
-A1 45 USING TRACE SPECIFICATIONS FOR PROGRAM SEMANTICS AM 1/1
VERIFICATION(U) NAVAL RESEARCH LAS UASHINGTON DC
J MCLEAN 18 APR 87 NRL-983

UNCLASSIFIED F/G 12/5 UL

,MENEM

LL - L

MIROOP REOION TETCHRMHiWBRA f TNAD %-

"ri

NRL Report 9033
In,q,.
00
0)

Using Trace Specifications for Program Semantics
Iand Verification

JOHN MCLEAN

Computer Science and Systems Branch 4 -

Information Technology Division

April 10, 1987

DTro -~ELECTEh

MAYO0 5 1987N

*,". Approved for public release; distribution unlimited

1 87 5 4 069

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

NRL Report 9033

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL ?a. NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Research Laboratory Code 5590

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Washington, DC 20375-5000

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Office of Naval Research
Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK IWORK UNIT

Arlington, VA 22217 ELEMENT NO. NO. NO ACCESSION NO.

61153N R8014-09-41 DN480-540
11. TITLE (Include Security Classification)

Using Trace Specifications for Program Semantics and Verification

312. PERSONAL AUTHOR(S)

McLean, John
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Interim FROM 10/85 TO 9/86 1987 A ril 10 17
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Software verification Program semantics

Software specification

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

' Traditional methods for proving program correctness use implementation-dependent specification
methods. If abstract specifications are also used, these methods require a leap of faith to bridge the gap
between an abstract specification and a program correctness statement. In this report the trace method of
software specification is extended to provide a natural semantics for procedural programming languages. This
extension is compared with other approaches for giving program semantics and is seen to provide a method
for proving program correctness that avoids the problems of those currently in use.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED El SAME AS RPT 0 DTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

John McLean 202) 767-3381 Code 5590

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

M&ou..t gu OftVIio I-46744

i

Mw",

CONTENTS

1. INTRODUCTION 1

2. AN OVERVIEW OF THE EXTENDED TRACE LANGUAGE 1I

3. PROGRAM SEMANTICS .. 3

4. PROGRAM CORRECTNESS ... 6

5. CONCLUSIONS ... 10

6. REFERENCES ... 10

7. ACKNOWLEDGMENTS .. 11

APPENDIX .. 12

Accession For

NTIS GRA&I li
DTIC TAB ID WUnannounced 03$PC
JUstificatio-"C 7E-

By
Distributioni/

~Availability Codes
Avail and/or

IDist Special

USING TRACE SPECIFICATIONS FOR PROGRAM SEMANTICS

AND VERIFICATION

1. INTRODUCTION

Traditionally, program verification has focused on proving isolated programs and their subrou-
tines correct vis--vis their specifications. Unfortunately, working with isolated programs has resulted
in faulty program specification [1]. The problem with specifying programs individually is that many
programs do not have any user-visible effects except for their interaction with other programs. For
example, the effect of executing a push procedure in a stack module can be seen only by its interac-
tion with other procedures that permit a user to examine the stack. To specify such programs, veri-
fiers have hitherto been forced to tell programmers too little about what to do and too much about
how to do it. They have resorted to pseudocode, algorithms, hidden functions, program states, and
user-invisible variables to describe program interaction. This leads to a loss of specification abstrac-
tion that forces the module programmer, the module user, and later the system maintainer to glean
essentials from a mass of implementation clutter [2]. Often, they disagree on what is essential and
what is notational artifact. The result is often unnecessary module coupling that makes software
extremely difficult to maintain.

To alleviate this problem, some verification methods supplement implementation-dependent
specifications designed for the verifier, with abstract specifications designed for the programmer, sys-
tem user, and system maintainer. However, there often has been a leap of faith required to get from
the correctness of the former specification to the correctness of the latter. What is required is a
coherent framework that allows for both the abstract specification of interacting modules and correct-
ness assertions for these modules.

The trace method for specifying software [2,31 is a formal, abstraci specification language that
allows the specifier to describe a program's behavior in terms of other programs with which it
interacts. In Ref. 2 a formal foundation for the method is presented with several examples of how to
apply the method. This report continues the work in Ref. 2 by showing how the method can be
extended to provide a natural semantics for procedural programming languages. This semantics pro-
vides a coherent framework for proving programs correct that avoids the problems inherent in the
traditional approach.

2. AN OVERVIEW OF THE EXTENDED TRACE LANGUAGE

We begin by extending the trace specification language so that it can describe the effects of exe-
cuting single program statements. In Ref. 2 a trace specification for a module consists of two parts:
(1) a syntax section that gives the procedure names and types the module comprises, and (2) a seman-
tics section that gives the behavior that the module's procedures must exhibit. Procedure behavior is
given by listing assertions that describe the behavior of sequences of procedure calls, written
calll. call2 . " " " call,,, known as traces. The assertions are based on first order logic, supplemented
by the predicate L, which is true when applied to a legal trace (a trace that does not cause an error),
and the function V, which gives a return value when applied to a legal trace ending in a function call.
The null trace, denoted by [1, is always legal and is such that for any trace T, T=1].T=T. 1]. Two
traces T I and T, are equivalent, written T t -T 2, if and only if for any trace T, L(T .T) iff L(T,. T)
and for nonnull T, V(TI.T)=V(T 2.T) if defined. Less formally, if two traces are equivalent, then

Manuscript approved November 12, 1986.

_a~I

m7 -

JOHN MCLEAN

they are indistinguishable as far as L and V are concerned with respect to future program behavior.
As an example, consider the following specification for a simple stack:

STACK SPECIFICATION

Syntax:

PUSH: integer
POP: - integer

Semantics:

(1) L(T) - L(T.PUSH(n))
(2) L(T) - T.PUSH(n).POP-T
(3) L(T) - V(T.PUSH(n).POP)=n

The syntax section says that the procedure PUSH takes an integer as a parameter and that POP
returns an integer. The first assertion in the semantics section says that if T is a legal sequence of
procedure calls, then the sequence consisting of T followed by a call to the procedure PUSH with any
integer as a parameter is legal. The second assertion says that if T is a legal sequence of procedure
calls, then T is equivalent to the sequence of calls consisting of T followed by a call to PUSH and a
call to POP. The third assertion, when coupled with the first two, says that POP returns the last
value pushed on the stack that has not previously been popped. Note that PUSH and POP are com-
pletely and unambiguously specified without suggesting an implementation.

In Ref. 2 a model-theoretic semantics specifies what assertions are semantic consequences of a
specification, a derivation system specifies what assertions are derivable from a specification, and
completeness and soundness theorems show that an assertion is a semantic consequence of a specifica-
tion if and only if it is derivable from the specification. Among other things, this supports coexten-
sive semantic and syntactic definitions of totalness and consistency and formal techniques for proving
these properties for a specification. For our purposes here, the most important elements of this foun-
dation are the following axioms from the derivation system. The first two say that the empty trace is
legal and that any initial segment of a legal trace is legal. The third is a definition of equivalence.

TRACE AXIOMS
(1) L([I) -

(2) L(T.T 1) - L(T)

(3) T =T2

(T)((L(T .T) - L(T2.T)) A

(T *[J1-

((3 x)V(TI.T)=x - V(T V.T)=V(T2.T))))*

For proving program correctness we also find use for the following induction schema:

INDUCTION SCHEMA

For any property P, if P([]) and P(O) - (xl) .. . (x,)P(40.C(x," • . x,)) for each pro-
cedure call C that take n variables where x1, ,x, are not in P, then P (T) where T is not
in P.

*This is a simpler definition than given in Ref. 2, but the two definitions can easily be shown to be equivalent.

2

NRL REPORT 9033

This schema is sound with respect to the semantics given in Ref. 2 if we limit the domain of traces to
the null trace and sequences of procedure calls. This was not done in the original presentation where
infinite traces were allowed for the sake of completeness. Our limitation renders the resulting system
incomplete in the sense that although IP([]),P(C),P(C.C), • • I I =P(T) in a specification that has
the single parameterless procedure call C, we cannot derive P(T) from the given assumption set. In
general, it will no longer be true that we can derive every consequence of an infinite set of assump-
tions from that set, but we can still derive every consequence of a finite set of assumptions from that
set. In technical terms, we have given up compactness, but this is a small price to pay for the ability
to prove programs correct [41.*

We must also extend the notion of trace to include strings of program statements. This necessi-
tates introducing program variables and operators into the language as primitives and introducing
statement variables that are like trace variables except that they range over sequences of program
statements instead of sequences of procedure calls. Since a sequence of procedure calls is a sequence
of program statements, a sequence of procedure calls or procedure call variables is a valid substitution
instance for a statement variable.t' We use T, possibly subscripted, as a procedure call variable and
S, possibly subscripted, as a statement variable. The rest of the language is unaffected except for the
predicate V. Whereas in Ref. 2, V was a function from traces to value domains, in the extended
language, V takes two arguments-a trace and a program variable-and returns the value of the pro-
gram variable after the execution of the given trace. When the trace ends in a procedure call and the
program variable is the return value of that call, the second argument can be omitted. For all intents,
this renders the extended language a superset of the original language. I

3. PROGRAM SEMANTICS

In this section we present a procedural programming language and show how traces can be used
to give the semantics of the language. § Since the trace language contains Boolean expressions and can
easily be extended to contain other data types such as integers, lists, or arrays. we are not concerned
with their semantics. For simplicity we limit our programming language to Booleans, integers, and
arrays of integers, and we assume axioms for integer and Boolean operators. Our primary focus is on
giving the semantics of the control structures of our language.

We limit ourselves to what Linger, Mills, and Witt call proper programs 151. These are pro-
grams that, intuitively, (a) have a single entry point and a single exit point, and (b) for each line of
code, have a control path through that line from the entry point to the exit point. The second condi-
tion rules out programs that contain code that is syntactically unreachable or unleavable. For exam-
ple, it rules out programs containing code of the form

A: goto B;
a: =a+ 1;

B: goto A;

*See Ref. 4 for a discussion of this problem with respect to temporal logic.

tBut a sequence of program statements is not a valid substitution for a procedure call variable. The reason for the
distinction is to restrict assertions, such as the induction schema above, to sequences of procedure calls.
tThe qualifier is necessary since in Ref. 2 V was defined only on legal traces ending in a function call, and in the extended
system V can be defined for illegal traces as well. This is of small matter, however, since we can either alter Ref. 2 t fit
by regarding V as being defined on an unspecified set of traces that includes its original domain or bh treating V as being
systematically ambiguous, letting context decide.
§For nonprocedural languages, such as Prolog 161, proving correctness is relatively easy except for language idiosyncrasies
as described in Ref. 7.

3

JOHN MCLEAN

since no evaluation must be made to determine that the code from A to B is unleavable and that the
command a: =a + 1 is unreachable. However, it does not rule out programs that contain code of the
form

while (x = x)
lif (x=x) then la:=a+l} else lb:=b+lI}

since one can determine that the loop is unleavable and that b: = b + I is unreachable only by exa-
mining the expressions contained in the program.

Excluding nonleavable code and nonreachable code from our programming language does not
reduce expressik e power since the former can be replaced by any nonterminating loop and the latter
can be excised without altering program behavior. Nor does limiting ourselves to programs with a
single entry and a single exit point reduce expressive power since we can always embed any program
that violates this principle within a proper program. By limiting ourselves to proper programs, how-
ever, we have a real gain in light of the Structure Theorem [5]. This theorem statcs that any proper
program can be written in a language whose only control structures besides simple sequencing are
WHILE DO and IF THEN ELSE. This motivates the language SIMPLE defined below. As men-
tioned above, we assume the set VBL of integer program variables, BOOL of Boolean expressions,
and EXPR of integer expressions. We are not interested in variable declarations.

SIMPLE

PROGRAM -
PROCEDURE NAME[(VBL,... ,VBL)]: [RETURN(VBL)] STATEMENT.

STATEMENT -
skip
ASSIGNMENT I
IF THEN ELSE ,
WHILE DO I
STATEMENT; STATEMENT

ASSIGNMENT -
VBL:= EXPR
VBL = PROCEDURE NAME[(VBL, .. ,VBL)]

IF THEN ELSE -
if (BOOL) then ISTATEMENT] else ISTATEMENT1

WHILE DO -
while (BOOL) ISTATEMENT1

We assume without loss of generality that SIMPLE does not contain recursion since we can always
eliminate it 181. We also assume without loss of generality that all variables are global and that
integer variables are initialized to 0.* Finally, we will abbreviate program statements of the form if
(0) then -y l else IskipI as if (0) then I - .

*The effect of local variables can be achieved by judicious naming.

4

NRL REPORT 9033

The semantics for SIMPLE is given by the following axioms (where parentheses and brackets
are omitted around Greek letters for readability):

PROGRAM SEMANTIC AXIOMS

(1) V(S,c)=c, for constant c.
(2) V([],x)=0, for any integer variable x.
(3) V(S.a:=t,a)=V(S,t), for term t.
(4) V(S,a op b)= V(S,a) op V(S,b) for arithmetic operation op.
(5) V(S,a op b) - V(S,a) op V(S,b) for Boolean operation op.
(6) V(S.a: =x,b)=V(S,b) where b is independent, as defined below, of a.
(7) V(S,4)=V(S,#) - V(S,a[,0j)=V(S,a[0j) where a is an array.
(8) V(SA)*V(S,4,) - V(S.a[0]:=t,a[jv)=V(S,a[,l) where a is an array
(9) V(S,O) - V(S.if q$ then 0 else 4,x) = V(S.e,x)
(10) -1V(S,O) - V(S.if 0 then 0 else 4,x) = V(S. O,x)
(11) V(S.while 0 do 0,x)=V(S.if 4 then (0.while 4, do 01,x)
(12) V(S.skip,t)=V(S,t), for term t.

We say that a is dependent on b if (1) a is typographically identical to b or (2) if a is an array
variable of the form ctib] and b is either dependent on 0 or of the form a[0] for the same array a.
That is, a is dependent on b if they are identical, if a is an array variable whose index depends on
b, or if both are array variables to the same array. Note that in the second case, a is dependent on
b, but not vice versa. We say that a is independent of b if a is not dependent on b. The intuition
behind the definitions is to restrict axiom (6) so that altering a [tI may alter a [y if t =y and altering
t may alter, e.g., a[t] or a[t + 1].

Although the axioms are sufficient only for proving weak program correctness, i.e., that if the
program terminates then it produces the correct answer, we can extend them to prove strong program
correctness, i.e., that the program is weak correct and terminates, in a straightforward manner.
Clearly, a nonrecursive SIMPLE program terminates if all of its loops terminate, so we can restrict
ourselves to loop termination. Consider the relation ACC(,,,O), which intuitively says that trace 0
can be formed from trace 4, by appending zero or more occurrences of 4,. We can recursively define
such a predicate by adding the following axiom to our system:

(13) ACC(R,S,R) A (ACC(R,S,T) - ACC(R,S,T S))

Given this axiom, we can replace axiom (11) by the following axiom, which enables us to prove
strong correctness:

(I 1')(-t V(S,46) A ACC(T,0,S)) - V(T.while 4, do 0,x)=V(T.if 4 then {0.while 0 do 01,x)

We can add axioms for proving termination of recursive programs in a similar manner, but for sim-
plicity, we shall limit ourselves to the original 12 axioms in the rest of this report.

The axioms are based on the standard Hoare axioms [9] for weak correctness. However, the
semantic axioms given here differ from Hoare's in that they are stated in terms of variable values
instead of in terms of general preconditions and postconditions. A Hoare-style assertion such as
A (p JB (if A is true before executing program p, then B is true after completion of p) can be
stated in the present system as AT - BT where A T is the same as A except that every term t
is replaced by V(S,t) for some statement variable S, and BT is the same as B except that every term
t is replaced by V(S.p,t). Hence, x=Ofx:=x+l;y:=xly=I is equivalent to V(S,x)
=0 - V(S.x:-=x +l.y:=x,y)=1.

It might seem as though the correct translation should be V(Dx)=0 - V(S.x: =x+l.y:

=x,y) = 1. However, such a strategy fails when we consider the assertion x = I {x: =x + l;y: =x ly = 1
since V([,x)=1 is false given our assumption that all uninitialized integers are 0. If there is no

5 I

JOHN MCLEAN

sequence of programs that can set x to 0, then V(Sx)=0 will also fail to hold for all S. This may
seem to be a disadvantage of the trace approach, but it fits well with our desire for abstraction. If a
certain state is unrealizable by a module, we have no business placing restrictions on what would
happen if that state were realized. Further, if we assume that our language contains a deterministic
assignment statement such as epitomized by x:=O, then all possible states are realizable.

Since we can translate Hoare-style assertions into trace assertions, we can define any language
construct that is definable by Hoare-style assertions. For example, consider Dijkstra's if fi and do od
constructs 1101. The semantics for the former is given by the two axiom schemata ((V(S,bl)
V ...v V(S,b)) A V(S,bl) - V(S.pl,X)=0 A" . • A V(S,b,) - V(S.pnx)=0) - V(S.ifb I -
pl" Ib. -p.fix)=0 and -'(V(S,b1) v ...V V(S,b.)) - -i(3y)V(S.ifbi--P i I .
Ib -pnf!,x)=y. The semantics for the latter is given by V(S.do blI-p I " b, -pod,x)=
V(S.if(b1 V . ..V b,) then lifbi-p l I Ib. -p,,fi; do b -p I • • •b, --podJ,x).

An advantage of the semantic axioms given here is that when using them for proving programs
correct, we do not have to worry about finding proper initial conditions. Finding such conditions for
Hoare-style axioms is a nontrivial task often neglected in the literature. A second advantage is that
we allow trace variables. This gives us a more expressive language. For example, although our
stack assertion (3) can be rendered as the Hoare-style assertion true [PUSH(n).POP)return =n, we
cannot capture by any Hoare-style assertion assertion (2) of our specification. It may seem as though
P IPUSH(n).POP JP, i.e., whatever is true before calling PUSH then calling POP is true after the
calls, approximates our concept of equivalence, but this is not the case. It is not the case that any-
thing that is true before PUSH(n).POP is true after PUSH(n).POP, only that anything that is user

-, visible that is true before the call is true after the call. For example, if our stack is implemented as
an array, the array state will be different, but not in a way that a module user can detect. More on
this in the next section.

Our language can also express assertions of dynamic logic [111 if we allow for nondeterminancy
by letting V return a set of values [12], thus, treating V as a relation rather than as a function. The
result is a formulation of dynamic logic that employs standard first order model theory instead of cw-
sequences of models. For example, if we let V(S,t ,v) mean that the value of t can be v after execut-
ing S, then the U construct, which has the property that p U q executes either program p or q, can
be specified by V(p Uq,tx) - V(p,tx) V V(q,tx). Similarly, the * construct, which has the
property that for any program p, p* executes p 0 or more times, can be specified by the axiom
schema V(p*,t,xi) where xi is the value of executing p i times. The statement x =0 - <p>x =
(i.e., if x =0 then x =1 is true in some state reachable by executing program p) is represented by
(v)(V(S,x,v) - v=0) - V(S.p,x,1), and x=0- [p]x =l (i.e., if x=0 then x=l is true in every
state reachable by executing program p) is represented by (v)(V(S,x,v) - v=0) -
(v)(V(S.p,x,v) - v=l).* Analogous comments apply here as were given when considering the
Hoare-style approach. The translations are faithful if we consider the antecedent x =0 to apply only
to states that are realizable by a sequence of procedure calls. Further, we must assume that this
sequence always leads to a state in which x =0. As above, these restrictions are easy to satisfy if we

assume that we have deterministic assignment. Some of the advantages of our approach over dynamic
logic are analogous to the advantages of our approach to that of Hoare-style logic. A further advan-
tage is that we avoid the complicated model theory that dynamic logic necessitates since we do not
need to consider w-sequences of program states.

4. PROGRAM CORRECTNESS

As an example of a program correctness proof, consider the following program for computing
factorial:

*Of course, the relational counterpart of V can also be used to give semantics for if 11 and do od.

6.

NRL REPORT 9033

FACTORIAL PROGRAM

FAC(n): RETURN(fac)
fac: = 1;
i: =n;
while (i >0)

1fiac: =fac*i;

We prove FAC correct with respect to the simple specification V(FAC(O))= 1 A
(x 0 - V(FAC(x + 1)) =(x + l)*V(FAC(x))) by deriving the specification from FAG, our program
semantic axioms, and the trace axioms of Ref. 2.

We consider each conjunct in turn. The specification then follows by simple sentential logic.
To derive V(FAC(O)) =1, note that by definition V(FAC(O)) = V(fac: = 1Li: = 0. while (i
> 0)fac: =fac*i;i: = i lI Jfac). By axiom (11), this is equal to V(fac: = Li: =O.if (i >0) then
Lfac:=fac*i;i:=-l; while (i>OfLfac:=fac*i;i:=i-l,Jjfac). Since by axiom (1) V(fac:=

1.i: =0i)=O, we can use axiom (10) (and implicitly axiom (12)) to derive V(FAC(0))=
V(fac: = Li: =0fac). By axioms (6) and (1), V(fac: = Li: =0fac)=l1, and we are done.

To derive x 0 - V(FAC(x +l))=(x+ l)*V(FAC(x)) requires a lemma. We prove by induc-
tion on the integers that for any integer m, (m =V(S1,i) A m =V(S2 ,i) A V(S 1 ,fac)=V
(S2 ,faC)*_Y) - V(SI .while(i>0) tfac:=fac*i;i:=i-l~fac)= V(S 2.while(i>0) Lfac: =fac*i;
i:=i-lJfac)*y. It is trivial to prove this for m=0 so we assume it for m=n 0 and show it for
m = n + 1. Note that if m = n +1I and n :0, then by using axiom (11) the lemma is equivalent to
(n+l=V(S1,i) A n+1=V(S2 ,i) AV(Si,fac)=V (S2,fac)*,y) - V(SI.fac:=fac *i.i:=i.l.while
(i >0) Ifac:=fac*i;i:=i -1Jfac)= V(S 2.fac:=fac *i.i:=i -1.while(i >0) Ufac:=fac*i;i :i
-11,fac)*-y. But (n+l=V(Si1i) A n+1=V(S2,i) - n=V(Si.fac:=fac *ii:=i1l,i)=V (S2.

fac:=fac *ii~~ i.Further (V(Sj,fac)=V (S2,fac)*7A V(S 1,i)=V (S2,0)) - V(S 2.fac:
=fac *i.i:=i -lfac)=V (S2 .fac:=fac *i.i:=i...1fac)*y. Hence, by the induction hypothesis,
since S, and S2 are statement variables, V(Si.fac:=fac *i.i:=i -1.while(i >0) Ifac:=fac*i;
i:=i-1,fac) = V(S 2.fac:=fac *i.i:=i- .while(i>0) tfac:=fac*i;i:=i-1Ifac)*y, and we are
done with our lemma.

We can now derive x 20 - V (FAC(x+l1))=(x +1) *V(FAC(x)). Note that V(fac: = Li:=
x,i)=x and V(fac:=l.i:=x+l.fac:=fac*i.i:=i-1,i)=x. Also, V(fac:=1.i: =xfac)*(x+l)
=V(fac:=l.i:=x+1.fac:=fac *i.i:=i...lfac). Therefore, by our lemma, V(fac:=l.i:=x.

(i >0)tfac: =fac*i;i: =i -lj),fac). But V(fac: =1Li: =x. while (i > O)Lfac: =fac*i;i: =i -I ,fac)
=V(FAC(x)), and x2 0-- V(fac:=1.i:=x+1.fac:=fac *i.i:=i -1.while(i >0) tfac:=fac*i;
i:=i-lJ,fac)= V(FAC(x+l)). Hence, x 0i -V(FAC(x)) *(x+l)=V (FAC(x+1)), and we are
done.

As a second example of a program correctness proof, consider the stack specification given in
Section 2. In this section we show how to prove a SIMPLE implementation of the specification to be
correct. We use the following program where ptr and top are integer variables and stack is an
integer array.

STACK PROGRAM

PUSH(i):
if (ptr 2:0) then iptr :=ptr+l1; stacklptrl:= ii.

POP: RETURN(top)
if (ptr >0) then Itop: =stack~ptrI1,
ptr: =ptr-l.

7

JOHN MCLEAN

As before, a correctness proof consists of a derivation of the specification from the program
using the the axioms of Ref. 2 and the axioms that define the semantics of SIMPLE. However, this
is not as straightforward as the in factorial case. It is not clear how to treat some of the constructs
found in our specification [1]. For example, although it is clear how to derive the assertion
V(PUSH(n).POP)=n, it is not clear how to derive L(T) - V (T.PUSH(n).POP)=n. We could
side-step this problem by rewriting our program so that V(T.PUSH(n).POP)=n is always true.
However, such a 'solution' may not always be available. Further, legality is not the only trouble-
some concept; the same problem arises for equivalence as well.

What is clearly needed are program-counterparts to legality and equivalence. Logically, this is
equivalent to giving an interpretation for the two predicates, which is perfectly all right as long as the
interpretation preserves the truth of the relevant axioms from the trace derivation system. Intuitively,
a stack trace is legal if it does not try to pop an empty stack. Since popping an empty stack decre-
ments the variable ptr below 0 and a negative ptr can never become nonnegative, we can say that a
trace T is legal iff V(T,ptr) O. Two traces T1 and T2 are equivalent if they have the same value
for ptr and the same value for the variables stack[l], '',stack ptr]. In other words T, is
equivalent to T2 iff V(Tl,ptr)=V (T2,ptr) A (15 _i s V (Tiptr) - V (Ti,stack[i])=V(T2,stack[i])).
For correctness, we need to establish that the relevant legality and equivalence axioms of Ref. 2 hold
for our interpretation and that we can derive the stack specification given our interpretation. In other
words, we must show that we can derive the stack specification and our three trace axioms from our
program semantic axioms, our stack implementation, and the two axioms L(T) - V (T,ptr) :O and
T,-T 2 - (V(Tlptr)=V (T2,ptr) A (1 5i :s V (Tiptr) - V (TI,stack[i)=V (T2,stack1i]))).

It is up to the programmer to provide these program-relative definitions for legality and
equivalence. The programmer should formulate them as the program is being written and use them
to verify informally the code. The program verifier uses them to derive formally the specification.
This is equivalent to using our implementation and program semantic axioms to derive the following
assertions:

STACK CORRECTNESS ASSERTIONS

(1) V(T,ptr)>_0 - V(T.PUSH(n),ptr)_0.

(2) V(T,ptr) 0 - (V(T,ptr)=V(T.PUSH(n).POP,ptr) A (I s i: _V(T,ptr) - V(T,stack[i])=
V(T. PUSH(n). POP, stack[i])))

(i) V(T,ptr) >0 - V(T.PUSH(n).POP,top) = n

(4) V([],ptr) a_0

(5) V(T.T,ptr)_>0 - V(T,ptr) 0

(6) (V(T,ptr)=V(Tl,ptr) A (1 _i:<V(T,ptr) - V(T,stack[il)=V(T1 ,stack[i]))) -

(T2)((V(T.T 2,ptr) 0 - V(Tj.T 2 ,ptr)_>0) A (T 2 *[J - ((Ev)V(T.T 2)=v -

V(T.T 2)=V(T I.T2))))

The derivations of these assertions are included as an appendix to this report. Here, it is
worthwhile to consider the assertions themselves. Assertions (1) to (3) correspond to assertions (1) to
(3) of the stack specification, and assertions (4) to (6) correspond to trace axioms (1) to (3) given
above. These assertions are "implementation-relative" versions of the corresponding specification
assertions and trace axioms. This does not imply that the original implementation-free versions are
functionless, however. The implementation-free specification provides a foundation for all implemen-
tations; it is what the programmer uses to understand what the module should do. Similarly the
implementation-free trace axioms provide a foundation for all specifications. The programmer uses

8

NRL REPORT 9033

both to formulate program-relative concepts of legality and equivalence. If we were to consider a dif-
ferent implementation, say one where the stack was implemented as a linked list, a variable-length
character string, or a G6del number, the correctness assertions might differ to reflect different
program-relative definitions of legality and equivalence, but they would still be counterparts of the
same specification assertions and trace axioms. The advantage of the trace approach is that it com-
bines abstract specifications with program correctness statements in a coherent manner. The program
specification leaves the programmer free to choose the best implementation, yet provides a framework
for the programmer to formulate program correctness assertions from the program later.

Note that if we used a faulty counterpart for legality or equivalence, we would be unable to
prove the counterparts of our trace axioms. For example, if we called a trace T legal if
V(Tptr)>O, then we would have been unable to prove that L([]). Hence, although some care may
be required in finding the correct counterparts to equivalence and legality, our choice is subject to
verification. Further, since all our derivations are formalizable in a rigorous deductive system, com-
puter verification of their correctness is straightforward.

As a final example, consider the following specification for a sorting bag for integers.

SORTING BAG SPECIFICATION

Syntax:
ADD: integer
FRONT: - integer
REMOVE:

Semantics:
(1) L(T) - L(T.ADD(n).REMOVE)
(2) L(T) - T.ADD(n).FRONT -T.ADD(n)
(3) V(T.ADD(n).T .FRONT)=n - T.ADD(n).T .REMOVE-T.T1
(4) V(ADD(n).FRONT)= n
(5) V(T.FRONT)<n - V(T.ADD(n).FRONT)=V(T.FRONT)
(5) V(T.FRONT) _n - V(T.ADD(n).FRONT) =n

Intuitively, ADD adds integers to the bag, FRONT returns the smallest value of an integer in the bag,

and REMOVE removes a smallest integer. The following program implements that bag:

SORTING BAG PROGRAM

ADD(n):
i:=l

while (n<bag[i] & i_5tail) i:=i+l ;
bag: = INSERT(bag,i,n);
tail: =tail + 1.

FRONT: RETURN(front)
front: =bag[taill.

REMOVE:
if (tail >0) then Itail: =tail - I.

The implementation stores the inserted integers in descending order in an array ind uses the pro-
cedure INSERT(array,index,integer), which inserts the given integer at the indexed location in the
given array. For proving correctness, we can either use an implementation of INSERT or use a
specification of INSERT if an implementation is not yet at hand. For definiteness, we assume that
INSERT meets the following specification:

9

N..

JOHN MCLEAN

INSERT SPECIFICATION

Syntax:
INSERT: array x integer x integer - array

Semantics:
(1) V(T.INSERT(x,y,z))=w - w[yl=z
(2) V(T.INSERT(x,y,z))=w - (i<y - w[iJ=x[iI)
(3) V(T.INSERT(x,y,z))=w - (i>y - w[ij=x[i-1])

As before, to formulate correctness assertions we need program-relative versions of legality and
equivalence. Notice that a trace is legal if it does not call FRONT or REMOVE on an empty bag,
i.e., when tail =0. This gives us the following axiom for legality: L(T) - (((T 1)(T=T1.FRONT
VT=TI.REMOVE) A V(T,tail)>O) VV(T,tail)2_0). This axiom could be simplified if we altered
our implementation to set tail to a negative integer when FRONT or REMOVE are illegally called.
Then, the axiom L(T) - V(T,tail)2_0 would suffice. In general, program overkill can make pro-
gram correctness easier to prove. As for equivalence, note that two traces are equivalent if they are
co-legal and have the same bag. This leads us to the following axiom: TI=-T2 - ((L(T I) - L
(T2)) AV(Ti,tail)= V(TE,tail) A (1 _i :_ V(Tl,tail) - V(Ti,bag[i1)=V (T 2 ,bag[iJ))). A correctness
proof consists of a derivation of our trace axioms and program specification from our two new
axioms, the bag implementation, and our program. As before we could use the two axioms to refor-
mulate the trace axioms and program specification if desired.

5. CONCLUSIONS

We have found traditional methods for proving program ,.orrectness lacking in that they depend
on unacceptable specification methods or require a leap of faith to bridge the gap between an accept-
able specification and a program-relative one. In this report, we extended a formal abstract specifica-
tion language to a program semantics language, compared the extended language with other program
semantic languages, and showed how it can be used to prove program correctness vis-a-vis an
acceptable specification.

6. REFERENCES

1. J. McLean, "Two Dogmas of Program Specification," ACM SIGSOFT Eng. Notes 10, 85-87,
Aug. 1985.

2. J. McLean, "A Formal Foundation for the Abstract Specification of Software," J. ACM 31(3),
600-627 (1984).

3. W. Bartussek and D.L. Parnas, "Using Traces to Write Abstract Specifications for Software
Modules," Report TR 77-012, University of North Carolina, Chapel Hill, NC, Dec. 1977.

4. J. McLean, "A Complete System of Temporal Logic for Specification Schemata," in Logics of
Programs, D. Kozen, ed. (Springer-Verlag, New York, 1984), pp. 360-370.

5. R. Linger, H. Mills, and B. Witt, Structured Programming: Theory and Practice (Addison-
Wesley, Reading, 1979).

6. W. Clocksin and C. Mellish, Programming in Prolog (Springer-Verlag, New York, 1981).

7. J. Lloyd. Foundations of Logic Programming (Springer-Verlag, New York, 1984).

8. E. Horowitz and S. Sahni, Fundamentals of Data Structures (Computer Science Press, Potomac,
MD, 1977).

10

NRL REPORT 9033

9. C.A.R. Hoare, "An Axiomatic Basis for Computer Programming," Comm. ACM 12(10), 576-
580 (1969).

10. E.W. Dijkstra, A Discipline of Programming (Prentice-Hall, Englewood Cliffs, 1976).

11. D. Harel, First-Order Dynamic Logic (Springer-Verlag, New York, 1979).

12. J. McLean, "A Formal Foundation for the Trace Method of Software Specification," NRL
Memorandum Report 4874, Sept. 1982.

7. ACKNOWLEDGMENTS

I am indebted to the participants of the foundation group at the 1985 VERKSHOP for convinc-
ing me that I should bite the bullet and abandon completeness to introduce induction into my program
derivation system. Carl Landwehr provided useful comments on an earlier draft.

I

IlE

APPENDIX

This appendix contains derivations of the correctness asserfions for our stack implementationI
given above. Proving assertions (1), (3), and (4) are easy given that a sequence of procedure calls or
procedure call variables is a valid substitution instance of a statement variable. Assertion (4) follows
directly from program semantic axiom (2), given the theorem for number theory that

V([l,ptr)=O - V(fI,ptr)2 O. Assertion (1) follows from number theory and our program semantic
axioms given that PUSH (n)=if (ptr :0) then Iptr: =ptr +I1;srack~ptr]: =n [. By program axiom (9)I
V(T,ptr)- zO - V(T~if(ptr 0) then Lvtr: =ptr +lI;slackLptr]: =n),ptr) = V(T.ptr: =ptr + 1;stack
[ptrl:=n,ptr), and V(Tptr:=ptr+l;stack~ptrJ:=nptr) = V(Tptr)+I by axioms (6), (3), (4) and
(1). Hence, by number theory we have assertion (1). Assertion (3) follows by analogous reasoning
given that POP =if(ptr>0) then [top: =stack [ptrfl.ptr: =ptr -I and the fact that V(Tptr)2!0 -
V(T.PUSH (n),ptr) = V(Tptr) + 1.

We prove assertion (2) in two parts, one for each disjunct of its consequent.
V(T,ptr)2 0 - V(Tptr) = V(T. PUSH (n).POPprr) is straightforward given our program semantic
axioms and the implementations of PUSH (n) and POP. This leaves V(Tptr) 0
- (lsi:!V(Tptr) - V(T,stack [i]) =V(T. PUSH (n).POP,stack [i 1)). Note that i~sV(Tptr) -

V(TJi) # V (T.ptr: =ptr + Iptr). Given this, deriving V(Tptr) 0 - (1 -- i S V(Tptr) -
V(T,stack[iJ)= V (T. PUSH (n).POP,stack [i])) is straightforward using program semantic axioms (6)
and (8). Assertion (2) follows by logic.

Instead of proving assertion (5) directly, we prove its contrapositive, V(Tptr) <0
- V(T. T1 ,ptr) <0, by trace induction. Assertion (5) follows by simple sentential logic. Let P be
the property such that P(O) if and only if V(Optr)<0 - V(O.T 1 ptr)<0. We prove P(T), and
thereby assertion (5), by using our induction schema. P([]) is V([],ptr)<0 - V([].T 1 ,ptr)<0,
which is trivial since V(f],ptr)=0 by program axiom (2). P(O) - P(Ok.PUSH(i)) is (V(Optr)<0
- V(O.T 1 ,ptr)<0) - (V(O. PUSH (i),ptr) <0 - V(O. PUSH (i). Tptr) <0). We establish this by
proving its consequent by induction. Let A be the property such that A () if and only if V
(0. PUSH (i),ptr) <0 - V(O. PUSH (i). O,ptr) <0. We want to establish A (TI). A(Uf) is the assertion
V(O. PUSH (i),ptr) <0 - V(O. PUSH (i). [],ptr) <0, which is trivially true since O.PUSH=ck.PUSH
(i)JI. A(O&) - A(O.PUSH(i)) is the assertion (V(O. PUSH (i),ptr) <0 - V(O. PUSH (i). ,ptr)
<0) -(V(. PUSH (i),ptr) < 0 - V(. PUSH (i). 0. PUSH (i),ptr) < 0). Now V(O~. PUSH (i). V&,ptr)
<0 -V(O. PUSH (i).i. PUSH (i),ptr) <0, since V(4O.PUSH(i)Optr)<0 - V(O. PUSH (i). t,ptr)=
V(O. PUSH (i). 0. PUSH (i),ptr) < 0. A (O) - A (V. PUSH (i)) follows by sentential logic since
(B - C) - ((A - B)- (A - C)). A(O~) - AQ/.POP) is the assertion (V(O. PUSH (i),ptr)
<0 - V(O.PUSH(i). Ot~ptr)<0) - (V(. PUSH (i),ptr) <0 - V(O.PUSH(i). O.POP,ptr)<0).
This holds by an analogous argument, establishing A (TI) and hence, P(O~) - P(ck.PUSH(i)).
P(O) - P(O.POP) holds by an analogous argument, which establishes P(T), and we are done.

We prove assertion (6) by establishing four lemmas. First, consider (1) V(T,ptr) = V(T 1,ptr) -
(V(T T,ptr) !0 - V(T 1 .T2,ptr) - 0). Using induction on T2 , itis straightforward to establish that
V(T.pr) = V(T 1 .pir) - V(T.T2,ptr) =V (TI. T2,ptr), from which (I) follows. Next consider (11)
(V(T,plr)=V(T 1,ptr) A (125i : V(T,ptr) - V(T,stack~i])=V (T 1,stacklil))) - (T2 #11 - ((3v)V
(T.T,)=v. - V (T.T 2)=V (TI.T 2))). Unabbreviating V, this translates into (V(T,ptr)=V(T 1,pi'r) A
(I!5i2sV(T,ptr) - V(T,stack[iJ)=V(T 1,stack[iJ))) - (T2.POPqt-[] - ((3v)V(T.T 2 .POP,top)=
t- - V(T.T 2.pop,top)=V(T1 .T2.POP,top))). Using induction on T2 , it is straightforward to prove
(V(T,ptr) =V (T,,ptr) A (I-s i s V(T,ptr) - V(T,stack[iI1) =V (TI,stackJi 1))) - V(T. T2 POP,:OP)

=V (TI.T 2.POP~top), from which (11) follows. Next, consider (111) (T 2) (V(T.T 2,pr)2:0 - V

12

NRL REPORT 9033

(Tj.T 2 ,ptr);20) - V(Tptr)=V (T1 ,ptr). We establish (III) by proving V(Tptr)> V(TI,
ptr) - (3T2) (V(T.T 2,pr)2 0 - V(Tj.T 2,ptr)<O) from which (111) follows. By definition,

'4V(T,ptr) > PV(T 1 ptr) - (3 x)(3y)(y > 0 A V(T 1 ,ptr) =x A V(Tptr) =x +y). Integer induction on x
proves that (x)(v)(y>O A x2:0 A V(T 1 ,pr)=x A V(Tptr)=x+y) - (3T2)(V(T.T 2,ptr) O0 A
V(T 1.T2,ptr)<O). For x=O, T2 =POP, and for x=m+1, T2 =T3.POP where T3 works for m.
Negative integer induction on x proves that (y >0 A x <0 A V(T 1 ,ptr)=x AV(Tptr)=x +y) -

(3T2)(V(T.T,,ptr)L-O A V(T.T 2,ptr)<O). For x=-l, T2 =PUSH(n), and for x=m-l, T2 =
T3.PUSH(n), where T3 works for m. This establishes (III). Finally, we prove (IV) (TO)
((V(T.T 2,ptr)2!0 - V(T,.T 2 ,ptr) O0) A (T 2*[] - ((3v)V(T.T2)=V- V(T.T 2)=V(T1 .T2))))
- (l:5i s V(Tptr) - V(T,stacki])=V(Tj,stackliJ)). Unabbreviating V, this translates to (T2)
((V(T.T 2,ptr) 2:0- V(T 1.T2,ptr) - 0t) A (T 2.POP#[J - ((3v) V(TT 2. POP ,top)=v - V (T.T2.
POP,top)=V (Tj.T 2 .POP,;op)))) - (ls5isV(Tptr) - V(T,stacklil)=V (TI,stack[il)). Using
logic and lemma (III), (IV) follows from (1 si s V(Tptr) A V(T,srackji]):* V(T ,stack [iJ1) A
V(T,ptr)=V (T1,ptr)) - (3T2) (T 2 .POP*[] A (3v)V (T.T2 .POP,top)=v A V(TT 2. POP,
top)#* V(TI. T,. POP ,top)). This last assertion can be proven by integer induction on i, and we are
done.

13

___________________ 7

