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Recursive Linear Smoothing for the 2-D Helmholtz Equation

Laurence R. Riddle and Howard L. Weinert
Department of Electrical and Computer Engineering

The Johns Hopkins University
Baltimore, MD 21218

ABSTRACT

A fast algorithm for reconstructing images overned by - -

a 2-D Helmholtz equation is presented. Tife computa-
tional complexity of the algorithm is
O(NMlogM) or O(NM depending on boundary condi-
tions, where N and M are the number of spatial grid :"
points in the x and y directions respectively. This prob-
lem arises when smoothing a large number of images
governed by the 2-D wave equation, because a Fourier
transform in time gives a new set of images governed by
the Helmholtz equation. When the images come from a
scattering process, we show that a linear least-squares
Born inversion of the wave field amplitudes can be per-
formed during the smoothing procedure without chang-
ing the computational complexity. We also show that
the smoothing al orithm is well posed, and ththe sam-
ple functions of the smoothed estimate possess smooth-
ness properties consistent with the Helm holtz equation.

1. Introduction r

In this paper we derive a fast, recursive, linear -

least-squares smoothing algorithm for the 2-D 

Helmholtz equation. Our algorithm can be used, for

example, to smooth a large number of images governed

by the 2-D wave equation arising in acoustical hologra- - z
CRA&I

phy [8] or in oceanic surveillance. If we assume that the FAr P• od El
vibrating system is in steady state, and that the inputs

and observation noise are temporally stationary, then a
-"i.... ...... ......... ---- ----
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Fourier expansion with respect to time gives a new set

of images, indexed by the frequency f, that are

governed by the Helmholtz equation whose

wavenumber k varies with f. Each transformed image

can be smoothed separately, and estimates of the origi-

nal time-domain images can then be obtained by an

inverse Fourier transform.

In order to smooth images governed by the

Helmholtz equation, we reformulate the equation as a

well-posed, distributed-parameter, acausal linear system,

and use the recent extension of Adams, Willsky and

Levy [1] of the method of complementary models [9] to

write the Hamiltonian system for the smoothed estimate.

Transforming in one direction produces a set of indexed,

well-posed, finite-dimensional, acausal linear systems

which we solve recursively using a diagonalizing change

of variables. The complexity of our algorithm for each

wavenumber k is O(NMIogM) or O(NM2 ) depending on

the boundary conditions, where N is the number of grid

points in the x direction and M is the number in the

(orthogonal) y direction.

Another approach to the smoothing of images

governed by the Helmholtz equation involves the use of

the Karhunen-Loeve expansion of the wave field

[21,[31,[41, resulting in an algorithm with complexity

O(MNIogMN). However, the boundary conditions are

required to be conservative and have no random inputs.
',.Q

.J:.



-3-

In contrast, we can handle x-boundary conditions that

are conservative or dissipative and that include random

inputs. We note that work using a similar approach is

discussed by Yoshida and Ogura in [10]. In their work,

the dynamics are discrete and the underlying random

field is homogeneous (spatially stationary), whereas in

this c., , the dynamics are continuous and the

random field is not required to be homogeneous. Furth-

ermore, an important step in the derivation of the esti-

mator in [101 is the replacement of a non-Markovian

random process with a Markovian random process hav-

ing the same mean and covariance. In our approach,

this realization step is not needed. -.

2. Problem Statement

Consider the scalar Helmholtz equation on the rec-

tangle Q2 [0,L 1] x [0,L 2 ]

Uxx+uy+k 2 = f(x,y) (2.1)

u = u(xy) (xy) E

with boundary conditions V

u(O,y) = vl(y) , u(L 17 y) = v:(y) (2.2a)

u(x,O) = 0 , u(x,L 2 ) - 0 (2.2b)
Here

k 2 _k= +j , k 0 _ 2 ,n>

V C

is the input field, V, and v are boundary inputs on the

x-axis, u is the wavefield amplitude, f is the temporal

7, fjeS
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frequency of interest, c is the phase velocity of the

medium, and il is the damping term. The observations

are

z(x,y) = u(x,y)+w(x,y) , (x,y) E 0 (2.3)

where w(x,y) is the observation noise field.

We shall make the following statistical assumptions:

(1) the driving field E and observation noise field w are

zero mean and white with constant intensities q and r,

respectively, and are uncorrelated with each other, (2) if

v(y) = [vI(y) v2(y)]' then

Ev(y) =0

Ev(y)v(s)' = [2v6(y- s)

where 1IL is invertible and v is uncorrelated with c and

W.

The estimation problem of interest here is to deter-

mine the linear least-squares estimate i(x,y) of u(x,y) ,

(x.y) E Q, given the observations (2.3) over the entire

rectangle Q2

To see how the Helmholtz equation may arise in

practice, consider the 2-D wave equation on the rectan-

gle Q = [O.L I x [0.L.]:

ut- c2 ( U+ + += d(x.y,t)

u = u(xy.t) (xyt) E 0 X ITo,T j

with boundary conditions

II

,..... . .... . . 5 . C - " . -.r J,.
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u(O,y,t) -- vt(y,t) , u(Lj,y,t) = v2(y,t)

u(x,O,t) = 0 , u(x,Lo,t) = 0

u(x,y, To) = 'U(x,y,To) = 0

and observations

z(x,y,t) = u(x,y,t)+w(x,y,t)

Let To-, - 00 and assume that the observation interval is

(0, T1 where T1 is very large. Then a Fourier series

expansion of the observations will give a new set of

images z(x,y,f) that are governed by (2.1)-(2.3), where

the dependence on f has been suppressed, and where

-4-- d/c 2 and 77 = 27rf-1. We assume that the input field

d(x,y,t), boundary inputs vl(y,t), v2(y,t), and observation

noise w(x,y,t) are wide-sense stationary in time. The sta-

tionarity assumption implies that for f 1 ef 2 , z(x,y,fj)

and u(x,y,f 1 ) are uncorrelated with z(x,y,f 2), since

T - . We can therefore solve an uncoupled

set of smoothing problems for the 2-D Helmholtz equa-

tion (indexed by f), and then inverse transform to

recover the time-domain estimates.

3. State Space Formulation and Characterization of

the Estimate

In order to put (2.1)-(2.3) in state-variable form,

define an operator T with domain D(T) as follows: NA

Tf =-(kf(xy)+fr(x,y)), f E D(T)

w here
.4. ,
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D (T) ={f E L2 (Q ):f, f, abs. cont., f q E L,(,

f(x,O) f(x,L 2 ) = 0}

Also define the state vector m(x,y) as

m(x,y) = [m1(x, y),m.(X,y)]' [u(XY),u.(XY)I'

We can now rewrite (2.1)-(2.3) as

A-m(x,y) = Am(x,y)+Be(x,y) (3.1a)

mi E D(T)
IV 1W

v(y) = Vom(O,y)+VLm(Ll,y) (3.1b)

z(X,y) = Cm(X,y)+w(X,y) (3.1c)
where

A , B C 0,v

V V [

Equations (3.1) are in the form of a distributed parame- .

ter, acausal linear system. Finite-dimensional acausal
linear systems are discussed in [6]-[7]. We show in
Appendix A that (3.1) are well posed, in the sense that

if 6 = v = 0, then m == 0.

Using results in [1], we can express the linear least- p

squares estimate rh of m, given the observations (2.3),

as the solution of the following Hamiltonian system:

X(xy) 'C 'Ic-A (x,y) 0 0] I' -A* (Cr-32a
(X Y)X Y)Z(X,
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rh D E D(A) E D(A)

SV ,o ((o,y) 3.2b)
I + 0 ,[(,,Y) + 10 I,

W'' where

V=[Vo VL]

the asterisk denotes adjoint, and D(A) D(A*) denote

the domains of A and A*. These domains are

D(A) {[fl,f21':fI E D(T) f2 E L,(fQ )}

D(A*) {[f 1, f2':f1 E L2(Q2), f2 E D(T)}

Moreover, the input estimate satisfies

£(xy) qB*(x,y) (3.2c)

Eq. (3.2c) can be interpreted as a linear least-squares

Born inversion when the observations are the

scattered wavefield in an inverse scattering experiment.

Instead of solving (3.2) directly for rh and X,. we will

transform (3.2) with respect to y using the discrete sine

transform s, given by

L23
Sg f -~-sin(py)9(y)dy

20

"':" 27r n
p == ,n=0,±1,±2,

It can easily be verified that ST= (p2- k 2 )S and thus

SA A S where

LPK
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Transforming (3.2a) with respect to y gives

0[h~xp) = Ap qBB'
(9(x'P) + 0 (3.3 a) "

where rh(xp) = Srh(x,y) ,etc Transforming (3.2b) with

respect to y gives

V,, k (O ) 0
F --1

When written in the standard form for an acausal linear

system, these boundary conditions are

o -w0  J(0,p) + WL [X(Lp) j(3.3b)(0, p) (L I, p)
where

o v0 1 0 v

Wo V= dVo W = [.V~ri-
0 - V L

We see that in the p domain the estimate Hamil-

tonian is decoupled; that is, (3.3) are simply indexed by

p. and can be solved individually. In the next section

we show how to solve (3.3) recursively for each p.

Before doing so, we first consider whether (3.3) is well-

posed. These equations can be shown to be well-posed

by first realizing that for each p, (3.3) is the estimate

Hamiltonian of another acausal linear- system, the so-II I.

called p-dynamics of the Helmholtz equation. -'?v

Sm(x'p) =- APrm(x,p)+BE(x~p) (3.4ta) :::"

Vom(O.p)+V L m(L ,P) (p) (3.-t)

• %" r-
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:(Xp) = Cm(Xp)+L.(Xp) ( 3.4c)

where we have transformed (3.1) into the p-domain by

S. The invertibility of v. + v eAL ' is necessarv and

sufficient for (3.4) to be well-posed [61-[7]. It is easy to

*verify that this matrix is invertible for all p. To prove

then that (3.3) is well-posed for all p. assume that the

input z(x,p) is identically zero . Now rh(z,p) is the linear

* least-squares estimate of m(x,p) based on observations

which are identically zero, so rh(x,p) = Em(xp) = 0, the

last equality following from the well-posedness of (3. 1).

As a result (x,p) satisfies

9 (x,p) =-A (x.p)
and

"(0.p) )(L1 ,p) =0

and thus X(x.p) = 0

4. Recursive Solution of the Estimate Hamiltonian

We shall derive our recursive smoothing formula by

(liagonalizing the dynamics in (3.3a) via a change of 71
" va,:riables. Let

I A.. qJB'""= , S::

P r- C'C - I

The (haraoteristic equation for t-1 is iven by
p

4 . '2)R ((u, 2  -t- (12 + r-q = )

,h ere ra = p2- k. Solutions to this equation are
*o • .o - o, -~ xo , iiere "

,~~~~~~~~~~~..e: ". - ,....a. " . ...... . . . . ... . . .. .. . .. . . .. "-.-.:...._...... ' ' . ....... ..

554***~ ~~~~~~ i e.. .. . . . . . . . . . . . . . .. r e
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______-_r ____ Re ( I r q) 1;

J J C)"j I

The four eigenvalues oH HP are all distinct because both

the real and imaginary parts of (4.1) are non-zero for all

p. As a result, we can diagonalize Hp as follows

[t P 0..'. ., .\ fM :' H ,tIp .[ = .'

where

VP LO0

and the modal matrix Af and its inverse are given expli-

citlv by

I1 1 1 1 :

x 0 cx - 0 d X0 X.fP X c - T d oc  Tod

c d c d

d dNo  .X0

-c - C1\ 1  No-

P - d -dXo6 -N\OJ -1

NN vi t h

"R'-v" t j - (7 /(1":

.Nm% I 1v 1sin,, the following change of variables in (3.3):

'li 2.*,



f. i(xP) (-1 1 P)-

[~(xP)= M;1 H(=,1 (4.2)
b (X P)(XP)

we get
'*q

0 b f (0 Bb (4.3a)Li0-) L -rp

w re ,b "'(0) b L i,p) 1

where

[VfO VbO WVOMp [Vfr vbL1 WL Mp

L; 0

'.4. Bfb I [Cir'JC'- ...

$Equations (4.3) are in a form which can be solved recur-

sively. In terms of kf(o,p)and 'Pb(Ll,p), a solution to

(4.3a) is

Pf (x,p) = eA x)f (0, p) + 1P (x, p) (4.4a)f

x eA(Lz)db (Li,P) + 'PO(x,p)  (4.4b)

where

- , A P %P(x,p) + Bfz(x,p) (4.5a)

%-O(x,p)= -AP4(x,p) + Bbz(x,p) (4.5b)

Ne(0,p) =0 , %P°(L ,p) =0. (4.5c)

Note that (4.5a) and (4.5b) are stable in the forward and

backward directions, respectively. Setting x= L , in
paw

9'.

WI ""i
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(4.4a), and x= 0 in (4.4b), we can solve for If(o,p) and

T b(Ll,p) in (4.3b) as

IPf(0,p) L{v I(Lv ,p) +

.( L ,,p) - - Vf .

where

S[V, + VeAL VL + V0ALW,
f 

A solution to (4.3) is therefore given by

f I(X:P) 1X [ eAf,,P(Lzp 1 6*(OjN

b(X P ) o - e A,(L '-{V , ( L1, P) + v o,4o(o,p),

+ [(X'P) (4.6)

The FA matrix is invertible because

"" Ff b = rH M! eAL, .

where FH is the invertible matrix associated with (3.3)

being well-posed:

FH = Wo + W eH'LI

The behavior of the algorithm as p, cc needs to be

examined further. We will show that the determinant of

Ff6 does not vanish as p-. oo. As p gets large, one can

ignore the exponential terms in Ffb and write

'47
911+X0 c 011+XOd 012 012 -

.- c -d 0 0
001 02 022+XoC O,, 0+ d

0'

.J .... .. . . . . . . .. - .. .. - - -.. , .-...- , ' '., , ,, ' '. ''% % % - .% a,'. " ',''i % ' ' , .% % "
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where o;j is the ij-th entry of FlIV-1. Then

detFfb (c- d) 2 et(rI - ')- c2d2(X- 0 O)2 +cd( c- d)(Xo- TO)(9 1 1+01. 2 )
I As p-- oo, Xo- To- o, so that

%m detFfb = 4(qr-1 +r 2 n)q-2 det(rIv-1) 0 -FO

It is shown in Appendix B that under realistic energy
assumptions on the observed images, Tf(x,p) and

''b(x,p) decay fast enough as p-oo to ensure that

rh(x,y) E D(A) and X E D(A*). hi

To summarize, the solution procedure for solving

-.5 the estimator equations (3.2) is (1) transform the obser-

* vations into the p-domain, (2) compute ''?(x,p) andf2
.PO(x,p) using (4.5), (3fnd Pf(x,p) and 'Pb(,p) from

(4.6), (4) compute rh(x,p) using (4.2), (5) inverse

transform fh(x,p) to get rh(x,y).

5. Other Boundary Conditions

The smoothing problem for the 2-D Helmholtz

- equation with more general boundary conditions can be
.handled in a manner very similar to that just described.

In addition, a wavenumber that varies in the y direction

can be studied. The boundary conditions we consider in

this section are conservative on the y-boundaries, and,

in general, dissipative on the x-boundaries. To derive

* the estimator for such problems, we start off with the

same 2-D Helmholtz equation (2.1), and x-boundary

lconditions (2.2a). The y-boundary conditions are now

cos 3 i(x.O)+sind u,(x.O) = 0 (5.1a)

.44

..
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cos'y u(x,L,)+sin- u,(x,L 2.) = 0 (5.1b)

where 3 and -1 are real. Periodic boundary conditions

u(x,O) = u(x,L 2 ) , u,(x,O) = u,(x,L 2 ) (5.2)
.

could also be assumed. The wavenumber k satisfies

k2(y) - k 2 (y)+ji, ?1>0 -
"-Sq

The estimate Hamiltonian for these boundary conditions
and wavenumber is the same as (3.2), however the

operator T is defined as

Tf -(O y+k 2(Y))f

with domain

"- ,-.D(T) = {fE L,(2 ):f,fy abs. cont, f,/ E L,(a ),

f satisfies (5.1) or (5.2)}

We now introduce the selfadjoint Sturm-Liouville opera-

S.' to r

Of =- (a +k ( y) )f

with domain

.5 D(Q) = D(T)

.1 The operator Q has a countably infinite number of

eigenvalues lp and eigenfunctions 4t(y). If we use the

transform operator K defined by

(Kf) - f (y)f(y)dy.
cp 0

€2.2

2 f."(y)dy
p 0
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then KAt= APK. where

A0]

From this point on, the calculations are identical to the

zero-boundary condition case, except that K replaces S.

To consider problems where the x boundary condi-

tions are more general than (2.2a), we assume that the

matrices V0 and VL are now linear operators V0 and vL

such that under the transform K described above, the

action of the operators Vo and VL are multiplicative, that -'

is, the following transform relations hold

VOm(0,Y) <=> V°(p) m(O'P)

VL m (L 1, y) <=> VL (p)m (L ,p)

where V(p)andVL(p) are complex valued 2 x 2 matrix ,

functions of p. As before, it is necessary that

Vo(p)+VL(p)eAPL be invertible for all p. An example of I,

a dissipative boundary condition occurs when

V0(P) 0 VL(P) -1

and s is complex. This case corresponds to a damped,

elastically-braced membrane on the . x 0 and x - L

sides. The determinant of Vo+VL eAL1 iS

(k -p 2)sin(V/k 2-p 2 L)+2scos(Vk 2-p 2 L) (5.5)

7-77
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Typically (5.5) is non-zero.

6. Complexity Analysis

For computational purposes the rectangle n is

discretized into an N X M grid. The complexity of the

principal steps needed to calculate the least-squares esti-

mate of the wave amplitude at one wavenumber k is

given in Table 1.

TABLE 1 The Smoothing Complexity for the 2-D Helmholtz
Equation

Cor mlex itv
Step zero or periodic other y-

-____ v-bound conds b.c.
Find 4p(y) and n/a O(MVb)

for" ""S.3),(.5.4)
... Fo u rier o(ANM logM ) O( ,V4 2)

transform the
observations
Find Ah(x,p) O(NA) O(M)
via
(4.5).(4.6) (4.2)
In verse O(NMIogM) O(INM 2)

'I transform
riz(x, p)

In Table 1, b is the bandwidth of the matrix used to

approximate the operator Q in the eigenvalue calcula-

tions. Typically b = 1. The overall complexity for each

wavenumber is then either O(NiMlogM) or O(N, 2 ).

depending on the y-boundary conditions. Obviously if

one does not exploit the particular structure of our

model, and uses only first and second moment informa-
-V. tion, the complexity would be O(M 3 N3 ). As discussed in

the Introduction, for zero boundary conditions a corn-

-7'

,, I
'., ,- . , : , . ., . ,. ,,., . -,,. •.• •.- .'." .',, ,.' .'.'-. -."".' "n ",t, ." ". '.' "'," .. " " •• . . ." ." . .' €".",' '-''I.
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plexity of O(.NIog\INV) has been achieved in [2] [31,[4]

using different techniques. The complexity of transform-

ing the time domain images into the frequency domtin

for T wavenumbers is O(T7VMIogT). Therefore, the

entire smoothing procedure would have a complexity of

O(TNMIogTM,) or O(TNAIIogT+TVM 2) depending on the

y-boundary conditions and assuming that b - 1. -.

7. The Smoothing Error Covariance

Using results in [1], we can express the smoothing

error rh(x,y) = m(x,y)- rh(xy) as the solution of the

Hamiltonian system

,hI(x.y) A qBB I(xy)

rh E D(A) *XE D(A)

with boundary conditions (compare with (3.2))

V ()[ y)]+ [ I][<-X(2Y)] (7. 1b)
Transforming (7.1) with respect to y gives (see Section

:3)t,

.p qBB' rp + ..

: . L ' ' J, , ,=, - f jL (. ,) J p C'K 'jk,,,( .)] ( ',

Sv(p) = 1 + tk [_X(L ) (7.21))

Our original statistical assumptions and the properties of
_ 4

A/"),

* %,

A 7 *'. ,. .4
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the transform imply th at

tlx,p) f(x.q) , w(x.p) , w(x,q) , v(p) , v(q) are mutually

uncorrelated for p:q. Therefore, if we let

P(x.y) E[rM(x,y)rh (x,y)]

P(.,rp) - E[r-(xp)rm-(x,p)]

then
:_ 2ir1

P(xy)= y P(x,p)st'npy p

Using a Green's function solution to the acausal linear

system (7.2). one can show that P(x.p) satisfies

P(x,p) - [IO1,-xp ]
0

where

.4

..p) f G(x,W,) 1' ecG (x,a,p) da

.+ , (7.3).vn ae tpV(oFedrihcm pxt (7.3)

and itch

H 1 H'a
C H'We X > orf:: a~( x,a ,p ) Htz F _ - WL et,( L,_o, ) X < a

The overall complexity of solving these equations is
OM 2)I, due to the integration necessary to compute
A(x,p) in (7.3). An alternate procedure with complexity

.t . O(NM) can be derived by first diagonalizing (7.2) in a

• manner identical to that in Section 3.4. If we change

variables using



f (XP) - 1 J - )

[eb(X.P) J t(X,P)J

then

0 XP B EXp
7 (x p) 0 p A bP Bf wxIp)

axH;fv(Xp) = p ief(O e~ P
_ I

where[VPVJ ()J [vrVJfi]

A solution to these equations is

[ej(X,p) 1.ep z 'b{VIJ; v(p)- VfeO(Ll,p) -Vb'e
0 (Op)}

6 (X'P) 0 e Pjo(xP)f b b

f (7.4)

4 where

a9 e/(x,p) A e?(x,p) +BfI wX p) ( 7.5a)
Asax + [(X TP)

* ..y-Teb (x, P) e - , 6 (x, P) + B~ 7.5,P b)~*

0(0. P) =0 e (L 1,p) =0 (7.5c)

We can now express A(x,p) as

A(X,p) =Me)(X,p)M,, (7.6)
where

e~x~p) e(Xp) e*(xip) eb*(x,p)J

e5x,. N e XP



We will express the diagonalized error covariance e(x,p)

in terms of the second moments of the random variables

{v,efO(x),4'O(x)}, where we have suppressed the argument

p for simplicity. Define the covariances

Rf (xl,xo,) = E~eP(xi)e'*(x2 )]U R 5 (x 1, x,) = E [ebo(X1) ebo (X 2)]
'p Rfb(xl,x2,) = EfeP(X1)ebO*(X2)J

Now e(x,p) can be written as

~fb (x) Fi~bL Vfl;V+vfrf(L)fK+VfRb(L,O)Vb0 +

Vb0Jlb (O) Vb 0*+Vb0Rb(L 1,O) Vf}(XFfb) 1 4f(

b0 Vflx b (X)]

where

.11fb (X) A, (L
0e)P eALzJ

G (x) =Vfr [Rf (L 1,x) Rfb (L1, x)1 VbO [R,~b(x,O) Rb (0 X)]

Rf (L ,x) eA 1Px~I)f(x) ,R CA,,) zAZ
6 x

Rf6(1 ,x) = eA(Zlz 2)rjfb (X1_ 2 X,

with 
i

p~P r i
ax 2L,

OX -1 b (X) r x) + f 6 (x) A P 2 , -Bb L1
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IFI~bx -- Lo du 'fb(r "- b  -;-

8. Concluding Remarks T a n

In this paper, we have constructed a recursive
smoother for the 2-D Helmholtz equation. The advan- .

tage of our method is that it leads to computationally

attractive algorithms even when the x-boundary condi-

tions are dissipative and include random inputs.

Another advantage is that a linear least-squares Born

inversion of the wavefield can be performed along with

the image restoration without changing the computa-

tional complexity. Higher order equations characterizing

similar to that presented here. If the wavenumber k has

v arai o ns in the x-direction, then an approach based on

operator Riccati equations could be used to formally

diagonalize the smoother dynamics. However, the initial

value problem

o (X Y) Am(X.y)

m(O.Y) = MO(Y)

is not well-posed (it does not lead to a semrigroup). and
this raises questions about the existence and uniqueness ."%"'

of solutions to the corresponding Riccati equations.
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Appendix A

In this appendix, we show that the state variable

representation (3.1) of the Helmholtz equation is well-

posed. To do this, we show that the transformed system

(3.4) is well-posed, and that the solutions to these

acausal linear systems give rise to Fourier coefficients

that ensure that the formal Fourier series does converge

and that the state vector m(x.y) E D(A).

(3.4) are well posed for every p because the matrix

0 + I-L e'AL 0 ( A. I :::
--L osh3L1 3- lsinh(3L) (A.-.

where 3 = (p2 -k 2 )'2, is invertible for all p. If we now

change variables in (3.4) as follows:

T!(xDp) =D , D nm(x'P) (A.2)
b(r.p) P 2( .p)

P= 3 3-

then

,._ I __f P) I. /
[" ~ ~ OX b(P 1~ 10 3, 6 (x, p)+l2,- xp .. :).-

Le - -r .1.' 

4.~ ,p.

: ., ,.:"*



Fif 11,p) ~ ~ %o
(P)LT((L1.P)

v~p) = b ~jb(O7P)J 1 T(L jp) (.
We can write the solution to (A.3) as

Vr(X-P1 0- 2 3L
1 ][ v1 p-TxOp

P)J -e) 0  e1(Li)j~v(p)- TI(L i,p)

+ (AA)

where

-To(x,p) =-,8T'(x,p) -1/2 fl-'c(x,p)

TO~x~p fiTO(x,p) + 1/2 3-'E(x,p)
eOx

TO(O,p) =TO'(Lj,p) =0

Tf (x,p) and Tb (x,p) are continuous functions of x that

depend continuously on v and E. Equations (3.1) will

have a unique solution which depends continuously on v

and E if the appropriate Fourier series converge and if

mn(r,y) E D(A). We will assume th at

(02 /02 y) v y) L 2~(O,L) , (x,y) E L0,(f2 )and show that

this implies that ml(x,y) E D(T) and m0,(x,y) E L,(f2 )

We first derive bounds for TO(x,p)adT(~) Solvingro

for TO(x.p) gives

T?(x,p) f e-3x-)_upd

which gives

0(3 x -u) 12d ][f1(11IT(x~p) I < lejdj 16(u)K 3 0
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where

X

f Ie- y)12 dy 2Re13

4.,. Thus

ITY(x,p) 1 2I: i'Re5 [je(u,p)I'du]
Since p when p-oo

IT(x,p) 12 _O( Gp-3)
where

G f JjE(U,p) I2du
0

In a similar manner,

JTO(x,p) 12 _ O(Gp- 3 )

Our assumption on the input field 6 implies that

f 16(X1y) 12dy < oo

almost everywhere with respect to x (a.e. wrt x ).By

Parseval's theorem

Ee X, p 1 2 < oo a. e. wrt x

U"4. and hence by the comparison test for series

kf(X,p) 12 - (p- 1)
a.e. wrt x . Therefore

The first ter i(A.I~ fp%4) inovn h budr em v(p)

is becoming exponentially small as p- oo for all x in
(o, 1) Sice(a 2/82y)V() E L(O,Ll) by assumption, the

first term in (A.4) has a convergent Fourier series that is
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twice differentiable with respect to y on [O,L ], and is .:

infinitely differentiable in (O.L j). The second term of

(A.4) therefore dominates the solution in (0,L ,) as p

gets large, hence

IT1 (Xp) 2- IT6 (x,p) 12 - O )

a.e. wrt x. By using the change of variables (A.1), we

see that

IMI(Xp) 2= JTf(x,p)+Tb(x,p) 12 O(p-4)
and

m2 (X,p) 12 = I-lTf(X,p)+3Tb(X,p) 12 O(p- 2)

These bounds show that

ml(x,y) E D(T) and m.(z,y) E L2 (fQ) [51.

Appendix B

We show in this appendix that for the 2-D

Helmholtz equation, when the x-boundary conditions

are separable (012 = 02i = 0 ), and the observed image is l:

bounded and mean-square differentiable in the y-

direction,

fi(xy) E D(A) and (x,y) E D(A*)

To begin with, it is sufficient to show that

(p2/ay)J f(x,y) and (O2 /' 2 y) p b(x.y) exist in the mean-

square sense. The boundary conditions will be satisfied

due to the sine transform.

The p-domain equations for P/ 0fI ,.'f2 0 .'Pb. are

X
Ell
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given by (qlf ,(z.y) denotes the ith component of

P f (s, y), etc.)

f :'°(XP) =f e-a(s,p)ds04Xora -

z _

= - ~ )j •q z(s,p)dsq,/..o(xp = f e 34 ora

0 4X~ro,

bf o() fe )4X -ro

f Z-z 8)sp dqob2(X1p )  f e- * -")jz(slp)ds

5,, 4Xr

.'i." 2 b Ox~p) _ - e- z-)j . q z(s,p)ds '

'I'"(.P) z 4Xora

As in AppendLx A, one can show that

---'°(Xp)UR < glp- 3/2 M(p) (B.1)
where

M 2(p) f IZ(X,p) f2dx
0

and g, is a finite constant. The same result holds for *. A

For separable boundary conditions [1]S..

• " i(X *zP) - fB(X,P)+,p O(z,P) "

Where for large P

Parsev f ( Xp = , .[ -e]Vb, o(o.p)

The L2(fl) norm of Tf(x,y) can be 'expressed using

:.rParse val's relation as

;€,,5'" I~qgf (X, Y) I2L f) Q f 114, f ( x , p ) I RW d x  1

In a similar fashion:

S'

5. 5 . . i
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2~ 00-527Y f (Xly)IL pl lp f iP(X, p)112R2 dX (B.2)
p 1 0

We wish to prove that this norm is finite. For separable

boundary conditions one can verify that

IFfb-1 VbO1l < g2p
and

0' II1[eApz:o ii ReXOz
Combining these bounds gives

I'IiF(x,p)l , < g 4 p-1/2M(P)eReoz

so that

11 a2 'P y)IOL:) < p3g4iMN2(p)fe 2 Rexozdx
p=l 0

or

-2 00
ll-vf'(XY)1fL ) < E p2gSM 2(p)

since '0 < g6P- If we assume that (O/Oy)z(x,y) E L2(f)

then

Z(xMy)]L( = P2 y 2 (P) < 00
' ' p= l

which shows that %PF(x,y) is twice differentiable in the

y-direction. Similarly,
2 cc
Ila.fy*(x'y)1LAQ) < E LjpM2(P) < 00

which implies that ,If(x,y) has a mean-square second

derivative in the y-direction. A similar argument shows

that %P b(X,y) is also mean-square twice differentiable in
the y-direction.

4,
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