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Summr

This report summarizes the facilities and

instrumentation acquired under the DoD Instrumentation Grant

No. AFOSR-44-01t9, monitored by AFOSR. It includes a short

description of the apparatus, as well as a summary of the

research projects on which it has been and will be used.

This is followed by a detailed listing of the equipment

actually purchased, its manufacturer and cost.
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1. Description of Facility and Equipment

The objective of the DoD Instrumentation Grant was to

increase the capability of the Space Systems Laboratory to

perform research in the area of the dynamics and control of

flexible space structures.

As outlined in the original proposal of November 22,

1982, there were at that time a number of "component" level

investigations being carried out at MIT. These were intended

to resolve issues of structural modeling; control system

design; and joint, sensor, and actuator design. It was

desirable to integrate these v, ious component level

technologies into a larger scale experiment, in order to

investigate schemes for active and passive control of space

structures.

The specific objective of the Instrumentation Grant was

to construct a nationally unique facility, which came to be

known as the ASTROVAC, in which the hard vacuum and zero

gravity of space could be simulated. In such a facility

measurements on the dynamics of space structures in simulated

space conditions could be made. A second objective was to

build up the necessary equipment to conduct active control

experiments on model structures in the laboratory at MIT.

The facility and equipment to perform these experiments will

be described below.

5 a
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The principal facility constructed under the

Instrumentation Grant is the ASTROVAC, the Apparatus for

atructural Testing and Research on an-Orbit vibration And

C ontrol. The ASTROVAC is a ten foot diameter, 14 foot high

vacuum test facility (Fig. 1) (budget item la).* The facility

can be pumped down to a vacuum level of 10-1 torr in roughly

one-half hour, using a mechanical vacuum pump (item ib)

This level of vacuum is sufficiently low to eliminate most

air effects important in structural dynamic testing. When

the cryogenic vacuum pump is used (item 1b), vacuums up to

10-8 torr can be achieved, which nearly simulates the vacuum

environment in low earth orbit. This level of vacuum is

potentially important for studying out-gassing of structures

and cold vacuum welding of joints.

The unique feature of the ASTROVAC is the lofting system

(Fig. 2), (items 2a,b and c) . This pneumatically driven

system allows test specimens of up to 100 lbs weight to be

lofted up inside the chamber. In this way the test specimen

free falls through the vacuum for 1.4 seconds. During this

time transient systems identification measurements can be

made on the test article. Because it is in both vacuum and

zero gravity, this is the closest earth based simulation of

the orbital environment currently achievable.

d
*Budget items refer to the Equipment Purchased Summary in N

Section 3.
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In order to monitor and control the test, and take data

on the response of the structure, a sophisticated control and

data system was constructed (Fig. 3). This includes computer

control of the experiment (item 4d), and a 16 channel high

speed analog to digital data system (item 4c), and the

associated signal amplifiers (item 4b) and filters (item 4a).

A diagnostic oscilloscope is also included (item 4d) . With

this assembled equipment, the ASTROVAC can perform state-of-

the-art experimentation on space structures.

Control Hardware

In order to develop a distributed processing approach to

the control of flexible structures, a hierarchic

microprocessor controller was developed (item 3c) . This

computer network is shown schematically in figure 4.

Discrete time control was accomplished in one master and!

three slave 8088/8087 processors. Measurement information

was exchanged between processors through dual access, shared

memory space. Together with the four space realizable

pivoted proof mass, actuators and inertial sensors (items 3a

and b), this enabled research in the Space Systems Laboratory

to be conducted in a number of new and unique control topics.

A more complete description of the control hardware is

contained in Appendix 1, which is a preprint of a paper by

the authors, entitled "Theoretical and Experimental

Investigation of Space Realizable Actuation for Passive and

7



Active Structural Control," to appear in the AIAA Journal of

Guidance, Control and Dynamics.
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2. Related Research

The research conducted with the ASTROVAC and the related

control hardware spans a broad range of topics in the area of

the dynamics and control of flexible structures. The

principal use of the ASTROVAC has been in the experimental

verification of ground- and space-based testing techniques

aimed at measuring the damping in built-up multi-element

space structures.

Under separate sponsorship an analytical procedure has

been developed for estimating the damping in such multi-

element space structures. Damping is an important parameter

in the design of the high performance, closed loop control

systems of precision spacecraft of interest to the DoD. In

conjunction with this analysis, tests have been conducted in

the ASTROVAC, in which the transient response of a truss

member is recorded in order to obtain precise measurements of

its material damping. A second experimental procedure known

as the Force-State Mapping Technique has been used to

identify the localized nonlinearities in joints of such space

structures by mapping the force transmitted through the joint

as a function of its mechanical state. The distributed

material damping and appropriately linearized joint

characteristics are then incorporated into a model of the

space structure. This procedure is described in more detail

in Appendix 2, which is a preprint of a paper by the authors

9
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entitled, "A Procedure for Calculating the Damping in Multi-

Element Space Structures," to appear in Acta Astronautica.

The role of the ASTROVAC is to provide an earth-based

facility in which tests can be conducted to verify this

calculation procedure, and to experiment with techniques for

ground-based testing of space structures. To date a number

of structures, prototypical of NASA Space Station hardware,

have been tested. This work has primarily been sponsored by

NASA Headquarters, under NASA Grant NAGW-21, with Mr. Sam

Venneri serving as grant monitor, and by the McDonnell

Douglas Astronautics Company, under IRAD funding, with Mr.

James Peebles acting as contract monitor.

In addition, the ASTROVAC facility has been used to

support preliminary ground based testing of three proposed

shuttle flight experiments including: SAVE, the Space Station

_qtructures and Assembly Yerification Fxperiment, sponsored by

the Space Station Projects Office of NASA Langley Research

Center; COFS I, the first experiment in the Control of

Flexible Structures experiment series, conducted by the COFS

Program Office of NASA Langlet Research Center; and MDE, the

Mid-deck 0-Gravity Dynamics Experiment, proposed to NASA by

MIT under the OAST In-Space Flight Experiments Program.

in addition, the ASTROVAC facility has been used te

develop data in support of the design of COFS II:, the scaled

model Space Station structures experiment, conducted by the

COFS Program Office at NASA Langley Research Center.

10 "J
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The related controls hardware has been used to support

an AFOSR sponsored program in which inertial reaction devices

were investigated for use as passive vibration absorbers and

active control actuators for flexible space structures.

Absorbers were designed for one- and two-degree of freedom

structural representations. Proof cf concept laboratory

experiments were performed The actuators developed and used

were inertial reaction devices, which are space-realizable;

i.e., capable of operating in the space environment. Damping

of the structure was shown to significantly increase by using

the devices passively, or actively, in conjunction with the

distributed micro processor based controller. This work is

detailed in Appendix 1.

The work was funded by AFOSR under Grant No.F49620-84-K-

0010 entitled, "The Development of Intelligent Structural

Elements for Use in Hierarchic Control of Flexible Space

Structures." A continuation of this effort, which focuses on

traveling wave concepts in structural dynamics and control is

also sponsored by AFOSR under contract No.F49620-86-C-0039,

both efforts were monitored by Dr. Anthony K. Amos.

In all, more than eight efforts involving four sponsors

and five graduate students have made use of the experimental

facilities created under the DoD Instrumentation Grant.

There is every indication that this level of utilization will

continue in the near future.
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3.0 Equipment Purchased

Budgeted:t Actual
Item Vendor Amount : Amount

Ia. VACUUM VESSEL 150,000

120' diameter, 168' high stainless steel vacuum chamber:Russell Engineering 47,111.00
Port blanks :Russell Engineering 2,126.75
Tank damping pads (Waffle Neoprene) :Fabreeka Products : 183.09
Nuts & bolts :Russell Engineering 435.00
--------------------------------------------------------------------------- ---------------------------- ------------ ------------

lb. VACUUM SYSTEM 41,500

Kinney Model CC4030 close-coupled :Kinney Vacuum 12,797.46
mechanical Vacuum booster pump.I
CYRO-TORR 10 High Vacuum System !CTI-Cryogenics 12,500.00
Purge tube for Cryo-torr 10 pump :CTI-Cryogenics . 326.37
Connectors !Columbia Connector Corp 151.98
Aluminum tubing :American Steel & Alum :* 224.62

Vavs'Varian Associates 4,584.49
Filters :Filter Sales * 707.00

Vacuum parts :Leybold Haraeus * 245.17
ASA Flexible Connector :Stokes DivtPennwalt Corp * 831.94
Valves :Key Vacuum Products i 1,098.44
Steel pipe J.T. Ryerson & Co * 128.94
Vacuum gages :Granville Phillips * 1,238.97
Connector :Cambridge Valve & Fitting * 22.08

2a. & 2b. LAUNCH MECHANISM * 16,780

Piston Assembly fabricated tHigh Vacuum Equip Corp t11,620.00
101 SRPA Shaker Unit :Ling Electronics : 10,652.41
Motors for data link 1AST/Servo Systems, Inc. * 2,550.70
BNC Plugs !Trompeter Electronics 156.36
Vacuum feedthroughs lVarian 1. 2,176.64
Potter Brumfield Solid State Relays :Relay Specialties Inc i 59.25
Amphenol BNC Receptable !Gerber Electronics :* 53.90
Lemo connector series 00 and receptable ulieco Inc 784.40I
Time Delay Relays :Allied Electronics i 149.85

Computation time 201.65

2a. LAUNCH MECHANISM CONTROLLER 995:

Wavetek Model 132 VEG/Noise Generator :Wavetek 2,050.44

2c. MANIPULATOR 4,350 : 0.00

121



3a. ACCELEROMETERS (SENSORS) 18,050

Laser Vibrometer system ;Disa Electronics 25,818.88
------------------------------- :--7 ---------- -- ------ - ---------

3b. ACTUATORS : 10,000

PA-601 Power amplifier :EG&G Torque Systems 482.46
1.75 lb 110 on-in peak stall torque motor PMI Motors 276.46
QT-1401 Frameless Torque motor & 'Inland Motors 894.10
T6-0702 Frameless Tachometer

Pittman Servo Motors !Pittman Corp 158.84
Cable ISager Co 166.23
T6-0702 Frameless Tachometers :Inland Motors 913.51
Connectors ILemo 682.12
200-M608 Rotary Potentiometers :Maurey Instruments Corp 888.71
PL20-5 Crimp Wrench :Trompeter Electronics 198.74
110 Watt Power Op Amp & heat sinks :E6&6 Torque Systems 1,030.63
Power Supplies :Lambda Electronics 984.66
Panel Mounts ILemo 215.10
Sockets, Heat sinks and 100 watt power amps :E6&6 Torque Systems 1,278.12
Power amplifier, dual polarity supply, & heat sink :E6&G Torque Systems 1,799.09
.01 OHM, 3.25 watt fractional resistors ISterling Electronics 39.50
Angular Displacement Transducer :Trans-Tek Inc 251.29
Rotory Potentiometer :Maurey Instrument 224.68

3c. MICROPROCESSOR FOR STRUCTURE CONTROL 1 29,650

ZT8830 Slave Processor :Ziatech Corp 452.25
ISB1-311 Analog Input Multi-module board :Hamilton/Avnet 612.57
Intel 1818 328 Analog Outputs & lHamilton/Avnet t 2,555.67
Intel I1SBX 321 Fixed/floating math 1 1

Intel ISBX-328 Analog output :Hamilton/Avnet 754.71
ZT8830 110 slave control processor IlZiatech 457.25
Intel ISBX-311 Analog input :Pioneer-Standard Electronics: 641.44
ADSP-1009 JD 12x12 Bit CMOS Mult/Acc :Analog Devices 376.29
ER32-R Card Cage, 7101-8 Slot Motherboard, IPRO-LOS 696.00
12v power supply&teminator card I

4a. BESSEL FILTERS 1 8,850

Model 1844 P8L-4 Module Bessel Filters !Frequency Devices 2,252.83
Amphenol BNC receptacles & connectors :Gerber Electronics 221.91

Dip switches and Bourns S/P isolated resistors !Gerber Electronics 81.32
Vectorboards :Gerber Electronics 48.51
Vector NIM modules :Newark Electronics 961.81
LNS-Z1S Power supplies :Lambda Electronics 207.58
Relay Racks and casters :Gerber Electronics 1,075.84

S
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4b. AMPLIFIERS 4,000

Model 2120 Strain Gage Conditioner/Amplifier !Measurements Group 7,015.67
with digital readout P
IAD521 JD IC's 'Analog Devices 269.49
Receptacles, buttons, switches, dials, IGerber Electronic 1,180.62
wire and connector asphenols

Power supplies :Lambda Electronics 595.38
Vector modules :Vector Electronics 257.24
Receptacles and plugs :Lemo 206.94
Rotary switches :Gerber Electronics 9t.73
Resistors and capacitors :Newark Electronics 29.18
15 volt power supplies :Lambda Electronics 234.40
Bourns pots :6erber Electronics 271.26
------------------------------------ -------------------------------

4c. A/D CONVERTER 13,050

%odel 8601 Programmable Function Generator I !LeCroy 3,802.71
dual port memory # 8201/12

Nodel 8212A Transient recorder ILeCroy 14,559.39

4d. COMPUTER 17,500

IBM Personal Computer Model 087 IT :IBM Product Center 3,759.20
IBM Personal Computer Model 087 IT :Sears Business System Center: 3,711.19
8087-3 Math Coprocessor Chips k Microsoft Fortran 3.2 :Micro Ware 615.50
National Instruments GPIB-PC Interface card :Scheinfein Associates 590.67
4-device T-switch for 25 line RS232 cables :Inmac 340.91
Selanar SG-100 main graphics board t !Data Access Systems 982.99
S6105 communications board

Epston LQ-t5OO Printer 'The Bottom Line 1,229.88
Zenith amber monitor :Lecheare 109.99
National Instruments GPIB-PC Interface card :Scheinfein Associates 533.63
Quadboards, no RAM :Conroy LaPointe 442.90
64K memory RAN upgrade :Microway 578.00

4e. DIAGNOSTIC OSCILLOSCOPE 10,195

Digital Oscilloscope :Nicolet 11,529.65

TOTALS 224,920 216,006.52

AUTHORIZED AMOUNT - $216,000
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Figure 1.Overall Layout of the ASTROVAC Facility.
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Abstract

Inertial reaction devices are investigated for use as passive vibration

absorbers and active control actuators for flexible space structures. Absorbers

are designed for one and two degree of freedom structural representations using

three parameter optimization techniques. All three yield nearly identical

designs and indicate that inertial devices should be tuned to the lowest mode

intended to receive increased damping. The optimal passive components of the

control actuator are found to be those of the optimal passive vibration

absorber. Proof of concept laboratory tests were performed on a quasi free-free

beam using inertial reaction devices which are space-realizable, i.e.

conceptually capable of functioning in the space environment. The inertial

devices were used both as passive absorbers and as tuned actuators. Damping was

significantly increased using both passive and passive/active techniques.

Additional tests indicated the benefits and limitations of actuator tuning and

the necessity of performing realistic experiments using space-realizable

hardware.
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Nomenclature

A = state dynamics matrix

b, = it" row of control effectiveness matrix

B = control effectiveness matrix

c = damper strength

cil = jth column of modal measurement matrix

C = regulated variable matrix

d, = jih row of modal disturbance matrix

D = disturbance effectiveness matrix

Dc = positive definite modal damping matrix

f = feedback gains

F = control force, feedback gain matrix

J = system cost

k, = stiffness of i " spring

mI = mass of jih mass

M = measurement matrix

P = disturbance force

Q = quadratic state penalty

QD = disturbance torque

R = quadratic control effort penalty

u = nondimensional control force

w = disturbance inputs

x = state vector, displacement

y = regulated variables

z = measured variables

a = positive gain parameter

f3 = absorber-to-structural modal mass ratio

2
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= nondimensional frequency ratio

6 = absorber-to-structure modal frequency ratio

A = nondimensional damper strength

al = second-order modes for internally balanced system

*oDc = decimated eigenvector matrix

c, = damping of i mode

W, = frequency of i" mode

Introduction

A number of future space structures may require active control of their

flexible modes. Because of the lack of passive energy dissipation mechanisms in

space, even small disturbances can lead to motions of sufficiently large

amplitude or duration as to be detrimental to performance requirements. A two

level approach to controlling structural vibrations is envisioned. First. the

background structural and material damping can be increased by addition of

passive damping devices. Second. an active control system can be added to

further enhance system performance. In this scenario, the purpose of the

passive damping device is threefold: to provide a supplementary passive

dissipation mechanism; to increase the robustness of the active system; and to

provide a fall back in the event of failure of some or all of the active system.

Several options are available for introducing passive damping and active

control into the structural dynamics. Passive energy dissipation mechanisms

which can be implemented in space include: material damping enhancement,

viscoelastic dampers, frictional dampers and joints, intermember dampers, and

inertial reaction absorbers. Mechanisms for active damping include:

piezoelectric devices, interelement actuators, angular momentum exchange

devices, and inertial reaction actuators. Common to the list of options for

passive dissipators and active actuators are inertial reaction devices. These

3
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are conceptually simple devices that are easily implemented in space. Questions

associated with such devices include their theoretical optimization and

experimental implementation.

Previous investigations have addressed theoretical optimization of passive

absorber designs. The classical single degree of freedom (DOF) vibration

absorber solution' is well known and has found wide application. Recently, a

closed form solution was derived, based on a quadratic regulator formulation, -

that yields the same design for a one DOF absorber.2 Currently. these devices

are commonly used to damp structures which respond primarily in a single mode of

vibration. This work will extend their application to the damping of two DOF

structures, and will examine their performance in structures with multiple

modes. The incorporation of vibration absorbers as the passive components of

active inertial control actuators will also be examined.

Inertial reaction actuators are conceptually capable of functioning in the

space environment; i.e., they are space-realizable. One practical

implementation of an inertial reaction actuator is the pivoted proof-mass

actuator, currently being considered for use in active vibration suppression.3 4

The work presented here makes use of similar devices, but incorporates

tunable passive components into the design of active control actuators for the

implementation of low authority control 4 . A distinction of the experiments

described below is that no actuating or sensing is performed against the

laboratory frame. This work focuses on the use of tunable inertial reaction

devices, which operate through momentum exchange between the structure and a

reaction mass, to perform output feedback control.'

This paper is divided into two main sections which deal with the issues of

theoretical optimization and experimental implementation. First, the components

of a passive inertial vibration absorber and the passive components of an

4
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inertial control actuator are optimized. The passive absorber (Fig. la)

consists of a spring. mass, and damper. With the addition of a feedback control .e

force F in parallel, the device becomes an active control actuator. Because of
'.J
I

the functional similarities in the inertial absorber and actuator models, both 'p

concepts can be combined into one physical device. The availability of

adjustable passive parameters allows the passive and active characteristics of

the actuator to complement each other. The absorber and actuator are optimized

by several criteria including minimum steady-state response. minimum modal time

constant, and quadratic cost minimization.

In the second part of this paper. experiments are used to identify

practical approaches and limitations in the use of these devices. First, the

actuators are experimentally tuned to beam modes as absorbers. Once tuned.

these devices are used as control actuators. A control test is performed using

actuators without optimized passive characteristics in order to demonstrate that

improved performance is achieved when the actuators are tuned. Finally. a test

involving actuation against the laboratory frame is used to demonstrate the

relative ease in gaining deceptively high performance with a nonspace-realizable

devices.

Optimization of Passive Absorber Parameters

The passive inertial vibration absorbers are first optimized for the

systems shown in Fig. 1. In Fig. lb the absorber (M2 , k2. and c) is atLached to

a single degree of freedom spring/mass system (m, and k1 ) which represents the

modal stiffness and modal mass of one structural mode. Fig. lc is the model

used for optimizing the absorber to a two DOF plant. The force P indicates the

location of an assumed input disturbance on the structure.

Three different approaches are used to determine the optimal spring and

damper values for the passive vibration absorber. First, a steady-state minimax

5
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criterion is used to select parameters that minimize the maximum steady-state

structural response. Second, a set of absorber parameters is chosen which

places the system poles such that the maximum modal time constant is minimized.

A third optimal solution is found by minimizing a weighted quadratic cost

integral of the response. The steady-state minimax criterion is then extended

to the selection of optimal absorber parameters for damping two DOF systems.

Finally, the minimum cost" criterion is applied to the simultaneous and

sequential optimizations of the passive components of an actuator and the active

feedback gains.

Optimal Absorber Design for a One DOF Structure

Steady-State Solution. The first optimality criterion is to minimize the

maximum steady-state response x, when the structural mass m, is subjected to a

white noise disturbance P. The nondimensional transfer function relating input

disturbance to response for the model in Fig. lb is
2

_~~~ 4.r2+(I 2-62)2X 2"2 22 2 (1)

P/k, [06 2-r_-(_r 2 -)(r 2 -6 2 )] 2 + 4 2 2r2 (l+p)_1]2

where

6 = [(k2/m2)/(k,/m 1 )]1' 2 absorber/structure frequency ratio (2a)

Iv = (o/(kt/mt)1/2  nondimensional frequency ratio (2b)

= m2/m1 absorber/structure mass ratio (2c)

Ii = c/2m2 (k,/m
2) nondimensional damping (2d)

The solution based upon minimization of the maximum steady-state response.

known as the "Classical Vibration Absorber" problem,' is Fummarized here. The

maximum response of the structural mass m, with an optimally tuned absorber "

attached is

k, 2- (3)

P/k1  a ,

6
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It is clear that increasing the absorber/structure mass ratio 13 lowers the

response. Therefore, increasing the absorber mass improves performance and no

"optimal" mass ratio exists. Therefore, the mass ratio 1 is assumed fixed and

the values of the frequency ratio 6 and nondimensional damper W are optimized.

For a fixed mass ratio, the optimal frequency ratio 6ss based on the

minimax criterion is

6s = 1/(1 + 13) (4)

and the optimal nondimensional damper setting is found by solving

2 2 '"kl p )

= - (5)
4ys~sS(is(I+1)-I) 2 (X k1/P)

2 -

where the nondimensional modal frequencies are

1 + 0 1 1 (6)

Equation 5 is indeterminate at these modal frequencies "ss. To determine liss, a

limit of Eq. 5 must be taken for values of - approaching iss.

A numerical example of this steady-state solution is shown in Fig. 2 for a

mass ratio of 1 = 0.02 (i.e., the absorber mass m2 is 2% of the structural modal

mass m) and for the optimal frequency ratio of 6 ss = 0.98. Given this mass and

frequency ratio, Fig. 2 shows the response to white noise excitation for six

nondimensional damper settings. Notice that W = 0.086 appears to minimize the

maximum response, and in fact corresponds to liss derived using Eq. 5.

Transient Response Solution. The criterion used to determine the optimal

transient response solution is that of minimizing the maximum modal time

constant. Fig. 3 shows the root locus for the system of Fig. lb as the damper pi

is varied (for a mass ratio of 1 = 0.02). The frequency ratio 6 has been chosen

such that the root trajectories intersect at point A. This allows both poles to

be moved as far to the left as possible. This optimal value of 6TR which causes

the loci to intersect at point A is the same as that calculated using Eq. 4.

7 0
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The optimal damping that places both poles at point A is
2i

TR= + 03 (7)

The real part of the poles at point A is

RE(s) A = -0.5 [ p/(1 + p) ]1/2 (8)

As in the steady-state response optimization, optimum performance improves

monotonically for increasing 13. For the numerical example of 13 = 0.02. 6Ss =

6T. = 0.98 (Eq. 4). the optimal damper is pLR = 0.137 (Eq. 7). which is 60%

larger than the value for gLss derived using the steady-state minimax criterion

(Eq. 5). Figure 3 also shows the pole locations for the system with the optimal

steady state response ( 6 = 6ss = 6 tn and jI = pss ). In general. lower damping

is required for optimal steady state response than for optimal transient

response.

Minimum Quadratic Cost Solution. The final optimality criterion for

passive absorbers is to minimize a cost function that penalizes the undesirable

system response. To be consistent with optimal regulator theory. the quadratic

cost function is

j f [x TQ x + uTR u ] dt (9)
2

0

where x contains the states of the system of Fig. lb. and Q is a positive

semi-definite square matrix. In this problem there are no active forces, so

that the cost depends only on the quadratic of x. I. e. R = 0. For a given Q

and initial state vector xo, a unique solution for a minimum of J can be found

by solving the Lyapunov equation for the system. A closed form analytic

solution for this problem has been found for the case of a vibration absorber

attached to a one DOF syste. 2  This solution yields the same optimal frequency

ratio 6ss and a similar damping level p. as was found above for the steady-state

optimization.

8
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For this analysis, a numerical search is used to determine the values of

frequency ratio 6 and nondimensional damper p which result in the lowest cost J

for a fixed mass ratio 1P. The weighting matrix Q is selected so that the cost J

represents the sum of the system's total nondimensional kinetic plus potential

energy. Choice of the initial condition xo does not significantly affect the

results for a lightly damped system.

Optimal solutions using the three methods were comparede and found to have

identical frequency ratios and similar nondimensional dampers. Thus, all three

design techniques yield virtually identical absorber designs. particularly with

respect to achievable tuning accuracy of these devices.

Optimal Absorber Desixn for a Two DOF System.

The possibilities of adding damping to several modes through the use of a

single absorber is demonstrated by extending the steady-state solution to the

design of an absorber for a two DOF structure (Fig. lc). Once again, the

objective is to minimize the mximum steady-state response at the disturbance

location. For a structure with multiple DOFs, no simple closed form solution,

such as Eqs. 4 and 5. is known. A nonrigorous extension of the single DOF

absorber analysis is presented.

The optimization possibilities are summarized in Fig. 4 where the frequency

response of the system in Fig. Ic is shown for two sets of passive absorber

parameters. Again, the mass ratio is fixed at 13 = 0.02 where 19 is now defined

as the ratio of absorber mass to the modal mass of the lower structural mode.

Curve I shows the absorber tuned to the lower structural mode using the

relations given ir, Eqs. 4 and 5 altered to refer to modal properties. In this

case the absorber parameters yield a suboptimal result because the response at

the high mode frequency is about four times larger than the response of the

lower two modes. Increased absorber damper strength reduces apparent damping in

9
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the lower two modes while increasing residual damping in the high mode. The

term "apparent damping" refers to the damping exhibited by the combined

steady-state response of two split modes which occur at almost identical

frequencies. With sufficient additional damping the two peak magnitudes are

equated and the minimax criterion is again satisfied (Curve 2).

The absorber frequency can also be tuned to the higher structural mode.

However, this choice of absorber frequency is inappropriate. When the absorber

frequency is tuned to the higher mode, no value of the damper can be found which

equates the response of the two structural modes. It is therefore important

that. when attempting to introduce significant levels of damping into more than

one structural mode, the absorber frequency should be tuned to the frequency of

the lowest mode of interest and the damper increased from the value determined

by Eq. 5 until the desired damping in the higher modes is achieved. The

validity of this approach was independently confirmed by a quadratic cost

minimization approach.8

Optimization of Passive Components of an Active Actuator.

The next step in the study of inertial reaction devices is to determine the

optimal passive components of the active control actuator shown in Fig. la. The

control force F is assumed to be a linear function of the displacement and

velocity states of both the structural mass m, and the actuator m2 of Fig. Ib;

i.e., full state feedback. Both the active feedback gains and the values of the

passive components are optimized simultaneously. The objective of this

optimization is to determine what similarity these passive parameters bear to

the optimal parameters of the passive vibration absorber.

The method used for the simultaneous optimization of the active feedback

gains and passive parameters is similar to the previously discussed quadratic

cost minimization (Eq. 9). The quadratic cost now includes a penalty on the

10
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control effort, so that R is a positive. dimensionless constant. By the choice

of R=1O0, the level of control forces are kept to the same order of megnitude as

those generated by the passive components. This is done to prevent domination

of the actuator dynamics by either the passive components or active forces.

Since a tuned absorber provides significant passive damping in the tuned mode,

at a relatively low mass ratio, the addition of active control forces of the

same order of magnitude would provide damping performance well within the level

necessary for typical applications.

To multaneously optimize the passive components and active gains, a

gradient search is performed for a range of values of the actuator's passive

frequency ratio 6 and nondimensional damper 1A. For each 6 and As, the optimal

regulator gains are calculated exactly from regulator theory and the cost (Eq.

9) evaluated. Note that no penalty is explicitly placed on the passive

components, and therefore the optimal solution will be driven towards relying as

heavily as possible on the passive components of the actuator.

The two systems that were optimized for the passive vibration absorber

(Figs. lb and Ic) were also optimized for the active actuator8 . One

characteristic result throughout the optimizations was that the optimal 6 for IL

the actuator is near the optimal 6ss of the passive vibration absorber. The

optimal value of the damper p is somewhat more sensitive t the presence of

active feedback and therefore deviates from the optimal for an absorber by a

greater percentage than do the frequency ratios. j

The results of the simultaneous optimization suggest that sequentially

optimizing first the passive components and then the active gains will yield

nearly the same performance. This indicates that the inertial reaction control

actuator performs most effectively when passively tuned as a vibration absorber.

Supplemental passive damping is added to the system, and actuation effectiveness
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is increased.

Experiments Using Inertial Reaction Control Actuators

In order to investigate the practical implementation and limitations of

space-realizable active control, an extensive set of experiments was conducted.

The experimental objective was to maximize the damping in a pendulous free-free

beam. After a description of the experimental hardware and open-loop plant

model, the results for the test in which the inertial reaction devices were

experimentally tuned as passive vibration absorbers to various beam modes are

discussed. Once tuned, these devices were used as active actuators through the

feedback of system measurements. Finally, the performance of these controllers

is compared to the performance of untuned and nonspace-realizable actuators.

Experimental Apparatus.

Control Hardware. The structural plant of a prototypical space structure

can be characterized as having free boundary conditions and a low frequency

fundamental mode. Such conditions raise issues concerning actuator stroke

limitations and low frequency stiction effects. This behavior was simulated by

a twenty-four foot brass beam, suspended by wires arranged in six sets of

swinging parallelograms (Fig. 5a), which prohibited torsional rotation about the

beam's longitudinal axis. The first bending mode of this free-free structure

was at 0.37 Hz. The pendulous modes were at 0.30 Hz and 0.32 Hz. The small

frequency separation between the pendulous and first bending modes was due to a

desire to make the flexible modes as low as possible and a restriction on the

suspension length. The system had four modes below 1.0 Hz. and twelve modes

below 10.0 Hz (Table 1) providing the experimental challenge of close modal

spacing. Typical open-loop modal damping ratios averaged 0.16% of critical (f =

0.0016).

Four identical space-realizable Electromagnetic. Inertial-Reaction
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Actuators. with characteristics as listed in Table 2. were used to control the

structure (Fig. 5b). These devices, which are variations of devices developed

at the Lockheed Palo Alto Research Laboratory.3 are attached to the side of the

beam and use a commanded motor torque to accelerate a pivoting reaction arm

through small angle deflections. This causes the proof-mass. attached to the

end of the pivoting arm. to accelerate horizontally in a direction transverse to

the beam. At the point of attachment of the actuator to the beam. this motion

generates a reaction force and a small reaction torque, both of which must be

modeled.9 An adjustable spring was included to enable adjustment of the natural

frequency of each device, and colocated feedback of motor shaft rate to motor

torque was locally fed back to simulate a passive damper, thus allowing the

devices to be used as both tunable vibration absorbers and control actuators

with tunable passive components. The active damper provided simple damping

adjustment and linearity. In principle, it could be replaced with a truly

passive mechanism such as constrained viscoelastic layers in the adjustable

spring. For the remainder of this paper, the adjustable spring and locally fed

back colocated, electronic damper will be referred to as passive elements of the

device. A momentum wheel was attached to one end of the beam to provide either

broadband disturbance torque used in transfer function tests, or sinusoidal

disturbance torques used to initiate free decay tests.

Eight space-realizable sensors were used to estimate system states. Each

actuator contained a tachometer for measuring relative reaction arm rotation

rate. At the location of each actuator, an accelerometer was used to measure

coincident inertial beam acceleration. The beam and actuator positions and

velocities at each actuator location were estimated from the tachometer and

accelerometer measurements by a digital algorithm which filters low frequency

signal drift and integrates the measurements over a frequency range encompassing
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the system modes of interest'.

Discrete time processing was accomplished in one master and three slave

8088/8087 processors with each of the four processors devoted to controlling a

separate actuator. Measurement information was exchanged between processors

through dual access, shared memory space. Analog-to-digital and

digital-to-analog conversion was used by each processor for sensor sampling and

issuing control commands at a rate of 1000 Hz. This high control rate allowed

feedback gains to be derived based on the assumption of continuous control for

modes up to 10 Hz. Double precision operations were used to prevent roundoff

errors in the integration and control algorithms. The details of the digital

hardware are listed in Table 3. Once this equipment was assembled as

illustrated in Fig. 6. a mathematical model of the system was constructed and

verified.

System Model. A finite element model, consisting of twelve cubic beam

elements and augmented by the dynamics of the four actuators, was formulated

using the DOFs indicated in Fig. 6. The model was first formulated with only

the twenty-six beam degrees of freedom, plus the mass and disturbance torque Qo

of the momentum wheel, and the stiffness of the suspension system. Very slight

changes in the beam cross sectional stiffness were made so that this model

accurately represented the experimentally observed open-loop beam behavior.

Then the actuators, with springs set very stiff, were physically added to the

beam and mathematically added to the model. Modal damping was then

experimentally determined for each mode and added to complete the mathematical 6

model of the form
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With this refined model, the first seventeen predicted open-loop modal

frequencies of the beam, plus stiff actuators, were within 2% of their measured

values. The final actuator stiffnesses and damper strengths used in the model

were determined during the actuator tuning process.

In each of the following experiments, two types of tests were performed.

First, the acceleration transfer function from broadband disturbance torque at

one end of the beam (Qo = 0.006 Newton Meters RMS) to linear transverse beam

acceleration at the other end was recorded via a spectrum analyzer. Second, the

beam was excited at individual modal frequencies and allowed to undergo free

decay after shutdown of the excitation while beam end acceleration was measured.

The modal damping ratios were calculated from these transient decays.

Tuned Passive Absorber Experiments

The first set of experiments involved tuning the four actuators, used as

passive absorbers, to four "target modes" of the beam, and determining their

effectiveness as passive absorbers. Modes targeted for absorber tuning were

those most sensitive to the disturbance. Equation II defines the modal

transmission from disturbance to regulated variables for lightly damped systems
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in the form of Eq. 12; as derived by internal balancing theory. For this

experiment, the regulated variables y have been chosen to be the entire state

vector x: i.e.. it is desirable to minimize the disturbance to all of the

physically scaled state variables equally. This selects the modes with the

largest modal time constants.

aOc - (4Cai,)-' Cddt(( 2 + 1)c(c,1 ]
1'2  (11)

x = Ax + Bu + Dw state equation (12)

z = Mx measurement equation

y = Cx regulated variable equation

u = -Fz feedback equation

In Eq. 11. w is modal frequency and C is modal damping, and cl, and d, are

columns and rows of the regulated variable matrix C and disturbance matrix D.

respectively.

Figure 7 shows with hatched bars the transmission, as defined by Equation

11, from the disturbance to the regulated variables for the first thirteen

open-loop modes. The result of the analysis presented above, in which an

absorber is tuned to more than one degree of freedom, indicates that it is

desirable to tune to the lower frequency modes of interest. Therefore. the four

lowest consecutive modes with high disturbance transmission were chosen as the

target modes, as shown by the arrows in Figure 7. The four absorbers had been

placed at positions along the beam where they exerted large influence on their

respective modes due to large modal motion; i.e., the absorbers were placed in

positions which maximized the modal mass ratio (Eq. 2c). One absorber was

placed at each end and one was placed at each 1/3 length position (Fig. 5).

One absorber was tuned to each of the four target modes. The optimal

passive absorber stiffness and damping were chosen using the steady-state

minimax criterion (Eqs. 4 and 5). The mechanical spring in the actuator was

16
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adjusted as accurately as possible to the optimal frequency, and colocated

feedback of actuator rotational position and rate was used to fine tune the

devices. While this does not result in a purely passive system. the active part

was used only to enable easy tuning and was not necessary to the performance of

the absorbers.

The performance and limitations of the four conceptually passive actuators

were then assessed. A qualitative comparison of the acceleration transfer

function of the beam is shown in Figure 8. Two traces are shown, one for the

case of very stiff absorbers such that there is relatively little motion across

the active dampers, and the second for the case of tuned absorbers. The four

target modes are those with frequencies of 1.09. 1.74. 2.61, a-d 3.78 Hz. Note

the reduced response (increased modal damping) in this frequency range as a

result of absorber tuning. Additional. or residual damping is also evident in

the modes above 4.0 Hz. The existence of residual damping in modes higher than

the modes to which the absorbers are tuned is consistent with the observations

made from the two DOF tuning analysis (Fig. 4).

The second set of tests involved transient decays of the target modes, the

results of which are summarized in Table 4. As can be seen, by comparison of

the modal damping ratios before and after tuning, over an order of magnitude

increase in critical damping ratio was achieved. Sixty to ninety percent of the

predicted damping was obtained. Due to the second-order dynamics of the

absorbers, tuning to a target mode results in two split modes close in frequency

to the original target mode frequency (e.g., target mode 5 becomes modes 5a and

5b). The damping ratio of the more lightly damped mode is reported in Table 4.

The deviation between actual and predicted damping in target mode five was due

to friction effects. Stiction would seize the actuator motion at low vibration

levels causing marked reductions in damping and limiting low amplitude
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performance. The low performance in mode eight was due to the low mass ratio

which increases tuning sensitivity and difficulty. In general. the absorbers

could not be tuned to modes lower than 1 Hz. due to stiction problems and

prohibitively large tuned absorber motion.

Several beneficial characteristics occur as a result of absorber tuning.

Figure 7 shows that predicted modal disturbance transmissions are significantly

reduced (Eq. 11) for the beam with tuned absorbers (solid bars) when compared to

those for the beam without the absorbers tuned (hatched bars). Due to split

mode behavior, two solid bars occur for each of the four hatched bars

corresponding to the original target modes 5 through .

Controllability of the target modes is also enhanced by tuning (Fig. 9).

The modal control transmission from actuator to regulated variables is defined

by internal balancing theory, 1o in a fashion similar to disturbance

transmission, as

CB c = (4C 1 b,)-  bb(w 2 + l)c c1 ,)'
2  (13)

The vector b, corresponds to a row of the control effectiveness matrix B. Since

these values indicate the effect of control action on the states of the system,

they are good indicators of relative modal controllability. Note that the split

target modes are most controllable. The next most controllable modes are the

beam modes above the target modes. Modes lower than the target modes are

relatively uncontrollable.

Significant increases in passive damping have been achieved by the addition

of the passive absorbers. If these same devices are also used as active

actuators, it can be argued that the damping is introduced with no additional

mass penalty. While the benefits of adding passive absorbers are substantial,

the limitations are also important. Friction poses a problem in damping low

level vibrations where stiction can seize absorber motion. This might be
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overcome with a high frequency torque dither, which might excite uneanted high

frequency response, or through bearing improvement. Stroke limitations hinder

tuning to low frequency modes at low mass ratios. Finally, passive tuning of

the absorbers requires a precise knowledge of the target mode frequency.

Active Control Experiments

Once the actuators had been passively tuned as absorbers to the four target

modes, three sets of control experiments were performed using negative output

feedback (Eq. 12). First, dual rotational rate feedback was used to drive the

DC motors of the four tuned actuators from the four tachometers using a fully

populated, positive definite gain matrix F. Dual feedback refers like sensor to

like actuator feedback (rotational shaft rate to shaft torque) where each sensor

is physically located with an actuator.6 In the second set of tests, the same

dual measurements were fed back to untuned, zero stiffness actuators. This

verified the effectiveness of tuning the actuators as absorbers with nonzero

stiffness. Finally, a control test was performed using one actuator reacting

against the laboratory frame. This demonstrates the performance differences

between space-realizable and nonspace-realizable experiments.

Dual Feedback to Tuned Actuators. Two different tests were performed using

positive definite, dual feedback as derived using the technique described in

Reference 6. In this technique, a matrix Dc is chosen to be a positive

definite, diagonal matrix whose entries are the desired increases in damping for

a chosen set of modes equal in number to the number of actuators used. In this

experiment, equal damping was desired such that Dc = aI. Next, the modal

eigenvector matrix of the full system model is decimated while retaining rows

corresponding to actuator motion and columns corresponding to the chosen set of

modes. This decimated matrix is designated as *Ozc. The feedback gain matrix

is then derived as
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F = Dzc~c (14)

The quadratic form of Eq. 14 guarantees a positive definite feedback matrix.

The two tests that were performed differed in the four modes chosen to form

4Ovc. The first test used the lowest two target modes, to which actuators were

tuned, and their two corresponding split actuator modes (5a. 5b, 6a, and 6b) to

create ODEC. The second test used the first four beam modes above the target

modes (modes 9, 10, 11. and 12) to create Ootc.

When the lowest two target and their corresponding actuator modes were

chosen to derive the feedback through Equation 14. a feedback matrix resulted

which contained highly nonuniform entries. This was due to the relatively large

eigenvector entries corresponding to the motion of the two actuators tuned to

these two lower target modes (5 and 6). The inversion of the decimated

eigenvector matrix ODEC in Eq. 14 resulted in high feedback gains for the two

actuators not tuned to these two lower target modes (i.e., the actuators tuned

to modes 7 and 8). The highest gain loop was colocated feedback to the actuator

which had been tuned to target mode eight. This gain was four orders of

magnitude larger than the colocated feedback to the actuator tuned to target

mode five. Because of the nonuniform gain matrix, this design only created

significant feedback to actuators tuned to the higher two target modes (7 and

Using this feedback, only minor increases in damping in modes 9 and 10 (at

4.95 and 6.42 Hz.) above the target modes occurred at the expense of damping in

target mode eight (at 3.78 Hz.) of the beam/actuator system. Table 5 lists

measured and predicted closed-loop modal characteristics for this test for the

feedback gair level chosen. The model and the data are in fair agreement. This

behavior can be explained using Fig. 3 to represent the root locus in the

vicinity of mode eight. Above a certain level of positive collocated rate
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feedback, that which places the poles at the equivalent of point A. one of the

root trajectories for modes 8a and 8b moves towards the imaginary axis. This

results in reduced apparent damping in that mode. Recall that the collocated

rate feedback to the actuators tuned to modes 7 and 8 dominate the feedback gain

matrix. The model did not predict reductions in modal damping, due to the

feedback, at this gain level but did so at a slightly higher gain level.

An important limitation was realized through this test. The feedback used

was at a level just below that which caused onset of a high frequency (67 Hz.)

instrumentation/actuator instability, similar in nature to those reported in

Reference 4. Only relatively low control performance was achieved prior to the

onset of this instability. Due to the nonuniform gain matrix, the relatively

high gains to one actuator caused a local instability before significant control

authority could be exerted overall. The corrective step was to create a more

uniform feedback matrix, while retaining the desirable positive definite, dual

feedback properties.

In the second test with dual feedback to tuned actuators. Eq. 14 was again

used to derive a feedback matrix using an eigenvector transformation ODcc based

on the first four beam modes above the target modes (i.e.. modes 9, 10. 11. and

12). Uniformity in the gain matrix was achieved since the actuator eigenvector

entries were of similar magnitudes. Figure 10 compares the acceleration

transfer function of the beam with only the tuned absorbers (a) to that of the

beam with additional uniform feedback to tuned actuators (b). Significant

increases in damping in modes 9 through 12 resulted at a cost of only slight

reductions in apparent damping in target modes 5 through 8 (note the hatching in

Fig. 10). Table 5 lists the predicted and measured modal characteristics. As

can be seen in both Fig. 10 and Table 5. modes 9 and 10 received the largest

increases in damping. Better performance was achieved in this case because all
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four actuators were contributing evenly. In fact, all modes above 4 Hz.

exhibited significant increases in damping. Again, an instrumentation/actuator

instability limited the feedback gain level. This result verifies that uniform

feedback provides better performance since it allows all actuators to contribute

before the onset of instability.

Several conclusions can be drawn from this first set of two tests.

Nonuniform feedback resulted in poor performance while uniform feedback allowed

significant increases in higher mode damping at the slight sacrifice of modal J
4.
P

damping in the target modes to which the actuators were tuned. The active

feedback, while introducing additional damping, also redistributes the damping

in the target modes across a wider spectrum. In both tests, positive definite

dual feedback proved stable with respect to beam modes for all gain levels
P

tested up to that which caused instrumentation/actuator instability. This type

of feedback also guarantees an increase in total system damping but does not

necessarily guarantee simultaneous damping increases in all modes at all gains.

Dual Feedback to Untuned Actuators. In the next set of experiments, the

same type of dual rate feedback (Eq. 14) was used in conjunction with untuned.

almost zero stiffness actuators. This was done to illustrate the benefits of

tuning to plant modal frequencies in the range over which control is desired.

As in the previous case, the feedback was increased until the onset of

instrumentation/actuator instability. Table 6 lists the results for modes 5

through 12 at the highest stable gain level used. Note that the split modes

associated with the dynamics of the actuators have now disappeared since the

actuator stiffnesses have been set essentially to zero. The results in Table 6

verify, when compared to Table 5, that actuator tuning yields improved

performance. To obtain the same response characteristics, a controller

providing position and rate feedback would have to have active gains to the
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untuned actuators that provide the passively generated reactions that exist in

the tuned actuator case.

Nonspace-Realizable Actuation. The last test involved a

nonspace-realizable method of control actuation in which one actuator reacted

against the laboratory wall instead of the proof-mass at the end of the pivoting

arm. In this case, simple colocated actuator rate was negatively fed back to

the actuator. Figure 11 compares the acceleration transfer function of the beam

with tuned absorbers (a) to that of the beam with one actuator allowed to react

against the laboratory frame (b), showing how effective this simple feedback is.

The level of feedback was again limited by the instrumentation/actuator

instability. As is evident from the data, this simple single actuator

arrangement resulted in much better performance than any of the space-realizable

methods, even those using four actuators, because the mass ratio is effectively

infinite. This illustrates the need to conduct space-realizable experiments in

order to identify important limitations which may be overlooked when performing

nonspace-realizabie tests such as this.

Conclusions

Several conclusions can be drawn from the theoretical optimization of these

inertial reaction devices. Three different optimization procedures yielded

almost identical absorber designs providing confidence in the tuning process.

In addition, the optimal passive components of the control actuator were found

to be similar to those of the optimal absorber. This allows passive damping to

be added without significant mass penalty. Finally, when using an inertial

device to increase damping in several modes, it is desirable to tune the

frequency of the device to the lowest mode and adjust the damping accordingly.

Experimentally, an inertial reaction device was used effectively as both a

passive vibration absorber and a control actuator, passively tuned as an
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absorber, verifying the results of the tuning analysis that stated that passive

tuning complements active control. This dual purpose device resulted in a mass

savings, increased modal controllability, and reduced target mode disturbance

transmission. Additional passive damping increases gain margin for feedback

systems that are conditionally stable and allows a form of passive damping

enhancement in the event of control system failure. These space-realizable

experiments were found to be important in determining performance limitations

due to instrumentation instabilities, friction in relative motion actuators, and

actuator saturation at low frequencies. In addition, nonspace-realizable tests

exhibited excellent damping performance which emphasized the need to investigate

the realistic implementation limitations of space-realizable techniques.

Uniformity in the positive definite, dual feedback matrix allowed better

performance before the onset of instrumentation/actuator instabilities because

all actuators were able to exert maximum stable feedback.

While the experiments were not able to achieve damping levels needed in

proposed space structures ( 10% critical damping) they did achieve almost half

this level in the target modes and increased the damping in the higher modes by

almost an order of magnitude. This is typical of the performance required of a

low authority controller with respect to providing significant increases in

damping across a frequency range exceeding the bandwidth of the high authority

controller. The corresponding high authority controller could be implemented

using other actuators or using these same devices given that the dual feedback
U

restrictions set in this paper are relaxed.--
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Table 1. Brass Beam and Suspension Characteristics

Length 1 - 7.315 meters

Width b = 0.102 meters

Thickness t = 0.003 meters

Mass Density / Unit Length m = 4.12 kg/meter

Bending Stiffness EI = 30.0185 N meter
2

Suspension Cable Length L = 2.450 meters

Mode Freq (HzI Damping
Ratio

1 0.300
2 0. 320 -

3 0.368 0.0057
4 0.632 0.0032
5 1.120 0.0021
6 1.820 0.0018
7 2.760 0.0014
8 3.840 0.0016
9 5.200 0.0014
10 6.640 0.0015
11 8.320 0.0016
12 10. 160 0.0017

Table 2. Force Actuator Specifications and Components.

Maximum Actuator Force 3.0 Nts.
Actuator Mass w/o Proof-Mass 0.550 Kgs.
Proof-Mass Mass 0.165 Kgs.
Arm Length 0.127 M.
Motor Peak Amperage 4.920 Amps.
Motor Peak Voltage 19.10 Volts
Torque Constant 35.70 mN m/Amp. I
Peak Stall Torque 173.0 mN m.
DC Motor Pittman Corp. Model # 7214
Tachometer Inland Motor Model # TG-0702
Accelerometer Endevco Piezoresistive Model # 2262-25

I
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Table 3 Digital Control Hardware

Master System
Packaging: LabTech
CPU: JF Microsystems Model 8759

8088/8087
8 Bit STD Bus

A/D: Analog Devices Model RTI-1260
8 Differential Channels
+/- 10 Volts
12 Bit Conversion

25 jsec Conversion Time
D/A: Analog Devices Model RTI-1262

4 Channels
+1- 10 Volts
12 Bit Conversion
25 Asec Settling Time

Slave System
CPU: Ziatech Model ZT 8830

8088
8 Bit STD Bus

A/D: Intel Model ISBX 311
8 Differential Channels
+/- 5 Volts
12 Bit Conversion
50 psec Conversion Time

D/A: Intel Model iSBX 328
8 Channels
+/- 5 Volts
12 Bit Conversion
20 jWsec Settling Time

High Speed
Math Board: Intel Model iSBX 331

FMUL 50 psec

Table 4. Experimental Results of Absorber Tuning.

Target Mode Number: 5 6 7 8
Target Mode Frequency (Hz): 1.09 1.74 2.61 3.78
Absorber/Modal Mass Ratio: 0.033 0.011 0.018 0.004
Optimal Frequency Ratio: 0.968 0.990 0.983 0.996
Optimal Nondimensional Damper: 0.111 0.062 0.079 0.039
Predicted Critical Damping Ratio: 0.0637 0.0362 0.0470 0.0231
Measured Critical Damping Ratio: 0.0441 0.0320 0.0438 0.0136
Z Achievement (measured/predicted) 69.2% 88.4% 93.2% 59.0%
Damping Ratio Prior to Tuning: 0.0021 0.0018 0.0014 0.0016
Increase in Critical Damping Ratio: 21 18 31 9

%J
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Table 5. Test Results for Nonuniform and Uniform. Positive Definite Dual

Feedback to Tuned Actuators

Mode Freq. C [NONUNIFORM] % [UNIFORM] %
Number (Hz) Open Closed Closed meas. Closed Closed meas.

Loop Loop Loop pred. Loop Loop pred.

(meas.) (pred.) (meas.) (pred.) (meas.)

5a 1.05 0.0441 0.0441 CRIT

5b 1.27 ------ 0.0479 ------ 0.0233------
6a 1.72 0.0320 0.0329 ------ 0.8635------
6b 1.88 ------ 0.0382 ------ 0.0470------
7a 2.49 ------ 0.0709 ------ 0.7144------
7b 2.75 0.0438 0.0715 ------ 0.0546------
8a 3.69 0.0136 CRIT CRIT 0.4131------
8b 3.95 0.0173 0.0095 54.9% 0.0259------
9 4.96 0.0040 0.0055 0.0110 200.0% 0.0155 0.0118 76.0%

10 6.42 0.0033 0.0042 0.0041 97.6% 0.0156 0.0129 83.0%
11 8.19 0.0048 0.0055 0.0047 85.5% 0.0103 0.0084 82.0%
12 9.80 0.0025 0.0029 0.0025 86.2% 0.0075 0.0060 80.0%
------ not measured

Table 6. Test Results for Uniform. Positive Definite Dual Feedback to Untuned
(Zero Stiffness) Actuators.

Mode Frequency Modal Damping Ratio % Achievement
Number (Hz) Open Closed Closed measured

Loop Loop Loop predicted
(measured) (predicted) (measured)

5 1.09 0.0021 0.0048
6 1.74 0.0018 0.0094 -

7 2.61 0.0014 0.0056
8 3.78 0.0016 0.0054 9
9 4.92 0.0014 0.0025 0.0018 72%

10 6.40 0.0015 0.0034 0.0031 91%
11 8.19 0.0016 0.0023 0.0017 74%
12 9.79 0.0017 0. OOQ2 0.0030 71%
--------not measured
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Figure 1 a) A One Degree of Freedom Absorber/Actuator Coupled to
b) aL One DOF Structure and c) a Two DOF Structure.
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Figure 5 a) Swinging Parallelogram Beam Suspension with
Actuator Placement and b) Inertial Reaction
Absorber/Actuator Configuration.
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Figure 7 Level of Disturbance Transmission to the Model States for
the System Without (hatched) and With (solid) Absorbers
Tuned to Target Modes.
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Figure 8 Acceleration Transfer Function a) with Very Stiff
Absober (hiherlevel response) and b) with Tuned
Absober (lwerlevel response).

33



-1

4

4

X

so.

2 3b

MOW ,641

Syte wit Aborer Whs Pasv Copnet are Tuned

lZ34.a5b6a ba o b a S 5 9 1O 1 2 3 "

to Those of an Optimal Absorber.
8.
.0

404

3.

2o

0I

.I I
,.

0
* 3, 4 S to

Figure 10 Acceleration Transfer Function a) with Tuned Absorbers
(higher level response) and b) with Uniform Dual Feedback
to Tuned Actuators. Hatching indicates regions in which
response is increased in case b.

34



30.I
U

a 4 a 10

--
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APPENDIX 2:

A PRoMIRE FOR C:AL:UjLATINc iE DAxPEN
IN NULTI-ELENEfl SPA( STRUCIURES

Edward F. Crawley and Kevin J. O'Donnell

Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

Cambridge. Massachusetts USA

ABSTRACT

A procedure is outlined for estimating the damping in a multi-element space structure by
incorporating distributed material damping and discrete nonlinear joint properties into a
linear analysis. Tests have been conducted in which the transient response of a truss member
is measured in free fall in a vacuum in order to obtain precise material damping
characteristics. The force-state mapping technique is then used to identify the localized
nonlinearities in joints by mapping the force transmitted through the joint as a function of
the full mechanical state of the joint. The identified nonlinear joint parameters are then
linearized using an equivalent energy approach which finds the equivalent linear stiffness and
linear viscous damping by equating the integrated work done and energy dissipated by the
nonlinearity to those of a spring and damper undergoing sinusoidal motion. The distributed
raterial damping and localized nonlinear effects are then incorporated to form a linearized
damped finite element model. Finally. an eigenvalue perturbation analysis is developed to
explore the effect of introducing damping at the joints on the overall dynamics of the truss.
and to obtain design guidance on where supplemental joint damping might optimally be added.

KEYWORDS

Structural damping; material damping measurements; nonlinear identification; equivalent energy
linearization; elgenvalue perturbation; multi-element structure analysis.

INTRODUCTION

One of the important remaining challenges in the development of structural dynamic analytic
tools is the ability to predict, a priori, the damping of a structure. What is measured as
damping in a structure is actually a combination of two phenomena, energy loss due to
transmission out of the structure and true dissipation within the structure. Transmission
losses occur at the structural support interface (Dowell. 1986) and by aerodynamic and acoustic
transmission to the surrounding air. True dissipation occurs in a distributed sense throughout
the material and due to localized nonlinearities at a discrete number of joints and fittings in
mechanical contact.

For space structures in the vacuum and zero gravity of space, only true internal dissipation
need be considered since transmission losses are insignificant. This is a fortunate
coincidence, since it is for space structures that an accurate a prtort prediction of damping
and the nonlinear effects of joints is most important. The potential interaction of the
flexible structure with the control system makes it necessary to have accurate knowledge of the
damping to assure a robust controller at high gains. However. the large size and/or
flexibility of envisioned space structures makes ground vibration testing difficult. Even if
ground testing is performed, the need to suspend the structure, the presence of gravity loads
on the joints, and the air damping make it difficult to directly extrapolate the measured
damping results to the space environment. Thus the modeling and prediction of damping in space
structures is an important area for analytic development. The repetitive nature of elements
and joints in contemporary space structures makes feasible the development of such an analysis
at this time.

The approach taken by this paper is to assume that a linear undamped analytic or numerical

rn o'el of the structure already exists. A procedure is presented for incorporating first the

material damping and then the joint effects to obtain a more complete damped model of the

structure (Fig. 1). The material damping properties of the constituent truss material must

first be measured. This material damping is the fundamental damping inherent in the final
assembled structure regardless of how the elements are joined. The potentially nonlinear

behavior of the joints must then be measured in such a way as to provide an adequate dynamic
characterization. These nonlinear effects must then be linearized and incorporated into the
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overall model. For confidence that the model can accurately predict the behavior of an
assembled space structure, the completed model should be verified by ground and space based
dynamic testing.

5fl(EA1T M4M.YTCA/lEXPtEONMETHOD

Fag SPAC TRUSS CHOAACTCRIZATkIa

EXE IMENTS I

M "TIA I4

L I.I

m ITM- TTESTIING

Fig. I Block diagram of the incorporation of material damping and localized
nonlinearites into a linear undamped finite element model.

MATERIAL DAMPING

The material damping in a truss element is a distributed property of the material. Two
possible approaches can be considered when trying to incorporate the effects of material
damping into a structural model: a fundamental micromechanical approach; or a phenomenological
approach.

The fundamental micromechanical approach attempts to identify the physical basis of the
dissipation at a micromechanical level and predict from first principles the material
dissipation. Some micromechanical models are relatively simple. For example, for isotropic
anelastic metals. Zener (1948) postulated that material damping arises when the time dependent
stress and strain in the material are not in phase due to transverse heat flow. As a result.
the damping depends upon the relative frequency of vibration compared to the transverse
relaxation frequency, the frequency associated with the time constant of transverse thermal
transport. Thermal transport damping can be considered a fundamental or background damping
mechanism present even at low amplitudes, but is in no way the only one present. At high
strain amplitudes, dissipation in metals often increases due to losses suspected to be
associated with grain boundary and inclusion motion. In graphite/epoxy composite materials,
the visco-elasticity of the matrix is a key contributor to the material dissipation (Adams.
1986). In metal matrix materials, the fiber, metal matrix, and interface bonding can all
contribute to the dissipation (Rawal and Misra, 1986). Lazan (1964) made a classic study of
such mechanisms.

When the ultimate objective is to predict the damping in a complex structure, an approximate
phenomenological approach to the quantification of material damping is preferable for a variety
of reasons. First, the fundamental physical models are often complex, diverse, and inexact.
Second. they must often be verified or calibrated by test. producing a data base on damping
which can just as easily be approximated by a phenomenological model. Third. in the final
analysis, the material damping is often small compared to the eventual structural damping due
to the joints and attachments. Therefore, a more approximate model is justifiable.

The difficulty in obtaining material damping data is that the damping is generally up to an
order of magnitude smaller than aerodynamic damping or damping due to energy transmission into
the supporting structure of the specimen. One approach to the measurement of material damping
which eliminates this experimental interference is to examine the vibration in free fall in a
vacuum. To accomplish this. an apparatus called the Tunable Excitation Launch Mechanism (TELM)
was developed in which a material specimen can be lofted with a specified initial strain level
in a vacuum while measuring its transient response, from which the material damping ratio can
be obtained (Crawley and Mohr, 1985). By changing specimens and excitation amplitudes, the
material damping can be measured as a function of frequency. strain, and specimen geometry.

A variety of phenomenological models have been developed based on testing at MIT and elsewhere.
Tests conducted on Aluminum 2024-T3 showed that the Zener prediction was very good for
specimens with frequencies above the relaxation frequency of the aluminum (Fig. 2). However.
the tests below the relaxation frequency showed an exponential dependence of damping on strain
which is not predicted by the Zener model (Crawley and van Schoor. 1986). For metal matrix
materials with low loss fibers and good fiber matrix bonding, such as graphite/aluminum, the

I



material damping in the composite can be associated with the matrix dissipation (Crawley and
van Schoor. 1986). In Fig. 3. the damping in graphite/aluminum shows the same frequency
dependence as predicted by the Zener model for a pure aluminum bar. Damping in graphite/epoxy
materials tends to be relatively independent of strain or frequency, but strongly dependent on
laminant ply orientation and stacking (Adams, 1986).
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structural material can be developed. The data which best represents the strain levels and

freq-encies appropriate to the elements of the complete structure can then be incorporated into

the linear undamped finite element model to create a linear damped model. Given the

distributed nature of the damping and its small value. the complex modulus (e+ig) modal damping
is considered an acceptable method of incorporating the mwaterial damping. The dampI ng
parameter g will, in general, depend on frequency and the average strain in the particular
element. If these parameters are not relatively constant or small, iteration may be necessary
to achieve the appropriate value of g. Once this is accomplished the remaming tasks are to
identify and incorporate into the structural model the effects of the joint nonlinearitels,
which are generally expected to dominate the total structural damping.

NON~LINEAR IDENTIFICATION~

Joints of deployed or assembled spacecraft generally have some form of pin, ball, or sliding or
interlocking mechanism, and may or nay not be preloaded in their final form. Such Joints are
seen as a potential source of nonlonearitres. such as impacting and friction between contacting
surfaces.

The force-stroke technique (Soni and Agrawal. 1985; Belvin 1985) has been comnmonly used to
identify nonlinear stiffness effects in Joints. The technique identifies the behavior by
plotting the quasi-steady force applied to the joint versus the resulting displacement. As the

name implies, no rate dependent effects are included in this type of identification. Without
explicit rate dependent information. the force-stroke data cannot discern between systems with
state dependent energy dissipation, such as linear viscous damping .and systems with true
memory dependent dissipation, such as viscoelasticity. (ODonnell and Crawley. 1985).

As an alternative to force-stroke testing, an extension of the technique known as force-state

mapping has been developed (Crawley and O'Donnell. 196). In this technique, the e force
transmitted by the joint is represented as a function of the relative displacement and velocity
across the joint; i.e.. as a function of the full mechanical state of the joint. As an example
of this technique, consider a joint modeled as a single degree of freedom spring mass damper
system, where the spring and damper are properties of the joint, and the msas represents the
mass of the adjacent truss element. The dynamics of this model can be represented by the
memoryless ordinary nonlinear second order equation of motion

N + B(x.x) x + K(x.3) x a F(t) (1)

where the generalized damping and stiffness B and K can vary as a function of the state.
Regrouping the terms of Eqn. (1) gives

F,(x.x) - F(t) - 14 = (x.x) x + K(x.x) x (2)

where F, represents the force transmitted by the joint entirely as a function of the
instantaneous state of the joint.

To produce a force-state map, the transmitted force is calculated at each measurement interval
as the measured applied force minus the mass times the measured acceleration. The transmitted

r
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force is then plotted versus the measured displacement and velocity. The force-state rp of a
general linear spring mass damper system would be a plane whose slope with respect to
displacement would be the linear stiffness K and with respect to velocity would be the linear
viscous damping B (Fig. 4). Any deviation in a force-state map from a flat plane is an
indication of a nonlinearity in the system.

An interesting property of the force-state mapping formulation is that any nonlinearities in
the system represented by the right hand side of Eqn. (2) are superposable. Therefore. the
transmitted force can be expressed as a linear combination of linear and nonlinear force
components. A representative but not exhaustive list of common force components is given as

F, = C + Kx + Bx + Kox" Bx" * Ko. + B.. * F.sign(c) + glxlsign( ) (3)

where

Kos : 0 B,. = 0 -x. . x xo,

kos.(x+x0.) f bo.(x) x -x°.

The first three terms of Eqn. (3) represent a constant preload, a linear spring, and a linear
damper. The next two terms represent higher order springs and dampers, the sixth and seventh
terms deadband springs and dampers, the eighth classical Coulomb friction, and the last
classical (l+ig) material "hysteresis" damping and displacement dependent friction (Hertz and
Crawley. 1985). It should be emphasized that while Eqn. (3) contains most of the effects which
contribute to so called "hysteresis" or "memory" effects on a conventional force-stroke plot.
they are in fact not true memory effects, but depend only on the instantaneous state.
Therefore. each will produce a distinct, unique, and superposable surface on a force-state map.
independent of the amplitude, frequency, or time history of the test.

A two-part procedure for identifying the force-state characteristics of joints can now be
outlined. The first step is to produce a force-state map of a joint or other structure using
Eqn. (2) with data derived from a suitable experiment. The second step is the actual
identification of system parameters by decomposing the force-state map into the force
components listed in Eqn. (3) by a least squares fitting procedure. The latter part of this
process is demonstrated on the force-state map of an actual pinned clevis joint with a
restraining sleeve (Fig. 5).
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Fig. 4 Force-state map of an ideal linear Fig. 5 Force-state map of a pinned clevis
spring mass damper system. joint with a restraining sleeve.

The original two dimensional projection of the force-state map onto the force-displacement
plane and the recreated versions are shown in Fig. 6. The first fit is a simple linear and
cubic spring function which closely matches the shape but has no dissipative properties. The
second fit then includes friction and produces the expected hysteresis step when the
displacement changes direction; i.e.. when the velocity changes sign. Finally, with the
addition of linear viscous damping, the fourth graph becomes the fully reconstructed signal.
lote that the transmitted force characteristics have been very accurately reproduced, and what
might have originally appeared as a memory effect has been well represented with state
dependent linear viscous damping plus Coulomb friction.
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Fig. 7 Equivalent energy linearization of a

Fig. 6 Reconstruction of the two-dimensional deadband spring plarameterized by the
projection of Figure 5 using the normalized initial offset from the-
identified fit paramters, center of the deadband.

The force-state mapping techni(-, has been shown to provide a method for characterizing the
behavior of joints as a function of the full mechanical state of the joint. Using this

technique. particular types of nonlinearities can be recognized and physical insight gained by
examilning the force-state map. The nonlinearities can be identified by appropriately
decomposing the force-state rmip into a linear combination of linear and nonlinear force

component s.

INCORPORATION OF NONLINEAR EFFECTS

Fqulvalent Energ"Y Linearization%

Once the linear and nonlinear properties of the joints have been identified. the linear damped
finite element model can be tipdated with the identified linear stiffness and damping terms
associated with the joints. This will produce a modified linear damnped finite element model;
however. the nonlinear terms must still somehow be included. Four techniques have been
examnined for use in linearizing the nonlinear terms; a direct least squares fit of a plane to
a localized region of the force-state map; the method of harmonic balance; a temporal Galerkin
technique (Timoshenko, Yoving, and Weaver, 1974; Griffin. 1980); and a method based or
equivalent energy (Meirovich, 1975). Of these techniques. the direct least squares approach
has been shown to produce incorrect linearizations for use in dynamic modeling (O*Donnell and
Crawley, 1986). The remaining three techniques are similar and yield the same correct
linearization in the case of steady state sinusoidal motion.

Of these three. the equivalent energy linearization technique provides both a direct functional
form for the linearized coefficient and physical insight into the nature of the nonlinearity.
The technique is based an finding the amplitude and frequency dependent equivalent stiffness
and damping terms (K.Q and Cco) which have equivalent work and energy dissipation over a
complete cycle as the nonlinear force. The Integral representation of this is given by

(K,,, x) x dt = F(x.x) x dt (4) (O dx t = x) x dt (5)

The integrals are then solved for the unknown parameters KtQ and C,o for each type of

nonlinearity F(x.x). For assumed steady state sinusoidal motion, x(t) = A cos(Ml), Fqns. (4)

and (5) reduce to

KcQ = Jo ~ x x x d, (6) C ,.. / f F(x. ) x dt (7)

0' It i

In this way. the linearized coefficients are reduced to simple functions of the mplitude and
frequency.

As an example of the usefulness of this technique, consider the equivalent energy linearization
of a deadband spring (Fig. 7). In this case. the equivalent stiffness is frequency independent
and is plotted versus the amplitude of motion normalized by half" the deadband gap. The curves
are also parameterized by an initial displacement offset (possibly due to a gravity preload)
also normalized by half the deadtand gap. The equivalent spring has no effect on the system
until the value of the initial offset plus the amplitude exceeds one; i e., the spring does not
influence the mass until the mass contacts it. When the initial offset Is greater than t),e
deadbad gap, the equivalent stiffness will decrease for a range of amplitudes when the mass
enters the deadbend, but will eventually again increase toward the limit of the deadtxand spring
constant. One of the benefits of the equivalent energy technique is the creation of these
equivalent parameter plots which provide useful physical insight into the nature of the
nonlinear ity.



To verify the accuracy of the equivalent linearization approach, a comparison is made between

the exact solution for the response of a spring mass Coulomb friction damper with the response

calculated using the equivalent linear damper. The exact solution exists only for certain

ranges of nondimensional friction values (Den ltartog, 1931). The comparison is shown in Fig. S

parameterized by F/Q. the friction value normalized by the applied force amplitude, The system

also has S % linear viscous damping. The dashed line indicates the amplitudes above which the

analytic solution is valid. The comparison in Fig. 8 indicates excellent agreement of the

linearized solution and exact solution even for relatively large values of friction.

Once the nonlinearities have been appropriately linearized, they must then be included into the I
updated finite element model. Since the linearized stiffness and damping may be amplitude
and/or frequency dependent, the exact value of the linearized coefficients must be determined

iteratively. To accomplish this, the frequency response of the linear system without the

nonlinear parameters is first determined for a fixed excitation level. The amplitude and
frequency are then used to update the damping and stiffness matrices with the linearized
parameters to create a new linear damped model. The procedure is repeated until the desired

convergence has been achieved. For large nonlinear effects, this technique may need to be

modified to guarantee cotivergence.

Figenvalue Perturbation Sollition

Since the equivalent linearized parameters derived above are expected to exert a relatively
small influence on the dynamics of the structure, it is natural to consider the effects of

material damping and nonlinearities as small perturbations about the undamped linear system.
In this situation, an eigenvalue perturbation technique can be used to determine the general

behavior of the system stbjected to small changes (Hagedorn. 1983). This treatment of the
(imping as a perturbation problem would greatly reduce the computational burden of recomputing
the full order eigenvalue problem at each cycle of iteration. The perturbation analysis can

also be used in estimating the effects of damping and as a design tool for guidance in

determining the best locations to design deliberate joint damping into a structure.

As an example of the application of the perturbation technique, consider the undamped matrix

representation of a structure

1- -+ K'q =0 (9)

low when the effects of damping are included, but are small compared to the inertial and
stiffness terms, the equation of motion becomes

N- B-; K- = 0 (9)

where C is a small parameter such that the damping effect is small compared to either of the

other two terms in the equation. Additionally, it is required that N is positive definite and

symmetric and that K is positive semi-definite and symmetric. The requirement that N and K be

symmetric is purely to simplify the analysis, which can be extended to nonsyimeetric system
matrices with the use of right and left eigenvectors. To solve for the perturbed elgenvalue

solution, express the kth elgenvalue. X(k). and etgenvector, V (k) as an expansion in terms of
the small parameter "

X (k) \X(k) + A (k) + C2  (k) + (10)
(k) (k) (k) * (k) -=

It (,tint

hqhq he

Fig. 8 Response amplitude of a spring mass
system with friction using the Fig. 9 Simple truss whose Joints are modeled
linearized damping compared to the as linear springs and dampers.
analytic solution; zeta = 0.05.
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When q = 1 exp(t). the solution to Eqn. (9) is a quadratic elgenvalue problem with increasing

powers of C. Since C is assumed to be small, the resulting problem can be solved successively

by equating those terms which multiply like powers of . The first two equations.

corresponding to Co. and C become

X a N + K )'po =0 (12)

Xo N + K )', + No ( 2A, N + B )po = 0 (13)

where the superscripts have been dropped for brevity. Equation (12) is the zeroeth order

eigenvalue problem which is assumed to have already been solved. The second and all subsequent
equations are simply linear equations and do not involve solving additional eigenvalue
problems. While Eqn. (13) and all that follow from the perturbation analysis each introduce a
new X and %* as unknowns, appropriately normalized orthogonality conditions can be used to
eliminate the new eigenvectors in terms of the zeroeth order eigenvectors. Ech equation can
then be used to produce another eigenvalue perturbation.

Civen that N and K are both symmetric, the zeroeth order eigenvectors can be normalized so that

the orthogonality conditions hold

T2

I'-ou 1 'j 6 ij (14)

where wi. = -I Ao (k)., ore the undamped frequencies from Eqn. (12). The first elgenvalue
pertuirbation Is given by

A(k) = 1 1/2 wk bk (16)

with

bek = oe-B-#ok : e.k = 1.2....,N (17)

where N is the dimension of the mntrices in Eqn. (14). Therefore. to first order in C. the
complete eigenvalue can be rewritten as

X(k) [ , k 1/2 C b ] J (18)

Note that the first perturbation is purely real and negative for B positive definite. This
shows that a small increase in damping causes a proportionally small shift of the poles to the
left in the complex plane; I.e., proportionally increasing the damping in the modes.

If additional damping is to be added at the joints. Eqns. (16) through (18) provide useful
th

design guidance in choosing the location and strength of joint dampers. If the k mode is to
be the target for damping. Eqn. (17) implies that the location and strength of the dampers;

i.e.. the B matrix entries, must be chosen so that the product o,'ol is maximized.

Physically this means that the damping must be placed at locations of high relative motion of
the mode.

For the case of nonrepeated eigenvalues, the first and all subsequent perturbations are
obtained from simple multiplications and additions of known matrices and do not require
additional eigenvalue solutions or matrix inversions. For this situation, the second
eigenvalue perturbation becomes

ilo b b bk 2

X =(k) - "" " ,kj (19)

2 2j-u 22 eok (dk _ e k

For the case of repeated nonzero eigenvaLues. additional eigenvalue problems of the order of
the degeneracy need to be solved (liagedorn. 1983). For repeated zero elgenvalues (rigid body
modes), the matrix problem can be reduced by diagonalizing Eqn. (8): i.e., transforming to A
modal coordinates. and removing the rigid body equations. This is equivalent to perturbing the
elgenvalues only on the reduced subspace of the flexible modes and is valid since structural
damping will not affect the rigid body frequencies or mode shapes.

Using the procedure described above, the perturbed eigenvalues of a thirteen degree of freedom.
four element beam (Fig. 9) were calculated and compared to the exact solution obtained using
the EISPACK eigenvalue problem subroutines. Each element of the beam had a compatible end
translation with its neighbor, simulating pinned joints between elements. The elements were
connected rotationally at the joints with rotational springs and dampers. The problem was
nondimensionalized using the characteristic length, time, and stiffness of a single beam
element. The joint stiffness (k.) was chosen to be 0.3. 1.0. and 3.0 times the element

stiffness EIIL. intended to span a realistic range of joint stiffness. The design parameter
which was varied was the amount of rotational joint damping (ba). With finite joint stiffness.

this model has eleven flexible modes and two rigid body modes. Since the rigid body modes
correspond to repeated zero eigenvalues. the original 13x13 problem was diagonalized using the
undamped mode shapes and the two rigid body equations were removed.
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The exact locations of the eleven flexible mode poles were computed with the EISPAC<
subroutines for joint stiffness r-itios (k6 /EI/L) of 0.3. 1.0. and 3.0 with varying joint

damping. The results with the stiffness ratio of 1.0 are shown in Fig. 10. Three distinct

types of behavior of the poles can be observed as the joint damping is increased from zero.

lhe first (1) is when poles move approximately along a quarter circle from the imaginary axis

toward the real axis (modes 10 and 11 in Fig. 10). This behavior is indicative of modes in

which joint motion dominates the mode shape. and is similar to the behavior when proportional
damping is added to a mode The second type of behavior (II) is when poles move along a
"semicircle" first away from and then back toward the imaginary axis with either increasing or

decreasing frequency as in modes S and 9 in Fig. 10. The final most complex type of behavior
(II1) is when a pole initially curves up or down but then -changes direction- and returns to
the real axis or imaginary axis (mode 7 in Fig. 10).

The predicted locations of the flexible mode poles was also obtained using the first and second
perturbations of the eigenvalue as given in Eqns. (16) and (19). A comparison of the predicted
and exact pole locations of the seventh flexible mode for the three joint stiffness ratios is

shown in Fig. 11. This mode displays all three types of behavior described above as the

damping in the joints is increased, depending on the relative stiffness of the joint compared

to the beam element. For low joint stiffness (the lowest path in Fig. 11), the mode is

dominated by joint motion and damps quickly (1). For high joint stiffness (the highest path).
the mode behaves like (I) with increased damping. For a moderate joint stiffness, the pole is
in transition (III) between the other two types of behavior. However, even though the

quadratic form of the estimate cannot accurately model the behavior of (I) and (III) for large
damping, perturbation analysis is almost exact for realistic levels of joint stiffness, and

structural damping levels up to S X.
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Fig. 10 Root locus of a four element truss as Fig. 11 Comparison of the exact and perturb-
the lirear joint damping is increased ation pole location of the seventh

from zero. joint stiffness ratio = 1.0. flexible mode of a four element truss.
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SUNMARY

When analyzing the effects of multi-element space structures connected by joints, four distinct

steps are required to fully account for material and nonlinear effects. The first step

involves creation of a linear undamped finite element model. In the second step, the material
damping properties of each element are determined and incorporated through a complex modulus

representation to create the linear damped finite element model of the structure. The third
step is the identification of the nonlinear joint properties using the force-state mapping
technique. The identified nonlinear components are then linarized using the equivalent energy

method in the fourth step. The linearization is incorporated into the linear damped model
through iteration to create the linearized damped finite element model. The perturbation
analysis has shown that changes in the modal damping can be accurately calculated using only
the first eigenvalue perturbation (Eqn. 16). Additionally, the perturbation analysis provides
an excellent design tool by providing quick estimates of the structural damping and by
providing guidance in choosing the value and location of additional dampers to provide optimal

modal damping in specific target modes.
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