional approximations. The viscous-flow equations, transformations and solution procedure have been described previously in [4] for two-dimensional flows and in [10] for quasi-three-dimensional flows. Results obtained with these procedures are presented in Section 3.0 for several configurations and the relative merits of the two interactive approaches are considered. The computer program, which embodies both methods is described in Section 4.0 and sample input data for the three contract test cases are presented in Section 5.0. The report ends with a summary of the more important conclusions in Section 6.0.

SECTION II

DESCRIPTION OF THE INTERACTIVE BOUNDARY-LAYER METHODS

The method described here combines inviscid flow and inverse boundary layer procedures in an interactive manner which permits the calculation of flows with leading and trailing-edge separation. According to this method, the inviscid method of Section 2.1 is used to compute the flow over the given configuration with a zero normal velocity boundary condition. The resulting pressure distribution serves as a boundary condition for the boundary layer method of Section 2.2 which computes all relevant boundary layer parameters, including a surface blowing distribution to simulate the displacement thickness effect. While the inviscid-flow calculations (see Section 2.1) are performed for the entire configuration, viscous flow calculations are presently restricted to the wing and make use of strip-theory and quasi three dimensional approximations discussed in Section 2.2.

The viscous effects computed by the boundary-layer method are then used to determine a distribution of normal velocity on the surface. The inviscid flow method is used for a second time with this blowing velocity distribution as a boundary condition and the procedure is repeated until convergence.

2.1 Inviscid Flow Method

The inviscid flow method, which is the first-order surface-source panel method developed by Hess, is capable of computing flow about completely arbitrary configurations. Because of its robustness and its availability, it has been acquired by several dozen facilities around the country and applied not only to aircraft but also to ships, submarines, automobiles, buildings, and topographical features. The three-dimensional body is represented by a set of plane quadrilateral panels, as shown in Fig. 1*. A three-dimensional body consists of lifting and nonlifting portions. A lifting portion, such as a wing or pylon, is characterized by having a well-defined trailing edge, from which issues a trailing vortex wake and along which the Kutta condition is applied. Nonlifting portions of the body lack such trailing edges. Every panel has a constant value of source strength σ . Panels of lifting portions have, in addition, a quadratically varying doublet strength μ . Values of source

*Figures begin on page

density on the panels are independent parameters available for satisfying the boundary condition. The chordwise dipole variation over the panels of a lifting strip (Fig. 1) is assumed in a form that leads to favorable numerics, so that the dipole strength is reduced to a single adjustable parameter - the circulation on that strip. Thus the set of independent dipole parameters equals the number of locations where the Kutta condition is enforced, i.e., at the trailing-edge segment of each strip.

The nature of the Kutta condition adopted by the many panel methods which are currently available varies greatly. The condition adopted by Hess [11] is the physically meaningful condition of equal upper and lower surface pressures at the trailing edge. All other methods make use of other derived conditions, e.g. a prescribed flow direction a short distance downstream, which do not guarantee a pressure match at the trailing edge. For instance, Margason et al. [12] showed that pressure mismatches of up to half of the freestream dynamic pressure could occur from such alternate forms of the Kutta condition. Figure 2, which is taken from [12] shows this clearly. Since we are interested in the computation of flows for which the behavior of the boundary layer at the trailing edge can have a significant effect on the overall flow solution, it is believed that the approach adopted here is more realistic.

The computational procedure is as follows. On each panel a control point is selected where the normal-velocity boundary condition is applied and where velocity and pressure are eventually calculated. Using the well-known pointsource potential, the velocity induced by the source density on a panel at a point in space is

$$v(panel) = [\int grad(1/r)dS]\sigma(panel)$$
 (2.1)
panel

where the constant value of σ has been taken outside the integral whose value therefore depends only on geometry. Suppose N panels are used to define the body, and let σ_j denote the value of source density on the jth panel. The velocity induced by the jth panel at the control point of the ith panel is defined as $\vec{v}_{ij}\sigma_j$, where \vec{v}_{ij} is an integral of the form of Eq. (2.1). The integral may be carried out analytically. Explicit formulas are contained in [11], but they are too lengthy for inclusion here. The corresponding normal velocity at the ith control point is

5227H

$$\mathbf{A}_{\mathbf{i}\mathbf{j}}\boldsymbol{\sigma}_{\mathbf{j}} = \mathbf{n}_{\mathbf{i}} \cdot \mathbf{v}_{\mathbf{i}\mathbf{j}}\boldsymbol{\sigma}_{\mathbf{j}}$$
(2.2)

where n_i is the unit normal vector to the ith panel. Applying the normal velocity boundary condition at all control points then yields the following set of linear algebraic equations:

$$\sum_{j=1}^{N} \mathbf{A}_{jj} \sigma_{j} = -\vec{n}_{1} \cdot \vec{v}_{m}$$
 (2.3)

This is the numerical approximation of the integral equation that expresses the zero normal-velocity boundary condition. Once the σ have been deter mined, the disturbance velocities at the control points due to the body are given by

$$\vec{v}_{i} = \sum_{j=1}^{N} \vec{v}_{ij} \sigma_{j} \qquad i = 1, 2, ..., N \qquad (2.4)$$

While the addition of lift in two dimensions causes no significant increase in the complexity of the problem, the problem of three dimensional lifting flow is not only considerably more complicated than nonlifting flow but requires assumptions that are somewhat arbitrary [11]. The main features are illustrated in Fig. 1. As mentioned above, wings or other lifting portions of the configuration are characterized by having trailing edges from which issue trailing vortex wakes. So-called bound circulation is hypothesized to lie on or within the wing surface, with strength varying in both the chordwise direction and in the direction parallel to the trailing edge ("spanwise" in aerodynamic jargon). The variation of the bound circulation in the chordwise direction is predetermined, while the spanwise variation is adjusted to satisfy a condition of smooth flow off the entire trailing edge, and the trailing vorticity has constant strength in the stream direction and an initial strength at the trailing edge equal to the local "spanwise" derivative of bound circula tion strength. The location of the wake once it leaves the trailing edge is initially unknown, which introduces a nonlinearity into the problem. It is customary simply to assume a wake location, because in most problems the calcu lated results are not sensitive to the details of the wake shape. However, the location can be determined by iterating the calculation if necessary.

With regard to computing effort and cost, the two principal tasks associated with this method are calculation of the N² velocities V_{ij}^{+} and the

solution of the set of linear equations. Eq. (2.3). Other portions of the calculation require comparatively negligible computing efforts. In three dimensional applications rather large numbers of panels are employed. Panel numbers over 3000 are common. These are the number of unknowns actually solved for after all symmetries, etc., have been utilized. Accordingly, it is economically important that all possible efficiencies be employed in carrying out the two principal tasks. For the first task this is accomplished by using simple approximate expressions for v_{1j}^{\dagger} when computing the influence of distant panels [13]. The second task is speeded up by the use of block iterative mat rix solutions, as developed by Clark [14]. The source method lends itself particularly well to these efficiencies, without which no three dimensional method is practical.

In updating the external inviscid velocity to account for the boundary layer displacement effects, two approaches can be considered. The first, known as the displacement surface approach, involves modifying the geometry to account for the boundary layer displacement thickness. The second approach is to introduce a blowing velocity on the surface of the original body so that the dividing stream surface of the inviscid flow approximates the displacement thickness computed by the boundary layer procedure. While both approaches nave been applied in our studies, the first approach has been found to be less suitable because it involves the computation of the inviscid flow past a body with a finite opening at the trailing edge. For separated flow, the size of this open trailing edge can become significant and the computation of the inviscid flow past such a body is nonunique unless some additional conditions are imposed along this trailing-edge opening. By adopting the surface blowing approach, the equivalent trailing edge thickness of the dividing stream surface is controlled by the blowing velocity introduced on the wing surface in a physically realistic way without resorting to additional boundary conditions.

The blowing velocity computed by the boundary-layer procedure is applied on the wing surface. However, as pointed out above, the aim is to model the flow past the displacement surface. For flows involving large trailing-edge separation, it has been shown in [4] that it is important to both evaluate the external inviscid pressure distribution and apply the Kutta condition on the displacement surface. In the present method this is achieved by introducing additional off body points corresponding to each control point for which the

boundary layer distribution has been computed. These off body points are used both to compute the final pressure distribution and to apply the Kutta condition.

2.2 Interactive Viscous-Flow Method

An accurate prediction of the flowfield over a wing requires the calcula tion of flow on the surface and in the wake. The airfoil studies conducted in [4] indicate that the wake influence is negligible for airfoils at low angles of attack and that it is sufficient to calculate the flow on the airfoil only. In the case of the NACA 0012 airfoil, for example, the wake effect begins to become important for angles of incidence, α , greater than 10°, and is important at angles of incidence approaching stall, which for this airfoil is around 16° as shown in Fig. 3. The inclusion of the wake effect, which is not considered here, reduces the flow separation on the surface and allows the numerical calculations to be performed with less difficulty. In the present study, we investigate the ability of the interactive boundary-layer scheme to calculate flows with massive separation and perform calculations for configurations at high angles of attack, as discussed in Section 3.0.

2.2.1 Boundary-Layer Equations

The full three-dimensional boundary-layer equations and their boundary conditions may be written as the following nonorthogonal curvilinear coordinate system [10]:

Continuity Equation

$$\frac{\partial}{\partial x} (uh_2 \sin\theta) + \frac{\partial}{\partial z} (wh_1 \sin\theta) + \frac{\partial}{\partial y} (vh_1h_2 \sin\theta) = 0 \qquad (2.5a)$$

x-Momentum Equation

$$\frac{u}{h_{1}}\frac{\partial u}{\partial x} + \frac{w}{h_{2}}\frac{\partial u}{\partial z} + v\frac{\partial u}{\partial y} - \cot\theta K_{1}u^{2} + \csc\theta K_{2}w^{2} + K_{12}uw$$
$$= -\frac{\csc^{2}\theta}{\rho h_{1}}\frac{\partial p}{\partial x} + \frac{\cot\theta \csc\theta}{\rho h_{2}}\frac{\partial p}{\partial z} + \frac{\partial}{\partial y}(v\frac{\partial u}{\partial y} - u'v') \qquad (2.5b)$$

z-Momentum Equation

$$\frac{u}{h_1} \frac{\partial w}{\partial x} + \frac{w}{h_2} \frac{\partial w}{\partial z} + v \frac{\partial w}{\partial y} + \csc\theta K_1 u^2 - \cot\theta K_2 w^2 + K_{21} u w$$

$$= \frac{\cot\theta \ \csc\theta}{\rho h_1} \frac{\partial p}{\partial x} - \frac{\csc^2\theta}{\rho h_2} \frac{\partial p}{\partial z} + \frac{\partial}{\partial y} \left(v \ \frac{\partial w}{\partial y} - v \ v' \ w' \right)$$
(2.5c)

$$y = 0;$$
 u, v, w = 0 (2.6a)

$$y = \delta$$
: $u = u_e(x,z), \quad w = w_e(x,z)$ (2.6b)

Here x,z denote the coordinate system on the surface of the body and y is the actual distance measured normal to the surface. The boundary-layer equations and boundary conditions for this system according to first-order boundary-layer theory are based on the assumption that the pressure is constant across the shear layer and stress gradients in directions parallel to the surface are negligible compared with those normal to the surface. In the above equations h_1 and h_2 denote the metric coefficients and θ denotes the angle between the coordinate lines and, as a result of first-order boundary-layer theory, they are functions of the surface coordinates x and z only. They can be obtained from the relations which define the three-dimensional body in the Cartesian coordinate system $\bar{x}, \bar{y}, \bar{z}$ by

$$\mathbf{F}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = 0 \tag{2.7}$$

and those that define the curvilinear coordinate system. Thus the metric coefficients and the angle between θ are given by

$$h_1^2 = \left(\frac{\partial \bar{x}}{\partial x}\right)^2 + \left(\frac{\partial \bar{y}}{\partial x}\right)^2 + \left(\frac{\partial \bar{z}}{\partial x}\right)^2$$
(2.8a)

$$h_2^2 = \left(\frac{\partial \bar{x}}{\partial z}\right)^2 + \left(\frac{\partial \bar{y}}{\partial z}\right)^2 + \left(\frac{\partial \bar{z}}{\partial z}\right)^2$$
(2.8b)

$$\cos\theta = \frac{(\partial \overline{x}/\partial x)(\partial \overline{x}/\partial z) + (\partial \overline{y}/\partial x)(\partial \overline{y}/\partial z) + (\partial \overline{z}/\partial x)(\partial \overline{z}/\partial z)}{h_1 h_2}$$
(2.9)

The parameters K_1 and K_2 are known as the geodesic curvatures of the curves z = constant and x = constant, respectively, see Fig. 4, and are given by

$$K_{1} = \frac{1}{h_{1}h_{2}\sin\theta} \left[\frac{\partial}{\partial x} (h_{2}\cos\theta) - \frac{\partial h_{1}}{\partial z}\right]$$
(2.10a)

$$K_{2} = \frac{1}{h_{1}h_{2}\sin\theta} \left[\frac{\partial}{\partial z} \left(h_{1}\cos\theta\right) - \frac{\partial h_{2}}{\partial x}\right]$$
(2.10b)

The parameters K_{12} and K_{21} are defined by

$$K_{12} = \frac{1}{\sin\theta} \left[-K_1 - \frac{1}{h_1} \frac{\partial\theta}{\partial x} + \cos\theta \left(K_2 + \frac{1}{h_2} \frac{\partial\theta}{\partial z} \right) \right] \qquad (2.11a)$$

$$\kappa_{21} = \frac{1}{\sin\theta} \left[-\kappa_2 - \frac{1}{h_2} \frac{\partial\theta}{\partial z} + \cos\theta \left(\kappa_1 + \frac{1}{h_1} \frac{\partial\theta}{\partial x} \right) \right] \qquad (2.11b)$$

The magnitude of the velocity vector \mathbf{u}_t in the boundary layer is given by

$$u_t = (u^2 + w^2 + 2uw \cos\theta)^{1/2}$$
 (2.12)

In the present study we use two reduced forms of the above boundary-layer equations. The first is referred to as the quasi-three-dimensional boundary-layer equations in which the flow variations with respect to z are neglected so that the equations become

$$\frac{\partial}{\partial x} (uh_2 \sin\theta) + \frac{\partial}{\partial y} (vh_1h_2 \sin\theta) = 0 \qquad (2.13a)$$

$$\frac{u}{h_1}\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} - K_1 u^2 \cot\theta + K_2 w^2 \csc\theta + K_{12} uw = -\frac{\csc^2\theta}{h_1 \rho}\frac{\partial p}{\partial x} + \frac{\partial}{\partial y} (v \frac{\partial u}{\partial y} - \overline{u'v'})$$
(2.13b)

$$\frac{u}{h_1}\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + K_1 u^2 \csc\theta - K_2 w^2 \cot\theta + K_{21} uw = \frac{\csc\theta \cot\theta}{h_1 \rho} \frac{\partial p}{\partial x} + \frac{\partial}{\partial y} (v\frac{\partial w}{\partial y} - \overline{u'w'})$$
(2.13c)

The second is referred to as the strip-theory approximation which essentially solves the well-known two-dimensional boundary-layer equations,

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \qquad (2.14)$$

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = u_e \frac{du}{dx} + \frac{\partial}{\partial y} (v \frac{\partial u}{\partial y} - \overline{u'v'}) \qquad (2.15)$$

In this approach, the streamwise external velocity u_e is replaced by the total velocity V defined by

$$/ = (u_e^2 + w_e^2 + 2u_e w_e \cos\theta)^{1/2}$$
(2.16)

and is assigned to each spanwise strip.

2.2.2 Interactive Scheme

1.55

It is well known that the boundary-layer equations are singular at separation when solved for a prescribed external velocity distribution. They are not singular at separation, however, when the external velocity is computed as part of the solution by, for example, prescribing a displacement thickness: this is known as the <u>inverse problem</u> and leads to solution of the boundarylayer equations with separation.

For flows with separation, the presence of the upstream velocity component introduces a numerical instability into the solution of the boundary-layer equations. Over the years, several approaches have been proposed to overcome this problem. One popular approach, known as the FLARE approximation after the originators, Flugge-Lotz and Reynher [8], neglects the longitudinal convection terms $u(\partial u/\partial x)$ and $u(\partial w/\partial x)$ in the momentum equations (2.5). This approximation is satisfactory provided that the size of the separated region remains small. However, as the size of the recirculation region increases, this approximation becomes less accurate and requires the development of additional procedures to account for the neglected convective terms. One successful scheme, which has been applied to two-dimensional flows, is referred to as the DUIT procedure [15, 16] (<u>Downstream</u>, <u>Upstream Iteration</u>) and requires several sweeps through the recirculation region. With this scheme, the FLARE approach is used to compute a solution within the recirculation region, and then in successive sweeps the $u(\partial u/\partial x)$ term is progressively introduced until it is fully represented. Another successful approach developed by Cebeci [17] makes use of the unsteady boundary-layer equations in which the convective term is introduced into the equations progressively as a function of time. The present method uses only the FLARE approach for both 2-D and quasi-3-D flows, and does not consider the effect of the terms neglected due to this approximation.

In an interactive boundary-layer scheme, a link between a displacement thickness and external flow is provided, and two types of procedures have been developed for this purpose for two-dimensional flows. In the first approach

[18-22], the solutions of the boundary-layer equations are computed initially for a prescribed external velocity to obtain an estimate of the displacement thickness $\delta^*(x)$ distribution, and then in an inverse mode for a specified displacement-thickness distribution $\delta^*(x)$. If this initial calculation encounters separation, $\delta^*(x)$ is extrapolated to the trailing edge. The subsequent boundary-layer calculations are then performed in an inverse mode to compute the blowing velocity needed in the inviscid flow method. In general, this procedure leads to two external velocity distributions, $u_{ev}(x)$ derived from the inverse boundary-layer solution and $u_{ei}(x)$ derived from the updated approximation to the inviscid velocity past the body with viscous effects. A relaxation formula in the form

$$\delta^{\mu \nu + 1}(\mathbf{x}) = \delta^{\mu \nu}(\mathbf{x}) [1 + \omega (\frac{ev}{u_{e1}(\mathbf{x})} - 1)], \quad \nu = 0, 1, 2, \dots$$
(2.17)

where ω denotes a relaxation parameter, is then introduced to define an updated displacement thickness distribution and to obtain new solutions of the boundary-layer equations and the inviscid flow equations so that the interactive procedure between inviscid and viscous flow solutions can be iterated until convergence is achieved.

The second approach [23], which is recommended on the grounds of generality and physical basis, treats the external velocity $u_e(x)$ and the displacement thickness $\delta^*(x)$ as unknown quantities. The boundary-layer equations are solved simultaneously in an inverse mode and with successive sweeps over the body surface. For each sweep, the external boundary condition is written as the sum of the inviscid velocity $u_e^O(x)$ over the body, and a perturbation velocity $\delta u_e(x)$, that is,

$$y = \delta, u_e(x) = u_e^O(x) + \delta u_e(x)$$
 (2.18)

The perturbation velocity δu_{e} is computed from a local approximation based on a thin airfoil theory in terms of the local blowing velocity, $d/d\sigma$ $(u_{e}\delta^{*})$, required to simulate the boundary layer thickness. The perturbation velocity is written as

$$\delta u_{e}(x) = \frac{1}{\pi} \int_{x_{a}}^{x_{b}} \frac{d}{d\sigma} (u_{e} \delta^{*}) \frac{d\sigma}{x - \sigma}$$
(2.19)

where the interaction region is confined to $[x_a, x_b]$. Introducing a discrete approximation for this integral enables the perturbation velocity to be expressed in terms of the geometric coefficients of the airfoil, as discussed in [4].

This two-dimensional interactive procedure has recently been extended under an AFOSR contract [10] to the quasi-three-dimensional equations referred previously. The relationship between displacement thickness and external velocity needed in the interactive calculations was obtained by generalizing the formulation used for two-dimensional flows. The irrotationality condition, which for an orthogonal system is

$$\frac{\partial}{\partial x} \left[h_2(w_e^O + \delta w_e) \right] = \left[\frac{\partial}{\partial z} h_1(u_e^O + \delta u_e) \right]$$
(2.20)

was used to provide a relationship between the two velocity components u_e and w_e and shows that the choice of computing the perturbation velocities due to viscous effects is not arbitrary. The assumption that $\delta u_e(x)$ is a function of x alone requires that

$$\frac{\partial}{\partial \mathbf{x}} (\delta \mathbf{w}_{\mathbf{e}}) = 0$$

and that

$$w_e = w_e^O$$
 (2.21)

In this way the edge boundary conditions for a quasi-three-dimensional boundary-layer flow with interaction are given by Eqs. (2.6) and (2.18).

2.2.3 Turbulence Model

The presence of Reynolds shear stress terms in the boundary-layer equations requires a turbulence model. The algebraic eddy-viscosity ε_{m} formulation of Cebeci and Smith [7] is used here. According to this formulation for two-dimensional wall boundary-layer flows, ε_{m} is defined by two separate formulas, given by

$$\left\{\left\{0.4y[1 - exp(-y/A)]\right\}^2 \left|\frac{\partial u}{\partial y}\right| Y_{tr} \quad 0 \le y \le Y_c \right\}$$

$$(2.22a)$$

$$\left| \begin{array}{c} \mathbf{u} \\ \alpha \\ 0 \end{array} \right|_{0}^{\mathbf{u}} \left| \begin{array}{c} \mathbf{u} \\ \mathbf{u} \\ \mathbf{u} \end{array} \right|_{tr}^{\mathbf{y}} \mathbf{y}_{tr}^{\mathbf{y}} \mathbf{y}_{t$$

where

$$\mathbf{A} = 26 \nu \mathbf{u}_{\tau}^{-1}, \qquad \mathbf{u}_{\tau} = \left(\frac{\tau}{\rho}\right)_{\max}^{1/2},$$
$$\tau_{\underline{1}} = \mu \frac{\partial \mathbf{u}}{\partial \mathbf{y}}, \qquad \mathbf{\gamma} = \frac{1}{1 + 5.5 (\mathbf{y}/\delta)^6} \qquad (2.23)$$

The condition used to define y_c is the continuity of the eddy viscosity; from the wall outward Eq. (2.22a) is applied until its value is equal to the one given by Eq. (2.22b).

In Eq. (2.22), γ_{tr} is an intermittency factor which accounts for the transitional region that exists between a laminar and turbulent flow. It is given by

$$\gamma_{tr} = 1 - \exp[-G(x - x_{tr}) \int \frac{dx}{u_{e}}] \qquad (2.24a)$$

Here x_{tr} is the location of the start of transition. The empirical factor G is

$$G = \frac{1}{1200} \frac{u^3}{v^2} R_{x_{tr}}^{-1.34}$$
(2.24b)

where the transition Reynolds number $R_{tr} = (u_x/v)$ and the transition location x_{tr} is either specified or calculated from the empirical formula of Michel [29]

$$R_{\theta_{tr}} = 1.174R_{x_{tr}}^{0.46} (1 + \frac{22,400}{R_{x_{tr}}})$$
 (2.24c)

According to the Cebeci Smith model, the parameter α in Eq. (2.22b) is equal to 0.0168 for values of R₀ greater than 5000, and is given by the expression in [24] for R₀ less than 5000. Studies conducted by Head and his associates [25,26] the recent experimental data of Nakayama [27] and Simpson et al. [28] and the numerical studies of Carter [20] indicate that in flows with strong pressure gradient, the value of α should also be changed when R₀ 5000. Head and his associates recommend that α in Eq. (2.22b) be given by

$$a = \alpha F(r)$$
 (2.25a)

$$= 0.002094 + 0.02672[1 - exp(-0.1163G)]$$
(2.25b)

$$G = 4.8285 (\Pi + 1.0717)^{1/2} + 1.8438 \qquad (2.25c)$$

$$\Pi = \frac{\delta^*}{\tau_w} \frac{dp}{dx}$$
(2.25d)

$$\mathbf{F} = \begin{cases} (5 - 4r)/(3 - 2r) & r < 1 \\ (2.25e) \end{cases}$$

$$\left(\frac{1}{2r-1} \quad r \ge 1 \right)$$
 (2.25f)

In Eqs. (2.25e) and (2.25f), r represents the ratio of the local rate of growth of the boundary layer to the rate of growth of the corresponding equilibrium layer.

They also suggested that γ in Eq. (2.23) be replaced by

$$\gamma = \frac{2.0}{1 - erf[1/2(y/\delta - \beta)]}$$
(2.25g)

where β is a function of shape factor H.

Simpson et al. [28] suggest that

$$\alpha = 0.0168/F^{2.5} \tag{2.26a}$$

Here F denotes the ratio of the product of the turbulent energy by normal stresses to that by shear stress evaluated at the location where shear stress is maximum, that is,

$$\mathbf{F} = \left\{ \frac{(\mathbf{u'}^2 - \mathbf{v'}^2) \partial \mathbf{u} \partial \mathbf{x}}{-\mathbf{u'v'} (\partial \mathbf{u} \partial \mathbf{y})} \right\}$$
(2.26b)

B<u>efore Eq.</u> (2.26a) can be used in Eq. (2.26b), an additional relationship between $(u'^2 - v'^2)$ and $(-\overline{u'v'})$ at $(-\overline{u'v'})_{max}$ is needed. Here we assume that the ratio in Eq. (2.26b),

$$\beta = \left\{ \frac{\overline{u'^2 - v'^2}}{-\overline{u'v'}} \right\}_{(-\overline{u'v'})_{max}}$$
(2.26c)

is a function of $R_T = \tau / (-u'v')_{max}$ which, according to the data of Nakayama [27], can be represented by

$$\beta = \frac{6}{1 + 2R_{T}(2 - R_{T})}$$
(2.26d)

for $R_{\rm T}$ < 1.0. For $R_{\rm T}$ \geq 1.0, we take β to be

$$\beta = \frac{2R}{1 + R_{T}}$$
(2.26e)

Introducing the above relationships into the definition of F, we have the following expression for α , according to Eq. (2.26a),

$$\alpha = \frac{0.0168}{\left[1 - \beta(\partial u/\partial x)/(\partial u/\partial y)\right]^{2.5}}$$
(2.27)

where β is given by Eqs. (2.26d) and (2.26e). This expression is used here although further studies are clearly required to evaluate its range of validity. Work of this nature is in progress.

For three-dimensional flows, the above formulation was generalized as discussed in [16] and in the inner region ε_m is defined by

$$(\epsilon_{\rm m})_{\rm i} = L^2 \left[\left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial w}{\partial y} \right)^2 + 2 \left(\frac{\partial u}{\partial y} \right) \left(\frac{\partial w}{\partial y} \right) \cos \theta \right]^{1/2}$$
(2.28)

where

$$L = 0.4y[1 - \exp(-\gamma/A)], \quad A = 26 \frac{v}{u_{\tau}}, \qquad u_{\tau} = (\frac{\tau}{\rho})^{1/2}$$

$$\tau_{tw} = \mu \left[(\frac{\partial u}{\partial y})^{2}_{w} + (\frac{\partial w}{\partial y})^{2}_{w} + 2(\frac{\partial u}{\partial y})_{w}(\frac{\partial w}{\partial y})_{w}\cos\theta\right]$$
(2.29)
(2.29)

In the outer region ε_m is defined by

$$\begin{aligned} (\varepsilon_{\rm m}) &= \alpha \left| \int_{0}^{\infty} (u_{\rm te} - u_{\rm t}) dy \right| \tag{2.30}$$

and α is given by Eq. (2.27).

2.2.4 Transformed Equations

The equations of Section 2.2.1 may be solved in the forms presented or expressed in other forms which are more convenient for accurate solution. For two-dimensional flows, as in [4], we use the Falkner-Skan transformation in the early stages of the flow

$$\eta = \sqrt{u_e} / v x y, \quad \psi = \sqrt{u_e} v x f(x, \eta)$$
 (2.31)

With primes denoting differentiation with respect to n and $b = 1 + \epsilon_m / v$, Eqs. (2.14) and (2.15) and their boundary conditions can be written in the form:

$$(bf^{*})' + \frac{m+1}{2} ff^{*} + m[1 - (f')^{2}] = x(f' \frac{\partial f'}{\partial x} - f^{*} \frac{\partial f}{\partial x})$$
 (2.32)

 $\eta = 0, \quad f = f' = 0$ (2.33a)

$$\eta = \eta_{e'}$$
, $f' = 1$ (2.33b)

Here ψ is the usual definition of the stream function that satisfies the continuity equation,

$$u = \frac{\partial \psi}{\partial y}$$
, $v = -\frac{\partial \psi}{\partial x}$ (2.34)

and m is a dimensionless pressure-gradient parameter,

$$\mathbf{m} = \frac{\mathbf{x}}{\mathbf{u}_{\mathbf{e}}} \frac{\mathrm{d}\mathbf{u}_{\mathbf{e}}}{\mathrm{d}\mathbf{x}}$$
(2.35)

This transformation provides the generation of initial conditions at the stagnation point of the airfoil and allows the calculations to be performed economically and accurately around the leading edge, where the governing equations are being solved for the prescribed external velocity distribution. For interactive boundary-layer calculations, where $u_{e}(x)$ is not known, a constant reference velocity u_{e} is used in the transformation

$$Y = \sqrt{u_0} / vx Y, \quad \psi = \sqrt{u_0} vx F(x, Y)$$
 (2.36)

In terms of these new variables, Eqs. (2.14) and (2.15) and their boundary conditions can be written in the form:

$$(bF'')' + \frac{1}{2}FF'' + xe \frac{de}{dx} = x(F' \frac{\partial F'}{\partial x} - F'' \frac{\partial F}{\partial x})$$
(2.37)

$$Y = 0, F = F' = 0$$
 (2.38a)

$$Y = Y_e, F' = e, e - \dot{c}_{11} (Y_e - F) = g_1$$
 (2.38b)

where

$$\dot{c}_{ii} = c_{ii} \sqrt{v x / u_o}$$
, $e = \frac{u_e}{u_o}$

Here the parameter g_i , which results from the discrete approximation to Eq. (2.19) is given by

$$g_{i} = \bar{u}_{e}^{\kappa} + \sum_{j=1}^{i-1} c_{ij}^{(D_{j} - D_{j}^{\kappa})} - c_{ii}^{D_{i}^{\kappa}}$$
(2.39)

where

$$D = \sqrt{v x/u_0} (Y_e - F_e)$$

For quasi-three-dimensional flows, we define

x = x,
$$dn = (\frac{u_0}{vs_1}) dy$$
 (2.40)

Here u is a reference velocity and s denotes the length in the longitudinal direction measured from the initial line $x = x^*$. We again introduce the definition of stream function $\psi(x,y)$

$$uh_2 \sin\theta = \frac{\partial \psi}{\partial y}$$
, $vh_1h_2\sin\theta = -\frac{\partial \psi}{\partial x}$ (2.41))

so that with the definition of eddy viscosity, the quasi-three-dimensional boundary-layer equations given by Eq. (2.13) can be written as [10]

$$(bf^{*})' + m_{1}ff^{*} + m_{3}[(f')^{2} - e^{2}] + m_{5}(f'g' - \overline{w}_{e}e) + m_{4}[(g')^{2} - (\overline{w}_{e})^{2}]$$
$$= m_{9}(f' \frac{\partial f'}{\partial x} - e \frac{\partial e}{\partial x} - f^{*} \frac{\partial f}{\partial x}) \qquad (2.42)$$

 $(bg'')' + m_1 fg'' + m_6 [(g')^2 - \overline{w_e^2}] + m_7 [(f')^2 - e^2)] + m_8 (f'g' - \overline{w_e^2})$

$$= m_{g}(f' \frac{\partial g'}{\partial x} - e \frac{\partial w_{e}}{\partial x} - g'' \frac{\partial f}{\partial x})$$
(2.43)

where, with f' = u/u_0 , g' = w/u_0 , $w_e = w_e/u_0$

$$m_{1} = \frac{\sqrt{s_{1}}}{h_{1}h_{2} \sin\theta} \frac{\partial}{\partial x} (\sqrt{s_{1}} h_{2} \sin\theta), \qquad m_{3} = \kappa_{1}s_{1} \cot\theta$$

$$m_{4} = -\kappa_{2}s_{1} \csc\theta, \qquad m_{5} = -\kappa_{12}s_{1}, \qquad m_{6} = s_{1}\kappa_{2} \cot\theta \qquad (2.44)$$

$$m_{7} = -m_{3}, \qquad m_{8} = -\kappa_{21}s_{1}, \qquad m_{9} = s_{1}/h_{1}$$

The boundary conditions become

$$\eta = 0$$
, $f = f' = 0$, $g = g' = 0$ (2.45a)

$$\eta = \eta_{e}$$
, $f' = e(x)$, $g' = \tilde{w}_{e}(x) = \tilde{w}_{e}^{O}$ (2.45b)

$$e(\mathbf{x}) = \mathbf{u}_{e}^{O} + \frac{1}{\pi} \int_{\mathbf{x}_{a}}^{\mathbf{x}_{b}} \frac{d\Delta}{d\sigma} \frac{d\sigma}{\mathbf{x} - \sigma}$$

where

$$\Delta = \frac{s_1}{\sqrt{R}} (n_e e - f_e), \qquad R = \frac{u_o s_1}{v} \qquad (2.46)$$

2.2.5 Solution Procedure

The numerical solution of the system of equations given in the previous section is obtained with Keller's box method for the standard and interactive methods. This is an efficient, second-order finite-difference method extensively used by Cebeci and his associates for a wide range of flows, as discussed in Bradshaw et al. [16]. The description of the standard method is given in that reference as well as in Cebeci and Bradshaw [29]. The general features of the inverse method which makes use of the Mechul-function formulation are also described for two-dimensional flows in Bradshaw et al. [16] and in [10] for quasi-three-dimensional flows. As in previous two-dimensional studies the FLARE approximation in which the convective term $\partial F'/\partial x$ is set equal to zero in the recirculating region is employed, and no attempt was made to improve the accuracy of the solutions resulting from this approximation.

As in the solution of two-dimensional flows by Keller's method, we write Eq. (2.37) as a first-order system. For this purpose we let

and write Eq. (2.37) as

$$(bv)' + \frac{1}{2}Fv + xe \frac{de}{dx} = x(u \frac{\partial u}{\partial x} - v \frac{\partial F}{\partial x}) \qquad (2.47c)$$

Since e is a function of x, only, we write

The boundary conditions for the system given by Eqs. (2.47) now can be written as

$$Y = 0$$
, $F = 0$, $u = 0$ (2.48a)

$$Y = Y_e$$
, $u = e$, $e - c_1 (Y_e - F) = g_1$ (2.48b)

After the finite-difference approximations to Eqs. (2.47) and (2.48) are written, the resulting nonlinear algebraic system is linearized by Newton's method and the linear system is then solved by the block elimination method. For further details, see [29].

A.

SECTION III RESULTS AND DISCUSSIONS

The interactive boundary-layer procedure described in the previous section has been applied to a number of test cases and the results will be presented here.

Section 3.1 presents the results obtained from the application of the two-dimensional strip theory approach to two wing alone configurations to verity the soundness of the interactive boundary layer technique. Section 3.2 will present the results obtained from the two-dimensional and the quasithree dimensional methods for three wing-body fighter configurations.

3.1 Ving Alone Configurations

The first configuration considered is an RAE clean wing with a 28° sweep angle for which experimental data has been obtained by Lovell [30]. Figure 5 shows the computed lift curve up to 18° angle of attack. It can be seen that there is good agreement up to about 12°, beyond which the discrepancy increases. This disagreement at the higher angles of attack is due to the three dimensional nature of the flow, and due to the sensitivity of the flow to the transition location. This sensitivity is illustrated by Fig. 6 which shows the variation of the flow solution to the transition location at an angle of attack of 17.5°. Moving the transition location leads to a significant change in the lift separation location and displacement thickness, particularly near the wing tip. Figure 7 shows the results for $\alpha = 18.5^\circ$ with the computed transition location. As can be seen the separation location at this angle of attack occurs at about the midchord location. The size of the leading and trailing edge separation regions at $\alpha = 17.5^\circ$ can be seen from Fig. 8 in which the local skin friction is plotted.

Near the wing tip it can be seen that there is a small leading edge separation, shown by the region of negative skin friction, and that the trailing edge separation is occurring at about 65% local chord.

Figures 9 11 illustrate the results obtained for a NACA 0012 swept wing for which data was obtained by Yip and Shubert [31] for a range of angles of arrack. Figure 9 shows the viscous and inviscid lift up to 21 18° from which the effects of the increasing flow separation at higher angles of attack can

5227H

clearly be seen. Figure 10 shows the computed and experimental pressure distributions for $\alpha = 19.35^{\circ}$ at two sections, 50% and 85% of semispan, both of which agree very well.

The importance of the transition location is illustrated by Figure 11 which shows the computed separation location, trailing-edge displacement thickness and lift distribution for $\alpha = 21.12^{\circ}$. Two curves are shown, the solid line was obtained with a computed transition location at about 3% chord on the upper surface. The dashed line was obtained by specifying a transition location closer to the leading edge attachment line on the lower surface. It can be seen that this small movement in the transition location moves the separation location forward from 60% chord to about 30% chord.

3.2 Application to Wing/Body Test Cases

Three wing/body test cases were identified for which there was experimental data available to evaluate the current procedure. The three cases are, an F-15 with a modified wing designed to investigate the role of a leading-edge laminar separation, an Advanced Navy Fighter configuration, and an unmodified F-15. The geometry and input data associated with these test cases is discussed in detail in Section 5 (Figs. 26-30).

The F-15 laminar bubble configuration has been run at a range of angles of attack using both the 2-D and the quasi 3-D boundary-layer procedures. Figure 12 shows the computed lift compared with the experimental data [32]. It can be seen that at lower angles of attack the 2-D and quasi 3-D approaches agree closely, while at higher angles of attack the quasi 3 D boundary-layer procedure agrees better with the experimental data. At lower angles of attack both approaches over-predict the lift, possibly due to an inadequate modelling of the flow over the body.

Figure 13 shows an example of the computed and experimental pressure distributions for $\alpha = 10.75^{\circ}$ angle of attack at three stations across the span from close to the wing tip to close to the wing root. It can be seen that for this angle of attack there is very little difference between the 2 D and the quasi three dimensional boundary layer methods, and that both give a reasonable approximation to the measured pressures except close to the leading edge.

One further aspect of the present method which has been investigated concerns the use of a panel method for the calculation of compressible flow. A panel method is an incompressible solution procedure and so Mach number effects must be accounted for by means of a compressibility correction. In this case a Goethert correction is applied using the following procedure: the solution to the linearized potential flow equation

$$(1 - M_{\infty}^{2}) \frac{\partial^{2} \phi}{\partial x^{2}} + \frac{\partial^{2} \phi}{\partial y^{2}} + \frac{\partial^{2} \phi}{\partial z^{2}} = 0 \qquad (3.1)$$

is obtained, where ϕ is the perturbation in the potential due to the body. Provided that this perturbation velocity is small compared with the freestream velocity equation (3.1) provides a good approximation to the flow. This is true for the flow over thin wings. However, around the leading edge, or on any forward facing surface, this basic assumption is violated.

The compressibility correction for the initial velocity calculation is implemented here by first scaling the y and z coordinates by $\beta = \sqrt{(1 - M_{\infty}^2)}$. The incompressible flow is then computed about this equivalent body and the computed velocity components are divided by β^2 in the x-direction and β in the y- and z-directions.

For the subsequent updates to the inviscid velocity to account for the viscous effects the same procedure is adopted. However, this calculation involves two additional features over the initial inviscid calculation. The first is the introduction of the blowing velocity required to simulate the displacement thickness and the second is the introduction of off-body points at which the Kutta condition is to be applied and the final velocity computed. In applying the Mach number correction two additional assumptions are therefore necessary. The first is that the blowing velocity is predominantly in the y,z direction so that the blowing velocity applied on the "equivalent incompressible body" can be scaled by β . The second assumption is that the displacement effect of the boundary layer is also predominantly in the y,z direction. Therefore in defining the off-body point location in the transformed plane the displacement thickness is first scaled by β . Since both the displacement thickness and the blowing velocity are most significant near the trailing edge both of these assumptions are valid.

It should be pointed out that the interactive viscous calculation is performed entirely in the physical plane. The Mach number correction outlined above is used to provide the compressible external velocity distribution.

While the compressibility correction will provide a good approximation at lower angles of attack, it becomes less accurate at higher angles of attack when the flow can become supercritical and shock waves can form through the leading edge region. Figure 14 shows the inviscid computed pressure distribution at the mid-semispan location computed by the present panel method and by the transonic full-potential wing/body code developed by Chen et al. [33] at $\alpha = 6.84^{\circ}$, 10.75° and 12.95° for M = 0.6. At the lower angle of attack the two procedures agree well except close to the leading edge where the transonic code predicts a higher suction peak. However, at $\alpha = 12.95^{\circ}$ the transonic method predicts a shock wave and a larger difference in the pressure distribution through this region is predicted.

The second wing/body test case which has been considered is the Advanced Navy Fighter (ANF) for which experimental data is available [34]. This configuration was tested experimentally both with and without a canard. Figure 15 shows the computed and experimental lift distribution for this configuration without the canard and Figure 16 shows the viscous and inviscid pressure distribution compared with experimental data at $\alpha = 7.7^{\circ}$ across the span. It can be seen that there is good agreement. The only other pressure data for this particular configuration is for $\alpha = 22^{\circ}$ at which angle the data shows the presence of a shock wave near the leading edge suction peak. Due to the limitations of the compressibility correction outlined above this case has not been pursued. The effect of the canard is shown in Figure 17, in which the computed viscous lift distribution is shown with and without the canard. This case was run with the canard at zero deflection angle for which there was no experimental data, and the viscous effects were computed only on the main wing.

The final configuration which has been investigated is an unmodified F-15 wing/body for which experimental data was obtained by Anderson [35]. Figure 18 shows the computed and experimental lift curves from which it can be seen that there is good agreement up to 8.66° angle of attack. Figure 19 shows the computed pressure distribution for 8.66° which is in good agreement with the experimental data.

SECTION IV PROGRAM DESCRIPTION

The method developed here calculates the viscous flow over a lifting body through the use of an interactive boundary-layer technique in which a threedimensional panel method is coupled with a finite-difference boundary-layer method. Two distinct boundary-layer procedures have been adopted, the first of which uses a two-dimensional strip theory approach while the second is a quasi-three-dimensional boundary-layer method.

The structure of the code is illustrated in Figure 20, which gives a schematic flow chart of the code. There are three major computational modules required, namely the inviscid panel method, the two-dimensional boundary-layer routines and the quasi-three-dimensional boundary-layer routines. The communication between the potential flow code and the boundary-layer routines is handled through the use of external disk storage.

For a given flow condition the inviscid solution is first computed and the pressure distribution over the wing is saved. If the 2-D boundary-layer mode is selected, this data is separated into strips, and an interactive boundarylayer calculation is performed independently for the upper and lower parts of each lifting strip using the method outlined in Section 2.2.5. Bach of these boundary-layer calculations require a number of iterative sweeps over each surface in order to match the current external velocity distribution, given by Eqs. (2.18) and (2.19), with that computed by the boundary-layer equations, (2.47) and (2.48). Once these inner iterations have been completed and the corresponding displacement thickness and blowing velocity has been computed these data are transferred back to the inviscid flow code and the external velocity distribution is updated to incorporate the viscous effects. One complete iteration between the viscous and inviscid codes is referred to as a cycle. Several such cycles are usually performed in order to obtain a fully converged solution in which the computed viscous and inviscid solutions match one another. The precise number of cycles performed is governed either by an input parameter which specifies the maximum number of cycles, or else by a convergence check which is based on the maximum change in a displacement thickness parameter form one cycle to the next. Typically up to 5 cycles may be required for a fully converged solution.

Ì.

A similar procedure _s employed for the quasi-three-dimensional boundary layer method with interface routines handling the transfer of the data between the viscous and the inviscid codes. In this case the data required is more extensive than that required for the two-dimensional boundary-layer calculation since surface coordinates and curvatures are required for the complete surface. Therefore, the interface program accesses the velocity data produced by the inviscid calculations, and computes a dividing line separating the upper and lower portions of the wing flowfield. For each surface, a boundary-layer grid is now defined and the geometric surface curvatures and the velocity components are interpolated onto the boundary-layer grid. The quasi three-dimensional boundary-layer procedure now iterates over each surface in a similar fashion to the two-dimensional approach in which the perturbed inviscid velocity is matched with that computed by the boundary-layer equations, (2.42) - (2.46). The computed displacement thickness and blowing velocity is then transferred back to the potential flow code for the next viscous/inviscid cycle.

After a converged solution has been obtained for the first specified angle of attack, the process is repeated for the next angle of attack. However, rather than start the calculation using the purely inviscid potential flow solution, the blowing velocity and displacement thickness computed for the previous angle of attack are used for boundary conditions in the first inviscid flow solution. Therefore, when running multiple angles of attack, the angles should be specified in increasing order. In this way the number of cycles required for a converged solution is reduced, particularly at higher angles of attack when boundary-layer separation can lead to fairly large displacement thicknesses. To take further advantage of this fact, the program may be exe cuted in a restart mode in which data stored by a previous run may be input as a starting solution for the next angle of attack to be computed. After each run, the following two datasets may therefore be saved for use in a subsequent run:

Unit #33 This stores the blowing velocity and the displacement thickness data.

26

and

Unit #47 This unit stores the geometric coefficients of the airfoil appearing in the interaction formula used in the quasi three dimensional boundary layer method.

or

Unit #51 - This unit stores the geometric coefficients of the airfoil appearing in the interaction formula used in the two-dimensional boundary-layer method.

The user can therefore run a range of angles of attack either by specifying all of the angles of attack in one single run, or else as a series of separate runs which make use of the restart capability.

4.1 Input Data Description

4.1.1 Body Geometry

The input to this program consists of the coordinates of a number of points that define the surface of a three-dimensional configuration on which the flow is to be computed. For the purpose of organizing these points for computation, each point is assigned a pair of integers, m and n. These integers need not be input, but their use must be understood to insure the correctness of the input and to facilitate the interpretation of the output.

For each point, n identifies the "column" of points to which it belongs, while m identifies its position in the "column," i.e, the "row." The first point of a "column" always has m = 1. To insure that the program will compute outward normal vectors, the following condition must be satisfied by the input points. If an observer is located in the flow and is oriented so that locally he sees points on the surface with m values increasing upward, he must also see n values increasing toward the right. Examples of correct and incorrect input are shown in Figure 21. In this figure the flowfield lies above the paper, while the interior of the body lies below the paper. Occasionally, it happens that despite all care a body is input incorrectly. If the entire body is input incorrectly - not some sections correctly and some incorrectly - the difficulty can be remedied by changing the sign of one coordinate of all the input points. This trick will give an input body of the proper shape at perhaps a peculiar location. Otherwise, the input will have to be done over.

The body surface is divided into sections, which may be actual physical divisions or may be selected for convenience. A section is defined as consisting of a group of at least two n-lines. Within each section the n-lines
are input in order of increasing n. On each n-line the points are input in order of increasing m. All n-lines in a section must have the same number of points, but this may vary from section to section. The first n-line of the first section is n = 1. From then on the n-lines may be thought of as numbered consecutively through all sections, i.e., the numbering is not begun over at the beginning of each section. Panels will be formed that are associated with points on every n-line except those that are last in their respective sections. Points on these latter n-lines are used only to form panels associated with points on the next lowest n-lines.

To illustrate this procedure, consider the plan view of a body shown in Figure 22. This body has been divided into four sections, as shown in the figure. The first section contains four n-lines, n = 1, 2, 3, 4; the second, five n-lines, n = 5, 6, 7, 8, 9; the third three n-lines, n = 10, 11, 12; and the fourth three n-lines; n = 13, 14, 15. The number of points on each n-line are:

Section = $1 \ 2 \ 3 \ 4$ M = $4 \ 7 \ 4 \ 2$

Notice that the line n = 4 has only four points, the points m = 1, 2, 3, 4 and the m-grid of Section 1, which is listed in the figure along the n = 1 line. The lines n = 4 and n = 5 are physically identical. Some of the points on the two lines are physically identical but correspond to different values of m. This is of no consequence. In this scheme sections are completely independent. No elements are computed corresponding to points on lines n = 4, 9, 12, 15.

There is no restriction that the m and n lines of different sections have to be roughly parallel. The arrangement shown in Figure 23 is permissible.

As discussed in Section 2.1, the body is divided into lifting and nonlifting sections. The arrangement of the input requires that all lifting sections precede nonlifting sections with a one-point-per-card format of (3F10.5,2I1) with a maximum of 2000 <u>panels</u> and 100 <u>strips</u> defining the configuration. This data is input to the program through Unit #29. Also, since the boundary-layer calculations can be made for only one lifting section, this section must precede any other lifting sections. The two integers that follow each set of coordinates are the status flag and label flag, respectively, that is

STATUS FLAG	LABEL FLAG
2 - new section	1 - lifting body, or 0 - nonlifting body
l - new N-line	(these flags are needed only when STATUS FLAG = 2)
0 - same N-line	
3 - end of input	

for the whole body

4.1.2 Namelist Block Input

and southers, which it southers

There are two namelist blocks that contain two groups of input data.

Namelist Name A:

This namelist block consists of all the control flags and flow conditions required to control the interactive viscous calculation.

Var	iables

Remarks

LIFT3D	Control flag for the execution of the potential-flow program.
	= 0 Skip the initial potential flow and execution will start with the boundary-layer code.
	= l Use the potential flow program for every cycle. (default is l)
IBL3D	Control flag for executing a boundary-layer program. = 0 Use the two-dimensional boundary-layer program. = 1 Use the quasi-three-dimensional boundary-layer program. (default is 0)
K INKNO	Total number of "kink" stations input ("kink" station means a discontinuity in the planform of the first lifting section).
	(default is 0, maximum is 5)
MS	Station numbers where "kink" occurs in the planform. The order of these "kink" stations should be in the same order as the spanwise stations input to the Neumann program. They are also part of the input spanwise stations. (default is 0)
MLINE(1)	Number of defining chordwise points on each N-line of the i-th lifting section.
NLINE(1)	Number of defining spanwise points on each M-line of the i-th lifting section.
MAXCYC	Maximum number of interaction cycles. (default is 0)

<u>Variables</u>	Remarks
MAXANG	Number of angles of attack to be calculated. (default is 1, maximum is 10)
IPNTGM	Optional (debug) print flag for the interfacing program. = 0 No intermediate print. = 1 With intermediate print. (default is 0)
IPNTNU	Optional (debug) print flag for the potential flow program. = 0 No intermediate print. = 1 With intermediate print. (default is 0)
IPNTB3	Optional (debug) print flag for the quasi-three-dimensional boundary layer program. = 0 No intermediate print. = 1 With intermediate print. (default is 0)
DBMAX	Maximum difference in circulation values generated from potential flow solution for convergence. (default is 0.01)
ALPHAI	Input angles of attack values. Total number input = MAXANG. (default is 0.0)
AMACH	Input Mach number. (default is 0.0)

Namelist Name B:

NY SYN

Namelist B contains the geometric variables and control flags which pertain to the potential flow calculation.

<u>Variables</u>	Remarks
BOV2	The semi-span value of the lifting body. (default is 1.0)
IAUTOW	<pre>Automatic wake generation flag: = 1 Program generates bisector wake. = 2 Program generates flat wake, i.e. wake panel is parallel to the x-axis. = 0 User input wake panels. (default is 1)</pre>
1PCV	Chordwise vorticity flag. = 0 Constant vorticity used. = 1 Parabolic vorticity used. (default is 0)

Variables

The state of the state of the state of the

Remarks

NOTE: This flag controls the form of the predetermined chordwise bound-vorticity variation discussed in Section 2.1. For wings with cusped or thin trailing edges, the constant variation may lead to unrealistic variations in the pressure close to the trailing edge. In such cases, the parabolic variation should be used. Otherwise the constant chordwise option should be used.

- ITERAT Matrix Solution flag.
 - = 0 (direct solution for 350 panels or less, otherwise use iterative solution).
 - = 1 Iterative solution.
 - = 2 Direct solution.
 - (default is l)

Note: Iterative solution must be used when viscous calculations are made.

IVNSP

- Nonuniform Flow/Specified Normal Velocity flag.
- = 0 No nonuniform flow or blowing velocity.
- = 1 Nonuniform Flow Specified. In the case onset flow velocity components at every control point must be input on Unit 33 in 3F10.6 card image format. Otherwise velocity components are computed from freestream flow direction.
- - Subsequent records: required normal velocity (FORMAT 1F10.6) with 1 record for each control point in the k-th section. These cards are repeated for each section for which nonzero boundary condition is satisfied.

NOTE: These options are only available for a purely inviscid calculation.

LIFSEC Number of lifting sections input. NOTE: Boundary-layer calculations can be made for the first lifting body only.

LINEAR Spanwise vorticity flag.

- = 0 Constant vorticity used.
 - = l Linear vorticity used. If selected, the variables, NLINEL and NLINEN must be input. (default de 0)

(default is 0) NOTE: This flag controls the variation of spanwise vorticity across a given lifting strip. The level on each strip is determined by the Kutta condition as discussed in Section 2.1.

<u>Variables</u>	Remarks
NLINE1(1)	<pre>Condition for the first N-line of the i-th lifting section. = 1 The first N-line is the wing tip. = 4 The first N-line belongs to an extra strip or is next to a symmetry plane.</pre>
NLINEN(1)	Condition for the last M-line of the i-th lifting section. = 1 The last N-line is the wing tip. = 4 The last N-line belongs to an extra strip or next to a symmetry plane.
LIST	Geometry formation flag. = 0 Complete potential flow calculation modes. = 1 Calculation stop after geometry formation (default is 0)
NOFF	Off-body point flag. = 0 No off-body point input. = 1 Off-body point input. (default is 0) NOTE: Off-body points are points in the flow at which the velocity and pressure are to be computed. If this option is used, the off-body coordinates must be supplied on Unit 32 using 3F10.6 card image format.
NSYMI	First plane of symmetry flag. = 0 No symmetry. = 1 One plane of symmetry (about the x-z plane). (default is 1)
NSYM2	Second plane of symmetry flag. = 0 No second plane of symmetry used. = 1 Symmetry about the y-z plane (NSYM1 must also be = 1). (default is 0)
ORIGNX ORIGNY ORIGNZ	The x,y,z coordinates of the input moment origin (default is 0, 0, 0).
NSORCE(1)	Number of on-body panels per strip for the i-th lifting section.
NWAKE(1)	Total number of wake panels input for the i-th lifting section. (If IAUTOW \neq 0, NWAKE \equiv 1)
NSTRIP(1)	Total number of strips in the i-th lifting section.
IXFLAG(1)	Extra strip option input for the i-th lifting section. = 0 No extra strip. = 1 First strip is an extra strip. = 2 First and last strips are extra strips. = 3 Last strip is an extra strip.

5227H

<u>Variables</u>

Remarks

NOTE: An extra strip is a strip of panels on a lifting section which carries a vorticity distribution but on which no boundary conditions are satisfied. Such a strip is used for instance at an intersection between a wing and a fuselage in order to provide a more accurate carry-over of the wing lift across the fuselage. In this case the extra strip is internal to the fuselage, and it extends from the wing root to the fuselage centerline. Further details of the use of extra strips is discussed by Hess [36].

REFCHD Reference chord value. (This is needed for the calculation of the lift coefficient.) (default is 1.0)

RFAREA Reference area value. (This is needed for the calculation of the lift coefficient.) (default is 1.0)

4.1.3 Boundary-Layer Calculation Data Input

(a) Card number 1 Format (6F10.0)

Card Column	<u>Variables</u>	Remarks
1-10	RCx10 ⁻⁶	Reynolds number based on CREF.
11-20	CREF NOTE: Th above. C Reynolds e.g. If t Reynolds	Reference length. In the same physical units that are used for the input geometry. Is need not be the same value as REFCHD used REF is only used to calculate the local number in terms of the input coordinates. The geometry is specified in inches, and the number/ft is input, then CREF would be 12.
31-40	FRSTAT	 = 1.0 Option for using a previous angle of attack solution as an initial estimate for the current angle of attack calculation. = 0.0 Option not used (or the initial run).
41-50	FPRNT	<pre>= 1.0 Detailed boundary-layer print. = 0.0 No boundary-layer print.</pre>

(b) Card Number 2 Format (6F10.0)

Card Column	<u>Variables</u>	Remarks
1-10	PNBLU	Number of boundary layer stations at which calculations are made on the upper surface of the first lifting body (max \neq 100).
11-20	PTR IU	 Transition input flag 0 Transition location specified across the span. See Cards 3 and 4. 1 Transition calculated by the program at pressure peak. 2 Transition calculated by the program using Michel's criteria.
21-30	FSWPU	Number of iteration sweeps to be made for the upper surface. (FSWPU = 10.0 is recommended)
31-40	FNTRU	Number of transition locations to be specified. (if FTRIU = 0)

(c) Card number 3 (needed only if FTRIU = 0).
Format (6F10.0)

<u>Card Column</u>	Variables	Remarks
1-10	YTRN	Spanwise location, in the input geometry system, where transition will be specified (this location does <u>not</u> have to correspond to the coordinates used to define the geometry).
11-20	YTRN + 1	
	•	
	•	
51-60	YTRN+5	

(Repeat this card if necessary until 1 = FNTRU.)

(d) Card number 4 (needed only if FTRIUE 0). Format (6F10.0)

Card Column	Variables		Re	<u>marks</u>
1-10	XCTRN	<pre>x/c chordwise transition.</pre>	location -	of specified

11-20 XCTRN+1 . 51-60 XCTRN+5

(Repeat this card if necessary until $i \neq FWTRU$.)

The following cards, numbers 5, 6 and 7, have the same format as cards 2. 3 and 4 and the variables have the same meaning but correspond to the lower surface.

(e) Card number 5 Format (6F10.0) Variables FNBLL, FTRIL, FSWPL, FNTRL

FSWPL = 5.0 is recommended.

(f) Card number 6 Format (6F10.0)

Variable YTRN

(g) Card number 7 Format (6F10.0)

Variable 🗠 XCTRN

Note that the chordwise location of specified transition must be preceded by a minus sign when it is being input on the airfoil lower surface.

The cards in this section, (a) through (g), are to be repeated for each angle of attack calculated.

4.2 Output Data Description

4.2.1 Summary

Potential Flow

The following data are printed for the potential flow calculation:

I. Input flags.

5227H

II. Panel formation.

III. Matrix solution (by iteration method).

IV. Solution summary. This includes:

lift coefficient, drag coefficient, pitch, roll, yaw and η values for each lifting and nonlifting section, plus the same set of data for the whole configuration.

V. Final cycle. For every panel, the following data are printed:

- . panel number
- . control point coordinates x_0 , y_0 , z_0
- . inviscid velocities v_x, v_y, v_z
- . inviscid total velocity V $_{\rm T}$ and viscous corrected pressure coefficient Cp
- . displacement thickness DELS
- . shape factor H
- . skin friction CF.

4.2.2 Format

A test case consisting of one lifting and four nonlifting sections with a total of 221 panels, Figure 24, was created to present a sample of the program output, and a listing of this geometry (input through Unit #29) is presented in Table 1. Two angles of attack were calculated with the transition locations on the lifting section computed by the program. The namelist block input for this case is:

REPORT TEST CASE, TRANS. CALC., 2DSTRIP BL, M=D.6, ALPHAS 24 LIFT3D=1, IBL3D=0 MAXCYC=2, NLINE=5, MLINE=21, MAXANG=2, ALPHAI (1) =1.3, ALPHAI (2) =3.4, AMACH=0.8, &END 4B BOV2=12.955, IAUTOH=2, NSYM1=1, LIFSEC=1, REFCHD=8.2912, LINEAR=D, IXFLAG(1)=3, IPCV=1, RFAREA=95.904, NSORCE=20, NSTRIP=4, NHAKE=1, 4END 7.O 12.0 0.0 0.0 70.0 2.0 10.0 51.D 2.0 5.0 7.0 12.0 0.0 0.0 70.0 2.0 10.0 51.0 2.0 5 0

For conciseness, the output presented here will be the pertinent information for the first angle of attack only and is shown in Figure 25.

Table 1. Input geometry data for the sample test case.

2	6.865788300	6.692972200	6.438945900	6.247252500	6.169997200	6.159999620	6.161227200	6.160467200	6.157036600	6 151741000	6 149514000	A 150366700	A 149361600	A 1 45A74500	0.139999400	6.899999610	6.886820300	6.767053600	6.616421700	8.435597400	8.237466700	6.053067200	5.914361000	5.416710300	5.75999300	8.00000010	7.875558900	7.607360800	7.261573300	6.911097500	6.517292000	8.135311100	5.845423/UU	5.66/01/900 5 579999900		7.883428700	7.606372800	7.278782800	6.909449600	6.516009200	6.137653400	5.843463900	5.672342300	5.579999900	9.399999610	9.14633/2UU	8.067444800	7.672409100
у	0.000000	0.0000000	0000000.0	0.0000000	0.000000	0.000000	0.0064315	0.0096637	0.0104338	0 0103374	0 0085511	0.0007379	-0.0001927	- 0 000111			D.1928538	0.3631767	0.4916574	0.5607882	0.5604406	0.4959062	0.3600965	0.1680037	0.0000000.0	0.000000	0.3757820	0.6720765	0.9096854	1.0701628	1.1407099	1.0307589	0.752//32	0.3936298		0.3798224	0.6668429	0.9006196	1.0839114	1.1430740	1.0284891	D.7542607	0.3924283	0,0000000		0 7953402	0.7559274	1.1665621
×	25.103776	28.737854	28.032578	28.058948	29.138998	1.4399998	1.4399998	1.4399996	1.4399998	1 439996	1 4398996	1 4399996	1 1399986	1 130000	1 1399996		3.000000	3.000000	3.000000	3.000000	3.000000	3.000000	3.000000	3.000000	3.0000000	6.600004	6.600004	6.600004	6.600004	6.800004	6.600004	6.600004				6.600004	6, 600004	6.600004	6.600004	6.600004	6.600004	6.600004	6.600004	6.600004	9.040000 9.540000		9.040000	9.040000
	0	0	0	0																									0	0		01							Đ	0	0	0	0	0	•		10	
2	5.47832720	5.45894340	5.50272940(5.59085580(5 89221880	5 7743A070	E AKKAAA		5 1502790	00000000000000000000000000000000000000		0011007/00 2 400001200			0.00000/21			5 49061970	5.53888390	5.8197443D	5.69693760	5.75926780	5.78821100	5.87724400	6.99894250	6.13642690	8.21539210I	8.24798110	6.22560120	B.11573030(5.96144770	5.82485550(5.71483330(5.669999720(5.66999720(0.1000121 0.1000121 0.1000101	8.14668080101 14668080801	B.15012930(8.235987600	8.41273690(B.65752510	8.92858510(7.15018270(7.28252120	7.422036200	7.55301000	7 558009304	7.437680201	7.25373550
Y	988888999	5.689999	5.0989998	5.699996	5.899999	288888 3									1010100		1.6478520	1.7761669	1.8357840	1.9419851	2.0539112	2.1326818	2.1750240	2.200370	2.1932545	2.1300517	2.0326290	1.9267607	1.8385239	1.7746887	1.6663613	1.6216641	1.6258926	1.6310434 D 0000000			0.000000	0.000000	0.0000000	0.0000000 0	0.000000	D. DODODOD . D	0.000000	0.000000				0.0000000
×	22.049986	21.488964	21.29A306	21 491823	22 046347	22 921 DE1	24 025009	25 251343	26 478624	97 E 9 2 94					4//191.82		27 029526	25 58823	23.996252	22.388657	20.849631	19.006320	19.071396	16.846466	19.097687	19.618451	20.959732	22.402405	24.003601	25.801135	27.038620	26.180145	28.911484	29.181/74		28.003937	26.688950	25.034119	23.206055	21.384949	19.750641	18.454025	17.620010	17.362259	17.844577	16.455U55	21.457535	23.286606
																																			•													
7	669997221	. 659527600	642726900	827047500	804248100	SALARI 200	5285300										641705500	643177000	875870900	003478500	869997200	669997210	658049600	00512100	569171900	556603700	522551500	469905900	443327900	426945700	395872800	438118900	507829700	547428100		750865900	741601900	711964600	696475000	660374100	669997200	669997210	851124000	587138200	509122800		476083800	476463300
>	1.950000 5.	t.950000 5.	1.950000 5.	2. 000000 S.	PECODO 5													950000 5	950000 5	00000 E.	0.950000 5.	3299999 5.	3299999 5.	3299999 5 .	3299999 5.	3299999 5.	3299999 5.	3299999 5.	3299999 5.	32999999 5.	32999999 5.	3299999 5.	3289999 5.	32899999 5.		328998995	32999988 5.	3299999 5.	3299999 5.	3299999 5.	3299999 5.	6999996 5.	8989888 5.	6999998 5.	89999988 5.		69999988 5.	6999998 5.
×	. 320007 11	1.248164 14	0.039001 11	1.712470 12	1.301103 11	7 848039 11	7.390961 12	579996 12		1 44442 13			. 441408 14	5 0000000 (1 110000 13	296240 12	706923 12	036696 12	0.247643 12	0.320007 12	0.270004 9.	1.137955 0.	. 758011 9.	1.162079 9.	. 409807 9.	1.578279 9.	. 743439 8.	1.991623 9.	. 394516 9.	.012192 9.	.888367 9.	1.009415 9.	. 391281 9.			400664 9	154190 9.	. 753342 8.	1.138048 9.	0.270004 9.	.220001 5.	0.026016 5.	. 466064 5.	. 591843 5	.455252 b.		927994 5.
	1	ž	~	2	ž	-	i 🗟		i õ	1		í •	1	i	5	16	1	ä	17	2	2	2	2	2	2	2	21	25	2	24	2	2	Ň	N 9	4 Q	10	2	2	2	28	28	26	21	2	Ñ		10	22

5227H

37

Table 1. Continued

x y z		×	У	Z	×	У	2
			0911916 6	8 1831 J8300	35 999989 1	1518841	365452800
7//27557/ 2//2//2//7//2//2//2//2//2//2//2//2//2//2			2 4 2 7 3 2 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		35,9998969 1.	4077408	017142300
9.000000 1.04009/4 0.9/1/003/ 9.040000 4.04034 0.040000				0. 600401100 0. 60040040	35 999969 1	5382034	
J/DC+DDD. 0 /BT+D+D.T DDDDDDD.0					35, 899969 1.	5333587	7.173847200
			0.0100100		35,999985 1	4977827	3.743378600
11.470000 D.0000000 9.4399961	2	0.803854	1.6052437	877392000	35.999969 1.	. 3129396	8.353323000
11.470000 0.5272306 9.1727762C	20	0.906996	2.0392551	8.391488100	13.239998 2.	. 4958245	3.089366620
11.470000 0.7217981 8.62677980	20	3.896912	2.0498791	7.846530900	13.239998 1.	. 6680210	5.995590200
11.470000 1.1584234 8.2670376C	2	0.687115	2.0407487	7.302267100	13.239998 1.	. 2355471	5.953220400
11.470000 1.4464529 7.7633656		0.884354	2.0329008	8.757774400	13.238888 D.	8213136	0./56118/UU
11.4/UUUU 1.4518241 /.165U5114			2.0350522	6.21355/5UU	10.144000 C.		0.00000/000 5 0.8537610
11.4/UUUU 1.436U/14 0.00104141 11 470000 1 1543350 6 03072170		. 69663/ 9 902847		B. UU148/31U B. ARKA10500	18.429657 1.	7531338	5.831500100
11.470000 0.6007650 5.78311250		. 901566	1 0143394	6.696937400 6.696937400	16.428345 1.	1574840	5.780499500
11.470000 0.0000000 5.6999696	2	901718	1.4788266	6.687146200	16.428558 D.	. 5921336	5.612080600
13.240000 0.0000000 9.1599981	23	. 892563	1.7295752	8.254428900	16.428741 D.	0000000	5.531056400
13.240000 0.4588436 8.8806024C	23	. 894165	1.8317699	7.755268200	18.826660 2.	.1972666	5.858490110
13.240000 0.9617693 6.5969236[23	. 885254	1.8213902	7.245464400	18.832535 1.	./481203	5.612126400
13.240000 1.4048888 5.21441460 43 340000 4 5443636 7 63366440		9.885834	1.8420534	8.735670100 • ^^^^	10.0630U0 1.	50044444	0.0/0/10/00
13.640000 1.9416060 /.03066446 43 310000 4 567000 7 03405575			27/9749.1	0.2208//9010	18 831085 0.		
13.540000 1.96/6000 /.036999/L		9.974492	0.0000000		20.888703 2.	0584173	5.698275810
13.240000 1.1558982 5.9570923C		972397	0.4651402	R 728383100	20.679913 1	7316999	5.396406200
13.240000 0.5905445 5.7697688C	26 26	1.965439	1.3427353	8.403904900	20.876480 1.	.1529741	5.371751800
13.240000 0.0000000 5.67999940	26	8.957245	1.5826340	7.965964300	20.881332 D.	.5750989	5.334808300
13.240000 D.0000000 9.1600032	20	1.959717	1.6738930	7.473424900	20.878632 D.	. 0000000	5.280242900
13.239998 U.5253173 B.85488990	26 26	3.957230	1.6788139	8.973434400	23.872177 1.	. 8409662	5.543289210
13.239998 1.0979891 8.57140350	20	.959368	1.6910200	6.472663900	23.855942 1.	. 4630432	5.435104400
13.239996 1.5787401 8.1857996[1.969768	1.6907854	5.971776900			0000010000
13.238996 2.23/2141 8.19121461 11 210096 2 7871842 7 93842237		.432983 125518		8.92383461U 0 839378400	23.849945		5.480190300
13.239998 2.8483D87 7.2823963C		.433823	0.9718443	6.640609700	26.953262 1.	.6929741	5.520196910
13.239996 2.8114061 6.63442800	28	1.426285	1.3321495	8.28244000	26.940323 1.	4043455	5.558596600
13.239998 2.4954042 8.08930870	20	1.420990	1.5627708	7.627076800	26.936279 D.	.9289543	5.888654400
16.429108 0.0000000 8.93905071	59	1.423691	1.6276817	7.321527500	26,933533 U.	.4746038	5.6715546UU 5.872546UU
10.420300 U.0114033 0.033422UL 12 437923 1 1782852 0 88358005		1 4 2 3 / 3 B	1.6206820 4 6270249	6.61U544UU 6.300611100	28.438095 1	6290388	5.823371110
16.434341 1.6870451 6.3610077C	28	442627	1.6164026	5 789165500	28.421432 1.	. 3282881	5.639211700
16.426437 2.2952356 8.29043390	g	0.761002	0.000000	8.918388410	28.416946 0.	. 8805089	5.775707200
16.432297 2.4785501 7.73080640	30	0.761002	0.4970595	8.827903700	28.416656 0.	4509697	5.730981800
16.428482 2.4784088 7.1183176C	ğ	0.761002	0.9552400	8.622665400	28.417343 0.		5.657381100
18.425522 2.4915514 8.50598050		0.781017	1.3005413	8.265527700	30.773056 1.	.8295404	5.824080510
16.428421 2.3335943 5.93847270		0.761002	1.5700121	7.834810900	30.773056 1.	.2827339	5.800822300
	0	1.781017	1.8472712	7.338636300	30.773056 0.	. 6504359	0.89/216800
15.830780 0.8015922 8.8574457(0.761002	1.6413708	B.833274800	30.1/30/1 0.		5./518561UU
18.529/12 1.18/8/48 8./U16239(1.781002	1.6388779	8.327983900			0./100001/0
16.835/39 1./53/4/9 8.5244064[1.781002	1.6295509	5.822973300	1 72 000000 1	.312318/ 1703580	
10.02000/ 2.2011/10 0.2010201 15 50000 0 0711515 7 87510015				8.83404410 8.834646700		7593449	5 81 D1 7 4900
10.032000 6.6/11010 / 0/01201 10 030638 0 0706403 7 08798655			U.440000/	0.021040/UU		3865908	00203010
	2	, 10000			38.000000 0.	. 000000	619998000

4.3 External Units

There are a total of 50 external units required although they are not simultaneously used. A list of the unit numbers and types follows:

- 1. Direct access data sets:
 - Unit #20 400 records, each 200 words long potential flow velocity
 - Unit #61 3280 records, each 990 words long used for quasi-3-D boundary-layer program
 - Unit #62 41 records, each 990 words long used for guasi-3-D boundary-layer program
- 2. Sequential data sets: This includes units 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 56, 47, 51, 63, 64, 65, 66, 67.

Unit #29 is the geometry data set for the input body. These datasets are used both for the inviscid velocity calculation and for the communication between the viscous and the inviscid parts of the calculation.

- 3. Datasets required to be saved:
 - Unit #34 This unit contains the inviscid velocities and control points.
 - Unit #33 This unit contains the blowing velocities and the displacement thickness values for viscous/inviscid interactive runs.
 - Unit #51 This unit contains some input data to the 2-D boundary-layer program.
 - Unit #47 This unit contains the blowing velocities from the 3-D boundary-layer program.

4.4 CRAY JCL

An example of the JCL required for the execution of the program on CRAY using the two-dimensional strip theory boundary-layer procedure, follows. Example 1 is for an initial calculation with the appropriate data saved for subsequent runs and example 2 shows how the previously saved data is used to make additional calculations.

By ample 1

JOB, JN=xxxxx , T=900, MFL=2000000. ACCOUNT, US=xxxxxx , UPW= xxxxx , AC=xxxxxxxx COPYF, I=\$IN, O=INPUT. COPY INPUT FILE REWIND, DN=INPUT. COPYF, I=\$IN, O=GEOM. COPY INPUT FILE REWIND, DN=GEOM. ACCESS, DN=KCMCAIR, PDN=KCMCAIRCRAY, ID=OBJLIB. STATIC, LEVEL = NEW. BUILD, I=0, L=0, OBL=KCMCAIR, B=0, NBL=MCARBIN, NODIR. CREATE SEQUENTIAL BIN ALLOCATE APPROPRIATE FILES ASSIGN, DN=INPUT, A=FT05. ASSIGN, DN=\$OUT, A=FT06. ASSIGN, DN=GEOM, A=FT29 ASSIGN, DN=FILE34, A=FT34. ASSIGN, DN=FILE33, A=FT33. ASSIGN, DN=FILE51, A=FT51. MODE, FI=DISABLE. SEGLDR, CMD= 'BIN=MCARBIN'. LINK BINARIES SABD. EXECUTE LOAD MODULE saved for SAVE, DN=FILE34, PDN=INVELNEW. SAVE OUTPUT DATASET FOR THE NEXT CAL. future SAVE, DN=FILE33, PDN=BLOW2DNEW. runs SAVE, DN=FILE51, PDN=BL2DINPNEW. EXIT. /EOF F15 WITH LAMINAR BUBBLE WING, MULTIPLE ALPHAS, M=0.6 8A LIFT3D=1,IBL3D=0,MAXCYC=2,MLINE=51,NLINE=14, MAXANG=2, ALPHAI(1)=6.95, ALPHAI(2)=8.95, AMACH(1)=0.60, AMACH(2)=0.6,8END &B BOV2=13.008,IAUTOW=2,NSYM1=1,LIFSEC=1,NSTRIP=13, input IXFLAG(1)=3, NSORCE=50, NWAKE=1, RFAREA=96.7, REFCHD=8.325, & END data set 8.325 0.0 6 022 0.0 10.0 61.0 2.0 0.0 51.0 2.0 5.0 0.0 6.022 8.325 1.0 0.0 61.0 2.0 10.0 0.0 51.0 2.0 5.0 0.0 /EOF 32.966003 13.008000 5.949856821 32.924698 13.008000 5.950995400 32.863266 13.008000 5.952991500 32.782425 13.008000 5.956209200 32.683380 13.008000 5.959699600 32.567581 13.008000 5.961723300 geometry d<mark>ata s</mark>et 43.000000 1.3186102 5.600000400 43.000000 0.5522600 5.60000400 43.000000 0.1862400 5.60000400 43.000000 0.0000000 5.600000400 ∠EOF

Example 2

```
JOB, JN=#xxxxx , T=1200, MFL=2400000
ACCOUNT, US=XXXXXXX , UPH=XXXXXXXX, AC=XXXXXXXXXX
COPYF, I=$IN, O=INPUT. COPY INPUT FILE
REWIND, DN=INPUT.
COPYF, I=$IN, O=GEOM. COPY INPUT FILE
REWIND, DN=GEOM.
*. ACCESS PERMANENT DATASETS
Access, DN=KCMCAIR, PDN=KCMCAIRCRAY, ID=OBJLIB.
                                                                                      data from
ACCESS, DN=DUMMY34, PDN=INVELNEW.
                                                                                      previous
ACCESS, DN=DUMMY33, PDN=BLOW2DNEW
ACCESS, DN=DUMMY51, PDN=BL2DINPNEW
                                                                                      run
                        COPY DATASETS
                        COPY FILE34
REWIND, DN=DUMMY34.
COPYR, I=DUMMY34, O=FILE34, NR.
REWIND, DN=FILE34.
                        COPY FILE33
REWIND, DN=DUMMY33.
COPYR, I=DUMMY33, O=FILE33, NR.
REWIND, DN=FILE33.
                        COPY FILE51
REWIND, DN=DUMMY51.
COPYR, I=DUMMY51, 0=FILE51, NR.
REWIND, DN=FILE51.
STATIC, LEVEL=NEW.
BUILD, I=0, L=0, OBL=KCMCAIR, B=0, NBL=MCARBIN, NODIR.
                                                           CREATE SEQUENTIAL BIN
ASSIGN, DN=INPUT, A=FT05.
                              ALLOCATE APPROPRIATE FILES
ASSIGN, DN=$OUT, A=FT06.
ASSIGN, DN=GEOM, A=FT29
ASSIGN, DN=FILE34, A=FT34.
ASSIGN, DN=FILE33, A=FT33.
ASSIGN, DN=FILE51, A=FT51.
MODE, FI=DISABLE.
SEGLDR, CMD= 'BIN=MCARBIN'.
                                LINK BINARIES
         EXECUTE LOAD MODULE
$ABD.
                                                                                     saved for
SAVE, DN=FILE34, PDN=INVELNEW.
                                    SAVE OUTPUT DATASET FOR THE NEXT CAL.
                                                                                     future
SAVE, DN=FILE33, PDN=BLOW2DNEW
SAVE, DN=FILE51, PDN=BL2DINPNEW.
                                                                                     runs
EXIT.
∕E0F
FI5 WITH LAMINAR BUBBLE WING, MULTIPLE ALPHAS, M=0.6
&A LIFT3D=1,IBL3D=0,MAXCYC=2,MLINE=51,NLINE=14,
  MAXANG=2,ALPHAI(1)=7.95,ALPHAI(2)=8.95,AMACH(1)=0.60,
AMACH(2)=0.6,8END
 &B BOV2=13.008,IAUTOW=2,NSYM1=1,LIFSEC=1,NSTRIP=13,
                                                                                      input
  IXFLAG(1)=3, NSORCE=50, NWAKE=1, RFAREA=96.7, REFCHD=8.325, & END
                                                                                     data set
            8.325
                        1.0
                                    0.0
 6.022
 61.0
             2.0
                        10.0
                                    0.0
 51.0
                        5.0
                                    0.0
             2.0
             8.325
                                    0.0
 6.022
 61.0
             2.0
                        10.0
                                    0.0
 51.0
             2.0
                        5.0
                                    0.0
/EOF
 32.966003 13.008000 5.949856821
 32.924698 13.008000 5.950995400
32.863266 13.008000 5.952991500
 32.782425 13.008000 5.956209200
                                                                                     geometry
                                                                                     data set
 43.000000 0.5522600 5.600000400
 43.000000 0.1862400 5.600000400
 43.000000 0.0000000 5.600000400
∕E0F
```

```
5227H
```

المراجع المراجع

SECTION V TEST CASES

Three test cases were investigated: (1) F-15 with laminar bubble wing, (2) Advanced Navy Fighter (ANF), and (3) unmodified F-15.

5.1 Test Case 1 - F-15 with Laminar Bubble Wing

The coordinates of the geometry for test case 1 are given in model scale (4.7%) in inches. 1084 panels defined this configuration with 600 of them describing the wing, as shown in Figure 26. All of the calculations use the symmetry option of the program so that the given number of panels are for only half the configuration.

Inviscid and viscous calculations for Case 1 were made to compare with test data [32] at a Mach number $\simeq 0.6$, Rc $\simeq 8.5 \times 10^6$ /ft and a range of angle of attack from 6.84° through 15.83°. Viscous solutions were calculated by both the two-dimensional strip theory boundary layer and the quasi-three-dimensional boundary-layer procedures, and the location of transition was calculated by the program using Michel's criterion.

The input required to execute the two-dimensional strip theory boundary-layer procedure for case 1 was:

- A data set, Unit 29, Format (3F10.0, 2I1), containing the x,y,z coordinates of the geometry, and
- A data set, Unit 5, containing the flags, geometry and flow parameters, and boundary-layer parameters.

F15 - LAMINAR BUBBLE WING, A=6.84, M=0.6, TRANS. CALC. &A LIFT3D=1,IBL3D=0,MAXCYC=2,MLINE=51,NLINE=14, MAXANG=1,ALPHAI(1)=6.84,AMACH=0.60,&END &B BOY2=13.008,IAUTOW=2,NSYM1=1,LIFSEC=1,NSTRIP=13, NSORCE=50,NWAKE=1, RFAREA=98.7,REFCHD=8.325,&END 6.022 8.325 0.0 0.0 61.0 2.0 10.0 51.0 2.0 5.0

If more calculations are desired for additional, higher angles of attack, the results of the calculations of a lower angle of attack may be used for the initial guess for these calculations. The data saved on units 33 and 51 from

the first calculation is now used as input for the additional calculations and the namelist block input will appear as:

F15 WITH LAMINAR BUBBLE WING, MULTIPLE ALPHAS, M=D.6 4A LIFT3D=1, IBL3D=0, MAXCYC=2, MLINE=51, NLINE=14, MAXANG=2, ALPHAI(1)=10.75, ALPHAI(2)=12.95, AMACH=0.6, &END &B BOY2=13.008, IAUTOW=2, NSYM1=1, LIFSEC=1, NSTRIP=13, NSORCE=50, NWAKE=1, RFAREA=96.7, REFCHD=8.325, &END 0.0 8.022 8.325 1.0 61.O 2.0 10.0 5.0 51.0 2.0 6.022 0.0 8.325 1.0 61.0 2.0 10.0 51.0 2.0 5.0

To execute the program using the quasi-three-dimensional boundary-layer procedure, the input is identical to that of the two-dimensional strip theory boundary-layer procedure with the exception of the following flags in Namelist A: IBL3D = 1, INTF = 1.

5.2 Test Case 2 - Advanced Navy Fighter (ANF)

Geometry data for the Advanced Navy Fighter consisted of 6% model scale coordinates given in inches. The configuration (Figure 27) was defined by approximately 1200 panels which provided for 360 panels to describe the wing and 192 panels to describe the canard. Since the boundary-layer effects can be calculated on only one lifting section, this configuration was first run without the canard (Figure 27a) and the results were compared with experiment (Figures 15 and 16). Calculations with the canard on (Figure 27b) were then made and the effect was compared with the canard off case (Figure 17).

Because the wing is mounted so low on the fuselage the wing extra strip would protrude through the fuselage if it were defined as a continuation of the wing to the centerline as is usually done. Therefore the extra strip was tilted "up" so that it fell completely inside the fuselage so as not to change the fuselage geometry, See Figure 28.

Calculations for test case 2 were made for M = 0.5988, $R_L = 7.0 \times 10^6/ft$, $C_L = 0.45$ and $\alpha = 7.7182^\circ$ to compare pressure data given in Reference 34. Viscous solutions were obtained with the strip theory boundary-layer procedure being used to calculate the viscous effects. As in test case 1, the

transition location was calculated by the program using Michel's criterion. The namelist block input for this case was:

ANF .	NO CANARD.	, TRANS. CA	NLC., 2DS1	FRIP BL,	M=D.6	
&A LIF	T3D=0, IBL3	Ď=0,				
MAXCYC	=2, NLINE=8	, MLINE=51,				
MAXANG	=1, ALPHAI(1)=7.7182,	AMACH=0.6	S,&END		
&B BOV2	=12.955,IA	UTOW=2, NSY	/M1=1,LIF	SEC=1,RE	FCHD=8.29:	12
LINEAR	=D, IXFLAG(1)=3, IPCV=	:1,			
RFAREA	=95.904,NS	ORCE=50, NS	;TRIP=7,NI	√AKE=1,&	END	
7.0	12.0	0.0	0.0			
70.0	2.0	10.0				
51.0	2.0	5.0				

A series of calculations at various angles of attack were made to compare the calculated and experimental lift coefficients for the canard-off case. These calculations were repeated for the configuration with the canard to compare the calculated effect of the canard. The namelist block input for the configuration with canard for multiple angles of attack was:

ANF. (CANARD.,T	RANS. CALC.	, 2DSTRIP BL, M=0.6, MULT. ALPHA	S
EA LIFI	T3D=1,IBL	.3D=0,		
MAXCYC	=2,NLINE=	8, MLINE=51,		
MAXANG:	=6,ALPHAI	(1)=1.3,ALP	HAI(2)=3.4,ALPHAI(3)=4.7,	
ALPHAI	(4)=6.D,A	LPHAI (5) =7.	7182, ALPHAI (6) =9.2, AMACH=0.6, &EN	D
48 80V2:	=12.955,I	AUTOW=2, NSY	M1=1, LIFSEC=2, REFCHD=8.2912,	
LINEAR:	=O, IXFLÁG	(1)=3, IXFLA	G(2)=3, IPCV=1, RFAREA=95.904,	
NSORCE	(1) = 50, NS	ORCE (2) =48,1	NSTRIP (1) =7, NSTRIP (2) =5, NWAKE (1)	=1,
NHAKE (2	2)=1,&END)		-
7.0	12.0	0.0	0.0	
70.0	2.0	10.0		
51.0	2.0	5.0		
7.0	12.0	0.0	0.0	
70.0	2.0	10.0		
51.0	2.0	5.0		
7.0	12.0	0.0	0.0	
70.0	2.0	10.0		
51.0	2.0	5.0		
7.0	12.0	0.0	0.0	
70.0	2.0	10.0		
51.0	2.0	5.0		
7.0	12.0	0.0	0.0	
70.0	2.0	10.0		
51.0	2.0	5.0		
7.0	12.0	Ö. D	0.0	
70.0	2.0	10.0		
51 0	2.0	5.0		

5.3 Test Case 3 - Unmodified F-15

The unmodified F-15 geometry coordinates were full scale in inches. This configuration [35] was defined by 981 panels, 450 of which described the wing (F ig. 29). The wing is mounted high on the fuselage and as in the case of the Advanced Navy fighter configuration, the extra strip had to be tilted, in this case "down", so as not to protrude through the top of the nacelle. Figure 30 shows the arrangement of the panels on the wing used in the calculations of

test case 3. The measured data was obtained with a sting-mounted fuselage/wing configuration which included the vertical tail. The computed results, however, were for a configuration without the vertical tail.

Viscous and inviscid calculations were made for this configuration to compare with experiment [35] at M = 0.6, $R_L/ft = 5.78 \times 10^6$ for a range of angle of attack, 2.21° $\leq \alpha \leq 8.66^\circ$. The two-dimensional strip theory boundary-layer procedure was used in the interaction calculation to compute the viscous results. The namelist block input for test case 3 follows:

NEW F15	CONFIGURAT	TION, M=O.	8, STRIP2D	BL, TRANS	ITION INPU	T
AA LIFT:	3D=1,IBL3D:	:0,				
MAXCYC	=2, NLINE=11	, MLINE=61	,			
MAXANG	=2, ALPHAI (1	L) =4.36,AL	PHAI(2)=6.	51,		
AMACH=	D.6.KINKNO	1, MS=6, &E	ND	Ţ		
4B BOY2	=256.20,IAL	JTOH=2.NSY	M1=1, LIFSE	C=1,		
IXFLAG	(1)=3, IPCV:	1, REFCHD=	191.23, RFA	REA=43776.	, NSORCE=6D	
NSTRIP	=10, NWAKE=1	LAEND	•		-	-
4.33	191.23	0.0	0.0			
71.0	0.0	10.0	8.0			
254.0	220.0	185.0	150.0	115.0	8D.D	
0.05	0.05	0.05	0.05	0.05	0.05	
61.0	0.0	5.0	6.0			
254.0	220.0	185.0	150.0	115.0	80.D	
0.05	-0.05	-0.05	-0.05	-0.05	~0.05	
4.33	191.23	1.0	0.0			
71.0	0.0	10.0	6.0			
254.D	220.0	185.0	150.0	115.0	80.0	
0.05	0.05	0.05	0.05	0.05	0.05	
61.0	0.0	5.0	6.0			
254.0	220.0	185.0	150.0	115.0	80.0	
0.05	-0.05	-0.05	-0.05	-0.05	-0.05	

STATES AND A

SECTION VI CONCLUSIONS AND RECOMMENDATIONS

An interactive viscous/inviscid procedure has been developed for the computation of viscous flow over 3-D wing/body configurations. The method developed makes use of a three-dimensional surface-source panel method developed by Hess [11] and an inverse finite-difference boundary-layer procedure of [6].

Two alternative boundary-layer formulations have been considered, the first is a two-dimensional strip theory implementation [4] and the second [10] is a quasi-three-dimensional boundary-layer method. These procedures have been coupled with the external potential flow calculation via an interface routine which handles the necessary interpolation and transfer of data between the viscous and the inviscid parts of the calculation.

The present method is able to compute flows with both leading- and trailing-edge separations. In most of the cases considered here, the calculations were performed by computing transition by an empirical formula, which, at higher angles of attack, resulted in a separated region as much as 35% upstream of the trailing edge. However, at the conditions approaching stall, a small change in transition location led to regions of massive flow separation on the wing, which the present method handled without any numerical difficulties.

The studies conducted here indicate that at lower angles of attack there is very little difference between the results computed by either of the two boundary-layer procedures. However, at higher angles of attack, for which there are significant regions of flow separation, the quasi-three-dimensional boundary-layer procedure has been found to provide a useful improvement in the results when compared with the experimental data.

The inviscid method used here is general and can be applied to complex aircraft configurations. The viscous effects, however, are limited to the wing alone with some approximations. For example, the use of either twodimensional strip theory or the quasi-three-dimensional boundary-layer approximation is satisfactory at low to medium angles of attack. At higher angles

of attack, the flow becomes "more" three dimensional and the calculations should use the complete equations. Furthermore, the effect of the viscous wakes neglected in the solution procedure also becomes important at higher angles of attack and needs to be included in the solution procedure.

The viscous capabilities of the present computer code can also be extended to the other components of the airplane configurations to include, for example, multiple lifting sections, as well as the fuselage and other nonlifting components.

SECTION VII REFERENCES

- J. S. Shang, and S. J. Scherr, <u>Navier-Stokes Solution of the Flow Field</u> <u>Around a Complete Aircraft</u>. AIAA Paper 85 1509, 1985.
- B. R. Gilmer, and D. R. Bristow, "Analysis of Stalled Airtoils by Simultaneous Perturbations to Viscous and Inviscid Equations." AIAA C 20, 1982, pp. 1160-1166.
- T. Cebeci, R. W. Clark, K. C. Chang, N. D. Halsey, and K. Lee, "Airtoine with Separation and the Resulting Wakes," J. Fluid Mechanics, 163, 1986. pp. 323-347.
- N. D. Halsey, "Potential Flow Analysis of Multielement Airfeils Setre Conformal Mapping," AIAA J. <u>17</u>, 1979, pp. 1281–1288.
- T. Cebeci, <u>Separated Flows and Their Representation by Boundary Layer</u> <u>Equations</u>, Mech. Engg. Dept. Rept. ONR CR215 234 2, California State University, Long Beach, 1976.
- 7. T. Cebeci, and A.M.O. Smith, <u>Analysis of Turbulent Boundary Daress</u> Academic Press, N.Y., 1974.
- T. A. Reyhner, and I. Flugge Lotz, "The Interaction of a Dock wave with a Laminar Boundary Layer," Int. J. on Nonlinear Mech. 2012/064011 173-199.
- U. Mehta, K. C. Chang, and T. Cebech. "Relative Advantages of universative and Thin Navier Stokes Procedures." In Numerical and Physical Aspectation <u>Aerodynamic Flows III</u> (Ed. T. Cebech Springer Physica). Advance A. 2007 TM 86778.)

- T. Cebeci, K. Kaups, and A. A. Khattab, <u>Studies of Interactive Procedures</u> for Three <u>Dimensional Flows</u>. <u>Pt. 1, Separation and Reattachment Near the</u> <u>Leading Edge of a Thin Wing</u>. Douglas Aircraft Co. Rept. MDC J3835, 1985.
- J. J. Hess, "The Problem of Three Dimensional Lifting Flow and Its Solution by Means of Surface Singularity Distribution," Comp. Meth. in Appl. Mech. and Engg. <u>4</u>, 1974.
- R. J. Margason, S. O. Kjelgaard, W. L. Sellers, III, C. E. K. Morris, Jr., K. B. Walkley, and E. W. Shields, <u>Subsonic Panel Methods - A</u> <u>Comparison of Several Production Codes</u>, AIAA Paper No. 85-280, 1985.
- 13. J. L. Hess, and A. M. O. Smith, "Calculation of Nonlifting Potential Flow About Arbitrary Three Dimensional Bodies," J. Ship Research, Vol. 8, No. 2, 1964. (An expanded version is given in Douglas Aircraft Company Report No. ES 40622, 1962.)
- R. W. Clark, <u>A New Iterative Matrix Solution Procedure for</u> <u>Three-Dimenisonal Panel Methods</u>, AIAA Paper No. 85-0176, 1985.
- 15. P. G. William, "A Reverse Flow Computation in the Theory of Self Induced Separation," <u>Proc. 4th Int. Conf. Numer. Meth. Fluid Mech., Lecture Notes</u> in <u>Phys. 35</u>, 1975, p. 445.
- 15. F. Bradshaw, T. Cebeci, and J. H. Whitelaw, <u>Engineering Calculation</u> <u>Methods for Turbulent Flow</u>, <u>Academic Press</u>, London, 1981.
- T. Cebeci, "Calculation of Unsteady Two-Dimensional Laminar and Turbulent Boundary Layers with Fluctuations in External Velocity," Proc. Royal Soc. London, Series A 355, 1977, pp. 225-238.
- 18. J. C. LeBalleur, "Couplage Visqueux Non Visquex: Methode Numerique et Applications Aux Ecoulements Bidimensionnels Transsonique Set Supersoniques," Le Recherche Aerospatiale, No. 1978 2, 1978, pp. 65-76.
- 19. J. E. Carter, A New Boundary Layer Inviscid Iteration Technique for Separated Flow, AIAA Paper 79 1450, 1979.

5227H

- 20. J. E. Carter, <u>Viscous-Inviscid Interaction Technique for Separated Flow</u>, AIAA Paper 81-1241, 1981.
- 21. J. E. Carter, and V. N. Vasta, <u>Analysis of Airfoil Leading-Edge</u> <u>Separation Bubbles</u>, NASA Contractor Rept. 165935, Contract NAS1-16585, 1982.
- 22. J. C. LeBalleur, "Numerical Viscid-Inviscid Interaction in Steady and Unsteady Flows," In <u>Numerical and Physical Aspects of Aerodynamic Flows</u> <u>11</u> (Ed. T. Cebeci), Springer-Verlag, N.Y., 1984.
- 23. A. E. P. Veldman, "New Quasi-Simultaneous Method to Calculate Interacting Boundary Layers," AIAA J. <u>19</u>, 1981, p. 769.
- 24. T. Cebeci, and P. Bradshaw, <u>Momentum Transfer in Boundary Layers</u>, McGraw-Hill/Hemisphere, 1977.
- 25. M. J. Nituch, S. Sjolander, and M. R. Head, "An Improved Version of the Cebeci-Smith Eddy-Viscosity Model," Aero. Quarterly XXIX, 1978.
- 26. M. R. Head, "Eddy Viscosity in Turbulent Boundary Layers," Aero. Quarterly XXVII, 1976.
- A. Nakayama, <u>Measurements in the Boundary Layer and Wake of Two Airfoil</u> <u>Models</u>, Douglas Aircraft Co. Rept. MDC J2403, 1982.
- 28. R. L. Simpson, Y. T. Chew, and B. G. Shivaprasad, "The Structure of a Separating Turbulent Boundary Layer. Pt. 1, Mean Flow and Reynolds Stresses," J. Fluid Mech. 113, 1981, p. 23.
- 29. T. Cebeci, and P. Bradshaw, <u>Physical and Computational Aspects of</u> Convective Heat and <u>Momentum Transfer</u>, Springer Verlag, New York, 1984.
- 30. D. A. Lovell, <u>A Wind Tunnel Investigation of the Effects of Flap Span</u> and Deflection Angle, Wing Planform and a Body on the High Lift Performance of a 28° Swept Wing, RAE CP 1372, 1977.

- 31. L. P. Yip, and G. L. Shubert, <u>Pressure Distributions on a 1- by 3-Meter</u> <u>Semispan Wing at Sweep Angles from 0° to 40° in Subsonic Flow</u>, NASA TN D-8307, 1976.
- 32. K. B. Tatum, and J. Pavelka, <u>Wind Tunnel Pressure Distribution Test</u> <u>Results of Short Laminar Separation Bubble Wing Design</u>, PSWT Test 409, Rept. No. MDC A5983, 1979.
- 33. L. T. Chen, J. C. Vassberg, and C. C. Peavey, <u>A Transonic Wing-Body</u> <u>Plowfield Calculation with Improved Grid Topology and Shock Point</u> <u>Operators</u>, AIAA Paper 84-2155, 1984.
- J. S. Althuis, <u>Close Coupled Canard-Wing Interactions on Panel Loads</u> <u>Series I</u>, <u>McDonnell Douglas Corp. Preliminary Report MDC IR0184</u>, 1985.
- 35. R. M. Anderson, <u>Wind Tunnel Test on the 4.7 Percent Scale F-15 Model in</u> the <u>McDonnell Douglas Polysonic Wind Tunnel, Tests PSWT 281 and 286</u>, Vol. I and II. McDonnell Douglas Corp. Report MDC A0974, 1971.
- 36. J. L. Hess, <u>Calculation of Potential Flow about Arbitrary Three-</u> <u>Dimensional Lifting Bodies</u>, McDonnell Douglas Corp. Report No. MDC J5679-01, 1972.

2

Figure 1. Wing/body configuration.

Figure 2. Effect of alternate Kutta conditions.

Figure 3. Effect of wake on the separation region and displacement thickness for the NACA 0012 airfoil, $R_c=6.0 \times 10^6.$

Sandara Sanagara

5.5

32.000 C 2000 C 200

Figure 4. Notation for nonorthogonal curvilinear coordinate system on the body surface. Note that x and z are not orthogonal to each other but y is to x and z.

.

والمتعارفة والمتعادية

Figure 7. Computed transition location, flow separation, displacement thickness and lift distribution for the RAE wing, $\alpha = 18.5^{\circ}$.

Figure 8. Leading and trailing edge separation location for the RAE wing, $\alpha = 17.5^{\circ}$.

у С

Figure 9. Computed viscous and inviscid lift curve for the NACA 0012 swept wing.

ŝ

ŝ

Ľ,

2003202 States

23.2

Figure 10. Comparison of calculated and experimental pressure distribution on the NACA 0012 swept wing, $\alpha = 19.35^{\circ}$.

Figure 11. Effect of transition location on flow separation, displacement thickness and lift distribution for the NACA 0012 swept wing, $\alpha = 21.12^{\circ}$.

Figure 12. Comparison of 2-D strip theory and quasi-3-D methods for the F-15 fighter with laminar bubble wing.

Figure 13. Comparison of the calculated and experimental pressure distribution for the F-15 with laminar bubble wing, $\alpha = 10.75^{\circ}$. Insert shows the chordwise variation of displacement thickness as calculated by the 2-D strip theory and the quasi-three-dimensional boundarylayer methods. (a) 38% semispan. (b) 58% semispan.

Figure 13. (Continued) (c) 88% semispan.

Figure 14. Comparison of the mid-semispan pressure distribution obtained by the panel method and the transonic flow method for the F-15 with laminar bubble wing, M = 0.6. (a) $\alpha = 6.84^\circ$.

6()

Figure 15. Comparison of computed and experimental lift curves for the ANF wing/body configuration.

E.

Figure of the state of the stat

Figure . Effect of canard on the calculated lift curve of the ANF wing/body configuration, M = 0.6.

Figure 20. Flow structure of three-dimensional viscous/inviscid interaction program.

Figure 21. Examples of correct and incorrect input.

Figure 23. Another possible division into sections.

ALPHA = 1.30 MACH = 0.6000 Viscous/Inviscid Cycle Mo. 0 APR 15, 1986 TUESDAY, 000000 000 000000 1.125353 40000 00000 ... **DRIGNZ** 3-D VISCOUS-INVISCID INTERACTIVE PROGRAM VõP REPORT TEST CASE, TRANS. CALC., 2DSTRIP BL, M=0.6, ALPHAS ČASE TITLE – REPORT TEST CASE,TRANS. CALC., ZDSTRIP BL, M=0.6, ALPHAS Page title> User imput data 000000 05 н н K I NKND NL I NE 0.0 0.0 LIFSEC **NSYN2** 000 50 H 0 a RSTART ORIGNY IPNTNU = MLINE = R н INNSP = 10 NTRN 5 NTRN 0.70000E+07 0.015775 0.0 95.904007 0 2 0 IPNTGM = 2 MaxCYC = 3,400000 н I T ERAT NOFF 0000 1.300 2 ISHP 11 11 2 ISMP 0 0 ORIGNX RC DETA1 BOUNDARY LAYER INPUT DATA : •• NAMELIST "B" INPUT DATA NAMELIST "A" INPUT DATA START COMPUTING ALPHA = +1 IPNTB5 = Maxang = 1.50000 0.60000 ... 1 0 12.955000 8.291200 0.000000 UPPER SURFACE DATA : NB = 70 ITR LOWER SURFACE DATA -IPCV LIST CASE TITLE : • --.......... IXFLAG = MLINEI = MLINEN = MLINEN = NSTRIP = MSCRCE = MSC IBL3D = LIFT3D = Alphai = Amach = n # LINEAR AL 2D ET AE 1 1 1 PAGE

26.06

1222222

0

Output from the sample test case Figure 25.

5515

;...

066 111.16 Meron Tray CALC 2051 R IN WICHONA, INVISCIDA CALCLE AGA ON ALTONAS INVIETANS CALCL 2051 R IN MICHONA INVIETANS CALCL 2051 R IN INVIETANS 12<95300 INVIETANS	GE 2	3-D VISCOUS-INVISCID INTERACTIVE PROGRAM	TUESDAY, APR 15, 1986
INPUT FLASS CYCLE 0	SE TITLE: REPORT TEST GE TITLE: INPUT DATA	CASE, TRANS. CALC., ZDSTRIP BL, M=0.6, ALPHAS	ALPHA = 1.30 MACH = 0.600 VISCOUS/INVISCID CYCLE NO. 0
ICCCLE 0 ICCCLE 12.9300 INFIN 12.9300 INFIN 1 INFIN<		IMPUT FLAGS	
Interversion 0.0 Interversion 0.0 <td< td=""><td></td><td>ICYCLE = 0 BOVZ = 12.95500 CIVAL = 0.0</td><td></td></td<>		ICYCLE = 0 BOVZ = 12.95500 CIVAL = 0.0	
<pre>LUTEN : 0 LUTEN : 0 LIFSEC : 2 LIFSEC : 2 LIFSEC : 2 LIFSEC : 2 LIFSEC : 2 LIFSEC : 0 LIFSEC :</pre>		HGND = 1 IAUTOM = 2 IBUFIT = 1 ICONT = 1 ICONT = 1 ICONT = 1 IOUT = 0	
NCF * 0 NCFL 1 0 NCFL 0 0 NCFL 1 NUN. NSORCE 2 NMACF NCFL 1 NUMUR NCFL		ALTEAN = 1 KUTTA = 0 IVNSP = 0 LIFSEC = 1 LIST = 0 MDR = 2 MDR = 2	
RUN MODE = 0 (0=INITIAL RUN. 1=BLOWING RUN.) RUN MODE = 0 (0=INITIAL RUN. 1=BLOWING RUN.) NSORCE = 20 NNAKE = 1 NSTRIP = 4 IXFLAG = 3 INPUT UNIFORM ONSET FLOMS IN DEGS AND COMPONENTS (1) DEG 1.299999 COMPONENTS 0.999743 0.0 0.022687 INPUT MACH NO. = 0.600000 BETA = 0.800000E+00		MURF = 0 NOFF = 0 NSYM1 = 1 NSYM2 = 0 ORIGNX = 0 ORIGNX = 0 ORIGNX = 0 ORIGNX = 0 ORIGNY	
NSORCE = 20 NMAKE = 1 NMAKE = 1 NSTRIP = 4 IXFLAG = 3 (1) DEG 1.299999 COMPONENTS 0.999743 0.0 0.022687 (1) DEG 1.299999 COMPONENTS 0.999743 0.0 0.022687 IMPUT MACH NO. = 0.600000 DETA = 0.800000E+00		RUN MODE = 0 (0=INITIAL RUN. 1=BLOWING RUN.)	
INPUT UNIFORM ONSET FLOMS IN DEGS AND COMPONENTS (1) deg 1.299999 components 0.999743 0.0 0.022687 INPUT Mach NO. * 0.600000 deta * 0.800000e+00		NSORCE = 20 NMAKE = 1 NSTRIP = 4 IXFLAG = 3	
(1) DEG 1.299999 COMPONENTS 0.999743 0.0 0.022687 INPUT MACH NO. = 0.600000 BETA = 0.800000E+00		INPUT UNIFORM ONSET FLOMS IN DEGS AND COMPONENTS	
INPUT MACH NO. = 0.600000 BETA = 0.800000E+00		(1) DEG 1.299999 COMPONENTS 0.999743 0.0	0.022687
		INPUT MACH NO. = 0.600000 BETA = 0.800000E+00	

RV

ANALY PRESS MEN IN AND A ANALY

Figure 25. (Continued) Output from the sample case.

•

1986	0.6000 NO. 0	DIECTE		2.59441 2.71883 2.716615 5.375615 5.375615 5.37264 5.37264 5.57264 7.572121 7.572121 7.572121 7.572121 7.572121 7.572121 7.572121 7.572121 7.572121 7.572121 7.572543 7.572544 7.575544 7.575544 7.575544 7.575544 7.575544 7.575544 7.575544 7.575544 7.575544 7.575544 7.575544 7.5757474 7.57574 7.57574 7.57574 7.57574 7.5757474 7.5757474 7.5757474 7.5757474 7.5757474 7.5757474 7.5757474 7.5757474 7.5757474 7.5757474 7.5757474 7.5757474 7.5757474 7.57574747474 7.5757474 7.5757474 7.57574747474747474747474747474747474747
, APR 15,	.30 MACH = SCID CYCLE	MAXIMUM PF DIAGONAL	NUNUN 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	80000000000000000000000000000000000000
TUESDAY	ALPHA = I ISCOUS/INVI	AVERAGE PROJ.DIST	0.001278 0.001278 0.0015459 0.0015459 0.0055551845 0.00555551 0.0055551278 0.0015555 0.0015555 0.0015555 0.0015555 0.0005435 0.000545 0.000545 0.000555 0.000545 0.000545 0.000545 0.000555 0.000555 0.000555 0.000555 0.00055555 0.0005555 0.0005555 0.0005555 0.0005555 0.0005555 0.0005555 0.0005555 0.00055555 0.0005555 0.0005555 0.0005555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.000555555 0.00055555 0.00055555 0.0005555555 0.00055555 0.000555555 0.000555555 0.00055555 0.00055555555	0.00055555 0.00055555 0.00055555 0.0005555555 0.0005555555 0.0005555555 0.0005555555 0.0005555555 0.0005555555 0.00055555555
	`>	L S >	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1
		Q R M A		0.001262612 000115 0001161214 0001161214 000126261214 000126261214 000012626121 000012626121 000012626121 000012626121 000012626121 000012626121 000012626121 000012626121 000012626121 000012626121 000012626121 000012626121 000012626121 000012626121 000012626121 000012626121 0000012626121 0000000000
I I		N	0.02755555 0.027525 0.027525 0.027525 0.057525 0.05755555 0.057555555 0.025555555 0.025555555555 0.025555555555	0 0 0 0 0 0 0 0 0 0 0 0 0 0
VE PROGRA	AL PHAS ES	5 B		พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.
INTERACT	M=0.6, QUANTITI	с С С С С С С С		 2322 <li< td=""></li<>
INVISCID	DSTRIP BL Ted Panel		9 2700 8 75501 7 7500 7 7500 7 7500 7 7500 7 7500 8 16500 7 5660 8 15520 7 5660 8 15520 7 5660 8 15552 7 5660 7 5660 8 15552 7 5660 7 5660 8 15552 7 5660 7 5660 8 15552 7 5660 8 15552 7 5660 7 56600 7 5660 7 5660 7 5660 7 56600 7 56000 7 56000000000000000000000000000000000000	9 22000 9 22000 9 22000 9 22000 9 22000 9 22000 9 22005 9 2005 9
VISCOUS-	CALC 2 AND COMPU	ZA G	000848110810010000000000000000000000000	0 0
5	NSE TRANS	D E F I N Ya		
	NEL CORNE	(A	50000000000000000000000000000000000000	 A 000000000000000000000000000000000000
	REPOR		20000000000000000000000000000000000000	5 0000010000000000000000000000000000000
~	TITE	NI NI		く ままり 3 4 6 - 100 0 0 - 10 m 3 4 6 - 10 0 0 - 1 ままり 3 4 6 - 100 0 0 - 10 m 3 4 6 - 10 0 0 - 10 10 0 0 0 0 - 10 0 0 0 0 0
PAGE		ž	୍ଲା ଏମିଟିନି ହେନ ଅଫେମ୍ବାର୍ମ ସିନିହନ ଅଫେ ୮ ୧ ଅଭାରଣାଲାଲାଲାଲାଲାର୍ମ ୧ ୧ ୧ ଅ	ŊŊŢŢŎĊĸĊĊĿĬŎĊĸŎŎŎŎŎŢŢŎ ŊŊŢŢĹŎĊĸĊĊĊĿĬŎŢŎĊĊ ŎŎŎŢŢŎ

.....

1

£

7

Ś

ľ. K

0.6000 40.00 JJECTE	AREA	10008	.09187.	46672	82229	36084	80284	.93019.	61329	88158	.48845	10722	12453	66030	91352		4 448	35720	17747	39134	62136	52737	99242	01410.	88292	18778	10001	74950	47307	94201	12041.	20595	. 46594	17374
"	i	N 4	n'r	10	.	n N	0	0	in	4	n u	n ir	4	N	00	•	9	-	Nic	NM	'n	'n	Ň	ve	ø	ni.	ò.	'n	'n	Ň		0	o	a
	ĨÄ	513	112	10	201	520	11	936 736		626	90		160	165	027		878	576	110	28	6.6	232	262		53	808		89	966	90	100		6 2 3	
	<u>ē</u> i	620	000	30	10	25	90	596 20	1.4	26	3	10	6.5	167	356 1761		1221	26	20	32	576	530	5	13	38	000	00	567	31	5		20	28	726]
MA I I SCI		44	4 4	4	94	14	4	4.4		4		2 d	4	4	4		-	-	2	V M	5	5	1	0 M		5	2.0	5		2	4-		1.1	1.7
	21	45	84	10	10 X	4 4 1 1	21	40	0	4			9	82 22	90			:6	ю,	- 6		35	20		10	90	10	ŝ	95	5	- U - 0	9		90
RA I 2 = 2	8	066	010	161	174	123	077	4 0 0 0 0 0 0 0	100	187	168	2 F 7 F	162	131	040		0 2 0	083	157	26	206	250	208	0 0 7 0 7 0	006	107	17 17	208	225	153	154	063		010
	2	00		0.0	00	20.0	0			0.0	0,0		0.0	0.0	ōe	,	c c	0	0.0		0	0.0	00		0.0	0.0			0.0				0.0	0.0
×1 -	ر <u>م</u> ر		0 1	101	nc	> 4	-	ś		.	.	• •	~~~	4	00	,	×		0.	0 M	,	-	n	- M	0	m.		5	ŝ	ح ہ	-		10	9
	2	959 969	996 998	996	989	296 296	465	\$ 2 8	12	206	4 C 6	2 0 0 2 0 2 0	954	935	894 000)))	640	491	515	1961	059	898	721	200	694	952	222	720	945		777		260	946
2	z ¦	6.0 6.0	0.0		0,0	. o. . o	6.0)) 0	0	0 0 0	70 20	. ð.	6.0	0 0 0 ~)	0 2	6.0	0,0	> 0 > 0	6.0	0.8	8.0		0.6	~ 0			8.0	с. С.	> 0 > 0		6. 0	8 0
	1 1	11 00	1 1 ~ 4	່ 1 ວາດ-	 	11 10 - 4	 40 -	ج ہے	40	-	10 <	* ~	. 40				1 40	י הי	ו היי	1 1 00	ا مەنە	 0	ו אי	1 7 10	0	m 1	n M	, N	9	~	o ==		•	
Ξ.	: احر	113	073	158	335	2 0 2 8 0 3	144	639 24 2	614 614	297	555	0 T 0	251	092	100		077	117	363	272	116	409	751	0 8 6 0 8 6	770	020	2 C 2 C 2 C	850	339	122	121	606	950	4 3 4
e e	z	0.0	00		00	00	0.1					50	0	0.0	00	•	~ c			20) 4 	4	4 4 0 0	0 M 0 G	0	<u>ب</u> ور م		10	4 . 0	0 0	<u>,</u>		N.	
	i	11	5 T	े । • उन्ह	- آ م	īī ⊸rvo	-	80 M	,			n ee	-	-	î N		1	- - -	1 10	1 0 14	ี เร	ĩ	ī m.	F T Or	. 0				•	~ `	0 3	~		
	×	900	236 176	277	319	541 076	016	568	802	389		0 J 5 C 0 D	922	150	452		220	438	215		166	168	168	200	059	719	2 7 7 7 7 7 7 7	649	070	90		115		2 3 0
	Z	00		0		9 Ö 9 O	n.	ñ-	0.0	0	ē		ò	1.0		•	c c	ŏ	00	s d s d		~			N			ō	1			. N.		ن د
<u> </u>	i		- T N #	T over	ī str	7 T \	T I T	77 	7 T 0 0	T mai		 		5	 		0~			ī ī Ca	Т гм	T	T ma c	7 7 	T.	Τ. Μ.		- 			 		_	۲ ۵۵
	- -	14	90¢	6	50	52)	172	6 9 9 9 9 9	5	179	200		9	48			00	66	105	20	2.2	85	105	200	200	22		53	52	29		00	ŏ	000
A III	7	20	3.4	5	-	<u>}</u>	•0	6 -	-7	Ň	Ņ	-0	-	2	9.9		-	-	-	5		0		9.9	'n	5	n s	N	õ	Š.		-		5
AL AL	1	en en		ירשיר	-	n un				.0			רשי			•	40 44	9		o <	9 40	0	~ "					. ~	.	-0	0 4		•	
<u>.</u>	ţ	195	11	6	165		104	222	200	7.8	22		8	589	44																			
DY S	n≞í	5.6	2	36	5	22	202	6]	18	926	5		29	62	63	;	00		0	.	• •	0	•	- a	0	0	> c	0	0	0	20		0	0
	į				ni r	N N	N	N	ini	-	-	-	-		-	•	0 6	0	00	50	0	0	00	9 9	0	00	50	0	0	00		0	0	00
	!		25	2	~	NO.	~	0 - 4	25	0	0 4	•	1		23		2	14	5	y in	12	4	22	: 2	-	2:	0~		-	<u>.</u>	<u>.</u>	0	N	00
	•	729	86	0.0	90.9	.	95	976	59	020	5		505	11	161		44	039	80		4	506	3.0	2.2	4	88	5	80	037	37			31/	000
		20	2	2	00	20	80	0 a	0	2					0.0		0.5		9		-	•	10	~~	2.6	•••		1	5			0		50
MP.	i	~~~~							-					-										-	-	-	-		-				- N	_
		912	897	0.9	9.50		273	086	124	565			801	029))	000	051	141	200	976	694	25	220	696	4		560	573	5		000	000	000
	~	505	33	G	33		5	5.4	2	-		0	12	9	66		64	9	5		5	5			ě		10	22	~		22	5	6	9.4
.100 X X = H	1	ŝ	-	יישיי	80.8	n en		-	רש ר		1 1	n wr	1.60		en er	1		1 100	-		140	5	50 1	n wn	ι υ Γι	•0 •	0 4	0	-01	50 8	n wr		n	-0-4
N N	;			38		38	00		38	0			8	00	000)	۰. ۹۰	5	\$ •		6	16	00 90 0	20	52	\$ 10) «	25	6.9		00	5	4	4
	X Y	700	000~	00	000	200	200		200	200		200	700	200	000/) }	631	633	683	8.55	1.4	053	132	200	193	130	9 2 9 C 8	838	774	6 8 6 6 8 6		631	651	000
RNE L L	1 1 1	ທີ່ຫຼັ	5	, N	-	n n	5	vi e	5	5	~	n vr	5	Ś	ŝ	•		-	-		••	2	~	5	~	~	-	••	~				-	00
	,	• •	<u>ب</u> ه		• •	~ 1 0	•	~ 0	5	_	er r		~	o,	0~		~ *				<u>م</u> ۱	5	~	- -	•	.	^ c	0	5	~	∩ «		-	00
	<	660 918	862	337	279	6 9 8	983	916	210	250	515	0 C 8	618	265	200		617	728	295	000	886	496	06.5	19	976	184	026	0.56	110	586	100	617	165	003
	1 X	45	জন জন	101 131	on d N n	> 3 √	1 2	4 G	a œ́ 4 ∿i	00 51	~ ~	9 v [.] 0 ~		0	~ 3 6 6					n ö n in	• ••• • ••	6		⊃ič ≻en	0	80 G Gr G	ور م م د	- 0 - 4	9 9		- 0 0 #		5 D	ۍ وي
		22	\sim	- ~ I	(J (20	2	~ ~	10	~	N Č	4 ~	Ň	2	ΝŇ	I	~~~	Ň	~	~ ~	1 Ni	2				6	<u> </u>	Ň	2	~ 6	~~	~	N	
Z [L]	×														*			*		. 4					۰	•	•		۰			* 1	I	LIF
	2	. v m	.	•	r. •	c 0	10	10	:1	14	23	• -	-	19	222	• •	-	~	~ .	5 w	•	•	-0 (2	1	21	23	12	16	2	• •	2	21	<u>*</u> _
	، حد														-		Ŀ																	£
	••••	a n	•		•	د	~	- J	r vn	••	~ •				~~	,		~~~	-0 F	~ •	, o	0				ب	o ~	. 40	~	. د	-~	, ~~ , .	3	~ •
	~ .	33	33	÷.	34	n in	-	ົ	ŝ	Ś,	n i	n ir	مَت ۱		مہ م				. فت	<u> </u>	.	~	~ •		~	\sim	1	. ~		-	n w	, and i		Ué

ō.

Figure 25. (Continued) Output from the sample case.

						0 5	V1560US	INNI	SCID	INI	FRACTI	Υ.	PROGRA	Σ						TUESD	AY,	APR	15,	1986
T N I	÷	PORT T	רטגן רטגו	CASt NER	FOIN	- A 	LALC Z	ZDSTR JTED	IP BL	I j	0 6 . Antiti	ALP	HAS						>	ALPHA = ISCOUS/IN	NISC IVISC	ID CYC	- 20 - 20	. 6 0 0
	-	¥ X		Q Y		2	IN C	N N N	-	<u>ب</u>	- - 		7.	- <u>-</u>	N X N	0 K	L A L	s S		AVERAGE PROJ.DIST	MAX	IMUM	PROJ	ECTE AREA
		44444	000000		0.25	****	15174 14952 14952 14958 14958 14568	000000	000000	000000	56079 56079 56044 49591 56010 18800		23747 23747 05507 91456 81871 81871		22778	000000	87265 94321 89095 889095 88514 31623	000000	2368 21005 20145 20173 20173	0.000310.0006666666666666666666666666666		609407 67407 678980 6388813 617753 606968	000000	1588 1588
			00000000000	00000000000000000000000000000000000000	245-100000 10-10-20-00 10-10-20-00 10-00-20-00	****	880 880 880 880 880 880 880 880 880 880	00000000000000000000000000000000000000		0000000	0 37576 67208 90969 90969 14071 14071 59365 59365 59365	10 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	600000 6000000 6000000 60000000 600000000		27766 23706 23706 20313 16693 16693 15204 09101 06519 05101	000000000	22 60155 60155 990856 94731 4731 24731 24731 24731 24732		02537 02537 0668 05840 1624 0183 0183 0183 08883 09183 08883 09183	000000000000000000000000000000000000000		779055 7668199 73668199 7368199 7368199 7368199 697791 6668593 6668593 622647		1055 1010 1045 1045 1045 1045 1045 1045
۰.	••••	27200 2720 2700 2700 2010 2010 2010 2010	201		殿 政 (1)	40 -			00000000 000000 00000	0000	0	©*©*#0#0 *0 * ∧ ≥ 4		000	4 N D	00 04200	555 555 555 555 555 555 555 555 555 55	••••••••••••••••••••••••••••••••••••••	00000 0000 0000 0000 0000 0000 0000 0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NNNNNN	897902 897902 7990693 718555 599405 559405 559405 559405 559555 559555 559555 559555 559555 559555 5595555 5595555 559555 559555555		3281
	•	-						· 2.2 • • •	7 C 7 C	· =	1000 1000 1000 1000 1000	ç : '		•••		-	- C - S		1955	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~~~	552420 512334		1857 1857
					•						 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	2394040™™ 624° ¥	4	2.070-0-0	1997 - 1997 - 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997	0	ు గాతా పులాలిందా పురుగాలు లాగులు గాపుల్ గాలుపులు అపుపుల్ బిల్లాలుగా		9	1155 100 100 100 100 100 100 100	~~~~~	5000998 5007968 54498774 509122 503215 503215 503715 503715 506189		4 N N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
		• • • • • •	-	• • •		•••• · · ·			00000000000000000000000000000000000000	0000	2000 2000 2000 2000 2000 2000 200 2000 2000 2000 2000 2000 2000	onenenes en ger		రా ల రాత	ార్ స్మార్ చెంది గ్రామంత్రి చెంది క్రామంత్రి చెంది క్రామంత్రి చెంది క్రామంత్రి చెంది	::: n c.c	2010 2010 2010 2010 2010 2010 2010 2010	7600000	6.00 6.00			918107 918107 941568 941457 941457 941457 9115 915747 888181	-0	0000 000 000 00 00 00 00 00 00 00 00 00

Ç

- + d = d

case Φ the from ¢ igure

.55231 .54140 .53166

ท่าท่า

0000

99664 96867 84096 48937

0000

07990 24538 53546 55546

0000

01803 03841 07793 08545

0000

sampl Output (Continued) 25

ù.

165

ŝ

40.000

.

649696999

1.5

000	EAD	1337 5082 5082	221999538	80094792 155887607 16724751		1007 1007 1007	5000 F	-
	A DE		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	87788888		0000	0000	č
	8		00000000	нанана	ก่อก่อก่อก่อ			•
E S	<u>א</u> _	1 1 1 1 1 1	20020220 2000002		8 - 4 9 M 6 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9	06N4	N N 40,40 17 17 10 40	
A E C	I NOS	1 2 2 2 2	00000000000000000000000000000000000000	1000000000	80000000000000000000000000000000000000	0.000 0.000	2002	
ទីដ	IN N		NNNN 0000	ที่ที่ที่ที่ที่ที่ที่ที่		2000	4444	-
VIS.	N N	1	пппалаа	~~~~~		****	NNNN	•
NI.	IST I	542	269936728	10000000000000000000000000000000000000	70999999	6,5,5,8	6000	
" su	AG.	0000	000000000000000000000000000000000000000	000000	800255005 80025005	0280051	01640	205
E PH	1 NG		00000000	0000000	0000000	0000	0000	ģ
VI:	Ā			0000000	00000000	0000	0080	
	17	112631	98644568 31966562	000000000000000000000000000000000000000	5522200	2662	5555 5555	5.5
	Z	6000	2002564099	8008400N	20025498	80000	4008	
	i s	0000						ç
		8108	84696666	22020020	9085850T	0000	2200	2
	EE	0.000	202020000	N61406666	9102000	637 980 112	354722	760
	` « ۲	0000				1.000	N0.01	4 -
	17.	9806	5454564425 545456445	107200120 404400170 40440170	101010000 1010000 1010000	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	986 7486 052	0 7 0
	ž	9400	00000000	886888888	865555666	4044	46.00	i i
	Ľ.	0000	00000000	00000000	0000000	0000	~ ~~~~	e I
	i ,	NN 98	1500000000	487453699 4874558698	091940980 091940980	40000	6 M - 6 M	8
2		1233	8991228685	8793488778 202855222	5470104210	8100NA	0 2 2 V 9 2 0	86
2		~ ~ ~ ~ ~	200010000	8000000000	8888887799		2000 C	5.
IES								
H		8181	400886711855 400886711855	588771466	9460 1320 1320 1320 1320 1320 1320 1320 132	10 M 00 M 00	1427	40
AN	i se i	69169	6222220 666655370	046670897 066659999	25356 2556 25	82743 8255 82743	2008	058
3	u 1		000	000000000	000	00 N	N00	2
Ē							_	
PA		226	00000000000000000000000000000000000000		016666666666666666666666666666666666666	40404	9256	670
9		9999	44444444	000000000	000000000000000000000000000000000000000	00000 4444	0000000 0000000	10 F
Ξ.	2	8885 5855 5855	88888888888888888888888888888888888888	0000000000	**********	66666	*****	20
١	50	0.00.00	5~1000NM00	202400400	000014000	~~~~	40080	0 M
	Z	2566	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00000000000000000000000000000000000000	00000000000000000000000000000000000000	01020	00000	99
X	-N	-N-N	001404040	0.00 0 N 60 M 60 N M	0.00000000000	00000	0.00.00	-
-		~~~~			80 60 60 M M M M M M M M M M M M M M M M		50 40 40 40 40 40	-
N 10	<u>ن</u> ا	2805	933700-NG	10000000000000000000000000000000000000	8441778S	2005	80 M 10 M	50
z.	.	2222	20720200	122222	20054400	11.585	22.52	976
Ĭ	,		000	0000000000	0400000000	00/087		1.2
¥0	1						_	-
1		60357	1978726086 7377766086	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000	88888	40400	997
ANC	A .	4404040 0-40400 0-40400	040404060 04046666666666666666666666666	0000000000 000000000 0000000000	2001112220012 200112220012 20012220012 20012220012 200122012 200122012 200122012 200122012 200122012 200122012 200122012 200122012 200122012 200122012 200122012 20012012 20012012 20012012 20012012 20012012 20012012 20012012 20012012 20012012 20012012 20012012 20012012 20012012 20012012 20012012 20012012 20012012 20012012 20012010 2001200000000	00000 55555 00000	0000000 000000 000000	826
7						ммммм	0.000	-
5	-							~
2						.IF		
	7	* * *			001011010	HUNN4	-NNA	
•	-					TYP		
	•		•	~	10	, 1	2	M
•		•' • 7 6 0 0 •	0-203002	00000000000000000000000000000000000000	88886 900 900 900 900 900 900 900 900 900 90	9995	96 00 01 01	02
	27					<u></u>	NN	2

i.

Figure 25. (Continued) Output from the sample case.

ງ 1000 - 0M 0M PROJECTED 20118 15. 1984 --------• ··· ··· · · -----..... TUESDAY. APR 15 ALPHA = 1 50 MACH = VISCOUS/INVISCID CYCLE MAXIMUM P BIAGONAL 2 142554 2 1472554 2 158645 19/950 19/2/02 192926 192928 10/02 125005 125156 125156 ------------------.... AVERAGE PROJ UIST 002551 012858 034123 025390 024805 024805 7 NZ 95056 95066 S • • • • 50225 01500 06515 11818 05172 10709 11517 10320 25570 25570 18562 15585 . < E E E ું જ • • • • 0 -0 10178 -0 06786 -0 06786 81960 85575 85420 85420 02409 01990 04577 07140 05714 05028 05714 05803 87717 85594 85789 82587 00001 01005 01005 01795 i z -----× 54529 45510 45572 55211 55211 52020 55860 66865 67155 62357 63921 77571 73998 73998 82408 80082 89722 78187 7167 55524 55748 61017 48199 62099 00000 -----. . -----~~~~
 PAGE
 B
 5-D
 VISCOUS-INVISCID
 INTERACTIVE

 PAGE
 B
 5-D
 VISCOUS-INVISCID
 INTERACTIVE

 PAGE
 B
 5-D
 VISCOUS-INVISCID
 INTERACTIVE

 PAGE
 IILE
 INPUL
 5-D
 VISCOUS-INVISCID
 INTERACTIVE

 PAGE
 IILE
 INPUL
 COMPUTED
 PAGE
 INTERACTIVE

 PAGE
 IND
 IV
 V
 A
 A
 A
 A

 PAGE
 IND
 IN
 V
 A
 A
 A
 A

 PAGE
 IND
 IV
 V
 A
 A
 A
 A

 PAGE
 IND
 IND
 V
 A
 A
 A
 A

 PAGE
 IND
 IND
 V
 A
 A
 A
 A

 PAGE
 IND
 IND
 IND
 IND
 IND
 IND
 A

 PAGE
 IND
 IND
 IND
 IND
 IND
 A

 < 69297 40435 92895 47495 92895 +2954 28275 85844 45525 31292 07926 75956 58659 84097 46504 96787 48296 62904 32829 88051 45097 ~~000 ~~ ~ ~ ~ ~ -----43818 42145 41695 41666 77 506 77 506 77 506 77 506 00000 16666 16666 22223 ***** 00000 52868 55868 66855 67155 67155 62537 63921 77571 73098 65738 82408 80082 89722 78187 71667 -10,00,000 00000 69297 60435 92895 67460 1.62954 1.28275 0.85044 0.43325 0.0 62904 32829 88051 45097 000 95326 94032 93628 93553 93553 \$3810 \$21\$3 \$1695 \$1666 \$173\$ 77506777506777506 88888 53555 888888 20000 -NM3 1254 -054 -0 ~ 215 218 2219 2219 221 222

• • • 1.1.1 • he fron (Continued) Output 25. Figure

ŶĊĿĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊ

	SCID CYCLE	CINCULTN										
THE SDAY	I PHA THE	AINISA	15 0001									
		SECTOR	2000 - 2000 - 2000 -									
		SECTOR	0 0284 0 0895 0 1385									
AM	ן ג ג ג ג	ETA	0 8445 0 5712 0 2759									
TAVE PROGR	ALPHAS	CYAH	-0-00-4 -0-0042 -0-0115		0.0013 -0.0052 -0.0052	-0.040	-0.0039 -0.0015 -0.0115 -0.0115	-0.0165 0.0016 0.0086	-0.0377	-0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.000000	0.0019	********
ID INTERAC	BL M=0.6	BOV2, CREF CROLL	-0.0024	- 000 · 0	0.0019 -0.0048 -117	-0.0061	-0.0060 -0.0023 -0.0178 -0.0178	-0.0251 0.0024 0.0135	-0.0580	- 0 0000 0 0000 0 00000 0 00000 0 00000 0 0000 0 00000 0 00000 0 00000 0 000000	0.0029	. 0 0 5 8
DUS - INVISC	2DSTRIP	ES OF AREF CPITCH	-0.0155-0.0765	0.0010	0.0019 -0.0019	-0.0054	-0.0050 -0.0061 -0.0060	-0.0125 0.0012 0.0050	-0.0340	0.0014 -0.0023 0.0007 0.0073 -0.0073 -0.0073	-0.0096 	********* -0.2779
3-D VISC	RANS. CALC	INPUT VALU CSF	0.0020	-0.0016	-0.0040 0.0051 0.0051	0.0042	0.0034 0.0011 0.0076	-0.0083 -0.0007 -0.0031	0.0259	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	-0.0007 	
	EST CASE, T PRESSURES	ASED UPON CD	-0.0003 -0.0007 -0.0001	0.0010	0.0018	-0.000.0-	0,0001 0,0000 0,0007 0,0007	0.000 -0.0000 -0.0000 -0.0000 -0.0000	0.0023	- 0.000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000	0.000.0	======== 0.0026
	REPORT T	< ct	0.0045 0.0226 0.0512	-0.0008	-0.0037 -0.0019 0.0037	0.0023	0.0028 0.0019 0.0027 0.0027	-0.0042 -0.00042 -0.0011	0.0153	-0.0003 -0.0011 -0.0015 -0.0015 -0.0015 0.0026 0.0030	0.0024	.0962
11	TITLE: I	SEC NV	1 1 3 3	5 7 . 5	. TOT : 3 1	101 :	4 4094	· vî vo ~ 40	. 101 .	ร การสุขายก	8 . TOT :	3. TOT :
PAGE	PAGE 1	LYPE	LIFT	NLIF	SECT.	SECT .	NLIF		SECT.	NLIF	SECT .	CONFIC

Ô

Figure 25. (Continued) Output from the sample vase.

TUESDAY, APR 15, 1986 Alpha = 1.30 Mach = 0.6000 Viscous/inviscid Cycle Mo.						LECTED Alculation		.022687		
3-D VISCOUS-INVISCID INTERACTIVE PROGRAM Report test case, trans. Calc., 2dstrip bl, m=0.6, alphas	IMPUT FLAGS	B0V2LL = 12.95500 CIVAL = 0.0 HGND = 2 IAUTOM = 2 IAUTOM = 1 ICONV = 1 ICONV = 1 ICONV = 1 ITFLY = 1	NYM1 * 1 NYM2 * 0 NYM2 * 0 ORIGNY * 0.0 ORIGNZ * 0.0 Refecta * 95.90401 Refecta * 0.60000 RMACH * 0.60000	RUN MODE = 1 (0=INITIAL RUN. 1=BLOMING RUN.)	NSORCE = 20 NMAKE = 1 NSTRIP = 4 IXFLAG = 3	OFF - BODY KUTA CONDITION MAS BEEN SEI Printed CP Distribution and Force C Mill USE OFF - Body Pressures	INPUT UNIFORM ONSET FLOMS IN DEGS AND COMPONENTS	(1) DEG 1.299999 COMPONENTS 0.999743 0.0	INPUT MACH NO. = 0.600000 BETA = 0.80000E+00	Figure 25. (Continued) Output from the sample case.
PAGE 18 Case Title: Page Title:										
			79							

21 PAGE

3-D VISCOUS-INVISCID INTERACTIVE PROGRAM Report test case, trans. Calc., 2dstrip bl, m=0.6, alphas

TUESDAY, APR 15, 1986

_و ۲	1	. .	
± 0.60(LE NO.		Ĵ.	
1.30 MACH /ISCID CYC	 	H SOLUTION	11111111111111111111111111111111111111
ALPHA = VISCOUS/INV		DELS FLOW	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000
		CPVISC V	$\begin{array}{c} 0 & 12468\\ -0.04725\\ -0.04725\\ -0.04725\\ -0.04725\\ -0.04725\\ -0.05459\\ -0.05459\\ -0.05459\\ -0.05459\\ -0.05459\\ -0.05449\\ -0.05449\\ -0.05449\\ -0.05449\\ -0.05449\\ -0.05449\\ -0.05449\\ -0.05948\\ -0.05749\\ -0.05749\\ -0.05749\\ -0.05749\\ -0.05683\\ -0.0791255\\ -0.07010\\ -0.0700\\ -$
	BODY POINT:	SOLUTN>I VT	
S	AT OFF -	ENTIAL FL VZ	
0.6, ALPHA	E COMPUTED	SSIBLE POT	$\begin{array}{c} -0.011233 \\ -0.011233 \\ -0.011233 \\ -0.011233 \\ -0.011233 \\ -0.011233 \\ -0.011233 \\ -0.012333 \\ -0.012333 \\ -0.012333 \\ -0.012333 \\ -0.012333 \\ -0.012333 \\ -0.012333 \\ -0.012333 \\ -0.012333 \\ -0.012333 \\ -0.01233 \\ -0.01233 \\ -0.001233 \\ -$
RIP BL, M=	FORCES AR	< I NCOMPRE VX	
ALC., 2DSTI	Y. VZ AND	: د ۲	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
LUTION CI) CP, VX, \	ROL POINTS	$\begin{array}{c} 10&96357\\ 10&96357\\ 10&96357\\ 10&96356\\ 10&96395\\ 10&96356\\ 10&96356\\ 10&96356\\ 10&96369\\ 10&96356\\ 10&9656\\$
AL FLOW SC	* PRINTE	< CON1	229. 224. 229. 229. 229. 229. 229. 229.
REPORT	***	1	
FUN	NING	ן ד ישי	2 I I I I I I I I I I I I I I I I I I I
	MAR	SEC	
SE TIT	****	D. NO.	
PAC	-	N N	

Figure 25. (Continued) Output from the sample case.

,

٨

1.1.1.1.1.1

•	ຣົ	ł	-	04~~08~40~~40	•			
198	ŝ.			- 000000000000000000000000000000000000				
5,	о х "Ш							
2	ษรี		ຮັ					
API	Ϋ́́υ Ψ		II	00000000000000000000000000000000000000				
	នដ្ឋ			040N8600045				
ΑY,	<u>×1</u> 2.		3					
ESD			FLO		n			
10	AA OUS		S		9 7 7			
	ALP							
	>		IN					
				04410511140404000 04410511140 06061511400140	012422262	200080280 200080280 200080280	204992 204992 204992 204992 204992 204992 204992 204992 2040 2040	
			115(80000000000000000000000000000000000000	N6 94 N0 800	180200239	9046894
			- b	000000000000000000000000000000000000000				
		NTS	-	NAPANBOONOPUL	100N9.4N4		1022022202	0.0000
		POI	÷.	000000000000000000000000000000000000000	4979794794 949794794 94794794	222222222222222222222222222222222222222	5449 5449 56 57 56 56 56 56 56 56 56 56 56 56 56 56 56	22102
		2	LUT V			66666666666666666666666666666666666666		
		80	20					
		u_ 1	F	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2007468491 2007468491 2007468491	20212200000000000000000000000000000000	00000000000000000000000000000000000000	2000130 2000130 200130
N I		5	IAL	007410000001				80110070 00110000
DGR	5	AT	ENT					
PR	PHA	TED	LO4	80~90NNNN900K	100000 0000 0000 0000 0000 0000 0000 0	90090-410-11		1000000
	ALI	P.	щ _к		567685077		1222735255 1226773525 12267735755	
CT	6,	Ŝ	191	000000000000000000000000000000000000000			0000000000	0000000
ER	0= = 0	R	ES					
INI		S	MPR	20202020202020202020202020202020202020	400400400 400400400 400400400	800000000000000000000000000000000000000	14800458	24472011 71111100
01	a l	RCE	NC NC	000000000000000000000000000000000000000		80000000000000000000000000000000000000		00000000
ISC	RIP	5	ĭ∑	0-00				
NI	DST	AND	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		00048000	2020424924 2020424924	10000000000000000000000000000000000000
-su	, 2	ZN	^ N	80000000000000000000000000000000000000	8195391455 9636391455 9636391455	7276640100 608444127 788784127	100812070 400812070 0000000000000000	00000000000000000000000000000000000000
20		÷.		າບບຸບບຸບບຸບ			1000 ~ ~ ~ 0 0 M M	000000000
5	CA	Ś	NTS				1897 Y N 19 Q P 18 P	
2	ST ST	XX	IO	1171954555555	4494040797 4499040797		195399999999 197829199299 19883919929	6 1 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	ITI	à	5					
	501	ě	ITR(
	CAS W S	NTE	Č.	4422222222222		1997779999994 199777990004	NDL100048	N480094
	FLO	PRI		24605085555556 440508565555 10255555555555555555555555555555555	9009000000 900900000	000000000000000000000000000000000000000		88888888888888888888888888888888888888
	ALE.	ж		28788888888888888888888888888888888888			~~~~~~	
	ENT	***		800-1034500-800			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	DAM	*			•			
	E.	ING	21	M)	Т	~	7	N
		ARN	TPE.	IFT	LIF	LIF	LIF	LIF
22		Ĩ			Z	Z N	2 M	Z M
	E	***	NO N					
PAGE	PAGE	×	PNL.	0.000.000.000.000 0.000.000.000 0.000.000.000.000	99999999999999999999999999999999999999	1009896955		11111111 111111111

Figure 25. (Continued) Output from the sample case.

Figure 25. (Continued) Output from the sample case.

R 15, 1986	CH = 0.6000 YCLE NO. 2	1	0N> CF						
JESDAY, AP	= 1.30 MA		FLOM SOLUTI	80888888888 88888888888888888888888888					
11	VISCOU	 	VISCOUS						
		S	CPVISC	-0.03499 -0.03499 -0.05127 -0.09890 -0.09890 -0.09890 -0.08728 -0.08844 -0.01871	-0.05557 -0.0537857 -0.0537857 -0.05378 -0.05578 -0.05578 -0.05597	-0.03258 -0.03394 -0.03394 -0.02507 -0.02518 -0.01645 -0.01520 -0.01562	-0.05465 -0.05466 -0.05466 -0.05267 -0.07259 -0.07259 -0.07259 -0.07259 -0.07259 -0.07259 -0.07259	-0.05965 -0.05965 -0.10650 -0.10650 -0.11269 -0.11269 -0.135665 -0.15268	-0.07203 -0.07203 -0.07159
		DOY POINT		00100000000000000000000000000000000000	1.01622 1.01627 1.01841 1.01927 1.01681 1.01727 1.02774	1,01620 1,01688 1,01694 1,01694 1,01652 1,00820 1,00110 1,00110 0,00110	1.02452 1.02700 1.02700 1.05589 1.05584 1.05584	1.05559 1.055559 1.0555559 1.0555559 1.0555559 1.055	1.03562 1.03562 1.035995
GRAM		AT OFF - 1	NTIAL FL : VZ	0.02802 0.02802 0.05255 0.07586 0.10505 0.07586 0.07586 0.07586 0.07586 0.05178 0.01897 0.01897	-0.01951 -0.04250 0.05396 0.05892 -0.05892 0.08835 0.08835 0.16675	-0.01159 0.00143 0.05446 -0.00356 0.03758 0.09261	0.00007 0.01380 0.01389 0.03359 0.03359 0.03359 0.03359 0.03229 0.13700	0.02354 0.07748 1.0.01354 0.01354 0.01354 0.01355	-0.05039 -0.05039 -0.09134 -0.07411
ACTIVE PRO	.6, ALPHAS	COMPUTED	SIBLE POTE	-0.00011 -0.00011 -0.000011 -0.10555 -0.055165 0.055105 0.05500500000000	-0.02637 0.0155 0.0155 0.04659 -0.00398 -0.10566	-0.01046 -0.03112 -0.00679 0.02477 -0.05185 -0.093586 -0.093586	-0.00772 -0.01447 0.00341 -0.10692 -0.11163	0.001918 0.001918 0.00265 0.00268 0.00	0.02101 0.02101 -0.01214
SCID INTER	(P b l, M=0	FORCES ARE	INCOMPRES	1.01702 1.01702 1.01642 1.016438 1.064388 1.064388 1.05449 1.03449 1.02226 1.02226 1.02226 0.999838 0.999838 0.999838 1.02226 0.999838 1.02226 1.0226 1	1.01532 1.01718 1.01778 1.01581 1.01589 1.01509 1.01605 1.01401	1.01609 1.01640 1.01595 1.01395 1.01395 1.00682 0.988470 0.988870 0.988870	1.02450 1.02450 1.02681 1.02556 1.02556 1.02491 1.02491 1.02491	1.04788 047882 059555 059555 059555 1.054568 1.07559 1.07559 1.07559 1.07559 1.07559 1.07559 1.07559 1.07559 1.07559 1.07559 1.07559 1.07559 1.07559 1.07559 1.07555 1.07555 1.07555 1.0755555 1.0755555 1.0755555 1.0755555 1.07555555 1.07555555 1.0755555555555 1.07555555555555555555555555555555555555	1.03249
SCOUS-INVI	C., ZDSTR	L. VZ AND		5.91563 9.16012 8.81478 8.81478 8.63107 7.598498 6.288525 5.73326 5.73326	8.96746 8.75072 8.46981 8.25629 8.03695 8.03695 6.29629 6.29290	8.90782 8.78426 8.56722 8.36462 7.99501 7.38852 6.19882 6.19888	8.90368 8.66814 8.66814 8.66814 8.96855 8.96855 8.97527 6.31958 6.31958	8.94598 8.258060 8.75813 8.02278 7.53738 7.53738 7.5378 7.5378 6.5378 7.5388 7.5488 7.54887 7.54877 7.54877 7.54877 7.548777 7.5487777 7.54877777777777777777777777777777777777	8.87958 8.67958 8.52792
3-D VI	TRANS. CAL	CP. VX. VI	OL POINTS	0.84292 0.29668 0.24696 0.66708 0.66708 1.06277 1.51475 1.51585 1.50585 1.50585 0.29784 0.29784	0.28406 0.85290 0.85290 1.945845 2.44425 2.55904 2.555904 2.555904 2.555904	0.30528 0.89480 1.45180 1.98848 2.32518 2.35455 2.31425 2.31425	0.28660 1.40577 1.41557 2.15694 2.15694 2.15716 2.12716	0.26312 0.78501 1.7136501 1.91415 1.93939 1.93539 1.93539	0.74674 1.19996 1.53300
	L FLOW SOL	PRINTED	X CONTR	0.26650 2.35560 2.35566 2.35563 2.35563 2.35563 2.35565 2.355255 2.355255 2.355255 2.355232 2.355255 2.355232 2.355255 2.355555 2.355555 2.355555 2.355555 2.355555 2.35555555555	4.83245 4.81957 4.81957 4.81589 4.81589 4.81858 4.81858 4.81858 4.81858	7.62799 7.62973 7.62886 7.61188 7.63661 7.62524 7.62531	9.84778 9.84778 9.85272 9.85273 9.84573 9.84579 9.85490 9.83490	2.38484 2.38484 2.38452 2.389178 2.38965 2.35955 2.37455 2.37455 2.37270 2.37270 2.37270 2.37270 2.37270 2.37270 2.37270 2.37270 2.37270	5.43256 5.43256 5.42825
	EPORT	****	÷	80-109490-80 11111				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-010
	UND	NG		N M	1	2	÷	ۍ د	n
	ند 	ARNI	FC.	LIF	LIF	LIF	LIF		
23	ITLE	X	EC S 0. T	x x n n	Z J	Z J	Z J	z z v v	E 7
PAGE	CASE T PAGE T	**	PNL. NO.	119 125 125 125 125 125 125 122 122 122 122	150 151 155 155 155 155 155 155	1242 1440 1440 1440 1440 1440 1440 1440	20110008200 20210008200 2021000	· · · · · · · · · · · · · · · · · · ·	165 165 165

CONSTRUCTION OF

3-D VISCOUS-INVISCID INTERACTIVE PROGRAM Report test case,trans. Calc., 2dstrip bl, m=0.6, alphas PAGE 24 CASE TITLE: REPORT TEST CASE, TRANS. CALC., 2DSTRIP BL, M=0.6, 1 PAGE TITLE: FUNDAMENTAL FLOM SOLUTION XXXXXX MARNING XXXXXX PRINTED CP, VX, VY, VZ AND FORCES ARE COM

APR 15, 1986

TUESDAY,

6000	, 1 4 8	<u>.</u>							
CH = 0. YCLE NG		ON							
SCID C	ł 	SOLUTI	0000						
	 	FL OH			00000000		00000000		
AL PHA VI SCOUS	, , , , ,	DELS							
		/150	09788 09788 07959	01922 01922 01922 025551 025551 02572 02113 02214	02550 02556 02555 02555 02655 07218 07218	01446 01475 01541 01618 01879 01879 01879 02635	03434 00752 00011 01699 03232 03232	0264	07099 07099 04164 03462
1	175	<u>.</u> 5							
	DY POIN		1.04245 1.04822 1.05389	L 99950 0 995050 0 988260 0 987282 0 98940 1 00107	0.98790 0.98720 0.98561 0.98297 0.97944 0.96926	0.9927 0.99261 0.99227 0.99185 0.99165 0.99058 0.98676	1.01708 1.0037 1.0037 1.008638 1.008638 0.98852 0.98527 0.98527	0.9880 0.9880 1.0067 1.0153 1.0153 1.0197 1.02221	1.02228 1.03511 1.02068
		FL S0	266	1000400.400	22232222	01100000000000000000000000000000000000	4412194	75555555	
	T OFF	IT I AL VZ	0.046 0.045 0.056 0.056		0.016 0.016 0.025 0.025 0.055 0.055 0.055 0.055 0.055 0.055	0.009 0.013 0.0133 0.0333 0.0333 0.0333 0.0333 0.0333			0.012
PHAS	TED A	POTEN	5055		51.961.869.90	800100 200100 200100 200100	2022020	5175105909191 91751059099	20020
.6, AL	COMPL	SIBLE	-0.050 -0.050				0.0000		
0=W ,	S ARE	MPRES	962 612 797	001000 001000 001000000000000000000000	785 5365 261 7985 705 705 705 705 705 705 705 705 705 70	50000000000000000000000000000000000000	104204 10450 10000000000	0000049	9009 2009 2009
IP BL	FORCE	<inco< td=""><td>100</td><td></td><td>0.988 0.9880 0.9880 0.9880 0.9880 0.9880000000000</td><td>6.999999999999999999999999999999999999</td><td></td><td></td><td></td></inco<>	100		0.988 0.9880 0.9880 0.9880 0.9880 0.9880000000000	6.999999999999999999999999999999999999			
20519	IZ AND		86266 56250 85720	00493 00493 11951 14635 13635 13635 13275 13275 13272	87738 73264 65273 05233 05299 06799 06799 06090 06090	86471 72855 47325 69536 25419 26468 30548	96469 96469 77646 81144 70048 81144	100 100 100 100 100 100 100 100 100 100	58322 58322 58322
CALC.	Υ.	S	~~~~	0 10 10 10 10 ~ ~ ~ 0 0	80808000000	80 40 40 H M M M M		า้มามามามามามามา	
TRANS.	CP, VX,	ROL POIN	1.75172 1.75172 1.75855	1.55955 1.55955 1.552955 1.65510 1.655295 1.65654 1.65022 1.65654 1.65654	0.25010 0.73196 1.14206 1.44342 1.60191 1.63223 1.63223 1.63223 1.62216	0.23139 0.67604 1.06076 1.56159 1.55207 1.559996 1.52285	2.11342 1.50402 0.90450 0.30595 2.008685 1.454858 1.454858 0.87312 0.87312	1.5555 0.66769 0.86769 0.28941 1.77620 1.55181	U.26516 1.60299 1.19109 0.71381
ST CASE	PRINTED	X CONTI	42151 41881 41711 42238	42630 70573 70573 69508 69267 69466 70216	59558 59558 59525 59525 59588 5919 59125 59125 59599	51235 51535 51532 51270 51270 51296 51207 51207	81527 815896 81896 81866 81866 826952 62697 82782 827782 82782 82782 82782 827782 82782 82782 82782 82	822384 853585 853585 853585 853585 853585 853585 853585 8555855555 8555555	525568 352568 37105
TAL	*	<u> </u>	2222	222222222	\$\$\$\$\$\$\$\$\$	********	4444777	6166722	2222
REPOR	**	3	50000	0-10194196769	-~~~~~	しのちゅうらてる	-094-093	r-094-09,	8-10M
FUN	ING	N:	n	••	~	•0	- N	+n ver	<u>د</u> م
	ARN	SEC.	4L IF	μ. L		NL IF	NL IF VL IF	NLIF	NLIF
LITLE	***	SEC S	4	- -	 	- 3	ν .v		ŝ
ASE	WXX	ND.	166 166 166 166		1740 1867 1867 1867 1867 1867 1867 1967 1967 1967 1967 1967 1967 1967 19	186 192 192 193 193 193 193 193 193 193 193 193 193	194 195 200 200 200 200 200	846554555 844655655 85005655555 850056555555555555555	212 212 212

Figure 25. (Continued) Output from the sample case.

	ຼົ	!	-											
916			Î											
<u> </u>	• 2			-	•••		•			-	-	0		:
	52	1	- 10 i	-						-			-	-
Ā	₹û	İ	Ĕ											
•	SCI		20L	•	9.0	.	•		•	•	•	•	•	•
DAY			8	•	0 (••••	9 9	0	•	9	0	0	0
UES	- "S		<u>ਜ</u> :											
-	PHA		502	0	••		•	.		0	0	•	0	•
	VIS			•	• •	0	00		0	ø	0	o	e	0
			- 	59	¥.	20			2	3	20	2	ş	2
			121	029		1610	5	20	061	055	034	024	02 20	026
			÷∑¦	-			00		0	0	0	0	0	•
		NTS	- !	9	4		ň	o m	0	•	•	=	2	•0
		104	Ξ.	147	2060		926	619	0690	121	824	878	872	865
		λđ	5	1.0	00	0	0.0	0	0	0	0	0	0	0
			ר ה	~	M) M	, m	+0 ¥	n – 1	2	-	••	\$	~	ŝ
_			-1N	356	496	527	341	4 6 7 6 7	335	194	782	205	098	209
RAN				0.0	90	0.0	0.0	0	0.0	0.0	0	0.0	0	0.0
ROG	HAS		16		•	• •	~	• ••	~	~	~	_		م
Ē	I D	15	ă u	010		17	0289	21	0182	0262	Š	549]	272	103
CT	- -	I. I. I. I. I. I. I. I. I. I. I. I. I. I		- 0. - 0.		ið o	õč		ē.	õ	0	0.0	0 0	0.0
ERA	0	Re .	ESS -	•			Ĩ	-		_	Ĩ	_	_	_
INT	I	× 5	A H	413		876	183	190	842	199	882	698	681	630
10	Ā	RCE		5		8	6. a		. 96	6	- 97	. 98	.98	. 98
1150	IR IF	L L	<u>⊽</u> ¦	-		9	00		0	0	9			0
NI-	2DS1	N	-	231	000	137	5 3 0	56	546	153	8 / 9	223	539	191
Sno	•	2	~	.57		1	.66	1	. 79	.72	õ.		2	.70
ISC	ALC	ζ.	' '	5	n ir	5		חיו	ŝ	ŝ	0		ŝ	ŝ
		×.		62	35	65	540	20	5	0	5	2	5	10
μļ	LION		<u>م</u> کے	239	10	683	231	80	653	221	323	996	607	202
	E, TI	Ċ	TRO	0,	-	0	0-	•	Ö	Ö	-	0	0	0
	N SI	NTE	CON	80 0		4	55	52	52	8	3	0	5	0
	FLO	PRI		386	2 A Q 9 A Z	669	699 623	585	595	586	451	323	345	337
	JLE.	ж	Ų ∣	52	22	27	22.	32	29.	23.	3	33.	::	33.
	POR 1		- 21	4.	- ~	3	ب ک	2	m,	a 1		N	n .	æ
	NDAN	x o	- i - > i	5	۵		~				-			
	FU	NIN	ій .ш.	L. L	-		L	•		1				
	üü	HAR	SEC	ITN			E N							
25		XX		5	ŋ		ſ	•		•	n			
Ж	E E	××		213		9	<u> </u>	20	2	22	N:	2	5 1	ŝ
Ň	××	. ~	ZZ :	20	vin	N	25	5	2	N	N	N	N	N

Figure 25. (Continued) Output from the sample case.

)

.

84

, 1986 0.6000 MO. 2											
ALPHA = 1.50 MACH = VISCOUS/INVISCID CYCLE	CIRCULTN	-0.0858 -0.0165 -0.0310									
	ASTRIP	15.0991 24.1940 35.5155									
	SECTCD	-0.0015 -0.0025 -0.0003									
	SECTCL)Y POINTS 0.0246 0.0820 0.1306									8
	ETA	0FF - B 01 0.8463 0.5712 0.2759									
, ALPHAS	CYAH	COMPUTED AT -0.0013 -0.0040 -0.0109	-0.0162 0.0003 0.0010	0.0015 -0.0032 -0.0074 -0.0074	-0.0146	-0.0038 -0.0011 -0.0111 -0.0221 -0.0158 0.0051 0.0074	-0.0367		0.0024		NNNNNN H
BL, M=0.6	, BOV2, CREF CROLL	RCES ARE (-0.0022 -0.0070 -0.0178	-0.0271 0.0005 0.0015	0.0019 -0.0048 -0.0111 -0.0061	-0.0220	-0.0058 -0.0058 -0.0058 -0.0541 -0.0244 0.0128 0.0128 0.0115	-0.0564	-0.0002 0.0003 0.0003 0.0003 0.0003 -0.0000 -0.0001 0.0001 0.0027	0.0037	******* 0 • 0 0 • 0	XXXX
., ZDSTRIF	JES OF AREF CPITCH	VZ AND FC -0.0135 -0.1554 -0.1354	-0.2126 0.0010 0.0026	0.0035 0.0019 -0.0051 -0.0054	-0.0066	-0.0048 -0.0057 -0.0057 -0.0121 -0.0121 -0.0121 0.0035 0.0046	-0.0330	0.0013 0.0025 0.0005 0.0041 0.0074 -0.0024 -0.00274 -0.0029	-0.0096	-0.2583	
FRANS. CALO	INPUT VALU CSF	2P, VX, VY, 0.0005 0.0019	0.0086 -0.0016 -0.0024	-0.0046 0.0051 0.0051 0.0041	0.0183	0.0013 0.0013 0.0073 0.0128 0.0128 0.0128 -0.0080 -0.0035 -0.0035	0.0251	-0.0001 -0.0001 -0.0003 -0.0003 -0.0003 -0.0003 -0.0000	-0.0011		*****
PRESSURES	DASED UPON CD	PRINTED (-0.0002 -0.0006 -0.0001	-0.0010 0.0010 0.0009	0.0018 -0.0000 -0.0000 -0.0000	-0.0005	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001	0.0022		0.000		****
LINT EGRATED	cr	ING ###### 0.0039 0.0207 0.0484	0.0729 -0.0008 -0.0029	-0.0037 -0.0019 0.0023 0.0023	0.0041	0.0018 0.0018 0.0026 0.0026 0.0061 -0.0041 -0.0011	0.0148	-0.0012 -0.0012 -0.0015 -0.0015 -0.0025 -0.0025 -0.0027 -0.0027	0.0018		
TITLE:]	SEC NV	KKK MARNI 1 1 3 3	. TOT : 2 1 2 2	. TOT . 3 1	. TOT:	4 	. TOT :	N NN&N&N	. 101 :	G. TOT :	
CASE	TYPE	LIFT	SECT	SECT	SECT	NLIF	SECT	NLIF	SECT	CONFI	

Į

Ę

SXXXXXXXXXXXXXXXXXX

Figure 25. (Concluded) Output from the sample case.

Figure 29. Panel arrangement for test case 3.

n

والمراجع والمراجع

Figure 30. Panel arrangement of the wing for test case 3.

