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Annual report 1984/85

Grant: AFOSR-84-0219
Title: Conditional Second Order Closure For Turbulent Shear Flows.
Principal

Investigator: W. Kollmann, UC Davis

] Summary

‘> The research work during the first year was concentrated on two

areas: The foundation of conditional closure schemes in terms of
probability density functions (pdf) and the development of a second order
closure including intermittency factor and conditional moments. In the
theoretical part dynamics of single and multi-point pdf's for velocity and
a scalar variable, that can be used for distinction between turbulent and
nonturbulent zones, were considered and methods of closure were
investigated. The transport of apparent stress in the nonturbulent zone
of turbulent shear flows with a free boundary was included in the second
order model in terms of their dynamic equations. Conditions governing the
effect of the fluctuating interface on mean velocity and apparent stress
in both zones were established and closure models were put forward. The
resulting second order closure was compared with experiments for several

plane shear flows and good agreement was found.

Research Objectives

The objective of the proposed research project is the development of a
second order closure model for conditional moments and the intermittency
factor. The foundation of the closure scheme are to be investigated and

the resulting model should be applicable to a wide range of turbulent

shear flows with free boundaries.
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Status of research

The research work on this project started in July 1984 with ¥
Mortazavi as a Ph.D. student and 5. Byggstoyl fro TU Trondheim (Norway) as
a8 Postdoctoral Fellow.

M. Mortazavi and W. Kollmann worked during the first year on the
probability density formulation (pdf) of conditional closures. N
Mortazavl started with a thorough survey of the existing literature on
pdf-methods. This lead to the definition of his contribution as the
single and multi-point pdf formulation of conditional closure schemes. He
then began working on the specific problem of turbulent diffusion of
prassive scalars, for which he is currently developing closure models
based on the work of Lundgren {1), (2], Ievlev [3), Kuo and O'Brien [4]),
Kollmann and Janicka (5]).

S. Byggstoyl and W. Kollmann developed the second order closure [6]
further by considering the transport of apparent stress in the
nonturbulent zones of shear flows with free boundaries. It was found that
conditional mean velocities and conditional stresses undergo additional
transport and production/destruction due to the random fluctuations of the
interface separating the turbulent and nonturbulent zones. This effect is
represented by additional terms in the transport equations for these
moments and it was shown that those terms were linked by a consistency
condition and approach particular limit forms as the distance from the
turbulent shear 1layer increases (Corrsin- Xistler relations). These
theoretical results are contained in appendix 1. The second order closure
model was then complemented with the transport equations for the apparent

stress in the nonturbulent zone. The condition that the fluctuations in
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the nonturbulent gone are irrotational leads to decay laws with distance
from the turbulent region, which, together with the consistency condition,
restrict the possidle closure expressions. The numericasl solution of the
resulting system of nonlinear parabolic differential equations required
simultaneocus solution of the stress equations in esch zone in order to
cope with nonlinear instabilities which frequently occurred in the
u sequential solution method. Thus a bdlocksolver was introduced for the

stress equations which improved the stability characteristics

significiently and lead to a mode rate gain in computing time. The
comparison of the results with experiments in several plane shear layers
is quite satisfactory. The results are presented in detail in sppendix II.

The research on conditional closure schemes lead to a new idea.
Multi-scale models based on conditional statistics using multizonal
distinction with respect to an appropriate scalar variable. This aspect
of the project is discussed in detail in appendix III which contains also

the same preliminary results.
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Appendix I: Stress transport in the rotational and irrotational
zones of turbulent shear flows
S. Byggstoyl, W. Kollmann
Department of Mechanical Engineering
University of California
Davis, California 95616

AIP Classification: 47.25.Fj, 47.25.Jn

Abstract: The transport equations for intermittency factor and
conditioned moments are analyzed for turbulent shear flows with free
boundaries. Conditions are established for molecular diffusion to
dominate the progression of the turbulent zone. The terms related
to the dynamics of the interface for mean velocity and apparent
stresses in turbulent and nonturbulent zones are shown to be linked
by a local relation and the limit of large distance from the

turbulent region for the nonturbulent zone stress equation is given.
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Stress transport in the rotational and irrotational
zones of turbulent shear flows
S. Byggstoyl, W. Kollmann
Department of Mechanical Engineering
University of California
Davis, California 95616

1. Introduction

Turbulent shear flows with free boundaries such as jets and mixing
layers show rotational and irrotational fluctuations of velocity near the
free boundary. This was established by Corrsin and Kistler [1], (2]
expermentally for several boundary-layer-type flows. Since then a large
number of experimental results became available (see references given in
{3]1). The theoretical investigation of intermittently turbulent flows
started with Corrsin and Kistler [2]), Phillips [4], [7] Stewart [5],
Corrsin and Phillips [6], dealing in particular with interface properties
and irrotational fluctuations. Lumley [8), (9] introduced the statistics
of multi-valued random functions from the treatment of interface
fluctuations and developed closure ideas. The first closure model based
on first and second order moments was published by Libby [10], ({1l1].
Dopazo [12] and Dopazo and O'Brien [13) established the theoretical
representation of interface related processes in conditioned moment
equations. Pope [14] showed, that conditioning can be easily applied to
pdf-equations.

The present paper extends the analysis of ref. [3]) to stress transport
in the nonturbulent zone of shear flows with free boundaries. The

condition of irrotationality in terms of the Corrsin-Kistler equation is
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exploited to establish limit forms for production and diffusion of stress

as the intermittency factor approaches zero. The results obtained will be
used in a companion paper to construct a second order closure model based
on [15),[16),[17], which includes the transport equations for the apparent

stresses in the nonturbulent zone.

2. Conditional statistics and intermittency factor.

The statistical description of turbulent flows can be refined by
conditioning of expectations to capture particular properties of the flow
in an explicit fashion [3],[{12). For this purpose a non-negative scalar
variable ¢/_)_r){-) is selected in such a way, that a local condition

being satisfied at a point /ﬁf,é) of the flow field corresponds to

@Prxd) 2h >0

where /l is the threshold value, and

Bexr t) <h

corresponds to the condition being violated. In the present case the
condition is that the flow is turbulent at the point considered and thus

(3]

) )

Pixt) = &) 20
is taken as discriminating variable. It should be noted that many other
conditions can be considered (such as hot-cold, burnt-unburnt,

colored-clear) which would lead to different variables g§@£',{ )

‘.-_' ‘. -.'q.' ..‘)‘.;\-....I..-,“. " \‘fx.;..‘;.-_;-.-"\;'-_'

.-. .. >-- -- .-l .-. \u. .i- '. - .- ‘-. s -‘. ‘u ! .‘
O T R R P A AR AT ARG,



Conditioning of flow variables can be done with the aid of the indicator

function J/x,¢)

/] for P i)z h

Lox,2) =
o otherrise
The locations X where
Srx4) = Gexd) - =0 ()
form a surface sgeparating turbulent from non-turbulent zones. This

s
surface propagates with velocity 2]  and progresses relative to the fluid

in its normal direction 'zx (positive into turbulent zone) with

speed V [i2]

nY=y5-14° (2)
Then follows [3]

f;t—f - - 250,/ 0s) /3)
and

5};: =, )‘/3) %)
where

Sls) = /P5/05) ’5)

> .-.'--.".-_. .--r.'l'
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Conditional moments can now be defined for the turbulent zone

= (L) » =
Sﬂ"—f— , Yy e

and the non-turbulent zone

52'5 (/;:IJ)‘Z) yo’ @ - }2‘ /)

where the intermitta2ncy factor is given by
y=ro (2)

Points on the interface move with velocity Z),’s thus

oI

oL K /3
ot T Uy =0 g

which can be recast in terms of fluid velocity L& and the relative
progression velocity of the interface.

oL _ ,, 9r 91

$¢ * AR = AV )
Averaging leads to the exact equation for the intermittency factor [3)]

2 o i (N

FE o (Ap) = VIl /

Introducing the unconditional mean as convection velocity yields

992*‘ ‘Q/ Zy) = sy /;//—,f)/z/ _G))+ vt 2

This form of the transport equation for the intermittency factor shows,

that the turbulent diffusion of 3‘ is due to the relative movement of

R AR W AGEIN N AT PC AL P P X " ORI o -‘ o - o, L. G et .
R G AR Y W B B S L T AR, G G G P A o LG CRA G

l




vTTvTw

Ty v

turbulent and non-turbulent zones if a point moving with the unconditional

mean velocity is followed. The intermittency source Sf

5‘, 2 v/ts)) //3)

is the rate at which the volume of the zone ¢_2/z grows per unit volume
of fluid. A detailed analysis [3] shows that SJ‘ can be represented in
several forms. The dependence of this growth rate % on the scalar
variable discriminating between the zones can be shown explicitly (3].
1f ¢ satisfies

32 + 245% -9%//'925) + & )

then follows for SJ‘

S, = Kﬁ—f){&)

where D/D¢ denotes the substantial derivative. The transport equation

for ¢ yields then the representation

S, - /gg (rEg) + @J%s) 05)

This result shows that two mechsnisms for growth are present namely
diffusion and sources. The influence of the source & on 5’. depends
crucially on the threshold level /z and the limit of 0 as ¢

approaches zero. If

OCk™)

e

b (QICS))
A0

with an exponent &) 2 / , then is the effect of (0)75))

on SJ. negligible if Ve is sufficiently small. Por this case can




be concluded, that discrimination with a conserved scalar yields the same
result as discrimination with a non-conserved scalar. This does not hold,
if the threshold A is raised to a level with large rates of production
or destruction of ¢ . An estimate for the threshold level /Z , such

that the diffusive part of Sf dominates, can be obtained, if the source

term ) can be represented as power in ¢
A
A
Seg) = AP
for small ¢ . The source term Sf is

D @
S-% " x

SJ‘.D can be written in terms of conditional expectations

S = (9% /r}f)/¢ =4} ) (1)

S8 = (Q/P=4)F4)

if & is a power of ¢b we obtain
5}" = 44" Prs)

The diffusive part S;,D can be estimated by

A
'D - ———
0/5, ) Pﬂz)/’lz

The length scale [ can be related to the mdcro-scale £ of the flow, if

it is required, that the dominant production and destruction terms in




the equation for scalar dissipation have the same order of magnitude.

Then follows
L 5
L) /) ¥ @
orf) =(F)'=
@ 2
and the relative order of magnitude of SJ‘ to 53' is

Se n-/ F -4
Y | - L _2/2 7 /18)
Oé?) AK"E2) R
where Z and (/) are the macro-scales for length and velocity

and B=UL/V. If this ratio is required to be less than unity, we get
n—/ L # 7,
- T L
L™ < RYE) TS
Thus the following conclusions are reached. If d/¢ ) approaches zero

faster than ¢ , the diffusive part of SJ‘ is always dominant for

sufficiently large Re-number. If /1 1is less than unity however, we find
/ <
W > )
7’ 'Y

and the threshold level /Z for ¢ is restricted by the Re-number from
below. If /‘L violates this inequality the source term %,Q will
dominate the development of the intermittency factor.

The structure of the diffusive contribution of Sr can be illustrated
for the case of Gaussian statistics of the scalar ¢ . This example can
be viewed as ¢ being lognormal or 4‘1¢ being an unbounded

discriminator. The mean (¢) and the variance (¢’z) are taken as

constants and the spatial correlation coefficient

o
Z
JO/';) =/ + 3 ’;',;92_%/0)7" Aol
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is developed in a Taylor series. Writing for the source term

@ﬁ/’"y%%)%ﬁ-/z}) = A{;_%g jéz ///’¢/v§f4{)()/¢—/1))

b P B -an )P1p-)) = 2 (BB =1)f

and introducing the assumption that ¢/4; g A{ ) and ¢/)2 ) are

Gaussian-distributed, we get after some algebra

/,9%//’9‘2,%)0"@ ~4)) = = Bek) (B -"Y)Cf;f%/o) /19

This result has several interesting properties. First it shows that the
intermittency source depends on the probability for ¢/;_")=ﬁ at the
point X and therefore on the threshold value /L for the discriminating
scalar ¢ . Furthermore it becomes evident from (19), that for the limit

of infinite Re/Sc-numbers the intermittency source will approach a nonzero

and bounded constant, because

o =/
/"97?7‘(0) - — ) Egy

becomes independent of Re/Sc-numbers by virtue of the same arguments that

apply to viscous dissipation. Hence can (19) be recast as follows for the

example
) —4)
S7 = G2 (rEE)mp-r)) = W T om &, c20)

showing explicitly the dependence on the scalar time scale. The influence

on the velocity fluctuations enters via the pdf ’; of the scalar ¢ .




which is transported and diffused by the velocity field. Finally, it

should be noted that the intermittency source is not positive definite,

but can become negative for @) < 4

3. Mean velocities in turbulent and non-turbulent zones.
The balance of momentum can be averaged conditionally thus leading to
the equations for zone-averaged mean velocities. The turbulent zone mean

=
velocity 2), satisfies

5 + 77 20 D /. i I’

~FZ g -G )fﬁ‘ * 2 @)

I T T g 7 S 22)

Both equations contain a term representing the effect of the interface
movement on the average momentum in the two zones. These interface terms

can be given in the form

N ; » ] 23
= Fpndd) +E ’

and

El o (o Vi) - ;ﬁ( 'n, H5)) —v(';sj—“o’fs)) (24)

N e N LA R R ST LR L L
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where /= & for the turbulent zone quantities and /0O for the

[ 4
non-turbulent zone. The interface terms S , S

o ” °
N «md’i,'F are not

&
independent but linked due to

g -8 +0-3)8

Combinstion of (21) with (22) must reproduce the equation for the

unconditioned mean velocity. Thus follows [16) after same manipulations

£ £ = -G )(S, - vap) -2 2 17-5) @)

and
(p'n dls)) = (p°nt’s) = (B —/'5-);‘—9; (2¢)

Equations (25) and (26) must bde satisfied for clogsure expressions

. . '
relating 7';' and (ﬁ"&JfS)} to other quantities and are called

congistency conditions.
So far no use has been made of the fact that the non-turbulent zone is

irrotational. Following Corrsin and Kistler [2) it is required
Jay /= O/RE) for I-O
or
_ QU _ 2 ) _ ¥#
'/ I)/;;i“ ;:Es) O//I ) 27)

where /l is the threshold value for the turbulent-nonturbulent

discrimination. This relation can be applied to establish the properties

of transport equations for moments in the non-turbulent zone as the outer
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edge of the flow is approached (corresponding to J‘ approaching zero).

Averaging (27) leads to the Corrsin-Kistler equation

~ (! -/)/;‘O;f‘ - 5%;‘) + (RN, - L4, )d0s)) = OhE)  we)

of first order. The interface term in (28B) can readily be shown to
satisfy the following conditions:
) o - o -
bs r2on, - )00, )I50) = O
& 0
and
. *
b (240, — YRIIS)) =0
pr) ]
: a*-*/
' The first limit follows from the fact that in the non-turbulent flow field
the mean vorticity approaches zero as the distance from the turbulent zone
grows. The second 1limit follows directly from (28). Therefore is a

representation of the interface term in (28) in the form

Crucn, — YRI5 = pl/-g ) 2t (29)

possible with an unknown bounded function ‘0/54 . These properties of the
Corrsin-Kistler equation will be used in the discussion of the dynamics of
the apparent stress tensors in turbulent and non-turbulent zones.

Corrsin-Kistler equations of higher order can be obtained from (27) by
multiplication with fluctuating components and averaging. Thus follows
SoLt1-3)0F ] =g fir-p )&% = (k% - g n )P )+ Olk)
A A Vv s G~ &Y 1 )PE)

/30)

where ko.’zi [/“’yko denotes the kinetic energy in the
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. non-turbulent zone. For the limit ‘r - O the relation [2],(S]
e
t 2@ = pE
y, “&
1 /s 9/(

is obtained, which shows that the effect of the apparent stress on the
mean velocity in the non-turbulent zone becomes analogous to the

pressure-gradient.

4., Apparent stresses in turbulent and non-turbulent zones.

The momentum balances and mass conservation can be multiplied with

appropriate fluctuations and the indicator function and averaged to
establish the transport equations for the zonal stress tensors. Thus the

equation for the stress tensor in the turbulent zone

— *, %
W - /IU&%) /3,)

« A r

is obtained in the form

5= =, Dz —, D7 =
TR TS -l LY

., /___-—;_d./

. + L 9/ 9* 4 U;;éézi;/f)/v‘ / .V,’)Q**;’)_%”)
F ol Gy T VAIERS T p 0 T

i — L o, L o*

: FSELL T F % 32)

3 The tensor of apparent stresses in the non-turbulent zone

3 T e 2 %Y%) (33)
. =7
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is governed by

) The substantial derivative in (32) and (34) is defined by
' 2 2 &
— E . Jd —
Pi T T Ao
where the superscript applies to the velocity.
Both stress equations (32) and (34) contain dissipation rates

N P

~ » 8
£ = z* X
ve =2V 50 B s5)
X and
Y Pa
E = v iz&"p_,s‘o”"
' Their importance depends on the discriminating scalar. For the present

' case of distinction between turbulent and non-turbulent zones becomes the

lad

dissipation Sv/s in the non-turbulent zone negligible and the

] unconditioned rate of dissipation is related to the conditioned rates by

, o T TG

L e, M AP R R N 3 N A VA LR TR A A N U IR AR AR N Y YN A VR L N T D T DR U A I ™ et~
..._..."‘ .“ ' I\J',(,‘ﬁd‘_vﬁ# .t J‘ ,-ra.r .(-a 8 N .-:Q.r (‘)J“\f NN LS AN A TR PR A



14
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If the discriminating scalar is chosen to afford distinction between other

properties of the flow such as hot and cold, then both zones can be

" -— A

turbulent and both dissipation rates é;s and &.;6 are important.

The turbulent fluxes in (32) and (34 are defined by

¥ = B ? =
= - f‘ﬁ_/' r e
& =~ TEF — LGP — o 2P 737
and
9° = - 0°0%0f — U"’?’o _ J o, 5 (38)
o8¢ s ot A % & P

The existence of a fluctuating interface separating turbulent and
non-turbulent zones leads to the transport of apparent stress through the
interface, transport due to interface movement, production of apparent
stress due to interface fluctuations. These effects are represented by

the term group %; defined by

% EPL(P/%’% ryn )le) + 7, rex0 ¢29)

and

aTe s 8 & M

J o » :
- Var (Y Yy ndis)) i =xo t40)

) The interface terms Sﬁ; and 5.;: are not independent. The relation

between conditioned and unconditioned stress tensors

Ly =yt 0: + (/- Jc)z,gfa” +p - f)/y aé}/qs -2%/
(4/)
h s ‘s I“l. I./.' a. e T T A . ‘ <. v-\r..‘r‘_r ‘. RS RO ,‘.,-\,-\_.., *."'w" ﬂ‘: <, . ; \ . \"-'-."\' . _‘._‘
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leads to a consistency condition for the @; . Introducing the
abbreviations

-~ ~
42, = g -4
and

4 =p = f

we obtain after some manipulations using (32), (34), (41) the following

relation

Sp =S5 (=) egay s, 1 (245° + 848°)

==Y S ey ) F P TL S 82

fZ/aav 9/}/~34)Aa,j -+ Ap/// 2;)/424)-:&' "A%J,é:)

= (U (p5°# 11-9)87)P05)) — (mu(p2y"+ (1-3) ") M) ) f

2 .
vyl _f);?f ;;% s = 2001-00)F s 004 - v 2 A%,@%g}//-zb

42)
This rather complicated relation can be somewhat simplified if the limit

case of high Re-numbers is considered. Then follows that the viscous

terms in (42) can be neglected, because they scale with the mean fields.




The transport of apparent stress in the zone, where the discriminating
scalar gb is below the threshold level, merits discussion in particular
if distinction between turbulent and non-turbulent zones is considered.
We consider the terms on the right hand side of (34) for this case in
turn. The production of stress due to the interaction of stresses and

mean deformation rates

4 [ -4 ~ =

p = - Zéauo Qaé -— UO o Q_a”

©A 4 ép):’ A~ 49)1}

can be analyzed using the Corrsin-Kistler relation (28). Taking (29) into
account we find

1 = Jp. =~ 25, o~ ~
- L ny WY 5(;’ * 1Rk, * ZGK,)

Hence we find for the limit 3/ >0

1
]
(4 f

—_—y -

s OO _ 5750 O
by, T BT I

On the other hand is for the limit Zr"—* / the original form

P ad

of %Z‘ relevant because the non-turbulent patches become increasingly

rare in this limit and will follow the motion of the surrounding turbulent
fluid. It is instructive to write out the production terms for both

limits in case of a plane parabolic flow (i.e., plane jet).
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Note that for parabolic flows derivatives with respect to X, , can be

neglected (boundary layer assumption). It becomes apparent from the table

Lo d
above, that energy 1is fed into the stress component Z)zo"’ in the
—
limit 34 — 0 , whereas for r — / 2/,"z receives the energy as

in the turbulent zone. The limit Jt —> ¢© 1is consistent with the

relation among the normal stresses (valid for J} = O )

z)’%?g@/_:z + % (43)
2

in the nonturbulent zone which was obtained by Phillip [4] and Stewart (5].
o
The diffusive flux 3’7‘, contains the triple correlations of

velocity, which can be analyzed by means of the Corrsin-Kistler equation

for triple moments

Sl TTT ] - 2 [11-p) ] -2 for- 3022

Pt

- 00 - - 09,05,0 /9, _ T ¥
#1-3) k°S5 =~ (g s, - %% - 4% )I7s)
+ O(h*2) r44)
where %s- /5‘2_4 ./-&_,x ) denotes the rate of strain.
For the limit J/ = 0O the relation
9‘2 Z&”«’j;&" = 52 %" * 5 v4° —24%°

by %G T o Tk ‘5;‘

is obtained. Hence is the Aivergence of the flux of apparent stress for
this limit composed of gradients of the flux of kinetic energy and the

correlation of kinetic energy with the fluctuating strain rate. More
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distance from the interface increases. Phillips [{7] showed that for

large )/

where )/ is the normal distance from the interface. Using the Bernoulli

equation, which is valid in the non-turbulent zone only, it follows that
0@0) = )/_#

These estimates can be used to assess the relative importance of several
terms in the moment equations for the non-turbulent zone for large
distance from the turbulent zone or as Jﬂ - O . It is worth noting
that irrotational fluctuations are induced by boundaries. Thus is
statistical homogeneity not possible and decay estimates have to be used
instead.

The interface terms in (34) show that the growth of the turbulent zone

leads to an increase of non-turbulent zone stresses by

/ —_—
7::3;_ :%; Zé?&éf

which may be cancelled by the complex production/destruction group of
terms é%: , a8 the consistency relation (42) indicates, which contains

the intermittency and conditioned momentum sources.

S. Conclusions.

The transport equations for intermittency factor and conditioned

moments were set up and their properties were analyzed. The conclusions

---------
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20
can be summarized as follows.

(1) Intermittency factor: The intermittency source was shown to be
composed of two different terms representing growth due to molecular
diffugsion and production of the scalar variable wused for
digscrimination between the zones. The diffusive term is the dominant
mechanism for growth if the source term approaches zero faster than
the first power of the scalar. Further was shown that the
intermittency source is not always positive.

(2) Conditioned mean velocity: The equations for turbulent and

non-turbulent zone mean velocity contain source terms describdbing
momentum tcansport through the interface and production/destruction of
mean momentum due to interface movement. These source terms are not
independent but linked by a local consistency relation, which shows
that the difference between these sources 1is proportional to
intermittency source and the difference of <conditioned mean
velocities. The Corrsin-Kistler equation introduces the condition of
irrotationality in the non-turbulent zone and proves that for the
limit at - 0 the effect of apparent stress on the non-turbulent
mean velocity becomes analogous to the mean pressure-gradient.

Conditioned stress tensors: The transport equations for the apparent
stress tensors in turbulent and non-turbulent zones contain source
terms describing the production/destruction of stress due to the
interface fluctuations. These source terms are not independent but
linked by a local consistency relation as in case of the mean

velocities. The analysis of the stress trangport equation in the

"\
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non-turbulent zone shows that production in the limit f - O for
2
boundary-layer-type conditions shifts from 2J** to ZJ;‘ , thus

confirming the dominance of component Zf' for this limit. The
Corrsin-Xistler relation for triple correlations shows, that under the

same conditions becomes diffusion of ZJz“ dominant, if the

correlation of kinetic energy and strain rate is weak.
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Appendix II: A closure model for conditioned stress equations

and its application to turbulent shear flows

S. Byggstoyl, W. Kollmann
Department of Mechanical Engineering
University of California
Davis, California 95616

AIP Classification: 47.25.Fj, 47.25.Jn

Abstract: A second order closure model based on intermittency factor and

conditioned moments is developed. The transport equations for the

nonturbulent zone stresses are included in the model. The resulting model
is then compared with measurements in several shear flows and satisfactory

agreement between calculation and experiment is obtained.
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A closure model for conditioned stress equations
and its application to turbulent shear flows
S. Byggstoyl, W. Kollmann
Department of Mechanical Engineering

University of California
Davis, California 95616

(1) Introduction

Turbulent shear flows with free boundaries such as jets, wakes, mixing
layers show an intermittent character in the fluctuations of velocity
changing from rotational to irrotational and vice versa {1]. The
prediction of this type of shear flows can be based on unconditional
moments [2),[3) on conditional moments [4],[5],[6). The latter case is
considered here, which allows calculation of the intermittency factor and
statistical moments characterizing the fluctuations in the individual
zones. The closure model developed in this paper is based on the work
presented in [7),[8),[9). The new part is the inclusion of transport
equations for the apparent stresses in the nonturbulent zone. The
properties of turbulent and nonturbulent zone moments discussed in [9)]) are
used in the development of closure expressions. The resulting model is
then compared with measurements in several shear flows and satisfactory

agreement between calculation and experiment is obtained.

2 Intermittency factor

The equation for the intermittency factor [5],(8)
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contains the rate of growth % of the turbulent zone at the expense of

the nonturbulent zone. 1In ref. (8),[9] several representations of S,

g
5 = VIS ) (2)
were discussed. Note that 4 denotes the relative progression
velocity of the interface and J?S) is defined by
sy = /75/J05) (3)

with S =0 being the implicit equation for the interface (see
[S),[8)). Since no representation of SJ' in terms of first and second
order moments only is available, a closure model is required in the

context of second order closures. Several closures have been suggested

[4},[7),[10) for the source JS} . We follow here the model suggested in
ref. (7).
L2 0%, i, Ly
> - - X e< 2
S ¥ Gy FE G SE) F G E g
&
TG H 1 “
with G = /8, (,= O/ ,(G=005. The first part in (4)

represents growth of J‘ due to production of apparent stress in the
turbulent zone. The second term on the right hand side of (4) reflects
the transport of mass and momentum due to spatial inhomogeneity thus
increasing the intermittency factor. The last term in (4) destructive,
which leads to a decrease of JA in the absence of any production. Mobbs

(11) observed in a wake flow without significant mean velocity gradients
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that r— in fact decreases with downstream distance. Subsequent
distortion of the wake flow lead to production of turbulence and immediate
increase of intermittency factor [11]. Thus is Sf expected to depend on
the mean strain rate as suggested in (4).

The difference of the mean velocities in the turbulent and
nonturbulent zones appearing in the intermittency equation (1) is in fact
the turbulent diffusion of f . This difference for the cross-flow

component [x:z) is for parabolic flows estimated by

o ~ s > —
7-4“34 - qé_%doail_ygg (630./6) s)

because of numerical inaccuracy in the calculation of the cross-flow
component of Z{ , (4 in boundary-layer-type flows. For elliptic
flows are all momentum balances included in the system of equations and

(5) would be avoided.

{(3) Mean velocity in turbulent and nonturbulent zones

=
The exact equation for the turbulent zone mean velocity z,

247 7 e LD S 2%
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contain interface terms \S; and :iz . They are linked by the

consistency condition [(7],[8]
o = ~ 9 & ~
-8 - -G)s - vay) — v s d)

4L, )0 2
PP PUE @)
for high Re-number are the viscous terms in (8) negligible and we obtain

+ ° e 1 L s> _F)0
- =B-P G P plE )
Hence only one of the momentum sources éi: or gélo requires closure.

It is helpful for the construction of a closure to consider the

nonturbulent zone equation (7). The apparent stress term in (7) can be

recast as follows

;\’0 J
= J“‘Q"/?/ J‘)z}zj/ §—Z4°Uo B /Zf;c;}i (10)

The first part has the proper divergence form of a diffusive term whereas

the second part is a source term. Comparing (10) with the corresponding

expression in the turbulent zone (eq. (16)

_/_9/ 'F;)=91=‘< L piue P
Fog (1 &X) o Rk T g RS
a similar source term but with the opposite sign appears. Considering a

shear flow such as a jet, it becomes clear that for the turbulent zone is

the second part is a genuine source, whereas for the nonturbulent zone it

g

is a sink, which leads to wave-like variations of Z{ if included in

the equation (7). Since there is no experimental or theoretical evidence

R
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for such solutions, this sink in (7) must be balanced by a corresponding

term in % e . Furthermore is momentum transfer between turbulent and

fud
—

nonturbulent zones only possible in the mean if ZZ and Z{,f are not

equal. Hence the following closure model for ‘S;c ° is suggested

S «//'-f)-;-/a q) » ZuH o

~
-

=& for a region

i

with C9=/.0 . Note that S.'Ca vanishes, if
with finite volume, which implies that Qfﬂ,}g approaches zero also.

The consistency condition (9) yields then

+ o 2 —iﬁ—/o}i (12)

Note that for the longitudinal component /A’—’/) the pressure term in (12)
becomes negligible. The apparent stresses in both zones are included in
the system of variables and therefore conclude (11) and (12) the closure

of the mean velocity equation.

(4) Stresses in turbulent and nonturbulent zones

The exact transport equations for the apparent stresses in turbulent
and nonturbulent zones follow from mass and momentum balances [9]. They

can be given for high Re-numbers in the form

—
+ L2 * Lo 4 U)o i 4L o
J‘JA:’:/J“%AI')*_P /%-"f) Jt“%xzz' "Lfé;,
773)
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The diffusive fluxes are defined by [9])
*® e ——— 1:;
o=~ PTG - L dp — LLP )
and
o —_— o~ —_—
9. ~TTT - LGP — hdp )
The interface terms S{;: and 5;: are defined in ref. [9] and

satisfy the consistency relation (see Eq. (42) in [9])

S TS0 T rmapan sy S - p /8y S0+ 047/
- (1= §)[8887# 048] + (P EL 5 (rou)
* %

P A [1-3)8%] "

where AZ&;—-Z{-Z{‘. .
This relation (17) is valid for high Re-numbers and A/D 5/9 "/3 =0

It is reasonable (at least for thin shear layers) to assume that the mean

AN -—
pressures in the two zones are equal because /D “’/0 for Jf - 0
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(outer edge) and /D ""/5- for JJ' ~» / (center of shear layer) and/5
is constant across a thin shear layers in first order approximation.
Hence is /5=ﬁ =; a good approximation to first order.

The closure of the stress equations is concerned with two groups of
terms: The classical terms, which are counterparts of terms in the
unconditional stress equations, and the interface terms. For the closure
of the classical term group existing models [3],{12]1,[7) are carried over
from the unconditional to the conditional correlations. This is
certainly justified, because closure assumptions based on quasi-Gaussian
behaviour of higher moments or relaxation to Gaussianity in the absence of
strain rates and boundaries (such as Lumley's diffusion closure [12]) hold
with better accuracy for conditioned moments than for wunconditioned
moments. This follows from the observation, that conditioning removes the
spike in the pdf corresponding to the other (nonturbulent) zone thus
bringing in particular flatness factors closer to the Gaussian values.
This is backed up by experimental results [13),[14). The interface terms

on the other hand require new considerations.

4.1. Closure of the turbulent-zone-stress equations

The closure of the classical terms requires only brief discussion,
because established closure models will be modified for conditioned

correlations. The dissipation of stress is taken in high Re-number form

(3}

F 227 é«'f (12)
w 3
. 3 i3 : .
where the dissipation rate £ is given by
= =
= I &~
s 4
2 £n;¢
!
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I
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For the diffusive flux 19 Lumley's model [12) for the triple

correlations is applied

4
where
= T L g + PO T + P2 P
6ad Yox, 22 YO, % T 7 Y P, h A )
and
q a5 D4 T D e
= ¥y 22 o 2/
% Z"j"d dx, 7 g)é’yypx 26 2y )
9 Y
The constant £, was set to C = 7.5 . The pressure correlations

in '90;:1' are neglected. This model is based on the notion that
turbulence relaxes to Gaussian statistics for the large scales if
inhomogeneities are removed. It 1is therefore better suited for
conditioned than for uynconditioned moments. The pressure-rate of
strain correlation in (13) are modelled according to Rotta [15] ("return

to isotropy”) and Hanjalic and Launder [16]

L0 D) A E s
PR a) = 6 F (4%

{3 k)
(z2)

G148 2 306 -2 798 , 05862/ _2
-~ Z“gép)"_&"é/&}: "é’}f) /7 /D% 3";3p)

where
o iy D — T 3 4 /23
;.D“ = &€y Jx A 7 9,% ) ~ 2 p )
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C} e /.5
c, =04

The closure of the interface terms 5;: is based on the following
considerations. The turbulent zone propagates into the nonturbulent zone
by wviscous transport of vorticity into irrotational parcels of fluid.
This propagation is only possible if the net effect on the turbulent zone
stress is gain at the expense of nonturbulent zone fluctuations and if the
fluctuations in the turbulent zone are weaker than in the nonturbulent

zone. Thus the model

e
e —_y &

Si T Gyl B zg)F %)
emerges with %'0.7 . Thus the closure of the turbulent zone stress
equations is concluded. The constants for the classical terms /(;_) (), Q)
are taken from the respective references and the constant for the

interface group S* was established by computer optimization.

o4

4.2. Closure of the nonturbulent-zone-stress equations

The closure for diffusive flux and pressure correlations for the
nonturbulent 2zone cannot be simply carried over from the unconditional
case, because the nonturbulent zone fluctuations behave differently (they
are irrotational) in the limit f —> (O from their turbulent zone
counterparts. Since no homogeneous distribution exists in the
nonturbulent zone, the decay properties of correlations in this zone with
distance from the turbulent zone as presented in (9] are used to estimate
the relative order of magnitude of the terms in (14). Analysis of the

stress equations shows that for Jl —> 0 4diffusion and pressure strain

W S -

e e d
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rate correlation become the leading terms. Furthermore is for this limit

-3
the normal stress component Uz“ dominant. In order to take the decay
of the fluctuations with distance from the turbulent zone into account the
following closure expressions is used with a time scale 2;,,- for the

nonturbulent zone

~ O ~ a~
_9./2. 2 _9__0;‘) ~ L /071 — _2_[/
9"2 T T2 sz 2;'7 Z 3
and with the decay law [17],(9]

= . =Y
s~y
where y denotes the normal distance from the center of the turbulent

zone, we obtain for

2;/7':2;)/“ ’Z;EF

where Z‘7 denotes the turbulent zone scale, the decay law

3
., ~ )

Let furthermore J‘ be approximated by

~-K

e~

for large )/ , then follows
~

> 25 4 26)

T J} J‘ g
for » = X »3. This consideration indicates the method of closure for the
nonturbulent zone. The classical terms will expressed in terms of the

unconditional closure with the modified time scale Z’Ur given by (26).
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The dissipation in (14) is negligible, because viscosity has no effect on
momentum transport in irrotational flow. The closure for the diffusive

flux is given by {12}

0 4~ & G -2 = >
9, %tz [8,+ 752028 28 +24) 2

L < 3 5 wa
where
~ —t ‘9 ~ e ;) ) =~ ;) ~
- °5)0 © 70,0 » 10 9,0 Og)0 O 4 %90 2R
"C)w q”ﬂgxﬂ%"ﬁ}’ LA e %Y ey %% %)
and
E-% — - =~ A~ o~
s e A 550 & 500 2%)
§ - AT
and CL has the same value as for the turbulent zone. The

pressure-strain rate correlations are again modelled as in the

unconditioned case with the modified time scale 2;,,.

D

o e ° N~ J!ésr —j==5 _,.JZ =
PP+ JE) =G g Ly - $4,4)

30)
)68 s 2 306 -2 > 708 | ML &e, -2
75 5GP T A 50 G R 347

The definitions of @)P,% are as in (23) and (24) except
nonturbulent zone quantities and averages replace the turbulen. zone
symbols. The second part in (30) representing the "rapid” terms is
multiplied with the intermittency factor to modify the time scale

determined by the strain rate. The first part in (30) has an additional

variation with J‘ in terms of the factor /Z‘f) in order to

compensate for the decrease with J‘ of the second ("rapid") part. Both

Ll Sl 2ai |
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constants C/ and C‘Z have the same values as for the turbulent zone
counterparts (22)-(24).
o
The closure of the interface group %4 is guided by the properties

of the solution induced by the second part of

; 2 -, -29° - Qr 2
| e (1. 4

. and

°Z£
Both lead to wavy solutions and thus the model
Ay [ [
; S = S 7> .8 9—&‘ + 221%) S. c3/)
is suggested. It is a preliminary form, which gives well-behaved
solutions, but different forms using the consistency condition (17) are
currently being investigated. Thus the closure of the nonturbulent 2zone

stress equations is concluded without new constants.

4.3. Disgipation rate

The dissipation rate g in the turbulent zone satisfies a complex
equation [16) with all sink/source terms and turbulent diffusion in
non-closed form. The closed form follows Hanjalic and Launder [16] except

" for the turbulent diffusion which is taken from Lumley (12] and the

interface group

\ -

&2 o~ =
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with C'6 = 0.7 determined by computer optimization. Thus the following

equation is obtained:

_ E? E4 ___éz = - - /33
where (12]

=

;—; k ————
—E 2 Q F UG B U5 (34)
c,

The constants are

€/=/_44, %fz.o y G =045 .

(5) Numerical Solution

The system of partial differential equations constituting the
conditional closure model reduce to parabolic form for boundary-layer-type
flows. Thus they can be solved in marching type integration. The present
method is the standard finite-difference procedure developed by Patankar
and Spalding [18]. The new aspect of the solution method is the
introduction of a block—solver [19] for the turbulent and nonturbulent
zone stress tensors. The reason for this is the strong coupling of the
gstregsses as a consequence of the diffusion models (19) and (27) which
makes sequential solution likely to be unstable. Thus are the stress
equations (13) and (14) respectively solved simultaneously forming two
block-tri-diagonal systems of equations with blocksize %-4 in both
cases. All other equations are solved sequentially in the marching

integration step.
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The discretization of the differential equation was performed using
staggered grids. All first order moments (intermittency factor and mean
velocities) were defined at node points, whereas all second order moments
were defined at the midpoints. This leads to nearly second order accurate
representation of production terms in the stress equations and the
diffusive term in the mean velocity equations. Furthermore is the
stability of the finite-difference scheme improved [7].

The initial conditions for conditional closure models can be set in
several ways. The turbulent zone variables and the intermittency factor
can be prescribed corresponding to fully turbulent flow or the
intermittency factor is started with a small value and the nonturbulent
variables with laminar profiles representing a slightly disturbed laminar
flow. In the present case the former method was chosen.

The boundary conditions for the apparent stress tensor in the
nonturbulent zone require some consideration. Since the nonturbulent zone
stresses cannot approach a homogeneous distribution the decay laws
discussed in ref. [9]) are used to establish Zj.??);’ at the free
boundary. This is done in terms of a gradient condition

99_ e & -2 q‘f’z)*’ Sfor ¥ ¥

Yy *A Yo °©
where )/ is the normal distance from the center of the turbulent region
(symmetry axis on location of maximal shear stress in turbulent zone).
The location of the origin )/o for )/ is not known exactly, but for large
values of )/ this relation becomes reasonably accurate.

All calculations were performed with A/= 50 grid points over the
cross-section and the number of steps in x-direction ranged from 800 to

2000 depending on the length of the computational domain.

\ '. .»’\'s'x' R A S S A S L SR UL AR .'~. -. AR .-. AN -. C e N i T W e S

o gy » 2 N TN e e

LA

NS s
AL




L}
’
3
3
ki
¢
Ll

2 B

N3N
ff~lf

™
oy

(6) Applications

The conditional second order closure developed above was applied to
the calculation of several plane shear layers. All calculations were

carried out with the same set of constants given in chapters 2. to 4.

6.1. Plane jet

The results for the plane jet are shown in fig. 1. to fig. 10. in the
nearly self-similar region. The experiments of Gutmark and Wygnanski [20]
and Sunyach [21) are used for comparison with the calculations. The
intermittency factor profile in fig. 1 lies between the two sets of
measurements (open symbols: [20], full symbols [21]), but is somewhat
steeper than the experimental profile. The mean velocity for the
turbulent zone, the nonturbulent zone and unconditioned are compared with
the experiment [20] in fig. 2. The nonturbulent zone mean velocity [7 in
fig. 2 and in fig. 3 is higher than the turbulent zone mean at the axis,
because the nonturbulent zone shear stress (fig. 4) is always less than
its turbulent zone counterpart thus leading to slower decay of 5 . The
calculated shear stress (conditioned and unconditioned) in fig. 4 is lower
than the experiment ({20] in the outer part of the flow, but agrees
reasonably well with the measurements in the main part of the flow field.
Consequently is the spreading rate d)é.g/d/ Fo/108 close to the
experimental value d)é.s/dxa' O/ | The normal stress components are
shown in fig. S to fig. 10. Their relative magnitude can bde evaluated
from fig. 5 for the unconditioned case, from fig. 6 for the nonturbulent

zgone and from fig. 7 for the turbulent zone. It 1is clear
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from fig. 6 that b":‘ becomes dominant as y increases, which is in

accordance with the relation [9)

e % 13
g% = " + 2

as Jt ~» (0 . This property is due to Lumley's diffusion closure (27) and
the interface terms (31). If the simpler gradient-flux model of Daly and
Harlow [22) is applied this relation cannot be satisfied as the outer edge
is approached. The comparison of the normal stress profiles with the
available experimental data [20) shows reasonable agreement fig. 8 -

fig. 10. In particular are the shapes of 25;-:‘ and [Zﬁ well

predicted.

6.2. Plane wake

The downstream region /¥/D = 200) for the plane wake of a cylinder is
compared with the measurements of Fabris (23] and Thomas [24] in fig. 11 -
20. The profiles for the intermittency factor in fig. 11 is about ten
percent less wide than in the experiments (open symbols: [23], full
symbols [24]), but the slope agrees well with the results from [23]. The
mean velocities in fig. 12 are in close agreement with the experiments
[23). The turbulent zone mean velocity (7 shows a slight bulge near
the outer edge, which is due to the boundary condition set to be equal to
the free stream. The nonturbulent zone mean 5 in fig. 13 does not
allow complete comparison because only limited data are available. The
comparison of shear stresses fig. 14 and normal stresses fig. 15 to
fig. 20 shows much the same properties as for the jet. It is noteworthy

that UZ"' and 2)24 in fig. 19 are close to the measurements as for

the jet.
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$.3. Plane mixing layer
The plane mixing layer is a flow, which is rather difficult to

predict, because of its sensitivity towards the flow conditions and the
appearance of coherent structures [25), which is reflected in a wide range
of observed spreading rates and significant variation in the experimental
data [26]. The calculations for the conditions given in [27]) are compared
with the experiments in fig. 21 to fig. 80. The intermittency factor in
fig. 21 shows a broader profile than the experiments of Wygnanski and
Fiedler [27]) but agrees on the high-speed side with [28) and is lower than
‘ the data of [29) on the low-speed side. The agreement of the mean
velocities in fig. 22 with the experiments [27] is reasonable. The
turbulent zone profile (full circles) from [27] is not approaching the
free stream on the low speed side. It is not clear whether this is due to
a different normalization of the experimental data on a genuine tendency.
The comparison of calculated mean velocity for the nonturbulent zone with
experiments ([27) in fig. 23 is quite good and extends over the complete
profile. The comparison of the stress components in fig. 24-30 with the
experiments [27]) is better on the low-speed side than on the high speed
side. This can be traced back to the digssipation rate equation which does
not produce the correct length scale profile. This could be improved by

using a length scale which is constant over the cross-section.

(7) Conclusions

The closure of the first and second order moment equations for
conditioned variables was developed and the resulting system of model
equations was applied to the calculation of several shear flows. The

following conclusions can be drawn from the properties of the model and
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the comparison with available experimental data.

(1) The intermittency factor J»— plays a central role in
conditional closures, because all unconditioned moments are combinations
of conditional moments and the intermittency factor. The source term of
the equation for the intermittency factor requires closure, which is
constructed as difference of production due to creation of apparent stress
in the turbulent zone and the inhomogeneity of the aﬁ-—distribution and
destruction due to viscous effects. The calculated J‘-profile appears in
all test cases in reasonable agreement with the measurements.

(2) The conditioned moment equations contain interface terms, that
represent the transport of mass and momentum due to the movement of the
interface. If it is assumed that the conditioned mean pressure in both
zones is equal, then follows a local and closed consistency condition
eliminating the need for closure of the interface terms in one of the
zones. This is used to advantage for the mean velocity equations, but for
the stress equation only a simplified version is applied. The results
show that the nonturbulent zone mean velocity is in good agreement with
the limited experimental data available. The comparison of the
nonturbulent zone stresses is too incomplete to draw definite conclusions
however.

(3) The notion of conditioning allows further application to reacting
flows (in particular premixed flames [30]) and generalization to nonlocal
conditions to deal with structural information not accessible to

single-point theories.
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Figure captions

Fig. 1 Intermittency factor for the plane jet.

| /y:)//x,é— 3 Symbols: 0[20], e[21]).

p Fig. 2 Mean velocities for the plane jet.

P R

(Symbols: [20]).
Fig. 3 Mean velocity in nonturbulent zone of the plane jet.
(Symbols: [201]).
Fig. 4 Shear stresses for the plane jet. (Symbols: [20]).
Fig. 5 ©Unconditioned normal stresses for the plane jet.
Fig. 6 Nonturbulent zone normal stresses for the plane jet.
! Fig. 7 Turbulent zone normal stresses for the plane jet.
Fig. 8 Normal stresses in the plane jet compared with experiment [20].
Fig. 9 Normal stresses in the plane jet compared with experiment ([20].
Fig. 10 Normal stresses in the plane jet compared with experiment [20].
Fig. 11 Intermittency factor for the plane wake
¥ ( 7—-)//)’0.5 , Symbols: 0{23], @[24]).
N Fig. 12 Mean velocities for the plane wake (Symbols: {[23]).
Fig. 13 Mean velocity in nonturbulent zone of the plane wake
(Symbols: [23]).
Fig. 14 Shear stresses for the plane wake (Symbols: [23]).
v Fig. 15 Unconditioned normal stresses for the plane wake.
Fig. 16 Nonturbulent zone normal stresses for the plane wake.
" Fig. 17 Turbulent zone normal stresses for the plane wake.
Fig. 18 Normal stresses in the plane wake compared with experiment [23].

Fig. 19 Normal stresses in the plane wake compared with experiment [23].

® e s » s A

Fig. 20 Normal stresses in the plane wake compared with experiment [23].
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Fig. 21 1Intermittency factor for the plane mixing layer
(4 =0y~ You W} %q)Symbols: 0271, (28], O [29).
Fig. 22 Mean velocities for the plane mixing layer (Symbols: [27]).
Fig. 23 Mean velocity in nonturbulent zone for the plane mixing layer
(Symbols: [27]).
Fig. 24 Shear stresses for the plane mixing layer (Symbols: [27]).
Fig. 25 Unconditioned normal stresses for the plane mixing layer.
Fig. 26 MNonturbulent zone normal stresses for the plane mixing layer.

Fig. 27 Turbulent zone normal stresses for the plane mixing layer.

Fig. 28 Normal stresses in the plane mixing layer compared with
experiment [27].

Fig. 29 Normal stresses in the plane mixing layer compared with
experiment [27].

Fig. 30 Normal stresses in the plane mixing layer compared with

experiment [27].
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Mylti-scale closure for turbulent shear flows

S. Byggstoy! and w. Kollmann

1. Introduction

Turbulence models based on a single time and length scale have
successfully been used to calculate a number of equilibrium turbulent
shear flows [1]. However, when the turbulence is not in equilibrium it is
generally believed that it is necessary to include more than one length
and time scale in the modelling. A multi-scale model was first developed
by Hanjalic and Launder {2]. Based on the spectral energy transfer they
intuitively constructed transport equations for different regions of the
energy spectrum,

In this paper a new multiscale concept for modelling of turbulent

flows is developed. The concept is based on statistics conditioned upon a

positive scalar being inside some given intervals. Each interval (zone) 3
has its own time and length scale and different statistics can be used for
modelling the exact equations inside each zone. The dissipation of kinetic
energy is taken as the scalar and then the dissipation term in the equation
for turbulent kinetic energy in the zones is viewed as an independent )
scalar variable. The modelled transport equations for each zone have to
be complemented with either the equation for the probability density
function tor the dissipation or the form of the Pdf has to be given
explicitly. The paper is organized as follows: first the exact transport
equations are derived and discussed, then the exact equations are modelled

and solved for the case of isotropic turbulence and for a plane jet flow.
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2. DERIVATION OF EXACT EQUATIONS

First the exact equations serving as basis for the multi-scale model
are established. These include the transport equations for intermittency
factor and conditioned first and second order moments. Some of the

equations can be found in Ref. [3-6].

2.1 Intermittency factor

Let Pd/x, é)be a fluctuating non-negative scalar satisfying the equation

AP * ¢dF =QrAP) + Sy 02.1)

where $¢ expresses the production/destruction of the scalar ¢ (S‘¢ is
assumed to be local in space and time but may be non-linear).

Consider a discretization of the range Z2/@)

C<l <l " Py CPu <X

and let the instantaneous flow field £ be divided into overlapping zones

’9/' , 7200 M gefined as

9, = Jx: P>y ]

, P AP N P I S T AR NI




It is then clear that Q/'ﬂ CQI- for all/ . 1In order to derive exact

transport equations for the flow variables inside each zone, a sequence of

o/
indicator functions L@:,é)correspondmg to the sequence ;50‘-&:015 def ined
as

/ ¢({,i)> 7'g
L rné) =Z/ _ % /2.2)
0 otherniise

The surface Sk/{,é) corresponding to each Sﬂk in the range ) is

given by the equation
St = Py — ¢, = O

Along this surface dSk’-O and the dynamics of the surface is described

by the following equation
S,
9% * y*gs, =o (2.3)
where U.‘S“ is the instantaneous velocity of the surface given by
S, S
2% = X

where _/\_/S*'is the position vector of the surface.

The velocity of the surface is further split into two parts
s, &y ok
Q=g+t 2V (2.4)

where 24 is the fluid velocity at the surface and % is the
propagation velocity of the surface relative to the fluid. ’Z: is the uynit
normal vector on 5’,( defined as positive pointing into the domain 9‘ .
The 1indicator function _Z‘/g,g) is obviously constant along

5;(!,&) and satisfies the equation
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27, * ¥ QL =0 (2.5)
Using (2.4) this tranforms into
&«
AL + QL = V') z (2.¢)

The derivatives of the indicator function can be expressed as

. =85 2—{;‘ = 28 J5,)
2.7)

AL =05 25 = 95 Jrs,)

where J;-) is the Dirac pseudo-function. Introducing (2.7) in (2.6) gives

AL + gL = V4/vs./de,)

R

By taking the mean value of this equation results in the equation for the

intermittency factor g4, = (L. )
Dpu + ACLYD = VHIVRIIS)) 2.8)

At this point conditional mean and fluctuating velocities are introduced as

~ *
ZJk = _(_.-w , 045 U — g‘t
/2.9)
2 - (//“-Z;)L‘> 004' £ 2 __z'j"*
Z{t ) (% [ 4 (4

/-ﬁ
where z'/;* is the mean velocity, at /¥, ¢J of fluid belonging to QQ and

(-4
q“' is the mean velocity of the fluid which does not belong to 9‘( .
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; By introducing this 1into (2.8) gives the following equation for the

intermittency factor
Qe * R0Gp) = (VY VS, )5 0) ¢2.10)

The relative propagation velocity V¥ can be expressed in terms of the

' discriminating scalar¢ by using (2.3) and (2.4)
A + rad) = vove
t¢ ¢¢ = /

which is valid at the surface S v ¢).

: By introducing (2.1) ¥% can be expressed as
P A (2. /)

which shows that +”%is not bounded for /V¢/$~ -2 0.
By introducing this into (2.10) the intermittency equation takes the

following form
Qe + AJie) = ([20rye)+ S ]I -0 c2w)

The right hand side of this equation will be denoted by St and
expresses the mass entrainment per unit mass of fluid from zone £-/ into
zone A . It can be shown that this term is positive or negative depending
on the nature of the scalar and the threshold value ¢4, .

In order to develop equations for the flow variables inside zones
where the value of ¢ is inside some specified interval a non-overlapping

« decomposition must be used. This is done by defining 9@) as

e R T
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which satisfy the requirement

Qe nd,, = D for kv L.

The appropriate indicator function and intermittency factor for this

decomposition re, respectively

- 213
Ty = Lo = 2, J‘(n = Jars )
The conditional mean and fluctuating velocity for fluid belonging to 8/:)
is then
2 . (L~ Lo, ) %) ¢ 10

o

k)
» 4= Y - Y 12.1)

I« duer
By using (2.14) and (2.12) gives the following equation for f/e)

Qtd‘ﬂ:) 4 ‘02 /J‘(u g*) = \S}( - 5}4’!/ 2.45)

Note that the divergence of Z{')is non zero and the relations /ﬂSJ 2 /P5/J7s) )

Qe = —Q40- o [ RAIE D (G B/

hold, implying that 82{ # O but does not fluctuate.

2.2 The Zone Averaged Momentum Equation

By multipiying the instantaneous momentum equation

/
1Y + 434 = 4rdn) —gip
with the indicator function _Z;(;V,é) and averaging gives, after some

operations with the Dirac-pseudofunction , an equation for the zone

conditioned mean velocity ZJJ*).
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The momentum fluxes through the iso-scalar surfaces S, and S,,, are

given by
wpr= (g V- nts Lpx)dis, ) - Juiy o E )
Rp =y Fn
2./6)

&e¢!
and /%Q follows by increasing the index k. The intermittency equation

(2.&)  allows rearrangement

%) .r )
22{( -+ Z/‘/t)%y‘/x) = ,Z,[yﬁy“) /4) J(:)] czp/.t)

AT

// /z;mlovu)) _ A/“*/z;/u “'/4))
7 = oo

= 2P 5% D b (p - o) +

(2.17)

Comparison of (2.17) with the equation for the unconditioned mean velocity
Y,
proportional to the zone-conditioned Reynolds-stress arises in the elimination

reveals the appearance of two new term groups. The first group

of the intermittency factor on the left hand side. Its role can be elucidated
for thin shear layers 1ike jets, mixing layers and boundary layers anac low
values of k (say one) and Jas,= © . Then can be seen that this source
pushes the conditioned velocity profile further out than the unconditioned,
hence increases the spreading rate. The second group is a collection of point
statistical moments representing momentum transfer through the interface,

Chapter three is devoted to the properties of this group.
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2.3 lone-averaged Reynolds-stress tensor

The transport equations for higher moments of zone-conditioned
quantities can be obtained without difficulty using the properties of the
indicator functions. The Reynolds-stress tensor satisfies for

zone (k, k+/) the following equation

k) lk) &) k)
R - JRY -y

?/, 'w‘g *w ém)) - v (eémgém)
+(ES = L 00 «a:)o?&/f,, /k,,) 'Jiﬂ /9:)9/1;, I,

"w) - ;:4*//&,/4) yr40)
/ = Sar)

~ (VA% # Vs, )N+ e
(2./8)

The Reynolds-stress is defined by

2.(1:) - 'V(k) "(U)
L2 ]

and the turbulent flux of 22(:) by

F%:‘:) = 8_ 2;:&) _ (4/4:)1{,‘;/‘«)%/&) ) o):e ‘/&;; )p ) )f/ (a::&zaD

Conditional statistics dintroduce two new term groups as in the mean
velocity equation (2.17). The first group, arising from the elimination

of the intermittency factors on the left hand side, can be recast as
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Fx J‘N
# Vo) = Tl Yl b= o ) -5 el - )

+ viscous + Divergence terms,

t4)
V250 (4) )
where DE =9 * 2, 2.

This term group can be expected to provide additional transport of
2;:0 thus changing spreading rates of 2;:" -profiles in thin shear
layers. A more detailed estimation of its effect is however difficult due
to the lack of experimental information on the intermittency sources. The

second group of point-statistical correlations defined by
P = 5 2 Y + L orey ntezy nk)die,))
w P E Yy 5 ) fpdx %% «
\ 2
! vt Ry)lE)) - Jraynflis))) )
' will be discussed in chapter three,

. . . 4
' The equation for the kinetic energy of turbulence 4 ) for the

##
k" _zone deserves special attention for ¢5£ . It follows from

(2.18) as
rk) (k) li) - %) _ &) k) “)
Qe YN = QEL - 25y — €

+ /)Z"—';:) 7 V%A’ru) %At/f,( —Jll(//)
k)
+J-“_—k?l—*l /‘2 ”‘2/241:"10/) - (V*JZSA')) > )/Vk”)?‘skﬂ)y
e = T
; 7 In = far)

! “» TR TR T et q e . » EOL T T IO P S 1 Tt m® e
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The dissipation rate conditioned for zone Ak is obviously bounded by gﬂ“

and (D,W , hence

E“ e G ¥ By ) + O~ Pass)

If the interval length /gp“—;q“// is small enough, this does not
constitute an unknown correlation (for which an equation could be derived)
but an additional discrete independent variable. The zone-conditioned
moments can be considered therefore functions of o, ¢ and;ﬂ If we
assume for the moment that F >0 and F;(:” > (O we see that
several inverse time scales can be formed for the /(""'zone:

r's

iy 2 -
Energy input from zone £-/ : 2~ ' = &) 4, Ik /)' >
, -
” /( k fl ﬁf/

2 }__ kt+/

K&

= ka)_/, A,/A'H) J‘IL -J'l‘(*/

-/
t t k¢l :
Energy output to zone 2;0;

) / / _ &4/
Energy transfer through zone & : 2% = A 4 L1

tr k(/u ﬁ "J'i’f/

_ +
Average scale for zone Kk : >/ = %’

The input and output scales make sense however only for finite intervals
A;ﬂk . Hence only the transfer scale and the average scale will be used
in the following together with the corresponding length scales formed with

appropriate powers of k.

10
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2.4 Relation to unconditional moments

Unconditional moments can be recovered from the sequence of
conditional moments via local relations following from the definitions
given at the beginning of this chapter. Noting that J‘o = 1 and llvw' v

we obtain for the unconditional mean value ;;of a fluctuating quantity y*

N
y = “ k ~ fA# (2.20)
77 ;)_:;v (fe = fows) 2.20

o) = ~
for the special case A/=/ we note that ;/)' -;/) and ;0”1;1! and then

reduces (2.20) to the well-known relation

G -p -
Furthermore is
A
Z/va - }‘kﬁ) =/
k=0

and the terms in the sum are nonnegative due to monotonicity of the

intermittency factors. For second order moments follows similarly

A A
W = I‘Z_ (¢"m¢' m) 4 flt - J‘", ) * g ¢”)y/' /*)/J‘k ._J’kfl)
=0 (24

Y,
-> 5 ¢w%/4)/ 4= Jer e = Fous ) (2.27)

k=0 L=0

For the special case N = 1 it reduces to the relation

W - J‘/ (Jﬂ)y;m) . -f/)(¢‘m)¢:’w) ’,_/, //"J’/)/ //L¢/ay/;p(/)__¢/w)

The formulae for higher order correlations can be derived without

difficulty.
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3. Transport Througn [so-dcalar [nterfaces

lone-conditioned moment equatlons Jontar” 3 1erT group al.ount Tty tov

<
the transport effects through the 152503iar surtace represented oy ne

mplicit equation

S exd) = ¢(!,¢) - ¢ =0

This tern group appears in the i1ntermittency tactor equatrons as
© o TP - s/ TR
L° = (v i) —vJis,, ) (3.

g angd in the equation for moments of order on2 and nigher as

£ &/
- A
T = “ X /3.2)

x Jx = fass

. , . & .
provided the demoninator is nonzero. /i/__l_z,p) denotes a collection of

A point-statistical correlations of the arquments velocity and pressure with
the relative progressive velocity Vk and the normal vector rl: of tne

) iso-scalar surface 5;‘30.

3.1 Source terms of intermittency

) The term group (3.1) represents the transport of the iso-scalar
3 surface itself ana contains productive and destructive effects. This can

: be seen by considering the limit 8¢3 >O. First we notice that

Yoo b = (05 =300 = [otp Prp) - / o Frgp)
Y %7‘4’&

P P ) - g vt gy, g - . - - .._.._-~-.-u-\.‘-----\o.\_--_~.\.
A I L U X 'R NN, .-.- A ‘aa_ s A AL N ) R :r, Lot oo .'\.-_r Sl e et e
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where BV‘!"U is the one-point pdf of the discriminating sca]ar¢ .

For A%>O but sufficient’y small and P(¢) sufficiently smooth follows

Fu = Jour = BYu Flhe) # ho- b (3.3)

Furtnermore follows from the definition (2./4)

Af;:; v < Cv/p=9) (3.4)

which is the mean of &) subject to the condition that the sca]ar¢assumes
at the same (fixed) location the va]ue%. The relations (3.3) and (3.4)
are the primary tools in analyzing the sources (3.1). Making the

Sﬂ-interval sufficiently small and applying (3.3) and (3.4) to (2.14) we

obtain
Q(ap. P) # (e, /B=pd apP) = (V' Il50) ~ (V' T5,,))
+ O (84F)
Dividing the ASﬁK and letting A%-)O leads to
k At/
VP + Q(CUlp=PP) " L _,OA,, i [(V9%) — v J{/j;) )/

The limit on the right hand side can be evaluated by direct derivatior ¢
A

the pdf-equation. Defining the fine-grained pdf P by 7]
A

the pdf equation follows [8] as
= - )2 SAYy 0 o~
QP + QI /p=pdP) ==, (EP) — ., "o

Equating the right hand sides of (3.5) anc (3.6% ‘..

result

/{V"J‘s W= VEIE

A%—*O %
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Note that as is defined as
%= I VR.VP
From (3.7) follows that the limit on the left hand side exists and

therefore
%(Vf?s)) - Qy/S/y)P) 7 %‘,(C‘/ﬁ)
and finally
(vdcs)) = Sepy Py + .,2’(5’,5) # comns?. (3 8)

fquation ({3.8) allows a aQetairleo discussion ot the intermittency source/
sink term for the case Pf;ﬁ) close to log-normal. First we note that
CESP D 20
ang  thereture wtll .-,;(("ﬁ) change si1gn  at  least once Decause
(ESB) 204 ¢p 20 anc (F’ﬁ)m'-a . The second derivative n (3.7)
w! i De negative around the mean (PB) ot ? 5], nence 'y (setting S=D
tor tne mnt';'| V/"\))O For va'ues y‘ tar away trom (@) the second
jertyat: o, mlll be pusitve unnq%/&(”sD‘OH P/¢) 'y
smoutn et th s vongie peas near (@) . It we spectaitze the discriminating
@.f . the Jcsscpation rate ot turiuent aonety. energy, and
GV e 8 cegtar T the turti, enrt t e *te.d where (EDDO , then

s Tfat lae U the Ccasyipatton ot &

’ . TR IR
AL S T e S N
a »
et F Y ans Lttt cent se U (FDY a0 ar
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) 15
CvitJes ) > 0
for %((é‘) and
Crctrs,)) <O
for G >CE) - The scalar dissipation terms appearing in (3.7) and (3.8)
) are sketched in fig. 1 for the case of P/¢’) being close to log-normal
3

form,

The effect of source $/¢) of the dissipation rate £ on the
intermittency factor ), becomes apparent from (3.8). If Scgh) >0 then
Jx 15 produced, but 5@))0 implies at the same time a shift of Pfsp)
towards higher values of ¢ and the growth of J“ is changed according to
the shape of P .

The shape of theﬂ.-profiles can be inferred from (3.5), (3.8) and
the boundary conditions with respect to the y-uis.

2’0'/ fw(f‘o ) J‘kfl.o /°’¢'$0w1
fquation (3.3) shows furthermore that (provided the constant i~ (3.8) is
zero) the realizability condition
OLYu< /) for &=07 " y Mt/
15 satistied, because the right hand side is the source term ot the
egquatyon for (integrate (3.6))
4
Yoy = /- /dy’P/y')
C
o T T R NIRRT \‘\',\_,\-.\;.\‘.\;'
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which satisfies O < §p < /.

For small <pk (close to the boundary %-0 where J/ks/ ) the
profile of r‘ will be close to fo‘ / if the turbulent Reynolds-number
is high, because the pdf of g will be small for small values ofV and
be concentrated at high values of @ and therefore Stp) and CESA) will

. < . .
be small too. For high values D < (E‘%”x the profile of J/“( will peak
near (82@' where the source of J‘x may still be positive. Further away
from the location of (&, ) where (F) (((é')wythe source of J"k will pbe
negative (see fig. 1). The sequence of intermittency factors is however

monotonically decreasing everywhere in X -space.

Figure 1 - Distribution function and scalar dissipation function

for two different spatial locations with (¢)z 2 (¢),

AT WA T AT N T N AT AT f\r\-.(.'-',.-r\f\-\_f...-\z«.;f.;.- ‘f.‘-r,;f\'f.:.'.:.~\‘¢.:.- CA R PG NN AN ORI AT\
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These properties of I‘x are summarized in fig. 2 for the example of a

thin shear layer

Figure 2 - Intermittency factors r‘ for plane jet and N=4,

It should be noted that for 4?« sufficiently small the profile of JLI

corresponds to the profile of the classical intermittency factor which
distinguishes between turbulent and non-turbulent states of the flow. A
large amount of experimental data is available for this case (references
given in [6]).

The relative progresson velocity V¥ of the iso-scalar surface S,-0

was derived in sec., 2.1 as

Vepr = 1V@1 [0 ) + $/¢).£5 (3.9)
=f

D T
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This can be applied to (3.3) and leads to a new expression of the scalar

dissipation term of the pdf-equation tor a fluctuating scalar. we find
¥
CESP ) ./dy,'(;//was/J@ 1)
4

Hence is the scalar dissipation of 2~ at (p the integral ot the relative
progression speed of all iso-scalar surfaces with y’g Sp Equation (1.9)
shows now that the instantaneous values of l/ are not bounded and the

amount of scalar dissipation of P at ¢ depends on the Pdf of ¢

&
CESA) =/a’§0’(r2/f’r2{¢)J7¢ - ) (3 10)

3.2 Source terms for zone-conditioned mean velocity

The term group (2.16) represents the transfer of momentum through tne
iso-scalar surface Sx- O and contains correlations of zone-conditional
velocity with the progression speed of the surface, the zone-conditional
pressure with the fluctuating normal vector of the interface and viscous
interactions of velocity and normal vector. The limit Aﬂ-*o reveals
again the effect of this group on the zone-conditional moment concerned.

with (3.3) we can write

/7,4_ &t/
¥ = el N 4+ hot
o Ay, )

. . [ 4 . . . .
The terns constituting He CONtain a viscous contribution ot the form

Kl ntdls,)))

which is negligible compared to the other terms for high Re, -numbers

¢
because it scales with the mean field. Hence it will be neglected and

K
H“ appears to be

v Y

., e -~ . » - - ~ ‘e m T . .. M . . . Tl T N A . M -'
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K
Then tollows for I.(

P )l M=) — Prg a4l /P 45)
AYn Frepn)

Vs

The tluctuating components are in the limit A¢h = O

)P = P etc

o /x)

Kk
) and .Z; turns out as

o

. r3.1)
P

provided /D/;I;,)>0. The terms .Z; do not contribute to the overall

S Vi Y A AR R N L e

(unconditional) momentum balance. This can be seen from the expectation

of I;k 3
, (2] = [otp Prp Zp)
(7
with (2.32) we obtain
Y a0
(I.:) = p“p) ([ . ]/¢ ny>¢/
=0

. A & .
Hence transfer the point-statistical terms _Z; momentum along the Sp-ams

without affecting the unconditional momentum balance. Since all
Zone-conditioned mean velocities must satisfy the same boundary

conditions, momentum is transferred from the boundaries to all zones. For

RCAES \ ro’ff .‘{ L A N P 2

o \i_"l.t.'l_t_ o .e" AR Yy A “.-,‘.-f'.. DA JOOA )
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small values of ¢ the zone-conditioned shear stress can be expected to be

small and will therefore be insufficient for momentum transport to keep
the corresponding zone-mean velocity field stable, Hence must the point-
statistical term group .Z;k transfer enough momentum out of these zones to
ensure stability. As Sp increases the Reynolds-stress in these zones will
become more important for momentum transfer and I will decrease and
change sign. For high values ’D the role of Ix will be opposite to its

effect for low ?

3.3 Source terms for zone-conditioned Reynolds-stresses

The term group (2.19) represents the transfer of stress across the
iso- scalar surface S, =O . Its properties are similar to the
corresponding group in the momentum equations. In the limit Ayk“’O we

f ind

c,o‘ f & o)
_Z;:“ P/) /P{y)(/”” f/’mv ,{( "

4 ZZM ‘) - v /"‘) "")ﬂ;//¢ -.-5&)./ (3./12)

where the last viscous term in (12) is again negligible. The unconditional

expectation of _2;6 is zero
(I") /o’;p P/V)I “@ = 0O

indicating that the pomt-statlst\cal group (2.19) transfers stress and in
particular kinetic energy along the (f—axis without affecting the
unconditional balance. Furthermore must l;g/y) change sign at least once
with respect to }0 If the choice ¢.=.- ¢ is considered, the hignh

va lues ? of & correspond to the small scales of the turbulent motion.
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For high turbulent Re-numbers local isotropy can be assumed for this range
and small normal stress 1levels. Then follows that there is little
production of zone-Reynolds-stress due to mean strain rate and most
production will be supplied by the transfer term (3.12), which s

therefore positive for high ()a-values and a«=4 and negative for small

so-values.

3.4 Multiscale closure models

The first step in the development of mutli-scale models based on
conditional statistics is the choice of the discriminating scalar ¢ .
The most natural choice is the dissipation of turbulent kinetic energy
because this quantity appears in the equation for turbulent kinetic energy
(and in the equation for the individual normal stresses). If the
turbulence field is close to equlibrium it is probably not necessary to
solve an equation for the PdF, but instead use a prescribed Pdf expressed

in terms of some of its moments. If € is taken as the discriminating

scalar then the log-normal distribution may be a good choice [9]. In a
non-equilibrium situations it is necessary to solve a modelled equation

for the intermittency factors J‘;( or to solve the Pdf equation.

4, Closure of the Multiscale Equations

In this chapter closure of the multiscale equations is discussed and a
simple closure model is suggested. The model is applied to decaying

isotropic turbulence and to a plane jet.
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4.1 Multiscale Model for Decaying Isotropic Turbulence

In the case of isotropic turbulence the equation for zone conditioned

turbulent kinetic energy simplifies to

(l)
/ (V*25,,) = V50

J4“ = - ™ * 2

A'_ kv
4 i__f?;_ /6.

J"« - fkﬂ

By using (3.8) and (3.12) this equation transforms into (by letting
Ap=le >0 .

x)
%/k"’Pfg)) - — QEF — EFre) %.2)
where # = — Frr) _Z;: (See (3.12))
Equation (4.2) has the same form as the equation for the enerygy

spectrum for isotropic turbulence. This is seen by first integrating over

all values of £ , then the following equation is obtained.
a, (k) = — (€)

which is the equation for kinetic energy for decaying isotropic turbulence.

By integrating (4.2) from O to some el yields

o ¥ ~.
eZ/(, = —FrE ) — &, (4.3)
£
where k /dé‘ kg))/D/E‘) ) é: r/o/é' e Fe)
the term - (E) expresses theo net energy transport from zones

with £<E, to zones with € > &, | this is illustrated in Fig. 3.
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Figure 3. - Schematic illustration of the energy transport (eq.(4.3))
As seen from (4.2) the Pdt of £ 6 ZJg)is needed. This can be obtained

by a direct solution of a modelled transport equation for the pdf or by
prescribing a pdf which depends on some of its moments. Both of these

methods will be discussed next.

4,1.1 The Transport tquation for Pre).

The exact transport equation for Fre) can easily be derived from
the Navier Stokes equation and its form is given by (3.6). The equation
for Ple) is derived in Appendix 1 and for the case of isotropic

turbulence i 18 given by

QéP/g) = — ,2;’(1/76".75?3 - 22)%(/2;/0. 22

+ v Py Ly - ududn] P 04)

where & is the probability space variable corresponding to the scalar

A

£ = v %9

23
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The scalar dissipation term is modelled according to [8]
& o«

- Qe CVVE.VE By 2’:4 ,fz/a/e / o FUE)Ple") T/E) E/E)
(o]

- P/E)f (9.5)

where the transition probability 7 is given as

/
JEL 77 for €' E<e’ors2s<e’

T )g) = _ 4.6 )
(D] otuersise

and the timescale 2= as

(4)

z = (€)

’4.7)

It is easily shown that the expression (4.5) decreases the variance of

the Pdf without affecting the mean, therefore the last term on the right
hand side of (4.4) must be responsible for the decay of ¢(€). This term is

modelled as

w9 ([P0 Yy +vPy - Yy duQu )Pl =

|
\ &
N

(4.8)

which represent a convection of the Pdf towards £ =O /for <, >0)

with convection velocity Uscz-f' . Because this velocity is not

uniform but depends on € the higher order moments will also be influenced '

by this term. H
4
k
{
L
3
4
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The modelled transport equation for P(g) is then

&
C
Qp = -Lé{/Z/dg’ AE" Peen Frew Tie /) — Pj* -Z:f%/&‘/’)
c e (¢.9)
By multiplying (4.9) with & and az respectively and integrating

over £ transport equations for ¢€) and (€’) are found. They are

£)
) = —C FF (¢.10)
) - A _
Qen) = — L[4 +26 ) ce) 4-1)

Equation (4.10) is the same as the (€) equation in the
model of turbulence (in the case of decaying isotropic turbulence) and the
constant €, is therefore put equal to 62-1.92. It is known from
experiments that the ratio (€2 A€) increases with increasing
Reynolds-number of turbulence, then by solving the ¢k — (&) model
together with (4.11) it can be shown (See Appendix 2) that this constant A

can be given when comparing (4.11) with Kolmogorov's modified equilibrium

theory [10] to be discussed next,

4,1.2 Prescribed form of the Pdf

In order to take 1into account the intermittent behaviour of the
dissipation Kolmogorov [10] and Obukov [11] refined the "universal
similarity hypothesis" [12] by postulating that the dissipation of kinetic
energy was log-normally distributed with a variance dependent on the
Reynolds number, More specifically they postulated that the Pdf of the

dissipation was given by

/ -
P = gz e L] e
where m = (b E) | A2 = VerrllusE) .
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The parameters » and /32 can be related to the mean and variance
of £ by the following expression. [See Appendix 3.]
(€) €
2l <=5) 3)
nm = /14 2
77+ € Ner A (&)

Further postulated (Kolmogorov [10] and Obukov [11]) that the variance
of £ was locally related to the macro- and aissipation length scales of

the turbulence by the formula
L
vorlflue) = 4 * A?——‘-’ ‘v /5)

where A is a “constant" determined by the macro structure of the fijw
and /ueis an “universal* constant. <4, is the macro-length scale
determined from the integral of the two point correlation function ang 9

is the dissipation length scale defined as

9 = (6

introducing (4.13) in (4.15) gives the following expression tor thne

variance

eny = €)tfe ‘/ﬁ.«y/‘" -] k) r

By asssuming that () = //k) and defining a t. L., = °

2
Reynolds number as E, =//()/{g‘ v) (4.16) can be rewritten as 1
A

(g)l) = (g)z e x /“Perf/? — / ] 4 A

Masiello [13] determined experimentally the constants A ang PREPEENE l

A=--09% , 44 =047

From the work of Driscoll [14] the constant o is estimateuy as

& = 05-
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The mode eJ eQuatiun n the . ase ot Jderay'ny 'sctroprc turbulience thnen

H ;Iek IR s

o /«Ter Pre)) FC/E- ®)) ) — EFre) /¢ 19)

where 7€) . ar e .a. . ated trom .9 or (4L )-(8.17).

4.0 app neatiir ot mu thiscale modeiitng to turbulent shear tlows
“he generva. eguation for zone conditioned turbulent kinetic eneryy

J81 e, T the Tt d? nd 0

- e 79 re)
't‘/k!"l"p\f i/q‘k"p) = -E(U/D * }‘6 P%Z{

+ G B P) + VI lhmP) = ) F (4 20)

\
were KB s the non-viscous part ot F . when solving an eguation for
P p ~d 4 q

I N .
(N the only new terms to be modelled are the production term

wp ‘a) ' . ,
2; %Z{ and the tyrbulent transport term %/ﬁp) However, in this
*nitral stage ut model development the zone conditioned mean velocities

w' ol Oe assumec eJudl to the unconditional mean velocity,

Q™ =y /%.27)

The 2one conditioned shear stress 2;::13 assumed to be proportional to
tne unconaitioned kinetic enerqgy and the following closure model 1is

suyygested,
z .
Il —‘%ﬁ— (%) + ) — f{s(/() /4.22)

[ )
f ¢, =0 o9
E
t
f
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T T

.’.’P is modelled according to the turbulent viscosity

The transport term F*_

concept

—) (/r) )
ELP & 655 L/ 4%™P) (6.23)

The modelled equation for zone conditional kinetic energy for the case of

a two-dimensional turbulent shear flow then becomes

UL™P) + W) (K°P) + @)D, (k“P) =3, [rv G, LK) Yrar)]

_ 2
E“P + C_,P(s)/c)(u)) * G (E®N=-(E))P  14.2¢)

From this equation, two zones are constructed by integrating over £ from

0"51 and from &£ e . The kinetic energy in the two zones are defined as
&, )

-‘/o'e kG Pr) , A '/;’6‘4'70 /)

~ ~
The equation for &, and 4, then reads

2/:7 + W)k + W)k - Q/v+ ‘L(gﬁ)fp /

- & + G (E)/J(u))ﬁg)f-(‘ (& = (&) Fre)) r6.25)

<,
&)
where €~, ‘/o/eep(e) , Ffé‘,)'/o’e Fre) .
o
Qb + YL *» @k = 9//:»*0,( 9L ]
-8 + (e)/;(uyf/ FE) 4G, [E ~ e (1~ Fee) ]

(6.2)
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where
[}

b
E, = [oe & Fre)

€
In cases where the mean dissipation ¢£) has a large spatially variation
it may not be possible to find a representative value of &, for the whole
flow tield. Then it is better to express &£, as a fraction of ¢¢) and
transform tne equations (4.25) and (4.26) accordingly. This transformation

is shown in Appendix 4.

5. Results

5.1 Decaying isotropic turbulence

In order to solve eq. (4.24) the following dimensionless variables are

introduced
v [ el F el (f)
= £ - - — > —_—
¢ EE; > P 'qusz , € CE), ) (€ D
v k) 72
fw. 4 Ly . e
k), > (€'Y,
where 2;= %—j‘-’. and the subscript o indicates the value of the variable
o
when £=0.

Equation (4.24) transforms then into

Lk™S) = —&P —¢ P(E- 6) (51)
The initial Pdf is taken as log-normal and the distribution of 4 "%’ as a
function of .EV is assumed proportional to pv/é() :

Pré)
Joe A3
which satisfies the r?equirement

[}
‘/dé' kP =/
©

>
k(lu =

PR I IR 0 NI RN I IR R AP P R ORI )
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tquation (5.1) is solved by using both a prescribed pdf and by solving
the pdf-transport equation. For the results shown in figs. 5-8 the pdf is
prescribed as log-normal and Kolmogorov's expression for the variance is
used. The mean dissipation, which is a parameter of the pdf, is
calculated from the standard (%) ~ (€ ) model.

Fig. 5 shows the distribution of K™ as a function of & for three
different times i‘v- 0, 0.21, 0.42, Fig. 6 shows the 'spectrum“/\;"/; ,
fig. 7 shows the interzonal transport of energy F and fig. 8 shows the
evolution of the pdf. The results are in qualitative agreement with what
one would expect, but due to the complete lack of experimental data it 1is
not possible to draw any conclusion about the quantitative behavior.

Figs. 9-12 show the corresponding results when eq. (5.1) is solved
together with the transport equation for /5/6") . The constant A in the
pdf equation is calculated from eq. (8) in Appendix 2 and €, is put equal

to (,=0O./ . The results from this calculation are nearly identical witn

the results shown in figs. 5-8.

5.2 Plane jet

Tne results from the calculation of a plane jet are shown in figs.
13-16. The value of the discriminating scalar &, that definesthe two
zones was set equal to & = 10’3 n2/s3. The exit velocity and thne
nozzle width were (4= 355 m/s and D = 3 «x 10}31. respectively. Figures
13a-c show a typical development of the zonal kinetic energies kT and 1; .
Figure 13a shows that for x/D = 10 the main part of the kinetic energy 15
contained in zone 2 ( £ > E, ). Further downstream the dissipation rate
decreases and more and more of the energy is contained in zone | ( E< &, ).

For X/0 = 60 fig. 13c zone 2 is drawned out and all the eneryy s

contained in zone 1. At this statiun the two 2zone model acts as 4

one-2one model, It is possible, however, to ntrodute a nan.. anstant




value of the discriminating scalar such that both zones always contain a
non-neglibile amount of energy as shown in Appendix §. Figures l4a-c show
the development of the probability for £ < €, calculated as the integral
from €0 to €<8&, of the log-normal distribution. Due to the decrease
ind€)tnhis probability increases downstream. In fig. 15 the interzonal
energy transfer is shown. Tnis energy transter is negative over the wnole
cross-section (x/D = 60) which means that energy is transferred from zone
1 to zone 2, but it is not strong enough to keep up with decrease of A':
due to the decrease in the dissipation rate. Figure 16 shows the mean and
the standard deviation of the dissipation rate. The stenaard deviation s
everywhere larger than the mean value as calculated from the refined

similarity hypothesis (eq. (4.17)).

Conclusions

A new multi-scale (multi-zone) concept for turbulent flows nas been

developed, and exact equations valid insyde the ditferent zones are
derived ana some simple nitial  mocelling  assumptions have  been
constructed yn ogrger tu cluse the system of equatiuns, The mode! -
applied to calculate decaying 1sotrupic turbulence anc 4 plane Jet, T
results are qualitatively 1n agreemert with expectalons, but Jue to the
complete lacw of experimental data 1t 15 not possitie . Jras any, furtner
conc lustuns,  Mere work 1S probabily necessary 10 oarder to retine  tne

model iing and to extend the Multi-s:aie concept to Lec il raer  eyel,

&g{qguquﬂgﬂgﬂt

TNty wora wdas supported Gy sFusk srant «dogy, o,




APPENDIX 1

PUF equation for &

Let & be given as €= U%Z{QZ‘ . An exact transport equation
for € can be derived by taking the derivative of the instantaneous

momentum equation

2y + YAy - ‘P"Q/o + vgjz{‘

w.r.t, X) and multiply the result with gyx

The result is

18 + 4RE = vILE - 28 dip ~ IV UULY
~2vdhau 4y )

where the pressure can be related to the velocity field by the Ppisson

integral,

i -///x =) $Pr s+ [Bovnatry erm

e

Vencting by £ and 7 the probability space variables corresponding to é?
and )

A ° respectively and defining a fine-grained joint Paf for velocity

and di1ssipdation as
3
A
Pr &g x. ¢) = J’/f’—F)‘/// J?&{, - i

the equation torp/VG 5 ) 11
Gu b « J!:i). (p/l‘,f‘{,{ ) 15 eas y Jbtarae

Dy 4s1nq standard operatirons with tne ‘r~fuﬂ(l|0ﬂ.
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marginal Pdf of £ , %) is obtained as

AP » Jresr) = v PP — w2 ne e B)

By integrating this equation over the velocity space the equation for the

002 T dpdu t vEudon + viudy du,)P )

where

B = Jteins - €)
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APPENDIX 2

Analytical solution for the variance of £ 1in the case of isotropic

’\'\fﬁf L

L

i

)

LN 2 RO AR Y P P A A s . . --\\\\.\-.-.--.-.\-.j
S SR IR NN « N f‘_‘.“?‘ls“‘l?.l,'J"_. (ot a ‘\'.'t’.\'.\:'vt'-‘.\':'-'.\'.\(\(.\':\f\f\{\t\{\':\f\':\"f\f\'f\{‘.

turbulence

Consider the following form of the equation for the variance of £ in

the case of isotropic turbulence.

dE€? _ _ Cs o (’)
s > (€7
where Z‘t% and where (4) and (&) can be found from the¢k) - <ED
model as
k) £ 777
gy = [1r L] ¢2)
(e, C-1E [ (s)
where (k) = (h)/te0) , (€, = E)(¢0)
Ck )y
nd 2, = € o

The solution of (1) is then

Cs

(5’1) -
CL e ant]
() [}

From (2) and (3) it can be seen that the turbulent Reynolds number
= KA @)decreases with time when 1.0 <€, < 2.0. The commonly used
value s Cz = 1.9 which is consistent with a decrease of Re. The
requirement that the ratio (&€’ 4E) s increasing with increasing Re

gives the followiny condition on (‘3

--------------

T

|
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5)
leading to the following condition on A from (4.11)
4 >0 6)
The constant C.s can also be related to the constant ¢ in the Kolmogorov
expression for the variance of & by the requirement that the ratio
CE'D/CE > calculated from (3) and (4) should have the same time
dependence as (4.17). The result is
3 2-6 (7) :
Csﬁzcz//f¢/(-2—(,z— ‘
The constant 4 in (4.11) can then be given by
A= wr2-¢) %)
s &~ 2
The constant/u can further be related to the fractal dimension of
intermittent turbulence.
b
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APPENDIX 3

Integrals and moments of the log-normal distribution

Let £ be a stochastic, log-normally distributed variable. The
logarithm of £ is then normal distribut ed and the Pdf of e £

is given by

Bop(bnt) = Pa«»f/-' !“8— /] (1)

were m = (bue), A= ((laus — lg))?) .

The Pdf of £, Are)  can then be determined as

e
/?/2) - 28(8) Z,lg &/ - éL/Ze{E) = P/e)

which gives for /&)

- / _ R Y-
Fee> Ae /i &7:/ g3 (b m»)jZ (2)

P
Consider the integral l-e
/

/
s/de X =73

Introducing (2) gives

e/
P / P~/ 1 _ 2
%, A}ﬁ'/dff enp )54 (e m)f
(o]

37




Introducing a new variable (/&) defined by

Y =T ’ AT
gives the following expression for I‘;
) 4 er i
- — P A
'Z;'/ W/dumyo/fz_ﬂpu vz)
- o0

where @i,e()is the error function defined as

x>
2 - ¢
(rx) 2 =<
9‘/ ”r-\/ié e
0

The moments of € can now be calculated as

- 7F ke Za
(€F) =1" = ¢

can be expressed as

(E%) - £)
A=l t G5 ) M e s

(€)2

CE)L

where (£t} = Y/F ~ (€))%) .

o O NSO, .ff.f.‘ o\ ol
SN RO LGOI A N LR RN OV, (R QAN

This integral can be further transformed into (see Ref. [15], p. 303)

.Z;Ip = 3/_&"7//0"7 +214502)/;¢//U(€,) —)éé) 74// ¢3)

4)

By combining the first and second order moments the parameters m and ﬁz

‘5)




The integral I; must be calculated numerically, this can easily be
/
done by one of the approximations for the error-function given in Ref.

15. In this work the following approximation is used.

5
-xZ i
erhixy= | — €7 ) @ ¢ x¥20
J
K=
where #= —= d the tant
ere /’"/0*’ , an constants are

P = 0.3275911 |, 3 = 0.254829592 , a3 = ~ 0.284496736
& = 1.421413741 , ay = -1.453152027 , ag = 1.061405429
For ¥<O the symmetry properties of e:,é/x) can be used

esdex) = —esf (-x)
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APPENDIX 4

Transformation of the multiscale equation

.. )
By defining A=z k™€) the modelled equation for zone conditioned

kinetic energy can be written as

L4 + Qs = QL dA) + S, /1)

where 6; is the collection of production/dissipation and interzonal
transport terms,

A new discriminating scalar é‘ defined as

E

£ = ==
)

A
and a new dependent variable 4 defined as

RN

E) = (€XF(E)

)

A
A = Lk™P/#)
&
are introduced such that
V)
A A ”
/a’sA/é) - (k)

A A
Then follows A =(#)A4 and the equation for 4 becomes

QA + @A = b, JA) - .2@).2/

“lx

A
5% T SedE (2)

where 5:,” is the source term in the ¢F)-equation.

--------------
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A
If an infinite number of zones is used the form of A/E") is known, but in
A
. the cas of a finite number of zones 4/) must be approximated.

when only two zones are used we suggest the following approximation
Py
for ACE) .

i

oA

4 - ;,C’//-—f-) for /£ é‘sé; (s)

-~
A kl
where € ~

A
o -/ 4
o 1S given by & /

/
Tnis approximation is illustrated in fig. 1.
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