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1.0 INTRODUCTION

This report describes work in the second year of the program "Integration of

Statistical and Physical Models of Short Fatigue Crack Growth," Contract No. F49620-

85-C-0034 with AFOSR. The second year of this program (January 15, 1986 to January

14, 1987) has now been completed.

1.1 Note on Nomenclature

It has rightly become popular in the last year or two to distinguish carefully

between cracks whose size is small relative to the microstructure in both dimensions or

just one dimension. Cracks that are small in just one dimension, e.g., a through-crack in

a notched plate that has not yet propagated very far, are termed "short". Cracks that

are small in both dimensions, e.g., a surface-breaking crack, for which the aspect ratio of

depth to surface length is typically - 0.4, are termed "small". The distinction is espe-

cially important when considering statistical aspects of crack growth. For a short crack,

statistical fluctuations may be averaged out over the comparatively long dimension of

the crack (e.g., the thickness of the plate for a short through-crack), and therefore not

manifested in fatigue lifetime. In a small crack, which is often the form of a naturally

initiated fatigue crack, there is no such averaging; and one generally expects statistical

fluctuations generated by the stochastic microstructure to cause much greater fluctua-

tions in lifetimes. In this report, this modern terminology is respected. Most of the

probabilistic models described herein were developed specifically to address small

cracks. Note, however, that with little modification they could also be applied to short

cracks.

1.2 Summary of the First Year's Work

In the first year of the program, a probabilistic model was formulated that

drew a direct link between stochastic microstructures and the statistics of measured

growth rates. The model was formulated as a semi-Markov chain in which the underlying

Markov process describes the evolution of a growth control variable as an explicit func-

tion of crack length. The growth control variable may be assigned a variety of interpre-

tations, depending on the mechanisms known to control growth in any application.

Elapsed fatigue cycles and the distribution of times to failure are calculated by invoking

I
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an empirical or postulated law of growth rate. The law may, and usually does, contain
parameters that are evaluated by calibration against available statistical data, which

guarantees a minimum level of accuracy of the model's predictions. On the other hand,

the freedom of interpretation of the growth control variable allows the model to be

applied to systems with diverse mechanisms of damage accumulation, and the structure

of the model allows physical understanding of those mechanisms to be transferred

directly to enhanced accuracy of predictions. This work has been described in detail in

the first annual report I and in the open literature. 2

The model may also be regarded as a research tool, a dual role that has been

well illustrated by the first application, which was to data for Ti 6AI-2Sn-4Zr-6Mo. 1,3

Model-based analysis of these data led to the following conclusion. Fluctuations in the

instantaneous rate of growth of the surface tips of a small surface-breaking crack in

Ti 6-2-4-6 are sensitive only to the microstructure of the material at or very near the

surface. They do not depend on the sizes of the grains lying on the crack front beneath

the surface. This conclusion is based solely yet firmly on a model-based statistical

analysis of the dependence of the magnitude of fluctuations in crack tip velocity on

crack length. It is an important conclusion for the rest of this work, because when such a

state of affairs holds, the statistics of the growth of surface cracks can be described by a
model that considers surface and near-surface phenomena only. However, the data col,-

sidered for Ti 6-2-4-6 were predominantly for cracks that spanned - 5-20 grains, and it is

unlikely that the same conclusion will still be valid for cracks that span only one or two
grains. For these smallest of cracks, there ought to be a strong correlation between sub-

surface and surface growth rates. The expected transition between these two regimes

has been one of the subjects addressed in the second year's work.

1.3 Generation of a Synthetic Data Base

With a basic, flexible probabilistic model thus established, the next task in the
program was to generate a large synthetic data base against which the model could be

tested. This has been the major accomplishment of the second year. A computer pro-
gram has been written that carries out Monte Carlo simulations of the growth of small

cracks through a stochastic microstructure. The Monte Carlo simulations allow the con-

sideration of any given set of laws of crack growth. The simulation is as realistic as fea-

sible, treating a fully two-dimensional crack bounded by an arbitrarily irregular crack

2
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front. The crack may be either embedded or surface breaking. A great variety of salient

statistics are gathered from the simulations, representing a rich background of physical

detail against which predictive models can be appraised.

1.4 Outline of This Report

A substantial task that occupied the first few months of the second year was

the development of more rigorous algorithms and software than were used in the first

yearl to perform calibration of the probabilistic model against field or laboratory data.

This work is reported in Section 2 and illustrated by the application to the Ti 6-2-4-6

data of Ref. 3. The computational and physical details of the Monte Carlo simulations

are reported in Section 3, including a new, simple algorithm for rapid estimation of the

mode I stress intensity factor KI around an irregular plane crack. In Section will also be

found a discussion of the gathering of useful statistics from the Monte Carlo simula-

tions. Work planned for the third year of the contract is described in Section 4.

3
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2.0 CALIBRATION OF THE PROBABILISTIC MODEL

In this section, the more rigorous procedure for calibrating the probabilistic

model developed in the first year will be reported. The calibration amounts to evaluation

of certain parameters embodied in a postulated or empirical law of growth by selecting

the best fit to experimental data. The more rigorous procedure has led to some slight

modifications of the conclusions reported in Ref. 1, as described below. For ease of

explanation, the procedure is presented in terms of an analysis of data for short cracks in

Ti 6-2-4-6, as in Refs. I and 3.

.2.1 The Role of the Calibration

The probabilistic model of small crack growth was formulated in terms of a

growth control variable, u, that is a random variable. 1 2 The variable u is not always

well suited to direct experimental measurement. For example, in the model of rough-

ness-induced closure used to analyze the data for Ti 6-2-4-6, u corresponds to the aver-

age size of the grains lying at or near the crack front, 1,3 which would be very tedious to

measure for surface grains, and impossible for subsurface grains by any nondestructive

technique. In such cases, the statistics of u are known solely from theory. As indicated

in the block diagram of Fig. I, theory must in such cases provide a model of evaluating

the Probability Transition Matrices (PTMs) of u, which define the probability that u

should take one value at a certain discrete value of crack length, given that it had

another value at the immediately prior discrete value of crack length. The calculation of

the PTMs usually relies on a simple physical or geometrical model of the stochastic

microstructure constituting the material under consideration. Such a model is called a

"u-model" for brevity. Two examples of u-models were presented in the analysis of the

Ti 6-2-4-6 data. 1' 3 One u-model (Model 1) was based on the premise that fluctuations in

the velocities of the visible surface crack tips are influenced only by the neighboring sur-

face grain structure; and the other (Model 2) on the premise that the velocity fluctua-

tions depend on some average of the grain structure lying along the entire crack front.

As in these examples, the u-models are frequently derived from purely geometrical con-
"' siderations of the stochastic microstructure.

4
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u-MODEL

MODEL FOR CALCULATING
THE PTMs OF GROWTH
CONTROL VARIABLE, u.

MAY INCLUDE PARAMETERS a. b,

SEMI-MARKOV CHAIN LAW OF GROWTH
IMEASURED OR POSTULATED

PROBABILISTIC CALCULATION PARAMETRIC RELATIONSHIP
OF THE DISTRIBUTION OF dc

u GIVEN THE PTMs - flu, C. a. .... )
AND INITIAL CONDITIONS WHERE a. 6.... ARE PARAMETERS

CALIBRATION PREDICTION

ESTIMATION OF PARAMETERS CALCULATE LIFETIMES AND
a. 0. ... (AND CONDITIONAL PROBABILITIES

POSSIBLY a, b, ... ) BY OF FAILURE
FITTING PREDICTIONS TO DATA

Fig. I Block diagram of the genesis and calibration of a probabilistic model of short
crack growth.

2.2 Model Validation - The Distribution of Velocities

The connection between the growth control variable u and measurable crack

velocities, and hence lifetimes, is expressed by some empirical or postulated law of crack

growth. In the present example of short crack growth in Ti 6-2-4-6, where the dominant

mechanism controlling growth rate is fracture surface roughness, the form of the law of

crack growth is4

2d-c- v(c,u) = A[-* U + 1.12 max 2 (I)

5
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where 2c is the visible surface crack length; A, a, and s are the parameters to be evalu-

ated; u is the growth control variable appearing as a continuous variable; and amax is the

applied fully reversed cyclic load amplitude. In the original derivation of this law, the
variable u represented the measured crack opening displacement at zero load. The law

was established by fitting crack opening data for a moderately large number of individual

cracks growing through grains whose sizes were individually measured and recorded. In

fact, the measured CTODs have an approximately constant average for cracks of length

2> 100 rim, but fall away for shorter cracks, and must vanish at zero crack length.4 Since

the velocity data continue to show considerable scatter (see Fig. 2) for even the shortest

cracks, it may well be that fracture surface roughness is indeed not the only growth con-

trol mechanism, especially for cracks of length !s 50 um. However, since only the short-

est cracks would be strongly affected, Eq. (1) as it stands is sufficiently true to the origi-

nal study for the present purposes.

SC35491

6 x 10-2

5 -

3-
U 2

Iaa

Ea

a

0 1 --s f : W I I i I I

0 40 80 120 160 200 240
2c (m)

Fig. 2 The crack growth data of Ref. 4 for Ti 6-2-4-6. The three curves represent
the velocity corresponding to the average value of u and two bounds that
should encompass 70% of the data calculated using Model I of Refs. I and 3
(n 3).

6
C8311D/sn

- - . - ' ." L " . ." - ' " ", ." ., .° . .".. ... ." ... . .- ".-.-. .-.-. .-. .-...- ".. .".. . .,.- o" -" .'-,, .,"* 'J ,.-S *



SC541 8.AR

The variable u is, of course, a random variable, whose distribution at any crack

length is given by Eq. (5) of Ref. 2, namely,

F (k)(uk)) f (k) (2)

where F(k) (uk)) is the cumulative probability distribution (cpd) for the variable u inu .1k) (k
terms of discretized values u k); and w is the probability, calculated from the PTMs

prescribed by the u-model, that u should take the discrete value U(k) at the discrete

value of crack length 2 ck. For the following model validation, F u(ulc), a cpd for the

continuous variable u at any crack length 2c, was generated by a numerical smoothing
algorithm and interpolation over {2 ck) . F u(ulc)is determined almost entirely by the

PTMs p(m), which in the present application are prescribed by the u-models " Model I" or

"Model 2" of Refs. I and 3. It is not strongly influenced by the assumed initial distribu-

tion 0 ). (General note: in other applications, this may not always be the case.)

Equation (1) may be regarded as a deterministic, one-to-one relationship

between u and v at fixed crack length, 2c, and it possesses the inverse relationship

u = u(v,c) , (3)

which expresses u as a strictly monotonically decreasing function of v. The cpd for crack

velocities, Fv(v 1c), may therefore be written

Fv(vlc) = 1 - F(u(vc)lc) .(4)

The validation procedure consists of finding the parameters A, o, and , in Eq. (1) that

cause rv(v I c) to most closely resemble the experimental distributions of 2dc/dN at all

crack lengths given the model-based distributions F u Ic).

There are various ways this optimization task can be carried out. In this work,

a modification of a method considered by Fertig5 was employed. Given values of the

parameters A, B, and a, Eq. (3) implies a value, ui, of the growth control variable for

each experimental data pair (2ci,Vi). Let there be Nd such data pairs and implied values

ui . With each value u i may be associated the random variable

7
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Yl " F u(UllCi)" (5)

For 3 valid model and an infinite data set, yi must be uniformly distributed over the

interval [0,11. The optimum values of the parameters A, a, and a may be found in prin-

ciple by minimizing the Cramer-von Mises test function

S [Yi-N 2 (6)

Nd + I

with the yi previously sorted into ascending order. For the given, finite data set, a modi-

fication of this procedure was used to avoid finding spurious, local minima of S(A,8,,)

with the available minimization algorithm. The data ((2c i ,V t )) were divided amongst p

equal subsets, nk , in such a way that

2c I < 2c if i E Qk' j 
E Qk'' and k < k'. (7)

The corresponding yi of Eq. (5) were ordered within each subset, and the minimization

was carried out for the sum

S k ( I k 1i - 1Nk (8)

where Nk is the number of data points in Qk The resulting values of A, 8, and a were

found to be essentially independent of p for 2 < p < 5.

The results of the procedure for optimization are summarized for Model I of

Refs. I and 3 (where dc/dN is determined by surface microstructure only) in Table 1.

- The three cases n = 1,3, and 10 are shown, where n is the number of surface grains in the

wake of the crack tip supposed to influence the fluctuations in its velocity. There are

some differences in the corresponding parameters A, 0, and o, but not enough to distin-

guish between the merits of the three cases. In Fig. 2, the three functions, v(cEu),

v(c,u*), and v(c,u-) have been superimposed (solid lines) on the data for the case n : 3. u

are the values of u defined by

8
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Fu(u+lc) = 0.85

and Fu (u-lc) 0.15, (9)

so that the outer curves should contain 70% of the data points. The equivalent curves for

n = I and n = 10 show no significant differences to the case n = 3. One cannot discrimi-

nate between the merits of these three cases by their ability to reproduce the average or

the scatter in 2dc/dN. Note that this conclusion is different to that reported in Ref. 1,
which was based on a simplistic validation procedure.

Table I
Optimal Parameters A, s, and a and Correlation

Length x+ for Variants of Model I

A
n~a)  (ur/cycle) x 103 G3 ,(b + (m)

1 0.540 2.02 0.359 < 10
3 0.562 2.05 0.304 14

10 0.516 2.16 0.377 60

(a) The instantaneous value of dc/dN is assumed to be con-
trolled by the average of the distances between the last
n deflections suffered by the visible surface crack.

(b) The values given for a are obtained when u is expressed in
mm and amax/' 2c in MPa-m /2 in Eq. (1).

On the other hand, Model 2 of Ref. 3 (where dc/dN is determined by the micro-
structure along the entire crack front) is clearly incorrect. In Fig. 3, the same curves,

v(c,Eu), v(c,u ), and v(c,u-) are plotted against the data using the optimized parameters

of Model 2 and the corresponding distributions F . While the predicted average growth is

acceptable, given the thinness of the data at lengths > 100 um, the scatter in 2dc/dN is

clearly not reproduced. To highlight this failure, the rmsd found experimentally in

2dc/dN has been compared in Fig. 4 with the rmsd calculated according to Model 1 (n = 3)

and Model 2. The experimental values were estimated by grouping the data (2ci,V i) into

ten bins b, centered around lengths 2c' and finding

9
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5 3

U U

3-U

4 2m- sle s
am

0 40 s0 120 160 200 240
2c (Imn)

Fig. 3 As for Fig. 2, but with the predicted curves calculated according to Model 2 of
Ref s. 1 and 3.

3 x10-2

12

01
0 40 so 120 160 200 240

2c (Orm)

Fig. 4 Irregular curve: the rmsd of the velocity data of Fig. 2, calculated according
to Eq. (10). Smooth curves: the rmsd of the crack velocity calculated using
Model I (n =3) or Model 2, as marked.
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2 Z v(c1 ,Eu) 2 (10)
v N j in b[ v(c1'Eu)

where the sum is restricted to the data for which 2ci falls in bj, which is satisfied for Nj

points. Note that the predicted rmsd's for n = I and n = 10 in Model I are virtually the

same as that shown for n = 3.

Inspection of the data shown in Fig. 2 suggests that a threshold for growth may

exist for cracks less than 10 um at the stress level used in the experiment. The data for

dc/dN perhaps tend to zero to the right of the origin, even though the shortest cracks

observed were still propagating. This possibility was investigated by subtracting a con-

stant threshold stress intensity factor from the bracketed terms on the right hand side of

Eq. U1), with the understanding that v(c,u) vanishes if the sum of the bracketed terms is

negative. It was found that the average velocity dipped as expected for 2c < 20 Urm,

without any conclusive effect on the measure S (Eq. (8)) of the goodness of fit. All other

conclusions were unaffected by this small threshold.

* I
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3.0 MONTE CARLO SIMULATIONS OF SMALL FATIGUE CRACK GROWTH

In this section will be described Monte Carlo simulations of two-dimensional

small cracks propagating under mode I cyclic loading across a plane section of a sto-

chastic microstructure. Some observations on the importance of the simulations are

noted in Section 3.1. The essential physics being represented in the simulations are out-

lined in Section 3.2. The derivation of an efficient, approximate algorithm for estimat-

ing the mode I stress intensity factor K, around a plane, irregular crack is presented in

Section 3.3. The generation of a two-dimensional (plane section) stochastic microstruc-

ture is described in Section 3.4; and algorithms for simulating the advance of an irregular

crack front across it are described in Section 3.5. The definitions of physically signifi-

cant statistics characterizing the stochastic growth of two-dimensional cracks are given

in Section 3.6, together with an illustration in which some data on the aspect ratios of

small surface cracks in Al 7075-T6 are compared with Monte Carlo simulations.

3.1 The Role of the Monte Carlo Simulations

The analysis of small crack data for Ti 6-2-4-61,3 led to the interesting con-

clusion that, for cracks of 5-20 grain diameters (50-250 wm) in that material, fluctuations

in the surface crack velocity, 2dc/dN, depend only on the local surface microstructure.

When this is the case, fatigue lifetime prediction is greatly simplified, since surface

observations alone, in conjunction with stress analysis accounting for the extrinsic

effects of part shape and stress state, will provide sufficient information on which to

base a probabilistic model. However, for cracks spanning just one or two grains (which

may be hundreds of microns in some materials), a more complex situation should be

anticipated, since there is then likely to be strong correlation between the rates of

advance of surface and subsurface segments of the crack front. To address the transition

between these regimes, a very detailed and flexible model is required of a two-dimen-

sional small crack growing through a stochastic microstructure. By far the most conve-

nient format for such a model is Monte Carlo simulations, which are described in this

section and Refs. 6 and 7.

A second important task for the Monte Carlo simulations is to provide an

assessment of the accuracy of various treatments of the phenomenon of intermittent

crack arrest, which is now known to be common, if not ubiquitous, in small crack growth
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in alloys (see references cited in Ref. 8). Observations of naturally occurring surface

cracks in Al alloys, Ti alloys, steels, and Ni-based superalloys have revealed that the sur-

face tips of such cracks are frequently arrested when they reach grain boundaries. Prop-

agation resumes after some further fatigue cycles, whose number depends on crack

length and stress level, as well as local, stochastic microstructural factors such as grain

size.9 From the point of view of constructing a probabilistic model of crack growth sub-

ject to this phenomenon, it must be understood that intermittent crack arrest makes nec-

essary a state space of increased dimensionality if the stochastic growth is to be repre-

sented as a Markovian process. It is no longer sufficient to describe the state of a crack

by its length alone, because the probability that the crack has a certain length at a cer-

tain time is not dependent solely upon the length it had at a prior time, which is the

Markovian condition. To recover a Markovian process, it is necessary to consider explic-

itly the possibility that between the two epochs the crack (or some portion of the crack

front) has been and possibly remains temporarily arrested. The elapsed duration of such

an arrest must be described by an additional state variable. A probabilistic model with

such an expanded state space has been presented in Ref. 8 (work under a prior contract)

for the case where the propagation of a small surface crack can be described solely in

terms of the visible surface tips and the surface microstructure they encounter. The

Monte Carlo simulations reported below provide an even more general description of

intermittent arrest, because each segment of the entire crack front is individually repre-

sented as either propagating or temporarily arrested. Therefore, the Monte Carlo simu-

lations provide a sufficient background against which to test the accuracy of various

assumptions and approximations inherent in simplified probabilistic models couched in

state spaces of reduced dimension.

Aside from the questions raised when fatigue crack growth is intermittent, the

Monte Carlo simulations are also capable of generating large, detailed data bases against

which simpler probabilistic models can be tested. This role will be discussed further in

Section 4.

3.2 The Essential Physics Underlying the Simulations

There are several mechanisms related to microstructure that can cause small

crack propagation to depart from the predictions of linear elastic fracture mechanics

(LEFM) or, in other words, destroy similitude with the propagation of large cracks when

13
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dc/dN is plotted as a function of aK. The mechanisms include temporary arrest at grain
boundaries, deceleration caused by back stress or fracture surface roughness, accelera-

tion caused by enhanced local plasticity, and fluctuations in the local stress field caused
by elastic inhomogeneity and anisotropy. In each case, the strength of the effect of
these mechanisms depends on the size, orientation, and mechanical properties of the

grains in the immediate vicinity of the crack front. This knowledge is based exclusively

on observations of fluctuations in dc/dN for the visible surface manifestation of small
cracks, together with detailed records of the surface microstrucure through which the

crack tips are propagating. However, it is very reasonable to hypothesize that the same
or at least similar mechanisms are also affecting the propagation of subsurface segments
of the crack front, with the pertinent microstructural factors being the size, orientation,

and mechanical properties of invisible, subsurface grains. In that case, the microstruc-
ture-based modifications to the crack driving force will fluctuate around the crack front

in concert with fluctuations in the microstructure. The stochastic microstructure will

thus cause fluctuations in the local rate of advance of different segments of the crack
front, and the crack front must oecome irregular. It is the purpose of the Monte Carlo
simulations to quantify such irregularity, and relate it directly to laws of growth
hypothesized or determined empirically to represent the effects of the microstructure.

The tendency of the stochastic microstructure to make the crack front irregu-
lar is balanced by the dependence of the stress intensity factor on crack shape. For

example, for an embedded irregular plane crack, the mode I stress intensity factor, KI, is
generally reduced on protrusions and enhanced on retarded segments, so that, in the

absence of microstructural fluctuations, the crack always tends to be circular. For a
surface breaking crack under mode I loading, the equilibrium shape is approximately a

smooth semi-ellipse of aspect ratio 0.4.

The degree of irregularity expected for any small crack will therefore be
determined by the relative strengths of the disordering microstructural effects and the
smoothing shape dependence of K1. Since K, can be calculated, the laws purporting to
describe microstructural effects can be tested by measuring the degree of irregularity.

Note that as the small crack grows into a large crack, the role of the microstructure

diminishes, and the crack will generally be driven by K, to be smooth.

14
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3.3 Approximate, Fast Algorithm for K1

The feasibility of the Monte Carlo simulations depends critically on being able

to estimate K1 very quickly for plane cracks of arbitrary shape. Exact calculation of K,

would be prohibitively slow and, therefore, simple approximations to KI have been

derived.

3.3.1 Approximation for KI Around an Embedded Crack

The approximation for K1 around an embedded crack is based on estimates

K,(a) of K, at the zenith, P, of a protrusion, and KQ(a) at the nadir, Q, of a retarded

segment, where a is the half-angle subtended by either feature at the center of the

crack. Both the protrusion and the retarded segment considered have the square-

shouldered geometry shown in Fig. 5. The uniform applied tensile stress has value o.

SC36728::(a) (b)

b-II I
t t :

Fig. 5 The geometries of (a) the protrusion and (b) the retarded segment used to
estimate K, at the extrema of an irregular plane embedded crack.
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P3.3.1.1 K, (a) at the Zenith of a Protrusion

P tProtrusi
KI (a) was estimated by calculating the reduction from K,= 2o /tT for

a circular crack of radius t generated by closing most of the crack down to radius s (see

Fig. 5a). The normal surface tractions required to close the part of the crack shaded in

that figure were approximated by the stress field that exists outside a loaded crack of

radius s, given analytically by Sneddon. 10 The estimate of KI is then obtained by inte-I%

grating over the shaded area the product of Sneddon's stress field and the Green's func-

tion for the penny crack in a homogeneous, isotropic material obtained by Smith et al.' 1

Thus,

1 4o z(r) 1 1+
KI(a) = 2o./t-- I {tan-l [1- tan(r- 2's/t /2 3/2

- tan-l4 l+' tan 21} t2 dp ,(1)1-P 2

where P s/t and

2a. -sin1 S S 1 (12)
z(r) = t [n"2

r -s

When a = 0, this expression is exact. Equation (11) then yields zero for all values of s and

t, since, when the crack is closed between s and t, there is no longer a singularity at r =

t. When a > 0, az(r) of Eq. (12) is in fact insufficient to close the crack at any point for

which r < t. This can be seen by observing that, if the remanent crack opening displace-

ment were exactly zero over some , l - :e of (s < r < t, a < e <2-N-a) (where e is the

angular variable defined in Fig. 5) and nonzero elsewhere, then some derivative of the

nonnegative displacement field must have a discontinuity for s < r < t. This is impossible

because all the derivatives of the field oz(r) of Eq. (12) are continuous over s < r < t.

Nevertheless, the results given below show that the displacement is probably small

except near e = a (the edge of the protrusion), and therefore the approximation should be

reasonable.

Normalized to 2o/wt, KI is independent of t. Because of the singularity in

the integrand of Eq. (l) at p = 1, which arises from the Green's function, it is not an

*' 16
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adequate approximation to replace Oz(r) of Eq. (12) by the asymptotic form Ar-s-1/2

even for s = t. The integral of Eq. ( 1) may be evaluated conveniently by cubic spline

integration after removing the singularities at P = s/t and p = I by the substitution

sin u =-si

KI(W/(20= /7-) is shown in Fig. 6. It is significantly reduced from unity
only at small a (tens of degrees), even when s = 0. Further calculations show that 80% of

the reduction is generated by the surface forces applied within -/3 of the protrusion for

all values of s/t and a <_ w/2. In other words, the protrusion is only weakly influenced by

the more distant periphery of the crack.

Numerical calculations show that K,(a) evaluated according to Eq. (11) is

well approximated for s/t > 0.5 by

K1(cz) = oV- ° 2 t-1 3 + st

2 AtT - [ s/t tan .(13)

SC36731

-s/t = 0.9 1
,' -8/t - 0.99

-s/t = 0.75

K, (a) ks/t- 0. 5

0.5 S/t = 0 9
II I

1

0 45 90 135 180

a (degrees)

Fig. 6 K P(a) normalized with respect to KI for a penny crack of radius s, as a
fufction of s/t.
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3.3.1.2 KI(a) at the Nadir of a Retarded Segment

A similar argument was used to estimate KQ. The surface tractions required to

close down the fracture surfaces of a loaded crack over the area shaded in Fig. 5b can be

related by an integral equation12 to the normal displacement of the original penny crack

of radius t. If the required stress field is assumed to be independent of the polar angle 0,
which is a fair approximation when evaluating KQ(a) at the center of the retarded

segment, then the integral equation is one-dimensional and easily solved numerically as

follows.

The normal displacement along e = 0 of a penny crack of radius t subjected to

surface tractions oz(r) over -a _< o -< a is given by

2  c'O (r) h(x/c',r/c',)rdr
u(x) -f dc'

x C, 2 /_e ~ 2 2o '1r1

(14)

where v is Poisson's ratio, E is Young's modulus, and

h ,- 1 2n tan' tan !-I -tan- [L9 tan T ] d
____q r2i 1-q 2

2irq~) f 2 do
2 o 1-2pcos(e-a) + p

(15)

The function h is readily computed, stored, and evaluated subsequently by interpolation,

since 0 _< h s 1.

If u(x) in Eq. (14) is made equal to the opening displacement of the original

penny crack under load 0=, i.e., 10

U(X) = 4(1-v2 )= t2,/-x2 (16)* ~u(x) =t-x(6

and one writes Oz (r) = (r)/(r-s) 112to introduce explicitly the expected singularity

at Q, then Eq. (14) becomes a straightforward integral equation in Qz(r); and

18
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K,(a) = £z (s) - /2w. The integral equation is solved by guessing z(r), and iterating by

some heuristic algorithm until self-consistency is achieved. Further numerical calcula-

tions then show that, to a good approximation for s/t _ 0.5,

KQ(.) - 2. ta tan -El (17)1i 7 17-s /t 2

3.3.1.2 Embedded Plane Cracks of Arbitrary Profile

For crack fronts of arbitrary profile, the half-width a of a protrusion or

retarded segment is defined as half the angle between the points on either side of the

extremum in question at which the radius of the crack was equal to its average radius

(Fig. 7a). The value of KI between the zenith of a protrusion and the nadir of a retarded

segment is then written simply as

KI(e) - [(r(e) - s)K + (t - r(e))KQl/(t - s) , (18)

SC37889

(a) W y

SURFACE,-
ravxV/l

CENTER OF

CENTER OF_)

GRAVITY--

Fig 7 Illustrating the procedures used to define protrusions and retarded segments on
an irregular crack for the purpose of invoking Eqs. (13), (17), and (18).
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where r(e) is the radius of any point relative to the center of gravity of the crack, and s

and t are defined in Fig. 7a.

Now square-shouldered protrusions or retarded segments, such as those on

which the estimates of K and Ky were based, almost never occur in natural fatigue

cracks, because K I vanishes at the apex of a square feature that locally leads the crack

front and diverges at such points that locally trail the crack front. Because of this and

the approximations from which Eqs. (11) and (14) were derived, the identification of a for

a smooth rather than square-shouldered feature is subjective. Therefore, the term 0/2 in

Eqs. (13) and (17) was replaced by -u/2 "a/ao, with the parameter ao evaluated by calibra-

tion against K I for elliptical cracks.

The exact results for an elliptical crack 1 3 with s - t can be fitted perfectly by

Eq. (18) by adjusting ao. With this value of ao retained for all cases (viz., ao 0.201,

found by fitting to K I for an ellipse having s/t = 0.99), the agreement with other known

solutions is as illustrated in Fig. 8. Even for protrusions and retarded segments of sig-

nificant magnitude (s/t - 0.5), the approximation is always accurate to within a few per-

cent. Of course, the near agreement at the sharp points of cases (d), (e), and (f) is fortui-

tous, since K I should really vanish there, and both the approximation and the numerical

results of Mastrojannis et al14 are in error in this regard. However, this is an unimpor-

tant shortcoming, because extremely sharp features are not found in natural cracks.

Most importantly for the present application, the approximation gives fair

estimates of both the dependence of K1 on a and its relative magnitudes at smooth

extrema on the same crack. These are the properties essential to balancing the tendency

of Ki(e) to make a crack regular against the disruptive effects of the microstructure.

Note that K? is correctly predicted to diverge and KP to vanish as a - o. This implies
that very sharp irregularities of the crack front will not be found.

3.3.2 K1 on Surface-Breaking Cracks

Convenient algorithms have been given by Newman and Raju for estimating K I

around semi-elliptical surface cracks in rectangular beams of width 2b aid depth t under

remote uniform tension o. and remote bending stress Sb . I15 16 If 2c is the crack's length

on the surface and a its depth, then for 2c >_ a,
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Fig. 8 Testing the algorithm of Eqs. (13), (17), and (18) for embedded cracks against
known solutions for embedded irregular cracks: (a) and (b) are for ellipses with
semi-axis as marked; the shape of the cracks in (c)4(f are shown in insets.
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( a + HS ) Fa a c(19)
Sb F(-k T Et'b' b )

where E is the complete elliptic integral of the second kind; k 2 = I-a 2 /c 2 ; F is a poly-

nomial in a/c, c/a, a/t, and c/b, and a simple trigonometric function of *, the parametric

angle of the ellipse; and H s, the bending multiplier, is a simple algebraic function of a/t,

a/c, and sine.

To account for departures of the crack front from the semi-elliptical shape,

Eq. (19) was combined with Eqs. (13), (17), and (18) by the following ansatz. The center

of mass and the moments of inertia Ix and Iy of an irregular crack were found, and taken

to define the center and semi-axes (C = 2/F1 and a = 2/A-) of a smoothing semi-ellip-
y x

tical crack. The x axis was rescaled by the factor a/c, so that the fitted semi-elliptical

crack would become a semicircular crack, and the mirror image was added (Fig. 7b) to

generate an entire irregular, approximately circular crack. Equation (18) was then used

to generate values of Ki(e) around this scaled crack, normalized to K1(a)= 2o/a-.

These normalized values of KI(e) represent the relative acceleration and retardation of

local protrusions and retarded segments. These values were then multiplied by the

results of Eq. (19) for the semi-elliptical crack of semi-axes c and a, to account for gross

shape and size effects.

The quality of the results generated by this procedure was then tested by com-

I parison with the essentially exact numerical solutions of Gyekenyesi and Mendelson 17 for

a rectangular surface crack in a finite rectangular slab. In Ref. 17, calculations were

made for a crack embedded in a slab whose depth and width in the crack plane were as

shown in the insets of Fig. 9, and whose length normal to the crack plane was also finite

(3.38c), whereas Newman and Raju have supplied expressions (Eq.(19)) for bars of infinite

length only. With the understanding that this might detract from the fairness of the test,

the comparison of the results of Ref. 17 and the present approximate algorithm is pre-

sented in Fig. 9. Despite the fact that the rectangular surface crack is an extreme shape

and therefore a severe test, the agreement is reasonable except for the case of very low

aspect ratio (a/2c = 0.15), and even there the qualitative trends are faithfully repro-

duced. Considering that the present algorithm will always tend correctly to Newman and

Raju's standard expressions (Eq.(19)) as the crack shape tends to semi-elliptical, and that
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F ig. 9 Testing the algorithm of Eqs. (13), (17), (18), and (19) for surface cracks
against the calculations of Gyekenyesi and Mendelson' 7' for rectangular cracks
in finite rectangular bars. The insets show the dimensions of the cases con-
sidered. All values of K, are normalized to rc. where 2c is the surface crack
length. The curve marked If itted semi-ellipse' (dotted line) in each case shows
the results of Eq. (19) for a semi-elliptical crack having the same moments of
inertia as the rectangular crack.
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crack fronts generated in the simulations and found naturally are generally fairly smooth

and not far from semi-elliptical, the approximate algorithm is adequate for the appli-

cations reported below.

3.4 The Generation of Random Microstructures

A single instance of a stochastic microstructure is generated as follows.

Nucleation sites of a prescribed average density are placed on the plane of the crack in a

Poisson process (i.e., with no correlation in their locations) by invoking a pseudo-random

number generator. The grain boundaries are then determined by the Wigner-Seitz con-

struction, which defines each grain as the area bounded by the perpendicular bisectors of

the lines joining that grain's nucleation site to the nucleation sites of all its contiguous

neighbors. The resulting cellular structure, an example of which is shown in Fig. 10, is a

set of Voronoi, Dirichlet, or Wigner-Seitz polygons. All the polygons have straight edges,

at least three neighbors, and are convex. The average grain size is established by the

prescribed density of nucleation sites. There is some correlation between the sizes of

adjacent grains, with large (small) grains tending to have large (small) neighbors. This

correlation is often expressed in terms of the number of sides of the polygons, but it also

exists for their areas. The extensive literature on random Voronoi polygons may be con-

veniently entered through Refs. 18-20.

There are some characteristics of Voronoi polygons that are unrealistic in the

context of metal or alloy microstructures. For example, there are numerous very small

grains, which would probably be subsumed in an alloy by larger neighbors during anneal-

ing, and the straight-edged polygons are unnaturally smooth, since natural grain bound-

aries are generally faceted and otherwise irregular. However, the dependence of the

laws of crack growth on local microstructure does not usually involve such geometrical

details. The laws of growth refer perhaps to the average grain size in the vicinity of a

segment of the craLk front, or some crude measure of local slip distances. Therefore,

Voronoi polygon4 are, to the best of current knowledge, quite acceptable for the Monte

Carlo simulations. Note that nonequiaxed grain structures can be generated simply by

rescaling one of the axes.
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Fig. 10 A typical random microstrucure consisting of Voronoi polygons.

The procedure followed to execute the Wigner-Seitz construction was as fol-
lows. For a given nucleation site, i, the grain enclosing it was first supposed to be the

entire, usually rectangular, area A within which crack growth was going to be simu-

lated. For every other nucleation point, j, lying within a cutoff distance, dc, of site i,

the perpendicular bisector was formed, and the question asked of whether it intersected

the polygon currently recorded as surrounding site i. If so, the polygon was reduced to

include the appropriate interval of the bisector as a new side. This was repeated for all

sites j within dc of site i, and then for all sites i. The area A must always be chosen

large enough that an embedded crack never reaches the boundary region during a simula-

tion, because this implementation of the Wigner-Seitz method is affected by the external

boundaries of A: unusually large grains are formed there. When required, a free speci-

men surface was formed by deleting all grains and parts of grains lying beyond a line

drawn across area A, just as though the specimen had been physically cut.

To enable convenient reference to the information contained in a given micro-

structure, a discrete square grid was defined on the plane of the crack. Each point on
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this grid was then associated with the number of the grain containing it and with other

measures of the local microstructure. For example, for modeling crack growth in Al

alloys, an appropriate measure upon which plasticity-induced closure depends is the dis-

tance from the grid point to the next grain boundary measured along the line emanating

from the center of the crack. Other characteristics, such as grain orientation, might be

preferred for other materials.

3.5 Initiation and Propagation of a Crack Front

The simulation of fatigue crack initiation can be treated according to various

. models. Depending on the known mode of initiation and the stage of crack growth under

study, one might begin with a crack that spans several grains, or extends exactly to the

boundaries of just one grain, or is smaller than a single grain, or even vanishingly small.

For crack fronts that are not assumed to coincide initially with a grain boundary, the

aspect ratio and shape remain to be prescribed. For naturally initiated cracks, it is fre-

quently the case that initiation occurs mainly in unusually large grains. The appropriate

initiation model that takes all such factors into account must be chosen for each applica-

tion of the Monte Carlo simulations.

A Monte Carlo simulation begins by generating a random, two-dimensional pat-

tern of grains lying on the plane of growth, as described in the preceding section. The

initial crack is introduced according to the initiation model. The crack front after Ni

cycles (beginning with N1 = 0) is represented as a sequence of straight line segments

meeting at the vertices {(xj,yj)J. The applied cyclic mode I stress intensity factor,

aK J ) , corresponding to the prescribed external stress range, is calculated at each ver-

tex j according to the algorithms derived in Section 3.3. The microstructural environ-

ment of the vertex j can be found immediately by identifying the element of the square

grid (see Fig. 11) in which (xj,yj) lies, and referring to the corresponding elements in the

stored tables of microstructural parameters for the current microstructure. AK j ) (or

K(J) and K(J)) and the microstructural parameters for vertex j are then supplied to amin max-

subroutine that invokes the prescribed laws of crack growth for the given simulation.

The output of that subroutine is the velocity, vj, of the crack front at the vertex j.
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Fig. 11 Illustrating the algorithm for advancing the crack front. The square grid
marks the discrete elements within each of which the microstructural param-
eters (e.g., size of the grain containing the element, or the distance of the
element from the next grain boundary) are taken to be constant.

The crack front after Ni+I cycles is found by assuming that it advances in the

direction of the normal to the front at every point. At each vertex, this direction is

taken to bisect the angle between the two adjacent straight segments (Fig. 11). The dis-

tance over which vertex j advances is just v)(N+il-Ni). The step length Ni+I-N i is chosen

to be small enough that the simulation is independent of it. This entire process amounts

to first-order integration of a set of coupled differential equations governing the advance

of the vertices of the crack front according to the prescribed laws of growth.

The number of vertices on the crack front is chosen initially to be large enough

that each segment is small relative to the scale of the microstructure. This condition is

maintained as the crack grows by adding a new vertex at the midpoint of any segment

that exceeds some critical length.

Because cracks tend to grow faster as they get bigger, it is usually convenient

to control the maximum or average of the distances of advance, dj, during each incre-
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ment of cycles, rather than choosing Ni+l-Ni to be constant. In this way, the spacing

between successive calculated crack fronts can be kept small relative to the microstruc-

ture.

The propagation of surface cracks growing according to the Paris law

vj A((AK) p  (20)

in the absence of any microstructural effect is illustrated in Fig. 12. Note that memory

of the initial value of the aspect ratio disappears by the time the surface length of the

crack has increased two- or three-fold, and that the equilibrium shape is approximately,

but not exactly or necessarily, semi-elliptical. The velocities vs of the surface tip and vb

of the bottom of a crack whose shape has reached equilibrium at an aspect ratio a/2c are

related by

Vb/vs = a/c . (21)

When the velocities are governed locally by the Paris law, it follows that the equilibrium

aspect ratio must depend on the parameter p in Eq. (20).

If the laws of growth admit arrest of the crack, then part or all of the crack

front may stop growing temporarily or permanently. The state of being arrested is con-

tinually monitored as an attribute of each vertex. If all vertices are arrested, then the

subroutine containing the laws of growth is interrogated to see whether the arrest is

temporary or permanent, based on the existing microstructural environment of the crack

front. If arrest is temporary, the record of elapsed cycles is modified and each vertex is

freed to propagate as the laws of growth allow. If arrest is total and permanent, the

simulation ceases.

When microstructure influences the growth, the crack front frequently

develops small, local minima in the crack radius, illustrated schematically in Fig. 13a.

The algorithm Eqs. (13), (17), and (18) for estimating KI generates large values at the

nadir of such a narrow retarded segment, because KQ (Eq. (18)) diverges as the half-

angle a vanishes. This causes the prediction of an unusually large advance for that part
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Fig. 12 Propagation of surface cracks according to the Paris law in the absence of
microstructural effects starting from a crack of aspect ratio (a) 0.25 and (b)
0.08. The parameter p in Eq. (20) has been assigned the value 2.

of the crack front during a finite increment in elapsed cycles, leading to the false gener-

ation of a local protrusion (Fig. 13b). The protrusion in turn generates large values of KI

on either side of it, and a distortion of the crack front similar to the original locally

retarded segment occurs on the subsequent iteration (Fig. 13c). This unphysical leap-

frogging, which can propagate indefinitely if unattended, can be cut short by identifying

the transition from Fig. 13a to Fig. 13b and resetting the crack front along the smoothing

dashed line shown in the latter. Note that this needs to be done only if a region of the

crack front goes from displaying a retarded segment to displaying a protrusion on one

increment of cycles. If there is a persistent microstructural reason for the local change

in shape of the crack front, this will still occur over several or many increments of

cycles.

When the effects of the microstru:ture are relatively strong, the crack front

becomes highly irregular, and certain topological quirks can arise when calculating the

new position of the front according to the algorithm illustrated in Fig. 11. For example,
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(a) (b) (c)

* I

Fig. 13 Leap-frogging caused by a local minimum in the crack radius. (a), (b), and (c)
show the same portion of a crack front at successive discrete values of elapsed
cycles. The direction of advance of the crack front is indicated by the arrows.

the crack front can form closed loops by crossing over itself, or spurs where it doubles

back on itself. The former phenomenon must be excised from the crack front because it
quickly leads to numerical explosions in the algorithm for advancing the front; and the

latter because it is beyond the scope of the algorithms for estimating K1. All such aber-

rations can be readily identified by demanding that the vertices on the front always prog-
ress clockwise (or anticlockwise) around the center of mass of the crack, and deleting

any vertices that do not.

3.6 Statistics of the Shape and Growth Rate of Small Fatigue Cracks

In this section will be presented a comparison of the measured and predicted

statistics of the aspect ratios of small surface cracks in Al 7075-T6, and the definitions

of other statistics of shape and growth rate for which experimental data do not yet exist,

but could be readily obtained.
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3.6.1 Statistics of the Aspect Ratio

A typical simulation of a surface crack is shown in Fig. 14. The grain struc-

ture there corresponds to that exposed on a plane cut normal to the rolling direction and

normal to the surface of a rolled sheet of Al 7075-T6. The average grain length normal

to the rolling direction is - 120 um, and the average depth normal to the surface is
-20 tim. After a brief crystallographic phase immediately following initiation, small

fatigue cracks in such specimens grow in a transgranular noncrystallographic mode.

Plasticity-induced closure causes them to slow down upon reaching each grain boundary

and accelerate as each grain is being traversed (Zurek et al2 1). Observations on just the

visible surface outlines of individual cracks have led to laws relating the rate of advance

of each surface tip to its distance, z, from the next grain boundary. In the simulations

shown here, the same law has been assumed to prevail all around the crack front, with z
always measured along a line radiating from the original center of the crack. The law

has the form

dw AAK2 (1-iz/2 )2 H(-z/') (22)
dN =  S343

NORMAL TO
STRESS AXIS
AND ROLLING

SURFACE OF SPECIMEN DIRECTION

..

200 1 1 1_1_1

-100 0 100 200

DISTANCE FROM CENTER OF CRACK (Mm)

Fig. 14 A simulation of the growth of a surface crack in Al 7075-T6. The position of
the crack front is recorded at approximately equal intervals in crack
size /aciE, rather than in cycles.
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where w refers to displacement of the crack front along the normal direction, r is the

average radius of the crack, and s is a parameter whose value for visible surface crack

tips in Al 7075-T6 is - 0.5. H is the Heaviside step function, and its presence signifies

the possibility of part or all of the crack front being arrested by closure. Small cracks in

Al alloys are also arrested temporarily by grain boundaries, but this effect is relatively

weak in large-grained specimens and it has been ignored here. (Note, however, that grain

boundary arrest is readily treated in the simulations, and it will be a principal subject of

future studies.)

The simulation shown in Figure 14 exhibits some important general character-
istics of small crack growth. When the crack is small relative to the microstructure (less

than or equal to a few grains), the crack front can be highly irregular. Parts of it may be

arrested by closure (or grain boundary blockage), and the aspect ratio, i.e., the ratio of

the average depth to the surface length, fluctuates widely from crack to crack and as the

crack grows.
Some statistics of the aspect ratio, defined to be aI2c, where a = 2 ,/F and

x
c = 2/-, are shown in Fig. 15 as functions of the average crack radius, defined

as = ,Ac. Both experimental and theoretical data in Fig. 15 were calculated from

observations or simulations of many cracks: 16 experimental cracks and 100 simulations.

The experimental data were obtained by splitting open specimens after various fatigue

exposures and measuring the outline of the fatigue crack front. One striking feature of

the experimental data is that many cracks show a/2c > 0.5 at 50 urn < r 100 urn. This

characteristic is reproduced in the simulation (continuous curves of Fig. 15), and can be

traced to the fact that the grains are highly nonequiaxed. Values of z tend to be much

smaller for those segments of the crack front propagating down into the specimen, and

Eq. (22) then implies that a/2c will be augmented. The agreement between the experi-

mental data and the simulations, both in average and deviation, supports the hypothesis

that the law of growth obtained from surface observations is also valid for segments of

the crack growing down into the bulk.

32
C831 ID/sn

! ~~~ ~~~~~~~~~~~~~~~.............. .. . ....... ,...•.,. . .. - .-...-. . , .,,, ,--' .;. -:-:.,.,.



SC541 18.AR

0.8 
C36342

0.6

0.4- -2c!!/.,.

I',

0 ! ! I I
O100 200 300

VW( m)

Fig. 15 As 3ct ratio of small cracks in Al 7075-T6 as functions of the crack size
/lac. The data (circles) are for cracks grown at a stress amplitude of

* 400 MPa. The curves show the distribution of a/2c foun in 100 Monte Carlo
simulations. The solid curve shows the average of a/2c in the simulations. The

* dashed curves should contain 70% and the chain-dot curves 95% of the data.

When the crack spans more than a few grains, the relative strength of micro-

.1.2

structural factors decreases, and in the simulations the crack front is restored to its

smooth equilibrium configuration, with aspect ratio - 0.4, by the variation of KI(0)
according to Eqs. (13), (17), (18), and (19). For very small cracks, a/2c is found experi-

mentally to be 0.2. This was mimicked in the simulations by assuming that initiation
(e.g., by fracture of stringers of particles or by persistent slip bands forming micro-
cracks) generates relatively long, shallow cracks, about 90 lim x 4 m. Such an assump-

tion is, of course, testable by appropriate experiments. For the largest cracks, the
experimental values of a/2c in Fig. 1h fall below 0.4 because the cracks were grown in
bending. The simulations were run before the expressions of Raju and Newman Kor the
bending multiplier in Eq. (19) had been coded.

33

C831l1D/sn



Rockwell International
Science Center

SC5418.AR

3.6.2 Other Statistics of the Shape and Growth of Small Cracks

There are many other statistical properties of small cracks that can be con-

veniently studied by Monte Carlo simulations. These include: (1) the degree of irregular-

ity of the crack front; (2) the covariance between the rates of advance of different seg-

ments of the crack front; (3) the persistence of fluctuations in the degree of irregularity

or the aspect ratio; and (4) the relationships between either the aspect ratio or the

degree of irregularity and the rate of growth averaged around the crack front.

Irregularity may be defined in various ways, and the appropriate definition may

depend on the physical mechanisms that generate it. One simple definition is

2 = f (I-r(e)/p(e)) 2de/fde , (23)

where r(e) is the radial distance from the center of gravity of the crack to the crack

front at angle 0, and P(O) is the equivalent distance for the elliptical crack of semi-

axes c = 2/1F and a = 2AF. The function X 2 measures the relative departure of the
crc fro 2

crack from the ellipse of best fit, averaged around the crack front. X is generally

largest for small cracks and becomes smaller as the crack grows. The magnitude and

rate of decay of X 2 , and the covariance between values of X 2 at different times for the

same crack, are direct indicators of the strength of the stochastic microstructural fac-

tors that tend to disrupt crack growth.

The covariance between the rates of advance of different segments of the
crack front (at angles e and e') may be defined by

pv(e..',) = E{(v(e.r)-v(r)) (v(e'.r)-vF)) (24)
V /E,(v(e.r)-_v()) 2} E{(v(e' ,r)-v() ) 21

where E denotes the expectation value for an ensemble of many cracks, and v(r)

E { v(r) }, where v (T) is the rate of growth of a crack of size r = averaged around

its front. pv is very important to the estimation of remaining fatigue lifetime when

experimental observations are limited. For example, NDE of surface cracks generally

returns no more information than the visible surface crack length, and perhaps some

gross estimate, by acoustic or eddy current measurements, of the size of the invisible
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subsurface crack. In the small crack regime, it is then critical to know with what cer-
tainty the rate of growth of the subsurface crack can be inferred from the rate of growth
of the visible crack. The covariance, pv(e,O), obtained from the Monte Carlo simulations
using models tested and calibrated by comparing that and other statistics with de. ruc-
tively inspected cracks, provides the answer. Note that a transition in ov(e,O) is expected
as the crack grows out of the small crack regime. The surface velocity of small cracks
will be relatively strongly correlated with the velocity of subsurface segments, because
the same microstructural factors may often be affecting both. For larger cracks, the
microstructural environment of the surface tips is unrelated to the subsurface micro-

structure, and ov(8,O) will ultimately vanish for 8 * 0.

The persistence of fluctuations in shape can be quantified by the covariance ox

of values of X2 determined at different times for the same crack:

E{ (X2(F1)-E(X 2 (FI))) (X2(F2 )-E(X 2 (r 2 )))}(Px( 1, r"2 ) = X2 r.)-2- (25 )N/E{ (2 E(12()))2} E{(X 2 (j 2)_E(X (T2))) 2
}

Px(rl'r 2 ) will generally decay as exp[-(r 2 -rl)/A I , and the half-life x, itself a function

of 1 , is a useful measure of both the spatial wavelength of the underlying microstruc-
tural disorder and the range of influence of one part of the crack upon another.

One would generally expect the growth rate averaged around the crack front
to be strongly correlated with the degree of irregularity. For example, if the role of the
microstructure is to retard the crack front locally where it lies in large grains, then a
highly irregular crack in which the crack is retarded at several places would usually be
propagating slower than a smoother crack front of which no segment is severely
retarded. Or, conversely, if the role of microstructure is to cause local acceleration of
the front, then the more irregular cracks might be expected to be propagating faster
than the average. In either case, comparison of such correlations predicted by simula-
tions with those found by experimental (destructive) measurements of crack shape and
velocity would serve as a further direct test of postulated laws of growth. For similar
reasons, the average velocity and the aspect ratio can be expected to be correlated. This

correlation could be especially useful for predicting remaining lifetime based on NDE
measurements, since representative aspect ratios can be measured even for irregular

cracks by acoustic methods.
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4.0 PROGRAM STATUS AND FUTURE WORK

Following work under this program and a prior DARPA program, our group now

possesses models constituting a broad spectrum of the degree of detail that can be incor-

porated explicitly in probabilistic descriptions of small crack growth. The most explicit

models are the Monte Carlo simulations described in the preceding section, which follow

all the details of the irregularities of the crack, including intermittent arrest of part or

all of the crack front. The next level of detail (i.e., of less detail) is represented by the

work under the DARPA program, in which consideration was reduced to the visible sur-

face crack, but allowance was still made explicitly for the non-Markovian nature of

growth that is interrupted at grain boundaries. In that work, 8 a Markovian process was

recovered by defining an extended state space, which included as independent variables

not only the crack length, but also a damage variable that corresponds to the time for

which a temporarily arrested crack has been arrested. The least level of detail is repre-

sented by the probabilistic model developed in the first year of this program (reviewed in

Section 1.2), which comprises the smallest state space that the authors believe is

required to make accurate predictions, and retains a simple description of the relation-

ship between stochastic microstructure and the statistics of growth.

One important task for the immediate future is to compare the accuracy of

these various models when applied to different materials. In the absence of definitive

experimental data (see below), the most effective way to do this is to assume various

reasonable modes and laws of growth, set up a rich, synthetic data base using the Monte

Carlo simulations, calibrate the simpler models against that data, and then compare the

predictions of the simpler models with the corresponding statistics of the synthetic data

base. The accuracy must be tested of predictions of: 1) the distribution of times to fail-

ure; 2) the distribution of times to failure given the result of an NDE test; and 3) the

correlations between rates of growth at different times. At first, this will be done for

surface cracks exposed to uniform, fully reversed cyclic loading, to isolate the effects of

different treatments of the geometry of the microstructure and temporary arrest of part

or all of the crack front. The anticipated transition from strong to weak correlations

between surface and subsurface phenomena will be studied, as well as the errors incurred

in approximating non-Markovian (intermittent) growth as a Markovian process in a mini-

mal state space.
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Both the simple but robust probabilistic model developed in the first year and

the Monte Carlo simulations are capable of treating spike overloads and stochastic load-

ing, given some physical model of the dependence of their effects on local microstruc-

ture. Unfortunately, there do not yet exist rigorously tested models accounting for over-

load and load sequence phenomena on the required fundamental level. Therefore, prog-

ress will be made by some plausible speculation, based on the understanding gained in our

group under other contracts of the evolution of localized plasticity in Al alloys under

variable loading. 2 2 - 2 7 For example, according to the models developed for small cracks

in Al alloys, the effect of an overload might be either to retard a crack by enhancing

backstresses or plasticity-induced closure, or to accelerate it by increasing the local

plastic strain range. 2 7 Which effect prevails depends on the size of the grain containing

the various segments of the crack front, and the position of the crack front relative to

grain boundaries, including whether the crack front is actively propagating or temporar-

ily arrested at a grain boundary.

The testing of all probabilistic models relies ultimately on the availability of

appropriate experimental data in statistically signifi-ant quantities. Such data continue

to be almost nonexistent for small fatigue cracks. The only data used in this program so

far have been acquired in-house, mainly under other programs. All the data for

Ti 6-2-4-6 used in Ref. 3 were obtained some time ago under DARPA funding. The data

on aspect ratios of cracks in Al 7075-T6 reported in Section 3 were taken under this pro-

gram in about two days work by breaking open specimens fatigued during another IR&D

program. Some data on crack shape and growth rates in Mar-M-246 are expected to be

available shortly from a program supported by interdivisional funding from Rocketdyne

Division. The most promising small crack data are those currently being generated and

collated by a group of ten laboratories in the AGARD program under NATO sponsorship.

Unfortunately, those data have not yet been released for general dissemination.

The course of this program has departed slightly from the order in which vari-

ous tasks were projected to be accomplished in the original work statement (attached as
Section 6). The first three items on that list of tasks (spanning the first and second

years) have been essentially completed, as has the specification of a process of calibra-

tion (Item 5, third year). The models developed so far are all capable of addressing stress
overload effects (Item 4, second year). The outstanding work is therefore the untouched

parts of Items 4, 5 and 6: considering crack coalescence (Item 4), developing a strategy
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for choosing the most advantageous formulation in a given application (Item 5); and eval-

uating performance under a range of extreme predictive requirements (Item 6). The

remaining work in Items 5 and 6 will be the first attacked in the third year, which is

about to begin. A serious attempt to treat coalescence requires significant extensions of

the models developed so far, and will be deferred until the other tasks have been satis-

factorily worked through.
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6.0 STATEMENT OF WORK

First Year

1. Incorporate models of microstructural short crack growth phenomena into a

stochastic damage growth model.

2. Compare model structures of various levels of complexity against synthetic data

bases generated principally by Monte Carlo methods.

Second Year

3. Address the formulation and characterization of compound physical/statistical

models which account for load history and cyclic stress amplitude.

4. Integrate crack coalescence and stress overload effects into the models.

Third Year

5. Develop a strategy for choosing the most advantageous formulation for a statis-

tical model in a given situation and specify a process of calibration that will

optimize predictions of remaining lifetime.

6. Evaluate the performance of predictions made under a range in extremes of

predictive requirements.
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9.0 INTERACTIONS AND MEETINGS

Dr. Peter Edwards of RAE, Farnborough, England is the focal point for collab-

oration and publication of the AGARD small crack data. He has been asked to provide

data at the earliest possible date so that the probabilistic models developed under this

program can be tested and refined. The AGARD data are believed to comprise many

dc/dN vs &K curves for individual cracks, fatigued under both Gaussian and spike over-

load spectra.

A paper on the Monte Carlo simulations will be presented at Fatigue '87 in

Charlottesville, June-July 1987.
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