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Annual report 1985/86

Grant: AFOSR-84-0219

Title: Conditional Second Order Closure For Turbulent Shear
Flows

Prinipal

Investigator W. Kollmann, UC Davis

Summary

The research work during the second year was concentrated on two
subjects:

(1) Probability density functions and their application to conditional
moment closures.

(2) Further development of the second order closure model based on
conditional moments.

The work in the first area was concentrated on conditional closures

treated on a higher level in terms of probability density functions.

Since conditioning involves scalar variables such as enstrophy or small

excess temperature scalar transport and stochastic techniques for the

simulation in homogeneous and non-homogeneous turbulent flows were

investigated (see Appendix I).

The work in the second area continued the effort of the first year
and concentrated on axisymmetric flows. The differential equations
constituting the closure model were transformed to cylindrical
coordinates. The properties of different closure models for the turbulent
transport of Reynolds stresses were evaluated first in the context of an

unconditional second order closure (see Appendix II).




Research Objectives
The objective of the proposed research project is the development of a

second order closure model for conditional moments and the intermittency
factor. The foundation of the closure scheme are to be investigated and
the resulting model should be applicable to a wide range of turbulent

shear flows with free boundaries.

Status of Research

The research work on this project started in July 1984 with M.
Mortazavi a Ph.D. student and S. Byggstoyl from TU Trondheim (Norway) as
Postdoctoral fellow. The results from the first year were presented in
the annual report for 1984/85. Byggstoyl has returned to Norway and A. Wu
has joined as second Ph.D. student.

M. Mortazavi continued in the second year his work on the probability
density formulation of conditional closures. He considered the turbulent
transport of scalar variables such as temperature on enstrophy (vorticity
squared), which can be used for discrimination between turbulent and
non-turbulent zones in shear flows with a free boundary. The transport of
scalar quantities in homogeneous turbulence was studied in terms of random
walk simulations [4], and the main body of results is summarized in
Appendix I. His results show that the stochastic simulation of two-point
pdf's is very tedious. We decided therefore to concentrate on single-
point pdf's. Currently work on the velocity-vorticity pdf equation is
under way.

W. Kolimann spent eight months (August 85 to March 86) on sabbatical
leave at the University of Zaragoza in Spain and collaborated with C.
Dopazo on a research project related to the present contract. He devoted

his research effort to the formulation of vorticity and enstrophy dynamics




in turbulent flows on the functional level where the resulting equations
are exact and linear. It became clear during this period that the limit
of infinite Reynolds-number plays a central role in the development of
conditional closure schemes. The following time at UC Davis was devoted
to the conditional second-order closure. The results obtained in the
first year for plane flows [2],{3] showed that Lumley's {[1] model for the
turbulent transport of Reynolds stresses 1s advantageous. Hence we
transformed the differential equations constituting the closure model to
cylindrical coordinates. In order to evaluate the properties of several
models for turbulent diffusion of stresses and dissipation rate a first
test with the unconditional version of the second order closure was
carried out. The results are presented in Appendix II, where the
Daly-Harlow model (basically a gradient-flux model for turbulent stress
transport) and Lumley's model are compared.

Arthur Wu joined the research effort at the beginning of the second
year. He devoted his time to the development of a stochastic simulation
technique for the solution of the velocity pdf-equations for developing
(i.e. not necessarily self-similar) boundary-layer-type flows. This part

was concluded successfully.

P
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Appendix I:

Random walk simulation of scalar transport in turbulent flow.




M. Mortazavi's M.S. Thesis explored random walk Monte-Carlo
simulation of turbulent dispersion. Both pair and single particle
disperison were studied. Pair dispersion is intimately related to two
point correlations.

Equations governing the position pdf and separation pdf of particles
disbersed in an isotropic turbulence were derived by S. Goldstein (1951)
and T. S. Lundgren (1981). S. Goldstein's equation is of the form:

D+ LIP =t p (1)
¢4 A X
which contains both dissipative and non-dissipative terms. This p.d.e.
was solved by Monte-Carlo technique and a sample solution with 100,000
particles appears in Figures (1A-E). The improvement in the numerical
solution is marginal for particle numbers greater than 104.

Goldstein's equation [equation(l)] is valid for the idealized case
of exponentially decaying Lagrangian velocity autocorrelation function.
The generalization of the random walk to various Lagrangian velocity
.utocorrelation functions has been discussed in the thesis. As a simple
example see Figure (2).

Monte-Carlo technique for solving equations of the form:

QAP + x. VP =k :yVP 2)
with constant o, dispersion tensor x (with positive eigenvalues) and
arbitrary n-dimensional coordinate system was also developed. These type

of equations occur in transport of scalars in porous media where P would

be some spatially averaged scalar value.
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Since we were concerned with the geometric characteristics of
clusters of particles as they are translated, rotated and sheared by the
turbulent field, it was natural to consider the equation which governs the
separation probability of particles given the initial separation. The
relevant equation was derived by Lundgremn (1981) for isotropic

turbulence. It is of the form:

27 - V. 2D.V7) 3)

'3 r

Due to the dependence of‘gg on the phase space, Monte-Carlo simulation of
this equation is extremely tedious. However, we appliec the Monte-Carlo
technique developed for solving equation (2) to equation (3). Some sample
results are shown in Figures (3A,B) and (4). Experimental data in Figure
(3A) were obtained by studying the separation of pairs of balloons
released in the atmosphere by Julian (1977). While good numerical results
were obtained for average separation (Fig. 3A) and root-mean-square of
separation (Fig. 3B), poor results were obtained for the large time
behaviour of cross correlations (Fig. 4). This is due to the approximate
nature of the simulation. (The nature of the approximation is fully
explained in the thesis.) Finally, we attempted to derive new random walk
models that were higher order approximations to equation (3). The results
of this line of investigation appears in the last chapter of the thesis.

They have not been fully tested numerically.

References:
S. Goldstein, J. Mech. Appl. Math. 4, (1951), p. 129.
T. S. Lundgren, JFM 111 (1981), p. 27.

P. Julian et al., Bull. Am. Met. Soc. § (1977), p. 936.
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Appendix II:

Comparison of diffusion

(unconditioned case).

closures

for

round

11

Jjets
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The transport equations for the Reynolds stress components (Y 2 ) are

given in the Cartesian frame by (constant density)

o Lo -

Biwy = /v Jugdy- REy -4

~4, & WPy - g drw ~ gL
* & iy )} — G0
where the rate of dissipation is defined by

(895) = lu ((3&:‘)4%,>

The closure of the stress transport equations follows established lines

(1]. [2]. The pressure-rate-of-strain correlation is split into "return
to isotropy" and "fast response" parts.

FPRE P = = G E gy — $4,4)

P)- 282, ey + Jeyd)

C,+8

= 4

v %54 5

e, -2 2

(B~ 597

where

Do 2 TRy — gyIden) , PR,
and

D= - gydy) — 4

The rate of dissipation is closed for high

md Cl = 1.5. C2 = 0.4.
Re-numbers using the concept of local isotropy

RSy
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where 5'2’-(4,() and the transport equation for ¢ is included in the
closure model [1], [4]. For the diffusive flux of stress two closure

models are considered.
(A) Daly-Harlow [S] model: This is a generalized gradient flux model

given by
THUYD T G L gy Qe

where Cs = 0.22.

(B) Lumley {2] model: This model is based on the condition that the
statistics of the velocity fluctuations relax to Gaussian in the absence
of non-homogeneities and driving forces. For the Cartesian frame it is

given by

I
D)
“)(,\\
>
h
4
N
~

by
%Y
|
S
Y
'S
3
x Y
J

where

T = BYILY F Ry RY) + eIy

)k F Ry Yoy
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Note that the pressure fluxes (2‘;&9t> are neglected.

For the tranformation to cylindrical coordinates the following definitions

are introduced:

Cartesian Cylindrical
Coordinate | Velocity Coordinate | Velocity
x, v, x u
x, v, r v,
x, v, e Vo
and
X = X, X, = X

r=7xt+ Gt x, = reas©
ot .

In order to satisfy the symmetry conditions at the axis the following

combinations of stresses are used as dependent variables [6]:
/ — — —
bk = 507 + G2 » %)
Lj?i
W= 508" - g7)

/o
Se-,—uzz/
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All variables must satisfy the zero-gradient condition at the axis and

then the conditions
Z)lz - &,ll UID' =O 7&., /""O

are fulfilled automatically.
The stress transport equations for boundary-layer-type flows without swirl

for the variable combinations defined above are then given by:

ke + b + 3k =

= F ALl Yk epk) — G prop] - ) &

o WD P YWD # @)E) (VD

= = 2oy Qsvd + L r (v)w — o) "-‘(ZJ,/O)/

+5-52- L Ar2)) = (E,.)
W

AW + WIAW + ) JN =

|

A DL ey - o)~y 4 o 4]

!
Elﬁ\

/z)/z) ,cf__’_} \//o)/JZ)’ 2/,3)))) --—a/(g ) - (c",,.))

AS + WS # @S = Fr/vicwe —cwy)/

— LJwpd + FAegy - Fapy ) tghgprdey o)

SDI’




The closure of the diffusion terms is given for models (A) and (B) as

follows.

Model A (Daly-Harlow):

~FAlrns) =

R
N
O
D
)
™
S
!
&
N\
+
N
Lo
,\
“’!x\
\'i
)
N—

16
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where CI = 0.22 (same as for the Cartesian case).

Model B (Lumley):
~ L) (i) F FQ[rG EI2 ) Y4
~ L - Fapy Ju + r25)S)/ +

t FQ[rr k(s - e egn) W)/

s
V 4 7

—;’-Q,/r&}’u")) g ;4 Q,/rcr 4’/-//-*- )(v")Q w*)

+ (24 G )riSe)S + 26 )k —F o («’),”)f),“//f

# 5t Q,,frlczg’-‘—//zf ¢ )S? — 26 (k) V.//
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-7 ‘2/:’/(2/’0“) e/ - (a 2Py 2
7/“42[”5: /‘//H Cp )W - 24 595]]

9/7{-‘—[ éf—/-//-f Cp ) D Q) — (24 49‘,}(%”)24[/

* (4

Sl

* e i1 G ) + Gy —rw )W = e S

S

7 69;"(2),”);42,h/ ~ /2c,<_éx w2

f / ~
.‘7‘/—1 ‘2/"/1/’0,”)) ? 72 W) =

+ FC g{f"/Z(U")QS —risgw) — 4¢ gffg/,l/
]
+ £/ LJ ) # ol + ey - re) SIf
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Al}l other closure expressions follow immediately from the Cartesian case.
Both closure models (A) and (B) were applied to a round jet. The
prediction of round jets requires one modification for the shear
stress (yy))., where C, is increased to C, = 2.5. This 1is necessary
to achieve the correct spreading rate for jets {into stagnant

surroundings. The jet considered was characterized by:

"y ~ "
Y =33 , G =94

D = 000266 /
__LV
<Ly T

—
(4
—
——

g T

szo. T )

The results are presented in Fig. 1 to Fig. 7 for the station x/D = 70.

The full line corresponds to case (A) and the broken line to case (B)
except in Fig. 2, where all three normal stresses are plotted for case (A)

and likewise Fig. 3 for case (B). The spreading rate

D 20 o

alx '
is virtually the same for both cases at this station. The main difference
between (A) and (B) is the (U,'z)—profile wvhich is larger in the outer
front of the flow for case (B), which is Lumley's model, than for case
(A), as can be seen from Figs. 2. 3. and S. The shear stress in Fig. 7 is
also larger for (B) than for (A) and consequently shows the mean velocity

in Fig. 1 a longer tail for case (B).

L
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Conclusjons

The results show that Lumley's diffusion closure (B) has for
axisymmetric flows the qualitatively the same features as for plane flows
(see [4]). Recalling the properties of the nonturbulent zone fluctuations
[3]. where ¢2J’2) becomes the dominant normal stress component, we
conclude, that Lumley's diffusion closure should be superior to the

gradient-flux-type model (A) for axisymmetric flows also.
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