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Annual report 1984/85

Grant: AFOSR-84-0219

Title: Conditional Second Order Closure For Turbulent Shear Flows.

Principal
Investigator: W. Kollmann, UC Davis

Summary

The research work during the first year was concentrated on two

areas: The foundation of conditional closure schemes in terms of

probability density functions (pdf) and the development of a second order

closure including intermittency factor and conditional moments. In the

theoretical part dynamics of single and multi-point pdf's for velocity and

a scalar variable, that can be used for distinction between turbulent and

nonturbulent zones, were considered and methods of closure were

investigated. The transport of apparent stress in the nonturbulent zone

of turbulent shear flows with a free boundary was included in the second

order model in terms of their dynamic equations. Conditions governing the

effect of the fluctuating interface on mean velocity and apparent stress

in both zones were established and closure models were put forward. The

resulting second order closure was compared with experiments for several

plane shear flows and good agreement was found.

Research Obiectives

The objective of the proposed research project is the development of a

second order closure model for conditional moments and the intermittency

factor. The foundation of the closure scheme are to be investigated and

the resulting model should be applicable to a wide range of turbulent

shear flows with free boundaries.



2

Status of research

The research work on this project started in July 19S4 with U

ortazavi as a Ph.D. student and S. Byggitoyl fro TU Trondheim (Norway) as

a Postdoctoral Follow.

M. Mortazavi and W. Kollmann worked during the first year on the

probability density formulation (pdf) of conditional closures. N.

Kortazavi started with a thorough survey of the existing literature on

pdf-methods. This lead to the definition of his contribution as the

single and multi-point pdf formulation of conditional closure schemes. He

then began working on the specific problem of turbulent diffusion of

prassive scalars, for which he is currently developing closure models

based on the work of Lundgren [1, (2], Ievlev [3]. Kuo and O'Brien 14),

Kollmann and Janicka (5].

S. Byggstoyl and W. Kollmann developed the second order closure [6)

further by considering the transport of apparent stress in the

nonturbulent zones of shear flows with free boundaries. It was found that

conditional mean velocities and conditional stresses undergo additional

transport and production/destruction due to the random fluctuations of the

interface separating the turbulent and nonturbulent zones. This effect is

represented by additional terms in the transport equations for these

moments and it was shown that those terms were linked by a consistency

condition and approach particular limit forms as the distance from the

turbulent shear layer increases (Corrsin- Kistler relations). These

theoretical results are contained in appendix I. The second order closure

model was then complemented with the transport equations for the apparent

stress in the nonturbulent zone. The condition that the fluctuations in
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the nonturbulent zone are irrotational leads to decay laws with distance

from the turbulent region, which, together with the consistency condition,

restrict the possible closure expressions. The numerical solution of the

resulting system of nonlinear parabolic differential equations required

simulteneous solution of the stress equations in each zone in order to

cope with nonlinear instabilities which frequently occurred in the

sequential solution method. Thus a blocksolver was introduced for the

stress equations which improved the stability characteristics

significiently and lead to a mode rate gain in computing time. The

comparison of the results with experiments in several plane shear layers

is quite satisfactory. The results are presented in detail in appendix II.

The research on conditional closure schemes lead to a new idea.

Multi-scale models based on conditional statistics using multizonal

distinction with respect to an appropriate scaler variable. This aspect

of the project is discussed in detail in appendix III which contains also

the sam preliminary results.
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List of Publications

[I S. Byggstoyl, W. Kollmann: -Stress transport in the rotational and
irrotational zones of turbulent shear flows," submitted for
publication (Appendix I).

121 S. Byggstoyl, W. Kollmann, "A closure model for conditional stress
equations and its application to turbulent shear flows," submitted for
publication. (Appenidx II).
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Professional Personnel

1. S. Byggstoyl, Post Doctoral Fellow from Trondheim, Norway.
Ph.D.--thesis: "Mathematical Modelling of Turbulent Structure Effects
in Reacting and Wonreacting Flows," August 1984, NTH--Trandheim.

2. H. Mortazavi, Ph.D. student, graduated from the Department of Chemical
Engineering, UC Davis, 1984.

3. W. Kollmann, Professor, Department of Mechanical Engineering, UC
Davis, Principul Investigator.



Avyndix I: Stress transport in the rotational and irrotational

zones of turbulent shear flows

S. Byggstoyl, W. Kollmann
Department of Mechanical Engineering

University of California
Davis, California 95616

AlP Classification: 47.25.Fj, 47.25.Jn

Abstract: The transport equations for intermittency factor and

conditioned moments are analyzed for turbulent shear flows with free

boundaries. Conditions are established for molecular diffusion to

dominate the progression of the turbulent zone. The terms related

to the dynamics of the interface for mean velocity and apparent

stresses in turbulent and nonturbulent zones are shown to be linked

by a local relation and the limit of large distance from the

turbulent region for the nonturbulent zone stress equation is given.
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Stress transport in the rotational and irrotational

zones of turbulent shear flows

S. Byggstoyl. W. Kollmann
Department of Mechanical Engineering

University of California
Davis, California 95616

1. Introduction

Turbulent shear flows with free boundaries such as jets and mixing

layers show rotational and irrotational fluctuations of velocity near the

free boundary. This was established by Corrsin and Kistler [1], [2]

expermentally for several boundary-layer-type flows. Since then a large

number of experimental results became available (see references given in

13]). The theoretical investigation of intermittently turbulent flows

started with Corrsin and Kistler 12], Phillips [4], [7] Stewart (51,

Corrsin and Phillips [6], dealing in particular with interface properties

and irrotational fluctuations. Lumley 18], (9] introduced the statistics

of multi-valued random functions from the treatmpnt of interface

fluctuations and developed closure ideas. The first closure model based

on first and second order moments was published by Libby [10], (11].

Dopazo [12] and Dopazo and O'Brien [13] established the theoretical

representation of interface related processes in conditioned moment

equations. Pope [14] showed, that conditioning can be easily applied to

pdf-equations.

The present paper extends the analysis of ref. [3] to stress transport

in the nonturbulent zone of shear flows with free boundaries. The

condition of irrotationality in terms of the Corrsin-Kistler equation is
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exploited to establish limit forms for production and diffusion of stress

as the intermittency factor approaches zero. The results obtained will be

used in a companion paper to construct a second order closure model based

on [15),[16],[171, which includes the transport equations for the apparent

stresses in the nonturbulent zone.

2. Conditional statistics and intermittency factor.

The statistical description of turbulent flows can be refined by

conditioning of expectations to capture particular properties of the flow

in an explicit fashion [31,112]. For this purpose a non-negative scalar

variable is selected in such a way, that a local condition

being satisfied at a point (X,) of the flow field corresponds to

where h is the threshold value, and

corresponds to the condition being violated. In the present case the

condition is that the flow is turbulent at the point considered and thus

(3]

is taken as discriminating variable. It should be noted that many other

conditions can be considered (such as hot-cold, burnt-unburnt,

colored-clear) which would lead to different variables e':" )r
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Conditioning of flow variables can be done with the aid of the indicator

function Zr)

10 cAe,PiV1Se

The locations X where

SSii A - - 0 - (I)

form a surface separating turbulent from non-turbulent zones. This

surface propagates with velocity Z1 and progresses relative to the fluid

in its normal direction r7 (positive into turbulent zone) with

speed V ['zJ

Then follows [3]

and

,$I)
=

where

- VIr5 ~



Conditional moments can now be defined for the turbulent zone

and the non-turbulent zone

(/'--- X V) -<

where the intermittancy factor is given by

Points on the interface move with velocity t) thus

P1,)

which can be recast in terms of fluid velocity a and the relative

progression velocity of the interface.

di -. V Qr/,)

Averaging leads to the exact equation for the intermittency factor 131

Introducing the unconditional mean as convection velocity yields

This form of the transport equation for the intermittency factor shows.

that the turbulent diffusion of is due to the relative movement of
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turbulent and non-turbulent zones if a point moving with the unconditional

mean velocity is followed. The intermittency source Sr

is the rate at which the volume of the zone grows per unit volume

of fluid. A detailed analysis [3) shows that Se can be represented in

several forms. The dependence of this growth rate S on the scalar

variable discriminating between the zones can be shown explicitly (3].

If g satisfies

then follows for S

where- /p! denotes the substantial derivative. The transport equation

for 4 yields then the representation

s - * +(><,.-)

This result shows that two mechanisms for growth are present namely

diffusion and sources. The influence of the source 0 on S depends

crucially on the threshold level a and the limit of L' as

approaches zero. If

with an exponent O(K() / , then is the effect of WrsJJ

on ,5 negligible if is sufficiently small. For this case can
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be concluded, that discrimination with a conserved scalar yields the same

result as discrimination with a non-conserved scalar. This does not hold,

if the threshold ht is raised to a level with large rates of production

or destruction of 0' An estimate for the threshold level o , such

that the diffusive part of S dominates, can be obtained, if the source
;r

term Q can be represented as power in g6

for smll The source term S is

where S/ and can be written in terms of conditional expectations

h) ('16)

and

if 0) is a power of we obtain

S,= AkDPtk)

The diffusive part S can be estimated by

The length scale / can be related to the macro-scale 4 of the flow, if

it is required, that the dominant production and destruction terms in
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the equation for scalar dissipation have the same order of magnitude.

Then follows

10(1A) .1 7) V4
and the relative order of magnitude of S to S isS s

0( X) , 41-2 V I8)

where L and U are the macro-scales for length and velocity

and =UL/1V. If this ratio is required to be less than unity, we get

Thus the following conclusions are reached. If 0'/g) approaches zero

faster than 5 , the diffusive part of 9 is always dominant for

sufficiently large Re-number. If a is less than unity however, we find

> Vho,-)

and the threshold level /Z for i6 is restricted by the Re-number from

below. If h violates this inequality the source term will

dominate the development of the intermittency factor.

The structure of the diffusive contribution of SO can be illustrated

for the case of Gaussian statistics of the scalar . This example can

be viewed as 0 being lognormal or I 0 being an unbounded

discriminator. The mean (g5 and the variance ,"¢'Z are taken as

constants and the spatial correlation coefficient

rI

f'(i~~~) 44,*.1
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is developed in a Taylor series. Writing for the source term

k r& e -/Z)= e. 1 ( & - v

4 (Po-4 - k)) - 2 4/0~v -A-)/

and introducing the assumption that Oe!K)and 9 25IX, are

Gaussian-distributed, we get after some algebra

This result has several interesting properties. First it shows that the

intermittency source depends on the probability for ) at the

point X and therefore on the threshold value A for the discriminating

scalar . Furthermore it becomes evident from (19), that for the limit

of infinite Re/Sc-numbers the intermittency source will approach a nonzero

and bounded constant, because

(5-) r 2,,

becomes independent of Re/Sc-numbers by virtue of the same arguments that

apply to viscous dissipation. Hence can (19) be recast as follows for the

example
k, /,,,¢) -Az)

K PK40(At) e 20

showing explicitly the dependence on the scalar time scale. The influence

on the velocity fluctuations enters via the pdf R of the scalar
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which is transported and diffused by the velocity field. Finally, it

should be noted that the intermittency source is not positive definite,

but can become negative for (ev) <

3. Mean velocities in turbulent and non-turbulent zones.

The balance of momentum can be averaged conditionally thus leading to

the equations for zone-averaged mean velocities. The turbulent zone mean

ju
velocity V satisfies

and for the non-turbulent zone follows

Both equations contain a term representing the effect of the interface

movement on the average momentum in the two zones. These interface terms

can be given in the form

and

-,(,.,
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Where / - W for the turbulent zone quantities and / 0 for the

non-turbulent zone. The interface terms SOS 0 and Fr 0 are not

independent but linked due to

Combination of (21) with (22) sust reproduce the equation for the

unconditioned mean velocity. Thus follows 1161 after same manipulations

and

9quations (25) and (26) must be satisfied for closure expressions

relating F' and to other quantities and are called

consistency conditions.

So far no use has been made of the fact that the non-turbulent zone is

irrotational. Following Corrsin and Kistler (2] it is required

l~- c/AT) A" -IO

or

-r k )) O- 1 J9() (17)

Where is the threshold value for the turbulent-nonturbulent

discrimination. This relation can be applied to establish the properties

of transport equations for moments in the non-turbulent zone as the outer

*~~~ *. Nb ',, 4 , % % % %, %
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edge of the flow is approached (corresponding to r approaching zero).

Averaging (27) leads to the Corrsin-Kistler equation

('-r }4i a - Ig -

of first order. The interface term in (28) can readily be shown to

satisfy the following conditions:

and

The first limit follows from the fact that in the non-turbulent flow field

the mean vorticity approaches zero as the distance from the turbulent zone

grows. The second limit follows directly from (28). Therefore is a

representation of the interface term in (28) in the form

possible with an unknown bounded function These properties of the

Corrsin-Kistler equation will be used in the discussion of the dynamics of

the apparent stress tensors in turbulent and non-turbulent zones.

Corrsin-Kistler equations of higher order can be obtained from (27) by

multiplication with fluctuating components and averaging. Thus follows

e3e>

where k 0  denotes the kinetic energy in the

-,, ,"," .",':','7.",--',,". " " - " - ........ . "" " . .-" -~ -.- -. -.. ". - v - -"- - . . . . . -"-
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non-turbulent zone. For the limit , C the relation [21,[5]

ia obtained, which shows that the effect of the apparent stress on the

mean velocity in the non-turbulent zone becomes analogous to the

pressure-gradient.

4. Apparent stresses in turbulent and non-turbulent zones.

The momentum balances and mass conservation can be multiplied with

appropriate fluctuations and the indicator function and averaged to

establish the transport equations for the zonal stress tensors. Thus the

equation for the stress tensor in the turbulent zone

is obtained in the form

The tensor of apparent stresses in the non-turbulent zone

/(-3

'-.o

"-,'¢- , "N: , , .. 7 .N ",'- "-,,-,; ".-.'y.>. " -, . - ' . - ' , - ' ' ' -.. ",-'.'/ 'J,' '..-' -'.'.-. 1-3 ;:
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is governed by

, v0 * 0= v. ;, - ~ ° -,

The substantial derivative in (32) and (34) is defined by

where the superscript applies to the velocity.

Both stress equations (32) and (34) contain dissipation rates

and

Their importance depends on the discriminating scalar. For the present

case of distinction between turbulent and non-turbulent zones becomes the

dissipation in the non-turbulent zone negligible and the

unconditioned rate of dissipation is related to the conditioned rates by

* "' * * I U-~Z-
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If the discriminating scalar is chosen to afford distinction between other

properties of the flow such as hot and cold, then both zones can be

turbulent and both dissipation rates and are important.

The turbulent fluxes in (32) and (34 are defined by

0 /3~ 37)

and

@0

The existence of a fluctuating interface separating turbulent and

non-turbulent zones leads to the transport of apparent stress through the

interface, transport due to interface movement, production of apparent

stress due to interface fluctuations. These effects are represented by

the term group j defined by

4t

and

- 4/ , ()

*The interf ace terms S and S0 are not independent. The relation

between conditioned and unconditioned stress tensors

<'v' yt# ' ' /--;C
el Ap/)

(4d
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leads to a consistency condition for the Introducing the

abbreviations

and

we obtain after some manipulations using (32), (34), (41) the following

relation

"4 - I

1*5

(142)

This rather complicated relation can be somewhat simplified if the limit

case of high Re-numbers is considered. Then follows that the viscous

terms in (42) can be neglected, because they scale with the mean fields.

%. %
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The transport of apparent stress in the zone, where the discriminating

scalar 5 is below the threshold level, merits discussion in particular

if distinction between turbulent and non-turbulent zones is considered.

We consider the terms on the right hand side of (34) for this case in

turn. The production of stress due to the interaction of stresses and

mean deformation rates

can be analyzed using the Corrsin-Kistler relation (28). Taking (29) into

account we find

Hence we find for the limit -, 0

On the other hand is for the limit - / the original form

of relevant because the non-turbulent patches become increasingly

rare in this limit and will follow the motion of the surrounding turbulent

fluid. It is instructive to write out the production terms for both

limits in case of a plane parabolic flow (i.e., plane jet).

p,, --2Vov , / = o

2--2
__ 0

22 2

. .% _-.V
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Note that for parabolic flows derivatives with respect to X , can be

neglected (boundary layer assumption). It becomes apparent from the table

above, that energy is fed into the stress component V--CZ in the

limit w- , Whereas for -' I Vz receives the energy as

in the turbulent zone. The limit I --o 0 is consistent with the

relation among the normal stresses (valid for 01-A 0

0- - -. ~ 3
2 v)oz 7- V 2

in the nonturbulent zone which was obtained by Phillip [4] and Stewart [5].

The diffusive flux S9 contains the triple correlations of

velocity, which can be analyzed by means of the Corrsin-Kistler equation

for triple moments

here .'// #+ 4 ) denotes the rate of strain.

o -0&-

For the limit JA - 0 the relation

is obtained. Hence is the Aivergence of the flux of apparent stress for

this limit composed of gradients of the flux of kinetic energy and the

correlation of kinetic energy with the fluctuating strain rate. More

%-NCx
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distance from the interface increases. Phillips 171 showed that for

large y

Where Y is the normal distance from the interface. Using the Bernoulli

equation, which is valid in the non-turbulent zone only, it follows that

These estimates can be used to assess the relative importance of several

terms in the moment equations for the non-turbulent zone for large

distance f rom the turbulent zone or as . It Is worth noting

that irrotational fluctuations are Induced by boundaries. Thus is

statistical homogeneity not possible and decay estimates have to be used

instead.

The interface terms in (34) show that the growth of the turbulent zone

leads to an increase of non-turbulent zone stresses by

Which may be cancelled by the complex product ion/destruct ion group of

terms S0  ,as the consistency relation (42) indicates, which contains

the intermittency and conditioned momentum sources.

5. Conclusions.

The transport equations for intermittency factor and conditioned

moments were set up and their properties were analyzed. The conclusions

0 d -
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can be summarized as follows.

(1) Intermittency factor: The intermittency source was shown to be

composed of two different terms representing growth due to molecular

diffusion and production of the scalar variable used for

discrimination between the zones. The diffusive term is the dominant

mechanism for growth if the source term approaches zero faster than

the first power of the scalar. Further was shown that the

intermittency source is not always positive.

(2) Conditioned mean velocity: The equations for turbulent and

non-turbulent zone mean velocity contain source terms describing

momentum transport through the interface and production/destruction of

mean momentum due to interface movement. These source terms are not

independent but linked by a local consistency relation, which shows

that the difference between these sources is proportional to

intermittency source and the difference of conditioned mean

velocities. The Corrsin-Kistler equation introduces the condition of

irrotationality in the non-turbulent zone and proves that for the

limit x --t 0 the effect of apparent stress on the non-turbulent

mean velocity becomes analogous to the mean pressure-gradient.

(3) Conditioned stress tensors: The transport equations for the apparent

stress tensors in turbulent and non-turbulent zones contain source

terms describing the production/destruction of stress due to the

interface fluctuations. These source terms are not independent but

linked by a local consistency relation as in case of the mean

velocities. The analysis of the stress transport equation in the

e' -e -4" " .
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non-turbulent zone shows that production in the limit ---v 0 for

boundary-layer-type conditions shifts from Z10 to , thus

confirming the dominance of component for this limit. The

Corrsin-Kistler relation for triple correlations shows, that under the

see conditions becomes diffusion of S dominant, if the

correlation of kinetic energy and strain rate is weak.
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Appendix II: A closure model for conditioned stress equations

and its application to turbulent shear flows

S. Bysgtoyl, W. Kollmann
Department of Mechanical Engineering

University of California
Davis, California 95616

AIP Classification: 47.25.Fj, 47.25.Jn

Abstract: A second order closure model based on intermittency factor and

conditioned moments is developed. The transport equations for the

nonturbulent zone stresses are included in the model. The resulting model

is then compared with measurements in several shear flows and satisfactory

agreement between calculation and experiment is obtained.
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A closure model for conditioned stress equations

and its application to turbulent shear flows
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(1) Introduction

Turbulent shear flows with free boundaries such as jets, wakes, mixing

layers show an intermittent character in the fluctuations of velocity

changing from rotational to irrotational and vice versa [11. The

prediction of this type of shear flows can be based on unconditional

moments [23,13] on conditional moments [41,15],16]. The latter case is

considered here, which allows calculation of the intermittency factor and

statistical moments characterizing the fluctuations in the individual

zones. The closure model developed in this paper is based on the work

presented in [71,[8]19]. The new part is the inclusion of transport

equations for the apparent stresses in the nonturbulent zone. The

properties of turbulent and nonturbulent zone moments discussed in [9] are

used in the development of closure expressions. The resulting model is

then compared with measurements in several shear flows and satisfactory

agreement between calculation and experiment is obtained.

(2) Intermittency factor

The equation for the intermittency factor [5],[8]
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contains the rate of growth ,&, of the turbulent zone at the expense of

the nonturbulent zone. In ref. [81,[91 several representations of S

r

were discussed. iote that V denotes the relative progression

velocity of the interface and cS) is defined by

with S -0 being the implicit equation for the interface (see

153,18]). Since no representation of S in terms of first and second

order moments only is available, a closure model is required in the

context of second order closures. Several closures have been suggested

141,[7],[1] for the source W We follow here the model suggested in

ref. (7].

6'C

- __ (4)

with .= . The first part in (4)

represents growth of e due to production of apparent stress in the

turbulent zone. The second term on the right hand side of 14) reflects

the transport of mass and momentum due to spatial inhomogeneity thus

increasing the intermittency factor. The last term in (4) destructive,

which leads to a decrease of i in the absence of any production. Hobbs

[11] observed in a wake flow without significant mean velocity gradients

-.. * * ... . .
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that in fact decreases with downstream distance. Subsequent

distortion of the wake flow lead to production of turbulence and immediate

increase of intermittency factor [11]. Thus is S. expected to depend on

the mean strain rate as suggested in (4).

The difference of the mean velocities in the turbulent ane

nonturbulent zones appearing in the intermittency equation (1) is in fact

the turbulent diffusion of . This difference for the cross-flow

component (= 2) is for parabolic flows estimated by

v--C

because of numerical inaccuracy in the calculation of the cross-flow

component of in boundary-layer-type flows. For elliptic

flows are all momentum balances included in the system of equations and

(5) would be avoided.

(3) Mean velocity in turbulent and nonturbulent zones

The exact equation for the turbulent zone mean velocity V)

and for the nonturbulent zone

ar

AA
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contain interface terms ; oand S They are linked by the

consistency condition [7],[8]

+ (2)

for high Re-number are the viscous terms in (8) negligible and we obtain

_^W -'" = ) e
Hence only one of the momentum sources or S requires closure.

It is helpful for the construction of a closure to consider the

nonturbulent zone equation (7). The apparent stress term in (7) can be

recast as follows

1-7

The first part has the proper divergence form of a diffusive term whereas

the second part is a source term. Comparing (10) with the corresponding

expression in the turbulent zone (eq. (16)

a similar source term but with the opposite sign appears. Considering a

shear flow such as a jet, it becomes clear that for the turbulent zone is

the second part is a genuine source, whereas for the nonturbulent zone it

is a sink, which leads to wave-like variations of if included in

the equation (7). Since there is no experimental or theoretical evidence

-t .*. * - , - .• - .- - . - - J * .' *.' .*...... .. *.- - ,- S.. * -.
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for such solutions, this sink in (7) must be balanced by a corresponding

term in S . Furthermore is momentum transfer between turbulent and

nonturbulent zones only possible in the mean if V and are not

equal. Hence the following closure model for _o is suggested

/a - C()*,)v

with 4 = 1.0 Note that So vanishes, if for a region

with finite volume, which implies that approaches zero also.

The consistency condition (9) yields then

Vote that for the longitudinal component (&') the pressure term in (12)

becomes negligible. The apparent stresses in both zones are included in

the system of variables and therefore conclude (11) and (12) the closure

of the mean velocity equation.

(4) Stresses in turbulent and nonturbulent zones

The exact transport equations for the apparent stresses in turbulent

and nonturbulent zones follow from mass and momentum balances [9]. They

can be given for high Re-numbers in the form

(/3)

r... 'M . .

4'
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and

-(%-.

The diffusive fluxes are defined by [9]

and

0

a, -u .)e=; _ ) o - V 7  )

The interface terms and are defined in ref. (9] and

satisfy the consistency relation (see Eq. (42) in [9])

4i (07)
rZ

where 6 V. - .

This relation (17) is valid for high Re-numbers and #0-F - "'O

It is reasonable (at least for thin shear layers) to assume that the mean

pressures in the two zones are equal because f - for
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(outer edge) and f P for /(center of shear layer) andf

is constant across a thin shear layers in first order approximation.

Hence is /=A=P a good approximation to first order.

The closure of the stress equations is concerned with two groups of

terms: The classical terms, which are counterparts of terms in the

unconditional stress equations, and the interface terms. For the closure

of the classical term group existing models [31,[121,[7] are carried over

from the unconditional to the conditional correlations. This is

certainly justified, because closure assumptions based on quasi-Gaussian

behaviour of higher moments or relaxation to Gaussianity in the absence of

strain rates and boundaries (such as Lumley's diffusion closure (121) hold

with better accuracy for conditioned moments than for unconditioned

moments. This follows from the observation, that conditioning removes the

spike in the pdf corresponding to the other (nonturbulent) zone thus

bringing in particular flatness factors closer to the Gaussian values.

This is backed up by experimental results [13],[14]. The interface terms

on the other hand require new considerations.

4.1. Closure of the turbulent-zone-stress equations

The closure of the classical terms requires only brief discussion,

because established closure models will be modified for conditioned

correlations. The dissipation of stress is taken in high Re-number form

13]

where the dissipation rate 2 is given by

%U **~.*U ~ ~ * p ~
'~~~~~ % % . - .
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For the diffusive flux Lumley's model 112] for the triple

correlations is applied

where

and

The constant Cl  was set to 7 S _ 
. The pressure correlations

in i are neglected. This model is based on the notion that

turbulence relaxes to Gaussian statistics for the large scales if

inhomogeneities are removed. It is therefore better suited for

conditioned than for UrLconditioned moments. The pressure-rate of

strain correlation in (13) are modelled according to Rotta [15] ("return

to isotropy") and Hanjalic and Launder [16]

p.

where

.

S. and

.,. : . . . , . " ' . . . . . . . .. .. . . . . . . . . . .

, , ",",-," " ",. , ,',, ,.., .,';' .,,'" .o'-.,.',-''',."-,_ .,".. .",. --, ',.','.',.. " ."".(,-,k"),
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c2

The closure of the interface terms is based on the following

considerations. The turbulent zone propagates into the nonturbulent zone

by viscous transport of vorticity into irrotational parcels of fluid.

This propagation is only possible if the net effect on the turbulent zone

stress is gain at the expense of nonturbulent zone fluctuations and if the

fluctuations in the turbulent zone are weaker than in the nonturbulent

zone. Thus the model

emerges with -O. 7 Thus the closure of the turbulent zone stress
equations is concluded. The constants for the classical terms ) c)

are taken from the respective references and the constant for the

interface group was established by computer optimization.

4.2. Closure of the nonturbulent-zone-stress equations

The closure for diffusive flux and pressure correlations for the

nonturbulent zone cannot be simply carried over from the unconditional

case, because the nonturbulent zone fluctuations behave differently (they

are irrotational) in the limit r -> 0 from their turbulent zone

counterparts. Since no homogeneous distribution exists in the

nonturbulent zone, the decay properties of correlations in this zone with

distance from the turbulent zone as presented in (9] are used to estimate

the relative order of magnitude of the terms in (14). Analysis of the

stress equations shows that for o - diffusion and pressure strain
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rate correlation become the leading terms. Furthermore is for this limit

the normal stress component Val dominant. In order to take the decay

of the fluctuations with distance from the turbulent zone into account the

following closure expressions is used with a time scale -for the

nonturbulent zone

_a __/
A,#r 2

and with the decay law [171,[9]

where / denotes the normal distance from the center of the turbulent

zone, we obtain for

where 7- denotes the turbulent zone scale, the decay law

Let furthermore be approximated by

for large / ,then follows

for - - AC - This consideration indicates the method of closure for the

nonturbulent zone. The classical terms will expressed in terms of the

unconditional closure with the modified time scale rJ" given by (26).

.%

%~~~~. .. -. e-,--, L



The dissipation in (14) is negligible, because viscosity has no effect on

momientum transport in irrotational flow. The closure for the diffusive

flux is given by [12]

0(22
49 _ -

where

and

and C has the same value as for the turbulent zone. The

pressure-strain rate correlations are again modelled as in the

unconditioned case with the modified time scale k ,

_3 " ('-t)) Y4
-y ~~ ~ ~ o //~( -4-p W4 J~7 ~) !2~

The definitions of P P 2 are as in (23) and (24) except

nonturbulent zone quantities and averages replace the turbulenL zone

symbols. The second part in (30) representing the "rapid" terms is

multiplied with the intermittency factor to modify the time scale

determined by the strain rate. The first part in (30) has an additional

variation with 04- in terms of the factor (Z-,t) in order to

compensate for the decrease with d of the second ("rapid") part. Both
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constants and have the same values as for the turbulent zone

counterparts (22)-(24).

The closure of the interface group is guided by the properties

of the solution induced by the second part of

and

Both lead to wavy solutions and thus the model

is suggested. It is a preliminary form, which gives well-behaved

solutions, but different forms using the consistency condition (17) are

currently being investigated. Thus the closure of the nonturbulent zone

stress equations is concluded without new constants.

4.3. Dissipation rate

The dissipation rate £ in the turbulent zone satisfies a complex

equation [161 with all sink/source terms and turbulent diffusion in

non-closed form. The closed form follows Hanjalic and Launder [16] except

for the turbulent diffusion which is taken from Lumley [121 and the

interface group

11(32)

"e'
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with 0 0. 7 determined by computer optimization. Thus the following

equation is obtained:

19 G

£2, Lg ' .' (") ( ) 13

where (12]

The constants are , ./., 9 --2.O, 0 -OS.

(5) Numerical Solution

The system of partial differential equations constituting the

conditional closure model reduce to parabolic form for boundary-layer-type

flows. Thus they can be solved in marching type integration. The present

method is the standard finite-difference procedure developed by Patankar

and Spalding [18]. The new aspect of the solution method is the

introduction of a block-solver [19] for the turbulent and nonturbulent

zone stress tensors. The reason for this is the strong coupling of the

stresses as a consequence of the diffusion models (19) and (27) which

makes sequential solution likely to be unstable. Thus are the stress

equations (13) and (14) respectively solved simultaneously forming two

block-tri-diagonal systems of equations with blocksize AJ' w / in both

cases. All other equations are solved sequentially in the marching

integration step.

'.._II - 0 .
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The discretization of the differential equation was performed using

staggered grids. All first order moments (intermittency factor and mean

velocities) were defined at node points, whereas all second order moments

were defined at the midpoints. This leads to nearly second order accurate

representation of production terms in the stress equations and the

diffusive term in the mean velocity equations. Furthermore is the

stability of the finite-difference scheme improved [7].

The initial conditions for conditional closure models can be set in

several ways. The turbulent zone variables and the intermittency factor

can be prescribed corresponding to fully turbulent flow or the

intermittency factor is started with a small value and the nonturbulent

variables with laminar profiles representing a slightly disturbed laminar

flow. In the present case the former method was chosen.

The boundary conditions for the apparent stress tensor in the

nonturbulent zone require some consideration. Since the nonturbulent zone

stresses cannot approach a homogeneous distribution the decay laws

discussed in ref. [9] are used to establish V,*V4  at the free

boundary. This is done in terms of a gradient condition

C A -YO t/ ~ Y

where y is the normal distance from the center of the turbulent region

(symmetry axis on location of maximal shear stress in turbulent zone).

The location of the origin Y for X is not known exactly, but for large

values of Y this relation becomes reasonably accurate.

All calculations were performed with A/= 5 0 grid points over the

cross-section and the number of steps in x-direction ranged from 800 to

2000 depending on the length of the computational domain.
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(6) Applications

The conditional second order closure developed above was applied to

the calculation of several plane shear layers. All calculations were

carried out with the same set of constants given in chapters 2. to 4.

6.1. Plane iet

The results for the plane jet are shown in fig. 1. to fig. 10. in the

nearly self-similar region. The experiments of Gutmark and Wygnanski [20]

and Sunyach [211 are used for comparison with the calculations. The

intermittency factor profile in fig. 1 lies between the two sets of

measurements (open symbols: [20], full symbols [211), but is somewhat

steeper than the experimental profile. The mean velocity for the

turbulent zone, the nonturbulent zone and unconditioned are compared with

the experiment [201 in fig. 2. The nonturbulent zone mean velocity 0 in

fig. 2 and in fig. 3 is higher than the turbulent zone mean at the axis,

because the nonturbulent zone shear stress (fig. 4) is always less than

its turbulent zone counterpart thus leading to slower decay of U The

calculated shear stress (conditioned and unconditioned) in fig. 4 is lower

than the experiment [20] in the outer part of the flow, but agrees

reasonably well with the measurements in the main part of the flow field.

Consequently is the spreading rate // jW0 /OZ close to the

experimental value Oty///'/X 0 // . The normal stress components are

shown in fig. 5 to fig. 10. Their relative magnitude can be evaluated

from fig. 5 for the unconditioned case, from fig. 6 for the nonturbulent

zone and from fig. 7 for the turbulent zone. It is clear
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from fig. 6 that U-0 becomes dominant as y increases, which is in2

accordance with the relation [9)

as y -- 0 This property is due to Lumley's diffusion closure (27) and

the interface terms (31). If the simpler gradient-flux model of Daly and

Harlow [22) is applied this relation cannot be satisfied as the outer edge

is approached. The comparison of the normal stress profiles with the

available experimental data 120] shows reasonable agreement fig. 8 -

fig. 10. In particular are the shapes of V and Va well

predicted.

6.2. Plane wake

The downstream region (X'/D- 200) for the plane wake of a cylinder is

compared with the measurements of Fabris [23] and Thomas [24] in fig. 11 -

20. The profiles for the intermittency factor in fig. 11 is about ten

percent less wide than in the experiments (open symbols: [23], full

symbols [24]), but the slope agrees well with the results from [23]. The

mean velocities in fig. 12 are in close agreement with the experiments

[23]. The turbulent zone mean velocity U shows a slight bulge near

the outer edge, which is due to the boundary condition set to be equal to

the free stream. The nonturbulent zone mean U in fig. 13 does not

allow complete comparison because only limited data are available. The

comparison of shear stresses fig. 14 and normal stresses fig. 15 to

fig. 20 shows much the same properties as for the jet. It is noteworthy

that and in fig. 19 are close to the measurements as for

the jet.

%1 %
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6.3. Plane sixina layer

The plane nixing layer is a f low, which is rather dif ficult to

predict, because of Its sensitivity towards the flow conditions and the

appearance of coherent structures [25], which is reflected in a wide range

of observed spreading rates and significant variation in the experimental

data [26). The calculations for the conditions given in [27] are compared

with the experiments in f ig. 21 to f ig. 80. The intermittency factor in

f iS. 21 uhows a broader prof ile than the experiments of Wygnanski and

Fiedler [271 but agrees on the high-speed side with [281 and is lower than

the data of [29] on the low-speed side. The agreement of the mean

velocities in fig. 22 with the experiments [27] is reasonable. The

turbulent zone profile (full circles) from [271 is not approaching the

free stream on the low speed side. It is not clear whether this is due to

a different normalization of the experimental data on a genuine tendency.

The comparison of calculated mean velocity for the nonturbulent zone with

experiments [27] in fig. 23 is quite good and extends over the complete

profile. The comparison of the stress components in fig. 24-30 with the

experiments [271 is better on the low-speed side than on the high speed

side. This can be traced back to the dissipation rate equation which does

not produce the correct length scale profile. This could be improved by

using a length scale which is constant over the cross-section.

(7) Conclusions

The closure of the first and second order moment equations for

conditioned variables was developed and the resulting system of model

equations was applied to the calculation of several shear flows. The

following conclusions can be drawn from the properties of the model and
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the comparison with available experimental data.

(1) The intermittency factor r plays a central role in

conditional closures, because all unconditioned moments are combinations

of conditional moments and the intermittency factor. The source term of

the equation for the intermittency factor requires closure, which is

constructed as difference of production due to creation of apparent stress

in the turbulent zone and the inhomogeneity of the t-distribution and

destruction due to viscous effects. The calculated j-profile appears in

all test cases in reasonable agreement with the measurements.

(2) The conditioned moment equations contain interface terms, that

represent the transport of mass and momentum due to the movement of the

interface. If it is assumed that the conditioned mean pressure in both

zones is equal, then follows a local and closed consistency condition

eliminating the need for closure of the interface terms in one of the

zones. This is used to advantage for the mean velocity equations, but for

the stress equation only a simplified version is applied. The results

show that the nonturbulent zone mean velocity is in good agreement with

the limited experimental data available. The comparison of the

nonturbulent zone stresses is too incomplete to draw definite conclusions

however.

(3) The notion of conditioning allows further application to reacting

flows (in particular premixed flames [30]) and generalization to nonlocal

conditions to deal with structural information not accessible to

single-point theories.

Acknowledgement: This research was supported by AFOSR-84-0219.



jwt. --rr- - 6j rir 7 ur r: rW - r r ' /-W N -v rsrJ r] 'WF' ~ J Ir WV'TVWWW - W. na-T-- "-I wvr.--

19

References

[1] Corrsin S., Kistler A.L., NACA TN-3133 (1954)

(2] Reynolds W.C., Ann. Rev. Fluid Kech. 8 (1976), pp. 183

(3] Launder B.E., Reece G.J., Rodi W., JFK 68 (1975), pp. 537

141 Libby P.A., JFN 68 (1975), pp. 273

[51 Dopazo C., JFK 81 (1977), pp. 433

(61 Byggstoyl S., Kollmann W., Int. J. Heat Mass Transfer 24 (1981),

pp. 1811

[7] Janicka J., Kollmann W., Fourth Symp. Turb. Shear Flows, Karlsruhe

(1983), pp. 14.13

[8] Kollmann W., in Frontiers in Fluid Mechanics (S.H. Davis,

J.L. Lumley ed.'s), Springer V. (1985), pp.88

[9] Byggstoyl S., Kollmann W., to be published.

[10] Pope S.B., AIAA J. 22 (1984), pp. 896

[11] Mobbs F.R., JFN 33 (1968), pp. 227

[12] Lumley J.L., Adv. Appl. Mech. 18 (1978), pp. 123

[131 Hedley T.B., Keffer J.F., JFK 64 (1974), pp. 645

[141 Antonia R.A., Prabhu A., Stephenson S.E., JFM 72 (1975), pp. 455

1151 Rotta J.C., Z. Physik 129 (1951), pp. 547

[16] Hanjalic K., Launder B.E., JFM 52 (1972), pp. 609

[17] Phillips O.M., Proc. Cambr. Phil. Soc. 51 (1955), pp. 220

(18] Patankar S.V., Spalding D.B., Heat and Mass Transfer in Boundary

Layers, Intertext, London (1970)

[19] Hindmarsh A.C., LLL-Report UCID-30150 (1976)

[201 Gutmark E., Wygnanski I., JFK 73 (1976), pp. 465



20

[21] Sunyach M., Mathieu J., Int. J. Heat Mass Transfer 12 (1969),

pp. 1679

[22] Daly C.J. Harlow F.H., Phys. Fluids 13 (1970), pp. 263

(23] Fabris G., JFM 84 (1978), pp. 673

124] Thomas R.N., JFM 57 (1973), pp. 549

[25] Brown G.L., Roshko A., JFK 64 (1974), pp. 775

[26] Rodi W., in Studies in Convenction Vol. 1 (B.E. Launder ed.),

Academic Press (1975), pp. 79

127] Wygnanski I., Fiedler H.E., JFM 41 (1970), pp. 327

[28] Beguier C., Fulachier L., Keffer F.J., JFK 89 (1978), pp. 561

[29] Rajagopalan S., Antonia R.A., AIAA J. 18 (1980), pp. 1052

[30] Bray K.N.C., Libby P.A., asuya G., Moss J.B., Comb. Sci. Technol.

25 (1981), pp. 127

I



21

Fizure captions

Fig. 1 Intermittency factor for the plane jet.

, Symbols: 0[20], 0[211).

Fig. 2 Mean velocities for the plane jet.

(Symbols: [20]).

Fig. 3 Mean velocity in nonturbulent zone of the plane jet.

(Symbols: [20]).

Fig. 4 Shear stresses for the plane jet. (Symbols: [20]).

Fig. 5 Unconditioned normal stresses for the plane jet.

Fig. 6 Nonturbulent zone normal stresses for the plane jet.

Fig. 7 Turbulent zone normal stresses for the plane jet.

Fig. 8 Normal stresses in the plane jet compared with experiment [201.

Fig. 9 Normal stresses in the plane jet compared with experiment [20].

Fig. 10 Normal stresses in the plane jet compared with experiment [20].

Fig. 11 Intermittency factor for the plane wake

( , Symbols: 0[23], 0[24]).

Fig. 12 Mean velocities for the plane wake (Symbols: [23]).

Fig. 13 Mean velocity in nonturbulent zone of the plane wake

(Symbols: [23]).

Fig. 14 Shear stresses for the plane wake (Symbols: [23]).

Fig. 15 Unconditioned normal stresses for the plane wake.

Fig. 16 Nonturbulent zone normal stresses for the plane wake.

Fig. 17 Turbulent zone normal stresses for the plane wake.

Fig. 18 Normal stresses in the plane wake compared with experiment [23].

Fig. 19 Normal stresses in the plane wake compared with experiment [23].

Fig. 20 Normal stresses in the plane wake compared with experiment [23].
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Fig. 21 Intermittency factor for the plane mixing layer
(,w-YV,-,)Symbols: 0[27], 0[28], [29]).

Fig. 22 Mean velocities for the plane mixing layer (Symbols: [27]).

Fig. 23 Mean velocity in nonturbulent zone for the plane mixing layer

(Symbols: [27]).

Fig. 24 Shear stresses for the plane mixing layer (Symbols: [27]).

Fig. 25 Unconditioned normal stresses for the plane mixing layer.

Fig. 26 Nonturbulent zone normal stresses for the plane mixing layer.

Fig. 27 Turbulent zone normal stresses for the plane mixing layer.

Fig. 28 Normal stresses in the plane mixing layer compared with

experiment [27].

Fig. 29 Normal stresses in the plane mixing layer compared with

experiment [27].

Fig. 30 Normal stresses in the plane mixing layer compared with

experiment [27].
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Multi-scale closure for turbulent shear flows

S. Byggstoyl and W. Kollmann

1. Introduction

Turbulence models based on a single time and length scale have

successfully been used to calculate a number of equilibrium turbulent

shear flows [1]. However, when the turbulence is not in equilibrium it is

generally believed that it is necessary to include more than one length

and time scale in the modelling. A multi-scale model was first developed

by Hanjalic and Launder [2]. Based on the spectral energy transfer they

intuitively constructed transport equations for different regions of the

energy spectrum.

In this paper a new multiscale concept for modelling of turbulent

flows is developed. The concept is based on statistics conditioned upon a

positive scalar being inside some given intervals. Each interval (zone)

has its own time and length scale and different statistics can be used for

modelling the exact equations inside each zone. The dissipation of kinetic

energy is taken as the scalar and then the dissipation term in the equation

for turbulent kinetic energy in the zones is viewed as an independent

scalar variable. The modelled transport equations for each zone have to

be complemented with either the equation for the probability density

function for the dissipation or the form of the Pdf has to be given

explicitly. The paper is organized as follows: first the exact transport

equations are derived and discussed, then the exact equations are modelled

and solved for the case of isotropic turbulence and for a plane jet flow.

11VO _W N% I% "
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2. DERIVATION OF EXACT EQUATIONS

First the exact equations serving as basis for the multi-scale model

are established. These include the transport equations for Intermittency

factor and conditioned first and second order moments. Some of the

equations can be found in Ref. (3-6].

2.1 Intermittency factor

Let 0,_2,,i)be a fluctuating non-negative scalar satisfying the equation

where -50 expresses the production/destruction of the scalar 0 ( is

assumed to be local in space and time but may be non-linear).

Consider a discretization of the range e(95

o <, <, /, " , 'V,- <, W , <  10h

and let the instantaneous flow field 2 be divided into overlapping zones

/- O I .,A4 defined as

II

:" @ ¢ ' ,f , , "" . " .' , '" - , '-' ' " ,"- ," - ." -- ' . '' . ' " • - ''"""". -' ' /. - . . " ' , ,
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It is then clear that C for all ;. In order to derive exact

transport equations for the flow variables inside each zone, a sequence of

indicator functin corresponding to the sequencedeid

as

0

The surface $jA-',a) corresponding to each in the range 'e) is

given by the equation

Along this surface dSk=O and the dynamics of the surface is described

by the following equation

where i* is the instantaneous velocity of the surface given by

where X kis the position vector of the surface.

The velocity of the surface is further split into two parts

k(2A.

where i is the fluid velocity at the surface and V is the

propagation velocity of the surface relative to the fluid. f is the unit

normal vector on S defined as positive pointing into the domain

The indicator function .T/,r' is obviously constant along

and satisfies the equation
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Using (2.4) this tranforms into

The derivatives of the indicator function can be expressed as

r S

where d .) is the Dirac pseudo-function. Introducing (2.7) in (2.6) gives

k -e

By taking the mean value of this equation results in the equation for the

intermittency factor ( (ix.

At this point conditional mean and fluctuating velocities are introduced as

(2. 5)

/- -k

where is the mean velocity, at Ck',1) of fluid belonging to and

is the mean velocity of the fluid which does not belong to

.% >" '- , ....,.-',,-.,.L.--''-.-,-.,.'. ,',,. .- .: - ...,,." ., . -•,, .. %-,
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By introducing this into (2.8) gives the following equation for the

intermittency factor

,rt-,f (=0

The relative propagation velocity Vkcan be expressed in terms of the

discriminating scalar 0 by using (2.3) and (2.4)

which is valid at the surface Sr'rd).

By introducing (2.1) k/' can be expressed as

which shows that /l is not bounded for /v5 -- 0.

By introducing this into (2.10) the intermittency equation takes the

following form

* ,< + 4 )

The right hand side of this equation will be denoted by S and

expresses the mass entrainment per unit mass of fluid from zoneI-/ into

zone * . It can be shown that this term is positive or negative depending

on the nature of the scalar and the threshold value 9 .

In order to develop equations for the flow variables inside zones

where the value of 4 is inside some specified interval a non-overlapping

decomposition must be used. This is done by defining /)as

) ,''' ;ri r,'2 ;'.',. ¢ ; : ' '' ._)-< _ , , ,,' ' "r -- 4, -- , . -.r . t , ) . - '"""-" '" '',., ,. .. ,:" . . . . .. ,..
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which satisfy the requirement

The appropriate indicator function and intermittency factor for this

decomposition re, respectively

The conditional mean and fluctuating velocity for fluid belonging to A-Io

is then

ew (6z -.4,4) r

By using (2.14) and (2.12) gives the following equation for

Note that the divergence of bl t)is non zero and the relations ()1 SJM/PS/o"(S))

AnCatcCo V4tP/ ar

hold, implying that ~ 0 but does not fluctuate.

2.2 The Zone Averaged Momentum Equation

By multiplying the instantaneous momentum equation

with the indicator function and averaging gives, after some

operations with the Dirac-pseudof unction ,an equation for the zone

conditioned mean velocity

.4. F~. 4. .a A A.i __ ~. ' ' ~ t.,'-,. , I
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* 2  ( ) f k ) (,i s*) -4 -At'' -

The momentum fluxes through the iso-scalar surfaces 5o and S are

given by

14~( V 1 )

and .9 follows by increasing the index k. The intermittency equation

(2 z/.) allows rearrangement

-~~P ". /L...$

(2.17)

Comparison of (2.17) with the equation for the unconditioned mean velocity

j0 reveals the appearance of two new term groups. The first group

proportional to the zone-conditioned Reynolds-stress arises in the elimination

of the intermittency factor on the left hand side. Its role can be elucidated

for thin shear layers like Jets, mixing layers and boundary layers ano low

values of k (say one) and r+,- 0 . Then can be seen that this source

pushes the conditioned velocity profile further out than the unconditioned,

hence increases the spreading rate. The second group is a collection of point

statistical moments representing momentum transfer through the interface.

Chapter three is devoted to the properties of this group.

I - t:; - ".V: ., , . .. ._' ':/ ,,.: , ',_ ''. . .,; .:



8

2.3 Zone-averaged Reynolds-stress tensor

The transport equations for higher moments of zone-conditioned

quantities can be obtained without difficulty using the properties of the

indicator functions. The Reynolds-stress tensor satisfies for

zone (Ak I/) the following equation

2 - "-- ,

Y, V Q1."* I.*

Ord iad' -Atlr A d-

(VkT~) ~ j/#/~),F7L 0A -F e~
7' 5 61*'WO)

The Reynolds-stress is defined by

and the turbulent flux of V_)by

e9. ~ *~ E-r') ') J'(*) /;')W~e ;0'-i44 A '

Conditional statistics introduce two new term groups as in the mean

velocity equation (2.17). The first group, arising from the elimination

of the intermittency factors on the left hand side, can be recast as

%
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(,7(*) At A

+ viscous + Divergence terms,

where Z -

This term group can be expected to provide additional transport of
27 60 thus changing spreading rates of _- /*) -profiles in thin shear

layers. A more detailed estimation of its effect is however difficult due

to the lack of experimental information on the intermittency sources. The

second group of point-statistical correlations defined by

_< I/ v'je. +

will be discussed in chapter three.

The equation for the kinetic energy of turbulence A' for the

-zone deserves special attention for . It follows from

(2.18) as

). ,r 1*) - <t,, Q~4) -e '
c? 9 e

_k F"'0

S + ' fe t' c --- , ) - l'. (k / l QZ-
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The dissipation rate conditioned for zone k is obviously bounded by P
and y , hence

If the interval length is small enough, this does not

constitute an unknown correlation (for which an equation could be derived)

but an additional discrete independent variable. The zone-conditioned

moments can be considered therefore functions of *,i and P . If we

assume for the moment that F >0 and F7-k 1 > 0 we see thdt

several inverse time scales can be formed for the ktzone:

Energy input from zone k-i : -. 2

Energy output to zone k2i< :2 ____ _"~" * ~~ * ftI) -

Energy transfer through zone / / r=

Average scale for zone :

The input and output scales make sense however only for finite intervals

d r. Hence only the transfer scale and the average scale will be used

in the following together with the corresponding length scales formed with

appropriate powers of

- .) ~- . .* ~ v **...........*%'~ %.*
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2.4 Relation to unconditional moments

Unconditional moments can be recovered from the sequence of

conditional moments via local relations following from the definitions

given at the beginning of this chapter. Noting that 1 1 and U

we obtain for the unconditional mean value y7of a fluctuating quantity y

Aow

for the special case A/-/ we note that = and and then

reduces (2.2U) to the well-known relation

upd/ Y , ,'# -

Furthermore is

A)

and the terms in the sum are nonnegative due to monotonicity of the

intermittency factors. For second order moments follows similarly

-- ', >(r - ,) +Zp ), -j,,.
2- "L k 1 0. P O*-lkl

*l-O *L

For the special case N 1 it reduces to the relation

, jr- -- = I'/

The formulae for higher order correlations can be derived without

difficulty.

, '- ,,% , , ]',' ,:'. .'. '. '.' ,-,' .. ' .. ,' .,' .. ;... ''.:,...' , .' .' ,',--." .". .'.'.".,-."--."



3. Trans rt Throup' 5)-Sc tar Inter#aces

Zone-conditioned moment equations zonta 1" 3 .err 4roj , xr ... .

the transport effects through the 1S -S.C' ar iurface representeJ :.V :n.

implicit equation

This tern grojp appears in the intermittency taStov e ats ais

IC Ar <kcY0S) Kk'/)3.1)

and in the equation for moments of oraer one and nigner as

of / A.*)

provided the demoninator is nonzero. //_f),P denotes a collection of

point-statistical correlations of the arguments velocity and pressure with

the relative progressive velocity V/k and the normal vector of the

iso-scalar surface 5 xO.

3.1 Source terms of intermittency

The term group (3.1) represents the transport of the iso-scalar

surface itself ana contains productive and destructive effects. This can

be seen by considering the limit A90,-"O. First we notice that

4' * .\

l=x
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where , is the one-point pdf of the discriminating scalar

For & >O but sufficient"y small and P(p' sufficiently smooth follows

J - Lo 1 5&() -A /Z. -L. (3.3)

Furtnermore follows from the definition (2.14)

which is the mean of V subject to the condition that the scalaroassumes

at the same (fixed) location the valuer,. The relations (3.3) and (3.4)

are the primary tools in analyzing the sources (3.1). Making the

S-interval sufficiently small and applying (3.3) and (3.4) to (2.14) we

obtain

Dividing the A and letting 650-40 leads to

The limit on the right hand side can be evaluated by direct derivati. "

the pdf-equation. Defining the fine-grained pdf P by [7]

AA

the pdf equation follows [8] as

Equating the right hand sides of (3.5) anc (3.6 ,

result

/ ,"/7 " ~a

.. %, % %*-% * %- ~ *% * . *** _% % .% .- ". ."- ."- . "

• f -ili i l l ii il~l f li li,:o/ . .. ,
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Note that S is defined as

es a r p'. vO
From (3.7) follows that the limit on the left hand side exists and

therefore

and finally

(b'o 4 5) ) - ,3? )

Equation (3.8) allows a detailed discussion of the intermittency source/

sink term for the case P'V) close to log-normal. First we note that

ani t herrefre will lo A change sign at least once because

(Fl6').0-aa e and (f~,,~ The second derivative in (3.7)

si tn neqatlv' amrnjno the~ mean 1(0) oft j. "~~ence i-- (settinSC

f., tne eapont (&v^ For)va .Fcir f far away from ()thie sei~ono

%Jk *f' 'f . rQ DC41k nea~r t0 . m e %,Pei 'a! , I the Jiscirtminatlr14

A A, tt ,, s, stp s~p t ir -at e it t~r , ',t &,net,. enetqv, 41,1

,~.). r !Oi twr~t ert #~~ of 9'-,whre ()f ,then,

€b --

". h ' at ,

Y- > \ 'r ? qme s .,, ' tW .
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> 0

for A f and

t/v9 s.> 0"

for (V >e,'>. The scalar dissipation terms appearing in (3.7) and (3.8)

are sketched in fig. 1 for the case of P('t) being close to log-normal

form.

The effect of source of the dissipation rate S on the

intermittency factor K becomes apparent from (3.8). If St&)>0 then

,)is produced, but S >))O implies at the same time a shift of Plew

towards higher values of 9 and the growth of JA,, is changed according to

the shape of P.

The shape of the O -profiles can be inferred from (3.5), (3.8) and

the boundary conditions with respect to the 5P-axis.

yw/ / yC . xo 1 0 AO.r 5P ,#,

Equation (3.8) shows furthermore that (provided the constant i- (3.8) is

zero) the realizability condition

is satistied, because the right hand side is the source term ot the

equation for (integrate (3.6))

9P,j /-/i1 'i) ,
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which satisfies 0. .5 I.

For small VRK (close to the boundary o- 0 where V / ) the

profile of A will be close to / if the turbulent Reynolds-number

is high, because the pdf of p. will be small for small values of 5P and

be concentrated at high values of and therefore S'e) and ('reA) will
be small too. For high values r the profile of X will peak

near E.> where the source of r may still be positive. Further away
from the location of (t',>where the source of jA will be

negative (see fig. 1). The sequence of intermittency factors is however

monotonically decreasing everywhere in _-space.

/0

.i~

Figure I - Distribution function and scalar dissipation function

for two different spatial locations with )' > 6 .
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These properties of rM are summarized in fig. 2 for the example of a

thin shear layer

/
Figure 2 - Intermittency factors V, for plane jet and N-4.

It should be noted that for A fPA sufficiently small the profile of

corresponds to the profile of the classical intermittency factor which

distinguishes between turbulent and non-turbulent states of the flow. A

large amount of experimental data is available for this case (references

given in 16]).

The relative progresson velocity V/kof the iso-scalar surface 5-( 0

was derived in sec. 2.1 as

95 S )J (3.)



This can be applied to (3.3) and leads to a new expression of the scalar

dissipation tern of the pdf-equation for a fluctuatinq scalar. we find

e"E sP " ll"l t'

Hence is the scalar dissipation of P at (? the integral of the relative

progression speed of all iso-scalar surfaces with v' /9. Equation (1.9)

shows now that the instantaneous values of V/ are not bounded and the

amount of scalar dissipation of P at (/ depends on the Pdf of

-40

3.2 Source terms for zone-conditioned mean velocity

The term group (2.16) represents the transfer of momentum throuqh tne

iso-scalar surface S,- 0 and contains correlations of zone-conditional

velocity with the progression speed of the surface, the zone-conditional

pressure with the fluctuating normal vector of the interface and viscous

interactions of velocity and normal vector. The limit 6(p -4O reveals

again the effect of this group on the zone-conditional moment concerned.

With (3.3) we can write

The terms constituting H contain a viscous contribution of the form

which is negligible compared to the other terms for high Re -numbers

because it scales with the mean field. Hence it will be neglected and

appears to be

N
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Then fol lows for .1

., r .7/1- PA o ,,* 1 -

The tluctuating components are in the limit 6904 O

V e*V. -vu './¢- .> ,

and lot turns out as

(3.,,)

provided F:f(#w)>O. The terms .2 do not contribute to the overall

(unconditional) momentum balance. This can be seen from the expectation
k

of TOC

0

With (2.32) we obtain

Hence transfer the point-statistical terms . momentum along the axis

without affecting the unconditional momentum balance. Since all

zone-conditioned mean velocities must satisfy the same boundary

conditions, momentum is transferred from the boundaries to all zones. For

J :' ?
,. , ' l i 1 % ii ' , " . N % % "

F'" " f ,,: ., + . .","" . ," , , ,"• y• i ',_ - ,)' ". ' .w*,, . -. "
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small values of 96 the zone-conditioned shear stress can be expected to be

small and will therefore be insufficient for momentum transport to keep

the corresponding zone-mean velocity field stable. Hence must the point-

statistical term group . It transfer enough momentum out of these zones to

ensure stability. As 9f increases the Reynolds-stress in these zones will
#k

become more important for momentum transfer and .T will decrease and

Ar
change sign. For high values p the role of .Z' will be opposite to its

effect for low 91.

3.3 Source terms for zone-conditioned Reynolds-stresses

The term group (2.19) represents the transfer of stress across the

iso- scalar surface S- 0 . Its properties are similar to the

corresponding group in the momentum equations. In the limit N -- 0 we

find

* 0 =) (3 .12)

where the last viscous term in (12) is again negligible. The unconditional

expectation of .Z is zero

A, d) -0

0
indicatinq that the point-statistical group (2.19) transfers stress and in

particular kinetic energy along the Cfaxis without affecting the

unconditional balance. Furthermore must change sign at least once

with respect to f. If the choice V5- E is considered, the high

values If of 9 correspond to the small scales of the turbulent motion.
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For high turbulent Re-numbers local isotropy can be assumed for this range

and small normal stress levels. Then follows that there is little

production of zone-Reynolds-stress due to mean strain rate and most

production will be supplied by the transfer term (3.12), which is

therefore positive for high If-values and c.c4 and negative for small

values.

3.4 Multiscale closure models

The first step in the development of mutli-scale models based on

conditional statistics is the choice of the discriminating scalar 9$ -

The most natural choice is the dissipation of turbulent kinetic energy

because this quantity appears in the equation for turbulent kinetic energy

(and in the equation for the individual normal stresses). If the

turbulence field is close to equlibrium it is probably not necessary to

solve an equation for the PdF, but instead use a prescribed Pdf expressed

in terms of some of its moments. If E is taken as the discriminating

scalar then the log-normal distribution may be a good choice [9]. In a

non-equilibrium situations it is necessary to solve a modelled equation

for the intermittency factors r. or to solve the Pdf equation.

4. Closure of the Multiscale Equations

In this chapter closure of the multiscale equations is discussed and a

simple closure model is suggested. The model is applied to decayinq

isotropic turbulence and to a plane jet.

% I
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4.1 Multiscale Model for Decaying Isotropic Turbulence

In the case of isotropic turbulence the equation for zone conditioned

turbulent kinetic energy simplifies to

+ -~

8y using (3.8) and (3.12) this equation transforms into (by letting

where - - _ (See (3.12))

Equation (4.2) has the same form as the equation for the energy

spectrum for isotropic turbulence. This is seen by first integrating over

all values of F , then the following equation is obtained.

which is the equation for kinetic energy for decaying isotropic turbulence.

by integrating (4.2) from U to some £ , yields

where A, S ., --[E) , e /%e)

the term - expresses the net energy transport from zones

with E5 9, to zones with E > e , this is illustrated in Fig. 3.
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Figure 3. - Schematic illustration of the energy transport (eq.(4.3))

As seen from (4.2) the Pdf of E, At-E) is needed. This can be obtained

by a direct solution of a modelled transport equation for the pdf or by

prescribing a pdf which depends on some of its moments. Both of these

methods will be discussed next.

4.1.1 The Transport Equation for

The exact transport equation for P/e-) can easily be derived from

the Navier Stokes equation and its form is given by (3.6). The equation

for P:(C:) is derived in Appendix 1 and for the case of isotropic

turbulence ii iS given by

where E is the probability space variable corresponding to the scalar

I'I°
I'
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The scalar dissipation term is modelled according to [8]
C

where the transition probability 7- is given as

T(F-, "/E) = I , '
/004

and the timescale 2-as

-- * 14.7)

It is easily shown that the expression (4.5) decreases the variance of

the Pdf without affecting the mean, therefore the last term on the right

hand side of (4.4) must be responsible for the decay of<'F>. This tern is

modelled as

which represent a convection of the Pdf towards 0 (' c. >0)

with convection velocity t-..E C -  Because this velocity is not

uniform but depends on £-the higher order moments will also be influenced

by this term.
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The modelled transport equation for P(6,) is then

-/2 dr ' 4, P(e IPo ) 7e /) - Pf#
o ,e (,. 3)

By multiplying (4.9) with E and FZ respectively and integrating

over F transport equations for (E> and (El') are found. They are

Equation (4.10) is the same as the (') equation in the

model of turbulence (in the case of decaying isotropic turbulence) and the

constant C2  is therefore put equal to Cz -1.92. It is known from

experiments that the ratio (9"/0(E > increases with increasing

Reynolds-number of turbulence, then by solving the ( 49 - F) model

together with (4.11) it can be shown (See Appendix 2) that this constant A

can be given when comparing (4.11) with Kolmogorov's modified equilibrium

theory [10] to be discussed next.

4.1.2 Prescribed form of the Pdf

In order to take into account the intermittent behaviour of the

dissipation Kolmogorov [10] and Obukov [11] refined the "universal

similarity hypothesis" [12] by postulating that the dissipation of kinetic

energy was log-normally distributed with a variance dependent oft the

Reynolds number. More specifically they postulated that the Pdf of the

dissipation was given by

where tnz= ( L ) ,4 ~i r t)

I

L .w C
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The parameters rn and 4 Z can be related to the mean and variance

of F by the following expression. [See Appendix 3.]

,',2- 4 7l ,>.E> 3 = li+ ) ,',,-

Further postulated (Kolmogorov [10] and Obukov [11]) that the variance

of E£ was locally related to the macro- and dissipation length scales of

the turbulence by the formula

klo , ( ., ) - A F-) A- .-/5

where A is a "constant" determined by the macro structure of the f io)

and 14 is an "universal" constant. L o0 is the macro-length scile

determined from the integral of the two point correlation function ant

is the dissipation length scale defined as

introducing (4.13) in (4.15) gives the following expressior t,r tnt-

variance

By asssuming that ("F > and defininQ d t,-.,

Reynolds number as Pt t/k 'tV) (4.16) can be rewritten a,

Masiello [13] determined experimentally the constants A anki t

A - - O.24' , / , r - .47

From the work of Driscoll [14] the constant OX is estnmate<i a,

= 5"
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',/,' "(, cl) ) </ . - E P er) '

. r~ e ' A'+rl , ot , , ,,.;a t e o f r o rm k 4 .4 ) ir k 4 . , .' )- (4 .1 7 .

4.. t iat.., .) t a Ie moae i nq to turbulIent shear tlLYws

n e ,4ere la eQuatir, f or zone conditioned turbulent kinetlic energy

De - i11 dF - C

A~ '-'A 4

m rw r is the non-viscous part ot F When solving an equation for

tfe only new terms to be modelled are the production terit

Inthe turbulent transport term However, in this

,"itial stage ut model development the zone conditioned mean velocities

.e issumeC e.udl to the unconditional mean velocity.

The zone conditioned shear stress is assumed to be proportional to

tre uvtconaitioned kinetic energy and the follo%ing closure model is

sda4gestea.

1A I K* > -/( > I-,< ,.,

L

I.e
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The transport term F P is modelled according 
to the turbulent viscosity

concept

The modelled equation for zone conditional kinetic energy for the case of

a two-dimensional turbulent shear flow then becomes

# )?P,4p) .. ", > -) -" A )

From this equation, two zones are constructed by integrating over £ from

9-.j# and from E-*o. The kinetic energy in the two zones are defined as

-

f dey P) (*1 k ,,)

The equation for k, and *j then reads

-# */ (v., -

-~ + Cj(J-(/;>(1))4(o.2.5'ire >(4. Z.S-)
. e

where ea P'n" d/0"C

+ V
('i. zc )

., .-,..
,-' .,,- '.. . ."" "" "" " -" "" ' "".""". . /*',, """","' ,.'-:'. .. . .','_ ...,.,.,,',.,....., .L.O..'., -.s.w
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where

z  - e'r/e.

/
In cases where the mean dissipation e'E) has a large spatially variation

it may not be possible to find a representative value of E, for the whole

flow tield. Then it is better to express 4, as a fraction of tE) and

transform tne equations (4.25) and (4.26) accordingly. This transformation

is shown in Appendix 4.

5. Results

5.1 Decaying isotropic turbulence

In order to solve eq. (4.24) the following dimensionless variables are

introduced

J L  , ir', =. OppIe.>

(~J*)

where and the subscript o indicates the value of the variable

when L'O.

Equation (4.24) transforms then into

The initial Pdf is taken as log-normal and the distribution of as aVV

function of g is assumed proportional to P v-
Pti)

W

which satisfies the requirement

of~k*)
W0o
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Equation (5.1) is solved by using both a prescribed pdf and by solving

the pdf-transport equation. For the results shown in figs. 5-8 the pdf is

prescribed as log-normal and Kolmogorov's expression for the variance is

used. The mean dissipation, which is a parameter of the pdf, is

calculated from the standard (k) 1-(E)model.

Fig. 5 shows the distribution of A"') as a function of r for three

different times t - 0, 0.21, 0.42. Fig. 6 shows the "spectrum"kd*"P

fig. 7 shows the interzonal transport of energy F and fig. 8 shows the

evolution of the pdf. The results are in qualitative agreement with what

one would expect, but due to the complete lack of experimental data it is

not possible to draw any conclusion about the quantitative behavior.

Figs. 9-12 show the corresponding results when eq. (5.1) is solved

together with the transport equation for /54) . The constant A in the

pdf equation is calculated from eq. (8) in Appendix 2 and r, is put equal

to -( . The results from this calculation are nearly identical witn

the results shown in figs. 5-8.

5.2 Plane jet

The results from the calculation of a plane jet are shown in fi~s.

13-16. The value of the discriminating scalar E, that definesthe two

zones was set equal to E - 10*3 r2/s3 . The exit velocity and the

-3
nozzle width were U(e 35- m/s ana .. = 3 x 1i0m, respectively. Fiqures

13a-c show a typical development of the zonal kinetic energies A, and

Figure 13a shows that for x/D - 10 the main part of the kinetic enorqv i',

contained in zone 2 ( P>E,). Further downstrean, the dissipation rate

decreases and more and more of the energy is contained in zone I ( F< F, .

For X/D = 60 fig. 13c zone 2 is drained out and all the enerjy i

contained in zone 1. At this statiun the two zone model ad t,, j

one-zone model. It is possible, however, to introduLe a non. ,iV't
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value of the discriminating scalar such that both zones always contain a

non-neglibile amount of energy as shown in Appendix 4. Figures 14a-c show

the development of the probability fore< , calculated as the integral

from iE-0 to ece of the log-normal distribution. Due to the decrease

in( >this probability increases downstream. In fig. 15 the interzonal

energy transfer is shown. Tnis energy transfer is negative over the whole

cross-section (x/D 60) which means that energy is transferred from zone

1 to zone 2, but it is not strong enough to keep up with decrease of

due to the decrease in the dissipation rate. Figure 16 shows the mean and

the standard deviation of the dissipation rate. The stanuard deviationl is

everywhere larger than the mean value as calculated from the refined

similarity hypothesis (eq. (4.17)).

Conc lusions

A new multi-scale (multi-zone) concept for turbulent flows nas oeen

developed, and exact equations valid insioe the different zones are

derived ana s o4e simpIe initial moo( I I nq as sdMt I ons haVt bei

constructeJ in order to cluse the system of equations. The -Kde 11

appliel to Calculate deCdyilnq isotropic turbulence at; ij Iafit jftt. Tj.,

resjlts are qualitatively in agreemert with expe(ta1c ,rls, ru,: lue t, fit

compnIlete liac( Of experiental ddtd It Is not pOSi e t, Ira. a'7, fj -ti)#

con( )lursion . Morf work Is prort,ar , ne essar, I r) )rjtt 4( ret rrfI- tit"

modeiiinq an t., txten(i tht- muiti-s. iit mnteLt t,, ,e( '0 r! (]e

Ac k now-! e~d t f-ne,) t

Tnl , w,)ro, wis %suppijrt#, .y ~ rjl A -
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APPENDIX 1

PUF equation for C,

Let E be given as V-42 .. An exact transport equation

for t can be derived by taking the derivative of the instantaneous

momentum equation

w.r.t. A. and multiply the result with V

The result is

02,- V- z2- 2V

where the pressure can be related to the velocity field by the Poisson

integra .

Luenotiriq by C: and V/x the probability space variables correspondinq toa"

and UM, respectively and defininq a fine-grained joint Pdf for velocitv

and dissipation as

the equation tor P(I,i,x,, (')o , ) is eas' lv Jbt1,'2,

by jsinq standdrd cperations with tne in(tofl.

l t h " eSI""Z. . . . . . ..
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By integrating this equation over the velocity space the equation for the

marginal Pdf of E ,Pt-) is obtained as

where

- ~ -se

whereX~'r;'
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APPENDIX 2

Analytical solution for the variance of S in the case of isotropic

turbulence

Consider the following form of the equation for the variance of E in

the case of isotropic turbulence.

d er' t ¢"2 <j

where and where (k) and ?e) can be found from thee*k> - >

model as

ee >_ ,

where (k~, > (k)4 -0) 1>11i

and ek ">

The solution of (1) is then

From (2) and (3) it can be seen that the turbulent Reynolds number

Q- (Af/ 4 Vdecreases with time when 1.0 <" Cz <" 2.0. The commonly used

value is C * 1.9 which is consistent with a decrease of Re. The

requirement that the ratio F'91-1F) is increasing with increasing Re

gives the followiny condition on C
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c >2c 2  (

leading to the following condition on A from (4.11)

,4 > 0 (

The constant C. can also be related to the constant,,," in the Kolmogorov

expression for the variance of E by the requirement that the ratio

' 6'>A/('E> calculated from (3) and (4) should have the same tine

dependence as (4.17). The result is

2~ (Cz7)
2 -c

The constant A in (4.11) can then be given by

The constant "U can further be related to the fractal dimension of

intermittent turbulence.

'- - -,. ,* ,p-Js.-. <; : . ?. i <; :; .T;%%;: i; V . .: .h : , , Ii , ,
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APPENDIX 3

Integrals and moments of the log-normal distribution

Let F be a stochastic, log-normally distributed variable. The

logarithm of & is then normal distribut ed and the Pdf of t E.

is given by

where Pnz /h-) F2 0(A 2)

The Pdf of £ _'() can then be determined ts

which gives for PtP)

Consider the integral .2

Introducing (2) gives

0
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Introducing a new variable M/e ) defined by

41M) - E M- -

gives the following expression froV -IX

This integral can be further transformed into (see Ref. [15], p. 303)

2 7(2 ''

where e4-)is the error function defined as

e4/)l e

0
The moments of E can now be calculated as

(eP) - .I- = e/o(p)

By combining the first and second order moments the parameters m and/A

can be expressed as

/08 .2 AC - >S

wh )r

where ("C') -, f,('- 'f I .

I'' -- . ,W- - ,- -. ;; . . ; : . . . - . ' - . . ' . -
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The integral .X, must be calculated numerically, this can easily be

done by one of the approximations for the error-function given in Ref.

15. In this work the following approximation is used.

e~o -.V"EZ (2 .

w e e= / W

where , and the constants are

P = 0.3275911 , a1 = 0.254829592 , a2 = - 0.284496736

a3 = 1.421413741 , a4 = -1.453152027 , a5 = 1.061405429

For YeO the symmetry properties of e_ 1) can be used

: -e e ' /t-



APPENDIX 4

Transformation of the multiscale equation

By defining Au kA)P(6) the modelled equation for zone conditlined

kinetic energy can be written as

* e9X~ A ~j A) 7*S

where S is the collection of production/dissipation and interzon,3

transport terms.

A new discriminating scalar E defined as

and a new dependent variable A defined as

A A,

are introduced such that

4 'A'0

Then follows A =(f'.)A and the equation forA becomes

A

where is the source term in the e) -equation.

c I
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If an infinite number of zones is used the form of Arl)is known, but in

the cas of a finite number of zones 4ee) must be approximated.

when only two zones are used we suggest the following approximation

'4

f'0r

A 
SI)

so so l i

AA

,DI

A

wnich gives aindd is can be approxiiu ated is

2.Ala

k I i=-

;",.""", , ,''''L; ';;, '  ';,, ,' (? -" .', , .,",' ' ', i''', . , ..0.' ."-. ." /-. - " • . •'-._. ,,
,r •- '7 and| m
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