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CONVERSION TABLE

angstrom 1.000 000 X E -10 meters (m)
atmosphere (normal) 1.013 25 X E +2 kilo pascal (kPa)
bar 1.000 000 X E + 2 kilo pascal (kPa)
barn 1.000 000 X E -28 meter (m2)
British thermal unit (thermochemical) 1.054 350 X E + 3 joule (J)
calorie (thermochemicall 4.184 000 joule (J)
cal (thermochemical)/cm 4.184 000 X E -2 mega joule/m2 (MJ/m2 )
curie 3.700 000 X E +1 *giga becquerel (GBq)
degree (angle) 1.745 329 X E -2 radian (rad)
degree Fahrenheit tk = (t0F + 459.67)/1.8 degree kelvin (K)
electron volt 1.602 19 X E -19 joule (J)
erg 1.000 000 X E -7 joule (J)
erg/second 1.000 000 X E -7 watt (W)
foot 3.048 000 X E -1 meter (m)
foot-pound-force 1.355 818 joule (j)

gallon (U.S. liquid) 3.785 412 X E -3 meter 3 (m3 )

inch 2.540 000 X E -2 meter (m)
jerk 1.000 000 X E +9 joule (J)
joule/kilogram (J/kg)(radiation

dose absorbed) 1.000 000 Gray (Gy)
kilotons 4.183 terajoul es
kip (1000 lbf) 4.448 222 X E +3 newton (N)

2
kip/inch (ksi) 6.894 757 X E +3 kilo pascal (kPa)
ktap newton-second/n 2

1.000 000 X E +2 (N-s/rn2)
micron 1.000 000 X E -6 meter (m)
mil 2.540 000 X E -5 meter (m)
mile (international) 1.609 344 X E +3 meter (m)
ounce 2.834 952 X E -2 kilogram (kg) '

pound-force (lbs avoirdupois) 4.448 222 newton (N) -,

pound-force inch 1.129 848 X E -1 newton-meter (N.rn)
pound-force/inch 1.751 268 X E +2 newton/meter (N/m) .
pound-force/foot2  4.788 026 X E -2 kilo pascal (kPa)
pound-force/inch (psi) 6.894 757 kilo pascal (kPa)
pound-mass (Ibm2avoirdupois) 4.535 924 X E -1 kilogram (kg)
pound-mass-foot (moment of inertia) kilogram-meter

4.214 011 X E -2 (kg.m 2 )pound-mass/foot 3  kil1ogram/meter 3  R

1.601 846 X E +1 (kg/m 3)
rad (radiation dose absorbed) 1.000 000 X E -2 "*Gray (Gy)
roentgen coulomb/kilogram

2.579 760 X E -4 (C/kg)
shake 1.000 000 X E -8 second (S) i
slug 1.459 390 X E +1 kilogram (kg)
torr (mm Hg, 00 C) 1.333 220 X E -1 kilo pascal (kPa)

*The becquerel (Bq) is the SI unit of radioactivity; 1 Bq = 1 event/s.

>**The Gray (Qy) is the SI unit of absorbed radiation.
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SECTION 1

SCOPE

Many military systems, particularly SDI systems, have trans- --K.

nuclear missions which require successful propagation of electromagnetic

signals through the atmosphere. Signals of interest may be radio, radar,

infra-red emissions, optical, UV, X-ray, or even atomic atoms or ions.

Many of the above wavelength ranges are sensitive to the presence and

especially to the structure of plasma or atomic and molecular emitters and

absorbers produced or modified by atmospheric nuclear explosions. The

range of yield and altitude of interest spans kilotons to tens of megatons

and ground surface to hundreds of kilometers.

The atmospheric test data base is sparse except near the sur-

face, and lacks measurements of quantities critical to modern systems even

there. Many observables of interest cannot oe obtained in undergrouna

* tests. Consequently it is necessary to rely heavily on theoretical pre-

dictions. 31

For these purposes theory is required to provide two distinct

services. It is required to serve as a mechanism for interpolating

between field test events and extrapolating from them for observables

which have been measured, and it is required to predict ooservables which

have not been measured.

To maximize confidence in theoretical results for cases remote .P
from the data base or for observables not availaole in the data base it is

not sufficient to carry out the most careful and complete treatment feas-

ible on each individual test event, or even on several classes of test

"-
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event. It is necessary to do the above with a single unified theoretical

uodel , to prov ide tne best assurance against an overlooked effect or a

misunderstood transition in dominant physics.

For this reason an attempt to construct a calculation of nuclear

fireball development applicable over the entire range of yield and alti-

tude is underway. In addition to its direct utility in predictions of

fireball conditions for events far from test data, the major utility of

such a model is to provide predictions of the environment in which early

time structure of plasma and emitters forms. This structure is believed

to develop at later times into the most critical feature for many modern

systems.

Nuclear fireballs develop by processes of transport of radiant

and material energy. Basic to the transport is the distribution of ion

species and the electron eigenstate populations within each important

atomic ion, for these control Doth the chemical energy storec ana the

material opacity. The opacity in turn controls radiation transport 'f

energy, under most conditions a most important mechanism. Therefore a

requirement on a unified theoretical model is the ability to calculate

atomic ion species distribution and electron eigenstate distribution

within each atomic ion important either to observables affecting system

performance or to radiative transport of energy.

Depending on burst conditions ano the system requirements, the

calculation must be reliable for times from microseconds to minutes, for
temperatures from kilovolts to a few nundrea degrees Kelvin, and for elec-

tron densities from, say, 106/cm3 or less to 1022/cm3 or more. Further,

it must handle radiation fields from sparse line spectra to Planckian. In

particular, it must handle conditions which span the range from extreme

non-thermodynamic equilibrium to local tnermodynamic equilibrium.

2



This report describes a method developed to satisfy this need.

It calculates monatomic ion species populations and electron eigenstate

populations within each ion species over the above range of conditions.
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SECTION 2

REQUIREMENTS

r7

I " 2 .1 S Y S T E M S .

At a level this deep in theoretical modelling the only system

requirement laid on the method is that it be capable of handling chemical

elements important to systems (emitters, absorbers, etc.) but not impor-

tant to energy or material transport. This is simply accomplished, by

allowing for mixtures of a large number of arbitrary elements to be pres-

ent at any point in space. The price paid for this capability is some

storage on nonvirtual memory computers and, presumably, almost nil on

virtual memory machines.

2.2 PHYSICS.

Consider a chemical element immersed in an field consisting of

hot ions, electrons, and photons. It is necessary to find the rate at

which energy is being absorbed or emitted by this element. To do so one

must know the distribution of ionization, or charge, states of the ele-

ment, the distribution of electrons in the eigenstates of each charge

state, and the rate of collisional and radiative processes from each

eigenstate to all others. Perhaps the simplest way to think of the prob- '

lem is to consider a single array of eigenstates for an element; that is,

consider the ground state of the lowest charge state (neutral or negative i
ion) as the base state and all other states, including higher ionization

states, as excited states. In fact, this has turnea out to be the best

way to accomplish the numerical solution. In the case of hydrogen one has

4
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the ground state of the neutral atom, call it H*(1), and its excited

states plus a single eigenstate corresponding to a bare proton, H1(1). In

the case of oxygen one has, at present, the ground state of an oxygen atom , .

with attached electron, O1-(1), followed by the ground state neutral,

0*(1) at about an eV excitation energy, then all the excited states of 0,

followed by all the states of 01, through 08(1), the bare oxygen nucleus.

The basic problem then is to find the electron distribution

among eigenstates of an element. Once that is done, charge distribution,

energetics, and opacity all follow easily.

The processes which act to redistribute electrons among the

eigenstates include electron collisions, radiatively induced transitions,

spontaneous radiation and heavy ion collisions. Heavy ion collisions are

less important than the others and have been neglected, although the

numerical solution is so organized that heavy ion processes can be intro-

Jucea in a very straightforward manner if they ever appear to be neces-

sary. Another restriction, which'presently appears to be more important,

is that di-electronic recombination and its inverse, Auger type processes,

are neglected. Di-electronic recombination sometimes is the most impor-

tant 'ecomDination iechanism under conditions of high electron temperature

and low electron density. But under those conditions very little recombi-

nations occurs; this is the justification for reducing the complexity of

the initial code version by neglecting such processes.

The processes treated are: bound-bound electron collisions

(upward and downward in excitation energy), bound-free electron collisions

along with the inverse three body recombination, bound-bound radiation

induced transitions up and down, bound-free radiation induced transitions % *-

:lionization and recombination), and bound-bound spontaneous emission (down 3

only).

5'
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For most rates a factor of two to three is the limit of current

knowledge; for some important ones the situation is better but for many it

is even worse. A factor of three error in a single rate coefficient can

,. x- result in as much as a factor of three error in population, while an
unfortunate coincidence involving such errors in several rate coefficients

can result in even greater error in population.

Uncertainty in the correct value of rate coefficients is a

fundamental limitation on accuracy of theory. In a situation as complex

as this, the only satisfactory method of approach is sensitivity analysis,

where the effects of modification in key rate coefficients are assessed by

inserting modified values into the code and comparing results.

2.3 MATHEMATICS.

The major mathematical requirement on the method is generality,

due to the extremely broad range of conditions over which the method is to

be appliea. This mean' that one is not allowed to use most normal methoas

designed for special limiting cases; LTE, coronal, etc., but must adopt a

* general method which is capable of handling both those limiting cases and

intermediate cases. in short, the equations must be solved directly.
- r.

Given that important physical parameters, especially rate coef-

ficients but also energy levels in some cases, have substantial uncertain-

ties, the only firm mathematical accuracy requirement on the method is

that it yield answers accurate to better than, say, a factor of three or

so. Unfortunately it is difficult if not impossible to analyze the final

effect of a mathematical approximation buried deep in such a complex set

of equations as those which must be solved, so it is most unwise to allow

any unnecessary inaccuracies in the math. Certainly it is almost always

easier to do the math correctly than to analyze the implication of an %

approximation. Nevertheless it has been necessary to give up mathematical

6
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rigor at a few points in the method to meet finite computer time require-

ments. The impact of such approximations on the final results have been

assessed by comparison of these calculations with results obtained from

more precise methods. Enough precise results are available to provide

reasonable assurance of the mathematical soundness of our method.

2.4 COMPUTER.

Ccmputer requirements are that the coded implementation of the

method be transportable among mainframes, fit within memory available on a

Cray-class computer and that this portion of the code require at most a II

few hours of CP time on such equipment to complete calculation of a fire-
ball history.

The transportability requirement creates some tedious but

straightforward limitations on code and data structure, mainly due to the

fact that Crays do not have virtual memory operating systems.

The memory requirement does not appear to be limiting.

However, the CP time requirement has been the major driving

force in almost every aspect of design and implementation of the method.

The time allowed for any method implemented to solve the eigenstate popu-

lation equations can be estimated as follows. As an average, take M -'

eigenstates per ionization state, Z ionization states simultaneously pres-

ent per element, E elements present per spacial zone, C space zones, and T

time increments per problem. Then the number of eigenstate solutions

necessary to complete a problem is

N = MZECT (i)

A reasonable minimum number of eigenstates necessary to get a

decent value of opacity is, say,

7

%* 
%

A2?,.



.-'.W I.

M =10

7.-
It is difficult to imagine a scheme so wise that it can solve a

problem without computing for 3 or 4 ionization states simultaneously

present under severe conditions, but perhaps only half the space cells

will have severe conditions, take

Z=2 

The number of elements per cell is at least 2 (N and 0) and more

likely to average 3,

E = 3.
I-z

Space zones depend on the dimensionality of the problem, let D

be the number of space dimensions, then C is at least 100 per dimension,

c :I02D

Finally, one expects a problem to be completed in about a tniou-

sana time steps, so take

T 1 1000.

Then

N 6 x 104+2D

and if the total time spent on the method is to be H hours, the time

allowed per eigenstate solution is

.8. .

5i..S
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t 1.7 x I0- 5 3600 H 6 X 10- 2 H

i02D I02D

Given that H is to be of order 1, we find that for a three dimensional

code

t =6 x 10-8 sec .

This is hopeless for foreseeable equipment. To have a reason-

able chance, we must limit ourselves to one space dimension so that

t : 6 x 10- 4 sec = 0.6 msec

This translates into 12 msec to solve all eigenstates and charge

states for a given element in one spacial zone per time cycle. Not much

time. To date we are within a factor of two to ten of the goal, depending

)n the complexity of the radiation field, for the MRC ELXSI computer \a 4

to 5 M P nachine). All things being as advertised, this should place us

3t )r better than the goal on a CRAY.

OW if AP .-
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SECTION 3

METHOD ADOPTED FOR EIGENSTATE SOLUTION

3.1 SUMMARY OF METHOD. " %

(a) Transition rates for all processes are calculated connecting

states of Z to all eigenstates of Z-1, Z, and Z+1.

(b) Eigenstates for all ion charge states of a given element are

arranged in a linear array ordered on increasing state

energy referenced to the lowest energy state of the element

(ground state neutral or grouna state negative ion). Call

the total number of equations in this array L.

(c) The total state array is sorted into two linear arrays, one

set to be solved with a quasi-steady approximation and the

other to be solved as differential equations.

(d) These two sets of equations are each further broken down .

into sets of closely coupled equations, for a total of M

sets, 1 < M < L.

(e) Each of the M sets is solved by Gauss elimination using

initial conditions derived from the original linear array of

length L.
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(f) Sets initially containing a major fraction of the total ele-

mental electron population are renormalized to their initial

total populations. Sets initially containing a minor frac-

tion of the total elemental electron population are allowed

major population changes, but minor changes are strongly

damped.

(g) Effective set-to-set transition rates are calculated based

on individual eigenstate rates and populations.

(h) The pair of sets with the fastest interset rate is solved as

a pair of coupled differential equations for total set popu-

lation, with relative eigenstate population unchanged.

(i) The r'-sultant sets from step (h) are amalgamatea into a

single set, reducing the number of sets by 1.

(j) Steps (h) through (i) are repeated until only one set,

encompassing all eigenstates of all ionization states,

remains. 5.-

(k) Because absolute normalization was lost in step (f), the

final set is renormalized to conserve atomic ions.

3.2 SUMMARY OF METHOD RATIONALE.
.|..

The overriding objective in developing the method was to mini-
.16 mize CP time without too much loss in accuracy. The principal tactic has

been to maximize allowable time step. The process consisted of recogni-

tion of a problem, curing it, recognition of problems created by the cure,

J . curing them etc. until no new problems appeared. The result is cumbersome

logically, but it is quite rugged, adequately accurate, and relatively

fast in execution.

,.N%.
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The first step is to decide how many ionization states and

eigenstates per ion must be calculated. This is done before any rates are
calculated. Rate calculation is expensive; the order of 102 rates and

inverses must be calculated for each eigenstate.

All rates connecting each eigenstate of ion Z to all other

eigenstates present of ions Z-1, Z, and Z+I are then calculated.

To make it automatic that eigenstate equations in adjacent ioni-

zation states be grouped together for solution where appropriate, eigen-.y.4. --.
state data for all values of Z present are stacked in a single linear

array indexed on increasing eigenenergy. This arrangement turns out to

save some storage and simplify some logic, as added bonuses.

The method is required to work for situations where some or all

states approach LTE. This guarantees a severe stiff differential equation

problem. Stiff equations can be solved assuming them to be quasi-steady.

A criterion to aistinguish between stiff and "limp" behavior is straight-

forward; but some efficiency must be sacrificed here. We must allow equa-

tions to go from stiff to "limp" as well as from limp to stiff and unfor-

tunately criteria which identify every stiff equation, once met, force

equations to remain stiff forever. Accordingly a less efficient criterion

is applied and the linear array of eigenstate equations is sorted into two

arrays or sets, the QS set to be solved under a quasi-steady assumption

and the DE set to be solved as ordinary differential equations.

Under circumstances of interest, normalization problems exist if

the two sets are solved in a straightforward manner. Some or all of these

problems were created by breaking the equations into two sets. To address

these problems, each of the two sets, QS and DE, is further broken down

into sets of closely coupled equations.

12
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Each QS set is then solved by Gauss elimination separately,

using initial conditions from all other sets as input, and each DE set is

similarly solved separately by a different version of Gauss elimination.

The resultant set electron populations are incompatible in gen-
eral, since changes in other set populations were neglected when finding

eigenstate population in a given set. The basic way adopted to handle

this is to renormalize each set back to its initial population, so that ]
only the electron distribution within each set has been changed, calculate

effective rates between the sets, then solve differential equations for

set populations.

The situation at this point is similar to that at the beginning

of the process, a number of linear differential equations for set (rather

than eigenstate) populations must be solved. If we were guaranteed that

the number of sets were less than the number of initial equations we could

simply repeat the process (sort into QS and DE, sort into closely coupled

equations, solve) iteratively until only one set, including all eiyen-

states, remained. Unfortunately, it is not true that under all circum-

stances each such iteration would reduce the number of sets.

The technique actually used is to analytically solve only for

populations of the two most closely coupled sets, neglecting effects of

the others. These two sets are amalgamated into a single set, rates among

the reduced number of sets are adjusted and the process repeated until

only one set remains.

This time splitting technique for set populations has its own

version of the stiff equation problem. It is always far less severe than

that of the original eigenstate set and appears only to affect sets with 3

minor fractions of total electron population, but it is baa enough to ?

require fixing. The fix adopted is empirical rather than rigorous and is

13
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targeted against the specific problem encountered. Because the time

splitting scheme locks set populations together by pairs, a low population

set strongly influenced by two high population sets and requiring a major :/:

population adjustment can become locked into a position where the adjust-

ment is impossible. To avoid this eventuality, at the end of the Gauss

elimination procedure, the Gauss answer for set population is accepted for

minor population sets with major population changes, but all sets with

major population are renormalized as are minor population sets with minor

population changes.

With this modification the process of sorting equations into

sets, solving for relative populations within the sets by Gauss elimina-

tion, then solving for set population by time splitting works adequately.

It is only necessary to add a final, overall, normalization since we have %

allowed the absolute normalization to be broken occasionally after the

Gauss elimination step.

3.3 MAJOR ELEMENTS OF THE METHOD.

3.3.1 Adding Ionization States.

A time cycle begins for some chemical element with one or more

contiguous ionization states, Z, present, and with a distribution of elec-

trons in their eigenstates. Circumstances may require addition of another

state of ionization one unit charge above the highest present or one unit

below the lowest present. In preparation for this, an ion state above the

highest and one below the lowest present are added without populations, if

such ion states exist for the element. At this point the maximum number

of charge states which may possibly be considered has been determined.

14
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3.3.2 Deleting Ionization States.

* . It is important to avoid calculating and processing unnecessary

-"- rates, to save time. Before any rates are calculated, "temperatures" are
- *" defined for all processes which might control creation or destruction of

charge states. At present there are three such temperatures, one is elec- .,,

tron temperature, one is the temperature of that Planck spectrum which

contains the same total radiant flux as the actual (line or continuum)
spectrum, and one is that of a grey body spectrum with the same mean pho-

ton energy as the actual spectrum. F .

The highest density ion species, D(Zm), is then determine"

To eliminate the lowest state of ionization, Z, the equilibrium
ratio, Re, of Z to Z+1 is estimated using the -oldest of the three tealiper-

atures, then it must be true that both

D(Z) r D(Zm)

and either

D(Z+I) ' f O(Zm) 22

".4 or

'a . %> ."

R < R
e q

where the current value of r is i0- 3 and f is currently 0.1 if D(Z)O or
0.05 if D(Z) is nonzero (to make it more difficult to eliminate an

existing ion state tnan one just added). The value of R JseJ is 1J- .
"4....,

. .. ...
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If an ion state is eliminated, its density is added to Z+1

(without modifying eigenstate distribution in Z+1) and the process re-

peated until the test (2) fails.

To eliminate the highest state of ionization, Z, the equilibrium

ratio, Re9 of Z to Z-1 is estimated using the hottest of the three

temperatures and the sequence of tests (2) applied to it. Again this test

is repeated until it fails.

At this point only those ion states with significant popula-

tions, plus those which may gain significant popclations in this cycle are

present.

3.3.3 Adding an Artificial Eigenstate.

There are two reasons for limiting the number of eigenstates per

onization State to aoout 10, which implies principal jiuantjn nimDer

limited to 3 or 4. The first reason is that reliable jata s jene-aly

very incomplete at nigher iuantum numbers for elements of interest so that

a more complete representation would be interspersed liberally with e'tner

gaps or guesswork. The second reason is that CP restrictions io not 3l'ow

a 'arge number of eigenstates to oe representeo. The iunloer of state-to- I
state rate coefficients 4nich must be calculated is proportional to the

square of the number of states represented, and time spent in the Gauss

elimination routine is proportional to the cube of the number of states.

Nevertheless, there may be tens to thousands of eig nstates

between the uppermost state represented and the ionization continuum. The

higher states must be taken into account if correct ionization and recom-

bination rates to the interesting lower states are to be obtained. This

is accomplished by creating an artificial eienstite to represent the

upper states not modeled.

-'.%"~
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To create such a state one first finds the number of states

lying between the uppermost state modeled and the ionization continuum.

This is determined by the amount by which the ionization potential is

depressed due to polarization effects of the plasma. From reference 1,

pp. 137-140, the energy of this depression is roughly

E= (Z+1) e2/PD (3)

where Z is the degree of ionization, e (esu) is electron charge, and pD

is Debye length,
S..

= [kT/(4 e2Ne(1+<Z2>/<Z>))]1/2 (4)

with k Boltzmann's constant, T the electron temperature, and N, electron

density.

Assuming the upper levels to be hyarogenic, the principal quan-

tum number of the level which lies at the ionization continuum is given by

EH(Z+1)2/S =E (5)

or

SM (Z+1) ,E H/ED .

A-
where EH is the ionization potential of hydrogen in vacuo. States above

SM are ignored. If the principal quantum number of the highest energy

state represented is SN, then the artificial state must represent all

states from SN to SM .

Parameters to represent the artificial state must be calcu-

lated. The basic parameters are calculated as simple integrals weighted

17

. '-.-. .-.. . S.. .- .- . . .. ... . .... . . I
F. % ", '5 % ". "° % . , . ". " . . ' ". " . " . " .~; ". . . . "- *- " - - ."- .* " " . - " - " . " - "



..'. ,

by the degeneracy of the upper states. For hydrogenic states the degener-

acy of a state with principal quantum number n is

gn=2n2  " (6)

Then the degeneracy of the artificial state, gA, is the sum of

degeneracies of its constituents multiplied by the degeneracy of the

ground state of the next higher state of ionization,

f 2n dn (2S++1)(2L++1) (7)

where S+ is the spin quantum number of the ground state of Z+1 and L+ is

the orbital quantum number of Z+1.

The mean energy of the artificial state, EA, is

EA = V r (1-Q2/n2)2n2dn/r 2n2dn

: f _Q2(SMS )/( SM-S N ) )l( ),''

where V is the vacuum ionization potential of the ground state ion Z and Q p

is the ground state of Z principal quantum number. The factor Q' scales
the ionization potential, V, to its equivalent hydrogenic value.%

Similarly, the mean principal quantum number of the artificial

state, QA, is given by

3
QA f n2n 2dn/f 2n 2dn 4(SMS')/(S-S3) .(9)

Parameters for Stark broadening and for rate coefficient calcu-

lations must also be generated. The Stark broadening term for the state

-pm
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"

" " " " " 
"

" "." ".'.'."-" " ".'. ''-"- '°"-" 18,"



is estimated from the lead term in equation (46) and the crucial oscilla-

tion strength calculations are discussed in section 5.7.2.

3.3.4 Deleting Eigenstates.

3.3.4.1 Before Calculations Commence. In a situation where the hottest

effective temperature (see 3.3.2) is small compared to the excitation

energy of some eigenstate it may be appropriate to save some calculation

time by neglecting that eigenstate. Accordingly, after unnecessary ions

have been removed as described in section 3.3.2 the three following tests

are made, from highest excitation state for which data exists to the

ground state of the highest ionization state present.

Is the equilibrium ratio of ion Z+1 to ion Z greater than about

10-?

Is the fractional population of eigenstate s greater than
10 -3? 

,

Is the energy of state s less than ten times the hottest temper-

ature? 
-- "

If any of the three tests is met, then eigenstate s and all

lower eigenstates are accepted. If all tests fail, s is deleted and the

tests are applied to s-1.

The principal virtue of this procedure is to eliminate upper

states from consideration under benign conditions. For example, undis-

turbed cells at the beginning of a problem, or material late in a problem

which has recombined and fallen to the ground state.
I

3.3.4.2 During Calculations. If the value of ED from (3) is so large

that the energy from some states s, Es, satisfies

19
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Es > V-ED  (10)

then these states are removed. "

There are two physics problems associated with this procedure.

The minor one is that all eigenstates lying above the effective ionization

potential

A V-ED (11)

still exist, even though they lie above the ground state of Z+1. In

principle, account should be taken of these states. One straightforward

procedure might be to add the combined oscillator strength to these states

from state s to that from state s to the ground state of Z+I, on the

assumption that electrons raised to states above the ground state of Z+ I.L.

will be lost (of course, they might even lie above some excited state of

Z+I, to complicate matters). A procedure such as this has not been imple-

mented because the numerical effect doesn't seem important under condi-

tions where our treatment is credible and more serious problems exist

where the treatment becomes questionable due to the second physics prob-

lem, as follows.

If electrons become so closely packed that their Debye spheres

begin to overlap (at 1-eV this would be Ne > 1020) the potential energy

wells of neighboring ions begin to overlap; the plasma begins to show

liquid or solid properties! The concept of an isolated ionic system of

eigenstates begins to fail, electrons no longer have all space available

for orbits, they must find channels between ions. We have not addressed . -

this problem and hope never to be required to do so. N..

What has been done is entirely ad hoc. The last 4 eigenstates

are retained independent of the outcome of the three tests discussed in

the foregoing.

20
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3.3.5 Stiff Equation Problem.

To find the populations of all M eigenstates of (all ionization

states of) some element, the solution is required to the set of equations:

M M
dNs /dt = Ts + I aksNk - Ns [ ask +Bs] (12)

4 ~k=1 k=1

for s from 1 to M.

In (12), all terms are inherently non negative, aij is the

rate of transfer from state i to state j due to all causes, per unit popu-

lation of state i and per unit time, Ni is population of state i and the

terms Ts and Bs refer to sources and sinks of population outside the

set of M equations.

Equation sets like (12) are infamous for having so called

"stiff" equation difficulties when any straightforward method of solution 7:4

is applied. This occurs whenever for some value of s, the input terms

*-'- tend to cancel the output terms, driving the time step toward zero while "..'

* Ns is, in fact, nearly constant in time. In our case such a problem is

guaranteed since we wish to handle cases where equilibrium is approached,

where the inputs and outputs effectively cancel for all s. Given that a

one dimensional radiation transport problem will typically consist of

thousands of radiation and hydro time steps, hundreds of cells, and sev-

eral elements per cell (N,O, etc.) with perhaps 40 eigenstates per element

(say 10 states each for 4 ionization states), a stiff equation problem

would be catastrophic.

To avoid stiff equation difficulties the M equations are sorted

into a set of "Quasi-steady" equations (hereafter referred to as "QS") and

a set of "Differential" equations (hereafter referred to as "DE") which

are treated separately. This separation is currently based on the condi-

tion:

21
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M
At 7 a > G (13)j, kZl es k  ,

where At is the time step, arbitrary for purposes of this test, and G is

some sizable number; G = e3 = 20.1 is the value currently in use, but the

1.. precise value of G does not appear to be critical.

This test is made independently each time the set is to be

advanced, so a given equation is able to be advanced as QS or DE as appro-

priate to current conditions; no equation becomes frozen into one mode or

the other.

3.3.6 Normalization Problems.

S... Three classes of normalization problems arise when solving these

equations by the chosen method.

3.3.6.1 Inherent Numerics Problem. The first class of normalization

problems is inherent in eq (12). To demonstrate it, sum (12) over all s
to obtain

d(N s)/dt = s - N B s  (14)

where the terms containing a's have cancelled. If the set were isolated

as it would have been had we not separated the equations into two classes,

then Ts and Bs would be zero for all s and, ideally, ENS would be

constant. Almost any method of numerical solution will lose this preci-

sion but that is easy to correct; simply sum Ns before and after solu-

tion then multiply the new values by the ratio to force conservation of

total number.

.--..
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3.3.6.2 Set Separation Problem. The second class of normalization prob-

lem is caused by separation of the equations into sets to be treated dif-

ferently. Now Ts and Bs are no longer zero in general. It Decomes

possible to lose or gain population excessively from one set to another.

The problem is even deeper than it appears, for it is not only possible

but fairly common for a subset of DE equations to be coupled more tightly

to some subset of QS equations than it is to the remaining DEs, and the

reverse also occurs. So it is not necessarily true that a common normali-

zation factor, however derived, will be appropriate to all DEs or all QSs.

After the separation into DE and QS a further separation into

subsets is made to locate equations which are significantly more closely

coupled to each other than to others. The precise method for accomplish-

ing this is discussed in section 3.3.7.

"epenuing on circumstances, and the separation algorithm, after

tnis process there are a number of distinct equation sets wnich nay vary

from I (all are DE or all are QS and all are reasonaDly coupled together)
to M none tightly coupled to another in the saIe class) The next ste.

in the solution is to collect the terms in equation (12) for eacn suoset.
'%6

Sano bs tnus are constructed rrom k'ks dnu AS K

Bs i5

Sk ' sk' 5"
k k'

where k' does not belong to the set to which s belongs. After solution,

most sets are renormalized to a value such that total population vithmrl

the set is close to its original value (see section 3.3.8). Thus the step

mainly redistributes electrons among the eigenstates of the subset, with-

out allowing the total population of the suoset to change.

1..
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Next, effective a's are constructed connecting each set m to all

other sets n

a NsY sk/ TN s  (16)nm k s

where s belongs to set n and k belongs to set m.

Then values of n' and m' are found for which %'m' + cn'nn is a

maximum. These two sets are then solved as a differential equation inde-

pendent of all other sets.

Nn nnNm iNm n

N ~N -aNn nm n n Nm

N (t+At) N (t)E + T,,-E) (17) -.'

-* -here

E exp F-a nm+  n )% t

T N (t)+N M(t)

This solution preserves normalization and finds a new value for

the relative populations of eigenstates in the sets n' and m'.

Sets n' and m' are then amalgamated into a single set, set-to-

set a's readjusted, and the process repeated until only one set, compris-

ing 3ll eigenstates, remains. The solution is then complete.
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This rather peculiar form of time splitting has the advantage of

giving priority to the fastest reactions and of approaching the correct

steady state solution. However, if At is too large, it will approach the

steady state solution too slowly; its behavior is similar to an implicit .-.. . .

difference scheme in this respect.

3.3.6.3 Gauss Elimination Problem. The third and final class of normal-

ization problems arises from the particular method chosen to solve each

subset of equations, that of Gaussian elimination (see section 3.3.9 for

rationale and form of implementation). For present purposes, the impor-

tant feature of Gaussian elimination is that the equations are formulated

in such a way as to eliminate the derivative in eq (12). Then eq (14)

takes the form

°r
°

- (13)R

and (18) is the only normalization condition. If Ts is large ana Bs

is small compared to some weighting of the a's in (12), then the total

population of the set may increase by orders of magnitude. If Bs is

large and Ts small, the total population may decrease by orders of mag-

ituue. f, as is aIways :he case when populations approacoi steady state,

both Ts and Bs are small, then the equation set approaches indeter-

minacy ano Ns approacnes zero for all s.

To avoid this problem, Ts is compared to the bound-oouna input

terms for that state of the set with the largest population, s', &MA

Ts < E ENS, Nk (19)
k

ind 3s is compared to bound-bound output terms,

SC k < C Bs ? (20) .'
k s k S.. (
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If either test fails then the state s' is removed from the set, hela

constant, and becomes a source and sink of electrons for the remaining

members of the set, so that they will have appropriate values of Ts ,

Bs .

The current value of E is 10- 6 but the precise value is not

crucial. .

3.3.7 Sorting Algorit.n.

The sorting algorithm currently in use is applied separately to

DE and QS, potentially breaking each of these major groupings into smaller

sets of equations.

The first requirement is that all members of a set be contiguous

in index, which is equivalent to being contiguous in energy since the

indexing system for eigenstates runs from low energy states to high. This

condition produces some unnecessary sets occasionally but prevents the

possibility of, say, including the ground states of two ions in a single

set relegating the excited states connecting them to another set. Should

such a situation occur, the intermediate states may not be able to come to

the correct configuration since they will be unaole to alter the ratio

between the two ground states.

The second condition for membership of state i in a set is

applied only to QS equations. It requires that for some member j of the

set,

(ij+ji) At > G (21)"

This test is similar to that of (13) ano the same value of G is S

currently used. The difference is that it insists that state i meet the QS

test for some individual state j in the set, rather than that i meet the

26
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test globally through the sum of aij over all j. It prevents the possi-
bility of i being QS with respect to some member outside the set but not

to members of the set. An example is the upper state of charge state Z

being QS because it is coupled tightly to the ground state of Z+1, which

may be handled as a differential equation, and upper state of Z not cou-

pled as tightly to any other state.

The final criterian applies to both DE and QS. It is that for

state i to be included in the set, it must be true that for some state j

in the set either

Taijt i for all k (where k can be DE or QS)

or "

_ji > 014 for all k.

That is, the transition rate from i to some member of the set

nust be the largest transition rate out of i, or the transition rate from

some memOer of the set to i must oe its largest transition rate.

These criteria sound quite restrictive and nay, in fact, oe

)veraone. owever, because of the -enuency of eiyenstates to transfer

most rapidly to an adjacent state, the results of application are not as

restrictive in practice as might seem to be the case. Breakpoints in sets

typically occur where one wants them, at states with dipole forbidden
transitions to neighbors and between states for which data exists and the

artificial uppermost state of an ion.

When electron density is very low a situation occurs where the

largest rate for many excited states is spontaneous emission to the ground

state. Then most sets consist of a single state which is aovanced by the

time splitting nethoa described in 3.3.6.2. No problem ensues, not even a

noticeable penalty in CP time, for in this situation the equations have

benign behavior and the time splitting technique is faster than Gauss

elimination, the method used to redistribute population within a set.
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3.3.8 Freezing Problem. W...

The elements of the method for solution can be summarized as

follows. In order to avoid stiff differential equation problens the equa-

tions for eigenstate population were broken into two sets, one set of

stiff equations (QS) for which solution methods exist and another set of

limp equations (DE) for which other methods of solution exist. However,

the best methods we have found are imperfect. To counter these imperfec-

tions the equations may be further sorted into smaller sets.

Now what we would like to do in the interest of simplicity and
cleanliness of logic is redistribute eigenstate populations within each of

the final sets as influenced by initial conditions of all other sets; then

renormalize the population of each set to its initial value to prevent an
istability due to overcorrection; and finally to adjust the relative set .--.

populations with the time splitting technique. This approach works well

'or almost all situations but fails in situations similar to the follow-

ing.

Suppose ion Z+I is recombining to ion Z. Also suppose equation

set : ;onsists if the lowest states of Z+1 and perhaps the highest states

of Z and is highly populated. Set A is rapidly feeding electrons into set

6, the intermediate states of Z. Set B has a small population despite the

electrons received from A because it rapidly feeds them downward to set C,

tne lower lying states of Z. Set C is also highly populated. Further,

suppose set B is currently some how underpopulated. Situations similar to

this are common for either recombination or ionization. They present a

choice between: (i) a stiff equation problem where the time step is con-

trolled by insisting that the population of the low population set B not

,nange too Tluch in i cycle or (ii) a stability problem where the popula-

tion of set B fluctuates wildly vnile sloshing electrons erratically

between sets A and C.
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Application of our desired method can, under exceptionally un-

lucky circumstances, proceed as follows if the time step is chosen to be

appropriate to the A to C transfer, as one would wish, rather than the

much smaller time step appropriate for B from A or B to C.

First, the sets are solved independently using initial condi-

tions. This results in an appropriately modest depletion of set A, an

enormous relative net increase in population of B (since it was assumed

underpopulated - it gains more from A than it loses to C and both the gain

and loss are very large compared to the population of B because of the F-

large time step), and a negligible increase in the population of C (essen-

tially equal to the too low initial population of B).

e. The next step of the method renormnalizes all three sets back to

their original population, nipping this incipient instability in the bud.

The result is redistributed eigenstate populations within each set but

initial total set populations.

Now the method looks at the effective set-to-set transition

rates and picks out the maximum, say it is B to C. New B and C popula-

tions are then found from '17); if the time step is as large as assume it..

is likely that B and C will come to the steady state ratio they would have

if state A weren't present, which keeps set B population below its correct

value, and, since B started with too low a value, not enough electrons

have ueen transferred to C. Sets B and C are then combined into a set

4 (B,C) with relative B to C population frozen. New rates are calculated f-

between A and the combined sets (B,C) and finally the two sets A and (B,C)
, solved with (17).

To the degree that electrons are properly distributed in all

three sets the result is that A is correctly depleted, C is correctly

enhanced except for the incorrect sharing of electrons between B and C

29

"- . .* .-. -.

".-".-'--.-.. ...... .-. ..,.... . . . . .*.. .. . . . . . . ...." ,- - .- "'- " - .. . . . . . . ., ,-'" .. - .' . . ... .• . ,.- - -. - - "



(minor because B has low population), and B is left with a population, ..-
frozen at too low a value with no way to build it up to the proper value.

In fact, because the population of B is kept too small, the electrons in B

will be incorrectly distributed and, to some extent this is also true for

A and C so neither the set populations, the electron distributions nor the

rates will be quite right.

There are two mathematically sound ways to cure this sort of

problem, (i) reduce the time step to a value which produces a small rela-

tive change in set B population from both A to B and B to C transitions -,

and (ii) elaborate (17) to handle three sets simultaneously. The former

is unacceptable because of CP time restrictions and the latter has not

been tried because there is no guarantee that a more elaborate 4 or 5 set

problem would not occur.

What has been done instead is an empirical reduction in the

aegree of renormalization of small population sets after the initial solu-

tion. The proolem only occurs for sets with small population and wouid

not exist if sucn sets were not renormalized after the initial solution

for electron distribution within the set. Therefore the renormalization

procedure is ,nooified to the following:

(1) The renormalization factor, R, is calculated for the set

(2) If the set population is larger than some fraction, f, of

the total element (all Zs) population, renormalize. The

present value of f is 1/3.

(3) If the set population is less than f then replace R by the

function

R'= Ra+1-a (22) P

and renormalize using R'.
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The function a is given by

a = exp(12-R-1/RI ) (23)

From (23) one sees that for R >> I or R < 1 the function a ap-

proaches zero and R' therefore approaches 1. In this case almost no

renormalization takes place, the modified value of set population is

accepted, allowing low population sets to approach their proper popula-

tion. On the other hand, when R' is near unity, a approaches unity faster

than R and renormalization is accepted, preventing oscillation about the

correct value.

The approach is inelegant but yields good answers without signi-

ficant penalty in wasted CP time.

3.3.9 Gauss Elimination.

3.3.9.1 Quasi-Steady Equations. In the quasi-steady approximation the

derivative in (12) is small compared to other terms and is neglectea. The

set of equations reduces to a set of linear algebraic equations for 1 < s

rn

N (S s,m+Bs)Ts + s,m (24)

wnere for convenience we have defined the bound-bouna output term

Ss,m - a sk 's,s 0 (25)

S i
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and the bound-bound input term

m
''i km ,s : 0 (26)

se.24:There are at least three standard approaches to solution of the

set (24): determinants, iteration, and Gauss elimination. Both determi-

nants and Gauss elimination are quite sensitive to round off errors so our

initial choice was iteration despite the fact that it is reputed to be the

slowest of the three methods. The allegation was amply verified by our

experience and eventually we were driven to Gauss elimination.,..'.

The advantage of Gauss elimination is that it is faster than

iteration. Its advantage relative to the method of determinants is that

it was easier to analyze its sensitivity to rouna off problems. In fact,

we were able to devise a modification of the technique which completely

eliminates this problem for equation systems like (24).

To see how to do this consider the mechanics of Gauss elimina-
tion. Initially one has the m equations (24) in m unknowns, Ns . The
set is reauced to rn-I equations in rn-i unknowns by substituting the 1th

equation into all the others, then to m-2 equations in m-2 unknowns by

substituting the m-i equation into the remainder, etc., until only one

equation in one unknown (N1) remains. This can be solved. Then N, is

substituted to find N2 etc., until all Ns are found.

Given that all terms of (24) are nonnegative as is our case, the

only way to produce a serious round off error is by some step which I

requires a subtraction. This occurs when substituting the mth equation

into any equation s as follows.
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Write the equations for Ns and Nm in the form

S ss,m S +Bs s + Is,m-1 + cm,s Nm (27)

Nm (Sm,mm +Bm m + Im,s-1 + s,m Ns + Is+,m-l (28)

" The subscript m-1 is allowed on the last term because orn,m = 0. Now

substitute (28) into (27) and collect terms to yield an equation of the

same form as (24)

N (Ssm+8s) T' + I' (29)s. s- s Ts Is,m-i '12

where

ST 5  + T(S ) (30)

m 
(31rn-i

's,m-i k-1 k ks

S ks + k,skm/(Sm,mBm)  k*s (32)

and the multiplier of Ns is

,S,m~l+Bs : Ssm _l+,sm + Bs -as'sm/(Smm+Bm) (33)

Equation (29) has the same form as the original (24) but with m

index reduced by unity, as was described. The problem is that the single

subtraction, in (33), will sometimes nearly cancel the multiplier of Ns ,

for some values of s. Very bad answers result when this occurs.
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However, further study of (33) shows that the subtraction can be

' eliminated. Look more closely at the second and fourth terms on the RHS

of (33)

a sm %sasm/(Sm,m+Bm)

= asm(Smm+Bm- ms)/(Sm,m+Bm)

=asm (Sm,s-l+ms+Sm,s+l+Bm-s)/(Sm'm+Bm) (34)'-

The only subtraction cancels!

In fact, we can use the same modification of a as in (32) to

find

m-1
a' (35)

Ss,m-1 k ask 

and define

B' = Is + asmBm/(Sm+8m) (36)

s m mm m (6

and Eq. (29) has the proper form with no subtractions. Accordingly no

round off problem exists until the number of ecuations approaches the big-

gest integer which can be represented by the computer word length (10? for

the smallest modern machines), or perhaps the square of the biggest inte-

ger (1014).

Indeed, back substitution of answers into the original equa-

tions, when m is around 40, show discrepancies of at most the last three

bits for a 32 bit word.
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3.3.9.2 Differential Equations. Eq. (12) can be converted to a simple

first order difference scheme by substituting'"

dN /dt = (N (t+At) - N (t))/At (37)

Then (12) can be written

SN(t+At) (Ss m + Bs) Ts' + Is'm  (38)
s Im s

which is identical in form to (24), if we define

ic ,s At ks

m
S'm -- S kk= 1

s a m - "s k"

2'I At3s

T' Ns(t) + tTs

i' = N (39)
sm k Oks

Having done this, the same Gauss elimination routine as was used a,

for quasi-steady equations can be used to obtain a first order implicit

solution for differential equations.
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SECTION 4

RADIATION SPECTRUM AND LINE SHAPE

4.1 NOMENCLATURE.

One speaks of of "lines" meaning spectral emission or absorption

features as well as energy quanta absorbed from the spectrum or emitted to

the spectrum by an ion. When translated into Fortran such usage can be

very confusing. Therefore in the following, the radiation spectrum repre-

sented by a set of numbers denoting frequencies, energy flux, etc. has no

lines. It has "features." A "line" will be associated with an atom or

ion, it refers to energy quanta absorbed from the radiation field or emit-

ted to that field associated with transitions among electronic eigen-

states.

4.2 SPECTRAL FEATURES.

The convention adopted is to represent the radiation field as

being composed of a number of spectral "features," hopefully less than 100

of them in a real problem, although 1000 are allowed. Each feature is

defined by four parameters; its central energy, vf(eV), its central, or

core intensity, Uc(erg/cm2/sec/eV) or (erg/cm 2/sec/eV/sr), its core half

width, Wf(eV), and a parameter denoting the strength of its tail,

UT(erg-eV/cm2 /sec) or (erg-eV/cm2/sec/sr). The feature intensity is

calculated from parameters as
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uc  if 1 V- Vf
1  Wf(4

UTi(Vf) if W> Wf

In addition to these four parameters there are three rules of

logic: (1) each feature is associated with a "level", level 1 feature

parameters are stored first, followed by level 2, etc. Levels are distin-

guished on the basis of core width; roughly speaking, core width should

become narrower by at least about a factor of four when tne level in- or

creases. That is, higher levels represent narrow features superimposed on

broader ones, (2) within a given level, features are stored sequentially

on the basis of central energy, vf, (3) level I represents the continuum;

its features have UT = 0. There are 9 levels allowed. There is no

'imit on -Me numoer of features alloweu in each level, only on the total

number of features. The logic at present requires at least one feature to

:e in level i, although its intensity may be zero.

The system is believed capable of representing a radiation field

to any desired degree of accuracy needed for energy transport and the

associatea proolern of eigenstate oopulation as Yell as output spectrum for

systems analysis and data comparison. I

4.3 LINES. , .-

Atomic (ionic) lines are also modeled with four parameters,

'epresenting a Doppler oroadened line core with Lorentzian wings. The

parameters are central energy, vL(eV), Lorentzian central cross section

aL(cm 2), Lorentzian half width, WL(eV), and the Doppler width to
Iorentzian Niith ratio, x.
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W = WL v/r+x 2

... a c  A +x 21T

2.490606 + 0.539095 x1 " 65668

x x < 4 (41)

1.74b23 .1 " 
08419 x x>4

then

,', ° exp[-(V-vL) 2/W2 ] , J L c

L
a(v) = (42)

> xp

," i~+( V- V_ ) 2 L  Lc

This representation gives the correct central cross section aria

the correct cross section in the far wing always. For x less than about 3

it has a maximum error, as compared to the more correct Voight profile, of

-nder 30 percent, occurring at the transition point, xc. When x > 3 the

error, an underestimate of cross section, becomes worse, but when x > 3,

the wing portion is less than 10-4 of the center so this error cannot

seriously affect any overlap integral, thus cannot seriously affect any

','*. rate.

4.4 LINE WIDTHS.

The Doppler width of a line is given by

41D = ,/c V2ai/M (43)
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where c is light speed in vacuo, e is heavy ion temperature, and M is

heavy ion mass.

The Lorentzian width is the sum of widths of the two eigenstates

involved in the transition. For each of these states, width is

WL = 4T/ (44)

where r is the effective lifetime of the state of ion Z against all forms

of decay, plus thermal electron induced Stark broadening, rs .

r F + r + r + r + r + + r + rPB (45) V'

where Fsp is spontaneous emission rate to all lower states of Z, rEB is

electron collisional oound-bound rate to all states of Z, ?EF is elec- -
tron collisional ionization rate to all states of Z+1, rER is electron -'-."

tnree-body recomoination rate to all states of Z-1, rPF is photo ioniza-

tion rate to all states of Z+I, rPR is radiative recombination rate to

all states of Z-1, and FpB is beund-oound photo induced transition rate

to all states of Z.

These rates are calculated in the order shown in (45), from left V

to right, because the rates become increasingly sensitive to state width

from left to right. In principle one should iterate (45) to obtain a self

consistent state width. In practice, the bound-bound photo transition ,.-.

rate is the most sensitive to width; if rPB changes r by as much as 25%,

that one contribution is iterated.

The method for calculating each of these rates is described in

the following section 5.
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V. SECTION 5
RATES

In the following discussion the convention is adopted that the

parenthetical expression (a,b) means "from a to b."

5.1 STARK WIDTH.

The net effect of Stark shifts due to bombarding thermal elec- -

trons is to broaden eigenstate energy. This process does not cause tran-

sitions between states but, because its effect on line width is similar,

it is discussed here. To a first approximation Stark broadening is not

dependent on state width, so it is appropriate to calculate it oefore

other contributions to state width have been evaluated.

A formula for thermal electron Stark broadening, Fs, is given

in eq (526) of Ref. 2. This formula can be fit within a few percent over

the interesting range of electron temperature, e, by

rs = WsNe//VO [I + r/(As+r) + CsePs ]  (46).."

where r is the ratio of e to the Rydberg (13.6 eV) and Ws, As, Cs, and ps

are parameters adjusted to give a best fit to Griem's formula for eacn
eigenstate. These parameters are derived at the time eigenstate data is
collected and treated as eigenstate data (see section 6).
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5.2 SPONTANEOUS EMISSION.

Spontaneous emission is also insensitive to state width and is

the second contribution to state width, the first actual transition rate,

calculated. From Ref. 3., p. 58, the spontaneous radiative transition

rate from upper state k to lower state z is

rs ,):(87r 2e 2 (2)/(mc 3)(gg/gk)fk (47)
spx kfk

in c.g.s. units. In (47), rsp is in units of sec - 1, e (e.s.u.) is F,
electron charge, m(g) is electron mass, c (cm/sec) is lightspeed, the g's

are state degeneracies and fik is the oscillator strength from state z

to state k. In more convenient units (47) becomes

rs(k, z) = A (E-E )2 (g (48)
.- sp r k z Zg/ gk)~ (4k

wnere the E's (eV) are state energies and

Ar = 4.33927x10 eV 2 sec -  (49)

5.3 ELECTRON BOUND-BOUND COLLISIONS.

Burgess (Ref. 4) gives a formula for electron collision cross

section from lower state x to upper state k as

%k(cm2 ) = AR g fCzk/E(Ek-E E > E E (50)

where A : 1.28x10 - 15 cm2 , R is the Rydberg, g is the Gaunt factor, f is

y e
the oscillator strength, E is electron energy and Ek, Ez are the state

energies
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To convert (50) into a rate for electrons at temperature e one

multiplies by electron velocity then averages over a Boltzmann distribu-

tion to obtain

rEBz,k) f CCf/(1/ 2 (Ek E)] exp(-(Ek.E )/a) (51)

CEC 'z 6x106 v/ e'

where was taken to be 0.4 and a and E are in units of eV.

-p-

*1 a By detailed balance, the downward rate from k to x is

,*.-.4..

ell,.

r EB (k, _) = CEf qg X/ rgke1/ 2 (E k-E (52)

5.4 ELECTRON BOUND-FREE COLLISIONS AND THREE BODY RECOM4BINATION.

In Ref. 6., Lotz gives a general formula along with necessary

parameters which gives a good fit to measured electron collisional ioniza-

tion cross sections and rate coefficients for any atom or ion in the lower

portion of the periodic table. His fit is based on the ratio

x :AE/ e (53) 1

where AE is change in energy, ground state Z to ground state Z-1. He sug-

gests that ionization rates from excited states be approximated by simply.

substituting the appropriate value of AE. We have adopted this suggestion 3

and generalizea it to include excited states of Z+1 as well. ,..

parame or ourc apisationhsfruada ewl fit to therdelcrnco soa simpler-

%4 
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rEF(k,p) = (AL/e 3/2)NeE (x)/x PL  (54)

where j
x = (Ep+Va-Ek)/e (55)

e is electron temperature, Ne electron density, El the first order expo- ]
nential integral, Ep and Ek are state energies in Z+1 and Z respec-

tively. Va is the effective ionization energy of Z, and AL and PL w]e,-1

are parameters fit to Lotz's formula for ion Z. These parameters are ,

derived by comparing the sim of (54) over p to the Lotz formula for state

k of Z.

It is easy to criticize this procedure out criticism can oe

readily counterea by comparison of the formula to data except for the gen-

eralization to excited states of Z+I (for which there is no data). That

criticism must De countered by a cnallenge to find a better formula,

coupled with the observation that ionization rates to excited states of

L+, are almost always too low to control state populations.

The reverse reaction, three-body recombination, can be aerived 9

from rEF Dy use of the principle of detailed oalance, which yields

rEB(p,k) = rNeg k exp(x) 3 /rQe/2g p rEF(k,p) (56)

= 6.037.102" eV- 3/2 cm-

where and gp are statistical weights and Qe is the partition function

of a free eectron at i-eV temperature.
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5.4.1 Contribution from Eigenstates Above the Continuun.

The quantity Va in (55) is the ionization potential depressed

by polarization effects of the plasma. In all our formulae, states which

lie above Va are neglected. But these eigenstates still exist and the
oscillator strength to them still exists so they may possibly have some

influence. To evaluate the magnitude of influence of such states we con-

structed and implemented a simple model. It goes as follows. The infinite

number of eigenstates which lie between Va and the vacuum ionization

potential, V, all lie above the ground state energy of ion state Z+1, in

most cases extremely close to this ground state. So assume any bound-

bound electron collision to one of these states to be instantly followed

*j by another collision which frees the electron, resulting in a ground state

: 4- ion.

To evaluate this mouel -ie need to sum (51) over all states above

rn and add the resulting rate to rEF(k,1) (from Eq. 54), that is, to

the electron collisional ionization rate to the grouna state of Z+1.

If all states are assumed hydrogenic, Kramers rule (65) is

adopted, and in the exponential, upper state energy is taken to be "a to

-roauce a simple overestimate of the effect, one finds

r =2 CNe/(Ve1 / ) expr-(V aE )/elI (57)

v~nere

- k 
5/(k 

2
-

2
) 

1
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A reasonably good approximation to I may be founa by defining

_ a S2 2 b (Sm+1) 2 _ z 2  c (Si+1.7) 2- 2m ' ' .m

(58)

then

I = Sla 4 + (S4+)S/b4 + 12 [(ik/3)Ic3 + Z2/c2 + 1/c]

The term (57) is added to the electron bound-free rate when p :

1. Its most important effect should occur at high electron density when

Sm becomes low.

To date no case where the additional rate (57) is important has

been found. This has discouraged us from seeking corresponding effects

- for other processes. Further, unless we are able to find some case of

potential interest for which the effect matters, we will delete it from-

the code to save time, storage, and eliminate unnecessary complication.

5.5 RADIATIVE IONIZATION AND RECOMBINATION.

5.5.1 Radiative Recombination.

The radiative recombination coefficient from state k of ion Z to

state i of ion Z-1 can be obtained from the inverse photoionization cross

section through the principle of detailed balance, but not as simply as

', for collision processes.

Let a(z,Z-1;k,Z;v) a a be the photoionization cross section at .

frequency v from z to k. a(k,Z;z,Z-1) --- De the radiative recombination

coefficient from k to z.
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Then in general, for these processes only,

-. , N = AeN(Z,k) - NZ f dJ v)dv (59)
V 0

where N is electron density, N(Z,k) is the density of Z ions in state k,
e

N Z is density of Z-1 ions in state x, v0 is the minimum frequency which

can ionize from t to k and U(v) is the photon omnidirectional spectral

flux (photons/cm 2/sec/hz).

S. To apply detailed balance, assume (59) to be written for equi-

librium conditions. Then N must be zero and U(v) must be Planckian,

U(v) = P(s) C E2/(exp(t)-1) (60)31p
where

== (8 7E /hIC 2)

c(eV) is photon energy, e(eV) is temperature, c, converts from eV to ergs,

n is PlancK's constant and c is the speea of lignt. Substitute (60) for

U(v) in (59) and setN, = 0 to obtain

. F- : N _ P ( )dE (611
NeN(Zk) 0

The population ratio in front of the integral can be found for

-quil iuriu, cona tins 'ner'flo(ynaii ical 1y, by taKing tn'e ratlu of parti tion

functions
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q %

N ___Q h3g x~x g2 (2 -nkT)3/21 (62)
NeN(Zk) Q(e) Qk kexp( 19k

In our units this is

N N(Z,k) (63)
e

where Qe = 6.03704x1021 cm- 3 eV-3/2 and

x - (Ek+Iz l-E )/e (64)

is the ratio of energy required to ionize state t then bring the ion to

state k, to the temperature.

Now we have the multiplier of the integral in (61) in terms of

known quantities and must evaluate the integral. To do that requires an

expression for the photoionization cross section.

3egin witn Kramer's formula for ionization of hydrogen from

principle quantum number n

I k ( v) = (64mZ4e0)1(373" ch'O)g/(nv 3) (65)

4nere n is electron mass, e is electron charge and 7 is the Gaunt factor.

Somehow (65) must be generalized to apply to ions other than

1ydr-gen in to be specific with respect to the final state of the ion Z.
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We chose to generalize (65) beyond hydrogen by eliminating as
much specific Z and n dependence as possible, replacing it with energy

dependence, through the hydrogenic formula for ionization potential

I Z = (2ff2mZ 2 e 4)/(h 2 n2 ) (66)

Substitution of (66) into (65) to eliminate Z dependence and

conversion to our units results in

7(E) = CHI/( n 3) (67)
H Zw

where

C H = (16e 2hg)/(3v T mcE 0 ) 3.2275-17 cm2 eV

if the Gaunt factor, , is taken equal to 0.3.

To use (67) for specific states, the simplest methoa is to just
V., replace I by

1z = Ek + I - E (68)

where I is ionization potential of the ground state of Z-1.

Substitution of (68) into (67) followed by substitution of (60),

(63), and (67) into (61) leads to

=(p( x,k)C H C p 9/g (Qe ngk )F(x)
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where

F(x) x2eX f dt/[t(e t-1)] , x0 = 1Z/6 (69)
x°

and the constant p(t,k) will be unity unless data on a specific transition

indicates otherwise.

An approximation for F(x) good to better than 1% everywhere is

x2ex[1/x + (tnx)/2 - x(1+x/2)/12 - .627721 , x < 0.25 .4

x e Ej(x) [x2+a x+a 2 ]/ x2+b jx+b 2] , 0.25 < x < 4.3

F(x) (70)

2 X.x eaI(x) 4.3 < x < 60

x , 60 < x

with a, 2.9823 , a2 2.4416, b, : 3.5329, b2 : 0.38094 ana EI(x) is the
i:.. ?.  first oraer exponential integral. ]?]..

5.5.2 Photoionization.

The rate of photoionization from state z of ion Z to state k of

ion Z+1 is given byj.

r = r oU( v)d v (71)rz, k  U
V 0

where a is given by (67) and U(v) is the omnidirectional spectral flux

described in Section 4.2, eq. (40).
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To bring (40) into proper units, (71) becomes

r ,k  v- C 1 2l n f U( )Ic3de (72)
r = H 0 - -f/

f f

where the subscript f denotes a spectral feature.

The representation of U given in (40) requires three types of

integrals to be carried out in (72) corresponding to a rising tail of U if -

E < F-WF a constant U if vF - Wf < E < VF+WF and a falling tail if

> xF+W F  If the threshold energy for ionization, T' lies below the
".4,.

feature core, all three types of integral are present etc.

The simplest type is that of constant U, applicable to the

_ core. Then

r Jde/ = /2(1/B2-1/T2 (73) '-

where B -max (vf Wf, _T)  T vf + Wf

The two types of feature tail integrals can be handled with a

single equation.

If below the core, (rising tail),F,.

X YET~

y- Vf/( Vf-Wf)

If above the core, (falling tail),

x : max f/ET' \f/(Vf+Wf)]

y= 0
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Then

r UdE/E 3 E (UT/V) {3 [.n i + 2 (x-y)

+ (x2-y2)/2 + (y-x)/[(1-y)(1-x)] } (74)

5.6 BOUND-BOUND RADIATIVE RATES.

To calculate the transition rate from lower eigenstate, z, to

upper eigenstate, k, of ion Z due to photon induced transitions, the inte-

gral

r : f dUdE (75)

must be evaluated using the line model (41) for a and the feature model
'40) for U.

Given rzk, the inverse rate may be obtained from detailed

oalance and is

r kz = (gz gk)r Zk (76)

The integral (75) may be sensitive to the line width, (45) and

the terms, rpB, due to photo induced transitions in one or both of the

states i and k may dominate line width. Thus the rate rk (and rkL)

implicitly depends upon itself as well as all other rates to and from z.

"., and k. To partially account for this without incurring too much CPU .

penalty, if the rates rk and rkL increase the line width by as much as ".. k,

25%, the rates r k and rkt are recalculated at the new line width. This

will not cover all cases, but should cover all rapid transitions, which ,

are the ones of most importance.
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Evaluation of the overlap integral (75) is, of course, the heart

of the rate calculation. The line and feature models were designed to be

realistic, yet allow analytic evaluation of the overlap as far as possi-

ble. The sketch below illustrates the problem.

W2 UC

'.u.T uT .:

VL V.

-4,

The central line frequency, vL may be located anywhere with

-.--. * respect to the central feature frequency, VF and xC may be larger,

smaller, or identical to Wf.

Eight logically distinct cases are recognized. Two are handled

by simple analytic formulae and the other six by various sequences of

caIs to four subroutines. Three of the four subroutines evaluate ana-

lytic formulae; alas, the fourth is a numerical integration. Perhaps

J
-  someday we will find an adequate analytic approximation for this one also.
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Case I Line versus Continuum

If the feature is in level 1 of the spectral description it has

no tail, UT 0 0, and can be assumed very broad with respect to the line. ]
Thus in (75) one can take U to be constant at the value Uc and use infi-

nite limits for the integral. In that case an exact integral exists for a

Voight profile (which is a better representation than (45))

faUdE = UcGLWL/ ( VL O) (77)

"s. where co converts ergs to eV and the symbols are defined in (41) and (42).

Case 2 Line and Spectral Feature Well Separated

This is another especially simple case, and snould De appropri-

ate for most spectral features for any given line. If (Wf+WLXc)/ vf'vj <

0.25 then

SaUdE : nLaLUT/(vf-vL) + 2aL(UT/Wf+UcWf)/A 2  (78)

where

A 1+ (vf-vL)/WL

The other cases are: (3) cores don't overlap, line below feature, (4)

cores don't overlap, line above feature, (5) cores partially overlap, line

below feature, (6) cores partially overlap, line above feature, (7) fea-

ture core contained in line core, and (8) line core contained in feature

core. Each of these cases is handled by a special sequence of calls to

subroutines which evaluate the following four types of integrals.
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Type 1

.- b

T I - 11 + (v-vI) 2 /WI' (v-vf 2 dv = P(a) - P(b) (79) -
a L Lf

The primative of (79) is

WLP(V) = (1 + (1+a)2)- 2 { , [1 + (y+a)2]
L,+ (a2-1)tan-' (y+a) - 2azny - (i+a2)/y} (80)

N . where

. y (v-vf)/WL, a - (vf-vL)/WL

Round off errors are a good possibility in evaluating, or dif-

. ferencing, (80). The scheme used is to define a function, T, with expan-
% sions of some terms in (80) such that, if a/y > 10-2:

T(y) : zn{1 + [2a + (1+a 2 )/yll

+ (a2 -1)tan-1 (y+a) - (1-a2)/y- (a2-1)ir/2 (81)

If czy < i0- 2:

T(y) : [- (2+1) 2/3 + (a/y) (9a4+2a2+1)/2 ]/y 3  (82)

Then

T1 = LUT [(b) - T(a) 1/a[WL(+2 )] (83)
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Type 2

b
T fU Cy ~ + V- vL)2/W]dv

a

U c LWL Itan (v-v+Wf)/WL - tan- 1 [(vf v-Wf )/WjL (84)

Similarly to type 1, to avoid round off or truncation problems:

If Jyj > 5

T(y) =-y- I + y-1/

if Ky 10-1

Else

r(y) tan- y

Then

T T2 -U oaLWL [T(b) T( ta)]

whee b (vf-vL+wf)/wL ad a (vf-vL-wf)/WL

Type 3

T be( vL)2/wv (36) A

aN
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Standara formulae exist for approximating this integral, one

must only be sure to get the sign right since a and b can be on either

side of _, and check for a and b on opposite sides of

Type4

b _ )  I1W2 I-
T4 f e bv- f)2d v (87)

a

To the present, we have found no adequate analytic approximation

for (87). It is integrated numerically.

5.7 OSCILLATOR STRENGTH.

5.7.1 Oscillator Strength for Real States.

In the foregoing sections, f k is oscillator strength for allow-

ed transitions, and is input data for the calculation. To account for an

intuition that nigher multiple moments should be more effective for elec-

trons than for photons, we introduce the arbitrary rule that for electrons

f max fdata for optically allowed transition, fl} (88)

where f is taken to be i0-3  This cavalier treatment of optically for-

bidden transitions should be improved someday, but the above is how it

stands at present.

.4
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5.7.2 Oscillator Strength to the Artificial State.

In order to calculate transition rates between some real eigen-

state with index z and the artificial state with index a, an oscillator

strength, f must be calculated. This can be done by assuming a model
za'

for population distribution among the component states of the artificial i

N,.' state, suming the transition rates to all of them, and finding that value

" of f which yields the same total rate.
La

The model assumed is that eigenstate members of the artificial Fv:

state are hydrogenic and have a Boltzmann distribution for all principal

quantum numbers above some value, b.

The first step, then, is to find b. This is accomplished by

comparing the sum of all spontaneous radiative transitions to lower states

(easy to approximate) to the electron collisional excitation rate to the

next higner state (also easy to approximate). The idea is that spontane-

ous radiation is the only process tending to drive state populations out

of equilibrium and it drives electrons downward. So a state can be in

equilibrium relative to its neighbors only if other processes, in particu-

a'r those oriving electrons upward, dominate spontaneous emission. The

simplest such process to consider is electron collisional excitation from N

state b to state b+1. It would be more elegant and a little better to use

the sum of all upward collisions but that is mathematically cumbersome and A

furtner, for hydrogenic states the widest energy gap to bridge is to the

adjacent state, thus that single transition should serve as a good measure

of the sum to all upper states.

Of course, it is possible that electron density or temperature

could be so low that photon induced upward transitions dominate electron p .

induced transitions and should be used in the comparison. Radiative

57 .
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transition rate is more expensive to calculate than collisional rate even

for the b to b+1 transition, but given an arbitrary line spectrum, one

4. cannot assume any single transition to be typical, so the full sum woula

N-1 have to be approximated somehow. This elaborate process seems unreces-

sary; for if radiative transitions dominate, making our estimate of b too

large and thus our estimate of fta too small, it is probable that radia-

tion will be intense enough to drive state z toward equilibrium with state

a even with a somewhat low value of f

If V is the vacuum ionization potential of a hyorogenic ion then

the energy difference between the hydrogenic state b and some lower hydro-

genic state t is

, E b - E = V(b2- 2)/b2z2  (89)

Ana Kraner's formula for hydrogenic oscillator strength is aoout

f Z= 2zb3(b2- 2)- 3  '90)

Substitution of (90) and (89) into (48) and recognition of the

'act tnat iydlrogenic state statistical yeignts are proportional to princi-

pal quantum number squared yields the transition rate due to spontaneous

radiation,

r (b, z) = 2ArV 2 rb Z(b2 Z2 )-1 (91)
spr

To get the sum of all transitions from b, to states I through

b-1 approximate the sum of (91) by an inteQral. For b large compared to

unity the integral is approximated by
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b-I
S = Y r (b, z) 2Ar V2/b5 [+ Bnb, (92)

• -. ,'W

where, if the normal integration limits of z 1/2 to b 1/2 are taken,

c : .347 and B = 1.5

A slightly better fit to the sum is obtained for the most impor-

tant, low, range of b by taking

c = 0.411 and B = 1.516 (93)

Substitution of (89) and (90) into (51) yields the electron col-

lisional rate from b to b+1. After clearing

rEB(b,b+l) (2CEcNe/eI/ 2V)b3(b+l)S/(2b+l) exp-y) ,94

/.qhere

Y = V(2b+l)/reb'(b+l) 2

After an appropriate valje ,)f the ,es-reu 't )f "

chosen, one iterates (92) ana 94) to fina b. The ratio aus. e :%se'

* empirically, on the basis of net ionization ano recomonat'on '13s.

value of this ratio which yields good answers is 0.1.

The next step is to find the normalized population distriou-

tion. A Boltzman distribution is a good approx 7ndt 1o0l r these ,te,

because the rate of collisional diffusion of electrons is very high aion-

very highly excited states compared to the rate of transition froe sjn

states to lower ones. So we expect Tne indllidua' ste , Dc -

some state K to be

59

%. .. . . . . . . .

ED .* -: --* . -
L!d.tJ 7;



%"%

3,,
%..

zation constant, C, eq. (95) must be summed and set equal to the total.

population of the artificial state, p" As might be expected from the

. .. form of (95) the summation, even in an integral approximation, is pretty

aB',

: ,. messy. 'An approximate function, accurate to better than 4% everywhere, s .

C = 2 pa ;F96 1 
-,

%d wi tn
= g-e S X t e S .a..4

zancosatC q ,5 us es.mdade qulUtn oa

formf,(95 the sumai, ee nanitga apprximtioi prett-:J

%J.,
T.
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•~ %i

%

a --.-- ,

• %

, .. .. *," - * . "-. - *-. •. I . .. • .,



%. % .%~.e
a

z..Z. Radiation Oscillator Strengtn. To find the effective oscillator

s ,ejtjtn %jr radiation to thie artificial state frm sowne real state z we

% , st now sim 40 over all states which make up the artificial state.

I- Suostitjtiion of 39) .90), k95), and (96) into (48) and surr ing yields

r \k, ) : V 2( /iV) 3/2 Pal(tF) exp(V/gk2 ) (100)4A b r ..7 (0r prab k (k -L2 ) -.

:f tme sw in (100) is replaced by an integral its value is

Dexp(V/ ek) 'Kk- 2 
' k-

* ,e-'99 - . 71- 9-_ onent, 3 'ntegr3i )f rie :Irst ina. :t s conve ien i t

'nit 6 i :)n i cipr,3x',ndce i an ayt c y out since the exponent ai

'r 1, 3W7 :e ipprijx matea, tnere is &nple opportun'ty for truncation

",jr. n non. t nis Ae'n e

-1 _ expt-il 4o . 1'2)

'hen evaluate H for two cases. Define

y V/( et2) (103)

II
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Case I y < 1

H = exp()/(2 2 ) [ t n B/ a + y(alx + a2(oaB)x 2 + a3(a2+ aS+B2)x 3

+ a4 y( a+.B) 2X4] (104)

where **I.

a, = .99999193, a2-0.4905 a3 =.0519968 a4 -. 0960

lit =- I/E 2 
- 1/b2 , = / 2 - 1/S , I/S 2 

- 1/b 2

m m

Case 2 y > I

If t2/b 2 < i0 - Ex(y)/y then

S1 '1 /b 2 _ I/S 2 ) exp(_V/eo 2 ) (105)

2 rn

-V
If Z2/b 12Ey)y then

H : (/2Vz) (Ex(Va'e)/a - exp(-Vy/9) Ex(V/e)/s1 (106)

where, from Ref. 5,

Ex(x) (a 2+alx+x2 )/(b 2+b x+x 2) (107)

a, = 2.334733, a2 = 0.250621, b1 = 3.330657, b2  1.681534 -a.

Then substitute (102), and (101) into (100) to find R. Then

equate R to (48) evaluated for states z and a to obtain at last, for raai-

ation,
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fR = 2V1/2e 3/ 2  exp(V/eb 2) H/[(E -E (2108
Za-E )  ] (108)

where is taken from (7)

5.7.2.2 Electron Collision Oscillator Strength. To find the effective

oscillator strength for electron collisions to the artificial state from

real state z, sum (52) over all states which make up the artificial

state. Substitution of (89), (90), (95), and (96) into (52) and summing

yields

Sm

Re Co k s exp[V/(k 2)]/(k2 _ t 2 )4
eb0 b %

C, 2C Ne9p ag /fV5/2FI (109)

The sum in (109) is also rather messy and gives an unrealis- le

tically large rate when b approaches z (that is, when 9 and N, are

almost but not quite high enough to drive the artificial state into equi-

librium with the uppermost real state). This is not shocking since the

assumption of zero populations for states below b and full Boltzmann popu-

lation above is over simple. An approach which largely alleviates this
I,

problem is to neglect contributions from the first two terms in the sum;

replace b with

B b + 2 (110)

The sum in (109) can be approximated by replacing it with

R- kS exp rV/ek2 ) /(k 2 z2 ) 4dk (11)
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Replacement of k by (V/e)(i/z 2-1/k2 ) as the variable of integration

reduces the integral to a fourth order exponential integral, which can be

reduced to a first order exponential integral by integration by parts. To

avoid truncation problems the following cases are recognized.

Case I V/(eB2) < 0.1 and 4t 2/B 2 < 0.1

Then an adequate approximation is

R = (1/b 2 -i/S2)/2 (112)m

Case 2 Case I failed but (V/e((1/t 2 -1/B 2 ) < 10. Define

B (V/e)(1/2 - 1/B 2 ), T = (V/e)( {2 -1n/S 2 )m

, W' '  R "12 2)-" V/( Z2) 13 JexpI(Vi 8B2 ) ' ( I - !, +2,/ -2(),'

- exp V/(S)' I 2/ r2-EX, T))/h r,

nere tne 1.jnction Ex x) is that )f i107).

:ase 3 Not :ase ' )r Case 2

R (2t 2 )-' rV/(I.2 ) 1 3 expr(V/eB 2 ) I (I 4/a +

- '20/9 3J + 40/ - 6720/1 - 60,480'q'J

-, -. 5 - exp ~~~~~~~~V/( 9S2) 1 (1-4/ 2Wr -?/, 40TS.
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Then f in allIy subst itute R i nto (109) and equate i t to the f orm

(52) to find for electron collisions

6 1/ 23R(V/F
-. ~ ~~f 2e' (E a E )g t /V 1 F 15e~a a a

65.
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SECTION 6

BASIC DATA

4 .

In addition to normal mathematical and physical constants, the 5W

major data requirements of this calculation are quantities associated with

energy levels and especially oscillator strengths for transitions among

energy levels.

Energy levels and their associated principal, orbital, and spin

quantum numbers are obtained primarily from Ref. 7. Oscillator strengths

are obtained primarily from Ref. 8.

A slnlif'cant anount of art is involved 'n this process. vhiie

not ill needed data exists, Darticularly for oscillator strength, far more

ene gy 'ev es 3r9 nown tnan :an De noae ed. :t is lecessar, to comoine

nany stites :getner to reduce the to)tal number nodeled t, Diout ].:n

olng so, one tr-es to combine states whose energy ,evels are nearoy,

%'- ivoru creating ar*2lcial japs in the distrioution of energy 'evels, not

s ov eve iS €i l nter )0 rs, nir I, *-rent or nc'oDl) lt i,'i In nimber.

Occasiona; ly a onf' ic ts -rise anony tnese :r1tera3 and ir- --es.)"ved c)y cest

-dgenent. -inotner )roo -3n ar'ses onen i'. &'genst-tes )f i )iveni jr'nc'-

pal quantum number are not described in the literature. In that case we

J IS~V dO~J IJt]r - fetermine node'pid state enery, at,., .nd raise "he .

statistical weight to account for the missing states.

Osllator strengths are summed over upper levels and avera qed-

over lower levPls. For transitions allowed by L' couplinq rules but wmnirh

..
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In Griem's formula for Stark broadening (Ref. 2), the energy

gaps to the next lower and next higher orbital state appears. Since we

frequently lump states of differing orbital angular momentum together,

these gaps are inserted as data, averaged as best as we are able.

An example of the results of this process is given in Table 1

which shows data entered into the computer for singly ionized oxygen. In

this case 63 eigenstates from Ref. 7 were reduced to 10. For the upper 5

model states, preservation of spin was given up, as can be seen from the

non-half integer values. -

Table 1. 01+ Data. The first column is state index, k, the second state
energy (cm-'), then designation, statistical weight, g, princi-
pal quantum number, n, orbital quantum number, z, spin quantum
number, s, mean energy difference to z-1, w- (cm- 1), energy dif-
ference to z+1, W+ (cm-), and oscillator strengths where the
number in parentheses is the value of k for the upper state.

awv Designation g n tjs Jf f f

ii 0 12p 3 S°  4 2 111.5 0 119,933 .43 (4).171 (6) .32 \8)
6,3 1&2 D' . 0 2 i .5 0 93,166 .25 ?5) .67 .7) .141 g)

.186 10)
31 40,467 2t) " 6  ? 1 .5 0 79,466 .22 (5) .063 !6) .039 ,7)

33 .142 (8) .178 (10)
4 119,933 "P 1 12 2 1 1.5 79,466 0

51270,944 '),21 12 2 I .5 15,660 0
61 186,604 s 4P, 2S 18 3 0 1.17 0 15,660 1.034 (7) 10-" (8)
7 20,712 various 64 3 .84 1.06 4,000 4,000 1.5 (8) .104 (9)31, 30,989 Yv -'ous, 128 3 1.69 .97 1O,O00 .0,000 .409 9) .483 1i0)-."""-- .-,"

9$ 271,252 various 43) 4 1.08 .98 15,000 15,000 .059 (10)
10 275,01 varos 11.6 94 10,0 10,00

6/ V



SECTION 7

SAMPLE RESULTS

To date little useful data for direct comparison of overall

results has been found. Necessary basic comparisons have been made. For

example, our fit to Lotz's curve has been checked; Lotz has compared his

curve to electron collisional cross section data. And we have checked our

photon ionization cross sections against Kramer's. This sort of fundamen-

tal comparison is required but accomplishes no more than assurance that '

the formulae were correctly encoded; such checks do not give evidence of

the adequacy of the method to produce correct answers. The only way to

check the total method is to compare to other calculations and to limiting

cases over as wide a range as possible.

7.1 COLLISIONAL-RADIATIVE RECOMBINATION AND IONIZATION.

The most severe test of the method we have found is based on the

fact that a complete temporal calculation of electron eigenstate popila-
4 ons iust automatically account for Doth radiative ana :ollisional ion,-

zation/recombination processes. The only prior calculations known wnicn

are in a form for ready comparison are those in Ref. 9 by Bates, Kingston,
and McWhirter (hereafter, BKM). The BKM calculations are restricted to

hydrogen or, separately, nydrogenic ions in an optically thin neaium*,

using an electron collisional cross-section derived from Grysinski's semi

classical ionization rate coefficient to back out state-to-state exc ta-

tion cross sections for electron collisions. .'.-

'hey also carry out a version of a calcilation for a medium optically
tnCK to series )f 1 ines. They io not seem to :onsiJer tie 'uwz-iZ"
effect of the radiation. We nave not yet attempted to cynpare to ti,

I.~dwork. "o,

V.
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Their calculations make the following major assumptions, which

in the following will be referred to by the letters in parentheses:

(P) Only the ground state is significantly populated

(D) Only the ground state requires a differential equation solution,

all others can be approximated as in quasi-steady equilibrium.

(E) All energy levels are present at all electron densities, that

is, no effect of plasma polarization is included.

Over the range of applicability of these assumptions, BKM expect

their results to be accurate to about a factor of 3. Our method is more

general in that it makes none of the three assumptions, P, D, or E but

less accurate in that for practical reasons we are limited to principal

quantum number of 3 or 4. To check our method we ran hydrogen using only

the first four eigenstates as well as the first 10 eigenstates. if our

netnod were perfect, we would get the same answers in both cases.

7.1.1 Recombination Coefficient for Hydrogen.

Figures I through 5 compare our calculated values of collisional

-(iat:ve recjmoination coefficient, D, with that )f 3KM. In 11 figures

a vertical oar indicates the value of electron density, N at which

one or .more BKM assumptions oegin to fail, for higher N the BKM
e

approximation is not reliable. In Figures 1, 2, and 3 assumptions D and E -

ai, 'irst, in Figures 5 ano 6 assmption : fails first.

It can De seen that while our netnod is not perfect, the 4 state

case is pretty consistent with the 10 state case and both are consistent

witrn BKM over the range of Ne for which the BKM approximation holds.

' -,)np, id iti recombination ' imit, 3t low N, our a is consistently

be3ow BKM uecause the Lotz rate is Delow that used oy BK.M, out is at least

rlose to the factor of 3 BKM expects.
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Figure 1. Hydrogen Collisional Radiative Recombination Coefficient at
250"K. The BKM coefficient is shown as a solid line. Our
4alues for 10 states are shown as open circles, for 4 states as
open squares. BKM is not reliable to the right of the vertical
line.

.%.

70

7'".

U,



- - - - - - - - - --

106 J1

.-.,

10-9

i10--1,C

12 -

_ ,.- 0-

Q --

N m 3

i* 5"m.- 
"S "

. 10 
-

".J . • 4,

'"Figure H ydrogen ColliSional Radiative Recombinatio)n -3e f,: ,! it
:00"K. 'he BKM Zoef'Ficent s show is 3 o ' e. ''

• . alies for 10 states are Shown as oen c~rces, for 4 states a .
.: i ~open squares. 8KM is not reliab~le to the rigrit of the ,er!,I'c .-,

771

• .v .. ..

• °'1. . . ..3)[, :. .. ... . . , . . . ... . . ., .. .. ,, . . .. . . . .. , .. ; , ,. . , ,. , . . . .. . . . . .e* S.-- , , ,,. .,... .,.v.. .,-



..........

ii.

01 0

1022 26

N- cm )

e 30A , :2 e ne t 'S snow" 3S 3 S011a 'line. Ourr
':s r .- s-ates ire snown as open circles, for 4 states as

,-3-, 'S not reliale to the right of the vertical

%d

S- -...-
-,'°. .. . .*"*** "w*-..-



10-1~ ~ TT

a,0 10

1010

0

10 102 106 1010 loll 1018 1022 1026

Ne

I~eFigure 4. Hydrogen Collisional Radiative Recombination Coefficient at
16,000*K. The 8KM coefficient is shown, as a solid line. Our
values for 10 states are shown as open circles, for 4 states as
open squares. BKM is not reliable to the right of the vertical
line.

73

.5.5e

%.



dI --.. . . . . . . . . . . . . .. .. . . .. . . . . . .. . S-
.5,

.5 "' 

'

lI.7;
.5, .

* p- 
-4 

.

"' " " 
• I

- --

I 0' 
-4P

'S--. 

-4 
". .. 

4 -

-. 4o

.a'~cs for . t te are n oj .a . ,I , e :, ". 4 d' '.. . .

x 0 9'. 
)4:~%.~ e

- a' "-, ; , - ."- -"" - - , ; - " '" . ' ' " "';7; "-; . -; , - -- '-- .'-.' " " " " " "
_ ,".,'," 4' " W , V" ,"• - , • ' '*',-.4



%%'

At tne two lowest temperatures, Figure 1 and 2, the 4 state cal-

-4 it')n sitfers a glitch at about the value of N for which BKM
e

r e raueS. This is almost certainly a problem in our effective electron

c~llisional oscillator strength from low lying states to the artificial

state, due to tne fact that the gap in energy between state 4 and the

art;ficial state is aoout 40 times the electron temperature. This gap is - 4

reducefl almost a factor of 6 for the 10 state case, and of course, is also

rpeduce at nigher electron temperature. We do not consider this a serious
;jr,u'em because we ao not expect to encounter such high N at such low

e
-'ectron tenperature. If this expectation is wrong, it will be necessary

t either improve the method or carry more states.

At nhigh electron temperature, especially Figure 5, our a climbs

*ra . )f 3KM at nigh N,. In part this is due to a differ-

i'r jur Jenition of a ana tneirs. We count recombination to any ., ,

, ner- is 3KM :ount only recornoination to the grouna %

i ,)n, 3, is ial il Snle -wo ,lefinitions ire numieri-

-t, -,t ne,iI Ihe loper states acquire a significant popula-

S2, "e ase )f cigure 5 at nign "i., they are very
-. ." . , 'n n )eff icient to tie .rouna state, to make a

.. .. ,. . s fnown n -gure is solid circles na

,. , - at the lureeffment is quite good, indicating that

'i , it f(lr is less sensitive to assumption P than might oe imag-

'.1.? Ionization Coefficient for Hydrogen.

.* , n 'i SlOw Conparisons of our col lisional-radative

, ' f''I.t, , t) tnt)se of BKM. our values are uncomfortably

L,.'i r j~ , *~ jr vn' *-n 3VKM ": *, it- ' I

1 . , 1. 1' , at *.dst pdrtly due to a weakness in our treat-

-, * ',, * ', ' ' .,r t- ,r s. I ldtor strengths -onnect1ng to it;

4. "
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"'. a iti )n, iod fylqqg several aspects of the artificial state snow

,a 1 ' ,e at 4OUt) is sensitive to such details. For exanple,

ft no, o'irizt i on depression eneryy of Eq. (3) were increased a factor

if 4, essentaly all discrepancies in S left of the vertical line would

disappear for all tnree figures, 6-8. Although this would be the simplest

may to eliminate tne discrepancies, we don't feel qualified to argue the

3ccuracy of 3), besides, there are other options for eliminating the as-

crepancy. Because S is so small at 4000'K, we don't feel it worth the

effort to complicate the code.

More serious discrepancies occur in the region where BKM breaks
down. Our value of S tends to be higher than BKM in this region because

'1) polarization depression of ionization energy makes ionization more

%,)ri',e vhnen electron temperature is less than ionization potential and

;,2) as popuiation of upper states uecoines important, either in steady

;t ate )r *r in-;entiy luriny reroitnination, ionization if these states :an

lo nIndte. -he :irst )f tnese 3ffects Occurs qnen 3KM assumption .) -s

,* at the 3econd :Tan occur transiently inen their assumption 3i s

i io. tei 3nc er'TanentIy when tneir assumption 2) is violated.

tie ciatter n Jur "ates it very 'ig " occurs aue .o

)reakdown of assumption (D). When the quasi-steady assumption fails for

several excited states over a significant fraction of the time necessary

for the process to go to completion, neither a nor S is a constant. The

particular value obtained depends on the particalar ioment chosen for

evaluation. The range of values obtainable is great, as illustrated by

the orders of magnitude difference between S at N = 1026 from Figure ._. m.
e

7 and Figure 8, and by the difference in 4 state and 10 state values in

Figure 8 at Ne 1026 %, %

In summary, where the value of S is significant and the BKM

assumptions valid, agreement is satisfactory. Where S is uninterestingly
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sa Iour v al jes are ni~jri. khere B ,M assumpt ions ~d i , the nL~r'id'. o(I-

-ep fjr IX dr,

)fp itI reiKS down and no c al t ionis are avd I~ fi znpr)n

47.2 APPROACH TO STEADY STATE WITHOUT RADIATION.

n*, r In addition to comparison to the results of BKM, one can con- .

. sider the "reasonatleness" of the final steady state confiyuration for non

equllibrium conditions and the rate and manner of approach to steatly

state.

A fairly serious problem with any such discussion is findiny a

straightforward and clear method of presentation of results for a system

as complex as several dozen eigenstates distributed over several states of

ionization for an element of interest such as nitrogen or oxygen.

• .-_ :n an 3ttempt to invent an appropriate graphic technique, we "
nave dopted the following.

. Consider the partition function of some state, K, of an element
at *emperatre 1 and electron density N

p(k) = (Qe/Ne)Z g, exp(-E /9) J116)

where Qe is the partition function for free electrons,

" 6.037x102 e3/2 (cm- ) (117)

e(eV) is temperature, Ne (cm- ) is electron density, g is statistical

weight of the state k, Ek is energy of state k relative to the lowest

eigenstate of the element (normally the ground state of the neutral, but,

-.g., for ixygen, the jrounu state of ), and4 Z is the charge state of

%the ion to which eigenstate k belongs.

80

-44-C
Z.. *.% % -



T te tital partition finction of the element is

- ii

VK

In equilibrium, the fraction of the element in state k is given

4.y

f(k) p(k)/P '(Q eNe) gk/P epEk/ 19

)r

F(k, eN )f(k) =exp(-Ek/6) (120)
e ke

= /Q N g k (121)

The form (120) is a rather versatile way to present results.

One can graph the exponential of the RHS against E to obtain a
%W k
strjignt 'ine )n semi-log paper, calculate F a priori, then use whatever

f(k) results from a calculation to evaluate the LHS and graph it. If the

calculated f(k) are in equilibrium at e, the two curves will lie on top of

each other, if not, one has a visual illustration of the degree of depar-

ture from equilibrium. The disadvantage of the presentation is that a

curve of the LHS of (120) is effectively divorced from the actual values

Of f(k), so that no clue exists as to which electron or ionization states

5' are most populous.

5'X
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7.2.1 Time Development of Hydrogen.

An introduction to this sort of presentation is provided by Fig-

ure 9 which shows the results for hydrogen initially neutral, bathed in

108 electrons at 1 eV with no radiation field. Our initialization over-

- populates the ground state (k) and the first excited state (k2); as

shown by the aashed line, relative to the 1 eV solid line. In slightly

_-. more than 10" sec the states have come to a steady configuration with

electron collisional processes biased by spontaneous radiation, shown by

the dotted line. In this case one might speak of an "effective eigenstate .

temperature" of about 0.4 eV to approximate the electron distribution. In
the final state the actual fractional populations are 0.945 for state 1,.. ' .

6.6xlO- 6 for the artificial state at about 13.6 eV, and 0.055 for H1+

at 13.6 eV. ll the others range from 1012 to 10-13.

7.2.2 Hydrogen Steady State vs Electron Density.

Figure 10 shows the final configurations for hydrogen in a

plasma of I eV electrons at several values of electron density. By N
5 e

- 1018 electron collisional processes dominate spontaneous radiation

sufficiently that an equilibrium distribution is attained.

7.2.3 Time Development of Nitrogen.

A much more interesting and much more complex case is illus-

trated in Figure 11. Two calculations are illustrated. Both have elec-

tron density of 1014 cM 3 and temperature 3 eV. The first was initial- J-

ized with all the nitrogen stripped to 7+, and the second was initialized

with all nitrogen neutral. By 2.67xi0" sec the first case has recom- ;

bined enough to extend an erratic pattern of electron population down to

N by 1.23x0 -  sec populations extend to 2+. By a few tenths of a

-6-r 4 % "
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0 0 0 0

E~ eV)

.4- irgni 0 lcrn t3e. Th ev oi iei

the ina stady tat. Te lght rokn lne eteningdow

to 4+ shows states at ~~~2.6xO"scatriiiliainwt

* Thgure 7 nI itrogen pr0~eetn a3e. The lieght soli line exedngdw

to 2+ shows states after 1.23x10-3  sec. The dashed line
extending through 1+ shows states 1.87x10' 1 sec after initial-

W.ization with only 0+. Bothl cases approach the heavy solid line
with total ion populations indicated by horizontal lines over
the energy range corresponding to the state of ionization.
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- "*' * , so' ne, which is better

•-- " " . - . ev tnan tne true electron tern-

-' ': e snocws JPopulation through 1+ by

A, .- 3_s ,*,3jj state at tne heavy solid line by

.. : *'e a, §, at'n of states snow much more structure than

, -.ase -sci'3tor strengths connecting the nitrogen states

* , -- : ,, ' . n', s t. the snootn values appropriate for fully

: .... - v , 'jer' states. Note that the first excited state of neutral

- .> c ,teo oy nearly 4 orders of magnitude relative to the

.. .: * -,3* j , sec for the case initialized with neutral

. 's s jxe to the fact that this state is optically forbidden

'e 2'ofnl state. Our algorithm arbitrarily assigns an

"s ator strength of 0 to such transitions for electron

_, e " , ou ie even more severely -nderpopulated.

nhe e-ective ionization rate coefficient from No+ to N I+ for EV

'Ys :se is aDout 7,10 : crnisec, about twice the 8KM value for hydro-

.- ' ons ina aoout seven times Sappenfield's calculation for ground

.;tate onzat'on coef'icient. The agreement with BKM is quite satis-

c~t-ry, carticularly in view of the fact that nitrogen is not especially

nydrogenic. The discrepancy with Sappenfield is presumably due partly to

differences in collision cross section and also is due in part to contri-

butions from excited states, especially states 2 and 3, which acquire

fairly large populations (0.6 of state 1 and 0.2 of state I respec- 9
tively).

7.2.4 Nitrogen Steady State vs Electron Density.

*: Figure 12 shows steady state configurations for nitrogen in a

bath of I eV electrons and in the absence of a radiation field, the opti-

cally thin limit. When electron density gets as high as 101 6/cm3

86
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and open circles to 108 electrons/cm 3.
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eigenstate populations follow the equilibrium exponential out to 20 eV or

30 eV before falling below it. By electron density 1018 cm" 3 all states

retained by the code are within 1% of equilibrium; states above 1+ are

deleted as described in Section 3.3.4 at this high electron density.

Steady state distribution of nitrogen eigenstates for electrons

at 10 eV are shown in Figure 13. Note that the abscissa is logarithmic,

so the range goes from 10- 7 1 to 1090. The curves show the extreme

sensitivity to electron density for weak plasmas, in that twelve orders of

magnitude in electron density (10- 2 to 1010) result in 12 to 40 orders

of magnitude difference in state population relative to equilibrium. It

also illustrates the disadvantage of this presentation; the ground state

of NO+ is overpopulated by an impressive factor of 1093 but even so, all

No+ states account for only 1 part in 1012 of the nitrogen.

The approach to equilibrium is shown in more detail in Figure

14. Here it can be seen that even 1018 cm- 3 leaves the lower states

about an order of magnitude overpopulated wnereas 1020 cm- 3 brings them

into equilibrium. If the curves of Figure 14 were to be extended to

higher energy, they would show that even at 1020 cm 3, the excited

states of Ns+ around 700 eV to 800 eV would be severely underpopulated.

7.2.5 Value of Electron Density for Equilibrium in
Optically Thin Plasma.

For electron collisions to drive the eigenstates into equilib-

A. rium in an optically thin plasma, it is clear that electron collisional

excitation must dominate spontaneous radiation. Given a ladder of some

dozens of eigenstates one would expect the downward bias to accumulate, so

electron collisions might need to dominate spontaneous radiation by one or

more orders of magnitude.
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The ratio of electron collisional excitation from lower state t

to upper state k to spontaneous radiation from k to z is, from (48) and

(51)

R e N k/g)(Cec/Ar) exp[-(Ek-E,)/e1/e1/2(E E)3

- 1.5x10- 13 exp[-(Ek-Ei)/O]/[e'/ 2 (Ek-Ef) 3 INe (122)

when e and E are measured in eV and Ne in cm"3 , and the ratio of
statistical weights has been taken to be unity. Then a distribution ap- VF--

proaching equilibrium can be anticipated whenever R > 1, or 77e

Ne > 6x101201/2 (Ek-EX) 3 exp[(Ek-EI)/o] (123)

If Ek E E 10 eV as appropriate for lower ionization states of

nitrogen, or for neutral hydrogen, one needs

N "> 5.1016 cm 3

Thus one should not be surprised to see hydrogen states come into equi-

librium at about 1018 cm-f and the nitrogen line of Figure 14 parallel

to the equilibrium line for the first few states of ionization at 1018

cm- 3.

On the other hand, if Ek-E -100 eV as is the case for some

states of N + and most of N5+, one needs

Ne > 5x1023 Cn- 3 ,

for equality. These states aren't likely to be brought into equilibrium

for Ne less than about 1025 cm-3. Long before this electron density ap'

is reached: (1) equilibrium populations of highly ionized states are

negligible (4 10- 2 0 for N4 + ) and (2) our simple treatment of polariza-

tion effects has become inappropriate.
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7.3 APPROACH TO STEADY STATE WITH PLANCK RADIATION.

The rate of excitation for an allowed bound-bound transition of

energy, c, by a Planck spectrum is

rBB = a(v) U(v)dv (124)

If the line is reasonably narrow, as is almost always the case, the Planck

spectral flux, U(v), can be removed from the integral in (124) and the

integral evaluated (Ref. 3, p. 59),

rBB 0U(v) a(v)dv = eC f U(V) (125)
-
e

where r is the classical rauius of the electron, c the speed of

light, and f the oscillator strength.

From (60), J(v) can be written as

J (v) C E:/(exp(./e)-1) (126)

Then for a transition of energy, e, and nominal oscillator

strength of 0.1, the time to reach equilibrium is of order

=r- 2XIO-7 (exp(E)-l)/e2  (127)
BB B8

Thus, for a Planck spectrum at 1 eV temperature, we should

expect equilibrium among bound states in about 10-5 sec if the biggest gap

between states is about 8 eV, which is about the case for NO+, Nl+, and

N2 + , or about 1.5 sec for a biggest gap of 22 eV (N3+).

TAN JN92'..



To bring the states of ionization into equilibrium is more dif-

ficult. The cross section for photoionization is given by (67). If this

value is substituted into (124) with proper care for units, one finds

rBF p/n f [c(exp(e/)-)]-' dc

BF CHCPIz/n (18i~ C IH lz/n exp(-Iz/6) (128)

or

TBF r 1 - 2xO- 7 exp(Iz/e)/(Ize) (129)

B F BZ

where (129) has assumed that Iz ) e and n = 3.

If one assumes bound states to come into equilibrium before

ionization states do, then we can apply (129) to the ground state and be

within a few orders of magnitude of the right answer, since excited states

lose in population all that they gain by the Boltzmann factor in (128).

Application of (129) yields 3- 2 sec for NO+ to Nl+ , 5x104 sec

for 1+ to 2", 2x1012 sec for 2+ to 3+, and 1025 sec for 3+ to 4+ for a

l-eV Planck spectrum. These numbers verify the assumption made above that

eigenstates within a given ion should equilibrate faster than different

ions.

Figure 15 shows nitrogen, initially neutral, bathed by a 1.0 eV

Planck spectrum at 2x1O5 sec, 25 sec, and 1021 sec. To reduce effects

of electrons to a minimum, electron density was taken to be 10-10

cm " , and to ensure that any appreciable collisional effect would show,

at least on the steady state curve, electron temperature was set to 0.1
eV. One can see that eigenstates of 0+ and 1+ (the only ions present) are

pretty well in equilibrium by 2xO - sec, as expected from (127) for
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bound-bound transitions (their lines are parallel to the 1 eV line). By

25 sec the 0+ ion state and I+ ion state are almost equiliberated (lines V

are parallel to the 1 eV and almost continuous), as expected from (129).

By 1021 sec, all states are equilibrated, the curve is indistinguishable

from an exponential at 1 eV. At 106 sec (not shown) 1+ and 2+ are in

equilibrium as expected, while 2+ and 3+ are still far from equilibrium,

as expected. The fact that 3+ equilibrates with 4+ by 1021 sec, rather

than requiring 1025 sec is a bit mysterious. At least one order of megni-

tude is explicable by the distribution of eigenstate population in 3+,

which makes (129) pessimistic.

Figure 16 illustrates a situation which is a bit more interest-

ing physically, electrons hotter than radiation. Nitrogen, initially

neutral, is bathed in a 1 eV Planck as in the case of Figure 15, but the

electrons have a temperature of 10 eV and densities from 10-10 cm- 3 to

1020 cM 3. Shown are final steady state population distributions. For

the case of 10-0 cm 3 the portion of the curve for 0+ is an artiface of

the computer plotting program and should De ignored; there is in fact so

little 0+ present (total ion fraction less than 10-23) that the computer
has zeroed out all 0+ states. The negative glitch in the upper states of

1' should likewise be ignored - one state has too little population to becalculated. The other irregularities in the 10- 10 curve are due to elec-

tron collisional effects on: (a) very closely spaced states, particularly

that from the artificial state to the ground state of the next ion and (b) .

states so widely separated that the 1 eV Planck spectrum cannot bridge the

gap even as well as 10- 1° electrons/cm 3 . This latter is the case above

about 250 eV eigenenergy. As electron number density increases the curve

continues to parallel the 1 eV radiation temperature over some ranges of
eigenstates until somewhere between I electron cm- 3 and 1010 electrons

cm- 3 where the curve shape loses definition. Between 1014 cm- 3 and 1018

cm- 3 the electrons take over and by 1020 cm- 3 the eigenstates through N4+

have been forced into equilibrium at 10 eV, despite the cooler photon .- ,

flux.
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7.4 STEADY STATE WITH LINE RADIATION.

A situation of considerably more physical interest than the pre-

ceding examples, and one which has an important implication for the accu- -

racy of previous calculations, is that in which line radiation is present

with no continuum. To investigate the effect of a few strong lines, we

chose an electron density of 1012/cm3, corresponding to high enough alti-

tude that the continuumi should be extremely weak and not too many strong
lines are expected. Electron temperature was taken to be 10 eV, a typical

value expected when line radiation is an important energy loss mechanism.

Under these conditions with no radiation present, initially neutral nitro-

* gen approaches steady state in time of order 0.1 sec with state 41 domi-
nant; fractional populations in steady state are:

0+ 1+ + 4 5+

6.10-11 240 -40- 0.2 0.71 .087

Since 4+ is the dominant ion we investigated the effect of add-
*ing a few lines which connect 4+ states. All lines were taken to be satu-

rated at the Planck limit for 10 eV. They were added in order of increas-

ing energy.

, . °°"

The first case is illustrated in Figure 17 which shows the

'Cgion of eigenenergy occupied by the electron states of N + Two curves

are shown, that for no radiation and that for a single line of 2.69 eV at

*the Planck limit connecting states 3 and 4 of N 4+. The cases are indis-
tinguishable except that the line has raised the population of state 3

about a factor of 2. This is not an impressive effect, but perhaps one

should not expect too much from a line whose intensity is over an order of

is

magnitude down from the peak of the Pl anck spectrumn and which connects
states whose populations are rather small compared to the ground state.
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The next calculation, shown in Figure 18 is a little bit more

impressive. Here we added a line at 9.9978 eV connecting states I and 2. T7_7

One can see that state 2 is brought up to approximately the correct equi-

librium ratio to state 1 (the line connecting state 1 to 2 in Figure 18 is -

nearly parallel to the 10 eV line). Further, several of the upper states,

which have optically allowed transitions to state 2, have increased popu- 775
lations. This is the sort of result one would expect; in fact, a common ,-

method of assessing the effect of a medium optically thick to the line

connecting ground state to first excited state is to set those populations

in equilibrium ratio, then solve the remainder in the optically thin

approximation. In an element with many ionization states such as nitro-

gen, however, the line has another effect which is at least as important

as redistributing the 4+ state populations. A line with about 10 eV

energy is capable of ionizing the upper states of any nitrogen ion. Thus,

this relatively weak line has also reduced the N3+ population from about

20% to about 13% and increased the N5+ population from about 9% to 18%.

In Figure 19 a line at 46.556 eV connecting states 2 and 3 has

been added. This line has the expected effect of bringing state 3 into

approximate equilibrium with states 1 and 2 but more importantly, it is

capable of ionizing any state of NO+ or N1+ and all but the lowest states
of N2+, N3+, and N'+  The steady state configuration for this case is:

0+ 1+  2+  3+  4+ 5+  6+
7xO "19 4x10-11 2.10- 7  10-4 1.6xO "3 .998 8xlO23

The effect has been to raise the mean state of ionization from

about 4 to 5. Under borderline conditions, radiation will virtually cease

from affected regions. Both N3+ and N4+ are good radiators, whereas Ns+

is an exceptionally poor one.
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Figure 20 shows the barely noticeable effect of adding the

~ 56.554 eV line connecting states I and 4 to the previous 3 lines. All

states below state 4 are reduced in population by about a factor of 2 and
no other discernable event occurs.

Finally, Figure 21 shows a comparison of the case with no radia-

tion to that with all four lines over the full range of eigenstates. It

shows that low ionization states are depopulated by up to 12 orders of

magnitude by the radiation (either the 2-3 line or the 1-4 line would

accomplish most of this), and the upper states of N3 " are brought into

equilibrium with the lower states of N4 +.

The most important meaning of the series of calculations is hid-

den in the millimeter increase in the ground state of N5+ at 269 eV,

bringing it from 9% to 99% of the population, and the 3 millimeter de-

- creases in the ground states of N 3+ and N4+ , reducing them from major ions
II to obscurity. Historically, cases similar to this have been calculated

assuming line radiation drains energy from the system but does not appre-

ciably affect state of ionization. The set of cases calculated here do

not follow the dynamic behavior of shocked material and so a firm conclu-

sion cannot be drawn, but certainly they call into question the previous

method of calculation.
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