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Annual report 1985/86

Grant: AFOSR-84-0219

Title: Conditional Second Order Closure For Turbulent Shear
F lows

Prinipal
Investigator W. Kollmann, UC Davis

Sumnary

The research work during the second year was concentrated on two

subjects:

(1) Probability density functions and their application to conditional

moment closures.

(2) Further development of the second order closure model based on

conditional moments.

The work in the first area was concentrated on conditional closures

treated on a higher level in terms of probability density functions.

Since conditioning involves scalar variables such as enstrophy or small

excess temperature scalar transport and stochastic techniques for the

simulation in homogeneous and non-homogeneous turbulent flows were

investigated (see Appendix I).

The work in the second area continued the effort of the first year

and concentrated on axisymetric flows. The differential equations

constituting the closure model were transformed to cylindrical

coordinates. The properties of different closure models for the turbulent

transport of Reynolds stresses were evaluated first in the context of an

unconditional second order closure (see Appendix II).
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Research Objectives

The objective of the proposed research project is the development of a

second order closure model for conditional moments and the intermittency

factor. The foundation of the closure scheme are to be investigated and

the resulting model should be applicable to a wide range of turbulent

shear flows with free boundaries.

Status of Research

The research work on this project started in July 1984 with U.

Mortazavi a Ph.D. student and S. Byggstoyl from TU Trondheim (Norway) as

Postdoctoral fellow. The results from the first year were presented in

the annual report for 1984/85. Byggstoyl has returned to Norway and A. Wu

has joined as second Ph.D. student.

M. Mortazavi continued in the second year his work on the probability

density formulation of conditional closures. He considered the turbulent

transport of scalar variables such as temperature on enstrophy (vorticity

squared), which can be used for discrimination between turbulent and

non-turbulent zones in shear flows with a free boundary. The transport of

scalar quantities in homogeneous turbulence was studied in terms of random

walk simulations [4], and the main body of results is summarized in

Appendix I. His results show that the stochastic simulation of two-point

pdf's is very tedious. We decided therefore to concentrate on single-

point pdf's. Currently work on the velocity-vorticity pdf equation is

under way.

W. Kollmann spent eight months (August 85 to March 86) on sabbatical

leave at the University of Zaragoza in Spain and collaborated with C.

Dopazo on a research project related to the present contract. He devoted

his research effort to the formulation of vorticity and enstrophy dynamics

A
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in turbulent flows on the functional level where the resulting equations

are exact and linear. It became clear during this period that the limit

of infinite Reynolds-unber plays a central role in the development of

conditional closure achmes. The following time at UC Davis was devoted

to the conditional second-order closure. The results obtained in the

first year for plane flows [2].[3] showed that Lumley's 111 model for the

turbulent transport of Reynolds stresses is advantageous. Hence we

transformed the differential equations constituting the closure model to

cylindrical coordinates. In order to evaluate the properties of several

models for turbulent diffusion of stresses and dissipation rate a first

test with the unconditional versim of the second order closure was

carried out. The results are presented in Appendix II. where the

Daly-Harlow model (basically a gradient-flux model for turbulent stress

transport) and Lumley's model are compared.

Arthur Wu joined the research effort at the beginning of the second

year. He devoted his time to the development of a stochastic simulation

technique for the solution of the velocity pdf-equations for developing

(i.e. not necessarily self-similar) boundary-layer-type flows. This part

was concluded successfully.

ie
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Appendix I: Random walk simulation of scalar transport in turbulent flow.
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M. Mortazavi's M.S. Thesis explored random walk Monte-Carlo

simulation of turbulent dispersion. Both pair and single particle

disperison were studied. Pair dispersion is intimately related to two

point correlations.

Equations governing the position pdf and separation pdf of particles

dispersed in an isotropic turbulence were derived by S. Goldstein (1951)

and T. S. Lundgren (1981). S. Goldstein's equation is of the form:

LitA 4

which contains both dissipative and non-dissipative terms. This p.d.e.

was solved by Monte-Carlo technique and a sample solution with 100,000

particles appears in Figures (lA-E). The improvement in the numerical

solution is marginal for particle numbers greater than 10

Goldstein's equation [equation(l)] is valid for the idealized case

of exponentially decaying Lagrangian velocity autocorrelation function.

The generalization of the random walk to various Lagrangian velocity

.. utocorrelation functions has been discussed in the thesis. As a simple

example see Figure (2).

Monte-Carlo technique for solving equations of the form:

+ X. V 7 g- -: (V P)

with constant a, dispersion tensor K (with positive eigenvalues) and

w=

arbitrary n-dimensional coordinate system was also developed. These type

of equations occur in transport of scalars in porous media where P would

be some spatially averaged scalar value.
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Since we were concerned with the geometric characteristics of

clusters of particles as they are translated, rotated and sheared by the

turbulent field, it was natural to consider the equation which governs the

separation probability of particles given the initial separation. The

relevant equation was derived by Lundgren (1981) for isotropic

turbulence. It is of the form:

- 7.(K2DP -tF)(3

Due to the dependence of D on the phase space, Monte-Carlo simulation of

this equation is extremely tedious. However, we applied the Monte-Carlo

technique developed for solving equation (2) to equation (3). Some sample

results are shown in Figures (3A,B) and (4). Experimental data in Figure

(3A) were obtained by studying the separation of pairs of balloons

released in the atmosphere by Julian (1977). While good numerical results

were obtained for average separation (Fig. 3A) and root-mean-square of

separation (Fig. 3B). poor results were obtained for the large time

behaviour of cross correlations (Fig. 4). This is due to the approximate

nature of the simulation. (The nature of the approximation is fully

explained in the thesis.) Finally, we attempted to derive new random walk

models that were higher order approximations to equation (3). The results

of this line of investigation appears in the last chapter of the thesis.

They have not been fully tested numerically.

References:

S. Goldstein, J. Mech. Appl. Math. 4, (1951). p. 129.

T. S. Lundgren, JFM 111 (1981), p. 27.

P. Julian et al., Bull. Am. Met. Soc. 5 (1977). p. 936.
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Appendix II: Comparison of diffusion closures for round jets) (unconditioned case).
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The transport equations for the Reynolds stress components < Qj) are

given in the Cartesian frame by (constant density)

ffzvq ) -) o./-' t ZAZ - V

where the rate of dissipation is defined by

The closure of the stress transport equations follows established lines

[1]. (2]. The pressure-rate-of-strain correlation is split into "return

to isotropy" and "fast response" parts.

where

P, M E-

and

and C1 - 1.5. C2 - 0.4. The rate of dissipation is closed for high

Re-numbers using the concept of local isotropy

>.
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where and the transport equation for c is included in the

closure model [11, [4]. For the diffusive flux of stress two closure

models are considered.

(A) Daly-Harlow [5] model: This is a generalized gradient flux model

given by

where C = 0.22.
s

(B) Lumley [2) model: This model is based on the condition that the

statistics of the velocity fluctuations relax to Gaussian in the absence

of non-homogeneities and driving forces. For the Cartesian frame it is

given by

>

where

and
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and

2-

Note that the pressure fluxes <zep'j) are neglected.

For the tranformation to cylindrical coordinates the following definitions

are introduced:

Cartesian Cylindrical

Coordinate Velocity Coordinate Velocity

xI  v1 x u

x2 v2 r vr

x2  v3  e v0

and

In order to satisfy the symmetry conditions at the axis the following

combinations of stresses are used as dependent variables [6]:

rz 
7

S_0
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All variables must satisfy the zero-gradient condition at the axis and

then the conditions

are fulfilled automatically.

The stress transport equations for boundary-layer-type flows without swirl

for the variable combinations defined above are then given by:

+', 4 'c>~ # .>+ m> ,ro,

e) / ((/, Q )

-- 2,6w 4/),..> '.rj -2 z':."> - 2 " (;>

(VSV

v,

- ' 
- ,

,A

- - ---
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The closure of the diffusion terms is given for models (A) and (B) as

fol lows.

Model A (Daly-Harlow)-:

/-2 ~ d-~O' 11r r x~~Z A,~

-" ,1",/,'<">) 7j v?7

#

A/)( -7L r, Z

fr

z / ,;

i +
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where C = 0.22 (same as for the Cartesian case).

Model B (Lumley):

__= - 2r'I.d 94K "

: / , -a , r s) 7  *

i - r. - 4'z, ) ,, J)-/)j

4 (2 je r,5 ),.S *2 xvc%, cJ~zzu) A/

#WZC4/(2,c 1 )sz
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All other closure expressions follow immediately from the Cartesian case.

Both closure models (A) and (B) were applied to a round Jet. The

prediction of round jets requires one modification for the shear

stress(z,). where C1 is increased to C1 = 2.5. This is necessary

to achieve the correct spreading rate for jets into stagnant

surroundings. The jet considered was characterized by:

, . . )

The results are presented in Fig. 1 to Fig. 7 for the station x/D = 70.

The full line corresponds to case (A) and the broken line to case (B)

except in Fig. 2. where all three normal stresses are plotted for case (A)

and likewise Fig. 3 for case (B). The spreading rate

is virtually the same for both cases at this station. The main difference

between (A) and (B) is the VIV,'Z-profile which is larger in the outer

front of the flow for case (B), which is Lumley's model, than for case

(A). as can be seen from Figs. 2. 3. and 5. The shear stress in Fig. 7 is

also larger for (B) than for (A) and consequentty shows the mean velocity

in Fig. 1 a longer tail for case (B).

a *
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Conclusions

The results show that Lumley's diffusion closure (B) has for

axisymmetric flows the qualitatively the same features as for plane flows

(see [4]). Recalling the properties of the nonturbulent zone fluctuations

[3], where .~,Jt) becomes the dominant normal stress component, we

conclude, that Lumley's diffusion closure should be superior to the

gradient-flux-type model (A) for axisymmetric flows also.
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