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1. Introduction.

In the original proposal (control number 83-NM-365) we proposed to work

on the following two major tasks:

Task 1. Modeling for multi-unit systems with units which undergo imperfect

repairs before eventual fatal failure.

Task 2. A search for optimal maintenance, replacement and procurement

When we were trying to model multi-unit imperfect repairs we realized

that we were really developing a novel approach to reliability theory. The

main thrust of this approach is to model dynamically the joint behavior of

random lifetimes as time progresses. Thus we found it necessary to work on

the following task:

Task 3. Modeling multivariate life distributions through the so called

multivariate conditional hazard rate functions.

During the period of the year, which is covered in this interim report,

we worked mainly on Tasks 1 and 3. A brief summary of our results is given

below.

42. Multi-unit imperfect repair.

The model that we have proposed to study was the one in which, when a

device fails, an effort is made to repair it (and the repair is minimal in the



N. sense that, if the repair is successful then the repair puts the device back

into a working c~dition, but without making it as good as new). The main

difficulty that one is confronted with while studying this model is the

possible complex stochastic effects of the successful or unsuccessful repair

of one unit on the residual lives of the other units. In order to avoid as

A much complexity as possible we first introduced and studied the following

simple model:

Model 1. n items start to function at (the same) time. Upon failure an item

undergoes a repair. With some probability p the repair is unsuccessful and

the item is scrapped. With probability i-p the repair is successful and

minimal.

In this simple model it is assumed that when a device fails and is

succesfully (minimally) repaired, the other devices "do not know" about the

failure and repair. This assumption enabled us to write explicitly the joint

probability distribution of the lives of the surviving devices as is detailedin Ell.
in[In some applications, Model 1 is too simplistic. In our first

generalization of Model 1 we allowed the probability p to depend on the

number of devices which are still functioning (for example, when the

distribution of the cost of minimal repair depends on the number of components

wihhave already failed):

Model 2. n iteW start to function at (the same) time. Upon failure an item

undergoes a repair. If i items (i =0,1, ... , n - 1) have already been

scraped then, with some probability pi+l the repair is unsuccessful and the

item is scrapped, and with probability 1 - pi+1 the repair is successful and .

minimal.

For both models we obtained in [1] the joint density of the lifelengths



* of the devices under imperfect repair. -

In Models 1 Wlid 2 it is implicitly assumed that no two devices can fail

at the same time.- If there is a positive probability that two items (or more)

can fail at the same time then (at least) two interpretations of Model 1 are

possible:

Model 3. Same as Model 1 but with the additional postulation that if two or

more items fail at the same time then each of them, independently of the

others, is successfully minimally repaired with with probability i-p and is

scrapped with probability p.r

Model 4. Same as Model 1 but with the additional postulation that if two or

more items fail at the same time then, with probability i-p all the failed

items are successfully minimally repaired and with probability p all the

failed items are scrapped.

Model 3 is applicable when each of the failed items undergoes imperfect r

repair independently of the others (for example if there are different repair

facilities for different kinds of items). Model 4 is applicable, for example,

* when a shock which potentially could kill some items simultaneously is

* effective only with probability p and is ineffective (because of some kind

of shield, say) with probability i-p.

Reference [13 deals with the probabilistic properties of the joint

distribution functons which result from Models 1 - 4.

V 3. Multivariate conditional hazard rates and total hazards.

While studying the various models of multi-unit imperfect repairs

discussed above, we noticed that every (absolutely continuous) multivariate

distribution function can be characterized by a set of the so called

multivariate conditional hazard rate functions. Intuitively, these functions

. .. .~.*'~ .~ .. . . .- V. .



describe the instantaneous failure rate of the surviving components

conditioned on t*e' complete knowledge of the identities and the failure times

of the failed coiponents. These functions determine the multivariate

Pe distribution function and vice versa.

In the setting of multivariate imperfect repair these functions are very

useful. It turns out that in Model 1, e.g., one can get the hazard rate

functions of the times to failure under imperfect repair by multiplying by

p the hazard rate functions of the original lifetimes (i.e., when no repairs

are performed).

But the conditional hazard rate functions are useful for many other

applications. They can be used to identify positively dependent lifetimes,

stochastically ordered lifetimes, jointly distributed lifetimes which satisfy

various multivariate IFR and NBU properties and so on. These properties of

the conditional hazard rate functions are discribed in [2] and [3].

The conditional hazard rate functions may depend not only on the past of

* the important components but also on some other factors. In particular, in

some applications the hazard rate and the repair rate of a repairable

component may depend on previous repair times and failure times of other P

* components. Such a model is discussed in [4].

4. Related research.

Apart from the research described above, other ongoing research in

*reliability theory has been supported under the current grant. -N

Various notions of multivariate NBU (new better than used) and IFRA

(increasing failure rate average) are studied in [5]. These notions are used

in [6] and [7] to study properties of first passage times of Stochastic

processes of importance in reliability theory.



In [8] properties of a special subset of the set of cut sets of a network

is used to develdT bounds for network reliability. In [9] algorithms are

* developed to compute the lifetime distributions of consecutive-k-out-of-n

* systems with exchangeable lifetimes. IN [10] and [11] simple bounds, on

reliabilities of systems which use "second hand" components, are obtained.

Also the choice of the best "second hand" component is described there.
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