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I Summary

This report sumrarizes the results of a one-year investigation of advanced issues

related to sensing and control of combustion. The ultimate goal of this work is to develop

procedures for optimizing and controlling the operating characteristics of gas turbine

combustors. Toward this end, an extensive literature survey has been conducted, and

model-based and heuristic-based control schemes have been proposed.

2 Introduction

Improvements in combustion processes have naturally led to a need to develop

strategies for sensing, control, and ultimately optimization. Of particular interest is the

sensing, control, and optimization of the combustion processes occurring in* the combustors

of gas turbine engines. The goals of these strategies might be to minimize heat flux

transfer to critical areas of the combustor, drive the system away from instability limits,

minimize undesirable by-products, and maximize the efficiency and operating range of the

engine. At present the approach to this optimization problem is generally static in nature

and usually involves solving for the geometry of the combustor. It is of practical interest

to consider the use of active systems to control combustion dynamics in order to modify

and improve performance.

The control of combustion processes such as the ones occurring in aircraft gas

turbines is of great importance in commercial and military applications. A combustion

control system might be designed to modify such quantities as temperature profiles,

pressure distributions, and species concentrations in the flow field. The control system

would necessarily have available a set of variables that can be manipulated to alter the

combustor's performance. These might include fuel concentration, inlet conditions, and

combustor geometry. The first step in designing combustion control systems is the

development of models for combustion phenomena

The flow field in a gas turbine is turbulent and is governed by partial differential

equations for conservation of mass, momentum and energy. Models of combustors are

typically described by nonlinear, mixed hyperbolic-parabolic equations for such variables as
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velocity and pressure distributions, temperature profile, and species concentrations. If a

reasonably accurate model of combustors existed, it could be used to develop control

strategies for distributed parameter systems.

Unfortunately, existing models cannot accurately predict the behavior of an actual

system, mainly because of a lack of knowledge of combustion chemistry and turbulence.

Except for simple hydrocarbons such as methane, ethane, and propane, the reaction rates

of the species participating in the chemical reactions are not accurately known Also not

known are the initial and boundary conditions and the thermophysical properties at high

temperatures Therefore, models of gas turbine combustors have been found to predict

only to within a factor of two or three the available experimental data [Ramos, 1981].

Thus, it is necessary to investigate control strategies and design procedures that can be

robust to relatively gross model errors.

2.1 Research Objective

The long-range objective of this research program is to develop a theory for the

control of tha distributed combustion processes that occur in a gas turbine engine. This

theory is essential for improving the performance of combustion processes by (i)

minimizing heat flux to critical sections, (ii) controlling operation near limits of combustion

instability, and (iii) maximizing efficiency and range. The development of such a "controlled

combustion theory" represents a multi-year effort involving the investigation of a hierarchy

of problems of varying complexity.

The research reported in this report summarizes the results of one year's activities

in which two different control approaches that are appropriate for simplified combustion

models have been explored Subsequently, studies need to address issues such as the

optimal location and number of sensors and actuators required to control these simplified

models, the inclusion of more advanced combustion models, and hardware-related concerns

such as the design of rugged sensors and actuators.

P-. P ,P , ., " ," *, " .' , " ." P ,, o " ',. ." " ° •" ."". =*. .-.", .."o "• "= ."° p .•. -. ,• I
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2.2 Scope

This report consists of three main parts. First, it summarizes the results of an

extensive literature survey on the control of distributed parameter systems and combustion,

in particular. Second, it develops a model-based strategy for control of simplified

combustion processes. Third, it develops a heuristic-based approach for combustion

control that looks promising as a direction of future research work in this area.

3 Literature Survey

The control of systems governed by partial differential equations has significant

practical importance. These systems are called distributed-parameter systems (OPS)

because of the spatial as well as temporal dependence of the system variables; they

contrast with lumped-parameter systems which are governed by ordinary differential

equations. DPS are dynamical systems modeled in an infinite dimensional state space

[Wang, 1964 ].

The control of DPS represents a mathematical challenge which has received

considerable attention in the last decade (Lions, 1971, Aziz et a/., 1977, Tzafestas, 1982a,

Ahmed and Teo, 1981, Banks and Pritchard, 1978] mostly from mathematicians (rather than

engineers). The theory of DPS control has been formulated within the framework of

functional analysis [Lions, 1971, Wang, 1964, Balas, 1982. 1983] and substantial

theoretical progress has been made. However, practical application of the theory has

significantly lagged behind the theoretical development The main applications have been in

heat exchangers in which parabolic equations [Lausterer and Eitelberg, 1982] or first-

order hyperbolic equations (Kanoh, 1982] have been considered. Mainly, these applications

are concerned with linear partial differential equations (PDE). In contrast, the combustion

processes which occur in a gas turbine combustor are governed by nonlinearly coupled,

mixed hyperbolic-parabolic equations.

The research reported in this report is concerned with the development of an

appropriate theoretical framework and a practical implementation scheme to control the

dynamic combustion processes which occur in gas turbine engines. The approach should.

however, be applicable to other processes governed by nonlinear field equations.

%' " ''" ' °% "' "" ' ? ' -" 
v " k ' " ' ' ' * " ' " ' " ' .' " , ,. .o,.: ,., , , , , ; ,. , " ,' ,' "' ', "... , ',* ' .","." "."," " " "" ' ,""" .' ',.]'',.,''', "" ,''I.
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3.1 Background

This section summarizes the principal work that has been conducted in the field of

DPS control. This summary is not intended to be complete; rather, it reflects what we

consider to be the most important references in the control of DPS.

The control of DPS is concerned with equations which are of the hyperbolic,

parabolic, and elliptic type. The control can be applied to the boundary or to the interior.

McGlothin [1974] developed a modal control model for a class of DPS governed by a

one-dimensional parabolic equation and derived necessary and sufficient conditions for

complete controllability of the system when the control is affected through mixed boundary

conditions. Sakawa [1974] also derived necessary and sufficient conditions for the

controllability of DPS with control functions appearing in the coefficients of the PDE as

well as in the boundary conditions. Kastenberg [1974] studied the stability of nonlinear

parabolic PDEs and described an example of temperature control. Numerical solution of

nonlinear DPS governed by parabolic PDEs has been described by Holliday and Storey

[1973].

The optimal control of a nuclear reactor which is governed by a linear parabolic PDE

has been studied by Chandhuri [1972] who solved the optimal control problem by means

of space and space-time discretizations and concluded that for nuclear reactor systems,

which are widely distributed in space, approximate lumped model systems are not accurate

because of discretization errors. A similar approach was followed by Yu (1971] who

approximated a semilinear parabolic PDE by a finite set of nonlinear ordinary differential

equations to determine the domain of asymptotic stability of the equations.

Seinfeld and Lapidus [1968) have described two techniques based on a direct

search of the performance index and a method of steepest descent to examine the optimal

control of DPS governed by hyperbolic and parabolic equations. Johnson [1973) solved a

system of N hyperbolic PDEs with control exerted by N forcing functions which are

distributed in space and time. The forcing functions were determined such that the system

state lies in a given target at a certain time and the control energy is minimum The

S

.9
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problem was solved by means of the method of characteristics. Seinfeld et al. [1970]

developed a nonlinear filter for nonlinear hyperbolic equations in which observations are

made continuously at a finite number of discrete locations. The method of weighted

residuals has been applied to hyperbolic equations so that their control is reduced to that

of lumped-parameter systems by Parkcin and Zahradnik L 1971].

DPS control has been studied by means of truncated power series in space whose

coefficients are a function of time [Breitholtz and Ovarnstrom, 1982]. The PDEs are

integrated in space over a finite number of spatial regions so that a system of ordinary

differential equations results. Linearization and lumping approximations were made by

Viswanadham et al. [1979] to reduce a nonlinear DPS model to a set of ordinary

differential equations. They also developed a state space model with three control

parameters and two disturbance inputs. Necessary and sufficient conditions for optimality

have been derived by Wu and Teo [1983] for boundary value problems of the parabolic

type in which the controls are assumed to act through the forcing terms and through the

initial and boundary conditions. Klamka [1983] determined the observability, controllability,

and stability of a class of self-adjoint parabolic DPS using Hermite polynomials. Seidman

[1983] employed semigroup methods to reduce a semilinear problem to a linear one,

investigated the possibility of implementing feedback control systems through the boundary

conditions, and showed that it is possible to use feedback for which the observer consists

of a finite number of sensors for the one-dimensional heat transfer equation Barbu

[1981] obtained necessary conditions for optimality in DPS governed by semilinear and

variational parabolic inequalities. Huntley [1979] studied the optimal control of a parabolic

DPS by means of a matrix Ricatti formulation and showed that the spurious oscillations in

the optimal control system result from the method employed to approximate the integrals

A stationary variational formulation of the necessary conditions for optimality of parabolic

DPS with mixed boundary conditions was obtained by Meric [1979] who also employed a

finite element method with elements in space and time to solve the optimal control

problem

The "optimum" location of the controllers for a parabolic DPS was deduced by

Z,
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Martin [1978] by minimizing a quadratic cost functional. Amouroux and Babary [1978)

determined the best pointwise location of actuators for a parabolic DPS by minimizing an

energy criterion. Di Pillo and Grippo [ 1980) employed a multiplier method also known as

augmented Lagrangian or penalty shifting method to the optimal control of linear parabolic

DPS and assessed its convergence in Hilbert space. Kobayashi (1978] studied the

controllability of a parabolic DPS. The optimal control of the system was determined by

minimizing a functional which measures the distance between the terminal state and a given

state. A regularization method was introduced to obtain the optimal control sequence since

controllability is not sufficient for the existence of the functional. Linear programming has

been used by Huang and Yang [ 1970] to study the optimal control of a heat exchanger

with internal heat generation. Semi-infinite programming techniques have been employed by

Glashoff and Gustafson [1976] to compute the optimal control of a class of one-

dimensional heat-diffusion equations. The authors employed the Ritz technique.

In addition to the methods employed to solve the control equations mentioned above,

i.e., Ritz, Galerkin, dynamic programming, linear programming, semi-infinite programming and

finite-element methods, the method of lines which transforms the system of PDEs into a

system of ordinary differential equations by discretizing the space while keeping continuous

the time variable has also been used [Graney, 1983, Ramos, 1983]. Other methods which

have been employed include complete orthogonal Jacobi polynomials [Spalding, 1982],

modal approximations [Gould, 1966], Green's functions, invariant-imbedding techniques,

methods of characteristics, finite-difference algorithms, power series expansions and Monte

Carlo methods [Tzafestas, 1982b]. In addition, finite element techniques [Carotenuto and

Raiconi, 1982] and singular perturbation methods have also been employed [Van Harten.

1983].

The background provided in the previous paragraphs suggests that the theory of

DPS is relatively well developed for linear systems of parabolic and hyperbolic equations.

It also shows that some numerical work has been done to study the stability, controllability

and optimal control of equations of the parabolic (heat diffusion) or hyperbolic (heat

exchangers) type. However, very litz!e work has been performed on the control of mixed
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hyperbolic-parabolic equations, and on the control of non-linearly coupled equations such

as the ones of combustion theory [Williams, 1985).

In this research effort, we have taken first steps toward the development of a

theory for the control of DPS governed by nonlinearly coupled mixed hyperbolic-parabolic

equations such as the ones that govern the combustion processes in a gas turbine engine.

The development of this theory has proceeded by examining simplified combustion

problems including one-dimensional combustion models.

It is emphasized here that the control of the combustion processes in a gas turbine

combustor requires first the development of a control theory for nonlinearly coupled,

mixed hyperbolic-parabolic equations. Such a theory does not exist at the present time.

4 Modeling

4.1 Governing Equations

The equations governing chemically reacting flows can be found in Williams [1985).

These equations can be simplified by neglecting Soret and Dufour effects, body forces,

bulk viscosity, radiation and pressure-gradient diffusion. If the flow is assumed one-

dimensional, the pressure is constant, the specific heats of all the species are assumed

constant and equal, and Fick's law is used for the species diffusion, the following system

is obtained in cartesian coordinates

ap a
(pu) 0 (1)

p = constant = p, (2)

N y
p = p FRI": (3)

W,p i'1 I

a a a1  aY /
o (P Y .) + x (P U Y .) = x p D x + ' " i = 1 , . . N - 1 (4 )

at a x axI
N-1

yN Y,%

''I'

%
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N
oaT 1T a 8,T N .

where p is the density; t is time; x is the spatial coordinate; u is the fluid velocity; p is the

pressure; T is the temperature; R is the universal gas constant; Y and W are the mass

fraction and molecular weight of species i , respectively; N is the number of species;

and ho are the reaction rate and enthalpy of formation of species i , respectively; D is the

diffusion coefficient C is the specific heat at constant pressure; and, k is the thermal

conductivity. Assuming that the Lewis number (Le = k/pDC ) is unity, and introducing the

mapping [Spalding, 1956; Ramos, 1986a]:

(t, x)-) (rF) (7)

where
r = t (8)

-l p (9)

ax

'9itap xa
- dx - - (U) dx =m - pu (10)

a 00 a o

0 = pu at x 0 (11)

and substituting into equations (4) and (6), the following system results

ay. ay _ a2v
+ m - + (12)

aT + aT  32 T N h 0  (1
a + ° a 2 . p 

Furthermore, if a one-step irreversible chemical reaction is used

Fuel (species 1) + Oxidizer (species 2) -. Products (14)

Equations (12) and (13) can be written as

+ . am , - a, +PY (15)

' . . . . . ", - o....'*~** .v -. *- - * . .- . ".**.* - . . .. .. . . . . *... .- •
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where a = P2 D was assumed constant and Q is the heat of combustion.

Equations (15) and (16) can be written as

_§r+ MOn alp a- f (17)

where

Y C T - Y (18)
52 Q 1

is a Shvab-Zel'dovich variable.

We will assume that Ye = constant This assumption permits us to relate Y1to T . For a

second-order reaction, i.e.,

= A exp(- Y'Y 2 - (19)
RT W 2

is only a function of T.

In equation (19) A is the pre-exponential factor and E is the activation energy of the

reaction Substitution of equation (19) into equation (16) yields

aT +* aT a2T (0

where

Q.
FM = C W1 (21)

Equation (20) can be non-dimensionalized by introducing

T-TU r (22)
T -TU k P 0 u P 0

t' - n (23)
k P 0

This results in



12

ae ae a2e
t + - =- + G) (24)

where

G =FM 2 p~k (25)G(e)= m2  C 2( -T)

is a highly nonlinear function of e

G) can be approximated as [Spalding, 1957].

G() = a e" (b - e)t (26)

where a. b, n and t are constants. The case b = n = L = 1 corresponds to Fisher's

equation [Fisher, 1937, Reitz, 1981].

We will consider two reaction rate terms:I

Ge) =el -e) (27)

in Section 5 and
Gqe) = 92(l - 9) (28)

in Section 6. For convenience we will introduce V ( = 1) in equation (24) and replace ( ,

t" and " b , T , t and x , respectively. Thus, equation (24) will be written as

aT aT a2 T
+ V - + G() (30)at ax ax2

where
GM = T(1 -T) or G = T(1 -T) (31)

Equation (30) is subjected to the following boundary conditions

T(-o, t) = 1 T(o, t) = 0 (32)

Note that the reaction terms, i.e., equation (31), are identically equal to zero in the burned

and unburned gases, Therefore, no cold boundary difficulty exists [Williams, 1985] and

the problem is well-posed In chemically reacting flows, the reaction rate is small (but not

zero) at the cold (unburned gas) boundary, the problem is ill-posed and can only be treated

by means of time-dependent numerical techniques [Aldushin, et &l., 1981; Zeldovich, et

al., 1985] to achieve the steady state. However, it can be shown that the reaction rate at

X

I]
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the cold boundary is many orders of magnitude smaller than that at the flame front and,

asymptotically, is exponential small [Clavin and Linan, 1984]. Equations (30) and (31) have

been the subject of numerous analytical and numerical studies [McKean, 1975; Murray,

1977; Fife, 1979; Ramos, 1983, 1985, 1986b].

5 Lumped Control Strategy

5.1 Introduction

We consider here equation (30) i.e.,

aT a2T
t- - V 5x + T1-T) (33)

where G(T) = T(1 - T) and x E [ 0 , L I subject to the boundary conditions:
T(x=O) = 0 ; T(x=L) = 1 (34)

The solution to equation (33) subject to (34) at a given time is a monotonically increasing

function in the spacial variable as illustrated in Figure 1. A positional error, e , can be

defined by

e = x - x (35)

where x" is the x-coordinate of a well-defined (moving) point on the temperature profile

and x is the desired location of that point For instance, the point x" might be defined as

the location of the point where T(x') = 0.5 or the inflection point, where o2 T(x)/ax = 0

The point x" must be defined such that it exists and is unique at all times. It is assumed

that the coefficient V in equation (33) can be manipulated to alter the solution, and thus

alter the error, e . Changing V alters both the shape of the profile and the rate at which

the point x" moves. Expresssed in functional form

dx"
- = f (V.t (36)

or, equivalently.

do- = f 2(V't) (37)

dt.
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T( x)

0 L

Figue 1: Sr~Iution to Equation (33) Subject to Conditions (34).
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It is also assumed that the temperature distribution, T(x). in equation (33) can be sensed at

discrete points, Ti

T T(x); i = 1 ... N (38)

where N is the number of sensors. These temperature measurements are further assumed

to be related to the error
T = f(et) (39)

Even without explicit knowledge of the functions f 3i ' the existence of equation (39) is

implicitly assumed when a measurement of the form (38) is used to control the error, e .

If the relationship implied by equation (39) does not exist, a controller based on these

measurements cannot control the error.

We next begin discussion of the control problem, the goal of which is to drive the

error defined by equation (35) to zero and to regulate it there.

5.2 Definition of the Control Problem

Given the above definitions, the following control problem can be posed Find a

relationship from the sensor measurements, T, to the control, V , such that the well-

defined point is driven to a desired location, x" 4 x. (or equivalently, e - 0). That is, we

seek a function, f 4 :

V = f4(T1 ... TN , t) (40)

such that e -+ 0 subject to:

dodt- =fif4(T1 I.. T N, V} (41)
dt 2

or, equivalently:

do
- = f (e,t) (42)

Equation (42) indicates the dependence of e on itself. The problem thus defined

represents a classical or lumped closed-loop control problem The objective of the

problem is to find a function f4 such that the function f. is at least stable. In addition, it

Z 5 .b %.&
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X s+ Con trol1ler Non11near Litnear
X*
xBlock Block Block

Figure 2: Closed-Loop Control System
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may be desired to require equation (42) to satisfy certain constraints or to minimize a

functional that includes the control V.

5.3 Synthesis of a Controller

The control prob!em defined in equation (41) is not a distributed parameter

problem Equation (41) is an ordinary differential equation; the distributed system of

equation (33) is implicit in the functions f2 and f4 . This apparent simplification is a result

of the way in which the error, e , and the sensor measurements, T , were defined. The

simplification is not a result of approximating the partial differential equation (33). An

evaluation of these functions still requires a solution of (33). Once these functions have

been obtained, a design procedure can be developed that treats the system as being

nonlinear and non-autonomous (time-varying).

The structure of the problem is shown in Figure 2. The control objective is to

regulate a point on the temperature profile that can be identified with a well-defined

spacial coordinate, x* , at a desired location.

One method of designing a system like that illustrated in Figure 2 is to apply a

stability criterion and find a range of controller gains that leads to a stable closed-loop

system A satisfactory stability criterion might be the off-axis circle criterion [Hedrick and

Paynter. 1980]. This criterion yields a sufficient condition for stability of a control loop

with a single nonlinearity in terms of a minimum and a maximum gain. If the nonlinearity is

bounded by these two gains, the closed-loop system will be stable. To apply the criterion,

it is necessary to transform the control system shown in Figure 2 to the system shown in

Figure 3. Figure 3 represents a system with simple proportional control. The off-axis

circle criterion requires an approximation of the shape of the Nyquist plot of the linear

block in Figure 3. Since there is a free integration in the loop of Figure 2, the linear

block in Figure 3 must also contain a free integration It is also known that the steady

state response to a constant value of the control, V . is a constant value of x*
Therefore, the linear block cannot contain another free integration. This information is
enough to specify the low frequency part of the Nyquist diagram The high frequency

............... .. ............................. .... "-....-..... "
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Figure 3: Closed-Loop System for Stability Analysis.
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portion of the curve can be approximated from the requirements of the Hurwitz criterion

for physical systems. Figure 4 illustrates two possible curves that satisfy these

requirements Note that the shape of these. curves was determined deductively and not

analytically. However, an analytical approach is possible. Application of the off-axis circle

criterion to the Nyquist curves in Figure 4 suggests that the gain, k , that can be tolerated

by the system of Figure 3 is bounded from above and is not bounded from below.

Numerical simulations suggest that the upper bound on k is quite high. In order to

compensate for the fact that the value of V is not known exactly, the proportional control

scheme must be augmented by an integrator. The following controller is proposed:

V = ki(Ti + T2 - 1) + k' f I1 + T - 1)dt (43)

Since the stability criterion used is a sufficient one for proportional control, the gains

should be selected such that k2 is small and k >> k2  This is effectively proportion-

plus-integral (P) control.

5.4 Comparison With Alternate Control Scheme

The control law (43) was compared with a control law proposed by Ramos (1984).

dV
-:= k (T + T - 1) V (44)

The controllers given by equations (43) and (44) were compared with respect to their

abilities to move from an initial state to a prescribed equilibrium state, x" -- x where T(x*)

= 0.5 . The relative settling times are known to be directly related to the relative stability

of the two controlled systems [Ogata, 1970]. The method used to solve equation (33)

was a fourth-order accurate method of lines approximation, and the differential equations

were integrated by a means of a fourth-order Runge-Kutta method

The results from the first simulation with controller (44) are shown in Figures 5 and

6. The following values of gain and sensor locations were used x(T ) = 45 , x(T2) = 55

k3 = 0.1 . With a large initial error, the controller is ineffective as can be seen in Figure

5. The system with controller (43) responded so quickly that the resolution with the

number of points recorded (100 points separated by 5 units of time) was not enough for

%-N% -a . . . . . .
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Figure 4: Nyquist Curves for the System of Figure 3.
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the transient to be observed and the results are not shown. Figure 5 also shows the

comparatively slow response of the system when dx*/dt < 0 The time required for x" to

go from its minimum value x" -, 0 to its maximum value x* 100 is about one-fourth of

the time required for the return. The reason for this can be seen in the plot of the

control signal shown in Figure 6. Because the control signal, V , is very small when the

temperature profile passes the x* = x point in the negative direction, the effective time-

constant is very small, which results in the slow response. Because V is much larger when

the profile crosses in the other direction, the response is much quicker. Without a proper

justification, this is an undesirable property.

Figures 7 and 8, and Figures 9 and 10 illustrate a more telling comparisok Here the

sensors have been moved closer to the initial value of x" . The following gains and sensor

locations were used with control law (44): x(T) = 7.5 , x(T2) = 12.5 , k3 = 0.1 . Results

from this simulation are shown in the first pair of figures. Figures 9 and 10 are the

results of a simulation with control law (43). with the same sensor locations and the

following gains: k, = 3.0 , k2 = 0.1 . For the purposes of comparison, these gains were

selected so that the maximum values of the control would be about the same for the two

control laws. At t - 50 , Figure 9 shows the system with PI control nearly at steady-

state. The system controlled by equation (44) is still far from the desired equilibrium point

The temperature responses at the desired location, x = 10 , are plotted for these two

simulations in Figures 11 and 12. Results from another simulation are presented in Figures

13 and 14. In these simulations the gain of the proportional part of control law (43) was

set to k, = 50 . The settling time with these parameters is over an order of magnitude

faster than with the lower value. It is also several orders of magnitude faster than the

response with control law (44).

A more concrete comparison can be made by defining a performance index. The

following quadratic cost function was chosen:

j = Ae2 + AV 2  (45)

where

Ae s2  (x' - x) 2dt (46)

"--
J" r e
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andT
AV S (V - V )2dt (47)

0

where V 8is the target value of the control that results in the desired steady-state solution.

The interpretation of As is an integrated error, and AV is the integral of the excess control

used over that required for the stabilization of the front

Table 1 compares the three criterion for the simulations presented in Figures 7

through 14. Notice that the performance of the first PI controller is an order of

magnitude better than controller (44). The PI controller with the large proportional gain is

over two orders of magnitude better than the controller with the smaller gain. Since the

magnitude of the final error was not penalized, the cost for the system controlled by

equation (44) is actually higher.

Table 1. Values of Integrated Cost Functions.

Control Law J A92  AV 2

Equation (44) 6026 5975 51

P1-Control (43), k1 = 3 821 786 35

P1-Control (43), k, = 50 10 0 10

5.5 Discussion of Lumped Control

Several comments can be made regarding the control laws given by equations (43)

and (44). The use of control law (43) suggests itself logically from the requirements of

zero steady-state error and fast response. Controller (43) can be shown to satisfy a

sector-gain constraint stability criterion. It provides better regulation of the error, Ac2

and is more efficient in its use of control effort, AV 2 . Equation (44) is heuristically-

based, and has been motivated by fth desire to drive the system error to zero. It requires

a finite time to drive the system to zero steady-state error.
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Thus, a control law, equation (43), has been suggested that appears to control the

system in a desired way. The gains, k, and k2 can be selected by simulating the system

behavior and identifying the set of gains that yields optimum performance. It is important

to recognize that the control problem discussed here represents a very simplified problem

The solution based on simulation does not provide insight nor understanding into the

structure of the control problem The next part of this project report develops a

heuristic-based design procedure for this type of problem After such a design procedure

has been developed, then more difficult and realistic distributed parameter problems can be

approached.

6 Heuristic Control Strategy

We consider here equation (30) with G() = T2(1-T), i.e.,

T + VT = T + T2 (1-T) (48)

subject to

T(-oo,t) = 1 (49)

T(oo,t) = 0 (50)

In steady state, equation (48) can be reduced to the following system of ordinary

differential equations
T =8 (51)

= - T (1-7) (52)

which has the following critical points

(T,8) = (0,0) (53)

andI
(, ) = (1,0) 

(54)

Linearizing equation (48) around (T) = (0,0) the following system results

T' = 0' (55)

8' = V6' (56)

XI
I
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where the primes denote perturbations around the steady state. Equations (55) and (56)

indicate that (T) = (0,0) is a stable (unstable) node for V < 0 (V > 0).

Linearizing equation (52) around (T) = (1,0) we obtain

T' = 0' (57)
x

0' = V8' + T (58)
X

The eigenvalues of the matrix given by equations (57) and (58) are

= V t (V2 + 4)] /2 (59)

Therefore, the critical point (T) = (1,0) is a saddle-point for any value of V. For positive

values of V there exists a unique trajectory emanating from the unstable node (R) = (0,0)

and passing through the critical point (T) = (1,0). Travelling wave solutions of the form

T = V(x-Vt) (60)

are then only possible for a particular value of V. Note that in our case V = 1

Integration of the steady form of equation (48) yields
OD

vS T2 (1-T) dx (61)
Soo

where the conditions

T (-oo,t) = T (oo,t) = 0 (62)

have been used.

If 0 :9 T 5 1, equation (61) yields a positive value of V and corresponds to the

unique trajectory which connects the unstable node and the saddle point Furthermore, if 0

<T 1 I
VW(z) > 0 (63)

for finite values of z = x - Vt because

*(-oo) = 0 and *(oo) = 1 (64)

Therefore, the front is a monotonically increasing function (Fife, 1979) and since G(T) E C'

[0.1], there is a one-to-one correspondence between the travelling wave front and the

positive solution of equation (52) subject to

I'=
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0(0) = 0(1) = 0 (65)

Evidently, equation (65) is identical to equation (62).

Equation (48) can be solved numerically by means of finite-difference or finite

element methods for different values of V (Ramos, 1985). However, it can be shown that

its analytic solution is

T(x,t) = '(z) = 1/ [1 + exp V(z-Vt)] (66)

where V = 2-1

In this section, equation (48) is used to devise a control strategy on the value of V so that

the wave front can be placed between two stationary sensors located at x, and x . The

temperatures measured by these sensors are denoted by T1(t) and T2(t), respectively. The

value of V may be physically interpreted as the air-fuel velocity which in steady state

should be equal to the wave front velocity, i.e., equal to 2"'

The following control strategy is proposed Suppose a gas turbine combustor

where fuel and air are injected at a velocity V and two sensors are located at x, and x 2

Based on the temperatures T, and T2 measured by the sensors, a control strategy is

derived so that the flame is driven towards a position located between the sensors.

Although the analytic steady state solution of equation (48) is known, cf. equation

(66), it will not be used in establishing the control law. The reason is that in practical

combustion problems, the value of V depends on the reaction rates of the different

species participating in the reaction and these are not well known except for very simple

reactants. Furthermore, in a gas turbine combustor there will be uncertainties on the

thermophysical propertiss, inlet and boundary conditions, etc., in addition to errors in the

modelling of turbulence and errors in the numerical scheme employed to solve the

governing equations.

We thus consider equation (48) subject to equations (49) and (50) and develop a
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heuristic control strategy to vary the value of the air-fuel velocity V so that the flame is

located between the two sensors located at x, and x The strategy uses the fact that T

is monotonic, 0 < T 5 1 as follows. The wave front location is arbitrarily defined as the

temperature at which

T(x,ti = 0.5 (67i

i.e.. the average of the temperatures at the upstream and downstream boundaries. This

temperature is referred to as T. = 0.5. Because of the monotonicity of T(xt) it is known

that if x( x2 the following possibilities exist

1. T <T < Tw 1 2

2- T T. < T2

3. T, T ( T
3 T1 <T 2 <T

Possibility 1 corresponds to a wave front located upstream of sensor 1. Therefore,

V should be increased to move the front somewhere between the two sensors.

Possibility 2 does not require any control strategy as the front is already located

between the two sensors. If the value of V does not correspond to the exact steady

state wave speed, the front may be moving toward either sensor 1 or sensor 2.

Possibility 3 indicates that the front is located to the right of the second sensor

Therefore, the value of V should be decreased so that possibility 2 is satisfied

A simple control strategy which accounts for these possibilities is as follows:

- (T 1 -T) if T) >T (68)
dt T w

- -T if T < T (69)
dt T 2 w

where r is a non-dimensional time constant Equations (68) and (69) can be integrated to

yield

V(t) = V(t,) + ( t T-T) dt (70)

TS
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and

V(t) = V(t) + ( T2-T (71 )

respectively, where t and t denote the initial times at which equations (68) and (69)

are employed.

In the calculations reported here equations (70) and (71) were not used; equations

(68) and (69) were discretized as follows

V"*, = V /[1-At(T" - T)/-] (72)

and

\+1 = V/[1-At(Tn - Tw)I,] (73)

Note that if either T = T. or r = T , V"  V' , where n and n+1 correspond to nAt

and (n+ 1)At and At is the time step.

The control strategy represented by equations (68) and (69) is a simple proportional

control where the temperatures measured by the two sensors are employed to vary the

value of V in equation (1). V is, of course, assumed positive, cf. equation (61). Other

control strategies are also possible, e.g., (Ramos, 1984; Dzielski and Nagurka, 1985):

dV V- = (T1 + T2 - 1) (74)

dt r

Equation (74) was found to be much inferior to equations (68) and (69) and will not be

discussed in this section. Note that equations (68) and (69) do not employ the exact

steady state wave front speed, but they do drive the front towards a position located

between the two sensors, i.e., this is not a conventional control strategy.

Equation (48) subject to equations (49) and (50) and the control laws of equations

(72) and (73) were solved numerically by means of the following time-linearization algorithm

(Ramos, 1983)
T "" - T S V n T ". T , 2" n1 [-1 ]nt 1 + , 1 " "- - - 2T'1 + + S'1 (75)

At2x x " .

wl °
" ."• if I" "% .. " .-. - " " ." .-. " p*J.V" f" ., " ." ---- ----- "-- V . . .. . . . . .
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where the source term S" was linearized as

s+1= +( ) (r r+ (76)
I IdT I

where Ax is the grid spacing and i denotes the grid point x. = (i- 1)Ax, i = 1,2..., N+ 1 and

N+ 1 is the number of grid points employed in the calculations; N=450.

The domain -0o < x < co was truncated to -50 < x :5 400 and the locations of the

truncated domain boundaries were selected so that the wave front is not affected by them

In the calculations reported here Ax = 1 and At = 0.5, and the values of x1, x2 and r

were varied in order to analyze their effects on the numerical results and time required by

the front to reach a position located between the two sensors. The initial value of V was

also varied; however, only results for V(0) = 1 are presented here.

The initial value of the temperature profile corresponds to the exact solution, i.e.,

equation (66) with t = 0 and V = 2-1

I Heuristic Control Results

In Figures 15-17 the temperatures measured by sensors 1 and 2 and the value of V

are shown as a function of time for x, = 44 , x2 = 49 and r = 5. Figures 18-20 show

similar results for the same sensors locations and r = 25, whereas in Figures 21-23, x,

= 19, x2 = 49 and r = 5.

Figures 15 and 16 indicate that initially the wave front was located to the left of

sensor 1 but it moved with time to some position located between the two sensors

These figures indicate that the T, and T2 profiles show high frequency oscillations which

are caused by the change in control strategy given by equations (68) and (69). These

oscillations are also due to the steepness of the wave front

The wave front speed as a function of time is shown in Figure 17. This figure
indicates that when the wave front is located to the left of sensor 1, the wave velocity is

increased according to equation (68). This velocity increase steepens the temperature

• J



34

0.8-

0.6

0.4-

0.2

0 1 2 3 4 1crjt 5

Figure 15: Temperature measured by the first sensor as a function of
time (xI =44, x 2 49.- 5).



35

T2

0.92

0.88

0 52 3 4lt 5

Figure 16: Temperature measured by the second sensor as a function
of time (x, = 44, x2 = 49. = 5).

j
i'
Ih

".'-"--'U,,. ",''"'"-..-. '" . " ' ' ,",-,. .,, ', ",.r .L.,, .*..*w,. ,(. -, ,".',,- ' .
' .

-.-.. '.-. '.'.-,.',,,.,,.,-*,' ' -.-.-.



36

1.2

V

0.

OA

Figure 17: Wave front speed as a function of time (xI 44,
x 49, r=5).



37

0.

00 2 3 A JCQ3 t 5

Figure 18: Temperature measured by the first sensor as a function of
time (x, 44, x 2 49, r 25).



38

a.

%1

a.

Ol.

t

T22
00

a,

Figure 19: Temperature measured by the second sensor as a function ,of time Ix1 = 44, x = 49, t" = 25). "

o

.S

0'



WUUW- UWV. UW U M c J 
j 

u l JL- r u u .pr 5 '9 V -.V r r ff"
- 

Mhu - W . Y3 W Y V1 T 7 W ,fl -r% ;WEK fl lK -u r v r j V

39

%2

V

Q8-

0.4
0 1 2 3 4 ic 3 t 5

Figure 20: Wave front speed as a function of time (x, = 44,
x 2 49. r 25).

16'e



40

0.9

T1a

0.1

0 1 2 3 4i0-t
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gradient at the wave front On the other hand, when the wave front is located to the right

of sensor 2, the velocity is decreased according to equation (69) so that the front moves

towards a position located between the two sensors. This velocity decrease smooths theR

temperature' gradient at the wave front

In steady state conditions there is a balance between diffusion and reaction at the

wave front; away from the front, the reaction terms are exponentially small and convection

is balanced by diffusiorL If the temperature profile at the wave front is steeper (smoother)

than the steady state profile, the front velocity is larger (smaller) than its steady state value.

Therefore, when the temperature gradients at the wave front are larger (smaller) than their

steady state values, the diffusion terms do not balance the reaction terms, and the front

continues moving towards sensor 2 (sensor 1). This behavior is similar to the flashback

and blowoff phenomena observed in Bunsen burners (Glassman, 1977).

Figures 15-17, as well as Figures 18-23, indicate that the heuristic control strategy

given by equations (68) and (69) drives the wave velocity to its steady state value, i.e., V

24.The high frequency oscillations shown in Figures 15- 17 are superimposed on the

mean temperature responses measured by sensors 1 and 2, and on the mean wave velocity

response, respectively. Similar high frequency oscillations are also observed in Figures

18-23.

Figures 18-20 indicate that larger time constants result in slower control processes.

Even when the time constant is very large, the control strategy represented by equations

(68) and (69) still drives the front to a position located between the two sensors. Note

also that the control strategy proposed here also drives V to its steady state value, i.e.,

V =2".

Figures 15-17 and 21-23 indicate that, for the same time constant, the distance

between the sensors does not seem to play an important role in the control of V. This is

shown in the T, and V profiles presented in Figures 15 and 17, and 21 and 23,

respectively. Figure 22 indicates that for r = 5, x, = 19 and x 2 = 49 and the initial

conditions employed in this simulation, the temperature measured by the second sensor is

.a "J0 '40 %

% % vf if
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that of the downstream boundary. This is not surprising as the control is made through

equation (68) only.

The results shown in Figures 15-23 indicate that the smaller the time constant the

shorter the time required to achieve the contro! objective. They also indicate that there

are circumstances under which the control is only executed by the temperature measured

by one of the sensors.

I Conclusions

The heuristic control strategy proposed in the section above only uses the

temperatures measured by two sensors located at two different spatial locations and only

involves a minimum knowledge about the temperatures expected in the model equation as

well as the temperature monotonicity. It may also be used in more practical combustion

phenomena such as those occurring in gas turbines where the temperature or heat transfer

losses through the turbine walls may be measured in order to vary the secondary air flow

rate or fuel flow rate so that they are within the limits of the material of the wall or

turbine blades. In these situations, however, the temperature may not be a monotonically

increasing function of the distance along the combustor, but one can always estimate the

lower and higher temperatures and define an appropriate heuristic control strategy. In this

sense the heuristic control strategy differs in a substantial manner from conventional

control problems where the state variables are acted upon by controllers so that a state is

achieved, say, in the shortest time. Furthermore, conventional control problems are usually

based on reasonable accurate models of the process that it is to be controlled.

Reasonable models for the combustion process in gas turbines, for example, do not exist

at the present time; these models may predict recirculation zones, temperatures, etc., within

a factor of 2 or 3 or those observed experimentally because of inadequate knowledge of

the initial and boundary conditions, thermophysical properties, turbulence, reaction rates, etc.

For these problems which are (within a factor of 2 or 3) from their real life counterparts

simple heuristic control strategies such as the one proposed here may prove useful for the

design and control of practical combustors.
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