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ABSTRACT

A theoretical and experimental study on the feasibility of determining

the size of a single submicron particle by observing its Brownian motion

characteristics has been carried out. The method is based on measurement of

the particle motion interferometrically using the light scattered from a pair

of intersecting laser beams. The particle is assumed to be in thermal

equilibrium with a fluid medium. Due to the viscous damping of the fluid, the

motion of the particle exhibits relaxation behavior. The relaxation time may

be obtained from the interference signal. Knowing the temperature and the

viscosity of the fluid, the mass, hence the size of the particle may be

determined from the relaxation time. Monte Carlo simulation of the Brownian

motion detector response has shown that that the relaxation time may be

obtained from the statistics of the time between extrema of the signal. A

proof-of-concept experiment was conducted using latex spheres of known sizes

as test particles. The signal to noise ratio of the experimental setup,

however, was not adequate for determining the size of the particles.
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1. INTRODUCTION

1.1 Overview

Measurement of particle size in the submicron (0.01 - 0.1 4m) range has

Z many important scientific applications. For example, in the study of soot

emission in combustors and burners, the soot formation and oxidation rates can

be inferred from the soot particle size evolution. The combustion of coal

particles and the formation of fly ash can be studied in a similar manner.

Submicron particles are also important in corrosion of boiler surfaces and

heat exchangers in electric power plants or chemical processing plants and in

erosion of turbine blades in advanced combined cycle processors. Other areas

where an understanding of the role of submicron particles is important include

the nucleation and condensation processes leading to acid rain, and soot

formation and enrichment of polycyclic aromatic hydrocarbons in internal

combustion engines. Measurement of submicron particles is basic to an

understanding of all of these processes.

In this report, we describe an attempt to develop a technique for

accurate, in-situ determination of submicron particle size distributions based

on a Laser Doppler measurement of the Brownian motion of the particles. The

objective was: to review the scientific basis of the technique, to conduct a

proof-of-concept feasibility experiment, to determine through the experiment

the practical difficulties of the technique, and to identify the solutions

needed to overcome these difficulties.

1.2 Review of Particle Sizing Techniques

In general, particle measurement in the submicron size range can be

categorized as either probe sampling techniquesll.1-1.4] or in situ optical

techniques.[I1.5-1.13] In the sampling probe approach, a vacuum system of

varying degree of complexity is used to draw the particle laden stream through

I-I

. q -.



grids or filter paper. The deposited particles are then analyzed by electron

microscopy[l.2, 1.31 or optical reflectivity and transmissivity

measurements.[1.41 The difficulty in these direct sampling methods is that

the surface deposition of the particles influence the particle size

distribution in an unknown way. The physical presence of a sampling probe may

also interfere with the phenomena under study. This interference is

especially severe when high spatial resolution is required.

In situ optical techniques have an advantage over probe sampling because

the flow is not disturbed. Optical techniques may be classified as a single
particle counting or a volume averaged measurement. In single particle

counting, the measurement system examines only one particle at a time and

records the particle size. The particle size distribution is obtained by

tabulating the sizes of many particles. In the volume averaged method, the

measured signals are a convolution of the optical properties of the individual

particles and the particle distribution. Therefore, various assumptions have

j to be made to obtain the size distribution from the measured signals.

The most well developed optical techniques are based on an analysis of

the amplitude of the scattered light from the particles. Measurements with

various optical configurations have been reported.[1.5-1.13] For example,

3 measurements and analyses were performed with multicolor systems, with light

of various polarizations, and on the angular distribution of the scattered

light. The interpretation of these measurements is usually based on Mie

' theory.[1.14, 1.15] A comprehensive review of these measurements is given in

Ref. [1.161.

The major disadvantage of the light scattering technique is that the

scattered amplitude is sensitive to the optical properties of the particles,

which are in general not well known. In general, researchers have interpreted

the experimental results based on Mie theory and a refractive index for the

NI,

particles which is based on bulk measurements. If.4, 1.171 The validity of

using the refractive index of the bulk material is open to question.

1-2 .
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Therefore, there is a need to develop an optical particle size measurement

scheme which is independent of the optical properties of the particle.

For completeness, we mention other miscellaneous optical sizing schemes.

These schemes include the opto-acoustic cell[l.18, 1.19] which is a volume

.averaged measurement and is dependent on the particle light absorption

properties, and the holographic technique,[1.20] which is difficult to apply

to particles of size smaller than the wavelength of the illumination.

In this report, we have studied submicron particle sizing in a gas stream

by measuring the Doppler shift of the scattered light from the particles in

Brownian motion. Since the scheme is a frequency measurement, the result

should be independent of the optical properties of the particle. The measured

signal is a function of the gas viscosity, which depends on the temperature

that can be readily determined independently, and the particle mass, which can

be related to the particle size.

This concept of particle size determination is not new.[l.21-1.24]

Nevertheless, previous measurements based on this concept have all been

interpreted in terms of spectral broadening of the scattered radiation due to

the Brownian motion of a large number of particles. Therefore, these

measurements were volume averaged. Our approach, however, is to operate in a

single particle counting mode in which the individual particle size is

inferred from the Brownian motion of a single particle.

1.3 Organization of the Report

The remaining chapters of this report are organized as follows. In

Chapter 2, the basic physics of Brownian motion is reviewed. In particular,

we have highlighted the statistical nature of the motion, which precludes

the measurement of particle velocities by the traditional laser Doppler

technique. In Chapter 3, a method for interpreting the information

*: contained in the Doppler signal of the scattered light and a demonstration of

the concept in a Monte Carlo computer simulation of the signal are

1-3

-w -#4* '- .- ., . ' ~***~~ ~..*. . V



11 discussed. The theoretical basis for the method is described in Chapter 4.

In Chapter 5, the signal to noise required for adequate signal detection is

estimated and the experimental set up for the proof-of-concept demonstration

is described. The analysis of the signal obtained in this experiment is then

presented. It was concluded that the signal is dominated by shot noise and

the Brownian motion information cannot be recovered from the signal. In

*Chapter 6, we examine some of the physical limitations on the improvement of

•* S/N by increasing the beam intensity. The summary and conclusions of this

project are presented in Chapter 7.
.[
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A

2. BASIC PHYSICS OF BROWNIAN MOTION

In this chapter, the basic physics of Brownian motion is described. The

nature of the motion is such that within the time that the particle traverses

a fringe pair in a laser Doppler velocimeter system, its velocity may have

changed drastically. Therefore such a system does not yield meaningful

velocity measurements. The proper interpretation of the information contained

in the Doppler signal will be discussed in Chapter 3.

2.1 The Nature of Brownian Motion

When a small particle is immersed in a fluid medium, it exhibits an

irregular motion as a result of the bombardment of the fluid molecules. It

should be noted that the momentum transfer to the particle in each collision

is extremely small, but the collision frequency is extremely high

(_101 4/s). The motion of the particle is the aggregate effect of a large

number of collisions.

A schematic representation of the time dependent motion of a 0.1 4m

particle is shown in Figure 2.1 in order to indicate the time scales

characteristic of the motion. In this figure, random changes in particle

velocity, of order 10
-b m*s- , occur in characteristic times of 10 14 seconds

due to collisions with gas molecules. This time scale is much faster than

can be resolved by practical instruments. Therefore, only an aggregate

velocity is observable. This aggregate velocity obeys a Maxwellian velocity

distribution. The characteristic time for the Maxwellian distribution to
develop is the "relaxation time" trela x (= 10

- 7 s in Figure 2.1), which is a

function of particle size and fluid properties. Clearly if one wants to

obtain any information on the Brownian motion of an individual particle, one

must sample the time history of particle motion in an interval short compared

%FF
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tcolIIs Ion 10-14 S

trelu~x -o- 8 S
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TIME

Figure 2.1. Time Dependent Motion of a 0.1 I.m Diameter Particle in Air
at 300 K and Atmospheric Pressure.
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to the relaxation time, or the effects will be averaged out. Conversely, one

cannot monitor the instantaneous Brownian velocity of the particle, because

electronics and signal-to-noise limitations constrain realizable sampling

intervals to be much longer than the I0-14 s characteristic collision time.

The measurement strategy, then, is to sample with an interval on the order of

10-8 s, which is fast compared to the relaxation time. The type of signal

measured with this kind of time resolution will be a superposition of many

random events, but the time dependence of this signal should exhibit

statistical properties representative of the Brownian motion of a particle of

a particular size.

The statistical analysis of the Brownian motion of a particle in thermal

equilibrium with a fluid medium is described by the Langevin equation:[2.11

- du
- u + A~t) (2.1)

dt

where u is the velocity and 0 is the damping coefficient. The random

excitation A(t) has the property that the solution of Eq. (1), which is

u - ut ft e A(Q) d (2.2)

has the Maxwellian velocity distribution in the limit of large t. The time

scale for approaching this limit is

- /(2.3)relax

In continuum flow (Xmfp << d), for a spherical particle of diameter d and

mass m, is given by

= 3nL d/m , (2.4)
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Uwhere 4 is the viscosity of the fluid medium. For the free flow limit

(Xmfp >> d), the value of P is given by the Epstein formula,

2 -CMPair 1 + -81 (2.5)

where c is the mean thermal speed of the fluid molecules and a is the

accommodation coefficient. A value of a - 0.5 was used in the simulation to

be described in Chapter 3. Values for the relaxation time are shown in

Figure 2.2.

As an example, we consider a particle of 0.2 4m diameter with a specific

gravity of 2. For air at 300 K and at 1 atmosphere pressure, the relaxation

time is trelax ' 150 ns. To obtain information about the velocity

distribution, the sampling time should be less than Trelax" A sampling

time At of the order of 10 ns was used in the simulation to be described in

Chapter 3. Furthermore, a time between samples of 10 as was assumed.

The time scale for the fluctuating excitation A(t) is of the order of the

collision time -c between the fluid molecules and the particle, which is

~10 - 14s. During each collision, the particle changes its velocity by

/8____ (2.6)
m

where m is the mass of a fluid molecule. The value for 6V is -10- m.s- .

Since the sampling time At is large compared to the collision time Tc,

the velocity sampled is the average over At of the time dependent velocity

given by Eq. (2.2). The requirement that the velocity distribution has the

asymptotic limit of a Maxwellian distribution requires the sampled velocity

yn at nt to have a probability distribution of,[2.1]
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__ -2At 2P~• " w3/2 ep -m I w I _Ie
2nkT (1-e 2kT (l-e - 2 t At)

(2.7)

Therefore, if n (Unvn,wn), and if the Doppler system is sensitive

to the velocity component w, the probability distribution function for wn is

1/2 _11 (wn -- w ne-t)
P(w ; Lt ) - /exp n n-i

"e' 2nkT (I-e -2 At) 2kT (-e - 2 mt

(2.8)

2.2 Measurement of Brownian Motion With a LDV System

Consider a cross-beam laser Doppler velocimeter system, operating in

fringe mode,1 2.2] set up to measure the velocity of a particle in Brownian

motion. For a perfect detection system as a whole, the transfer function is

shown in Figure 2.3. The transfer function is the relationship between the

input quantity of interest, the position of the particle in Brownian motion,

and the output signal, which is the beat amplitude of the two fringe forming

laser beams as seen by a square-law detector.

ik •r ik2 r
signal <IRe(El + E2e )I> (2.9)

-I + cos (Lker)

In the normal LDV application, the particle traverses the illuminated volume

with a constant velocity (from A to B in Figure 2.3). If u is the velocity

component in the direction of k-k

Ak.T = ut, (2.10)
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S the signal will be modulated fully (A'B') as

signal ~1 + cos (Akut) (2-11)

gand the velocity may be obtained from the period T of the modulation,

u - 2n/Ak T (2.12)

Note that implicit in this velocity measurement is a length scale (Ak) -' so

that a time measurement (T) can yield a velocity.

In the detection of Brownian motion, however, u is a statistical quantity

which changes rapidly in time. In particular, the particle may change

velocity appreciably (or may even reverse its direction) before it traverses a

"fringe" of the transfer function. On the average, the "excursion" of the

particle is

<z> /(kT/m) (2.13)ras ~ relax

The values of <z>rm/k are shown in Figure 2.4. The average excursion is

smaller than the fringe spacing 2n/Ak, therefore the signal is no longer fully

modulated and (Ak)-l ceases to be a relevant length scale. Because of the

nonlinear nature of the transfer function, the amplitude of the signal will

not carry meaningful information. For example, when the particle oscillates

Pabout CD in Figure 2.3, the signal response C'D' is quite different from that

(E'F') of a similar oscillation EF.

"'a The only meaningful information contained in the signal is the time

between the extrema of the signal modulation. Each extremum of the signal

represents a reversal in direction of the particle, and therefore, a zero of

the Brownian velocity u. In order to interpret the signal, it is necessary to

examine the statistical distribution of the zeros of u. This procedure will

2-8
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be described in Chapter 3. From the statistics, the relaxation time of the

particle may be determined, and then the size information may be determined

from Eq. (2.4) or (2.5).

2.3 References for Chapter 2

2.1 S. Chadrasekhar, "Stochastic Problems in Physics and Astronomy," in

Review of Modern Physics, Vol. 15, 1943, pp. 1-89.

2.2 F. Durst, A. Melling, J.H. Whitelaw, Principles and Practice of

Laser-Doppler-Anemometry, London, Academic Press, 1976.
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V.

S

3. SIMULATION OF THE BROWNIAN MOTION DOPPLER SIGNAL AND SIGNAL

PROCESSING STRATEGY

In this chapter, a numerical simulation of the Doppler velocimeter signal
from a particle in Brownian motion is reported. The simulation was based on

a Monte Carlo technique for calculating the motion of the particle from the

. stochastic solution of the Langevin equation [Eq. (2-8)j. This motion was

then coupled into the response of a laser Doppler velocimeter system operating

in fringe mode to produce the Doppler signal. Then the results from using
Pdifferent methods for processing the signal were compared to formulate a

signal processing strategy for the determination of the particle relaxation

- time.

3.1 Simulation of the Brownian Velocity

The measurement approach utilizes a laser interferometric system for

*. measurement of an interference signal which is sensitive to the particle

displacement. Such a system is shown schematically in Figure 3.1. This

approach, in simple terms, is to measure the time-dependent interference

signal arising from a single submicron particle (< 0.1 4m diameter) passing

.. through the measurement volume formed by the intersection of the laser beams

in Figure 3.1 and to determine the particle size by statistical analysis of

the signal. Although the system shown is physically similar to the familiar

laser Doppler velocimeter, important differences in its implementation form

the basis of the present approach. As explained in Chapter 2, the Doppler

signal obtained from the scattered light only contains time (but not velocity)

information which must be analyzed in a statistical sense. This concept is

that the mean excursion distance for the particles in Brownian motion is much

smaller than the wavelength of visible light, as shown in Figure 2.4. As

3-1
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0 discussed in greater detail in Chapter 2, the consequence of this

characteristic of the measurement is that the magnitude of signal variations

is not meaningful (because the motion may be occurring in different regions of

the LDV fringe pattern). The frequency characteristics of the signal are

significant, however, in that they can be related to the statistics of

particle motion. The identification of such relationships is the motivation

for the computer simulation of the signal.

The basis of the computer simulation is the probabilistic solution (Eq.

2.8) of the Langevin equation. Using the probability distribution of Eq.

(2.8), we may generate, using a pseudo-random number generator, the velocity

history of w with the correct statistical properties. In general, if R is a

random number with uniform distribution in the interval [0,11, and p(x) is the

probability distribution of a variable x, R may be mapped into x by equating

the probability of finding x in 1x1 , x2 ],

x2  R2

f p(x) dx -f 1 dR- R2-R 1  (3.1)
xl R

In particular let x, = - and R, - 0; then

x R
f p(x) dx- f I dR R . (3.2)

"= 0

For the distribution of Eq. (2.8), it is convenient to rewrite the expression

as

Ap(wAt;w 7)- exp A2(n (3.3)
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I where

' 2 = Is

A 2  2 (3.4)2kt( 1-h )

h - e- SA t (3.5)

Then Eq. (10) becomes

w
A (Wn.nl h2
f f exp [-A 2  w n-n h) dw R (3.6)

°m--

from which w. may be solved from the random number R. The solution of

Eq. (3.6) is

wn -- +w h , (3.7)

pwhere

n = erf-1 (2Rn-1) " (3.8)

To summarize, the algorithm for generating the Brownian velocity history

works as follows. The initial velocity w1 is obtained randomly from the

Maxwellian distribution

1/2 2
! m -mw (3p(w I ) - (. -') exP(2'-) , .9)
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or

(2lrkt)1/2 erf- (2R -1) (3.10)

The subsequent velocities wn, with sampling time At, are then given by

Eqs. (3.7) and (3.8).

3.2 The Doppler Signal

Consider a crossed laser beam system with beam waist ro as shown in

Figure 3.1. The intensities of the two beams scattered by the particle at x -

(x,yz) (in a coordinate system centered on the probe volume) are

"xp[ - I-- (x. (311)]

1(3.11)Ir 0

-x[ Ix ( - 2* 212

1 2 2 (3.12)

I 2~ r2

0

Here the unit propagation vectors are

0 d 0d

k - (x coo - , O, -z sin -)

(3.13)

:.-2 (x coo , o, z sin )
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Therefore the expressions for I, and 12 become

_ 2 2
2 d 0 d d2 2 d 0 d e 2

exp[-(x sin -+ z sin cos ) +y + (z cos x cos in
I- 2 22

0
(3.14, 3.15)

The mean particle trajectory is

where xo is the reference point and v is the mean velocity. Substitution of

x(t) - (x(t), y(t), z(t)) from Eq. (3.16) into Eqs. (3.11) and (3.12) would

give the scattered intensity profile as the particle traverses the beam

volume.

3 At the detector, because of the interference between the two beams, the

light collected is a modulated Doppler signal. The signal may be written as

t
S - 11 + 12 + 2 /Il 12 cos (Akz  f v dt + ,) (3.17)

where

Akz - (2 sin-) , (3.18)2r X 2

and the z velocity component contains both a mean and random velocity,

v lV + w(t) (3.19)

The phase shift 0 is a constant depending on the reference point definition.
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a
S The power received-at the detector may therefore be written as

I dP, (2 H f ' dr)

e d  t

if +
2 

+ 2/ coo - 2 sin t + f w(t)dt])}

(3.20)

The first term represents the absolute intensity function which is

proportional to the beam intensity Io, the aperture and transmissivity

function H of the receiving optics, and the scattering cross-section

integrated over the appropriate field of view. The functions f, and f 2 are

defined by the right hand sides of Eqs. (3.11) and (3.12). The cosine term

represents the heterodyned Doppler signal.

3.3 Simulation Results and Discussion

The Brownian velocity of a 0.1 ujm diameter spherical particle with a

specific gravity of 2 In 300 K air at atmospheric pressure has been simulated

using the Monte-Carlo calculation described above. The velocity history is

shown in Figure 3.2 for 500 velocity samples with a sampling time of 10 ns

each. The velocity statistics are shown in the histogram in Figure 3.3. The

result agrees with the axwellian distribution which is also plotted in the

figure.

Calculations were then carried out to examine the behavior of the Doppler

signal, which is described by Eq. (3.20). The term of interest is

2{f1 + f2 + 21f/f7 cos (L 2 sin--[v t + w(t)dt] + ) (3.21)
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with f, and f2 defined by the right hand sides of Eqs. (3.11) and (3.12). To

obtain the most favorable signal, the particle is assumed to have mean

velocity in the y direction only, and is traversing the center of the sample

volume along the y axis. The reference phase value is set arbitrarily to

(-0.5w) which corresponds to aligning the y axis along the "boundary" of the

bright and dark fringes in the beam sample volume. The laser beam waist ro

is 50 us and the beam crossing angle is set at ed - 100. These values are

typical of a practical system.

Under the above conditions, the simulated Doppler signal for a 0.1 I

particle with Vy 1 m-s- 1 traversing the center part of the beam volume,

starting from x - (0., -10 us, 0.), is shown in Figure 3.4(a). The horizontal

axis is the number of time steps, with each time step equal to 10 as. The

4 signal fluctuation due to the Brownian motion is clearly detectable.

The simulation is repeated, under the same conditions, with a 0.01 um

diameter particle. The simulated signal for the smaller particle is shown in

Figure 3.4(b). The fluctuation is of a much higher level than those

exhibited by the larger diameter particle. Furthermore, because of the

behavior of the cosine function, the modulation is reduced when the argument

of the cosine is close to t nw, n - 0,1,2,.... For the signal in Figure

3.4(b), the particle is very close to the center of the beam volume as the

absolute intensity is approximately constant. Therefore, the signal has a

magnitude of

.S d 1+co IL 2 sin![ - f w(t)dt] + . (3.22)

Thus, at regions where S -1 or 2, the magnitude of the modulation is

reduced. This effect is evident in Figure 3.4(b).

p.3"1

4..



1.35

t.30

L.25. 1.29l

u1.15

1.0

0.95 PARTICLE DINMI'R- O.1 Am

0 500 100 L50 a0

TII STEP

(10 ns/steo)
(0)

2.0

1.8

'm 0.9
1.21

02 
PARTICLE

00 DIAMETER 0 .01Lm~~0.0

0 500 L0 L500 2M

TIME STEP
(10 ns/step) %

Figure 3.4. Simulated Time Dependent Interference Signals:
(a) 0.1 um Diameter Particle
(b) 0.01 m Diameter Particle Zr

i.i
3-11',

%6



The signal modulation in Eq. (3.21) is a result of the cosine term, which

is rewritten here as

modulation - cos(k'z + *) (3.23)

where

k - 2 sin 'd (3.24)

and

z - v t+ z (3.25)

t
z - f w(t)dt . (3.26)

The root-mean-square value <Z>rms of the Brownian displacement is shown inFigure 3.5. For particles of 100 to 1000 A diameter, <zm>/X - 0.1.

Therefore the rms displacement is much less than the fringe spacing k'-1 . As

a result, the length scale X does not play any role in the determination of

the Brownian velocity w. The signal, therefore, only contains information

about the time scale and not any length scale, and the determination of a

meaningful velocity is, in principle, not possible.

The essence of the above discussion is illustrated in Figure 3.6, which

exhibits the transfer function of the detection system [the right hand size of

Eq. (3.31)]. For typical Brownian motion modulation (AB), the signal

modulation is (A'B'). The signal modulation is drastically reduced where the
. .i slope of the transfer function vanishes (CD). The amplitude of the modulation

is a function of the position of the particle relative to the fringe pattern.

Since this is not known a priori, the amplitude modulation, therefore, does

not provide useful information on the nature of the Brownian motion.

3-12
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Whte:n there is a fluid velocity component vz perpendicular to the fringe

pattrntheparticle position will be represented by the trajectory (EF),

withtheBrownian modulation such as (AB) superimposed on top. The signal

willexhbitfull modulation (E'F') (regular Doppler signal) with the Brownian

motion modulation (A'B') superimposed on top. When -v is large compared to

the Brownian velocity w, it may be difficult to recover the Brownian motion

modulation from the regular Doppler signal. This effect is illustrated in

Figures 3.7(a) and 3.7(b) in which velocity v~ of 0.1 and 0.3 m-s-1

respectively are superimposed onto the Brownian velocity. En the latter case,

the Brownian motion signal is almost completely masked and the signal

resembles the usual Doppler velocimeter signal. For small particles with a

higher Brownian velocity, good quality signal may still be obtained with a

significant v. This is illustrated in Figure 3.8 by the simulation of the

signal from a 0.01 4m particle with V.z M 0.3 m-s 1 . The mean Brownian

velocity w, where

w = 8T(3.27)

is approximately 0.1 m-s- for a 0.1 4im diameter particle at a gas temperature

of 300 K. Thus one expects that for particles in the 0.01 to 0.1 '±m diameter

*range, reasonable signal quality may be obtained if V. is less than%

0.1 ms 1

The above discussion indicates that the strategy for analyzing

characteristics of the Brownian motion lies in analysis of the time

information. The fundamental time scale of the fluctuation is the relaxation

time I/p3. The information on the particle size ziay be calculated from 8 using

* Eqs. (2.4) and (2.5). Furthermore, the signal rmust be filtered to remove the

regular Doppler component (Vz) for proper interpretation.

p31
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3.4 Processing of the Brownian Motion Sensor Signal

As discussed above, only time information may be obtained from the

Brownian motion sensor. Since the time scale relevant to the Brownian motion

is much faster than any other time scales (e.g., the transit time of the

particle due to its mean velocity), the latter may be filtered out easily. In

the following discussion we shall assume that the signal has already been

filtered to contain the Brownian information only. The appropriate statistics

of the temporal information signal are discussed.

As depicted in Figure 3.6, the signal amplitude is a function of the

absolute position of the particle within the probe beam volume. Therefore,

the relevant information is contained in the time between the extrema of the

signal. At an extremum, there is a change of direction of the particle, and,

therefore, the extremum represents a zero crossing of the particle velocity.

Thus, the Brownian motion may be analyzed in terms of the time between extrema

of the signal (zero crossing of the first derivative). The particular method

of implementation depends on the hardware configuration. Nevertheless the

principle remains the same. Also, the analysis considers only the mean time

between extrema, and does not to attempt analyze the full spectral content of

the signal, so that possible aliasing is not an issue. (The method amounts to

doing statistical sampling rather than fixed interval sampling, so on the

average, the higher frequency content is "represented.")

The signal processing is simulated on the computer using -he Monte Carlo

technique described previously. The Brownian motion of a particle with

specific gravity of two, embedded in room temperature air, is analyzed. The

mean time between extrema T as a function of the particle diameter d is shown

in Figure 3.9. The values of T do not seem to follow a simple linear

relationship with d, yet the only time scale involved is the relaxation time
Nrelax /. With 0 proportional to /d in the free flow regime, the

Zr relaxation time should be proportional to d. Furthermore, depending on the

sampling interval At, the mean time T is different. The relevant parameter
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should therefore clearly involve At. This issue is resolved when the data are

replotted against /A-7 (with the dimension of time) (Figure 3.10). The

simulation points collapse on to a single straight line passing through the

origin. The relationship between sampling and adequate statistics is also

illustrated, at large values of " , a long string of data is required to

produce a good estimate of t. For small values of 47T, the sampling

interval of At - 10 ns is not adequate to resolve the Brownian motion time

scale, and as a result, t is overestimated.

IIN
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4. THEORETICAL ANALYSIS OF THE DOPPLER SIGNAL

In the last section, a Monte Carlo simulation of the signal from the

Brownian motion sensor was carried out. The result of interest, namely, the

time between zero crossings of the Brownian velocity, was found to be

dependent on the step size At of the simulation. This dependence is actually

not surprising because At represents essentially the bandwidth of the actual

signal detection system, which, being a practical device, should have a finite

bandwidth. Since the Brownian motion is a statistical process, the behavior

of any signal derived from the Brownian motion is statistical, and the

spectral properties of the signal will depend on the bandwidth of the signal

detection system. These ideas are further explored in this chapter. Also an

analytical approach is attempted in order to provide a theoretical basis for

j the signal processing method used in Chapter 3.

4.1 The Statistical Nature of the Brownian Velocity

The Brownian velocity of a particle in thermal equilibrium in a

background fluid is described by the Langevin equation (see Chapter 2). For

the observed velocity component u (in the direction of Ak), the Langevin

equation is

du + ou - f (4.1)dt

where i is a relaxation time governed by the mass m and the mobility E of

the particle in the fluid.

1: (4.2)
re lax
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A The statistical nature of u is due to the random driving force f, which is the

result of the impulse arising from each collision of the particle and a

molecule of the background fluid. Because these collisions occur randomly, f

may be considered to be a white noise function with a constant spectral

density Sf,

< f(t)f(t+T) > - S f6(t) (4.3)

The time scale associated with the fluctuation of f is of the order of

the time between the molecular collisions rcs which, for a 0.1 pm particle

in a gas medium at STP is approximately 10- 1
4 s. The time response of

practical instruments used to observe the Brownian motion velocity is usually

much slower than this collision time. The observations, are, therefore, the

result of averaging u over a response time scale At associated with the

instrument, with At > Tc" The observed value of u is then a random

variable, and, since it is the aggregate of many similar events, it has a

Gaussian distribution, by the central limit theorem. If the particle has a

velocity uo at one instant of time, the conditional probability distribution

of u at a time At later, (so that the value of u is the aggregate sum of all

the collisions in At), is given by[4.1]

pp (U,Uo;At) l- xp 22 h) /a (4.4)
0 It0 J

0 M (4.5)
2kT(-h )

Note that the distribution is parameterized by the "memory" factor h

h e - e A  (4.6)

%q
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and the width a. The observed velocity u(t) may be viewed as observations at

discrete points in time, tn - nAt. When the time step At is large compared

to the relaxation time (OAt > 1), the velocities ui are independent of each

other, and each obeys a Maxwellian distribution at temperature T. In the

Brownian motion sensor described here, since the velocity amplitude is not

measured, all the information is contained in the measurement of the value of

p. Therefore, the instrument response time At should be such that PAt < 1.

After p is determined, the particle physical properties (e,m) may be

V. determined from Eq. (4.2).

4.2 The Distribution of the Zeros of the Velocity

The Brownian motion sensor measures the time between successive zeros of

* the Brownian velocity u (in the direction of Ak). The time history of the

N. velocity values, u(t), as observed by an instrument with an integration time

At, may be thought of as a time series un at time nAt. From Eq. (4.4) the

values of each un are governed by the probability distribution

" 1 Un i 2

p (U, Uni ) - exp - (un- - ] h 1 (4.7)

where the Un. l appears as a parameter. We want to determine the probability

P(N) of obtaining a time between two successive zeros of NAt.

The problem of determining the distribution of zeros of a random variable

has been studied extensively in the context of shot noise in electronic

Vdevices, and in queueing theory. The classic review of the subject is given

in Reference 4.2. We shall derive the expression for P(N) independently

here. To connect our result to that in the literature of noise current, the

random driving force f in Eq. (5) may be considered as the randomly arriving

electron, and the observed "current" u is the result of two transfer functions

(or filters) in series. The first transfer function is that associated with

the Langevin equation. Formally
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u(t) - f fe __ (4.8)-f (P+iw) 2n

where f is the Fourier Transform of f. Physically, this transfer function is

due to the averaging of the effect of f by the damping of the particle in the

fluid. The second transfer function is due to the averaging by the

instrument. Therefore the overall transfer function is

u(t) f dt' eif e dw (4.9)
A t f (O+iw) 2n

It should be noted that no closed form solutions for P(N) have been worked

out, except for rather trivial cases. The difficulty is attributed [4.2] to

the lack of an analytical solution to the N dimensional integral involved (see

Eq. (4.10).

We shall derive the expression for P(N) here. The process of obtaining a

successive zero in N steps may be described as the following. At time zero

(n - 0), the particle has a very small velocity 6u, which, within the

amplitude resolution of the instrument, may be considered as zero. In the

following argument, 6u is taken as positive. The argument will be exactly the

same if 6u is negative. We shall define a zero-crossing event at t - NAt,

(n - N), as an event with velocity greater than zero at t - (N - 1) At,

(n - N - 1), and velocity less than or equal to zero at t - NAt. The time

resolution of this definition of zero-crossing is At, and so the meaning of

such an event for N - I is not precise. Then, the condition for occurrence of

a successive zero in N time steps is to have the velocities be positive for
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n - 1, .i., N-I; and the velocity be negative or equal to zero for n-N.

Therefore

P(N) - f du1 p uI, 0; At) f du2 p (u2, u1 ; At) ... (4.10)

0 0
M 0

f du n - I p ( u n - l ' Un-2 ; At) f dun p (Un, Un-1; At)

0

Using the formula for p in Eq. (4.7), and changing the variable from u to

- u/a, the above probability becomes

2 2
1i 2

P(N) ~ f d&1  f d~ 20 d 1  e 0 d&2  e
p. 0 0 (4.11)

; q (n-I - En- 2 h) 2 0 -(&n - &n-ih)2
n- °.dnle d& dne

0

Note that a does not appear in this expression. This is because the

zero-crossing time pertains to the zeros of the velocity, and is therefore

independent of the velocity scale. (The value a is a velocity scale measuring

the width of the velocity distribution).

If the integration time At is large (OAt >> 1), h will approach zero and

Eq. (4.11) reduces to a binomial process

P(N) = N(4.12)
2)

The average value of N is

r

Nd -2 (4.13)
N-I N-i 2 I x-l N-I
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In this case, the data values corresponding to the successive zeros of the

velocity become a completely random sequence, and do not contain information

about h.

For small values of h, the multiple integral may be worked out as

follows: An operator In is defined as

I (f(1 n n-I h )  f(F n) (4.14)• n  f ( n ) = n, f d & n  e

0r

The quantity Fn-I enters as a parameter in the above definition. Then

1 (1) 0 + h ) + 0(h ) (4.15)

In (nh) , + O(h 2 ) (4.16)

The expression for P(N), Eq. (4.11), after evaluating the last integral on the

right hand side, becomes

PN 12 IN_ (1 + 22'.
P (N ) - I 1  ... i (1 -"2-& h ) +  0 (h 2 ) (4 .1 7 )

The expression (4.15) and (4.16) may be used repeatedly in (4.17). The first

few expressions are:

" 1 2 2h+ 2~
P(N) - 2 - I I .. If(I - -')+ N2h + 0(h 2 )

1 2 2-(2) I 1 ... IN3 [i + N 3 h] + 0(h)
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1 4 I  2h. IN_ 2( h

T (1  'N-4 ( Th7) N-4 h1 + 0(h 2 )

N 2
P() N  2h ] + 0(h 2); N > 2 (4.18)

The above expression is valid for N > 2. For N = 1, since the velocity at

n = 0 is preconditioned to be - 0,

0() e . 0 )2  !

()e 1 d~l 2 (4.19)
1

Compared to the binomial distribution (P(N) - 2-N), which is the limit

for h - 0, P(N) decreases with h for N < 3 and increases with h for N > 3.

This result is illustrated in Figure 4.1. Since the velocity at n - 0 is

zero, the velocity uI at n - I is sampled from a Gaussian centered at zero.

p The value of P(N - 1) is the probability that this velocity is negative, and

P(1) is therefore 1/2. Say the velocity at n - I is ul(> 0), then the

velocity u2 at n - 2 is sampled from a Gaussian centered at ulh. The

probability of u2 being negative is the shaded area in Figure 4.1 under the

Gaussian at n - 2, and this value is < 1/2 for h > 0. Therefore P(2)

< (1/2)2• For N - 3, the probability of obtaining a consecutive .ero here is

represented by the shaded area under the Gaussian centered at u2h at n - 3

(Figure 4.1). This area has to be summed over all the realizations of the

possible values of positive u2 , which is sampled from the Gaussian centered at

uh, which again has to be summed over all the realizations of ul. Although

I :. the shaded area at n - 3 is less than 1/2, there are "more" realizations than

I
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the h = 0 case because u2 is sampled from the shifted Gaussian. These two

effects balance each other to 0(h 2 ), and P(3) is equal to (1/2) 3 + 0(h 2 ).

For N > 3, P(N) is given by Eq. (22), and is greater than ( 1 / 2 )N . The 5

values of P(N) are plotted versus N in Figures 4.2 and 4.3.

It is not possible to obtain a closed form solution of P(N) for arbitrary

h (h < 0 < 1 corresponding to 0 < BAt < -) because of the difficulty in
evaluating the multiple integral in Eq. (4.7). Direct numerical calculation

the integral is not feasible for any large N, say N > 5. Monte Carlo

evaluation of the integral would be equivalent to our earlier simulation of

the Brownian motion in Chapter 3. The results of Chapter 3 will be reexamined

in this context here.

The general behavior of the mean number of steps N between consecutive

V1 zero-crossings of the Brownian velocity is shown in Figure 4.4. For h - 0,

is 2 (from Eq. (4.13)). For small h,

N ~ 2h2

N (1) (1 . (N-3) + O(h2

N=1

6h)(+ 2(1+6h 2 2

N-1 2 N T N-i 2N

N 0(h 2 ) (4.20)

In the last expression, we made use of J(N/2N) - 2 and J(N2/2N) - 6.

. Therefore N - 0(h 2 ) for small h. For large relaxation time (S 0, 6At + 0,

and h + 1), the particle, once it acquires a positive (or negative) velocity,

will retain that velocity for a large time. Consequently N + .

The results of the Monte Carlo simulation in Chapter 3 have been

replotted in the context of the present analysis in Figure 4.5, and confirm

the theory. The results in Figures 4.4 and 4.5 show that to obtain h, (and

S4-9
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Figure 4.2 Probability of Obtaining a Consecutive Zero of the
Brownian Velocity in N Step. (Linear Scale). P
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Figre .4 General Behavior of the EpcainValue of the Number
of Time Steps Between Consecutive Zero-Crossings of the

Brownian Velocity, as a Function of the Memory Parameter
h - exp (-BAt).
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Figure 4.5. Monte Carlo Simulation Result of the Mean Time Step (N)

Between Zero-Crossings of the Velocity, (a) as a Function
of Bt; (b) as a Function of h = e - At.
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0therefore the values of a, which would lead to the values for 9/m), it is

necessary to have a time resolution of At such that aAt ( 1 (or h - e-aAt

close-to 1).

4.3 Summary

A theoretical analysis of the probability of obtaining a time T between

consecutive zero-crossings of the Brownian velocity u has been presented.

Since u is a random variable, the probability P(T) is necessarily a function

Xof the integration time At of the instrument used to observe u. The analysis

has been carried out in terms of discretizing the time in steps of At,

tn - nAt, and the resulting probability P(N), (N - T/At), has been

derived. The values of P(N) are found to be dependent on the "memory" h (h

exp (-8At)) of the Brownian velocity, where a-1 is the relaxation time. For

very short memory (h < 1), the probability P(N) tends to the binomial limit

P(N) - 1 / 2 N. The expectation value N (- NP(N) assumes the value of 2 in

the binomial limit and 2 + 0(h 2 ) for small h. For large relaxation time (8 +

0), N + -. To obtain accurate information from the measurement of N about h,

and therefore, the value of 8 which is related to the physical properties of

the particle suspended i& the fluid, it is necessary to have $At < 1. Since

the result is a function of the integration time At, which is not a precisely

defined quantity for the measuring instrument, the Brownian motion sensor must

be a calibrated instrument.

4.4 References for Chapter 4

1. Chandrascklar, S., "Stochastic Problems in Physics and Astronomy,"
Reviews of Modern Physics, Vol. 15, 1, 1943.

2. Rice, S.O., "Mathematical Analysis of Random Noise," Bell System
Technical Journal, Vol. 23 and 24.
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5. LABORATORY EXPERIMENT FOR BROWNIAN MOTION DETECTION

In this chapter, the signal to noise requirement for detecting the

Brownian motion of a small particle using an interferometric system is first

estimated. Then the experimental set up and the data acquisition systems are

described. Finally, the signal sampled from the detection system is

presented.

5.1 Signal to Noise Requirement of Brownian Motion Detection

The signal from the photomultiplier has a noise component due to the

random arrival of the photo-electrons (shot noise), a deterministic frequency

component due to the convection of the particle through the fringed volume

formed by the intersecting laser beams (regular Doppler signal), and a

statistical component due to the Brownian motion of the particle. Since the

displacement of the particle due to Brownian motion is small compared to the

Iii fringe spacing (see Chapter 2), all the information that can be obtained from

the signal on the Brownian motion characteristics is contained in the small

fluctuation which is superimposed on top of the regular Doppler signal. To be

able to detect this information, the signal fluctuation due to Brownian motion

must be much larger than that due to shot noise within the bandwidth of the

detector.

The bandwidth Af of the detector should be able to resolve the relaxation

time trelax of the particle. For particles 0.02 to 0.2 ,m in diameter,

urelax -3 x 10- 8 to 3 x 10- 7 s. Therefore Af is > 3 x 107 Hz. The shot

noise current is

i n /(2ei~f) (5.1). isn
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For a heterodyne system, the statistics limited signal to noise ratio is

SIN " / sin (2itx /X f)/Af (5.2)

where n is the number of photo-electrons collected per unit time and Af is the

bandwidth. The sine factor is due to the fact that the excursion of the
particle due to Brownian motion is small compared to the fringe spacing Xf,

hence the modulation of the heterodyned signal is not complete, and the

modulation depth is proportional to the maximum excursion distance Xm

occurring during trelax" Furthermore, the bandwidth should be fast enough

to capture Trelax for the smallest particle of interest. The relaxation

time for a 0.02 4m particle is 4 x 10- 8 s. Therefore a bandwidth of 25 MHz is

sufficient. The data acquisition system to be described has a bandwidth of 30

MHz, and this figure is used for the signal to noise calculation. (Note that

j to resolve trelax, the sampling rate should be at least twice the bandwidth

according to the Nyquist theorem. In our data acquisition system, the

sampling rate was 100 MHz).

In terms of the parameters of the optical system, the signal to noise

ratio for a collection optical system oriented at a 90* scattering angle may

be expressed as

r/ ( . T d o" s in (2l xm /X f )SIN A.L Tj --90 (5.3)

where I is the incident beam power (photon/sec), AL is beam cross section

area, T r is the collection optics efficiency, n is the quantum efficiency,

dQ is the collection solid angle, and do/dQ is the differential scattering

icross section. For Rayleigh scattering

2 2 I sin(2 x
S/N 2n) IdQ (5.4)

'X ~ n 2+21
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The d4 size dependence is due to the variation of the Rayleigh scattering

cross section (d 6).

For particles in the 0.02 to 0.2 4m range, Eq. (5.5), which is based on

Rayleigh scattering, is not strictly valid. Comparisons with the exact Mie

calculations at 0.2 Lm for a laser wavelength of 0.5 4m, however, showed that

the scattering amplitudes calculated by the Rayleigh formula are less than 30%

Noff. For an order of magnitude S/N estimate in the 0.02 to 0.2 4m range,

therefore, Eq. (5.5) is sufficient. The signal to noise ratios for systems

with laser power density of 1010 W/m2 and 109 W/m2 for each of the

intersecting beams, and with f/1.3 collecting optics, Tr - 0.3 and n - 0.2

are shown in Figure 5.1. The refractive indexes used in the calculations

were 1.5 + 0i, which corresponds to that of latex spheres, and 4.5 - 1.9 i,

which corresponds to solid carbon particles. (The latter value is used as a

simulation for the S/N in soot measurements.)

For measurements on latex particle used as a calibration procedure, the

estimated signal to noise is marginal, -1 to 10, even for particles up to

0.2 4m. The actual S/N attainable, therefore, is very much dependent on the

actual apparatus.

5.2 Apparatus Development

The observation of the Brownian motion of individual small particles

poses several experimental design challenges due to the small scattering

cross section of the submicron particles combined with the short observation

time required to resolve the Brownian motion. As a result, the experiment was

severely limited by signal to noise considerations, and much effort focused on

refining the optical system to improve the signal to noise ratio. Several

versions of the apparatus were developed in an evolutionary manner.

The optical system which had been first assembled for this study is shown

schematically in Figure 5.2. A Spectra-Physics Model 165 argon ion laser with

a nominal single-line power of approximately 2.5 W which yields a true
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Figure 5.1. Estimated Signal to Noise Ratio of Brownian Motion Detection
System. (The calculation is not valid for d_> 0.2 m because

K! the Rayleigh scattering formula was used for the scattering
cross-section.)
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Figure 5.2. Schemat~tc of Experimental Optical System for the Study of
II~ Brownian Motion of Individual Subinicron Particles.
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TEMo0 output with optimum focusing characteristics was used. To obtain a

clear fringe pattern at the measurement volume, it was necessary to insert

a Spectra-Physics Model 589 air spaced etalon into the laser cavity to

restrict laser oscillation to a single longitudinal mode. This provided the

stable mode amplitude and increased coherence length required in our optical

measurement system, but at the expense of a 75% decrease in laser power. The

vertically polarized output of the laser was expanded by 25x and collimated to

a beam size of approximately 3 cm. The beam expansion lead to tighter

focusing and a resultant higher power density at the sample volume than could

be achieved with a smaller diameter beam. An adjustable iris diaphragm was

used after the beam expander/collimator to select the beam diameter.

The expanded beam was split into two beams (bR and bT) by a 50/50

cube beamsplitter, which reflected 50% of the incident light and transmited

35%. An increasing intensity difference in two beams when focused to a point

to form interference fringes resulted in a decreasing clarity of the fringe

h pattern, which was detrimental to the signal to noise ratio in our optical

system. Therefore, three reflectors were used to decrease the intensity of

the reflected beam (- 10% light loss off of each mirror) as well as to

position this beam on a path parallel to the transmitted beam (bT). The two

beams of approximately equal intensity were then focused by a multi-element

lens with a 17.4 cm focal length to form an interference fringe pattern at the

sample volume. The sample volume was imaged through a pinhole and then

refocused onto a fast photomultiplier (Type R663) which views the light

scattered at 90% An interference filter was used before the photomultiplier

to reject light outside a 1 nm band centered at 514.5 nm.

The measurement volume is defined by the intersection of the laser beam

intensity profile and the field of view provided by the pinhole of the

receiving optics. Its geometry is depicted in Figure 5.3. The incident beams

were at a 7* angle with respect to each other and had a total power of 130

milliwatts with the iris diaphragm fully open. The fringe pattern formed from

the two beams was easily viewed by magnifying the measurement volume by a
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factor of 200 with a microscope lens and projecting it onto a screen. The

number of observed fringes is consistent with a calculated 4 4m fringe spacing

and 12 4m beam diameter (Figure 5.4).

A successful measurement requires the double coincidence that a single

particle traverse the fringe system and be detected within the field of view

of the receiving optics. Initially, the measurement volume was imaged onto a

25 Lm pinhole with a magnification of unity, but low counting rates were

observed with such a small field of view. Also, the detection of scattered
V
V. light through the small pinhole was highly susceptible to random mechanical

vibrations. A 400 [m pinhole was subsequently used and the signal

detectability was greatly increased, however, the measurement volume was too

large. Extraneous signals from the interaction of a single beam with a

particle arose because the field of view of 400 4m was not restricted to the

overlap region of the two beams. Also, the larger field of view increases the

chance of detecting multiple particle events. Finally, the sample volume was

imaged with a magnification of = 10 onto a 400 4m pinhole. This was

equivalent to a field of view of 40 4m and rendered the signal less

susceptible to vibrations. The collection optics consisted of a 60 mm

diameter 70 mm focal length plano-convex lens located -77 mm from the

measurement volume. The overall optics have a f number of -1.3.

5.3 Signal Acquisition System

The data acquisition system is shown in Figure 5.5. The signal from the

photomultiplier tube was amplified by a high speed buffer amplifier (200 MHz

bandwidth, xlO0 gain). The Brownian motion data was recorded on a Data

-, Precision Flash A/D system with high speed memory. For each event (traversal
of a particle through the probe volume), 8192 data points at 10 ns interval

were collected. The record length of 8 4s of data was large compared to the

relaxation time of the particle which is of the order of 0.1 4s; therefore

there should be enough data for statistical analysis.
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(a)

i

.

1 (b)

Figure 5.4. Magnified View of the Interference Pattern: (a) With a Narrow
Unfocussed Beam Diameter (-0.2 4m Beam Diameter); (b) With a2.2 cm Unfocused Beam Diameter. The weak interference fringes
in the background of (b) are due to scattered light from the
microscopic objective.
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Figure 5.5 Schematic of Data Acquisition System
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To verify that the Brownian motion signal was captured when the particle

was located at the "steep" part of the fringe pattern, the signal from the

buffer amplifier was fed through a low pass filter to provide the trigger

signal for the data acquisition system. The filter frequency was set at

approximately the Doppler frequency due to the convection velocity of the

particle through the measurement volume. A typical trace of the filtered

signal which was recorded by a storage oscilloscope simultaneously with the

high speed Brownian motion data is shown in Figure 5.6. Because the trigger

level was known, the portion of the signal captured by the high speed data

acquisition system may be identified on the scope trace as in Figure 5.6. If

this portion of the signal was not located at the "steep" part of the fringe

pattern (as shown), the particular data record was discarded.

The high speed data record corresponding to the event of Figure 5.6 is

shown in Figure 5.7. The top trace in Figure 5.7 is the actual signal sample

at 10 ns intervals. The bottom trace is the same signal with the points

connected by a (sin x)/x fitting. Stored data records similar to this were

used for the statistical analysis.

5.4 Results and Discussion

It was realized that in the initial setup the signal to noise ratio was

too small for detection of Brownian motion. The incident beam intensity of 65

mW focused into a 12 4m spot (intensity of 5 x 108 W/m2 ) was too low. The

system, nevertheless, was set up to verify that the data acquisition system

was operational and to assess the actual S/N ratio to determine the

improvements necessary to obtain a useful signal. The typical signal records

collected were depicted in Figures 5.6 and 5.7. These records were processed

digitally for statistical analysis.

To verify the operation, the system was used to look at small latex

spheres suspended in water. Since the viscosity of water is -3 x 10 times

that of air, the signal due to Brownian motion was negligible and the response
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Trigger line

Figure 5.6. The Filtered Signal From the PMT. The signal was used to
trigger the 100 MHz data acquisition system. The portion of
signal recorded is marked by the circle (8,192 samples at 10
no sampling intervals).

Figure 5.7. Signal Recorded by the Fast A/D System. (a) Actual Signal
Sample Points at 10 ns Sampling Intervals. (b) Sample points
connected by sin x/x fit.
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of the system was mainly due to shot noise. Therefore, the measurement

established the noise limit of the system. The signal was processed to obtain

histograms of the time between extrema of the signal as described in Chapter

3. The histograms for particles of several sizes are shown in Figure 5.8,

which shows that there was no difference in signal response for different

size particles. This is because the signal was masked by the shot noise.

(The peak at 30 ns is probably due to the 30 MHz bandwidth of the system.)

To improve the signal to noise ratio of the system, two changes were

made. The receiving optics were rearranged to a forward scattering collection

geometry, and the focusing lens for the incident beam was replaced by one with

a shorter focal length (7 cm compared to 17.4 cm). The 2 cm diameter incident

beams were focused to a -4 4m spot. The fringe spacing was 1.5 im and there

were 3 fringes in the focal volume. The change of the focusing lens improved

the signal by increasing the beam intensity and decreasing the fringe

spacing. The intensity of each beam at the measurement volume was -5 x 109

The above system was tested by injecting latex particles of 0.045, 0.087

and 0.261 tm diameters through the measurement volume. These particles were

P commercially available as concentrated aqueous suspension in small vials. The
suspension was diluted with alcohol and dispersed with an air nebulizer. The

concentration of the suspension was such that it was unlikely to have more

than one particle in each nebulized droplet. The droplets were mixed with a

stream of drying air to remove the liquid content to ensure that dry latex

particles were introduced into the measurement volume.

The signal to noise ratio was calculated from the measured photocurrent

and the known gain of the photomultiplier. For the particles used, the

photo-electron arrival rate was estimated to be n - 1010/s. The Brownian

excursion xm for these particles is approximately 1 percent of the

wavelength X. Therefore, for a 30 MHz bandwidth system, the signal to noise

ratio according to Eq. (5.2) was -5. Because the signal processing strategy
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relied on the frequency modulation (the time between extrema) to recover the

necessary information, it was especially susceptible to noise. A signal to

noise ratio of 10 is the minimum acceptable value. Therefore an increase of

S/N by at least a factor of 2, or signal level a factor of 4 is necessary.

The optical system had been designed, approximately, to the limitation of

commercially available optical components. The intensity gradient at the

focal volume had been maximized for a given laser power. The single mode,

etalon stabilized laser power, however, may be easily increased by using a

newer model laser. Alternatively, the instrument may be used to look at

particles in the > 0.2 m range (the S/N is proportional to db). At a higher

beam intensity, however, other physical processes begin to play an important

role in modifying the Brownian motion behavior. These processes and the

limitations imposed by them are discussed in the next chapter.

5-15



mb

6. DETECTION LIMIT OF BROWNIAN MOTION

The scattered light from a particle may be increased by increasing the

intensity of the probe laser beam. There is a limit, however, on the maximum

beam intensity because it will disturb the dynamics of the particle Brownian

motion. There are two effects: (a) the particle may be heated so that the

thermal environment changes, and there is a substantial thermophoretic

effect. (We are not considering the severely heated case in which the

%particle may vaporize or ignite.) (b) At high beam intensity, the photon

pressure may change the dynamics of the particle motion. The thermophoretic

effect depends on the particle absorptivity and the thermal properties of the

particle and the fluid. The photon pressure effect is present independent of

the particle absorptivity. These effects determine the limit of detection of

j the Brownian motion. In the following, the above effects will be examined.

The particles are assumed spherical and the diameters of interest are in the

range of 0.02 4m to 0.2 4m. A diameter of 0.1 4m is used as the nominal value
.%4

to estimate the effects quantitatively. The laser beam power P is assumed to

be 1W at 0.5 4m wavelength and is focused into a spot of diameter b -10 pm.

The beam intensity is -1010 W/m2 . These values would correspond to a 1 cm

diameter beam focused to a spot by a 10 cm focal length convex lens. The

thermal environment of the particle is atmospheric air at 300 K. The

particles are assumed to be convected through the probe volume at a velocity U

-10 cm/s.

Since the mean free paths A of the air molecules at atmosphere is

w-0.06 4m, particles in the range of 0.02 to 0.2 am are in the transition

flow regime (Knudsen number kn = A/d -3 to 0.3). The theory of transition

flow has not been well established. The present calculations were based on

an empirical fit to the available data.16.1,6.21
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1 6.1 Thermal Characteristics of the Particles

In the flow regime considered here, heat transfer from the submicron

particles by forced convection and natural convection are negligible due to

the extremely small Reynolds number and Grashof number. The major heat

removal mechanism is through conduction. Data on the heat transfer from a

sphere in a rarefied gas from Ref. [6.2] may be fitted as:

N U -exp( 0.215 + 0.0275 2.815 x 103  + 1.346 x 10- 4  2.295 x 106-u 2 I ep 3  4 5 0 6

uc kn k 4 k5
n n n n n (6.1)

where the Nusselt number (Nu) is evaluated at the free stream properties and

Nuc is the Nusselt number at the continuum limit (Nuc M 2). With a 0.1 im

diameter particle in atmospheric condition, Nu -0.5. Values for Nu as a

function of kn are shown in Figure (6.1).

As the particle enters the beam volume, it is heated up by the laser beam

because of the finite absorptivity. The heat up time may be estimated by

considering the thermal diffusion time through the particle as well as the

boundary layer. For an order of magnitude estimate, we used the properties of

polyethylene particles with a thermal diffusivity ap -8 x 10-8 m2 Is. The

temperature distribution inside the particle will become steady state in

t d2 /ap. For particles in the 0.02 to 0.2 4m range, tp -0.005 to

'0.5 Ls. The thermal diffusion time through the boundary layer may be obtained

from the energy balance on the particle

p* c Ia I 2 d N nd2 k(T-T )/d (6.2)
p dt 4 u

Jwhere m, Cp are the mass and specific heat of the particle, I is the laser

beam intensity, a the absorptivity of the particle, and k the thermal s

conductivity of the air. The thermal diffusion time from Eq. (6.2) is

therefore:
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from Ref. 6.2.

td 2  k (6.3)

where kp is the thermal conductivity of the particle. For polystyrene

particles, (kp/k -5.5) the thermal diffusion time, ta, through the

particle in the 0.02 to 0.2 4m size range is, therefore, -0.04 to 0.6 4s.

Since the particle residence time ts M b/u is of the order of 100 Its,
which is much longer than ta and tp, the temperature distribution both

inside and around the particle may be considered at steady state for the

following analysis.
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The steady state temperature rise is plotted against the product Ia in

Figure 6.2 for particles in the 0.02 to 0.2 im range. To avoid a substantial

perturbation of the thermal environment, la should be less than 107 W/m2 . For

the 1W beam focused to 10 m square beam spot (I ~10 1
0 W/m2 ), the particle

absorptivity should be 10- 3 or less. Thus the method cannot be used for

particles such as soot particles which have a high absorptivity.

6.2 Thermophoresis of the Particles

When a particle with non-zero absorptivity is illuminated by a laser

beam, thermophoresis occurs because a temperature gradient is set up so that

the illuminated side of the particle has a higher temperature than the shadow

side. The net result is that the particle acquires a drift velocity in the

laser beam direction. This problem may be studied in a similar manner to the

classical analysis[6.3] of thermophoresis of small particles in thermal

equilibrium with a gas in which a temperature gradient is present. In'the

j present case, however, the boundary condition on the particle surface would

have to be modified to include the heat flux due to the absorption of the

laser light, and the temperature field far from the particle would be

uniform. Such a case has not been discussed in the literature. To develop

the solution for this case would be beyond the scope of this study. We,

therefore, use a simple one dimensional energy balance estimate of the

temperature gradient across the particle, and then estimate the thermophoretic

effect using this temperature gradient and the semi-empirically based formula

suggested by Ref. [6.4].

In the one dimensional model of this "spherical" particle, the particle

is modelled as a cylinder of diameter d and length d as shown in Figure 6.3.

The side wall of the cylinder is assumed to be adiabatic. Each end of the

cylinder is fitted with a heat exchanger of area nd2/2, representing the

surface area of one half the original sphere. The heat transfer

characteristics of these heat exchangers are specified through the Nusselt

number of a sphere in a rarefied flow. The temperature profile is shown in

Figure 6.3. The power input from the laser beam is la itd2/4. In steady

state, therefore,

.6-4
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T1-T ®  2T 2 - T 22

2 k d +Na ,-- (6.4)

and

Id2  T T 2  T-4a7 Nu k (,: k T 2 (wd2) 65
- k d--- (6.5)

The average temperature Tave (T1 + T2)/2 and the temperature difference AT

T, - T2 may be calculated from Eq. (6.4) and Eq. (6.5) as

T - T = lad (6.6)ave O 4 Nu k

" Ia d ave ( .
AT = 2(kp + NU k) M 1 + k /(k Nu)J (6.7)

p p

a
The temperature difference AT is plotted in Figure 6.4. It is a significant

fraction of the average temperature rise (Tave - T.).

In the near continuum limit, the thermophoretic force F for a particle in

equilibrium with a gas in which a temperature gradient is present was

calculated by Brock[6.3]

e%

62 d C ,k/k + 2 Ct A/d
FTx 1+ 6 A/d + 2 k/k + 4C ,\/d

T0 m A p t

V where C. (- 1.17) is the thermal slip coefficient, Ct (-2.18) is the

temperature jump coefficient, and Cm (-1.14) is the momentum exchange

coefficient. Talbot[6.4] argued that this formula is a useful means of

interpolation for all values of A/d, since it reduces to within 3 of the

correct collisionless limit (for perfect accommodation) when ./d -
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Under the action of the thermophoretic force, the particle would attend a

terminal velocity in a time scale of the order of the Brownian relaxation time

(relax = Pp d2 /18 p). Using the Milliken drag formula,[6.4] the drift

velocity is

+2A -A+ cd/2Ai

2vC k/k + 2C A/d [I + !- A + B e ] 7T
UT I' p t d x(69(1 + 6 C A/d) (+2k/k +4 CA/d) x (6.9)P t 0

where

A = 1.20

B - 0.41

C = 0.88

Although the assumptions leading to Eq. (6.9) do not match the present

application, (most importantly, the temperature distribution around the

particle would be quite different), a useful estimate of the drift velocity

may be obtained by replacing the temperature gradient in Eq. (6.9) with AT/d,

with AT given by Eq. (6.7). If the temperature rise AT is not very large,

T,, may be used for To . The thermophoretic drift velocity of the particle

and the mean Brownian velocity [/(8 kr/nmp)], are plotted against the

particle size in Figure 6.5. The thermophoretic velocity uT is not very

sensitive to the particle diameter because AT is proportional to d so that

(VT)x is independent of d. At a modest absorbed power density level of 107

W/m2 , at which the temperature rise of the particle is -20 0 C according to

Figure 6.2, the drift velocity is significantly higher than the mean Brownian

velocity. Therefore thermophoretic effects could significantly alter the

statistics of the Brownian velocity.
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A 6.3 Photon Pressure

At high laser beam intensity, there is a significant pressure force on

the particle due to the momentum exchange between the photons and the

particle. Under the motion of this force, the particle will attend a terminal

velocity in a time scale of the order of the Brownian relaxation time

(Crelax ~ Pp d2 /18 .). If the laser beam is uniform and
".

uni-directional, this terminal velocity would not affect the Brownian motion

statistics. The actual beam probe volume, however, is obtained by focusing

the laser beam to a diffraction limited spot. As a result, both the intensity

and direction of the laser light is highly dependent on the position of the

particle, and the photon pressure effect is coupled into the Brownian motion.

To estimate the effect, we shall calculate the terminal velocity of the

particle due to the photon pressure and compare it to the mean Brownian motion

velocity.

Consider a particle which is illuminated by a polarized laser beam in the

z direction as shown in Figure 6.6. The incident electric field is in the x

direction. According to Mie theory,[6.51 the electric field intensity of the

scattered light is given by

IEYi i1(0) 0 Ei

E' I E 0

' where the scattering amplitudes i1 and i2 are in terms of the size parameter

x(-nd/k) and the refractive index m of the particle. If 10 is the incident

beam intensity (photons/area/time), then the force in the z direction due to

the momentum transfer of the scattered photon is

F 1 0h 2 2

o 0 1(6.11)

P
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where h is the Planck's constant and the dependance is illustrated in

Figure 6.6. Since k - 21t/k, and il, i2 are only functions of cos e, (see

Ref. [6.5]), the force due to photon pressure is

Fz (2n)2 h n d(cos 6) [il(cos 6) + i2(cos 0)] (1-cose)

2 1
-Ic J d(cos e) [il(Cos e) + i2 (cos O)J (1-cose)4nc -1 (6.12)

where I is now the beam intensity in W/m2 . To obtain representative values of

Fz, the integral in Eq. (6.12) was evaluated numerically. For a 0.25 im

particle with refractive index m - 1.5 + 0 1, which is representative of the

polystyrene test particles, the values for Fz are shown in Figure 6.7. Also

shown are the corresponding drift velocities uD, given by the Milliken

i formula:

i -Cd/2A,2/dF [ * (A + B ed 2A/d]

UD = 3d (6.13)

The results show that for non-absorbing particles of 0.25%m diameter, the

photon-pressure-produced drift velocity is less than the Brownian velocity for

2beam intensity up to I0" W/m . Since the scattering cross section decreases

rapidly with particle size, photon pressure would not significantly affect the

Brownian motion for beam intensities of <101U W/m2 .

,6.1
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7. SUMMARY AND CONCLUSIONS

A theoretical and experimental study on the feasibility of determining

the size of submicron particles by observing their Brownian motion

characteristics has been carried out. The motion was detected by using an

interferometric system very similar in construction to a conventional laser

doppler velocimeter system. The mean excursion associated with the Brownian

motion, however, is much smaller than the fringe spacing formed by the

intersecting laser beams at the measurement volume so that it is not possible

to extract information from the signal using conventional laser doppler

velocimeter signal processing. Nevertheless it is possible to determine the

damping behavior of the particle in Brownian motion by analysing the frequency

content of the signal. This damping is characterized by a relaxation time

which is a function of the temperature of the fluid in which the particle is

immersed, the viscosity of the fluid, and the inertia of the particle. If the

fluid temperature and viscosity are known, the inertia, and thus the size of

the particle, may be determined from the relaxation time which is obtained

from the Brownian motion detector.

A theoretical analysis of the signal processing strategy was conducted

using a Monte Carlo simulation of the particle motion. In the simulation it

was possible to determine the relaxation time of the particle from the mean

value of the time between the extreme of the signal, which represented the

zeros of the Brownian velocity fluctuation. Preliminary analysis of the

design of the experiment indicated that the signal to noise of the Brownian

detection system was marginal. The performance of the system depended very

much on the actual implementation and had to be evaluated experimentally.

A proof-of-concept experiment was conducted using submicron latex spheres P

of known diameters as test particles. The optics had been designed to

approximately the limit of commercially available optical components. The

'F1
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laser power, however, was not adequate to achieve the required S/N for

retrieving the statistical information on the particle Brownian motion. (The

argon ion laser, which nominally puts out 2.5 W in a single line, was found to

lose 75 percent of its power when operated with a mode selection etalon which

was necessary for the present experiment.) The recorded signal was found to

be dominated by shot noise. It was estimated that the laser power density

needed to be increased by at least a factor of 4 to achieve adequate signal to

noise ratio.

While the required laser power density may be easily obtained by using a

newer model laser, other physical processes begin to influence the Brownian

motion characteristics at high laser beam intensity. An analysis of the

effects of thermophoresis and photon pressure was carried out. The effect of

thermophoresis due to the uneven heating of the particle by the laser beam was

found to be a major limitation so that the application of the method to

particles with finite absorptivity (greater than -10- 4) may lead to

erroneous results. The effect of photon pressure was found to be significant

for beam intensity greater than 1010 W/m2 .

For an experiment to demonstrate the principle, particles of low

absorptivity (such as polystyrene) may be used. Our present results suggest

that for particles In the 0.1 4m range there would be adequate S/N (-20) if

a stable single mode laser with power of 2.5 W is used.

Although the application to soot particles originally envisioned will

encounter the limitations on laser beam intensity described above (see

Subsection 6.1), other applications may exist, such as refractory oxides in

relatively clean combustion systems.

'N.
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8. ADMINISTRATIVE

8.1 Personnel

The Principal Investigators for this work through almost the entire

contract period were Dr. Alan Stanton, a Principal Research Scientist at

Aerodyne Research, Inc. and Dr. Wai Cheng, Principal Research Scientist

(part-time) at Aerodyne and Associate Professor of Mechanical Engineering,

MIT. Dr. Stanton concentrated his research efforts for this program on the

development of optical and data acquisition system for the experimental

program, while Dr. Cheng concentrated on the measurement theory, through

development of the Monte Carlo Brownian motion simulation model. In addition

to his work at Aerodyne on this project, Dr. Cheng supervised the work of two

graduate students in the Department of Mechanical Engineering, MIT, Sarah

Kostic and Eugenie Hainsworth. This work was in support of the Brownian

motion simulation model, funded by a subcontract to MIT.

The laboratory implementation of this program was mostly performed by

Mr. Keith McCurdy, who joined the staff of Aerodyne in the second year as a

Research Scientist after receiving his Masters degree in Physical Chemistry

from Rice University. N

In January of 1986 Dr. Stanton left Aerodyne, and his duties as Principal

Investigator were assumed by Dr. Joda Wormhoudt. Dr. Cheng continued as

Principal Investigator at MIT and supervised the final experimental work.

8.2 Interactions

Three presentations were made at AFOSR Contractors' Meetings on this work

during the first year of the contract, one during the second year, and one

during the third. These presentations were:
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First Year

A.C. Stanton and W.K. Cheng, "Techniques for Submicron Particle Sizing,"
1983 AFOSR Contractors Meeting on Air Breathing Combustion Dynamics
Research, Scottsdale, AZ, September 19-22, 1983.

W.K. Cheng and A.C. Stanton, "Single Particle Sizing by Measurement of
Brownian Motion," 1984 AFOSR Research Meeting on Diagnostics of Reacting
Flows, Yale University, March 21-22, 1984.

A.C. Stanton and W.K. Cheng, "Single Particle Sizing by Measurement of
Brownian Motion," 1984 AFOSR/ONR Contractors Meeting on Air Breathing
Combustion Research, Pittsurgh, PA June 10-21, 1984.

Second Year

W.K. Cheng, A.C. Stanton, and K. McCurdy, "Single Particle Sizing by
Measurement of Brownian Motion," 1985 AFOSR/ONR Contractors Meeting on
Particle Emission Technology, Monterey, CA, April 16-18, 1985.

Third Year

W.K. Cheng, K. McCurdy, and J. Wormhoudt, "Study of Submicron Particle
Size Distributions by Laser Doppler Measurement of Brownian Motion," 1986
AFOSR Contractors Meeting on Diagnostics of Reacting Flows, Stanford, CA,
June 16-17, 1986.

8.3 Publications and Patents

No publications or patents resulted from the work reported.
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