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" CONVERSION TABLE
t.
IS
Ll
$: angstrom 1.000 000 X E -10 meters (m)
0 atmosphere (normal) 1.013 25 X £ +2 kilo pascal (kPa)
. bar 1.000 000 X E + 2 kilo gasca] (kPa)
w0 barn 1.000 000 X E -28 meter? (m?)
% British thermal unit (thermochemical) | 1.054 350 X E + 3 joule (J)
o calorie (thermochemicalg 4,184 000 joule (J)
5: cal (thermochemical)/cm 4,184 000 X E -2 mega joule/m? (MJ/m?)
B curie 3.700 000 X E +1 *giga becquerel (GBq)
) degree (angle) 1.745 329 X E -2 radian (rad)
oK degree Fahrenheit t, = (t°F + 459.67)/1.8 | degree kelvin (K)
R electron volt 1602 19 X E -19 joule (J)
‘o erg 1.000 000 X E -7 joule (J)
e erg/second 1.000 000 X E -7 watt (W)
b foot 3.048 000 X E -1 meter (m)
foot-pound-force 1.355 818 joule (J)
i gallon (U.S. liquid) 3.785 412 X E -3 meter3 (m3)
531 inch 2.540 000 X E -2 meter (m)
) jerk 1.000 000 X E +9 joule (J)
ﬁ% joule/kilogram (J/kg)(radiation
N dose absorbed) 1.000 000 Gray (Gy)
A kilotons 4,183 terajoules
o kip (1000 1bf) 4.448 222 X E +3 newton (N)
oy kip/inch2 (ksi) 6.894 757 X E +3 kilo pascal (kPa)
o ktap newton-second/m?
;5 1.000 000 X E +2 (N-s/m2)
micron 1.000 000 X E -6 meter (m)
W mil 2.540 000 X E -5 meter (m)
:3 mile (international) 1.609 344 X £ +3 meter (m)
N ounce 2,834 952 X E -2 kilogram (kg)
ﬁ} pound-force (1bs avoirdupois) 4,448 222 newton (N)

R pound-force inch 1.129 848 X E -1 newton-meter (Nem)
. pound-force/inch 1.751 268 X E +2 newton/meter (N/m)
y pound-force/foot 4.788 026 X E -2 kilo pascal (kPa)
o pound-force/inch™ (psi) 6.894 757 kilo pascal (kPa)

i; pound-mass (Ibmzavoirdupois) 4.535 924 X E -1 kilogram (kg)
Ay pound-mass-foot (moment of inertia) kﬂogram-meter2
Y 3 4.214 011 X E -2 (kgem?)

. pound-mass/foot kilogram/meter3
o 1.601 846 X E +1 (kg/m3)

oo rad (radiation dose absorbed) 1.000 000 X E -2 **Gray (Gy)

‘2 roentgen coulomb/kilogram
o 2.579 760 X £ -4 (C/kg)

i shake 1.000 000 X E -8 second (s)

R slug 1.459 390 X E +1 kilogram (kg)

e torr (mm Hg, 0° C) 1.333 220 X E -1 kilo pascal (kPa)
& *The becquerel (Bg) is the SI unit of radioactivity; 1 Bq = | event/s.

- >**The Gray (Gy) is the SI unit of absorbed radiation.
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SECTION 1
SCOPE
| X'
e
Many military systems, particularly SDI systems, have trans- ‘Ef:::
nuclear missions which require successful propagation of electromagnetic ot

signals through the atmosphere. Signals of interest may be radio, radar,
infra-red emissions, optical, UV, X-ray, or even atomic atoms or ions,
Many of the above wavelength ranges are sensitive to the presence and
especially to the structure of plasma or atomic and molecular emitters and
absorbers produced or modified by atmospheric nuclear explosions. The

range of yield and altitude of interest spans kilotons to tens of megatons
and ground surface to hundreds of kilometers.

The atmospheric test data base is sparse except near the sur-
face, and lacks measurements of quantities critical to modern systems even
there. Many observables of interest cannot be obtained in undergrouna

tests. <Consequently it is necessary to rely heavily on theoretical pre-

dictions.

For these purposes theory is required to provide two distinct
services. [t is required to serve as a mechanism for interpolating
between field test events and extrapolating from them for observables

which have been measured, and it is required to preaict observables which
have not been measured.

To maximize confidence in theoretical results for cases remgte

X from the data base or for observables not available in the data base it is

not sufficient to carry out the most careful and complete treatment feas-

7¢ ible on each individual test event, or even on several classes of test
[}
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o event. It 1s necessary to co the above with a single unified theoretical e
- mnodel, to provide tne best assurance against an overlooked effect or a g%ﬁ
".- . . . . . K3 ..'J.-'
o misunderstood transition in dominant physics, o
i For this reason an attempt to construct a calculation of nuclear uls
A fireball development applicable over the entire range of yield and alti- -
3: tude is unaerway. In addition to its direct utility in predictions of
4{: fireball conaitions for events far from test data, the major utility of
o such a model is to provide predictions of the environment in which early
. time structure of plasma and emitters forms. This structure is believed
1§f to develop at later times into the most critical feature for many modern
o systems.
o :-::
= Nuclear fireballs develop by processes of transport of radiant
\:i and material energy. Basic to the transport is the aistribution of ion -
‘ﬁ; species and the electron =igenstate populations within each important e
:- atomic ion, for these control poth the chemical energy stored ana the ?;j
p material opacity. The apacity in turn controls radiation transport Hf !!!
jf energy, under most conditions a most important mechanism. Therefore a
'iﬁ reguirement on a unified theoretical model is the ability to calculate
’3: atomic ion species distribution and electron =2igenstate distribution
J within each atomic jon important either to observables affecting system
Y
}: performance or to radiative transport of energy.
o
,:S Depenaing on burst conaitions ana the system requirements, the
% . calculation must be reliable for times from microseconds to minutes, for
' j temperatures from kilovolts to a few hundrea degrees Kelvin, and for elec-
- tron densities from, say, 10%cm3 or less to 102%/cm3 or more. Further,
‘ﬁi it must handle radiation fields from sparse line spectra to Planckian. In
particular, it must hanale conditions which span the range from extreme
ﬁ;g non-thermodynamic equilibrium to local thermodynamic equilibrium. !
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This report describes a method developed to satisfy this need.
It calculates monatomic ion species populations and electron eigenstate
~ populations within each ion species over the above range of conditions.
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SECTION 2 e
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2.1 SYSTEMS. 2

)

At a level this deep in theoretical modelling the only system
requirement laid on the method is that it be capable of handling chemical
elements important to systems (emitters, absorbers, etc.) but not impor-
tant to energy or material transport. This is simply accomplished, by
allowing for mixtures of a large number of arbitrary elements to be pres-
ent at any point in space. The price paid for this capability is some
storage on nonvirtual memory computers and, presumably, almost nil on
virtual memory machines,

2.2 PHYSICS .

Consiger a chemical element immersea in an field consisting of
hot ions, electrons, and photons. It is necessary to find the rate at
which energy is being absorbed or emitted by this element. To do so one
must know the distribution of ionization, or charge, states of the ele-
ment, the distribution of electrons in the eigenstates of each charge
state, and the rate of collisional and radiative processes from each
eigenstate to all others. Perhaps the simplest way to think of the prob-
lem is to consider a single array of eigenstates for an element; that is,
consider the ground state of the lowest charge state (neutral or negative
jon) as the base state and all other states, including higher ionization
states, as excited states. In fact, this has turnea out to be the best
way to accomplish the numerical solution. In the case of hydrogen one has

4
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- Y
the ground state of the neutral atom, call it H°(l), and its excited hERSY
states plus a single eigenstate corresponding to a bare proton, H(1). In S;Eg
the case of oxygen one has, at present, the ground state of an oxygen atom

! -

hY
ll‘.
T N

0°(1) at about an eV excitation energy, then all the excited states of 0°,

with attached electron, 017(1), followed by the ground state neutral, ,'ju

Fy'g'
1 8 E
followed by all the states of 0!, through 0°(1), the bare oxygen nucleus. A

‘l
g
;S

e
Pl s

The basic problem then is to find the electron distribution S
among eigenstates of an element. Once that is done, charge distribution,

.
?
"y

4
s
]

energetics, and opacity all follow easily.

1

Lt
The processes which act to redistribute electrons among the ot
eigenstates include electron collisions, radiatively induced transitions, N
spontaneous radiation and heavy ion collisions. Heavy ion collisions are
less important than the others and have been neglected, although the :ﬁtﬁi
numerical solution is so organized that heavy jon processes can be intro- %;Eﬁ:
duced in a very straightforward manner if they ever appear to be neces- ﬁ

sary. Another restriction, which 'presently appears to be more important,

-

is that di-electronic recombination ana its inverse, Auger type processes,
are neglected. Di-electronic recombination sometimes is the most impor-
tant ~ecompination wechanism under conditions of high electron temperature
and low electron density. But under those conditions very little recombi-
nations occurs; this is the justification for reducing the complexity of
the initial code version by neglecting such processes.

The processes treated are: bound-bound electron collisions
(upwara and downward in excitation energy), bound-free electron collisions
along with the inverse three body recombination, bound-bound radiation
induced transitions up and down, bound-free radiation induced transitions

{ionization and recombination), and bound-bound spontaneous emission (down

e
%

only).
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i For most rates a factor of two to three is the limit of current o
i;{; knowledge; for some important ones the situation is better but for many it %?%
::}3 is even worse. A factor of three error in a single rate coefficient can 2:2
ftét result in as much as a factor of three error in population, while an :ﬁ;

tl' unfortunate coincidence involving such errors in several rate coefficients £§§

can result in even greater error in population.

- e
-~
r'r;
E
= -

A

SRR
2 |, HRRIGEEE] § XX

e Uncertainty in the correct value of rate coefficients is a

% fundamental limitation on accuracy of theory. In a situation as complex
as this, the only satisfactory method of approach is sensitivity analysis,
where the effects of modification in key rate coefficients are assessed by

E§3 inserting modified values into the code and comparing results.
%j{ 2.3 MATHEMATICS .
o I3
e %l
?Eﬁg The major mathematical requirement on the method is generality, ot
o due to the extremely broad range of conditions over which the method is to
o be applied. This means that one is not allowed to use most normal methods
,jxﬁ designed for special limiting cases; LTE, coronal, etc., but must adopt a
‘*:g general method which is capable of handling both those limiting cases and ﬁ%ﬁ
:.:’ intermediate cases. iIn short, the equations must be solved directly. ;\‘
< t
r:ﬁ% Given that important physical parameters, especially rate coef-
.;}: ficients but also energy levels in some cases, have substantial uncertain-
! ties, the only firm mathematical accuracy requirement on the method is
s that it yield answers accurate to better than, say, a factor of three or
:i?ﬁ so. Unfortunately it is difficult if not impossible to analyze the final
355% effect of a mathematical approximation buried deep in such a complex set
fvff of equations as those which must be solved, so it is most unwise to allow
s any unnecessary inaccuracies in the math. Certainly it is almost always
ﬁ;ﬁ easier to do the math correctly than to analyze the implication of an
‘Efgj approximation. Nevertheless it has been necessary to give up mathematical
o
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e rigor at a few points in the method to meet finite computer time require- :gg
?ﬂi ments. The impact of such approximations on the final results have been ng
ﬁ'{ assessed by comparison of these calculations with results obtained from i?y
A R %
.:ﬂ more precise methods. Enough precise results are available to provide if:
o reasonable assurance of the mathematical soundness of our method. 3
& PR
A J‘\ ‘o Al
N 2.4 COMPUTER. PR
.'\ -‘:‘)n
b o
i Computer requirements are that the coded implementation of the .
:g~ method be transportable among mainframes, fit within memory available on a
;j. Cray-class computer and that this portion of the code require at most a
)
f few hours of CP time on such equipment to complete calculation of a fire-
kh ball history.
A
e
N The transportability requirement creates some tedious but
ﬁ;j straightforward limitations on code and data structure, mainly due to the
N fact that Crays do not have virtual memory operating systems,
g
%ﬁ; The memory requirement does not appear to be limiting.
LS
e
LR
$% However, the CP time reguirement has been the major driving
;) force in almost every aspect of design and implementation of the method.
3, 1
oy The time allowed for any method implemented to solve the eigenstate popu-
e lation equations can be estimated as follows. As an average, take M
)“ eigenstates per ionization state, Z ionization states simultaneously pres-
ent per element, E elements present per spacial zone, C space zones, and T
,;3 time increments per problem. Then the number of eigenstate solutions
o necessary to complete a problem is
=
o
e =M . i
: N = MZECT (1) v
L] N F"f
. ’&. _:.r,:-f
Y A reasonable minimum number of eigenstates necessary to get a s
EMY, v e
§ ' decent value of opacity is, say, e
r'.r:
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It is difficult to imagine a scheme so wise that it can solve a
problem without computing for 3 or 4 ionization states simultaneously
present under severe conditions, but perhaps only half the space cells
will have severe conditions, take

The number of elements per cell is at least 2 (N and 0) and more

likely to average 3,
E = 3.

Space zones depend on the dimensionality of the problem, let D
be the number of space dimensions, then C is at least 100 per dimension,

¢ =100 .

Finally, one expects a problem to be completed in about a thou-

sanda time steps, so take

—
H

1000.

Then

6 x 104+20

=
1t

and if the total time spent on the method is to be H hours, the time
allowed per eigenstate solution is




S ”
- LS

w
LY
LA

- oW WPy Las o e o aan & ‘g P e

arh
e
t.\ ..h
0 LS .
\ N
t=1.7 x 10-5 3600 H . 6 X 120 Ho
100 10
Given that H is to be of order 1, we find that for a three dimensional
code
t =6 x 108 sec .
This is hopeless for foreseeable equipment. To have a reason-
able chance, we must limit ourselves to one space dimension so that
t =6 x 10-% sec = 0.6 msec .
This translates into 12 msec to solve all eigenstates and charge
states for a given element in one spacial zone per time cycle. Not much
time, To date we are within a factor of two to ten of the goal, depenaing
yn the complexity of the radiation field, for the MRC ELXSI computer (a 4
to 5 MIP machine). All things being as advertised, this shoula place us -
it or detter than the goal an a CRAY. fi -
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SECTION 3 .
METHOD ADOPTED FOR EIGENSTATE SOLUTION .

LIt

3.1 SUMMARY OF METHOD. (S

PSS
)
5
Py
A

(a) Transition rates for all processes are calculated connecting )
states of Z to all eigenstates of Z-1, Z, and Z+l. :

R N |
s A4
’,A.‘
°)
""

(b) Eigenstates for all ion charge states of a given element are Y

arranged in a linear array ordered on increasing state ey
energy referenced to the lowest energy state of the element — 2
(ground state neutral or ground state negative ion). Call -
the total number of equations in this array L. I,

AAASIRAS- # ¥~

(c) The total state array is sortea into two linear arrays, one .

—r

set to be solved with a quasi-steady approximation and the R

other to be solved as differential equations. ~h
“~

PRI, )
-

P
‘r
s

‘_ (d) These two sets of equations are each further broken down F B
P>, into sets of closely coupled equations, for a total of M
Y, sets, 1 <MLL, el

(e) Each of the M sets is solved by Gauss elimination using e
initial conditions derived from the original linear array of
length L. NG

10 i

R T RN A T S IRSL A * e *

e T O O T S S L
MU A - - . N TR Y - - v
Do 70 2 S AN D P A AANESERCY
M . ! 4 l‘hﬁ’.. »°4% 4%

L2 2 oW,

P T IIn o PRl T AT AT TR AN I RS PR
e e Lt e e g .f.f.;(’(.ll‘-‘.'ﬂ‘.;,. ‘.../‘_.\, ERE I ‘

* Y g ST et LR ’
{L{A‘)‘m YL EPRVIANG ¥

N
»




——r—— e LA e A a Ao Baa ass g WECIPTIT  Or T OO Lo 4

(f) Sets initially containing a major fraction of the total ele-
mental electron population are renormalized to their initial
total populations. Sets initially containing a minor frac-
tion of the total elemental electron population are allowed
major population changes, but minor changes are strongly
damped.

(g) Effective set-to-set transition rates are calculated based
on individual eigenstate rates and populations.

e ] ok:
o

(h) The pair of sets with the fastest interset rate is solved as :}};
a0
a pair of coupled differential equations for total set popu- :Etr
lation, with relative eigenstate population unchanged. ‘li;
P -8
3
(i) The rasultant sets from step (h) are amalgamatea into a N ﬁs

single set, reducing the number of sets by 1. k:
(3) Steps (h) through (i) are repeated until only one set, -‘:j

N

encompassing all eigenstates of all jonization states, Si:‘

) >
remains. ;3:.
waT

(k) Because absolute normalization was lost in step (f), the !

MW
final set is renormalized to conserve atomic ions. 53“

P
3.2 SUMMARY OF METHOD RATIONALE.
The overriding objective in developing the method was to mini- Ej}:
mize CP time without too much loss in accuracy. The principal tactic has ﬂﬁﬁ
been to maximize allowable time step. The process consisted of recogni- gf*
tion of a proolem, curing it, recognition of problems createa by the cure, ’ ?‘
curing them etc. until no new problems appeared. The result is cumbersome :::
Togically, but it is quite rugged, adequately accurate, and relatively A
. Y
. . .
fast in execution. Qf,
11 S
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The first step is to decide how many ionization states and zg;
eigenstates per ion must be calculated. This is done before any rates are iﬂx
calculated. Rate calculation is expensive; the order of 102 rates and e

inverses must be calculated for each eigenstate.

All rates connecting each eigenstate of ion Z to all other
eigenstates present of ions Z-1, Z, and Z+1 are then calculated.

To make it automatic that eigenstate equations in adjacent ioni-
zation states be grouped together for solution where appropriate, eigen-
state data for all values of Z present are stacked in a single linear
array indexed on increasing eigenenergy. This arrangement turns out to
save some storage and simplify some logic, as added bonuses.

The method is required to work for situations where some or all
states approach LTE. This guarantees a severe stiff differential equation
problem. Stiff gquations can be solved assuming them to be quasi-steady.
A criterion to distinguish between stiff and "1imp" behavior is straight-
forward; but some efficiency must be sacrificed here. We must allow equa-
tions to go from stiff to "1imp" as well as from limp to stiff and unfor-
tunately criteria which identify every stiff equation, once met, force
aquations to remain stiff forever. Accordingly a less efficient criterion
is applied and the linear array of eigenstate equations is sorted into two
arrays or sets, the QS set to be solved under a quasi-steady assumption
and the DE set to be solved as ordinary differential equations.

o

<

Under circumstances of interest, normalization problems exist if

2
.
-t
RY

the two sets are solved in a straightforward manner, Some or all of these

s
TP

problems were created by breaking the equations into two sets. To address

g?@ these problems, each of the two sets, QS and DE, is further broken down
?3: into sets of closely coupled equations.
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Each QS set is then solved by Gauss elimination separately,
using initial conditions from all other sets as input, and each DE set is

similarly solved separately by a different version of Gauss elimination. f;':
Ny

The resultant set electron populations are incompatible in gen- ‘A‘f

eral, since changes in other set populations were neglected when finding A
eigenstate population in a given set. The basic way adopted to handle Eﬂ:%%
this is to renormalize each set back to its initial population, so that ;faf
only the electron distribution within each set has been changed, calculate ';‘

effective rates between the sets, then solve differential equations for

P
L
e y
A
»

(4

4 I

i ]
7,
e
e
e

set populations.
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The situation at this point is similar to that at the beginning
of the process, a number of linear differential equations for set (rather
than eigenstate) populations must be solvea. If we were guaranteed that
the number of sets were less than the number of initial equations we could
simply repeat the process (sort into QS and DE, sort into closely coupled

equations, solve) iteratively until only one set, incluaing all eigen-
states, remained. Unfortunately, it is not true that under all circum-
stances each such iteration would reduce the number of sets.

The technique actually used is to analytically solve only for
populations of the two most closely coupled sets, neglecting effects of
the others. These two sets are amalgamated into a single set, rates among
the reduced number of sets are adjusted and the process repeated until
only one set remains.

.

This time splitting technique for set populations has its own
version of the stiff equation problem. It is always far less severe than

s

that of the original eigenstate set and appears only to affect sets with

o5t 1

minor fractions of total electron population, but it is baa enough to

~

require fixing. The fix adopted is empirical rather than rigorous and is
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3
" targeted against the specific problem encountered. Because the time
’;_, splitting scheme locks set populations together by pairs, a low population
ti: set strongly influenced by two high population sets and requiring a major
35 population adjustment can become locked into a position where the adjust-
;a ment is impossible. To avoid this eventuality, at the end of the Gauss
;xj elimination procedure, the Gauss answer for set population is accepted for
'jsj minor population sets with major population changes, but all sets with
rﬁt: major population are renormalized as are minor population sets with minor
Ch population changes.
g
;;§ With this modification the process of sorting equations into
- sets, solving for relative populations within the sets by Gauss elimina-
E tion, then solving for set population by time splitting works adequately.
o It is only necessary to add a final, overall, normalization since we have
lzfﬁ allowed the absolute normalization to be broken occasionally after the
;I? Gauss elimination step.
o 3.3 MAJOR ELEMENTS OF THE METHOD.
P
;35 3.3.1 Adding Ionization States.

A time cycle begins for some chemical element with one or more

contiguous ionization states, Z, present, and with a distribution of elec-
trons in their eigenstates. Circumstances may require addition of another
state of ionization one unit charge above the highest present or one unit
below the lowest present. In preparation for this, an ion state above the
highest and one below the lowest present are added without populations, if
such ion states exist for the element. At this point the maximum number
of charge states which may possibly be considered has been determined.
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TN 3.3.2 Deleting Ionization States.
:{t [t is important to avoid calculating and processing unnecessary
= rates, to save time. Before any rates are calculated, "temperatures" are
o defined for all processes which might control creation or destruction of
,) charge states. At present there are three such temperatures, one is elec-
A{: tron temperature, one is the temperature of that Planck spectrum which
}ﬁf contains the same total radiant flux as the actual (1ine or continuum)
“’: spectrum, and one is that of a grey body spectrum with the same mean pho-
ton energy as the actual spectrum,
.:{:
o The highest density ion species, D(Zm), is then determinea.
",
o
=4
L M To eliminate the lowest state of ionization, Z, the equilibrium 7
- ~atio, R, of Z to I+l is estimated using the coldest of the three temper- o
o atures, then it must be true that both :
2(Z) - r d(ZIm) i
‘\:.'.: L;:ft:
e and eitner
3
e o
D Z+l) « f D(Zm) 2, 5
Y. "
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/ q{ where the current value of r is 10-3 and f is currently 0.1 if D(Z)=0 or "j
‘ -"" » . . . -~ . » .
fl; 0.05 if D(Z) is nonzero (to make it more difficult to eliminate an
existing ion state tnan one just aaded). The value of Qq Jseq is 1077,
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If an ion state is eliminated, its density is aaded to Z+1 -

b

(without modifying eigenstate distribution in Z+1) and the process re-

X b

peated until the test {2) fails.

n“ “L{J“
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To eliminate the highest state of ionization, Z, the equilibrium
ratio, Re’ of 7 to Z-1 is estimated using the hottest of the three
temperatures and the sequence of tests (2) applied to it. Again this test
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is repeated until it fails.
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At this point only those ion states with significant popula-
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tions, plus those which may gain significant populations in this cycle are
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3.3.3 Adding an Artificial Eigenstate.

There are two reasons for limiting the numper of eigenstates per
‘onization state %o apout 10, wnich implies principal auantun nunber
limited to 3 ar 4, The first reason is that reliaol= gata ‘s jenerally

very incomplete at higher quantum numbers for elements >f interest so that

a more complete representation would be interspersed liperally with eitner

gaps or guesswork. The second reason is that CP restrictions do not 2allow

'b<'I.‘ ~.'A .'-.

1 'arge numbper of 2igenstates to de representea. The number Jf state-Io- e
state rate coefficients which must be calculated is oroportional to *he RN
square of the number of states represented, and time spent in the Gauss %?;
elimination routine is proportional to the cube of the number of states. :f?ﬂ

o

¥

Nevertheless, there may be tens to thousands of eig nstates .

between the uppermost state represented and the ijonization continuum. The i;f

EACH
higher states must be taken into account if correct ionization and recom- f;?
bination rates to the interesting lower states are to be obtained. This St

is accomplished by creating an ar%ificial =igenstite to represent the

upper states not modeled.
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To create such a state one first finds the number of states
1ying between the uppermost state modeled and the jonization continuum.
This is determined by the amount by which the ionization potential is
depressed due to polarization effects of the plasma. From reference 1,
pp. 137-140, the energy of this depression is roughly

- 2
ED (2+1) e /°D (3)
where Z is the degree of ionization, e (esu) is electron charge, and pp
is Debye length,
op = [KT/(4ne®N (14<22/<2>)) |12 (4)
with k Boltzmann's constant, T the electron temperature, and N, electron
density.

Assuming the upper levels to be hydrogenic, the principal quan-

tum number of the level which 1ies at the jonization continuum is given by

2/¢c2 .
E4(Z+1) ?/sg = E (5)
or

SM = (Z+1) /EH/ED
where Ey is the ionization potential of hydrogen in vacuo. States above
Sm are ignored. If the principal quantum number of the highest energy
state represented is Sy, then the artificial state must represent all
states from Sy to Sy.

Parameters to represent the artificial state must be calcu-
lated. The basic parameters are calculated as simple integrals weighted
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by the degeneracy of the upper states. For hydrogenic states the degener-
acy of a state with principal guantum number n is

g, = 2n? (6)

Then the degeneracy of the artificial state, ga, ts the sum of
degeneracies of its constituents multiplied by the degeneracy of the
ground state of the next higher state of ionization,

_ 24n = 2 (c3_c3
95 = 974, [ 2n4dn = §‘(SM'SN)(25++1)(2L++1) (7)

where S, is the spin quantum number of the ground state of Z+1 and L4 is
the orbital quantum number of Z+l.

The mean energy of the artificial state, Ep, is

m
i

V [ (1-Q2%/n?)2n%dn/f 2n%dn

V(1-3Q2(Sy-Sy )/ (Sy-Sy) )] (3)

where V is the vacuum jonization potential of the ground state ion Z and Q
is the ground state of Z principal gquantum number. The factor Q? scales
the ionization potential, V, to its equivalent hydrogenic value.

Similarly, the mean principal quantum number of the artificial
state, Qa, is given by

Qq = f n2nZdn/ [ 2n%dn =% (Su-Sn)/ (Se=Sp) - (9)

Parameters for Stark broadening and for rate coefficient calcu-
lations must also be generated. The Stark broadening term for the state
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is estimated from the lead term in equation (46) and the crucial oscilla-

4

tion strength calculations are discussed in section 5.7.2.

5
i

3.3.4 Deleting Eigenstates.

e h

[ . .
3.3.4.1 Before Calculations Commence. In a situation where the hottest
-j: effective temperature (see 3.3.2) is small compared to the excitation
:jt energy of some eigenstate it may be appropriate to save some calculation
:if time by neglecting that eigenstate. Accordingly, after unnecessary ions
’ have been removed as described in section 3.3.2 the three following tests
a are made, from highest excitation state for which data exists to the
L ground state of the highest jonization state present.
-~
v Is the equilibrium ratio of ion Z+1 to jon Z greater than about
e 10732
A
'x [s the fractional population of eigenstate s greater than
" 10732
A S
o Is the energy of state s less than ten times the hottest temper- N
oY .
Y ature? :j:j
ol
‘j: If any of the three tests is met, then eigenstate s and all
- . . .
- lower eigenstates are accepted. If all tests fail, s is deleted and the
g tests are applied to s-1.
."-:.
f; The principal virtue of this procedure is to eliminate upper
ji states from consideration under benign conditions. For example, undis-
. turbed cells at the beginning of a problem, or material late in a problem
T3 which has recombined and fallen to the ground state.
%
s
,ﬁ: 3.3.4.2 DOuring Calculations. If the value of Ep from (3) is so large
:; that the energy from some states s, Eg, satisfies
s
J.‘
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then these states are removed.

There are two physics problems associated with this procedure,
The minor one is that all eigenstates lying above the effective ionization
potential

(11)

still exist, even though they lie above the ground state of Z+l. 1In
principle, account should be taken of these states. One straignhtforward
procedure might be to add the combined oscillator strength to these states
from state s to that from state s to the ground state of Z+l, on the
assumption that electrons raised to states above the ground state of Z+]
will be Tost (of course, they might even lie above some excited state of
Z+1, to complicate matters). A procedure such as this has not been imple-
mented because the numerical effect doesn't seem important under condi-
tions where our treatment is credible and more serious problems exist
where the treatment becomes questionable due to the second physics prob-
lem, as follows.

If electrons become so closely packed that their Debye spheres
begin to overlap (at l-eV this would be Ne > 1029 the potential energy
wells of neighboring ions begin to overlap; the plasma begins to show
1liquid or solid properties! The concept of an isolated ionic system of
eigenstates begins to fail, electrons no longer have all space available
for orbits, they must find channels between ions. We have not addressed
this problem and hope never to be required to do so.

What has been done is entirely ad hoc. The last 4 eigenstates

are retained independent of the outcome of the three tests discussed in
the foregoing.
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3.3.5 Stiff Equation Problem.

R

To find the populations of all M eigenstates of (all ionization

,
>

states of) some element, the solution is required to the set of equations:
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dN_/dt = T_+ T a N - N [
s s Ksk T s LS

ag * B ] (12)
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) for s from 1 to M. | | | "._#
e In (12), all terms are inherently non negative, ajj is the AN
, rate of transfer from state i to state j due to all causes, per unit popu- E'.f_:.::‘_r:
E: lation of state i and per unit time, Nj is population of state i and the L
Y terms Tg and Bg refer to sources and sinks of population outside the

v set of M equations.

- L
j Equation sets like (12) are infamous for having so called _ﬁ{-:'_\:

. "stiff" equation difficulties when any straightforward method of solution "\";

R is applied. This occurs whenever for some value of s, the input terms ;ﬁ
tend to cancel the output terms, driving the time step toward zero while t.ﬁ'
N¢ is, in fact, nearly constant in time. In our case such a problem is t_::

- guaranteed since we wish to handle cases where equilibrium is approached, NP o
K where the inputs and outputs effectively cancel for all s. Given that a e
, one dimensional radiation transport problem will typically consist of
‘ thousands of radiation and hydro time steps, hundreds of cells, and sev- ey
P eral elements per cell (N,0, etc.) with perhaps 40 eigenstates per element 3‘;@
“ (say 10 states each for 4 ionization states), a stiff equation problem L

: would be catastrophic. %S::jl
k: o
s To avoid stiff equation difficulties the M equations are sorted 2

" into a set of "Quasi-steady" equations (hereafter referred to as "QS") and *"-.1:::'
.. a set of "Differential" equations (hereafter referred to as "DE") which
\ are treated separately. This separation is currently based on the condi- -
- tion:

o
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> G (13)

where At is the time step, arbitrary for purposes of this test, and G is
some sizable number; G = e3 = 20.1 is the value currently in use, but the
precise value of G does not appear to be critical.

This test is made independently each time the set is to be
advanced, so a given equation is able to be advanced as QS or DE as appro-
priate to current conditions; no equation becomes frozen into one mode or
the other,

3.3.6 Normalization Problems.

Three classes of normalization problems arise when solving these
equations by the chosen method.

3.3.6.1 Inherent Numerics Problem, The first class of normalization

problems is inherent in eq (12). To demonstrate it, sum (12) over all s
to obtain

d(st)/dt = zTS - zNSBS (14)

where the terms containing a's have cancelled. If the set were isolated
as it would have been had we not separated the equations into two classes,
then Tg and Bg would be zero for all s and, ideally, tNg would be
constant. Almost any method of numerical solution will lose this preci-
sion but that is easy to correct; simply sum Ng before ana after solu-
tion then multiply the new values by the ratio to force conservation of
total number.
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aha 3.3.6.2 Set Separation Problem. The second class of normalization prob- -
;r;i, lem is caused by separation of the egquations into sets to be treated dif-

!izﬁ ferently. Now Tg and Bg are no longer zero in general. [t pecomes

,;:* possible to lose or gain population excessively from one set to another.

The problem is even deeper than it appears, for it is not only possible
but fairly common for a subset of DE equations to be coupled more tightly
to some subset of QS equations than it is to the remaining DEs, and the
reverse also occurs. So it is not necessarily true that a common normali-

zation factor, however derived, will be appropriate to all DEs or all QSs.

Eiﬁ After the separation into DE and QS a further separation into
:ﬁijj subsets is made to locate equations which are significantly more closely
"il coupled to each other than to others. The precise method for accomplish-
5;5; ing this is discussed in section 3.3.7.
08
iég Jepenaing on circumstances, and the separation algorithm, after
o tnis process there are a nunber of distinct equation sets wnich may vary
‘ _2t from 1 (all are DE or all are QS ana all are reasonaply coupled together)
;;ifﬁ to M {none tightly coupled to another in the same class). The next step
‘iiﬁ in the solution is to collect the terms in equation (12) for each subset.
o Tg ana 3¢ tnus ire constructed from ‘ s 4nd gy
<
f' " Ts = 0 Neemog 0 Bo= T, REY
AN k' K'
e
?h ; where k' does not belong to the set to which s belongs. After solution,
::if most sets are renormalized to a value such that total population within
o the set is close to its original value (see section 3.3.8). Thus the step
l:&: mainly redistributes electrons among the eigenstates of the subset, with-
i“” out allowing the total population of the subset to change.
4-',;’):
e !
T =
i &
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Next, effective a's are constructed connecting each set m to all

0B other sets n
po
SN

o anm = ZNS v ag/ ‘VNS (16)

s S k S

'\
N where s belongs to set n and k belongs to set m.

Then values of n' and m' are found for wh