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1. INTRODUCTION

Analytical studies regarding the liner collapse and jet formation of
hemispherical warheads were published in 1985 by Chou, Walters, Ciccarelli,

and Weaverl, hereafter designated as CWCW. This analysis revealed the so-
called "tubular-layer” formation process for point-initiated, hemispherically
lined shaped-charge warheads. The “tubular-layer” formation process states
that each liner element stretches across its thickness into a tubular jet,
similar to an extrusion process. The HELP and the EPIC-2 computer codes both
predicted this formation process and were in general agreement regarding the
final jet properties as well ag the jet formation process.

Also, hemispherical liners driven by an implosive detonation, i.e., a

surface-initiated hemispherical shaped-charge revealed a different collapse
and jet formation process. The collapse and formation of conical shaped-

charge warheads was also studied analytically in the CWCW report.l

The a priori computer code predictions suggested a method to verify the
“tubular layer” formation theory. As in the hydrocode calculations, a
stratified, bimetallic hemispherical liner was fabricated. The alternating
layers of material, namely copper and nickel, were joined by a diffusion bond.
Copper and nickel were chosen because of their similarity under shock loading

conditions, identical densities and ease of diffusion bonding.3’“ A cylinder
of alternating discs of copper and nickel was first fabricated by diffusion
bonding and then conical and hemispherical liners were machined from the
cylinder forming the stratified, bimetallic liners.

Both the conical and hemispherical liners were loaded with 75/25 Octol,
point-initiated, and fired into air to obtain free-flight flash radiographs.
Both the conical and hemispherical warheads were also fired into water and
typically, two or three intact jet particles were recovered. For the conical
warhead, the slug was also recovered. The recovered particles, and the slug,
were cross sectioned and analyzed to reveal the flow pattern of the copper and

the nickel., The cross sectioned jet particles tend to substantiate the
hydrocode enalyses.

Previous studies regarding the collapse and jet formation process of

conical liners were conducted by Perez, et al.2 In their experiments, a
conical liner consisting of a copper region near the apex of the cone, a brass
region along the middle of the slant height of the cone, and a copper region
near the base of the cone was tested. This conical liner is, in effect, a
three layer, stratified, bimetallic liner. The main conclusion from Parez, et

al.z, in reference to the slug recovered from this liner, is stated as

follows: “The slug is originated from a superimposition process of its own
elements., Except for the first liner elements, the collapse occurs off the

axis and on the previously imploded liner material."2 This implies a
“layering” of jet materfal akin to a “"tubular formation” process. However,

the slug recovered by Perez, et al. and the slug recovered in this study do
not reveal identical flow patterns,




The remainder of this report will describe the method of fabrication of
stratified, bimetallic liners, and present the experimental test results. The
tests consist of free-flight flash radiographs and liner particles recovered
by firing into water.

2. THEORETICAL HEMISPHERICAL LINER STUDIES

The collapse and jet formation process for shaped-charges with
hemispherical liners were studied in the CWCW report.l Both the HELP and the

EPIC-2* computer codes predicted a "tubular-layered” collapse of the
hemispherical liner elements for a point-initiated shaped-charge with a
hemigpherical liner. Details of this study are given by CWCW and only a few
highlights will be repeated here.

The basic charge geometry is shown in Figure 1. Figure 2 fllustrates the
liner collapse as simulated by the HELP code. The original liner was modeled
as a stratified, bimetallic liner of two materials with identical material
properties. This was accomplished by using massless tracer particles to
differentiate between the two materials. Figure 3 delineates the comparison

between the Eulerian code HELP and the LaGrangian code EPIC—Z.* The two
codes are in excellent qualitative agreement with respect to the jet formation
process. This agreement is fortunate since EPIC-2 or DEFEL runs faster and is
less expensive than the HELP code. The "tubular-layered” jet formation
process for a point-initiated, uniform wall thickness, hemispherical liner is

illustrated in Figures 2 and 3. Again, the details are given in CWCW.l

Figure 4 depicts the usage of the massless tracer particles. In this
case, the velocities of five interior points through the liner wall are
monitored and plotted as a function of time. Figure 5 illustrates the
application of the massless tracer particle technique to the tracking of each
region of the liner for the stratified, bimetallic, hemispherical liner.
Figure 6 shows the complete formation of this liner.

Figure 7 shows a similiar code calculation for a tapered hemispherical
liner with the pole thickness equal to twice the equatorial or rim thickness,
For a point-initiated charge, a "tubular-layered"” jet formation still occurs.
However, for a surface-initiated hemispherical liner the jet collapse and
formation process is quite different. Figure 8 presents the initial surface-
initiated charge geometry. Figure 9 reveals the differences in jet collapse
and formation between the two modes of initiation.

The analyses presented above suggested a way in which hemispherical
shaped-charge liners collapsed, with the collapse and formation depending on
the mode of initiation. Thus, an attempt was made to experimentally verify

the results of the CWCW reportl, as outlined above.

*
Or DEFEL, the Dyna East modified version of EPIC-2.
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Figure 8. Geometry of surface-initiated (implosive) hemispherical liner charge.
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3. EXPERIMENTAL HEMISFHERICAL LINER STUDIES

3.1 Fabrication. The experimental study involved fabricating a
stratified, bimetallic liner. 1t was decidea that the two materials to be
used in the liner would be copper and nickel due to their identical density
and similar behavior under shock loading conditfons. It remained to devise a
way to attach the two materials,

One possible approach would be to form a series of cylinders or rods, all
but the smallest of which were hollow. The solid rod, say of copper, would be
placed inside a hollow rod, say of nickel. This assembly would then be placed
inside a larger hollow rod of copper, and so on, until the top view of the
cylinder consisted of concentric circles of alternating layers of material.
Figure 10 shows the various cylinders and Figure 11 shows the final assembly
including the top view. The cylinders would be assembled using a press fit
and then allowed to adhere to each other by diffusion bonding. Next slice
(disc) would be sawed off and the disc would be hydroformed or pressed to the
final geometry. This method of fabrication, although interesting, would seem
to be difficult to implement. For this reason, it was not pursued further.

Instead, the actual liners were fabricated from circular discs of copper
and nickel 3.2 mm (0.125") thick. Alternate layers of these copper and nickel
discs, 54 mm (2,125") in diameter were stacked up to form a cylinder 35 mm
(1.375") high. The copper and nickel discs were polished and etched to
present smooth clean surfaces. The cylinder of alternating discs of copper
and nickel was then inserted in a loading fixture as shown in Figure 12. The
loading fixture held the discs together under pressure. It was shown by

Barnes and Mazey5 that a smooth, void free bond could be formed at a copper-
nickel interface if a minimum stress of 10.34 MPa (1500 psi) was applied
during the diffusion honding. Mica was used to separate the fixture from the
discs to prevent bonding the entire assembly together. The assembly was then

placed in a controlled argon atmosphere furnace at 982° ¢ (1800° F) for 1 to
3 hours to sllow a diffusion bond to form between the copper~nickel discs.
(A metallurgical examination of a test stack of copper-nickel discs, bonded
using the above fixture, showed virtually no voids at the interfaces
indicating that the fixture exerted sufficient force to apply the required
stress.)

A hemispherical liner was machined from this first stack of bonded discs.
During the final stages of machining, two interfaces began to debond. The
time interval for bonding this first hemispherical liner was given as 1 to 3
hours because it was necessary to rebond this liner a second and third time.
A special loading fixture was devised for this purpose. Subsequent stacks of
discs, prior to assembly into the loading fixture, were placed in a 150 ton
hydraulic press and squeezed together with sufficient force to exceed the
yleld stress of the copper. This caused sufficient metal flow to intimately
mate the surfaces together., The net result of this high stress treatment was
that bonding could be accomplished with a single one hour treatment, no
further debonding occurred during final machining and the surface finish
requirement was not as stringent, Overall efficiency and economy of liner
manufacture was increased significantly,

12
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Figure 13. Diffusion bonded, stratified, copper-nickel cylinder.
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Figure l14. Finish machined, stratified, copper-nickel hemispherical shaped-charge liner.
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Another technique, in lieu of diffusion bonding, would be to explosively
weld the layers together to form the final assembly. This technique was not
considered in this study.

The final assembly, held together by a diffusive bond 1s shown in Figure
13. The final liner is shown in Figure 14 and consists ¢f nine lavers with
nickel at the pole and equator, The liner had an outside diameter of 54 mm
(2.125") and a unifcrm wall thickness of 1.6 mm (0.063").

3.2 Experimental tests. The stratified, bimetallic, hemispherical liner
was loaded with 75/25 Octol and housed in a thin aluminum cylinder 76.2 mm
(3.0") high. The free-flight flash radiographs are shown in Figure 15 for
flash times of 35.5 and 128.8us. The shaped-charge formed a fairly good
jet. The particles are not uniform in size and do not appear to be as
ductile or as well aligned as a single material hemispherical shaped-charge
with a copper or nickel liner. Also, the jet breakup appears to be early.
Nonetheless, the copper—nickel stratified ipterfaces did not preclude
jetting. The penetration into RHA (Rolled Homogeneous Armor) was 29 mm
(1.125") at a 1,47 m (58.0") standoff-distance.

Two water recovery tests were conducted. In the first, the liner was
fired with a reduced head height (i.e., the total charge height was 38.1 mm
(1.5")) into a water column with a 457 mm (18.0") standoff-distance. A few

.particles were recovered.

The second particle recovery test used the full head height charge and
was fired into a water column at a standoff-distance of 254 mm (10.0"). This
technique resulted in more recovered particles of better quality (i.e.,
longer) than in the reduced head height test and will be used in future
tests. The recovered particles from this test were cross sectioned.

Figure 16 shows the top and side views of the two largest particles
recovered in this test. Both copper and nickel are present. Figure 17 shows
a cross section of these particles. Both copper and nickel are again present
and in alternating layers. A cross section of the left particle in Figure
17, in a direction orthogonal to the first cut, is shown in Figure 18,

Again, alternate layers of copper and nickel are present. Note that nine
alternating layers of material are visible which corresponds to the nine
original layers of material visible in Figure 14. This layered pattern of
jet material verifies, at least in part, the "tubular~layer" jet collapse and
formation theory discussed earlier.

The collapse and formation theory for point-initiated, hemispherical, )
shaped—-charge warheads is not completely verified since only a few particles
were recovered. The recovered particles probably were located near the rear
of the jet since the particles near the front of the jet were probably eroded
away while penetrating the water column at hypervelocity. Thus, we have no
guarantee that all jet particles would reveal the game tubular, layered flow
pattern, Obviously, a better technique to recover shaped-charge jet
particles would be advantageous.
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4. THEORETICAL CONICAL LINER STUDIES

The same numerical technique, i.e., a HELP code calculation, was used to
investigate the flow pattern of a conical, stratified, bimetallic liner.
This study was deemed appropriate because hemispherical and conical shaped-
charge liners undergo different collapse and jet formation processes.

The initial conical liner is shown in Pigure 19. The liner had an

outside diameter of 101.6 mm (4.0"), an apex angle of 42°, and an uniform
wall thickness of 3.3 mm (0.13"). The explosive cylinder had a diameter of
108 mm (4.25") and the head height was 42,46 mm (1.67"). The explosive fill
was 75/25 Octol and was point-initiated. Figures 19 and 20 illustrate the
collapse and formation of the conical liner at 40 and 60us, respectively.
Note that the comical liner undergoes a jetting or flow splitting process.

Further analytical details are given in the CWCWl report, Experimental
studies with stratified, bimetallic, conical liners were conducted in an
attempt to verify these analytical results.

5. EXPERIMENTAL CONICAL LINER STUDIES

5.1 Fabrication. The stratified, bimetallic, conical liners were
fabricated by diffusion bonding stacks of wide angle (1200), Smm (0.197")
thick, alternately layered copper-nickel cones. The diffusion bonding
procedure and conditions were the same as was used for the final
hemispherical 1liners. The test setup and final liner dimensions are
depicted in Figure 21, The liner had an outside diameter of 50 mm (1.97"), a

uniform wall thickness of 1.27 mm (0.05") and an apex angle of 60°. Pigure
22 shows the final machined liner with 9 layers of materials.

5.2 Experimental tests. The stratified, bimetallic, conical liner was
loaded with Compositici B and point-initiated with & one liner diameter head
height., The explosive f1ill was confined in a thin aluminum body. The free-
flight flash radiograph is shown in Figure 23.

The V7 h times were B81.3, 126.2 and 170.0us. The jet is of good quality

and e’ 1. evidence of interference between the two materials. The jet
partict j-~i2egular in shape and not well aligned. The penetration into
RHA was » (1.75") at a 1.52 m (60.0") standoff-distance.

The water recovery test entailed firing the stratified, bimetallic,
conical shaped~-charge into a water columm at a 609,6 mm (24.0") standoff-
distance. The slug was recovered in good condition. The apex end of the
slug apparently hit the side of the gun tube used to hold the water column
and wvas slightly deformed. In addition to the slug, several small jet
particles were recovered.
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Figure 22. Finish machined, stratified, copper-nickel, conical shaped-charge liner.
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The largest of the recovered jet particles are shown in Figure 24, Note
that both metals are present. The cross section of this particle is present~
ed in Figure 25, The tubular construction is clearly shown. The central
region of Figure 25 was enlarged and is shown in Figure 26. Finally, the
recovered slug and a cross section of the slug is shown in Figure 27.

The flow patterns observed for the stratified, hbimetallic, conical liner
may or may not agree with the analytical results reported earlier, depending
on the position of the recovered particles in the jet., At any rate, the
recovered slug and conical liner jet particles reveal a flow pattern that has
not been observed before. Eight of the nine original material layers are
apparent,

6. SUMMARY AND CONCLUSIONS

The "tubular-layered” liner collapse and jet formation theory for poirnt~
initiated hemispherical liners has been verified, at least in part. (Complete
verification of the collapse and formation is not possible since only a few
Jet particles were recovered). Also, flow patterns for a stratified, bime-
tallic, conical liner were obtained for the slug and a few jet particles.

For both liner geometries, the experiments tendfd to support the a priori
theoretical calculations. (See the CWCW report ).
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Jet particle from a stratified copper—-nickel conical shaped-charge liner.

Figure 24,
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