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1.0 INTRODUCTION

Until recent work by van Dommelen and Shen (1981, 1982a), controversy

existed with regard to the possibility that a singularity occurs at a finite

time and position in an unsteady boundary layer evolving under prescribed

pressure distribution. The consequences of its existence are large, particu-

larly for the inviscid flow. It seems possible, however, that previous

uncertainties have arisen from inability to accurately calculate unsteady
flows with large reversal. For their calculations, van Dommelen and Shen made

use of a Lagrangian formulation of the two-dimensional unsteady boundary-layer

equations and considered a circular cylinder started impulsively from rest.

They confirmed the existence of a singularity and the accuracy of their method.

It is to be expected that the singularity will also exist in an Eulerian

formulation but many previous attempts, for example, those of Belcher et al.

(1971) and Telionis and Tsahalis (1974) have failed to reveal it. Useful

reviews of the topic have been provided by Riley (1975), Williams (1977), Shen

(1978), Telionis (1979) and Cebeci (1982).

With his Eulerian formulation, Cebeci (1979) performed calculations for

the same problem. The results extended to T = 2.8 at which time they were
terminated because the shear layers became too thick to be accurately repre-

sented by the numerical scheme. Also, a maximum and a minimum developed in the

displacement thickness distribution and tended to cause the solutions to

oscillate. Subsequent calculations with an improved transformation allowed

solutions up to T = 3.0 but the nonmonotonic variations of the displacement

thickness remained, Cebeci (1982). The results were in close agreement with

those of van Dommelen and Shen (1982a) up to around T = 2.75.

Consideration of the above results led to a tentative conclusion that the

numerical scheme was at fault and that previous Eulerian formulations may have
had similar numerical shortcomings. Further calculations were performed to

systematically investigate the influence of step lengths in time and
x-direction and confirmed that the nonmonotonic variation of displacement

thickness could be reduced by the use of smaller step lengths but an optimum

relationship between At and Lx could not be determined and appeared essential.

These calculations were performed with a form of Keller's Box method modified

to include the zig-zag formulation of Krause et al. (1968). In common with

%7* .2. .



the often-used Crank-Nicolson method (1947), this scheme is convenient, partic-

ularly since the orientation of the numerical mesh is chosen a priori. This

advantage has a corresponding and potentially dangerous drawback in the pres-

ence of large reverse flows. The precise boundaries of the solution domain

must obey the Raetz theory (1957) of influence-regions and the zones of

influence and dependence may not be properly represented. This potential

defect can be overcome only by ensuring that the mesh is correctly aligned

with the flow direction and thereby allows the local flow properties to be

correctly influenced by its neighbors.

Here we describe a new numerical scheme which is intelligent in the sense

that it examines the choice of grid in relation to the magnitude and direction

of the local velocity and reaches and implements a decision which ensures that

Raetz's theory is obeyed. It is applied to the time dependent equations of the

following section and makes use of a form of the characteristic box described

in Section 3.0. The results for an impulsively started circular cylinder are

presented and discussed in Section 4.0.

*~~e e*e e.-....-* *
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2.0 BASIC EQUATIONS

We consider incompressible unsteady laminar flow over a circular cylinder

started impulsively from rest. The governing boundary-layer equations and
their boundary conditions for this flow are well known, see for example, Cebeci

(1979) and are given by

Du avax +Ty = 0 (1)

au u + Vu U du e + 2 u (2)u5 T +X ue T-X_ __7
ay

y = 0, u = v = 0; y CO, u 4 Ue(x) (3)

To generate the initial conditions for the above equations at t = 0 and to put
them into a more convenient form for solution, we define the similarity vari-

able n and a dimensionless stream function f(x,n,r) by

u 1/2
n=(-) y (x,n,-r) = (4)vLto L ) 1/2 -((Vu OLt) u e

where ¢ is the usual definition of stream function which satisfies Eq. (1),

uo denotes a reference velocity 27u., L is a reference length equal to ra
with a corresponding to the cylinder radius, T is a dimensionless time equal

to u ot/L, ue is a dimensionless velocity, ue/u o and X = x/L. In terms of

these relations, with primes denoting differentiation with respect to n,

Eqs. (1) to (3) can be written as

a - ll f' - f' ff,, + 2,, + Ise [1 - (f,) + ff"] = -r-- + u (f' f. 2 1 (5)
2 3 e

= , f f' = 0; = Te,  f' 1 (6)

These variables are employed only in the interval during which the boundary
layer develops rapidly. At higher values of time, the exponential-like growth

of the boundary-layer thickness with time near the rear stagnation point

region, is represented in terms of the dimensionless variables Y and F defined

by

." .. . .. . . .



Uo 1/2 1/2 le Y
y= () , = (vu 0L) e u eF x,Y,T) (7)

and Eqs. (I)-(3) become

d _U

F"' + bnF" + b -- [1 (F') 2 + FF] = b F + bu [F' F- F" -F(

d o x x

Y = 0, F = F' = 0; Y = Ye' F' = 1 (9)

Here b = e2 (T -l  and the primes denote differentiation with respect to Y.

Equations (5) and (8) can also be expressed in the common form:

di
f"' + blnf" + b e [I - 2 ff.] + + b f' W f. (10)

where, with f = F for T < T*

112 T < T. T T < T.

= b=
e T > T bI  > T

The initial conditions at t = 0 can be obtained from Eq. (10) which reduces to

+ 1 nf" = 0

and whose solution, subject to Eq. (6), is given by

f = n erf (n ) + 2 [exp (- 2 1] (12)T

The initial conditions along the (T,n) plane at the forward and rear stagna-

tion points can also be obtained from Eq. (10). If the external velocity

distribution is represented by

1 sin(x) (13)
e Tr

then at x = 0 and 1, Eq. (10) becomes

f"' + bin f" + bX[l - (f2 + ff"] bf' (14)

where X = 1 for x = 0 and X = -l 'or i = I.

A'
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3.0 NUMERICAL METHOD

The solution of the time-dependent boundary-layer equations with no flow

reversal in u across the layer is routine and can be achieved easily with the

Keller (1974) or Crank-Nicolson method (1947). These procedures are described

in several references, see for example, Bradshaw et al. (1981). When there is

flow reversal, however, the solution of the time-dependent boundary-layer

equations is not straightforward and requires special procedures to avoid the

numerical instabilities. The zig-zag formulation of Krause et al. (1968) helps

to remedy the difficulties but is not sufficient in all cases, as we shall

discuss later. An accurate and physically sound numerical method is the

characteristic scheme developed for three-dimensional steady boundary-layer

flows by Cebeci and Stewartson (1978) which is based on the solution of

governing equations along local streamlines. It allows the step sizes in the

t and x directions to be automatically adjusted to ensure that the region of

backflow determined by the local streamlines does not violate Raetz's regions

of influence. A brief description of this method for the problem of the

impulsively started cylinder is given below.

We first define a new variab e by

e :b f + bu -  (15)
dx i

and write Eq. (10) as

dii

f"' + blnf" + ef" + b e [l - (f,)2] = b -' + buef (16)

One of the basic ideas of Keller's box method is to write Eq. (16) in the

form of a first-order system. For this purpose we denote f' by g, let

> I r- • • ° r z - - " i5



= w (17)

and write Eqs. (15) and (16) and their boundary conditions as

du
0' b e g + bu (18)

dx eO

due 2

w' + blnw + Ow + b L (I - g) = b 21 + bu g (19)
d aT e

n = 0, e = g = 0; n = ne,  g 1. (20)

The solution of the system given by Eqs. (17) to (20) by the standard or

characteristic box methods depends on how the difference equations are written

for Eq. (19); the remaining equations are unchanged. In the following para-

graphs we first consider Eqs. (17) and (18) and show how the difference equa-

tions are written.

Consider the net cube shown in Fig. I and denote the net points by

o 0 0, i =; i-I + ri 1, 2,..., i

To 0, Tn T n-l + k n = 1, 2, ... ,N (21)

~o  =0, T) = rj. 1  + hj ij = 1, 2, ... , J

where ri = A i, kn = AT n and h. AT

The difference approximations that are to represent Eq. (17) are obtained

by averaging about the midpoint (xi' Tn' Tj-1/2 )'

h-(g i,n i,n i,n (22)

g - g/) = 2

where, for example,

i,n i,n i,n
Wj-i/2 = 1/2 (w. + wj I )  (23)

The difference approximations to Eq. (18) are obtained by centering all

quantities except e at the center of the cube (xi-/2' tn-/2' nj-I 2) by

6
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taking the values of each variable, say q, at the four corners of the box,

that is,

qj-I 2  = j 2q-/ 2 + q-I) = (qJ + q' + qj- + qj1  (24a)

However, the centering of e is done by writing it as

i-I/2,n-/2 1 i-I/2,n-I/2 i-i/2,n-/2)j-e. = e + e jl (24b)

In terms of this notation, the finite-difference approximations to Eq.
(18) can be written in the following form:

d i-l/2,n-l/2h.7 Ce. -9.j_ ) - ( _ ~ - -/

3 3 jidx

= (bF-) )i1/2,n'1/21r'lgi " gi (25)ei -

where, for example,

j i-l/2,n-l/2 j = 21 igi1*I/ 2 'n + gi-l/2,n-l)

(26)
The unknown variables in Eq. (25) correspond to g and i-/2-/2so

that when a solution of the system given by Eqs. (17) to (20) is obtained, g is
computed at (i,n,j) and e at (i-l/2,n-I/2,j). This modified centering pro-
cedure is necessary to avoid oscillations due to the use of the continuity
equation in the form given by Eq. (15) rather than the use of the stream func-
tion which allows continuity and momentum equations to be expressed as a third-
order equation.

With the standard box scheme, the difference approximations corresponding
to Eq. (19) is formulated in the same way as has been described above. With
the characteristic box, however, an alternative procedure is followed and is
described below. This scheme is based on the solution of the governing equa-
tions along the local streamlines defined by

d : d__"
I- =  _ (27)

7
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If we denote distance in this direction by and the angle that it makes with

the -r-axis by , then Eq. (19) can be written as

w' + b nw + ew + b d (I - g) = X (28)
1 dx

where

= bVl + (ue g)2 (29a)

tan- u (29b)

The finite-difference approximations to Eq. (28) are written along the
streamline direction (see Fig. 2). The resulting expressions are lengthy and

to illustrate the procedure, we consider the model equation,

w' + ew x (30)

With the notation shown in Fig. 2, the difference approximations to Eq. (30) at

point P are

i (w,n 1 h ,n-I s,n-I + eP  1 (wi,n + wS,n-I
( -_wj) + -* (w' w ) -/22 7wj-1/2 j-1/22 i w-1 2 j-l/1

i,n s,n-I
1 ( in +S,n-l gj-I/2- g-/ 2  (31)7 "j-I/2 +  )-12 (31)

where the relation between 0P- and those values of e centered at (i-1/2,

n-1/2) and (i-3/2,n-l/2) are
i-3/2 G i-1/2

j-112 j-1/2 (P _ i 3 2 ) + e+13/ 2  (32)j-/2 i-3/2
- i-3/2 - 1i-/2

The boundary conditions follow from Eqs. (9) and can be written as

go= 0o 0; go = 1 (33)

The algebraic system given by Eqs. (22), (25) and (31) together with the

boundary conditions given by Eq. (33) is nonlinear. Linearization is achieved

' d °*.° ° • J" " , .".° ,* ," 4 * . .-. " " . .. - , ," ." . . , o. , "." . ."4" " , ."." ," ." " ." .* ,.,".- ". , ,' "•

.".°w",
°
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with Newton's method and the equations are then solved by the block-elimination

described, for example, in Bradshaw et al. (1981).

In the calculations described in the next section, the standard box scheme

has been used for all situations when there is no flow reversal. Where a calc-

ulation with the standard box reveals a flow reversal (u. < 0) further itera-

tions at that location make use of the characteristic scheme for u. < 0 and the3

standard box for uj > 0. This switch from one scheme to another continues to

allow quadratic convergence and ensures that, provided the step lengths in the

T and " directions are "properly" selected, the numerical instabilities are

avoided. Further details are provided in the next section.

A.

5.
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4.0 RESULTS

It is convenient to present the results which we have obtained using the

combination of standard and characteristic box schemes and then to discuss them

in relation to previous calculations. Finally, the numerical requirements of

the present results are discussed together with the implications of the results

for future calculations of more realistic unsteady flows.

Figures 3,4 and 5 display the variations of dimensionless displacement

thickness, A*, local skin-friction coefficient, cf and displacement

velocity, V w where these are defined, with RL = u oL/v, by

L L ( l -o)dY

0 Ue

2-rw* VR' (34)

cf = 7 L
Puo

v w  d-- Vd -

vw u0  d u e.,0 dx

It is of particular note that the displacement thickness is close to monotonic

with the small maximum and minimum for T = 3.1 at which the calculations

were terminated. The previous results of Cebeci (1982) are also shown in the

figure and reveal the maxima which stemmed from the use of a numerical scheme

which did not meet the requirements imposed by the Raetz principle.

The distributions of local skin-friction coefficients of Fig. 4 show

trends which are similar to those of the previous results but with differences

in magnitude consistent with those of Fig. 3. It should be noted that the

results of Figs. 3 and 4 are identical with those previously obtained up to

the value of e at which the displacement thickness gradient reaches its

maximum and for values of T less than around 2.75. The differences for

large values of e and T are associated with the numerical procedure and,

in particular, with its ability to satisfy the Raetz principle as is discussed

later.

0

.1 10
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The dimensionless displacement velocity, 7.w, is shown in Fig. 5

together with the locus of points corresponding its maxima which increases

with time and decreasing angle. At T = 3.0, the calculated value of e is

111.5 and corresponds very closely to that determined by van Dommelen and Shen

who terminated their calculations at this time. As the peak in the

displacement velocity moves upstream with increasing time, the location at

which the skin-friction coefficient becomes zero also moves upstream but at a

slower rate and towards its steady-state value of 1050, Cebeci and Smith

(1974). It may be conjectured that the extrapolation of the peak displacement

velocities will asymptote to this steady-state value but positive confirmation

will require excessive computer resources.

Corresponding velocity profiles are presented in Fig. 6 for T = 2.75

and 3.0. The general trends are in agreement with those of van Dommelen and

Shen and that the quantitative values agree closely up to 1100. The

discrepancies at larger angles are probably due to the use of inappropriate

time steps in the calculations. The previous results of Cebeci (1982) tended

to agree with the profiles of van Dommelen and Shen as shown in figure 6a and

are thought to be inaccurate as is discussed in the following section.

N{
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5.0 CONCLUDING REMARKS

The previous calculations of Cebeci (1982) were terminated because it

proved to be impossible to select the step lengths required to satisfy the

Raetz's criteria in the presence of large flow reversal. Other attempts to

make use of Eulerian formulations to calculate unsteady flows with large back-

f low have been plagued with the same difficulty. The need for a measure which

would ensure that the Raetz principle was satisfied has been met in the present

calculations. Here the calculations were performed at a given time and with

the step lengths in x chosen to have the values shown in Table 1. As can be

seen, the values of Ax are very much smaller in the vicinity of singularity.

The solutions were iterated at each x-station until a convergence criterionI'

based on the wall shear parameter fw was satisfied, that is,

(f11)V+l - (f1I)VI < 6 (35)

where 61 is a tolerance parameter which was set equal to 10-5 in the

calculations.

The keys to the success of the present approach lie in the characteristic

box scheme which allows the orientation of the finite-difference mesh to vary

across the shear layer and the procedure for the automatic selection of time

steps so as to maintain the angle

< tan 1r (36)

The value of kn was halved until this condition was met. The resulting val-

ues of kn are also shown in Table 1 and can be seen to become extremely small

at T = 3.0. The present calculations which made use of increments in ,Y and

T of 101, 161 and 435, respectively, could have been extended beyond T = 3.1

but at considerable expense as witnessed by the small and decreasing values of

k n . The values of kn and ri shown in Table I were subsequently used in con-

junction with the zig-zag scheme, which had previously failed, Cebeci (1982),

to permit calculations for time greater than T > 2.75. The results were

found to be identical to those presented here. The alternative approach of

using the zig-zag scheme and the relationship given by Eq. (36) was not, how-

ever, successful. This confirms that it is necessary to allow the flow direc-

tion to change across the layer by conditions determined by the local stream-

lines in the selection of kn

12
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Table 1. The distribution of step sizes in T and T.

k __ i

0-* 1 0.05 0 - 0.54 0.02

1 + 1.5 0.02 0.54 - 0.57 0.01

1.5 2.3 0.01 0.57 - 0.58 0.0025

2.3 + 2.73 0.005 0.58 + 0.60 0.0020

2.73 3.024 0.002 0.60 * 0.612 0.0015

3.024 * 3.1 0.001 0.612 0.64 0.0020

0.64 * 0.67 0.0025

0.67 * 0.72 0.01

0.72 - 1.0 0.02

It is clear that our new procedure has successfully permitted the calcu-

lation of the flow properties for the unsteady flow associated with a cylinder

impulsively started from rest. The large reverse flow regions found with this

model problem occur in the more practical application of oscillating airfoils.

Preliminary work has been carried out for this problem and has confirmed that

this is so. In particular, the use of the characteristic box scheme together

with Eq. (36) led to solutions which approached and past the region of the

singularity without numerical difficulty whereas the zig-zag scheme led to

solutions which oscillated and broke down in the same manner experienced with

the cylinder.

The above discussion makes it clear that the time step required to obtain

results at the larger values of T are very small as was concluded by Ingham

(1984). For this reason, the present calculations were terminated at T = 3.1

which is already larger than that of previous investigators. Fig., 5 shows

that it is desirable to perform calculations at higher values of T so as to

confirm the conjecture that the only singularity is associated with the steady-

state solution. To make a conclusive judgment, calculations should be per-

formed up to T = 4.1 but, as Table 1 suggests, the required time steps are

likely to be very small. The time required to obtain results in the range

T = 3.024 to 3.1, which corresponds to 75 time-steps, was 7 hours on a CYBER

175. The computer time likely to be required to reach T = 4.1 is clearly

excessive.

13
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