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ABSTRACT

-:f
A theoretical and experimental study on the feasibility of determining

the size of a single submicron particle by observing its Brownian motion
characteristics has been carried out. The method is based on measurement of
the particle motion interferometrically using the light scattered from a pair
of intersecting laser beams. The particle is assumed to be in thermal
equilibrium with a fluid medium. Due to the viscous damping of the fluid, the
motion of the particle exhibits relaxation behavior. The relaxation time may
be obtained from the interference signal. Knowing the temperature and the
viscosity of the fluid, the mass, hence the size of the particle may be
determined from the relaxation time. Monte Carlo simulation of the Brownian
motion detector response has shown that that the relaxation time may be
obtained from the statistics of the time between extrema of the signal. A
proof-of-concept experiment was conducted using latex spheres of known sizes
as test particles. The signal to nolse ratio of the experimental setup,

however, was not adequate for determining the size of the particles.
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1. INTRODUCTION

1.1 Overview

Measurement of particle size in the submicron (0.01 - 0.1 um) range has
many important scientific applications. For example, in the study of soot
emission in combustors and burners, the soot formation and oxidation rates can
be inferred from the soot particle size evolution. The combustion of coal
particles and the formation of fly ash can be studied in a similar manner.
Submicron particles are also important in corrosion of boiler surfaces and
heat exchangers in electric power plants or chemical processing plants and in
erogsion of turbine blades in advanced combined cycle processors. Other areas
where an understanding of the role of submicron particles is important include
the nucleation and condensation processes leading to acid rain, and soot
formation and enrichment of polycyclic aromatic hydrocarbons in internal
combustion engines. Measurement of submicron particles is basic to an

understanding of all of these processes.

In this report, we describe an attempt to develop a technique for
accurate, in-situ determination of submicron particle size distributions based
on a Laser Doppler measurement of the Brownian motion of the particles. The
objective was: to review the scientific basis of the technique, to conduct a
proof-of-concept feasibility experiment, to determine through the experiment
the practical difficulties of the technique, and to identify the solutions

needed to overcome these difficulties.

1.2 Review of Particle Sizing Techniques

In general, particle measurement in the submicron size range can be
categorized as either probe sampling techniques([l.l1-1.4] or in situ optical
techniques.{1.5-1.13} 1In the sampling probe approach, a vacuum system of

varying degree of complexity is used to draw the particle laden stream through

1-1
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grids or filter paper. The deposited particles are then analyzed by electron
microscopy[l.2, 1.3] or optical reflectivity and transmissivity
measurements.[l.4] The difficulty in these direct sampling methods is that

the surface deposition of the particles influence the particle size

distribution in an unknown way. The physical presence of a sampling probe may

also interfere with the phenomena under study. This interference is

especially severe when high spatial resolution is required.

In situ optical techniques have an advantage over probe sampling because
the flow is not disturbed. Optical techniques may be classified as a single
particle counting or a volume averaged measurement. In single particle
counting, the measurement system examines only one particle at a time and
records the particle size. The particle size distribution is obtained by
tabulating the sizes of many particles. In the volume averaged method, the
measured signals are a convolution of the optical properties of the individual
particles and the particle distribution. Therefore, various assumptions have

to be made to obtain the size distribution from the measured signals.

The most well developed optical techniques are based on an analysis of
the amplitude of the scattered light from the particles. Measurements with
various optical configurations have been reported.[l1.5-1.13] For example,
measurements and analyses were performed with multicolor systems, with light
of various polarizations, and on the angular distribution of the scattered
light. The interpretation of these measurements is usually based on Mie
theory.[l.14, 1.15] A comprehensive review of these measurements is given in
Ref. [1.16].

The major disadvantage of the light scattering technique is that the
scattered amplitude 1is sensitive to the optical properties of the particles,
which are in general not well known. In general, researchers have interpreted
the experimental results based on Mie theory and a refractive index for the
particles which is based on bulk measurements.(l.4, 1.17] The validity of

using the refractive index of the bulk material is open to question.
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Therefore, there is a need to dévelop an optical particle size measurement

scheme which is independent of the optical properties of the particle.

For completeness, we mention other miscellaneous optical sizing schemes.
These schemes include the opto-acoustic cell{l.18, 1.19] which is a volume
averaged measurement and is dependent on the particle light absorption
properties, and the holographic technique,{1.20] which is difficult to apply
to particles of size smaller than the wavelength of the illumination.

In this report, we have studied submicron particle sizing in a gas stream
by measuring the Doppler shift of the scattered light from the particles in
Brownian motion. Since the scheme is a frequency measurement, the result
should be independent of the optical properties of the particle. The measured
signal is a function of the gas viscosity, which depends on the temperature
that can be readily determined independently, and the particle mass, which can
be related to the particle size.

This concept of particle size determination is not new.[1.21-1.24]
Nevertheless, previous measurements based on this concept have all been
interpreted in terms of spectral broadening of the scattered radiation due to
the Brownian motion of a large number of particles. Therefore, these
measurements were volume averaged. Our approach, however, i{s to operate in a
single particle counting mode in which the individual particle size is

inferred from the Brownian motion of a single particle.

1.3 Organization of the Report

The remaining chapters of this report are organized as follows. In
Chapter 2, the basic physics of Brownian motion is reviewed. In particular,
we have highlighted the statistical nature of the motion, which precludes
the measurement of particle velocities by the traditional laser Doppler
technique. 1In Chapter 3, a method for interpreting the information
contained in the Doppler signal of the scattered light and a demonstration of

the concept in a Monte Carlo computer simulation of the signal are

1-3
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discussed. The theoretical basis for the method is described in Chapter 4.
In Chapter 5, the signal to noise required for adequate signal detection is
estimated and the experimental set up for the proof-of-concept demonstration
1s described. The analysis of the signal obtained in this experiment is then
presented. It was concluded that the signal is dominated by shot noise and
the Brownian motion information cannot be recovered from the signal. 1In
Chapter 6, we examine some of the physical limitations on the improvement of
S/N by increasing the beam intensity. The summary and conclusions of this

project are presented in Chapcer 7.

1.4 References for Chapter 1

1.1 Erickson, W.D., Williams, G.C., Hottel, H.C., "Light Scattering
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1.2 Shaffernocker, W.M., Stanforth, M., "Smoke Measurement Techniques,”
SAE paper 680346 (1968).

1.3 Wersborg, B.L., Howard, J.B., Williams, G.C., "Physical Mechanisms in
Carbon Formation in Flames,” l4th Int. Symp. on Combustion (1973).

1.4 Dalzell, W.H., Sarofim, A.F., “Optical Constants of Soot and Their
Application to Heat-Flux Calculations,” Transactions of ASME, J. Heat
Transf., 91, 100 (1969).

1.5 Kunugi, M., Jinno, H., "Determination of Size and Concentration of
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2. BASIC PHYSICS OF BROWNIAN MOTION

In this chapter, the basic physics of Brownian motion is described. The
nature of the motion is such that within the time that the particle traverses
a fringe pair in a laser Doppler velocimeter system, its velocity may have
changed drastically. Therefore such a system does not yield meaningful
velocity measurements. The proper interpretation of the information contained

in the Doppler signal will be discussed in Chapter 3.

2.1 The Nature of Brownian Motion

When a small particle is immersed in a fluid medium, it exhibits an
irregular motion as a result of the bombardment of the fluid molecules. It
should be noted that the momentum transfer to the particle in each collision
is extremely small, but the collision frequency is extremely high
(~101“/s). The motion of the particle is the aggregate effect of a large
number of collisions.

A schematic representation of the time dependent motion of a 0.1 um
particle is shown in Figure 2.1 in order to indicate the time scales
characteristic of the motion. In this figure, random changes in particle
velocity, of order 10~° mos‘l, occur in characteristic times of 10~}“ seconds
due to collisions with gas molecules. This time scale is much faster than
can be resolved by practical instruments. Therefore, only an aggregate
velocity is observable. This aggregate velocity obeys a Maxwellian velocity
distribution. The characteristic time for the Maxwellian distribution to
develop is the "relaxation time” trajax (= 10~7 s 1n Figure 2.1), which is a
function of particle size and fluid properties. Clearly if one wants to
obtain any information on the Brownian motion of an individual particle, one

must sample the time history of particle motion in an interval short compared
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Figure 2.l. Time Dependent Motion of a 0.l um Diameter Particle in Air
at 300 K and Atmospheric Pressure.
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to the relaxation time, or the effects will be averaged out. Conversely, one
cannot monitor the instantaneous Brownian velocity of the particle, because
electronics and signal-to—-noise limitations constrain realizable sampling

~lu

intervals to be much longer than the 10 8 characteristic collision time.

The measurement strategy, then, is to sample with an interval on the order of
10~8 s, which is fast compared to the relaxation time. The type of signal
measured with this kind of time resolution will be a superposition of many
random events, but the time dependence of this signal should exhibit
statistical properties representative of the Brownian motion of a particle of

a particular size.

The statistical analysis of the Brownian motion of a particle in thermal
equilibrium with a fluid medium is described by the Langevin equation:[2.1]

du

u (2.1)
— R +
¢ = Bu + A(t)
where u is the velocity and B is the damping coefficient. The random
excitation A(t) has the property that the solution of Eq. (1), which is
Bt -t .t BE
u-ue " =e [, ¢ A(F) de (2.2)

has the Maxwellian velocity distribution in the limit of large t. The time
scale for approaching this limit is

= I/B . (203)

T
relax

In continuum flow (Apfp << d), for a spherical particle of diameter d and

mass m, 3 is given by

8 = 3y d/m , (2.4)
2-3
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where . is the viscosity of the fluid medium. For the free flow limit

(hmfp > d), the value of 3 is given by the Epstein formula,

2 -
nd [ na
B = "2 Pair3 1+ 8 ) ' (2.5)

where ¢ is the mean thermal speed of the fluid molecules and a is the
accommodation coefficient. A value of ¢ = 0.5 was used in the simulation to
be described in Chapter 3. Values for the relaxation time are shown in

Figure 2.2.

As an example, we consider a particle of 0.2 um diameter with a specific
gravity of 2. For air at 300 K and at 1 atmosphere pressure, the relaxation '
time is Tt ejax ® 150 ns. To obtain information about the velocity
distribution, the sampling time should be less than t,.o],x- A sampling
time At of the order of 10 ns was used in the simulation to be described in

Chapter 3. Furthermore, a time between samples of 10 ns was assumed.

The time scale for the fluctuating excitation A(t) is of the order of the
collision time t. between the fluid molecules and the particle, which is

~10'1“ s. During each collision, the particle changes its velocity by

/8kTm (2.6)

m

where m is the mass of a fluid molecule. The value for 6V is ~107° mes™!.
Since the sampling time At is large compared to the collision time 1,

the velocity sampled is the average over At of the time dependent velocity

given by Eq. (2.,2). The requirement that the velocity distribution has the

asymptotic limit of a Maxwellian distribution requires the sampled velocity

W, at nAt to have a probability distribution of ,[2.1]

2-4
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Therefore, if w, = (u,,v,,¥,), and if the Doppler system is sensitive

to the velocity component w, the probability distribution function for w, is

-a (W -w e-BAt)2
) = » ]1/2 n n-l |

= exp | -
2nkT (1-e 2P8%) kT (1-e 2P0T)

p(w .ot 5 w

(2.8)

2.2 Measurement of Brownian Motion With a LDV System

Consider a cross-beam laser Doppler velocimeter system, operating in
fringe mode,[2.2] set up to measure the velocity of a particle in Brownian
motion. PFor a perfect detection system as a whole, the transfer function is
shown in Figure 2.3. The transfer function is the relationship between the
input quantity of interest, the position of the particle in Brownian motion,
and the output signal, which is the beat amplitude of the two fringe forming

laser beams as seen by a square-law detector.

ik, er ik,-r
signal = < Re(gle + Ee )|> (2.9)

~1 + cos (Aker)

In the normal LDV application, the particle traverses the illuminated volume
with a constant velocity (from A to B in Figure 2.3). 1If u is the velocity
component in the direction of k;-k,,

AE;E = ut, (2.10)
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the signal will be modulated fully (A'B') as

ri signal ~1 + cos (Akut) (2-11)

!E ' and the velocity may be obtained from the period t of the modulation,

) u=2n/ak ¢ (2.12)

by Note that implicit in this velocity measurement is a length scale (ak)~! o

- that a time measurement (t) can yield a velocity.

}} In the detection of Brownian motion, however, u is a statistical quantity

‘ which changes rapidly in time. In particular, the particle may change
velocity appreciably (or may even reverse its direction) before it traverses a
o "fringe” of the transfer function. On the average, the "excursion” of the

particle 1is

/(kT/m) (2.13)

- <z>rms ~1:1.-elax
<

The values of <2>p.pq/A are shown in Figure 2.4. The average excursion is
o smaller than the fringe spacing 2n/Ak, therefore the signal is no longer fully
modulated and (Ak)"1 ceases to be a relevant length scale. Because of the
nonlinear nature of the transfer function, the amplitude of the signal will
not carry meaningful information. For example, when the particle oscillates
about CD in Figure 2.3, the signal response C'D' is quite different from that
-* (E'F') of a similar oscillation EF.

The only meaningful information contained in the signal is the time

between the extrema of the signal modulation. Each extremum of the signal

o represents a reversal in direction of the particle, and therefore, a zero of
\
o the Brownian velocity u. In order to interpret the signal, it is necessary to

examine the statistical distribution of the zeros of u. This procedure will
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be described in Chapter 3. From the statistics, the relaxation time of the
particle may be determined, and then the size information may be determined
from Eq. (2.4) or (2.5).
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3. SIMULATION OF THE BROWNIAN MOTION DOPPLER SIGNAL AND SIGNAL
PROCESSING STRATEGY

In this chapter, a numerical simulation of the Doppler velocimeter signal
from a particle in Brownian motion is reported. The simulation was based on
a Monte Carlo technique for calculating the motion of the particle from the
stochastic solution of the Langevin equation [Eq. (2-8)]. This motion was
then coupled into the response of a laser Doppler velocimeter system operating
in fringe mode to produce the Doppler signal. Then the results from using
different methods for processing the signal were compared to formulate a

signal processing strategy for the determination of the particle relaxation

time.

3.1 Simulation of the Brownian Velocity

The measurement approach utilizes a laser interferometric system for
measurement of an interference signal which is sensitive to the particle
displacement. Such a system is shown schematically in Figure 3.l1. This
approach, in simple terms, is to measure the time-dependent interference
signal arising from a single submicron particle (£ 0.l um diameter) passing
through the measurement volume formed by the intersection of the laser beams
in Figure 3.1 and to determine the particle size by statistical analysis of
the signal. Although the system shown is physically similar to the familiar
laser Doppler velocimeter, important differences in its implementation form
the basis of the present approach. As explained in Chapter 2, the Doppler
signal obtained from the scattered light only contains time (but not velocity)
information which must be analyzed in a statistical sense. This concept is
that the mean excursion distance for the particles in Brownian motion {s much

smaller than the wavelength of visible light, as shown in Figure 2.4. As
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discussed in greater detail in Chapter 2, the consequence of this
characteristic of the measurement is that the magnitude of signal variations
is not meaningful (because the motion may be occurring in different regions of
the LDV fringe pattern). The frequency characteristics of the signal are
significant, however, in that they can be related to the statistics of
particle motion. The identification of such relationships is the motivation
for the computer simulation of the signal.

The basis of the computer simulation is the probabilistic solution (Eq.
2.8) of the Langevin equation. Using the probability distribution of Eq.
(2.8), we may generate, using a pseudo-random number generator, the velocity
history of w with the correct statistical properties. In general, if R is a
random number with uniform distribution in the interval [0,1], and p(x) is the
probability distribution of a variable x, R may be mapped into x by equating
the probability of finding x in [x;, x,],

2 R,

[ px)ax=[ 1dR=R,R . (3.1)
1 Ry

In particular let x; = == and R; = 0; then

b4 R

[ p(x) dx=f 1dR =R . (3.2)
—~ 0

For the distribution of Eq. (2.8), it 1s convenient to rewrite the expression
as

A 2 2
p (wn,At, wn-l) 7o exp [~ A (wn-wn_lh) ] (3.3)
3-3
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where

2 m

A = —_— (3.4)
! 2kt(1-h°)
§ h= e B8t | (3.5)

Then Eq. (10) becomes

v

w
n

/$ [ exp [-Az(wn-wn_lh)z] dw = R , (3.6)

[ 22
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from which w, may be solved from the random number R. The solution of
Eq. (3.6) is

En

w

where
v,
1 £ = erf ! (2R -1) . (3.8)
- n n
>
85 To summarize, the algorithm for generating the Brownian velocity history
oy works as follows. The initial velocity w; is obtained randomly from the

' Maxwellian distribution

. m 1/2 -mwz

g; p(wl) = (m) exp(-zw) ’ (3.9)
<

\
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or

1/2
v, = (-2—:7"—‘) erf'l(zal-l) (3.10)

The subsequent velocities w,, with sampling time At, are then given by

55" Eqs. (3.7) and (3.8).
?,
-'f 3.2 The Doppler Signal

Consider a crossed laser beam system with beam waist r, as shown in
Figure 3.1. The intensities of the two beams scattered by the particle at x=

(x,y,z) (in a coordinate system centered on the probe volume) are

.}_
n’.‘ ~ ~ 2
exp{ - [x = (x * k,)k
. I, - j" —d 'IJ ) (3.11)
1 1‘.'2
i .
;: exp[-Jx-(x-k)kl \
I, - = (3.12) 5
o

~2

]
by
K
.'
)

Here the unit propagation vectors are

[
4
LY

"
o

0 e -

- d d W

_131 (x cos 7 0, -z sin 7 a:

(3.13) .:

\

A\’

“I

- Bd ed :
_lgz-(xcosT,O,zsinz— .
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s Therefore the expressions for 1, and I, become
[ &
2
& 2 % o TR 2 % % 9
exp[=(x sin” 5= £ z sin = cos 5=) + y° + (z cos” == * x cos =— sin ==) |
I= ) 2 2 2 2 2
g } 2
. r
o

(3.14, 3.15)
The mean particle trajectory is

x(t) =x +ve , (3.16)

where x, is the reference point and‘i is the mean velocity. Substitution of
x(t) = (x(t), y(t), z(t)) from Eq. (3.16) into Eqs. (3.11) and (3.12) would
give the scattered intensity profile as the particle traverses the beam

volume.

At the detector, because of the interference between the two beams, the
light collected is a modulated Doppler signal. The signal may be written as

t
§~I,+1,+2/I1, cos (&k - / v,dt + ¢) (3.17)
where
27 ed
bk = = (2 sin 5—) R (3.18)

and the z velocity component contains both a mean and random velocity,

v, = ;z + w(t) . (3.19)

The phase shift ¢ is a constant depending on the reference point definitfon.




e

The power received-at the detector ma& therefore be written as

Io do
P=(3H/[ g dr)

Sl = U SR

) t

2 d -
« {f, + £, + 2/f £, cos (31 *2sing o [v, t+ f_uw(t)dt])} .

B8R

(3.20)
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The first term represents the absolute intensity function which {is
proportional to the beam intensity I,, the aperture and transmissivity
function H of the receiving optics, and the scattering cross-section
integrated over the appropriate field of view. The functions f; and f, are
defined by the right hand sides of Eqs. (3.11) and (3.12). The cosine term
represents the heterodyned Doppler signal.

mA B

3.3 Simulation Results and Discussion

The Brownian velocity of a 0.1 um diameter spherical particle with a
specific gravity of 2 in 300 K air at atmospheric pressure has been simulated
using the Monte-Carlo calculation described above. The velocity history {is
shown in Figure 3.2 for 500 velocity samples with a sampling time of 10 ns
each. The velocity statistics are shown in the histogram in Figure 3.3. The

i
¥

.

result agrees with the Maxwellian distribution which is also plotted in the
figure.

2 BN S %

Calculations were then carried out to examine the behavior of the Doppler
signal, which is described by Eq. (3.20). The term of interest is

6

t
S = %{fl + £, + Zlflfz cos (%1 « 2 sin 52 [vzt + [ w(t)de] + ¢)} ,
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with f, and f, defined by the right hand sides of Eqs. (3.11) and (3.12). To ]
obtain the most favorable signal, the particle is assumed to have mean
velocity in the y direction omly, and 1is traversing the center of the sample

volume along the y axis. The reference phase value is set arbitrarily to

(=0.5v) which corresponds to aligning the y axis along the "boundary” of the
bright and dark fringes in the beam sample volume. The laser beam waist r,
'-, is 50 um and the beam crossing angle is set at 64 = 10°. These values are

typical of a practical systenm.

”

Under the above conditions, the simulated Doppler signal for a 0.1 um
1

1]

particle with vy = l mes™" traversing the center part of the beam volume, '
E starting from x = (0., ~10 um, 0.), is shown in Figure 3.4(a). The horizontal N

axis is the number of time steps, with each time step equal to 10 ns. The

<& signal fluctuation due to the Brownian motion is clearly detectable. \
|$: U
- The simulation is repeated, under the same conditions, with a 0.0l um )
i diameter particle. The simulated signal for the smaller particle is shown in
Figure 3.4(b). The fluctuation is of a much higher level than those o
R exhibited by the larger diameter particle. Furthermore, because of the :
LS
:2 behavior of the cosine function, the modulation is reduced when the argument ]
of the cosine is close to ¢t nr, n = 0,1,2,.... For the signal in Figure
! 3.4(b), the particle is very close to the center of the beam volume as the
»
absolute intensity is approximately constant. Therefore, the signal has a
-'.': magnitude of 9
- 3
2n ed - '
S~ 1+ cos {)‘— * 2 sin 5 [vzt + [ w(t)dt] + ¢} . (3.22) '
L
|l
Thus, at regions where S -1 or 2, the magnitude of the modulation is :
reduced. This effect is evident in Figure 3.4(b). .
¢
'l
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The signal modulation in Eq. (3.21) is a result of the cosine term, which

is rewritten here as

modulation ~ cos(k'z + ¢) (3.23)
where
k' =2 .2 stn -iﬂ (3.24)
and
2=V t+z (3.25)
) t
z = [ w(t)dt . (3.26)

The root-mean-square value <;>tms of the Brownian displacement is shown in
Figure 3.5. For particles of 100 to 1000 A diameter, <Em>/x ~ 0.1.

Therefore the rms displacement is much less than the fringe spacing k'=l, as
a result, the length scale A does not play any role in the determination of
the Brownian velocity w. The signal, therefore, only contains information
about the time scale and not any length scale, and the determination of a
meaningful velocity is, in principle, not possible.

The essence of the above discussion is illustrated in Figure 3.6, which
exhibits the transfer function of the detection system [the right hand size of
Eq. (3.31)]. For typical Brownian motion modulation (AB), the signal
modulation 18 (A'B'). The signal modulation is drastically reduced where the
slope of the transfer function vanishes (CD). The amplitude of the modulation
is a function of the position of the particle relative to the fringe pattern.
Since this is not known a priori, the amplitude modulation, therefore, does

not provide useful information on the nature of the Brownian motion.
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When there is a fluid velocity component ;; perpendicular to the fringe g
\.. pattern, the particle position will be represented by the trajectory (EF),

with the Brownian modulation such as (AB) superimposed on top. The signal

~ will exhibit full modulation (E'F') (regular Doppler signal) with the Brownian ~
N motion modulation (A'B') superimposed on top. When Vé is large compared to r
ﬁ; the Brownian velocity w, it may be difficult to recover the Brownian motion :

f modulation from the regular Doppler signal. This effect is illustrated in E
:} Figures 3.7(a) and 3.7(b) in which velocity v, of 0.1 and 0.3 mes™! S
“ respectively are superimposed onto the Brownian velocity. In the latter case, ¢
32 the Brownian motion signal is almost completely masked and the signal k-
| A

resembles the usual Doppler velocimeter signal. For small particles with a

higher Brownian velocity, good quality signal may still be obtained with a

significant ;;. This is illustrated in Figure 3.8 by the simulation of the

signal from a 0.0]1 um particle with Vz = 0.3 mes™!. The mean Brownian

i’ velocity w, where

O
b,
: 8KT P
> = — . w
o w p (3.27) A
)
§
!! is approximately 0.l m-s'l for a 0.1 um diameter particle at a gas temperature by
1Y e
of 300 K. Thus one expects that for particles in the 0.0l to 0.l .m diameter ~3
:?- range, reasonable signal quality may be obtained 1f'Vz is less than :,
g -1 \
Ool me S . L%
:; ;
2 The above discussion indicates that the strategy for analyzing :
. characteristics of the Brownian motion lies in analysis of the time ;,
x; information. The fundamental time scale of the fluctuation is the relaxation X

time 1/3. The information on the particle size way be calculated from 3 using
Eqs. (2.4) and (2.5). Furthermore, the signal must be filtered to remove the R
- &
regular Doppler component (v,) for proper interpretation. ﬁ
) 1]
<
o
.~
n
\
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3.4 Processing of the Brownian Motion Sensor Signal

As discussed above, only time information may be obtained from the
Brownian motion sensor. Since the time scale relevant to the Brownian motion
is much faster than any other time scales (e.g., the transit time of the
particle due to its mean velocity), the latter may be filtered out easily. In
the following discussion we shall assume that the signal has already been
filtered to contain the Brownian information only. The appropriate statistics

of the temporal information signal are discussed.

As depicted in Figure 3.6, the signal amplitude is a function of the
absolute position of the particle within the probe beam volume. Therefore,
the relevant information is contained in the time between the extrema of the
signal. At an extremum, there is a change of direction of the particle, and,
therefore, the extremum represents a zero crossing of the particle velocity.
Thus, the Brownian motion may be analyzed in terms of the time between extrema
of the signal (zero crossing of the first derivative). The particular method
of implementation depends on the hardware configuration. Nevertheless the
principle remains the same. Also, the analysis considers only the mean time
between extrema, and does not to attempt analyze the full spectral content of
the signal, so that possible aliasing 1s not an issue. (The method amounts to
doing statistical sampling rather than fixed interval sampling, so on the

average, the higher frequency content is "represented.”)

The signal processing is simulated on the computer using “he Monte Carlo
technique described previously. The Brownian motion of a particle with
specific gravity of two, embedded in room temperature air, is analyzed. The
mean time between extrema t as a function of the particle diameter d is shown
in Figure 3.9. The values of t do not seem to follow a simple linear
relationship with d, yet the only time scale involved is the relaxation time
Trelax = !/B. With B proportional to 1/d in the free flow regime, the
relaxation time should be proportional to d. Furthermore, depending on the

sampling interval At, the mean time t is different. The relevant parameter
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should therefore clearly involve At. This issue is resolved when the data are

6 replotted against /At/f (with the dimension of time) (Figure 3.10). The
:R simulation points collapse on to a single straight 1line passing through the

origin. The relationship between sampling and adequate statistics is also
!! illustrated, at large values of /At/8, a long string of data is required to
produce a good estimate of t. For small values of /At/B8, the sampling

interval of At = 10 ns is not adequate to resolve the Brownian motion time

.

scale, and as a result, t is overestimated.

. }4,‘!:

o
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4, THEORETICAL ANALYSIS OF THE DOPPLER SIGNAL

In the last section, a Monte Carlo simulation of the signal from the
Brownian motion sensor was carried out. The result of interest, namely, the
time between zero crossings of the Brownian velocity, was found to be
dependent on the step size At of the simulation. This dependence is actually
not surprising because At represents essentially the bandwidth of the actual
signal detection system, which, being a practical device, should have a finite
bandwidth. Since the Brownian motion is a statistical process, the behavior
of any signal derived from the Brownian motion is statistical, and the
spectral properties of the signal will depend on the bandwidth of the signal
detection system. These ideas are further explored in this chapter. Also an
analytical approach is attempted in order to provide a theoretical basis for
the signal processing method used in Chapter 3.

4.1 The Statistical Nature of the Brownian Velocity

The Brownian velocity of a particle in thermal equilibrium in a
background fluid is described by the Langevin equation (see Chapter 2). For
the observed velocity component u (in the direction of Ak), the Langevin

equation 1is

du - (4.1)
it + Bu £

where 3'1 is a relaxation time governed by the mass m and the mobility e of
the particle in the fluid.
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The statistical nature of u is due to the random driving force f, which is the
result of the impulse arising from each collision of the particle and a
molecule of the background fluid. Because these collisions occur randomly, f
may be considered to be a white noise function with a constant spectral

density Sg,

< f(e)f(tdr) > = Sfé(t) (4.3)

The time scale associated with the fluctuation of f is of the order of
the time between the molecular collisions t., which, for a 0.l um particle
in a gas medium at STP 1is approximately 10°!* . The time response of
practical instruments used to observe the Brownian motion velocity is usu&lly
much slower than this collision time. The observations, are, therefore, the
result of averaging u over a response time scale At associated with the
instrument, with At » 1.. The observed value of u is then a random
variable, and, since it is the aggregate of many similar events, it has a
Gaussian distribution, by the central limit theorem. If the particle has a
velocity u, at one instant of time, the conditional probability distribution
of u at a time At later, (so that the value of u is the aggregate sum of all
the collisions in At), is given by[4.l1]

1 2,2
P (u,uo;At) == exp [-(u-uoh) /o"] (4.4)
s .#2 (4.5)
2kT(1-h")

Note that the distribution is parameterized by the "memory” factor h

At
hzel (4.6)
4-2
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and the width ¢c. The observed velocity u(t) may be viewed as observatioms at
discrete points in time, t; = nAt. When the time step At is large compared
to the relaxation time (At » 1), the velocities uy are independent of each
other, and each obeys a Maxwellian distribution at temperature T. In the
Brownian motion sensor described here, since the velocity amplitude is not
measured, all the information is contained in the measurement of the value of
B. Therefore, the instrument response time At should be such that BAt < 1.
After 3 is determined, the particle physical properties (e,m) may be
determined from Eq. (4.2).

4,2 The Distribution of the Zeros of the Velocity

The Brownian motion sensor measures the time between successive zeros of
the Brownian velocity u (in the direction of Ak). The time history of the
velocity values, u(t), as observed by an instrument with an integration time
At, may be thought of as a time series u, at time nAt. From Eq. (4.4) the
values of each u, are governed by the probability distribution

1 2,2
p(u, u_ ,at) = —=exp [ - (u-u_nc ] (4.7)

where the uy-]} appears as a parameter. We want to determine the probability

P(N) of obtaining a time between two successive zeros of NAt.

The problem of determining the distribution of zeros of a random variable
has been studied extensively in the coantext of shot noise in electronic
devices, and in queueing theory. The classic review of the subject is given
in Reference 4.2. We shall derive the expression for P(N) independently
here. To connect our result to that in the literature of noise current, the
random driving force f in Eq. (5) may be considered as the randomly arriving
electron, and the observed "current” u is the result of two transfer functions
(or filters) in series., The first transfer function is that associated with

the Langevin equation. Formally

4-3
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A
!! ’ where } is the Fourier Transform of f. Physically, this transfer function is V,
i due to the averaging of the effect of f by the damping of the particle in the :?
fluid. The second transfer function is due to the averaging by the :
instrument. Therefore the overall transfer function is
"
t o 2 dpt'
a(e) = i e .if(_f;‘m% (4.9)
l)_.
It should be noted that no closed form solutions for P(N) have been worked -~
out, except for rather trivial cases. The difficulty is attributed [4.2] to :3
~ the lack of an analytical solution to the N dimensional integral involved (see r
Eq. (4.10). a
We shall derive the expression for P(N) here. The process of obtaining a 55
successive zero in N steps may be described as the following. At time zero .
(n = 0), the particle has a very small velocity &u, which, within the ::
amplitude resolution of the instrument, may be considered as zero. In the
following argument, Su is taken as positive. The argument will be exactly the ;
same 1f Su 1s negative. We shall define a zero-crossing event at t = NAt, E
(n = N), as an event with velocity greater than zero at t = (N - 1) At, Eﬂ
(n =N - 1), and velocity less than or equal to zero at t = NAt., The time
resolution of this definition of zero-crossing is At, and so the meaning of &;
such an event for N = 1 is not precise. Then, the condition for occurrence of fq
a successive zero in N time steps is to have the velocities be positive for gf
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n=1, «vo, N-1; and the velocity be negative or equal to zero for n=N.

X2 PR

"
v
Therefore r
{
{
{ P(N) = [ du p (u,, 0; At) [ du, p (u,, u ,; At) eece (4.10)
\ 1 1 2 2 1 :
b ) o o \
-] [») .
' cee ; ; ¢
ﬁS f dun__1 P (un—l’ u_5 at) f dun p (un, U at) _
% ° -
) f
35 Using the formula for p in Eq. (4.7), and changing the variable from u to ¥
o £ = u/o, the above probability becomes
d h
y .
2 2
e P(N) = (= dg, e g, e see .
o ol o 2 (4.11) !
- \
. 2 2 .
. e (gn-l 5n-2h) ° (gn gn-lh) :
-..f dg e das e
n-1
(o] -0
§: bt
- Note that o does not appear in this expression. This is because the bt
zero-crossing time pertains to the zeros of the velocity, and is therefore 4

X

independent of the velocity scale. (The value o is a velocity scale measuring
the width of the velocity distribution). R

] {1","".

If the integration time At is large (8At >> 1), h will approach zero and

Eq. (4.11) reduces to a binomial process

A
"\

N p
) (4.12)

-

P(N) = (

<44
N —

Ed

The average value of N is

o

P

4

Y

P N = E NP(N) = E N o.d (E (EJN ) =2 (4.13) '
Nel Nl 2V 9% |a) N 2 3
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In this case, the data values corresponding to the successive zeros of the
velocity become a completely random sequence, and do not contain information

about h,

For small values of h, the multiple integral may be worked out as

follows: An operator I, is defined as

2

& e (€, - &) £(5,) (4.14)
n

_ 1
In (f(in)) = /=

o—8

The quantity .} enters as a parameter in the above definition. Then

_b) + o) (4.15)

1 2
=g U e,

1 2
I (g h) =5 2+ 0(h") (4.16)

;hs

The expression for P(N), Eq. (4.11), after evaluating the last integral on the
right hand side, becomes

2

1 2
P(N) = 7 I1 12 cee IN__1 1+ = gu-lh) + 0(h") (4.17)

The expression (4.15) and (4.16) may be used repeatedly in (4.17). The first

few expressions are:

2

P(N) = (-;-) I eee Iy, [a- ;Zr-h-) + /%FN_Zh] + 0(n?)
1,° 2 2
=(3) 1, ... Lig (1 + ﬁr—_aN_3h] + 0(h%)
4=6
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1 2h 2 2
= () I eeee I, [+ + =& h] +0(0%)
1,V 2h 2
P(N) = (3) T1+ (N-3) =] + 0(n"); N > 2 (4.18)

The above expression is valid for N > 2. For N = 1, since the velocity at

n =0 is preconditioned to be = 0,

° 2
Py = | o B0 g -1 (4.19)

Compared to the binomial distribution (P(N) = 27N) which is the limit
for h = 0, P(N) decreases with h for N < 3 and increases with h for N > 3.
This result is illustrated in Figure 4.1. Since the velocity at n = 0 is
zero, the velocity u; at n = 1 is sampled from a Gaussian centered at zero.
The value of P(N = 1) is the probability that this velocity is negative, and
P(1) is therefore 1/2. Say the velocity at n = 1 is u;(> 0), then the
velocity u, at n = 2 is sampled from a Gaussian centered at uh.  The
probability of u, being negative is the shaded area in Figure 4.1 under the
Gaussian at n = 2, and this value is < 1/2 for h > 0. Therefore P(2)
< (1/2)2. For N = 3, the probability of obtaining a consecutive zero here is
represented by the shaded area under the Gaussian centered at u,h at n = 3
(Figure 4.1), This area has to be summed over all the realizations of the
possible values of positive u,, which is sampled from the Gaussian centered at
u, h, which again has to be summed over all the realizations of u;. Although

the shaded area at n = 3 {s less than 1/2, there are "“more” realizations than
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the h = 0 case because u, is sampled from the shifted Gaussian. These two
effects balance each other to 0(h?), and P(3) is equal to (1/2)% + o(h?).
For N > 3, P(N) is given by Eq. (22), and is greater than (1/2)N. The
values of P(N) are plotted versus N in Figures 4.2 and 4.3.

It is not possible to obtain a closed form solution of P(N) for arbitrary
h (h < 0 < 1 corresponding to 0 < BAt < =) because of the difficulty in
evaluating the multiple integral im Eq. (4.7). Direct numerical calculation
the integral is not feasible for any large N, say N > 5. Monte Carlo
evaluation of the integral would be equivalent to our earlier sinmulation of
the Brownian motion in Chapter 3. The results of Chapter 3 will be reexamined

in this context here.

The general behavior of the mean number of steps N between consecutive
zero-crossings of the Brownian velocity is shown in Figure 4.4, For h = 0, N
is 2 (from Eq. (4.13)). For small h,

o N
N ) (a+a3) 2 4 on?)

2\

[ ]
o~
] [

2

- N 6h, <« (N°y ,2h 2
= — (1 _.._) + — =) + O(h )
g-l (zN) T g-l (2N) &)

= O(hz) (4.20)

Z|

In the last expression, we made use of ) (N/2N) = 2 and Z(NZ/ZN) = 6,
Therefore N = 0(h?) for small h. For large relaxation time (8 + 0, 8At + O,
and h » 1), the particle, once it acquires a positive (or negative) velocity,

will retain that velocity for a large time., Consequently N » =,
The results of the Monte Carlo simulation in Chapter 3 have been
replotted in the context of the present analysis in Figure 4.5, and confirm

the theory. The results in Figures 4.4 and 4.5 show that to obtain h, (and
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therefore the values of B, which would lead to the values for £/m), it is
necessary to have a time resolution of At such that BAt € 1 (or h = e~BAt
close to 1), 4

[~

4.3 Summary

A theoretical analysis of the probability of obtaining a time T between

JB

.ij consecutive zero-crossings of the Brownian velocity u has been presented. y
Y

Since u is a random variable, the probability P(t) is necessarily a function
Ry of the integration time At of the instrument used to observe u. The analysis 3
be '
..

has been carried out in terms of discretizing the time in steps of At,
t, = nit, and the resulting probability P(N), (N = T/At), has been ,
derived. The values of P(N) are found to be dependent on the "memory" h (h

exp (-BAt)) of the Brownian velocity, where 8! is the relaxation time. For
very short memory (h € 1), the probability P(N) tends to the binomial limit
P(N) = 1/2N, The expectation value N (= | NP(N) assumes the value of 2 in
Ii the binomial 1limit and 2 + O(h?) for small h. For large relaxation time (8 +

0), N+ », To obtain accurate information from the measurement of N about h, L

<y W

:i and therefore, the value of 8 which is related to the physical properties of Y
» the particle suspended iu the fluid, it is necessary to have BAt < 1. Since
the result is a function of the integration time At, which is not a precisely
!! defined quantity for the measuring instrument, the Brownian motion sensor must
be a calibrated instrument.

-
N
. -
4.4 References for Chapter 4
7 :
<~ 1. Chandrascklar, S., “"Stochastic Problems in Physics and Astronomy," N
Reviews of Modern Physics, Vol. 15, 1, 1943,
W
58 2. Rice, S.0., "Mathematical Analysis of Random Noise,” Bell System !
Technical Journal, Vol. 23 and 24, '
W
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5.

LABORATORY EXPERIMENT FOR BROWNIAN MOTION DETECTION

In this chapter, the signal to noise requirement for detecting the

Brownian motion of a small particle using an interferometric system is first

estimated.
described.

presented.

5.1 Signal to Noise Requirement of Brownian Motion Detection

Then the experimental set up and the data acquisition systems are

Finally, the signal sampled from the detection system is

The signal from the photomultiplier has a noise component due to the

random arrival of the photo-electrons (shot noise), a deterministic frequency

component due to the convection of the particle through the fringed volume

formed by the intersecting laser beams (regular Doppler signal), and a

statistical component due to the Brownian motion of the particle. Since the

displacement of the particle due to Brownian motion is small compared to the

fringe spacing (see Chapter 2), all the information that can be obtained from

the signal on the Brownian motion characteristics is contained in the small

fluctuation which 1is superimposed on top of the regular Doppler signal. To be

able to detect this information, the signal fluctuation due to Brownian motion

must be much larger than that due to shot noise within the bandwidth of the

detector.

The bandwidth Af of the detector should be able to resolve the relaxation

time t, o145 Of the particle.

Trelax

noise current is

NS

7R

~3 x 10~ to 3 x 10~/

For particles 0.02 to 0.2 um in diameter,

S,
isn = /(2eiAf)
A T Il e P O

Therefore Af is > 3 x 107 Hz.
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For a heterodyne system, the statistics limited signal to noise ratio is

S/N = //% sin (anm/xf)/Af (5.2)

where n is the number of photo-electrons collected per unit time and Af is the
bandwidth. The sine factor is due to the fact that the excursion of the
particle due to Brownian motion is small compared to the fringe spacing Ag,
hence the modulation of the heterodyned signal is not complete, and the
modulation depth is proportional to the maximum excursion distance Xy
occurring during T ejax+ Furthermore, the bandwidth should be fast enough

to capture Tpe]ax fOr the smallest particle of interest. The relaxation

time for a 0.02 um particle is 4 x 1078 5. Therefore a bandwidth of 25 MHz is
sufficient. The data acquisition system to be described has a bandwidth of 30
MHz, and this figure 1is used for the signal to noise calculation. (Note that
to resolve tpo)ax» the sampling rate should be at least twice the bandwidth
according to the Nyquist theorem. In our data acquisition system, the

sampling rate was 100 MHz).

In terms of the parameters of the optical system, the signal to noise
ratio for a collection optical system oriented at a 90° scattering angle may

be expressed as

///21 sin(anm/xf)
S/N = (AL—fJn IE ) —— (5.3)

where I is the incident beam power (photon/sec), A; is beam cross section
area, v, is the collection optics efficiency, n is the quantum efficiency,
dQ is the collection solid angle, and do/dQ is the differential scattering

cross section. For Rayleigh scattering

3 /// sin(2mx /xp)
S/N = (%) ( n '1| ) ndg ————— (5.4)

af

n +2
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The d° size dependence i1s due to the variation of the Rayleigh scattering

cross section ("d6).

For particles in the 0.02 to 0.2 um range, Eq. (5.5), which is based on
Rayleigh scattering, is not strictly valid. Comparisons w;th the exact Mie

calculations at 0.2 um for a laser wavelength of 0.5 um, however, showed that

the scattering amplitudes calculated by the Rayleigh formula are less than 30%

off. For an order of magnitude S/N estimate in the 0.02 to 0.2 pm range,
therefore, Eq. (5.5) is sufficient. The signal to noise ratios for systems
with laser power density of 1010 w/m? and 10° W/m? for each of the
intersecting beams, and with f/1.3 collecting optics, ty = 0.3 and n = 0.2
are shown in Figure 5.1. The refractive indexes used in the calculations
were 1.5 + 01, which corresponds to that of latex spheres, and 4.5 - 1.9 1,
which corresponds to solid carbon particles. (The latter value 1s used as a

simulation for the S/N in soot measurements.)

For measurements on latex particle used as a calibration procedure, the

estimated signal to noise is marginal, ~1 to 10, even for particles up to

0.2 um. The actual S/N attainable, therefore, is very much dependent on the

actual apparatus.

5.2 Apparatus Development

The observation of the Brownian motion of individual small particles
poses several experimental design challenges due to the small scattering

cross section of the submicron particles combined with the short observation

time required to resolve the Brownian motion. As a result, the experiment was

severely limited by signal to noise considerations, and much effort focused on

refining the optical system to improve the signal to noise ratio. Several

versions of the apparatus were developed in an evolutionary manner.

The optical system which had been first assembled for this study is shown
schematically in Figure 5.2. A Spectra-Physics Model 165 argon ion laser with

a nominal single-line power of approximately 2.5 W which yilelds a true
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Estimated Signal to Noise Ratio of Brownian Motion Detection
System. (The calculation is not valid for d > 0.2 .m because
the Rayleigh scattering formula was used for the scattering

cross-section.)
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Figure 5.2. Schematic of Experimental Optical System for the Study of
Brownian Motion of Individual Submicron Particles.
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xrx  TES

TEMgQ output with optimum focusing characteristics was used. To obtain a
clear fringe pattern at the measurement volume, it was necessary to insert

a Spectra-Physics Model 589 air spaced etalon into the laser cavity to
restrict laser oscillation to a single longitudinal mode. This provided the
stable mode amplitude and increased coherence length required in our optical
measurement system, but at the expense of a 75X decrease in laser power. The
vertically polarized output of the laser was expanded by 25x and collimated to
a beam size of approximately 3 cm. The beam expansion lead to tighter
focusing and a resultant higher power density at the sample volume than could
be achieved with a smaller diameter beam. An adjustable iris diaphragm was

used after the beam expander/collimator to select the beam diameter.

The expanded beam was split into two beams (bg and by) by a 50/50
cube beamsplitter, which reflected 50% of the incident light and transmited
35%Z. An increasing intensity difference in two beams when focused to a point
to form interference fringes resulted in a decreasing clarity of the fringe
pattern, which was detrimental tc the signal to noise ratio in our optical
system. Therefore, three reflectors were used to decrease the intensity of
the reflected beam (=~ 10% light loss off of each mirror) as well as to
position this beam on a path parallel to the transmitted beam (by). The two
beams of approximately equal intensity were then focused by a multi-element
lens with a 17.4 cm focal length to form an interference fringe pattern at the
sample volume. The sample volume was imaged through a pinhole and then
refocused onto a fast photomultiplier (Type R663) which views the light
scattered at 90°. An interference filter was used before the photomultiplier

to reject light outside a 1 nm band centered at 514.5 nm.

The measurement volume ig defined by the intersection of the laser beam
intensity profile and the field of view provided by the pinhole of the
receiving optics. Its geometry is depicted in Figure 5.3. The incident beams
were at a 7.5° angle with respect to each other and had a total power of 130
milliwatts with the iris diaphragm fully open. The fringe pattern formed from

the two beams was easily viewed by magnifying the measurement volume by a
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factor of 200 with a microscope lens and projecting it onto a screen. The
number of observed fringes is consistent with a calculated 4 um fringe spacing

and 12 pm beam diameter (Figure 5.4).

A successful measurement requires the double coincidence that a single
particle traverse the fringe system and be detected within the field of view
of the receiving optics. Initially, the measurement volume was imaged onto a
25 um pinhole with a magnification of unity, but low counting rates were
observed with such a small field of view. Also, the detection of scattered
light through the small pinhole was highly susceptible to random mechanical
vibrations. A 400 ym pinhole was subsequently used and the signal
detectability was greatly increased, however, the measurement volume was too
large. Extraneous signals from the interaction of a single beam with a
particle arose because the field of view of 400 um was not restricted to the
overlap region of the two beams. Also, the larger field of view increases the
chance of detecting multiple particle events. Finally, the sample volume was
imaged with a magnification of = 10 onto a 400 um pinhole. This was
equivalent to a field of view of 40 um and rendered the signal less
susceptible to vibrations. The collection optics consisted of a 60 mm
diameter 70 mm focal length plano—convex lens located ~77 mm from the

measurement volume. The overall optics have a f number of ~1.3.

5.3 Signal Acquisition System

The data acquisition system is shown in Figure 5.5. The signal from the
photomultiplier tube was amplified by a high speed buffer amplifier (200 MHz
bandwidth, x100 gain). The Brownian motion data was recorded on a Data
Precision Flash A/D system with high speed memory. For each event (traversal
of a particle through the probe volume), 8192 data points at 10 ns interval
were collected. The record length of 8 us of data was large compared to the
relaxation time of the particle which is of the order of 0.1 us; therefore

there should be enough data for statistical analysis.
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}: Figure 5.4. Magnified View of the Interference Pattern: (a) With a Narrow
* Unfocussed Beam Diameter (~0.2 um Beam Diameter); (b) With a
. 2.2 cm Unfocused Beam Diameter. The weak interference fringes
’. in the background of (b) are due to scattered light from the

microscopic objective.
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To verify that the Brownian motion signal was captured when the particle

was located at the "steep” part of the fringe pattern, the signal from the
buffer amplifier was fed through a low pass filter to provide the trigger
signal for the data acquisition system. The filter frequency was set at
approximately the Doppler frequency due to the convection velocity of the
particle through the measurement volume. A typical trace of the filtered
signal which was recorded by a storage oscilloscope simultaneously with the
high speed Brownian motion data is shown in Figure 5.6. Because the trigger
level was known, the portion of the signal captured by the high speed data
acquisition system may be identified on the scope trace as in Figure 5.6, If
this portion of the signal was not located at the "steep” part of the fringe

pattern (as shown), the particular data record was discarded.

The high speed data record corresponding to the event of Figure 5.6 is
shown in Figure 5.7. The top trace in Figure 5.7 is the actual signal sample
at 10 ns intervals. The bottom trace is the same signal with the points
connected by a (sin x)/x fitting. Stored data records similar to this were

used for the statistical analysis.

5.4 Results and Discussion

It was realized that in the initial setup the signal to noise ratio was
too small for detection of Brownian motion. The incident beam intensity of 65
oW focused into a 12 .m spot (intensity of 5 x 102 W/a‘) was too low. The
system, nevertheless, was set up to verify that the data acquisition system
was operational and to assess the actual S/N ratio to determine the
improvements necessary to obtain a useful signal. The typical signal records
collected were depicted in Figures 5.6 and 5.7. These records were processed

digitally for statistical analysis.

To verify the operation, the system was used to look at small latex
spheres suspended in water. Since the viscosity of water {s -3 «x 107 times

that of air, the signal due to Brownian motion was negligible and the response
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trigger the 100 MHz data acquisition system. The portion of
signal recorded is marked by the circle (8,192 samples at 10
ns sampling intervals).
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of the system was mainly due to shot noise. Therefore, the measurement
established the noise limit of the system. The signal was processed to obtain
histograms of the time between extrema of the signal as described in Chapter
3. The histograms for particles of several sizes are shown in Figure 5.8,
which shows that there was no difference in signal response for different

size particles. This is because the signal was masked by the shot noise.

(The peak at 30 ns is probably due to the 30 MHz bandwidth of the system.)

To improve the signal to noise ratio of the system, two changes were
made. The receiving optics were rearranged to a forward scattering collection
geometry, and the focusing lens for the incident beam was replaced by one with
a shorter focal length (7 cm compared to 17.4 cm). The 2 cm diameter incident
beams were focused to a ~4 um spot. The fringe spacing was 1.5 um and there
were 3 fringes in the focal volume. The change of the focusing lens improved
the signal by increasing the beam intensity and decreasing the fringe

spacing. The intensity of each beam at the measurement volume was ~5 x 10°

W,

The above system was tested by injecting latex particles of 0.045, 0.087
and 0.261 pm diameters through the measurement volume. These particles were
commercially available as concentrated aqueous suspension in small vials. The
suspension was diluted with alcohol and dispersed with an air nebulizer. The
concentration of the suspension was such that it was unlikely to have more
than one particle in each nebulized droplet. The droplets were mixed with a
stream of drying air to remove the liquid content to ensure that dry latex

particles were introduced into the measurement volume.

The signal to noise ratio was calculated from the measured photocurrent
and the known gain of the photomultiplier. For the particles used, the
photo-electron arrival rate was estimated to be n = 101%9/s. The Brownian
excursion x, for these particles 1is approximately 1 percent of the
wavelength \. Therefore, for a 30 MHz bandwidth system, the signal to noise

ratio according to Eq. (5.2) was ~5. Because the signal processing strategy
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relied on the frequency modulation (the time between extrema) to recover the
necessary information, it was especially susceptible to noise. A signal to
noise ratio of 10 is the minimum acceptable value. Therefore an increase of

S/N by at least a factor of 2, or signal level a factor of 4 is necessary.

The optical system had been designed, approximately, to the limitation of
commercially available optical components. The intensity gradient at the
focal volume had been maximized for a given laser power. The single mode,
etalon stabilized laser power, however, may be easily increased by using a
newer model laser. Alternatively, the instrument may be used to look at
particles in the > 0.2 um range (the S/N is proportional to d®). At a higher
beam intensity, however, other physical processes begin to play an important
role in modifying the Brownian motion behavior. These processes and the

limitations imposed by them are discussed in the next chapter.
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6. DETECTION LIMIT OF BROWNIAN MOTION

The scattered light from a particle may be increased by increasing the
intensity of the probe laser beam. There is a limit, however, on the maximum
beam intensity because it will disturb the dynamics of the particle Brownian
motion. There are two effects: (a) the particle may be heated so that the
thermal environment changes, and there i3 a substantial thermophoretic
effect. (We are not considering the severely heated case in which the
particle may vaporize or ignite.) (b) At high beam intensity, the photon
pressure may change the dynamics of the particle motion. The thermophoretic
effect depends on the particle absorptivity and the thermal properties of the
particle and the fluid. The photon pressure effect is present independent of
the particle absorptivity. These effects determine the limit of detection of
the Brownian motion. In the following, the above effects will be examined.
The particles are assumed spherical and the diameters of interest are in the
range of 0.02 um to 0.2 um. A diameter of 0.l um is used as the nominal value
to estimate the effects quantitatively. The laser beam power P is assumed to
be IW at 0.5 ym wavelength and 1s focused into a spot of diameter b ~10 .m.
The beam intensity is ~1010 w/mz. These values would correspond to a | cm
diameter beam focused to a spot by a 10 cm focal length convex lens. The
thermal environment of the particle is atmospheric air at 300 K. The
particles are assumed to be convected through the probe volume at a velocity U

~10 cm/s.

Since the mean free paths A of the air molecules at atmosphere is
~0.06 um, particles in the range of 0.02 to 0.2 um are in the transition
flow regime (Knudsen number k, = A/d ~3 to 0.3). The theory of transition
flow has not been well established. The present calculations were based on

an empirical fit to the available data.[6.l1,6.2]
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6.1 Thermal Characteristics of the Particles

In the flow regime considered here, heat transfer from the submicron
particles by forced convection and natural convection are negligible due to
the extremely small Reynolds number and Grashof number. The major heat
removal mechanism is through conduction. Data on the heat transfer from a

sphere in a rarefied gas from Ref. [6.2] may be fitted as:

N 0.215 . 0.0275 2.815 x 10> . 1.346 x 10 2.295 x 10°°
§ =1 mexp( A 3 * 2 " 5 )
uc K k k k K

n n n n n (6.1)

where the Nusselt number (N,) 1s evaluated at the free stream properties and
Nyc 1s the Nugselt number at the continuum limit (Ny. = 2). With a 0.l um
diameter particle in atmospheric condition, N, ~0.5. Values for N, as a

function of k, are shown in Figure (6.1).

As the particle enters the beam volume, it is heated up by the laser beam
because of the finite absorptivity. The heat up time may be estimated by
considering the thermal diffusion time through the particle as well as the
boundary layer. For an order of magnitude estimate, we used the properties of
polyethylene particles with a thermal diffusivity ap -8 x 10-8 m2/s. The
temperature distribution inside the particle will become steady state in
tp ~ dzlap. For particles in the 0.02 to 0.2 um range, tp ~0.005 to
0.5 us. The thermal diffusion time through the boundary layer may be obtained

from the energy balance on the particle

2
dT nd 2
m cp it la % Nu nd” k(T Tm)/d (6.2)

where m, cp are the mass and specific heat of the particle, I is the laser
beam intensity, a the absorptivity of the particle, and k the thermal
conductivity of the air. The thermal diffusion time from Eq. (6.2) is

therefore:
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Figure 6.1. Heat Transfer Characteristics of a Sphere in a Rarefied gas; data
from Ref. 6.2.

N (4 (;2) : (6.3)

where kp is the thermal conductivity of the particle. For polystyrene
particles, (kp/k ~5.5) the thermal diffusion time, t,, through the
particle in the 0.02 to 0.2 um size range 1is, therefore, ~0.04 to 0.6 us.

Since the particle residence time tg = b/u is of the order of 100 s,
which is much longer than t, and tps the temperature distribution both
inside and around the particle may be considered at steady state for the

following analysis.
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The steady state temperature rise is plotted against the product Ia in
Figure 6.2 for particles in the 0.02 to 0.2 pum range. To avoid a substantial
perturbation of the thermal environment, Ia should be less than 107 W/mz. For
the lW beam focused to 10 um square beam spot (I ~10%0 W/mz), the particle
absorptivity should be 10~3 or less. Thus the method cannot be used for
particles such as soot particles which have a high absorptivity.

6.2 Thermophoresis of the Particles

When a particle with non-zero absorptivity is illuminated by a laser
beam, thermophoresis occurs because a temperature gradient is set up so that
the illuminated side of the particle has a higher temperature than the shadow
side. The net result is that the particle acquires a drift velocity in the
laser beam direction. This problem may be studied in a similar manner to the
classical analysis[6.3] of thermophoresis of small particles in thermal
equilibrium with a gas in which a temperature gradient is present. In the
present case, however, the boundary condition on the particle surface would
have to be modified to include the heat flux due to the absorption of the
laser light, and the temperature field far from the particle would be
uniform. Such a case has not been discussed in the literature. To develop
the solution for this case would be beyond the scope of this study. We,
therefore, use a simple one dimensional energy balance estimate of the
temperature gradient across the particle, and then estimate the thermophoretic
effect using this temperature gradient and the semi-empirically based formula
suggested by Ref. [6.4].,

In the one dimensional model of this "spherical” particle, the particle
is modelled as a cylinder of diameter d and length d as shown in Figure 6.3.
The side wall of the cylinder is assumed to be adiabatic. Each end of the
cylinder is fitted with a heat exchanger of area nd2/2, representing the
surface area of one half the original sphere. The heat transfer
characteristics of these heat exchangers are specified through the Nusselt
number of a sphere in a rarefied flow. The temperature profile i{s shown in
Figure 6.3. The power input from the laser beam is Ia nd?/4. 1In steady

state, therefore,
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The average temperature Tyoye = (T; + T,)/2 and the temperature difference AT

= Ty - T, may be calculated from Eq. (6.4) and Eq. (6.5) as

Ia d

Tave "o " Thu & (6.6)
PR X S Tave - T.) (6.7)
2(kp + Nu k) [1 + kp/(k Nu) | ’

The temperature difference AT is plotted in Figure 6.4. It is a significant

fraction of the average temperature rise (Tave = Tw)-

In the near continuum 1limit, the thermophoretic force F for a particle in
equilibrium with a gas in which a temperature gradient is present was
calculated by Brock(6.3]

2
6muy-d C8

DT

F=- 0 . x 1 +6C Adi 1+ 2 k/k + 4C_ A/d
m p t

(6.8)

where Cy (= 1.17) is the thermal slip coefficient, C, (=2,18) {is the
temperature jump coefficient, and Cp (=1,14) {s the momentum exchange
coefficient. Talbot[6.4] argued that this formula is a useful means of

interpolation for all values of A/d, since it reduces to within 3% of the

correct collisionless 1limit (for perfect accommodation) when '/d + =,
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Under the action of the thermophoretic force, the particle would attend a
terminal velocity in a time scale of the order of the Brownian relaxation time
(relax = Pp d?/18 p). Using the Milliken drag formula,[6.4] the drift

4

A

velocity is

2ve (k/kp +2C, A/d) M+ i—“ (a + B e 424y T,
5 u, = ( ) (609)
3 T (L+6cC a/d) (1 +2k/kp+6CtA/d) T,
§ where
. A = 1‘20
h: B = 0.41

C = 0.88
) Although the assumptions leading to Eq. (6.9) do not match the present
C, application, (most importantly, the temperature distribution around the
|I particle would be quite different), a useful estimate of the drift velocity
;5 may be obtained by replacing the temperature gradient in Eq. (6.9) with AT/d,
) with AT given by Eq. (6.7). If the temperature rise AT is not very large,

) T, may be used for T;. The thermophoretic drift velocity of the particle

l; and the mean Brownian velocity [/(8 kT/mm,)], are plotted against the
particle size in Figure 6.5. The thermophoretic velocity up is not very

. sensitive to the particle diameter because AT is proportional to d so that
(VT)x is independent of d. At a modest absorbed power density level of 10’

49 w/m?, at which the temperature rise of the particle is ~20°C according to

$$ Figure 6.2, the drift velocity is significantly higher than the mean Brownian

N velocity. Therefore thermophoretic effects could significantly alter the

Py statistics of the Brownian velocity.
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6.3 Photon Pressure

At high laser beam intensity, there 1s a significant pressure force on y

% B R

the particle due to the momentum exchange between the photons and the

particle. Under the motion of this force, the particle will attend a terminal

e

velocity in a time scale of the order of the Brownian relaxation time
(trelax = pp d4°/18 u). If the laser beam is uniform and ‘

uni-directional, this terminal velocity would not affect the Brownian motion

AN

statistics. The actual beam probe volume, however, is obtained by focusing

ﬁ: the laser beam to a diffraction limited spot. As a result, both the intensity :

a3 .
and direction of the laser light i1s highly dependent on the position of the

:‘ particle, and the photon pressure effect is coupled into the Brownian motion. X

]

To estimate the effect, we shall calculate the terminal velocity of the

particle due to the photon pressure and compare it to the mean Brownian motion

0

"

velocity.

-

RS

Consider a particle which is illuminated by a polarized laser beam in the

s

z direction as shown in Figure 6.6. The incident electric field is in the x
direction. According to Mie theory,[6.5] the eleetric field intensity of the

s L

scattered light is given by

.‘.-

X AT W YT

! ;! /0 o [0
T - p (6.10)
. E Eo d
,, \
2 2 0 /12(9) L \
) )
7 where the scattering amplitudes i; and 1, are in terms of the size parameter W)
5 \
’ x(=nd/A) and the refractive index m of the particle. If I, is the incident )
o beam intensity (photons/area/time), then the force in the z direction due to #
b the momentum transfer of the scattered photon {s N
A ‘1
:: I0 h 2n n 2 2
F," 3% j do [ d6 sin 8 (l-cos 8) [11(9) sin"o + 1,(8) cos 6]
§ k 0 0 (6.11)
N ’
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where h is the Planck's constant and the ¢ dependance is illustrated in v

Figure 6.6. Since k = 2n/A, and 1i,, i, are only functions of cos 6, (see o

& E BN

Ref. [6.5]), the force due to photon pressure is ¢

o
g 10}\2 h 1 Py
F_= =n [ d(cos 8) [1,(cos B) + 1,(cos )] (1-cos8) by
z 2 A 1 2 '
(2n) -1 (:c
§ ;
b
IXZ 1 7
< = —— | d(cos 8) [1,(cos 6) + 1,(cos 8) ] (1-cosb) o
, _ 1 2
o tne -1 (6.12)
:& where 1 is now the beam intensity in W/m’. To obtain representative values of
¥
F,, the integral in Eq. (6.12) was evaluated numerically. For a 0.25 um ,
>3 particle with refractive index m = 1.5 + 0 i, which is representative of the %

polystyrene test particles, the values for F, are shown in Figure 6.7. Also
. shown are the corresponding drift velocities up, given by the Milliken A
. formula:

el
'?I ‘
Y - 0-
J-:‘ F,l1+(a+Be Cd/ZA‘rZA/d] v
= &)
up Send (6.13) y)
i '.::
,e The results show that for non—absorbing particles of 0.25um diameter, the -~
AS
Q» photon-pressure-produced drift velocity is less than the Brownian velocity for ',
* \
beam intensity up to 10*Y W/m?. Since the scattering cross section decreases
' rapidly with particle size, photon pressure would not significantly affect the SE
- Brownian motion for beam intensities of S}Ol“ W/m?. #&
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7. SUMMARY AND CONCLUSIONS

A theoretical and experimental study on the feasibility of determining
the size of submicron particles by observing their Brownian motion
characteristics has been carried out. The motion was detected by using an
interferometric system very similar in construction to a conventional laser
doppler velocimeter system. The mean excursion associated with the Brownian
motion, however, is much smaller than the fringe spacing formed by the
intersecting laser beams at the measurement volume so that it 1is not possible
to extract information from the signal using conventional laser doppler
velocimeter signal processing. Nevertheless it 18 possible to determine the
damping behavior of the particle in Brownian motion by analysing the frequency
content of the signal. This damping is characterized by a relaxation time
which is a function of the temperature of the fluid in which the particle is
immersed, the viscosity of the fluid, and the inertia of the particle. If the
fluid temperature and viscosity are known, the inertia, and thus the size of
the particle, may be determined from the relaxation time which is obtained

from the Brownian motion detector.

A theoretical analysis of the signal processing strategy was conducted
using a Monte Carlo simulation of the particle motion. In the simulation it
was possible to determine the relaxation time of the particle from the mean
value of the time between the extrema of the signal, which represented the
zeros of the Brownian velocity fluctuation. Preliminary analysis of the
design of the experiment indicated that the signal to noise of the Brownian
detection system was marginal. The performance of the system depended very

much on the actual implementation and had to be evaluated experimentally.

A proof-of-concept experiment was conducted using submicron latex spheres
of known diameters as test particles, The optics had been designed to

approximately the limit of commercially available optical components. The
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laser power, however, was not adequate to achieve the required S/N for
retrieving the statistical information on the particle Brownian motion. (The
argon ion laser, which nominally puts out 2.5 W in a single line, was found to
lose 75 percent of its power when operated with a mode selection etalon which
was necessary for the present experiment.) The recorded signal was found to
be dominated by shot noise. It was estimated that the laser power density
needed to be increased by at least a factor of 4 to achieve adequate signal to

noise ratio.

While the required laser power density may be easily obtained by using a
newer model laser, other physical processes begin to influence the Brownian
motion characteristics at high laser beam intensity. An analysis of the
effects of thermophoresis and photon pressure was carried out. The effect of
thermophoresis due to the uneven heating of the particle by the laser beam was
found to be a major limitation so that the application of the method to
particles with finite absorptivity (greater than ~10'“) may lead to
erroneous results. The effect of photon pressure was found to be significant

for beam intensity greater than 1040 W/m?.

For an experiment to demonstrate the principle, particles of low
absorptivity (such as polystyrene) may be used. Our present results suggest
that for particles in the 0.l um range there would be adequate S/N (~20) 1if

a stable single mode laser with power of 2.5 W is used.

Although the application to soot particles originally envisioned will
encounter the limitations on laser beam intensity described above (see

Subsection 6.1), other applications may exist, such as refractory oxides in

relatively clean combustion systems.
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8. ADMINISTRATIVE

8.1 Personnel

The Principal Investigators for this work through almost the entire
contract period were Dr. Alan Stanton, a Principal Research Scientist at
Aerodyne Research, Inc. and Dr. Wai Cheng, Principal Research Scientist
(part-time) at Aerodyne and Associate Professor of Mechanical Engineering,
MIT. Dr. Stanton concentrated his research efforts for this program on the
development of optical and data acquisition systems for the experimental
program, while Dr. Cheng concentrated on the measurement theory, through
development of the Monte Carlo Brownian motion simulation model. 1In addition
to his work at Aerodyne on this project, Dr. Cheng supervised the work of two
graduate students in the Department of Mechanical Engineering, MIT, Sarah
Kostic and Eugenie Hainsworth. This work was in support of the Brownian

motion simulation model, funded by a subcontract to MIT.

The laboratory implementation of this program was mostly performed by
Mr. Keith McCurdy, who joined the staff of Aerodyne in the second year as a
Research Scientist after receiving his Masters degree in Physical Chemistry

from Rice University.

In Jaruary of 1986 Dr. Stanton left Aerodvne, and his duties as Principal
Investigator were assumed by Dr. Joda Wormhoudt. Dr. Cheng continued as

Principal Investigator at MIT and supervised the final experimental work.

8.2 Interactions

Three presentations were made at AFOSR Contractors' Meetings on this work
during the first year of the contract, one during the second year, and one

during the third. These presentations were:
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First Year

A.C. Stanton and W.K. Cheng, "Techniques for Submicron Particle Sizing,”
1983 AFOSR Contractors Meeting on Air Breathing Combustion Dynamics
Research, Scottsdale, AZ, September 19-22, 1983.

W.K. Cheng and A.C. Stanton, "Single Particle Sizing by Measurement of
Brownian Motion,"” 1984 AFOSR Research Meeting on Diagnostics of Reacting
Flows, Yale University, March 21-22, 1984.

A.C. Stanton and W.K. Cheng, “"Single Particle Sizing by Measurement of
Brownian Motion,” 1984 AFOSR/ONR Contractors Meeting on Air Breathing

'\.

2 Combustion Research, Pittsurgh, PA June 10-21, 1984.

. Second Year

~0

t: W.K. Cheng, A.C. Stanton, and K. McCurdy, “"Single Particle Sizing by
Measurement of Brownian Motion,” 1985 AFOSR/ONR Contractors Meeting on

., Particle Emission Technology, Monterey, CA, April 16-18, 1985,

[ 3

- Third Year

ii W.K. Cheng, K. McCurdy, and J. Wormhoudt, "Study of Submicron Particle
Size Distributions by Laser Doppler Measurement of Brownian Motion,” 1986
AFOSR Contractors Meeting on Diagnostics of Reacting Flows, Stanford, CA,

O June 16-17, 1986.
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P 8.3 Publications and Patents

! No publications or patents resulted from the work reported.
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