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1.0  INTRODUCTION 

The buckling analysis of shells has in recent years gained 

considerable interest.  The current demand for lightweight 

efficient structures requires the engineer to closely examine the 

response of the shell, particularly for those states of stress 

that lead to buckling.  It has been observed that as the design 

of a shell structure is optimized, the structure becomes more 

prone to instability.  Further, small perturbations in load or 

geometry will not permit the structure to sustain its load, and 

failure will occur.  In some cases, linear methods did not give 

satisfactory results and nonlinear theories were employed in an 

attempt to improve the correlation between prediction and 

experiment.  This led to postbuckling and imperfection studies, 

which in turn provided a measure of the load-carrying capacity of 

the structure.  Unfortunately, these analyses did not give an 

accurate prediction of the residual strength of the shell, but 

did give an adequate assessment of its behavior just prior to 
buckling. 

. The thin stiffened and unstiffened circular cylindrical 

shell has been extensively used in the aerospace and energy 

industries.  The cylinder was found to be particularly 

imperfection-sensitive to axial compression.  This sensitivity 

was attributed to the deviation of the shell's geometry from a 

"perfect" shell.  This deviation from the true or perfect shape 

is termed an imperfection.  Thus, the phrase "imperfection 

sensitivity" has come into popular use. 

During the initial phase of this research, a review of the 

literature was conducted and a report prepared [1]. In this 

review, the analysis methods derived by Donnell and Koiter were 

closely examined. Donnell derived a set of nonlinear equations 

that govern the response of an axially loaded cylinder. Koiter 

examined the behavior of the shell at adjacent states of stress 

to the buckling load and hypothesized the buckling character- 

istics through these states.  Koiter's theory is based on the 



initial postbuckling behavior of a perfect structure.  The theory 

leads to an equation for a load versus postbuckling displacements; 

X/X* = 1 + ae+ be '" Q) 

in which \/\*   is the ratio of applied load to the classical 

buckling load, e is the amplitude of displacement of the buckled 

mode, and a and b are coefficients that depend on the geometry of 

the structure, prebuckling behavior, and type of loading.  Equa- 

tion (1) applies to cases with unique eigenvalues. 

The coefficient b is more important than the coefficient a 

In most cases involving thin shells; therefore, the coefficient a 

usually takes on a value of zero, particularly for shells of 

revolution.  Often referred to as Koiter's parameter, the 

coefficient b essentially determines the imperfection sensitivity 

characteristics of the shell.  When b is less than zero, A/A* is 

less than unity, thus predicting a reduction in load-carrying 

capacity from that of the perfect shell.  Computer methods are 

often required for the evaluation of the imperfection sensitivity 

parameter b.  Only one computer program system, written by Cohen 

[2], is specifically designed to examine the imperfection sensi- 

tivity of general shells of revolution.  In using this program, 

one first has to execute a static program module to determine the 

prestress state.  These results are passed to a stability program 

which uses a subroutine to establish the imperfection sensitivity 

of the shell.  Although Cohen's procedure appears to be correct, 

it has not been widely accepted by the engineering community 

because the program is not user-friendly.  There remains a need 

for an efficient computer procedure that is easy to use and yet 
suitable for preliminary design.  ^ 

In the following sections the theoretical basis of four such 

computer programs are presented.  The programs are designed to 

evaluate the buckling characteristics of a cylindrical shell 

stiffened by rings or by rings and stringers.  Equivalent ortho- 
tropic membrane and bending stiffnesses are derived through a 



model in which the ring and stringer stiffeners are "smeared" 

over the shell.  For light and medium stiffening, where the 

cross-section area of the stiffener divided by the stiffener 

spacing is less than one-half the thickness of the shell, the 

smeared model has been found to be adequate. 

For ease of identification, each computer procedure has the 

project name "PVRC" followed by the initial of the principal 

contributor: 

PVRCB_ Boros [3] 

PVRCH Hutchinson [4] 

PVRCK_ Khot [5] 

PVRCA_ Arbocz [6] 

The capabilities of these programs are listed in Table 1. 

Because of the applicable theories employed, only PVRCH considers 

the boundary conditions at the ends of the cylinder.  For the 

remaining procedures, simply-supported boundary conditions are 

approximated. 

All four programs are based on Donnell's equations, but dif- 

ferent solution procedures are employed, and different loading, 

imperfection geometry, and boundary conditions allowed.  Each of 

these procedures will be discussed in detail. 

The first program, PVRCB, examines the buckling character- 

istics of a constant thickness circular cylinder stiffened by 

rings only.  The imperfection is assumed to be axisymmetric and 

the effects of the boundary condition are not considered.  A 

secondary option is included for a two-mode imperfection (one 

axisymmetric and the other nonaxisymmetric).  The applied load 
can only be an axial stress. 

The second program, PVRCH, examines the buckling strength of 

a circular cylinder stiffened by stringers and rings.  The shell 

can have either clamped or simply supported conditions.  The 

loading can be either an axial stress or normal pressure.  Only 

an axisymmetric imperfection geometry can be considered. 

The third program, PVRCK, also considers a ring and stringer 

stiffened circular cylinder; however, the cylinder is comprised 



TABLE 1.   IMPERFECTION SENSITIVITY PROGRAMS ) 

Program 

Capability Parameters 

Rings stringers 
Boundary 

Conditions 
Layer 

(no./type) Loading 
Imperfection 

Geometry 

PVRCB X 1/ISO AX symmetric 
nonsymmetric 

PVRCH X X SS, CL 1/ISO AX,P symmetric 

PVRCK X X ^ SS 5/ORTHO AX,P,T nonsymmetric 

PVRCA X X ^ SS 1/ISO AX arbitrary 

Legend 

AX axial load 
.P    , pressure   ■\    ■•■ 
T torsion 
ISO isotropic 
ORTHO orthotropic 
SS simply supported 
CL clamped 



of a layered orthotroplc material.  Boundary conditions are not 

imposed.  The loading can be any combination of axial compres- 

sion, pressure and torsion.  An imperfection amplitude acting in 

each critical longitudinal and circumferential response mode is 

assumed and the buckling load is computed. 

The fourth program, PVRCA, uses Kolter's method for 

calculating the buckling load of axially compressed stiffened 

cylindrical shells with a given asymmetric imperfection. 

Boundary conditions are ignored.  No other loads are considered. 

Fortran listings of the four computer programs are Included 

as appendixes  (see Volume II of this report).  In addition, 

common driver subroutines are listed in Appendix E.  These 

programs are designed to execute in an interactive mode. 

Therefore, no preparation of an input data file is required.  The 

user is automatically prompted.  Copies of the CRT displays are 

provided to illustrate the use of each program. 

The governing equations of a cylindrical shell of revolution 

are presented in Section 2.1.  The four sections that subse- 

quently follow are the detailed derivations that form the basis 

of the solution procedures for PVRCB, PVRCH, PVRCK, and PVRCA, 

respectively.  The significance of certain assumptions as to 

loading, boundary conditions, construction of the shell's wall, 

etc. will also be discussed at the appropriate point in the 

development. 

Numerical examples obtained from the first three developed 

computer programs for four ring stiffened and four stringer 

stiffened configurations are presented in Section 3.0.  A 

separate verification example is also presented for the program 

PVRCA.  Section 4.0 discusses the behavior of the Imperfection 

sensitivity parameter and the applicability and usefulness of the 

four programs.  Finally, conclusions and some observations are 
presented. 



2.0 TECHNICAL DISCUSSION 

2.1 Governing Equations 

Consider a cylindrical shell of radius R, length L, and 

thickness, t.  If the usual assumption of thinness is made 

((t/R)  << 1), then the governing equations of thin shell theory 

can be developed.  For the coordinate system shown in Figure 1, 

approximate nonlinear strain-displacement and curvature- 

displacement equations can be written as: 

{e} = 

{<} = 

,y   2 ^**,y^    R 

xy u  + V  + w  w 

\ ^ y 

xyJ 

»x (2) 

W 

w 

, XX 

»yy 

2 w 
■ xy 

in which U, V, W are the axial, circumferential and radial 

displacements of the reference surface, and the comma denotes 

differentiation with respect to the subscripted variable. 

The equilibrium equations derived by Donnell are: 

N   + N    =0 x,x   xy,y 

N   + N     = 0 y»y  xy,x 

^N+NW    +2N   W    +NW 

+ M    +2M     +M     =0 x,xx     xy,xy   y,yy 

(5) 

where N = {N ,N ,N  }  (the stress resultants) and M = 

{M ,M ,M  }  (the moment resultants).  These resultants are ^   x'   y*   xy' 
usually defined along the reference surface of the shell and are 
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Figure 1   Geometry of the Shell 



the average and linear variation of the inplane stresses through 

the thickness of the shell, respectively. 

The constitutive equations for a layered orthotropic shell 

of revolution can be written in matrix form as: 

H- 
M 

c K" 
(    1 

K^ D K 
(4) 

where the membrane, coupling, and bending stiffness of the 

composite shell can be defined, respectively, as: 

N (k) 
^J   k=1  "^J 

l^      B..'^^    (h 

N 

k+1 - \) 

•^u=^ 1  ^i/'^'t^^ k=1 

N 
I 

k=1 

k+1 - ^k^ 

^0=5 .1  -i/'^(^L-^^) 
(k) 

IJ 
= compliance moduli in each layer k 

(e.g., B 
E 11 

11 ~ 1-\^i v^ ) 

*k distance from reference surface to each layer k 

The matrix coefficients C.., K.., and D.. can be modified to 

include the effects of the stiffening element: 

* HA 
C. . = C. . + 6. . -J^ 
ij ij ij  b 

K. . = K. . + 6. . ^^ 
ij ij ij  b 

D. . = D. . + 6. . ^ 
ij ij ij  b 

(5) 



where 

*in ~ Kronecker delta function 
E = modulus of elasticity of the stiffener 

A = cross-sectional area of the stiffener 
b = distance between stiffeners 

e = eccentricity of the stiffener 

I = moment of inertia of the stiffener 

If i=j=1, the above properties are for stringers; if i=j=2, they 

represent ring properties and both are "smeared" over the span b. 

When i*j the Poisson's effect of a shell should be considered. 

Plugge [7] develops an anisotropic approximation for a stiffened 

shell but does not include Poisson's effect.  Hutchinson and 

Amazigo [8], however, developed equations which account for a 
partial effect. 

In order to examine the imperfection sensitivity of a shell, 

the imperfection geometry must be introduced into Eqs. (2) and 

(3).  The radial variation from a perfect form is usually taken 

as the imperfection, ¥.  The total radial displacement in 

Eqs. (2) and (3) is therefore comprised of a response and an 

imperfection. Thus, additional terms must be included in the 

above relationships so that there is no stress when at zero load. 



2.2  Program PVRCB 

This program examines the buckling characteristics of a 

constant thickness isotropic circular cylinder.  Only ring 

stiffeners are considered, and their properties are smeared as 

described in the previous section.  The out-of-plane bending 

stiffness and the torsional rigidity of the ring are neglected. 

The applied load can only be an axial stress (a), although an 

applied pressure (p) will be carried during the derivation. 

Boundary conditions are not explicitly stated, but simply 

supported conditions are implied. 

The development of the governing equations and the basic 

solution procedure is based upon the works of Tennyson, his stu- 

dents [3], and colleagues [9].  Boros [3] presents the derivation 
for the effects of the axisymmetric imperfection, and Hutchinson 

[9] presents the effects of a nonaxisymmetric imperfection. 

Assume an Airy's stress function P, defined as: 

N  = F 
X    ,yy     ■ - 

N  = F    ■  ■   • • - (6) 
y   »xx ^ ^ 

N   = -P , .. 

The Donnell-von Karman shell equations [IO] take the form, for 

compatibility: 

L„[P]   -  L^[W]   -W^+W W +W W +W W 
^ Q .xy ,xx     ,yy o,xx     ,Yy o,yy     ,xx 

-  2  W W ■ (7) o,xy     ,xy  =  0 ^'^ 

and for equilibrium: 

L^[W]   + L_[P]   -P W -P ¥ +2P W 
D Q ,xx     ,yy ,yy     ,xx ,xy     ,xy 

>^ A *N 

- F,xx Wo,yy -  F,yy ^o,xx +  2  P,xy Wo,xy + p  = 0       (8) 

10 



where 

L„[ ] = H  [ ]     + 2 H  [ ]     + H  [ ] H'- xx^ \xxxx      xy"- ^xxyy   yy"- \yyyy 

^qt ^          =        Qxxt ],XXXX        -^ 2Q,y[           l^^^yy        +        Qyy[          1^^^^^       ^       ^        C           l^^^ 

■^D'- " ^xx"- -',xxxx "^ ^^yL -',xxyy "^ ^yy*^  ,yyyy       (9) 

The formulas for effective stretching and bending stiffnesses are 
given in Ref. [8] and repeated herein in Table 2. 

2.2.1  Axisymmetric Imperfection ^ - 

Assume an axisymmetric imperfection of the form: 

2p X 
W^ = - C t cos -4-    ^ (10) 

where 

p^ = (2 k + 1) 1^ k = 1,2,3 ... 

L = length of the shell 

5. = imperfection amplitude 

t  = thickness of the shell 

Prior to buckling, the radial deflection and stress function are 
assumed to be of the form: 

■ W  = ^ oR + W* 
^ (11) 
12 

F  = - -^ oty + P* 
where 

a     =  axial stress 

2p^x 
W* = B cos 

2p X 
F* = A cos   ° 

R  ^ 
(12) 

R 

11: 



;       TABLE 2 

DEFINITION OF STRESS COEFFICIENTS 

USED BY HUTCHINSON 

tt 
'^'''°''y'''yy^ ''   12(l-v^) ■ ^''x'<'%'V^ • ^'^xx'V'V^ '-   tf'^xx'Qxy'V^ 

^"xx'V'V^ = ^ «ffxx'"xy'V> ' ^^x'V'V'V = "'^^xx'V.V'%y^ 

B       =  a  Y   (1+a   )/a XX          s's         r       o %y  =  °r^r^l^°s>/«o ^xy  =  ^°sVr/°o V   =   ^"r^s^'s^^o 

D        =   1+B      + 
XX                    s 

+  [12(l-v')a   (l+a^)Y^]/a„ s          r     s       o 

D       =   1+B     + 
yy           r 

+  [12(l-v2)ci^(l+ag)Y^]/a^ 

D        =   1   + xy 

+   [12(l-v2)va^a^Y3Y^]/a^ 

D        =5 yx         xy 

"xx   --   Cl-«s(l-'na^ V = ci*%(i-^^)]»o "xy   =   <l+\')-v/a^ "yx  =  "xy 

Qxx   =   ^"s^s^^o 0       =  va Y  /a yy          r r    o 
Q       + Q yx       ^xy 

A^/d t , 0^ = El /Dd^ , Y^ = e/t r   r r r  r ' 'r   r 

°o = (l+Os^d+ar' - ^ "s"r 

It 



Substituting Eq. (10) and (11) into (7) and (8), leads to: 

p^3 4       4p 5at     2p X 
———o- W*    + ^ F*  + —2_^— cos —g- + atW*  = 0 
4 0(1      I   \        ' ^^^^ ■T'   »XX       -j^i K f XX 

(13) 

Et(l+a )  ^,xxxx   R  ,xx   ^ 

Substituting Eq. (12) into (13) yields the coefficients A and B: 

12(l-v^)£;at^R^E(l+a ) 
A=  g ^ (14) 

0 0    0    0 
-  48(l-v'')Cat p R 

B=  c ^— (15) 

where 

A   ^                         op           3at(1-v ) p R 
C = 4E[4p^t^ + 3(l+aj.)R^(l-v )t g 5—] 

The deformation Just prior to buckling is governed by 

Eq. (11).  When buckling starts, the modal deformation pattern 

becomes nonaxisymmetric.  The modal pattern may change as the 

postbuckling process continues.  The initial postbuckling state 

is assumed to be of the form: 

¥ = ^ + B cos -^ + w (16) 

+ 2        2p X  _ 3 p = _ £t|_^ ^ ^^3 J:O_^ El_ ^ (^^) 

where 

= y3(i-v2) 

13 



and w and f are infinitesimal buckling modal quantities repre- 

senting the displacement and stress functions.  Substituting Eqs. 

(16) and (17) into (7) and (8) yields the following compatibility 

(18) and equilibrium (19) equations for the infinitesimal 

buckling modal quantities w and f: 

c(l+a )   ,xxxx + 
2t^(l+cx^(l+v)) 

 4(1+a^)  ,xxyy 

t^(l+a^(l-v^)) 

C(l+a^) 
r r 

»yyyy  TT+^P" ^,xxyy 

vt a  Y . 

^»yyyy  R ^,xx 1+a 

2p X 
cos (—5—) w   = 0 

R  ,yy 

4p 

R' 
§ (Ct+r) 

Et-^    ^      ^  2Et-^ Et^   [■-, 

12(l-v2)  '^x^x.  12(l-v2)  'Xxyy   12(l-v2)'  ^ 

.,  , 12(1-v^)Vr ^ ^     _ (VT) Etl, 
l+Cj. »yyyy    l+a^.   c   ,xxyy 

(18) 

+ v(.P^) ^ f + l^f 
i+Cj.  c  ,yyyy  R c  ,xx 

Et^   I6p^       2p^x   Et(l+a^) 
 75—  -r—    r COS 

1 2 (1 - v"")  R T 
2Po^ 

2— ^ °°^ -ir 

4 PQ^"^^    2p^^  4p2E  4    2p^x 
+  7^  COS —?; TT-   COS  rr- f 

R' R R -yy 

4p^rat     2p X 
+ —o  COS —5— + atw p2 R       ,xx 

(19) 

14 



4p^rEt^    2p X 
°    cos —g- f 

R  ,yy 

where 

r = 

cR 

2p X 
+ (1+a„) Etr cos —5- w   = 0 v' R   ,yy 

48(1-v^)Cat^R^p^ 

Koiter [11] argues that for the unstiffened shell the 

nonsymraetric buckling pattern can have the form: 

N 
w = t I     C    cos [(2m-l)p X/R] cos ny/R (20) 

m=i 

He suggests that the prebuckling stress function F (Eq. 11) is 

periodic and therefore the prebuckling stresses are periodic, 

which implies a periodic distribution of circumferential tensile, 

or circumferential compressive membrane stresses.  "Buckling in a 

nonsymmetric mode will be stimulated in regions of compressive 

circumferential stresses and hampered in regions of tensile 

stresses.  We may therefore expect the existence of an asymmetric 

buckling mode with nodal lines where the circumferential stresses 

attain their maximum."  The axial period of such a mode is twice 

the period of the axisymmetric prebuckling state response.  Thus, 
at 

X = ± ^ = (2 ic+1 ) IIR/2 P  ,  where K  is an integer 

simply supported edges are assumed.  This condition is incompat- 

ible with Eq. (10), but Koiter suggests that it is of no great 

consequence, provided that 

Po^ 
2fe  > 0-04 

15 



Substituting Eq. (20) into (18) results in a fourth order 

partial differential equation in f with constant coefficients. 

The solution is of the form: 

A.C  + A„(C  , + C .,) (2m-l)p x ^         V r 1 m   2^ m-1   m+1 n ^    ^-^o     ny    /„.N f =     I    L A J cos  p  COS p^    (21) 
m=0          ^-5 R        R 

where 

aj.Yj.t (2m-l)pQn      t va^y^ ^4   t(2m-l) p^ 

""'   ^ (Ua^) R4  ^        ^     ^^^^^ 7 ~ ~~^~~ 
2pV 

A  = —^ [5t+B]     •■ 

^2     (2m-l)So   2(l+a^(l+v))t^  (2m-l)^p^n^ 

^5 " C(1+a^)      ^4~7J"  , C(1+a^) j^4 

V   :   ■ 1^«r(^-^')  ti  nl 
\: ..:     ^-^«r .   °   R4  .:. 

Since Eq. (20) cannot exactly satisfy either the compati- 

bility equations or the equilibrium equations, we assume f can be 

made to satisfy the compatibility equation provided that the 

coefficients of Eq. (20) are determined in some mathematical 

least square sense.  This is accomplished by substituting Eq. 

(21) and (20) into (19), resulting in an error function e: 

(2m-1)PQX     2p X 
e(x,y) = e(A^,C^, cos  g  cos —^  ,  cos ^) (22) 

First, the trigometric function in the axial direction can be 

condensed into a single function.  Second, a Galerkin procedure 

will be applied as follows: 
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2^R fli/2 (2q-1)p X 
/        e(x,y) cos  ^—2_ cos ^  dxdy = 0   (23) 

q = 1,2,3... 

Thus the infinite set is formed: 

r_Eti_ y ,  ^^^-^)^Po  ^   2Et4  ni , ,  (2c-1)^pg 
12(l-v2)   q   R4        12(1-V2) R2 ^ ^^i —^2 

Et^     n^ ,, ,    12(l-v^)a„y, 

. Et\  n2 ^ ^^q ^ Ag(C^_^+C^^^ ) (2q-l)2p2 
-TTT^^ l—^ if ^T- 

Et! y ^^q ^ Ag(C^_^+C^^^) (2q-l)V 
Rc  ^ I~ TJ 

3 R 

o 

2 y c  ^^"^"^^^^o 1 r5ll±2i .  R     .  (M)2Po^ ^ ^n    ?    J L—5—^ {T7r-Tvr:r- sin  «—^ ^   R2     ^ '-~5    Hq-j)2p^ ^'"  R- 

R (q+j-1)2p L     4p^trn^ 

,4„     ^ A, -I R^c "^3 

 i r R R(u+2) /  R       .  (^-J-l)2PoL 

O 

17 , 



j^         (q+j-2)2p L 
"" (q+j-2)2p^ ^i'^  R  

R (q-J+1)2pL 

R       (q+D)2p L 
"■ (q+j)2p. ^^^  R  >=0  ; (24) 

If one retains r equations and sets C  =0 when q > r, a 

system of r homogeneous linear equations are obtained. The 

determinant of this final system is set equal to zero. With the 
notation                                 . 

X     = °^^ Et 
2, 

2   Po^ 
2Rc 

and 

o   2, T-2 ^ n t 
Re ,.. ; 

the characteristic equation can be written in the form: 

■ '  H^ X^ + H^X^ + H„X + H. = 0                             (25) 

where 

H, = 1 

^   ^ 32K4  Q^K^d+a^)   64K4     32K4      Q^K^ 

18 
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Hg = 16K^ + (1+a^) 

H  - -1 -^ -1 
^   Q2   Q3 

Q^ = 32K'^ + 36K^T^(l+a^(l+v)) + T'^(l+a^)l-v^) 

From Eq. (25), three roots (the minimum being the buckling 

load) can be obtained.  The computer program PVRCB solves Eq. 

(25) for the roots X. 

2.2.2  Nonsymmetric Imperfection 

Th above procedure can be repeated for the case of an 

imperfection geometry of the form: 

WQ = - 5^t cos 2K^x + ^^t  cos K^x cos K^y (26) 

where 

K, = TiRmq /2 
1      ^o 

K„ = irRnq /2 

qo^(R/t)^/2 [l2(l-v2)]l/4 
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and 

ra and n are integer wave numlDers      d. ,;• 

The first term represents an axisymmetric mode of amplitude 

^pt.  Hutchinson [9,12] assumed that the buckling mode would take 
the form: 

¥ = W. cos 2K.X + Wp cos K.x cos K^y (27) 

and derived the characteristic equation: 

D^X^ - D2X + D^ = 0 . (28) 

where 

D2 = (BpG^ + G^B^ + B^6^)W2 + B^G^ + G^B^  ' 

D  = G2^2^2 "•■ ^2^5 

^ ~     4     4(j^2 ^  j^2^2   ^j^2 _^ j^2)2 

B2 = — 

4 
2     ^^1      1 

B A 
^5   2 
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a, = 8 Kf ^ i 

G3 = - 4 Kfe, 

Hutchinson has shown that for K^ = Yi^   = 1/2 a minimum X is 

obtained.  Equation (28) is also solved for X by program PVRCB. 

21 



2.3  Program PVRCH 

This program calculates the Koiter imperfection parameter 

and load factor for a ring and stringer stiffened cylinder with 

isotropic material.  The stiffener properties are assumed to be 

smeared as in the previous case.  Out-of-plane bending stiffness 

of each stiffener is ignored, but the torsional rigidity is 

included.  The applied load can be either an axial stress or 

external pressure.  Simply supported or clamped boundary condi- 

tions can be accommodated.  Only an axisymmetric imperfection is 
considered. 

Hutchinson and Frauenthal [4] analyze the imperfection 

sensitivity of an axially loaded stiffened cylinder.  The general 

outline of the procedure has been covered by Budiansky [13].  To 

arrive at a solution, Budiansky states that three basic condi- 

tions have to be satisfied:  (I) axisymmetric prebuckling 

deformation with zero imperfection, (2) nonaxisymmetric bifur- 

cation from the prebuckling state using a classic linear 

bifurcation, and (3) initial postbuckling behavior. 

Axisymmetric Prebuckling Deformation 

Equations (7) and (8) are reduced by assuming zero 

imperfection: 

L„[F] - Lg[W] - W jy + \xx\yy = » (29) 

IJW] . Lg[F] - F_^^W_^y - r_^^W_^^ + 2 P_^^W_^^ = 0   (30) 

where the operators are defined by Eq. (9).  For axially 

stiffened shells, the Airy's stress function is related to the 

membrane stress resultant within the shell (N^) and the stringer 
(N3): 
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"x-^-'s ,yy 

"y 
=  F ,xx 

"xy 
=  -  P 

xy 

"x = A     F 
XX   ,: 

(31) 

+ A  P   + B W 
xy ,yy   xx ,xx 

The evaluation of the imperfection sensitivity of a cylinder 

subjected to an axial load requires the determination of two 

parameters:  P,,, the critical load, and b, Koiter's imperfection 
parameter.  The expansion of the critical load is given by Eq. 

^2 

imperfection sensitivity parameter b as derived in Ref. [4] is 
(1):  P/P^A = ^ + ea + e b where P^^^ is the classical load.  The 

where the notation 

A*(B,C) = /[A   EC   + A   B  C J^ ,xx ,y ,y    ,yy ,x ,x 

- A   (B  C   + B  C  ) ] ds »xy' ,x ,y    ,y ,x^ -^ 
(53) 

It is assumed that in the neighborhood of the bifurcation 

point, the deformation and stress functions can be expanded: 

W = W° + 6W(^) + 62w(2> + ... 

where 

6 = amplitude of the imperfection 
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The prebuckled solution is expanded about the critical load, P 

so that 

W° = W° + (P-P,)W° +i (P-P^)2 w° + ... 

P° = F° + (P-PJP° + 1 (P-P )2 F° + ... 
(35) 

where ( *) = "^^P P=P c 

For the axisymraetric prebuckling state, the deformation 

pattern is assumed to be 

,,0     0 

and the stress function 

where P is the applied load, and w° and f° are the infinitesimal 

axisymmetric modal quantities representing the displacement and 

the stress function. 

For the axisymmetric prebuckling state, the governing 

equation is obtained by substituting Eq. (36) into (30), which 

yields: 

2 
Q     iv    2Q     T,    M     o       vA  P 

t^xx ^ H^>°  + tm!^ + 27R]-  + 4— =  ^^    (57) ''''       \x ^^xx        2TTR J^2JJ 2TrEtH     R^ 
XX XX 

and 

^xx^       = Qxx^       + R- -  2^FEtR (58) 

The boundary conditions that can be imposed are either 

simply supported or clamped.  The computer program uses half the 

cylinder length so that at boundary 1 either clamped or simply 

supported boundary conditions are imposed, and at the other end 

symmetrical conditions are assumed. 
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For a one-dlmenslonal system of equations with equal nodal 

point spacing, the derivatives are replaced by the difference 
operators: 

d( ) ^ ^ \+l   " ^ ^i-i 
dx        2 A 

and 

d 2   ( ). >1 - 2( )i ^ ( )i_i 

^ 7? ~~~" ^39^ 
where 

A = L/N 

N = number of finite difference stations 

The resulting system of algebraic equations is solved using the 

standard Potters' method [14] of forward elimination and backward 

substitution.  Equation (34) can be solved for f°" after w° has 
been determined. 

Substituting Eq. (35) into (30) results in an equation 
similar to Eq. (37): 

t? 

c 
~ 2TrR 

and 

•-O 

XX XX 
(40) 

^xx^c  - Qxx^c  ■" R- - 2l?EtR (^1) 

The same Imposed boundary conditions and the same solution 

procedure used to solve Eq. (34) is repeated. 
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Classical Linear Buckling Problem 

Expansion of the buckling mode (Eq. 34) can now be consi- 

dered.  For the linear term of the expansion, the governing 

equations are: 

LJW(1)] +LJF(1)] +^ W(^) - f°" W(1) -w°" P(1) =0 D Q        STTR   ,XX   C   ,yy   c   ,yy 

H^    ^   Q'-    ^    G   ,yy 

The solution of Eq. (42) is assumed to be of the form: 

¥^^ ^ = w^^ ^ cos ny/R 
(43) 

P^^^ = f^^^ cos ny/R 

w^^^ and f^^-* are determined using the previously described 
o"     o" solution procedure.  Note that f  and w  must also be obtained ^ c      c 

Initial Postbuckling 

The governing equations for W^'^'',P^ '' in Eq. (34) are: 

LJW(2)]   +  Ljp(2)]   ^ !c     ^(2)   _  ^o"   ^(2)   _ ^o"   ^(2) 
D Q 2ITR     ,XX C        ,yy c        ,yy 

:"'. ^   (n)2   t(f(l)w(^)")   +COS   (2ny/R)(f(l)"w(l) 

(44) 

^    r^{2). ^    rir(2)i o"   ,,(2) 1     ,ns2    r1     ,    (1)    (l)"s 

+  cos   (2ny/R)(w^^^"w^^^   - w^^^'w^^^')] (45) 
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The solution for w^^' and F'2) j^g^y ^^  written as 

(2) 
W*^ ^ = w + w„ cos (2ny/R) 

(2) ^''^ P^ ^ = f^ + fp cos (2ny/R) 

Prom the boundary conditions at each end of the half length 

shell and Eqs. (44) and (45), the parameters w^,w ,f and f can 

be determined; again using the previously described solution 

procedure. 

Measure of Imperfection Sensitivity 

In order to determine the imperfection sensitivity of the 

cylinder due to an imperfection having an amplitude, 6, the 

asymptotic formula given by Koiter [15] results in the form 

/ = 1 - 3 ^f  (6/t)2 (47) 
c 

"'"'   t[Fg*(w"),w<'))^F").(wg,w('))]2 

Thus, when the state of stress is pure membrane, "P = b. 
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2.4  Program PVRCK 

This program calculates the buckling load factor and the 

Koiter imperfection sensitivity parameter.  A circular cylin- 

drical layered orthotropic shell is assumed.  Both ring and 

stringer stiffeners are smeared as in the previous case.  Out-of- 

plane bending stiffness is ignored but the torsional rigidity is 

included.  The applied load can be any combination of axial 

stress, external pressure, and torsion.  The boundary conditions 

are not specifically imposed, but simply supported conditions are 

approximated by the selection of the radial displacement response 

functions. ■■ ,   , •   ■ „ . 

Khot has studied the buckling and postbuckling behavior of 

composite cylindrical shells [5,16].  He also has investigated 

the imperfection sensitivity of these shells.  Several computer 

programs were developed by Khot.  These programs have been 

revised to more efficiently evaluate the buckling characteristics 

under either separate or combined states of stress resulting from 

axial compression, external pressure, or torsion.  Some develop- 

ment of the theory has already been published, but many key 

points remain in a preliminary and unpublished form.  Some of 

these data have been graciously supplied by Khot. 

The shallow shell strain-displacement equations and 

Donnell's equilibrium equations (Eqs. (2) and (3)) are again 
used. 

The constitutive equations take the usual form: 

> = 
C  K 

T K^  D 
H (49) 

where 

N 
N 

> 
N 

N 
xy 

M 
M 

3 

<^ M 
3 

M 
xy 



e   = 
S y 

K     = 

< 
xy 

Am Jtra^   i+1      i' 

Bj^jjj  =  elastic  moduli  of each  layer 

h^  = distance to each layer from reference surface 

^°*^' ^im'   ^£m' ^^^ ^im ^^^  ^® augmented by the smearing of the 
stiffener properties. .       ' 

Solving for e in the first equation of (49) and substituting 

into the second results in the semi-inverted form: 

<   - 

G a 

d 

where 

a  = C" 

d^ 

d* 

I N 
J (50) 

d  = aK 

T d* = D - K-'aK 

Using the definition of the stress function from Eq. (6), we can 

obtain the equilibrium equation in the form: 

m- 



d,_ F     + (2d,_-d,,)F     + (d,,+d^^-2d^,)P 
12  ,xxxx     62  16  ,xxxy   '11  22  66  ,xxyy 

+ (2d^,-d„^)P     + d„.F     + F   (w  +4)      (51) 61  26' »xyyy   21 ,yyyy    ,xx' ,yy R'      ^^ ' 

- 2P  w   - d*,w     - 4d,^w     - (2d*^+4d?^)w ,yi-^   ,yiY 11 ,xxxx   ^ 16 ,xxxy   '  12 ^ 66 ■^jxxyy 

26 ,xyyy   22 ,yyyy  ^ 

The compatibility condition is written as: 

a„^F     - 2a_^P     + (2a,^+a^^)F     - 2a,^F 22 jxxxx    26 ,xxxy     12  66  ,xxyy    16 ,xyyy 

"^ ^ii^yyyy = " ^i2^,xxxx " ^'^^^\-^2^^'',y.Yi^ 

2 ^.xx 
(52) 

- ^21^,yyyy + ^,xy " ^,xx^,yy " "T 

- ^2^62-S6)^xxxy- ^'^l 1+^^22-2^66 )\xxyy 

For the above two equations, the subscript notation of 1,2 and 6 

correspond to the material properties in the two orthogonal 

directions and shear, respectively. 

After a lengthy normalization procedure, Eq. (51) can be 

written as: 

KP     + VP     + 4/F     + 5P     + XF 
,xxxx     ,xxxy     ,xxyy     ,xyyy     ,yyyy 

+ F  w   +-^P   -2P  w   +-TW     +VW ,xx ,yy  2  ,xx    ,xy ,xy  4  ,xxxx    ,xxxy 

+ 4w     +^w     +4w     -p(l)=0 (53) 2  ,xxyy   ^ ,xyyy   4  ,yyyy   ^^ ^-^^^ 

and Eq. (52) can be written as: 

T P      + 0F      + 4aF      - yP      + 4<1)F (j)  ,xxxx     ,xxxy   ^  ,xxyy     ,xyyy   ^^ ,yyyy 

+ KW       +VW       + ipW       + 5W       + Tw /^.\ 
,xxxx    ,xxxy     ,xxyy     ,xyyy     ,yyyy  (54) 

+ 2w^xx = w,xy - w,xxw,yy 
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where 

,       ^^6r^26 ,^22J/^, .1/2 

ft - R    ^26    rA^-1/2 
"   (a a^ )l/4  ^*^ 

^^1 2*^^66 
r= 7 ny? 

n        16 

^^11^22-* 

-     26 

^'^11^22'' 

(^'^62-^16^  ,^11,^/4 , .-1/2 

(a22d|2) '^     22 

,   '^ii+^22-^'^66 
'^ = 7—,^ ^1/2 

^?? ?? 

a^^l/2 

^22^22 

- -    ^21 

11 22 

parameter, X , and the imperfection sensitivity parameter of the 

Eqs. (53) and (54) are now of the form that the critical load 

parameter, X , and thi ^ '  c' 
shell can be derived. 
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For the present case a solution can be obtained with 

Eq. (34) rewritten as: 

P = A^P° + «p''' + s2p(2) + ••• 

6w(" + 62^(2) ^. ... ;      r' 

Substitution of these equations into (53) and (54) and 

collection of like powers of 6 results in: 

L^Lw^^^] + L^[P^^h = 0.0  ' \      (55b) 

and 

Ljw^2)^ _ _ ^^2^ _ ^ ^ o   (2)    o   (2) _  po   (2)^ 
1 2L  J    cL ,xx ,yy    ,yy ,xx   ^"^ .xy^'xy ^ 

L,[»(2)].L,[p(2)].u;i^)2-.|i>.(;^   ; (55d) 

where 
, '■ ■• -i ■ 

^lt    ]   =  |f    ^xxxx   +   ^f    ],xxxy  -^  |f    ^xxyy   +   ^^    ^xyyy  +  |t    ],yyyy 

+ ^[   ] +  2[   ] 
>yyyy ,xx 

4 
^3^   ^   =it   ^xxxx -   ^t   ]^^^^3, + 4a[   J^^^^y 

-  T[   ] + 4<t)[   ] »xyyy ,yyyy 

Neglecting the nonlinear coupling, X  can be determined for the 

case of combined axial compression, external pressure and 
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torsion.  It is assumed that the classical radial displacement 

under torsion can be of the form:  ' 

w = h sin SZ2£ cos ^ (y-Tx) (56) 

where 

h =  YTo 
(a22(i|2^ 

r =      R 
UR^d^^a^^ 

I  = 

T is an integer 

If the notation 

M = ^ + H T 
I V 

N = ^ r 

■D  mir  n 

is used, then the classical radial deflection for the initial 

buckling mode can be written: 

^ = 2  ^^'^ (Mx-Ny) + sin (Px + Ny) (57) 

or   w^^) =1 (A^+A^) 

It is assumed that the Airy's stress function can be expressed in 
a similar form: 

F^^^ = PlA^ + V2 (58) 
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Prom the compatibility equation (5^) and the definition 

of w   and P^ \ we obtain: 

4    3     2 2     9  — a    0 
T?  _   h KM  - vM N + ii;M N  - EMN  + AN  - 2M 
^1 ~ " ?  q q T~^ T~2 "^ TT 

-M     +3MN+ilaMN     +   yMN     +   4 (j>N 

_       h^ -        (59a) 
2   T^ * 

0 

F     =       il   KP     +   vP^N   +   i|;P  N     +   gPN^   +   AN     -   2P 
2 2   T      5 3 2~~2 "^ H  

-  P     -   3P   N   +   4aP   N     -   yPN^   +   4 (j,N 

m 

h 4 
(59b) 

2      Tg 

Prom  Eq.   (53)   we  obtain: 

^1^1   ^  ^2^2   -   ^B^l^l   -   Ti,P2A2   =   -   ^c   I   [^N°(M2A^   +   P^Ag) 

o  2 o (60) 
+   N^N''(A^+A2)   "^   ^   N°   (-NMA^   +   NPA^) ] ' 

where 

Ti   =  I   ({ M'^   -   nP^N   +  f M^N^   -   cMN^   + 1 N^ 

^2   = I   (^P"*   ^-   nP^N  -^f P^N^   +   ,PN3   ^I PS 

Collecting  like terms,   we  can  now  solve   the  critical   load 
factor: 

2 2 ■ 
-  FT    + T    + —^ + —ii 

^1 -^2        T^       Tg-" 
^c ^ ~o     2   2 7r~^ 7^  (^ 1) 

N"   (M^+P"") +   2   N°N^   +   2   N°   N(P-M) 
^ y xy 
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where: 

N R  a   1/2 N R  a^^ 1/2     ^    (a..a,„)^/4 

^x = -f- (di^)   '  ^y = -f- (#)   '  C =  ^^ '" 1/2) N R ^   '^   ^22        ^        22        ^    4(d* ) '    ^y 

are the stress resultants calculated from the applied loads 

N^,N and ^       and are assumed to be a pure membrane state. 

In order to evaluate the coefficients a and b of the expan- 

sion of Eq. (1), Eq. 52 must be used with Eqs. (57), (59a), and 

(59b).  The coefficient, a, has been determined to be zero from 

consideration of the periodicity of the circumferential 

displacement. 

With pC) and w^''^ determined, the postbuckling w(2) and 
(?) P^'^'' are assumed of the form: 

w   -   I       a,- sin —^  + i cos ^       I       Y.(sin M.x + sin P.x) 
i=odd  ^     ii   ^     r ^^^^^  1     1        1 

+ ^ sin -^       I       Y. (cos  P.x -  cos M.x) (62) 
'^ ^     i=odd     11 1 

F^^-*   =       I       3.   sin ^ + 1 cos ^       I       6, (sin M.x +  sin  P.x) 
i=odd     ^ I z T     .^^^^     1 1 1 

where 

i ...   2ny 

i=odd     ^ ^' i' 
+ 2  sin -^       j;       6^(cos  P.x -  cos  M^.x) 

M.   =   il +  Snjr 
1        £ r 

P     = ll _  2ny 
i       A r 
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It remains to determine the coefficients a., e., y. and 6..  To 

obtain relationships for these coefficients, Eqs. (59a), (59b) 

and (62) are substituted into Eqs. (58) and (55c) to obtain: 

|LI cci sin(ip) + 1 CSR I T^A^ + 1 SNR I y.^^J 

+ ^[^(f^) SNR I   Y.SJ^ + -^ CSR I T.A^] 

+ ft^(f^(' CSR I y.A^ - l(fi)2 SNR I y..^]  ,  .  ■ ■ ' 

+ d^i^)^  SNR I y.^^ + |(fl)5 CSR I y.A^ 

+ |C^(|^)^ CSR I y.A^ + ^(|I1)4 SNR I y..^]    '   (63) 

- K[l3.(il)^ sin(^) + ^ CSR) I 6.A^ + i SNR I 6.^2^] 

■;  - v[i(|ll) SNR I   <5.^^ + i(|ll) CSR I   6.A^] 

+ ,[^(|n)2 CSR I   6.A2 - 1(|^)2 SNR I   6.a^] 

;■■  - 5[^(|^)^ SNR I   6.^^ - ^(|n)3 CSR I   6.A^] ^ 

- T[^(2n)4 CSR ^ 6. A^ + ^(|I1)4 SNR I 6..J 

- 2[I a.(i:!I)2 + ^ CSR I 6.A2 + i SNR  le.fig] 

- AJN°(4(|I1)2 CSR I y. Ap - 1 (|n)2 g,R ^ ,.,^j 

+ .,  N^- I a,(M)2sinlp 

- ^ CSR I ^1^2 + ^ SNR I   y^n^} 

^     2N°y{-l(|^) SNR I y..^ 

+ ^ (|^) CSR I   y.A^}] ■ 

2 T    T 
= - |-[T^ + T^] N2[M+P]2 A^Ag 

36 



where 

SNR = sin(^) 

CSR = cos(^) 

A = sin (M.X) + sin (P.x) 

A^ = M^ sin (M^x) + sin (P.x) 

Ag = M^ sin (M^x) + P^ sin (P.x) 

A^ = - M^ sin (M^x) + pj sin (P^x) 

A^ = Mf sin (M^x) + pf sin (P.x) 

n = cos (M.x) + cos (M.x) 
o 1 1 

n. = - M. cos (M.x) + P. cos (p.x) 

^2 = M^ cos (M^x) - P? cos (P.x) 

ilj =  M^ cos (M.x) + P^ cos (P.x) 

"4 = - MI; COS (M^X) + p| cos (P^x) 

Also, Eqs. (59a), (59b) and (62) are substituted into Eq. (55d) 
to obtain: 

<[I -(11)4 Sin (i^) ^^CSR I Y^A, + I1 y,.,] 

+ v[i(|n) SNR I   y.u^  ^:^   (|I1) CSR I   y. A3] 

+ f[i(|ll)2 CSR I   Y^A^ - i(fi)2 SNR I   y^n^] (64) 

+ 5[1(|^)^ SNR I   T.n^ - ^(|I1)5 CSR I y.A^] 

-  T[1 (|^)4 CSR I y^A^ . 1 (fl)4 I   ,^,J 

+ 2[- I   a. (il)2sin (ip) - 1 CSR I y. A^ + 1 SNR I y..^] 
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+ f[I 3, (i^)4 .in (Al^) + ^ CSR I 6.A^ + ^ SNR I 6.^^] 

- 3[i(fi) SNR I 6.n^ + i(|ll) CSR I 6. A^] 

+4«[1(|1)2 CSR I 6.A2 - i(|^)2 SNR I 6.J^2] 

- Y[^ (fi)^ SNR I 6.^^ -^ (2n)3 ^gj^ ^ ,_^^j 

+4*[1 (fi) CSR I 6. A^ + \   (2n)4 g^R I   6..^] 
2 

= - 7- N2[M+P]2 A,A. 
4    I-  ^  "1''2 

£ / 2TTR 
Multipling Eq. (63) by sin ^ and integrating between 
we obtain: : Jo    Jo 

5   6    £  (1 -4m ) 

Multipling Eq. (64) by sin ^~  and integrating, we obtain: 

Eliminating g. we obtain; 

000 qi rp 

and  from Eq.   (66) 

2  2 h N m 
(i2-4m'^)   21 

(66) 

-   (i^-4m-^)   .^   ^^^5       ^6-   ^  ,,^^ 
' (4^)' +   ^ Ne i  {^f  +   (K(il)2  -  2)2 ^''^ 

2   2   2 
-   ^rh N m iri     ,1  ./[ <       1   ,1  v2,-, ,,„s 
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Multiplying Eq. (63) by 

2 °°^ -I —K^ [sin M.x + sin P.x] 

1 
2 

2ny 
R + -k  sin —^^  [cos P.x - cos M.x] 

and integrating, results in: 

- |(^)'(M,-P,) + |(|a)^- i(M2+p2)] + X^ ^[N°(|!l)2 4> H' 1    1 

2 T. 

p    b 

(69) 

2 

Multiplying Eq. (64) by the same factor and integrating, results 

in: 

■<iH^«^ - T'I^'C'-^') * i^P^'(«^ - |(r^)'(«i-^i) 
T,2nv4   1 /,,2 ^2 1 /.,4.^4. ,3 ^3- ,|(Jii)^_^(Mj.pp]. 6^[l(M^Pp .^(M^-PP 

+ a(|^)2(M2+p2) + |(2n)(M5_p3) ^ T(2n)3(M._p.) 
^R 

+ 2*(|^)4] 

4'R 

2 

1  1 

2 
R 

hi 2 (M+P) 
4     iiT 

(70) 

Solving for 6, in Eq. (70) and substituting into Eq. (69), we 

obtain: 

., 2,,2 2 2,    T,   T, 

^i T7T9 + T82 (71) 
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? ? ? ? 

'i = - f-72  ^T?) + ^1^8^ f^ (72) 

where 

- ^ (f^)'(V^i) -|(|^)'- ^[N^Mi-Pi> 

Tg = K(M|+p4) - v(2n)(j,3_p3) ^ ^(2n)2 (^2^p2) 

- C(fi)5 (M.-P.) + 2 X (|li)4 _ 2 (M2-p2) 

i rM4a.p4^ ^ «r2nN/M3 B3^ , ... /2n^2 ,,,2_2 

+ Y (|^)^ (M.-P.) + 8* (fl)4 

Equation (32) can be rewritten as: 

, = ,2, K.uy;y2)^,(,y,y^) 

- 2^ x/!i'"iy']«^ay (73) 

Substituting w(l), p(t)_ w(2), and p(2) into Eq. (73) results in 

the following expressions: 

to 



4K^in^n ''to , ,  , 

where 
] 
'   'rpji.   i    ". —g ^  —    ,    _ 

■5 6  i=oda ^ i£4m'^   i=oaa ^ 
^10= <f!^^) (. I. "iT^rl - . I .r^) 

1 -4m 

With an imperfection amplitude in a given harmonic 6 specified. 
m 

the knockdown factor (x /x ) can then be determined by 

(1- V*o)''" =|(V*o) -^  1^ I (75) 
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2.5  Program PVRCA 

In the previous sections, the computer programs are rather 

limited in scope with respect to the assumed imperfection modes. 

At most, just two imperfection modes could be considered simul- 

taneously.  In order to develop a correlation to experimental 

data, general imperfection data must be derived from specific 

measured geometric data.  Arbocz has written a procedure that 

accounts for the effects of a general imperfection when a 

cylinder stiffened by rings or by stringers is subjected to an 

axial load.  Further, the effects of nonlinear prebuckling and 

boundary conditions are incorporated into the procedure. 

The in-plane and out-of-plane bending of the stiffeners are 

considered in the analysis.  A general imperfection geometry can 

be specified.  Either load or end-shortening increments can be 

considered. 

A detailed description of the development of governing equa- 

tions for the raultimode analysis is given in Ref. [l7].  Arbocz 

and Babcock [6] give a synopsis of the procedure and show how the 

quasilinearization method of Newton is used to solve the Donnell 

equations (Eq. 7 and 8).  The solution to these equations are 

based upon the approximation: 

m+l    mm 

p    = p + 6 P ^'^^^ m+1   m     m 

where 

¥ ,P   = mth approximation to the solution m' m ^^ 

6V ,6P  = correction to the mth approximation mm 

Substituting into Eqs. (?) and (8) and neglecting squared terms 

yields: 
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'■fC.JX)!i::-h 

H  m    Q  m'    in,xx'     NL m  ,  m      m 

L^(6P ) + L^(6W ) - 6P    /R - L„, (P , 6W ) (77) 
Q  m'    D  m     m,xx'     NL^ m'  m'   _ .^^    ^  "^ 

- L„T.(W +W 6P ) = - E^^^ 

where 

NL        ,xx ,yy     ,xy ,xy    ,yy ,xy    ^ 

''  The radial imperfection is assumed to be represented by; 

.        N N 

w = t  ); w.  COS ix + t   I       I w, . sin kx cos Ay 
i=1  ^° k,il=1   ^* 

.     , N, 

 + t       I       I w,      sin kx sin  Jly = t L  I wj 
k,il=1 ^* ^ 

where      •■■•■-• ^^^ . -■  ,■ ^ j,.. ,i   - ..,.._ .„ .., .' s . 

x   =-   irx/L ■    ^'-p- ■    >.-^ .■ ,/ ' i^- 

■   y   =  y/R   =   0 

Similar solution forms can be made for the four unknowns of 

Eqs. (76) and (77). 

. H: ,      ..      .-.:,. 
■w„     t V XX , , -r r n m = - —- ^p-— + t L I wJ c  1+a w'- -^ 

r 

6w  = t L [ 6w] 
m      w .  - r     . ■ 

(78) 
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TABLE   3 RING-STIFFENED  SHELLS 

Parameter 

- ;• Case Number   • ■  :  i. -   i ■ ^ V                1 

lA 12 21 24 

R 3.929 3.929 3.891 3.891 

H 0.0165 0.0173 0.0185 0.0223 

£   " ' 5.00 11.00 11.125 8.90 

No Rings 9 22 22 18 

d r 0.50 0.50 0.50 0.50 

^r -0.0193 0.0221 0.0226 0.0241 

A^ X 10^ 0.175 0.391 0.3072 0.295 

I^ X 10^ 0.0877 0.271 0.2156 0.1961 

J  X 10^ 
r 0.807 0.90 0.69 0.62 

5     .r.i ^'■-        0.0 0.0 0.00187 0.00195 
*.;■* 1   ')■::■■'■ ; [■:,    :   • ^;r ':.::_: 

P   Test 486 538 480 771 
V—i 

" .■■  );'-■  .' -^■ ilO' -^ ■■ r-bi  r ,■-. . 

"cr ,'  .  .5 '  '... 8 8 
■h  t;- 

iii,:   ^'i^.   .■: !fii:~-  ^^:■,■t3  ■; ■ 
■' "' ■' ^- .' -'   ... -■ i' -Jf \ 

PVRCB 470.3 562.6 531.2 705.7 

"cr 
...-. r.^f,'    ,a 11 11 

PVRCH 400.5 505 544.2 652.4 

^cr , i- ^^-'   ■ ...  -l ■ ■:  9 ,3.- ■    12 11 

.■; -■•■''   . :■ .. ■ ■ s '' • '.---iT-i    ,',..<   ■  U- *         . ^    :•..„,.;■    , ; '■.V' r- ■ ■■ 

PVRCK 469 508 531.7 776.5 

cr 12 
■ j 

10 10 

^il 

}■ ■   ■   i     *>;•■ 
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TABLE 4. STRINGER-STIFFENED SHELLS 

Parameter 

Case Number 

101 105 121B 124A 

R 

H 

No. Stringers 

d 

A  X 10' s 

I  X lo' s 

J  X lo' s 

P   Test cr 

n cr 

PVRCH 

n cr 

PVRCK 

cr 

3.694 

0.0349 

10.89 

36 

0.649 

0.0787 

2.60 

46.33 

78.95 

0.0 

7026 

5370 

7 

4700 

6 

3.703 

0.0194 

10.89 

36 

0.649 

0.071 

2.60 

45.33 

78.95 

0.0 

3980 

2664 

7 

2862 

4 

3.759 

0.0227 

5.07 

36 

0.666 

0.0521 

12.13 

6.73 

17.67 

0.0029 

2640 

6 

3139 

6 

2120 

6 

3.762 

0.0180 

2.12 

36 

0.666 

0.0498 

12.13 

6.73 

17.67 

0.00182 

3360 

7 

7371 

6 

2867 

6 
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the critical buckling load.  If too small a step is taken, no 

solution may result.  If too large a load step is taken, a root 

may be missed. 

Programs PVRCB, PVRCH and PVRCK all give reasonably good • 

results for a ring-stiffened cylinder.  The maximum spread 

between the experimental results and the three programs' pre- 

dictions is 18 percent.  For the stringer stiffened shells, a 

much greater deviation is observed between the reported 

experimental results and the two programs PVRCH and PVRCK.  It 

appears that the effect of boundary conditions is more critical 

for this class of shell than the ring-stiffened shell, as would 

be anticipated.  PVRCK appears to be the more conservative and 

consistent program. 

As a demonstration of the output from each program. Case 24, 

a ring-stiffened cylinder, is used.  In Vol. II (User's Manual), 

the CRT displays are given for Programs PVRCB, PVRCH, and PVRCK, 

respectively.  The results from PVRCB require no further 

explanation.  Prom PVRCH, a minimum load of 862.2 lbs at a 

response mode of n^p -   H is obtained.  In order to obtain the 

minimum load we must use the relation: 

P„„ = P^(l-3(2)~^/^-^^^^6/t)^/^) cr   c 

= 862.2(1-1.89(.2791)^^^(-^^^)^^^) 

= 652.4 lbs. 

Prom  PVRCK  a minimum  stress   resultant   of   31.76   lb/in was   pre- 

dicted.     The  minimum axial   load  is 

P       =  N  2TrR 
cr        X 

=  31.76(2)Tr(3.891) 

=  776.5  lbs. 

The experimental critical buckling load was 771 lbs. 
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The program PVRCA cannot be run, at present, on an inter- 

active basis.  Therefore, no CRT output is possible with the 

present machine configuration.  If larger core limits were 

available, interactive sessions could easily be obtained.  This 

program uses imperfection data from existing shells and then 

determines the critical buckling load.  Without prior knowledge 

of what response modes are important, the selection of the major 

responding modes is by pure chance.  For example, the data for 

the first ring-stiffened cylinder (1A) was used with 

imperfections of the first two terms in Eq. (78) being 0.00001 

for modes (9,0,(18,0), (27,0), (9,7), (9,8), (9,10), (9,11 ) and 
(9,12).  The estimated critical buckling load is X = 1.234 or 

523 lbs.  For Case 24, where the imperfection is known to 

exist (c = 0.00195), the predicted critical buckling load is 

774 lbs with the same responding modes. 

A further demonstration of the adequacy of the program PVRCA 

is represented by an example of the third category.  From 

Arbocz's thesis [18], the description of an unstiffened imperfect 

cylindrical shell is given (see Tables 5 and 6).  The form of the 
imperfection is: 

N  N 
w(x,y) =11    A^^ cos m J cos ^^ 

m=0 n=0 

N  N 
+     I       I B^v, sin m § cos 2mTX 

^.1 n=0  "^^      R     ^ 

N   N 
+     I       I C cos m § sin 

m=0 n=1 "'''      ^ 

N  N 
+11 D„„ sin m ^ sin 

m=1 n=1 ^^ ^ 

2mTX 

2mrx 

where 
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TABLE 5.   A7 Fourier Cosine Coefficients 
A mn 

mn. 

o 

\ M 
0 1/2 1 3/2 2 5/2 3 7/2 

0 0.068 0.068 

1 

2 -0.402 -0.457 

-0.518 

-0.049 

-0.155 -0.085 -0.103 -0.054 

3 -0.455 -0.601 

-0.586 -0.045 -0.099 -0.062 

4 0.103 0.048 

0.136 
... 

5 0.193 0.073 

0.242 0.056 

6 0.114 

0.145 

7 -0.047 

8 -0.050 

9 

0.051 

10 -0.048 

-0.073 



TABLE 6.   A7 Fourier Sine Coefficients mn 

mn. 

vj-i 
I—' 

\ M 
0 

I  

1/2 1 3/2 2 5/2 3 7/2 

0 

1 
' 

2 -0.241 -0.348 

-0.308 -0.271 -0.100 -0.126 -0.054 -0.079 
3 0.150 

0.189 0.066 
• 

4 0.504 0.129 

0.644 0.100 0.200 0.048 0.112 
5 0.128 

0.167 0.047 
6 -0.165 -0.149 

-0.200 -0.108 -0.063 -0.047 
7 -0.074 

-0.075 -0.056 
8 0.069 

0.049 
9 

■ 

13 -0.048 



2 i L    /  2irR 

\n  " IfL/       / w(x,y)   cos  m g cos ^^J^^ dy  dx 

2 TL    OTTR _ 
^mn = 7L/        / w(x,y)   sin m g cos ^^ dy  dx 

0    Jo 
2 I  L    r2TrR 

o    Jo 
L    r2TTR 

^mn  = 7L/        / w(x,y)   cos  m g sin ^^ dy  dx 

2 TL    r2TrR _ 
\n  = 7Lj^      I w(x,y)   sin  m J sin ^^ dy  dx 

A stiffened cylindrical shell (A?) was used with the follow- 
ing properties: 

Radius =    4-003 in. 

I-ength =    8.00 in.       " 

Wall Thickness =    O.OO4494 in. 

\   ^ =     15.1 X 106 psi. 

V ^0.3 
The largest 19 coefficients were used to predict the 

buckling load and was found to be X = 0.6.  The experiment gave 
\  =  0.554. 
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H.O     BEHAVIOR OP KOITER'S PARAMETER 

For most solution procedures used in the previous section, 

the Imperfection sensitivity of a shell Is based upon the evalua- 

tion of Kolter's parameter, b. In accordance with Eq. (73).  In 

order to view this concept In proper perspective. It was decided 

to use program PVRCK and evaluate the minimum buckling load for 

each value of axial (ra) and circumferential (n) Fourier harmonic. 

Since Donnell's equations are Inaccurate for n _< 2, no attempt 

should be made to extrapolate lower than, say, n = 4. 

The selected solution procedure was to determine, for each 

value of m and n, the minimum buckling mode per Eq. (61), 

evaluate b per Eq. (73), and determine X from Eq. (75).  If b Is s 
positive, there Is no reduction In the buckling load below the 

classical value.  This procedure was followed for various ranges 

of Batdorf's parameter (•! i Z < 1000) and Imperfection 

geometries (.0001 <   i  <_  1.5). 

A three-dimensional perspective plot was generated for each 

minimum found.  Figure 2 Illustrates the radical behavior of b. 

For different values of Z, the behavior appears to be quite 

different.  For Z ^ 2, the critical wave number of n = 2 was 

determined.  Thus, the results for this region was Ignored. 

The trends of Kolter's parameter for various Batdorf's para- 

meters show that at extremely low values of Z(<2), b is either 

small (> -0.001) or positive.  Thus the shell is insensitive to 

imperfections.  Some moderate fluctuations occur 3 < Z < 10. 

Note, in this same region Hutchinson predicted the greatest 

imperfection sensitivity; however, this was never confirmed by 
experiment. 

For low values of Z one mode appeared to dominate.  Above 

Z > 20, adjacent modes became Just as dominant as the minimum 

mode.  For higher wave numbers, the critical mode may not have 

the largest Imperfection sensitivity factor. 

With Increasing Z, the predicted critical axial mode number 

also increases, verifying Kolter's prediction [11]: 



-Cr 

X 
n 

(a)  Z = 5, b = - 2.29 x 10 -4 (b)  Z = 7.5, b = - 1.46 

Figure 2  Koiter's Parameter for Axially Loaded Cylinder 

■■*   * 
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(c)     Z   =   10.0,   b   =   -1.237 (d)     Z   =   15,   b   =   -   2.51 

Figure   2        (continued) 



(e)     Z   =   20,   b   =   -   1+.2 (f)     Z   =   30,   b   =   -   10.98 

Figure  2       (continued) 

t A 
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(g)  Z = 50, b = - 20.09 (h)  Z = 75, b = - 2.05 

Figure 2   (continued) 



oo 

(i)  Z = 100, b = - 25.61 (j)  Z = 250, b = - 4.82 

Figure 2   (continued) 

*   *- 
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(k)     Z   =   500,   b   =   -   20.27 iZ)   Z   =   750,   b   =   -   6.28 

Figure   2        (continued) 



•■*'■ 

o 

(m)  Z = 1000, b = - 10.66 

Figure 2   (continued) 
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Since these results are based upon the assumption that 

boundary conditions have little Influence, It Is anticipated that 

the predictions are more conservative than those obtained with 

the proper boundary conditions.  However, the magnitude of 

Kolter's parameter which corresponds to the critical mode 

(denoted by A in Pig. 3) has a very large magnitude and is quite 

erratic.  If the near minimum buckling load is chosen on the 

basis of the minimum ordered mode (denoted by o in Pig. 3 which 

is at the least value of the axial wave number), then the 

predictions of b become quite well behaved. 

This same observation of erratic behavior of Kolter's 

parameter was reported by Yamakl [19].  Two different analysis 

procedures were used (an asymptotic and a full nonlinear method) 

and the results obtained were similar to those presented 

herein.  Yamakl's observation was that the lower bound of the 

critical loads diminishes significantly with the increase of Z, 

as well as R/t.  For long shells with Z > 500, the imperfection 

sensitivity factor remains constant.  Further, the postbuckling 

mode is always symmetric for short shells Z < 100; while for long 

shells with Z > 200 asymmetric modes are predominant.  The wave 

number immediately after buckling is generally smaller than the 

critical wave number.  The imperfection sensitivity parameter for 

pure torsion and hydrostatic pressure as a function of Z was well 

behaved, while for compression some erratic behavior was 

observed. 
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5.0  CONCLUSIONS AND OBSERVATIONS 

Pour computer program procedures have been assembled that 

permit a convenient and economical evaluation of the imperfection 

sensitivity of cylindrical shells.  When all of the imperfection 

data is known, reasonable agreement to experimental results is 

found for these programs. Because of the basic assumptions behind 

each program, certain caution must be taken in attempting to 

apply the results directly. Similarly, extreme care should be 

taken when evaluating any experimental data because not all of 
the significant data may be reported. 

During the assembly and verification of the computer 

programs, a variety of test cases were run.  Prora these 

solutions, some observations on the factors that affect behavior 

of the Imperfection sensitivity of shells were made.  Some of 

these observations are noted as follows: 

(1) Por the general types of membrane producing loads 

(axial compression, torsion, and hydrostatic pressure), 

axial compression is associated with the greatest 
imperfection sensitivity. 

(2) When torsion is combined with axial compression, even 

greater imperfection sensitivity is observed. 

(3) The effects of boundary conditions may mask 

Imperfection sensitivity, particularly for axially 
stiffened shells. 

(4) Shells with outside ring stiffeners tend to develop 

more imperfection sensitivity than those with internal 
ring stiffeners. 

(5) Two-way stiffening is far more effective than single 
direction stiffening. 

(6) For certain cases, a multiplicity of eigenvalues can 

exist at the same buckling load.  For those states of 

stress, the imperfection sensitivity corresponding to 

these adjacent eigenvalues can be considerably 
different. 

63 



(7) No logical conclusions can be made for one shell 

geometry which are applicable to all types of 

cylindrical sizes and loading conditions.  More 

extensive parametric studies should be performed in 

order to draw general conclusions. 

(8) Par more detailed experimental evidence is required to 

fully demonstrate a particular behavior of imperfection 

sensitivity.  The effects of axisymmetric imperfection 

have been fairly adequately documented.  The effects of 
asymmetric imperfection have not. 

The degradation of the critical axial compression load not 

only depends upon the value of the imperfection sensitivity 

factor but also on the magnitude of the imperfection and its 

waveform.  Single mode behavior, particularly for the asymmetric 

mode, suggests that only small imperfection amplitudes ought to 

be considered when employing Koiter's method.  Further multi-mode 

participation will have a much greater affect on the critical 

buckling mode than single imperfection geometry. 

The study of imperfection sensitivity of shells cannot be 

adequately resolved by simply modifying classical linear buckling 

theories or even nonlinear buckling theories.  A more unified 

approach of handling imperfection geometry is required.  When a 

complete description of an imperfection geometry is established, 

adequate correlation to experimental test results can be 

obtained.  There is no current accepted method that can be used 

to suggest, in advance, which critical participating modes should 

be used in the analysis.  At present, this can be accomplished 
only through trial and error. 
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