STRﬁ'I’EliV FM MMED SEISINO M CNTROL W CWSTIN v
) CARMNEGIE-ME Oﬂ UNIV TTSBURGH Pﬂ PT OF
!Em CAL ENGINEERI L] L NAGURI T AL. 06 FEB 86
1-32112 lFOSR-TR-S?-.S‘? RFOSR-O4-.2.2 F/G 2472




EFEE
S EEE

i L E) w..?.._.t..._“

———
S ———
e ———
va———
——t——

S———
S ——
——
———
———

.

el

o
—_— 5
= m {
— )
=l 4
= 2
5 [+ 4
N — 5
—~ Il - .m.*.
L . ,\}v.v
— .




1 o T T ER et e R R T M Y Y

! .
S DTG FILE Cubs @

Uncla551f1ed

AD"A 179 6 1 9 REPORT DOCUMENTATION PAGE

1o RESTRICT vE MARKINGS ‘

Qg PORT SEuL.MTY C_ASSIF CATION

Unclassified None ;

RTY CLASSIFICATION auTrOAITY 3 O'STRIBUTION/AVAILABILITY OF AEPQAT !
Distribution unlimited; approved
,.occ.Auu.cnlomoomanao.nascnouu for public release

20 SEC~

Py .(.'Q-“ING ORGANIZATION ALPCAT NUMBERS) S MOMITOAING ONGANIZATION AREPORT NUMBERS)
1-52112 AFOSR-TR- 87-0547

%o ~AME OF PERBOAMING SRGANIZATION r OFFICE SYMBOL |78 NAME OF MONITORING ORGANIZATION

i

111 applicadias Air Force
Dept. of Mech. Eng}ceering N/A Oifice of Scientific Research

6c. ACORESS (City. Stese end ZIP Code) 5. ADDAESS City, Stete saa Z1P Coge)

Dept. of Mechanical Engineering Building 410

Carnegie-Mellon University Bolling AFB, DC 20332 -6448
15213,
s NAME OF FUNOING/SPONSORING
OAGANIZATION Alr Force

. QFFICE SYMBOL 9. PROCUAEMENT iNSTRUMENT 1DENTIFICATION NUMBER
! appleetdis)

 Joff] ifj AFSOR-84-0202
| ADQNESS (City. Steie and ZIP Coan) 10 SOURCE OF SUNOING NOS.
l - ri ? f‘ (“ PAQQAAM PRQLECT TASK WOQARK UNIT
Bolling AFB DC 20332-6448 $LEMENT NO. no. no. o
1Y TITLR Inclese Security ClamiNcation) STRATEGY FOR 6110 2F 23 8
ADVANCED SENSING AND CONTROL OF COMBUSTION 0 A3

12 PEASONAL AUTwOAS)

M.L. Nagurka, J.1. Ramos, W.A. Sirignano
14 OATE OF AEPOAT (Yr Mo.. Dey/ 19 PAGE CCuUNT

13a TYPE OF REPOAT 138 TimE COVERED

FINAL saom 8-1-84 +07-3-85| 1986-02-06 51

18 SUPPLEMENTARAY NOTATION

L COsATI CODES 18 SUBJEACT TEAMS (Conlinue on reverse i/ necemary end idenlify by SlocR Aumber; o ,)u,‘w“
I—=§ﬁf “:;;’ Sue. 98 7’control1ed combustion, distributed parameter control,
v ~{ * sensing—and s dirdeini,
o Y 2 optimization of combustion [ G Lt

F‘. AGSY CT (CORNIANG 6n queres 1/ Seeemery and (den lify by boct Aumber:

This report summarizes the results of a one-year investigation of advanced
issues related to sensing and cortrol of combustion. The ultimate goal of this
work is to develop procedures for optimizing and controlling the operating char-
acteristics of gas turbine combustors." Toward this end, an extensive literature
survey has been conducted, and mode1 based and heumstic based control schemes

have been proposed. /- T
DTIC

| ELECTE
APR 2 T 1887
30 DISTAIGUTION/AVAILABILITY OF ABSTRACY 21 AGSTRACT SECURITY CLA

wnciaspieioumiiwireo & sawa as et S ovic usens O Unclassified
22 NAME OF AESPONSIBLE INDIVIOUAL 2 TELEPHONE NUMBEA 2%¢ OfF e s"“m.
tlnctude irea Cose:
Or. Julian Tishkoff (202) 767-4935 AFOSR/NA
0D FORM 1473, 83 APR EOI1TION OF 1 JAN 73 .8 O8SOLETE Unclassified .
19 SECUMITY CLAsSi P CAT ON =* M S
..';.r ITA : .......................... b e e
LSS e ST S SRS \;&M‘L\Aﬁ.ﬁ;\)t RN A N T T S ey




T S Y T PO 3 PO O N PO T Y W I O PO P O P WO P PO N W W YL VLN L R VLI VU VLAY ™ B VL WU R Mo T P T2 o = e < =+

., AFOSR-T- 87-( 547
TABLE OF CONTENTS

1 Summary 3
2 Introduction 3
2.1 Research Objective 4
2.2 Scope <)
3 Literature Survey 5
3.1 Background 6
4 Modeling S
4.1 Governing Equations 9
5 Lumped Control Strategy 13
5.1 introduction 13
5.2 Definition of the Control Problem 15
5.3 Synthesis of a Controller 16
5.4 Comparison With Alternate Control Scheme 19
5.5 Discussion of Lumped Control 27
6 Heuristic Contro! Strategy 28
6.1 Heuristic Control Results 33
7 Conclusions 44
8 Acknowledgement 45
9 References 46
10 Publications Resulting From This Research 51
11 Professional Personnel Associated With This Research 51
12 Additional Information 51

A

AIR FORCE OFFICE oF SCIENT
\ i i " ol Nl \J! s T4 ,F'C R
;:_OT,CE OF TEANSMITTAL TO DTIC ESEARCH (AFSCy
s lecnnecal report has been rsviewed i
LYot 4 Lt N y - d 's
aporoved for pubiic release iAW %!
sz;ripuﬁon is unlirnited. AR 190-12
Mk‘ﬂ HEW J. KERPER
Chiet, Technical Information Division

ublic releas®’
nmited.

—-— R R Bl ko o R SR iR eiadhedidhadindbe D S

Approved for P
ai

strivution un

e Npg® w0 ¢ Wy ® . LR
h""‘\‘~.‘".“ (P VOIS 'l_'.r:'.'}.":'f._‘-'?J‘.‘(:‘-'_' AR




Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figurs S5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11
Figure 12;
Figure 13:
Figurs 14:
Figure 15:

Figure 16;

Figure 17;
Figure 18:

Figure 19:
Figure 20:
Figure 21:
Figure 22:

Figure 23:

LIST OF FIGURES

Solution of Equation (33) Subject to Conditions (34).

Closed-Loop Control System.

Closed-Loop System for Stability Analysis.

Nyquist Curves for the System of Figure 3.

Location of the x' Point as a Function of Time.

Control Signal as a Function of Time.

Location of the x° Point as a Function of Time.

Control Parameter, V, as a Function of Time.

Location of the x* Point as a Function of Time.

Control Parameter, V, as a Function of Time.

Temperature Response at x with Control Law (43).

Temperature Response at x  with Control Law (44).

Location of the x' Point as a Function of Time.

Control Parameter V as a Function of Time.

Temperature measured by the first sensor as a function of time (x
= 44, x, = 48, r = 5)

Temperature measured by the second sensor as a function of time
(x = 44, x, = 49, r = 5).

Wave front speed as a function of time (x, = 44, x, = 49, r = 5).
Temperature measured by the first sensor as a function of time (x,
= 44, x, = 48, r = 25).

Temperature measured by the second sensor as a function of time
x, = 44, x, = 48, r = 25)

Wave front speed as a function of time (x, = 44, x, =49, r =
25).

Temperature measured by the first sensor as a function of time (x
=19 x, =48, r = 5).

Temperature measured by the second sensor as a function of time
x, =19, x, =49, r = 5)

Wave front speed as a function of time (x, = 19, x, = 48, r = §).

Accesion fFor

NTIS  CRrasl
UiIC TAB

Uianoe cwed

RGN -«

J St

e ——— e

41

42

.
~ LI ] '
e N 2
L e o . . .. vmna !
b e e e LT




ACKNOWLEDGEMENT OF GOVERNMENT
RIGHTS AND SPONSORSHIP

Research sponsored by the Air Force Office of Scientific Research, Air Force
Systems Command, USAF, under Grant AFOSR 84-0202. The U. S. Government is Y

authorized to reproduce and distribute reprints for Governmental purposes notwithstanding

any copyright notation thereon




1 Summary

This report summarizes the results of a8 one-year investigation of advanced issues
related to sensing and control of combustion. The ultimate goal of this work is to develop
procedures for optimizing and controlling the operating characteristics of gas turbine
combustors. Toward this end, an extensive literature survey has been conducted, and

modei-based and heuristic-based control schemes have been proposed.

2 Introduction

Improvements in combustion processes have naturally led to a need to develop
strategies for sensing, control, and ultimately optimizationn Of particular interest is the
sensing, control, and optimization of the combustion processes occurring in" the combustors
of gas turbine engines. The goals of these strategies might be to minimize heat flux
transfer to critical areas of the combustor, drive the system away from instability limits,
minimize undesirable by-products, and maximize the efficiency and operating range of the
engine. At present, the approach to this optimization problem is generaily static in nature
and usually involves solving for the geometry of the combustor. It is of practical interest
to consider the use of active systems to control combustion dynamics in order to modify

and improve performance.

The control of combustion processes such as the ones occurring in aircraft gas
turbines is of great importance in commercial and military applications. A combustion
control system might be designed to modify such quantities as temperature profiles,
pressure distributions, and species concentrations in the flow field The control system
would necessarily have available a set of variables that can be manipulated to aiter the
combustor's performance. These might include fuei concentration, inlet conditions, and
combustor geometry. The first step in designing combustion control systems is the

development of models for combustion phenomena

The flow field in a gas turbine is turbulent and is governed by partial differential

equations for conservation of mass, momentum and energy. Models of combustors are

typically described by nonlinear, mixed hyperbolic-parabolic equations for such variables as

. e
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velocity and pressure distributions, temperature profile, and species concentrations. If a
reasonably accurate model of combustors existed, it could be used to develop control

strategies for distributed parameter systems.

Unfortunately, existing models cannot accurately predict the behavior of an actual
system, mainly because of a lack of knowledge of combustion chemistry and turbulence.
Except for simple hydrocarbons such as methane, ethane, and propane, the reaction rates
of the species participating in the chemical reactions are not accurately known Also not
known are the initial and boundary conditions and the thermophysical properties at high
temperatures. Therefores, modeis of gas turbine combustors have been found to predict
only to within a factor of two or three the available experimental data [Ramos, 1981].
Thus, it is necessary to investigate control strategies and design procedures that can be

robust to relatively gross model errors.

2.1 Resesrch Objective

The long-range objective of this research program is to develop a theory for the
control of the distributed combustion processes that occur in a gas turbine engine. This
theory is essential for improving the performance of combustion processes by (i)
minimizing heat flux to critical sections, (il controlling operation near limits of combustion
instability, and (il maximizing efficiency and range. The development of such a "controlled
combustion theory™ represents a multi-year effort involving the investigation of a hierarchy

of problems of varying complexity.

The research reported in this report summarizes the results of one year's activities
in which two different control approaches that are appropriste for simplified combustion
models have been explored Subsequently, studies need to address issues such as the
optimal location and number of sensors and actuators required to control these simplified

models, the inclusion of more advanced combustion models, and hardware-reiated concerns

such as the design of rugged sensors and actuators.
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2.2 Scope

This report consists of three main parts. First, it summarizes the results of an
extensive literature survey on the control of distributed parameter systems and combustion,
in particular. Second, it develops a model-based strategy for control of simplified
combustion processes. Third, it develops a heuristic-based approach for combustion

control that looks promising as a direction of future research work in this area

3 Literature Survey

The control of systems governed by partial differential equations has significant
practical importance. These systems are called distributed—parameter systems (DPS)
because of the spatial as well as temporal dependence of the system varisbles; they
contrast with lumped-parameter systems which are governed by ordinary differential
equations. DPS are dynamical systems modeled in an infinite dimensional state space

[Wang, 1964].

The control of DPS represents a mathematical chalienge which has received
considerable attention in the last decade (Lions, 1971, Aziz et a/., 1977, Tzafestas, 1982a
Ahmed and Teo, 1981, Banks and Pritchard, 1978] mostly from mathematicians (rather than
engineers. The theory of DPS control has been formulated within the framework of
functional analysis [Lions, 1971, Wang, 1964, Balas, 1982, 1983] and substantial
theoretical progress has been made. However, practical application of the theory has
significantly lagged behind the theoretical development The main applications have been in
heat exchangers in which parabolic equations [Lausterer and Eitelberg, 1982] or first-
order hyperbolic equations {Kanoh, 1982] have been considered. Mainly, these applications
are concerned with linear partial differential equations (PDE). In contrast, the combustion
processes which occur in a gas turbine combustor are governed by nonlinearly coupled.

mixed hyperbolic-parabolic equations.

The research reported in this report is concerned with the development of an
appropriate theoretical framework and a practical implementation scheme to control the
dynamic combustion processes which occur in gas turbine engines. The approach should.

however, be spplicable to other processes governed by nonlinsar field equations.
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3.1 Background
This section summarizes the principal work that has been conducted in the field of
DPS control. This summary is not intended to be complete; rather, it reflects what we

consider to be the most important references in the control of DPS. \

The control of DPS is concerned with equations which are of the hyperbolic, !
parabolic, and elliptic type. The corarol can be applied to the boundary or to the interior.
McGlothin [1974] developed a moda' control model for a class of DPS governed by a
one-dimensional parabolic equation and derived necessary and sufficient conditions for
complete controllability of the system when the control is affected through mixed boundary
conditions. Sakawa [1974] aiso derived necessary and sufficient conditions for the
controllability of DPS with control functions appearing in the coefficients of the PDE as
well as in the boundary conditions. Kastenberg [1974] studied the stability of nonlinear

parabolic PDEs and described an example of temperature control. Numerical solution of

£

noniinear DPS governed by parabolic PDEs has been described by Holliday and Storey
[1973].

The optimal control of a nuciear reactor which is governed by a linear parabolic PDE

g a0 £

has been studied by Chandhuri [ 1872] who solved the optimal control problem by means

of space and space-time discretizations and concluded that for nuclear reactor systems,

I3

which are widely distributed in space, approximate lumped model systems are not accurate
because of discretization errors. A similar approach was followed by Yu [1871] who .
approximated a semilinear parabolic PDE by a finite set of nonlinear ordinary differential

equations to determine the domain of asymptotic stability of the equations.

Seinfeld and Lapidus [1968) have described two techniques based on a direct
search of the performance index and a method of steepest descent to examine the optimal
control of DPS governed by hyperbolic and parabolic equations. Johnson [1973] solved a
systeam of N hyperbolic PDEs with control exerted by N forcing functions which are
distributed in space and time. The forcing functions were determined such that the system

state lies in a given target at a certain time and the control energy is minimum  The
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problem was solved by means of the method of characteristics. Seinfeld et a/. [1970]
developed 2 nonlinear filter for nonlinear hyperbolic equations in which observations are
made continuously at a finite number of discrete locations. The method of weighted
residuals has been applied to hyperbolic equations so that their control is reduced to that

of lumped-parameter systems by Parkin and Zahradnik [1971].

DPS control has been studied by means of truncated power series in space whose
coefficients are a function of time ([Breitholtz and Ovarnstrom, 1982). The PDEs are
integrated in space over a finite number of spatial regions so that a system of ordinary
differential equations resuits. Linearization and lumping approximations were made by
Viswanadham et a&/. [1979] to reduce a nonlinear DPS model to a set of ordinary
differential equations. They also developed a state space model with three control
parameters and two disturbance inputs. Necessary and sufficient conditions for optimality
have been derived by Wu and Teo [1983] for boundary value probiems of the parabolic
type in which the controls are assumed to act through the forcing terms and through the
initial and boundary conditions. Klamka [1983] determined the observability, controllability,
and stability of a class of self-adjoint parabolic DPS using Hermite polynomials. Seidman
{1983] employed semigroup methods to reduce a semilinear problem to a linear one,
investigated the possibility of implementing feedback control systems through the boundary
conditions, and showed that it is possible to use feedback for which the observer consists
of a finite number of sensors for the one-dimensional heat transfer equation Barbu
[1981] obtained necessary conditions for optimality in DPS governed by semilinear and
variational parabolic inequalities. Huntley [ 1979] studied the optimal control of a parabolic
DPS by means of a matrix Ricatti formulation and showed that the spurious oscillations in
the optimal control system result from the method empioyed to approximate the integrals.
A stationary variational formulation of the necessary conditions for optimality of parabolic
DPS with mixed boundary conditions was obtained by Meric [1979] who also employed a
finite element method with elements in space and time to solve the optimal control

problem.

The "optimum” location of the controllers for a parabolic DPS was deduced by

N W W w8 8
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Martin [1978] by mihimizing a quadratic cost functional. Amouroux and Babary [1978]

determined the best pointwise location of actuators for a parabolic DPS by minimizing an
energy criterion Di Pillo and Grippo [1980] ~employed a multiplier method also known as
b augmented Lagrangian or penaity shifting method to the optimal control of linear parabolic
DPS and assessed its convergence in Hilbert space. Kobayashi [1978] studied the
controllability of a pérabolic DPS. The optimal control of the system was determined by

minimizing a functional which measures the distance between the terminal state and a given

b

state. A regularization method was introduced to obtain the optimal control sequence since

.

controliability is not sufficient for the existence of the functional. Linear programming has

been used by Huang and Yang [1970] to study the optimal control of a heat exchanger

with internal heat generation. Semi-infinite programming techniques have been employed by
Glashoff and Gustafson [1976] to compute the optimal control of a class of one-

dimensional heat—diffusion equations. The authors employed the Ritz technique.

In addition to the methods employed to solve the control equations mentioned above,

i.e., Ritz, Galerkin, dynamic programming, linear programming, semi-infinite programming and

finite—element methods, the method of lines which transforms the system of PDEs into a
system of ordinary differential equations by discretizing the space while keeping continuous
the time variable has also been used [Graney, 1883, Ramos, 1983]). Other methods which
have been employed include complete orthogonal Jacobi polynomials [Spalding, 19821,
modal approximations [Gould, 1966], Green's functions, invariant-imbedding techniques,

methods of characteristics, finite—difference algorithms, power series expansions and Monte

Carlo methods [Tzafestas, 1982b]. In addition, finite element techniqbes [Curotenuto and
Raiconi, 1982] and singular perturbation methods have also been employed [Van Harten,

1983).

The background provided in the previous paragraphs suggests that the theory of
DPS is relatively well developed for linear systems of parabolic and hyperbolic equations.
it also shows that some numerical work has been done to study the stability, controllability
and optimal control of. equations of the psrabolic (heat diffusion) or hyperbolic (heat

exchangers) type. However, very liti'a work has been performed on the control of mixed



hyperbolic-parabolic equations, and on the control of non-linearly coupled equations such

as the ones of combustion theory [Williams, 1985].

In this research effort, we have taken first steps toward the development of a
theory for the control of DPS governed by nonlinearly coupled mixed hyperbolic—parabolic
equations such as the ones that govern the combustion processes in a gas turbine engine.
The development of this theory has proceeded by examining simplified combustion -

problems including one-dimensional combustion models.

it is emphasized here that the controi of the combustion processes in a gas turbine
combustor requires first the development of a control theory for nonlinearly coupled,

mixed hyperbolic—paraboiic equations. Such a theory does not exist at the present time.
4 Modeling

4.1 Governing Equations

The equations governing chemically reacting flows can be found in Williams [ 1985]. g

bulk viscosity, radiation ‘and pressure—gradient diffusion. If the flow is assumed one- *)
dimensional, the pressure is constant, the specific heats of all the species are assumed
constant and equal, and Fick's law is used for the species diffusion, the following system o

These equations can be simplified by neglecting Soret and Dufour effects, body forces,
is obtained in cartesian coordinates

o (pu) = 0 (1) )
—_—t — = B
ot Ix PY
p = constant = p_ (2]
RT ;: Y 3 :
P=p ‘W (3) .
i 1
3 (pY 9 (puY 9 ( D N, ) v iz 1 N-1 a)
— > — _— — + , = .o, - (
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N-1% "
Y =1-2X°Y S
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oT oT d oT
1- 2

N
kK= ) - Zoh 6)

is1

ot Ix
where p is the density; t is time; x is the spatial coordinate; u is the fluid velocity, p is the
pressure; T is the temperature; R is the universal gas constant. Y and W _are the mass
fraction and molecular weight of species i , respectively; N is the number of species; ‘.".
and hf are the reaction rate and enthalpy of formation of species i , respectively; D is the
diffusion coefficient; Cp is the specific heat at constant pressure; and, k is the thermal

conductivity. Assuming that the Lewis number (Le = k/ pDCp) is unity, and introducing the

mapping [Spalding, 1956; Ramos, 1986al:

t. x) > (r.y) 7
where
;=1 @)
dy
5= 7 (9)
oy * 9p x 9 .
Frl 3t dx -S 3 (py) dx = m_ - pu (10)
-00
m =pu at x=0 (1)

and substituting into equations (4) and (6), the following system results

ay, . 9, 3w

5: + mo a = a —y—i + ; (12)
T . a7 3T N h° oo

— +tmM — =g — - X — = (13

Furthermore, if a one—step irreversible chemical reaction is used

Fuel (species 1) + Oxidizer (species 2) - Products (14)

Equations (12) and (13} can be written as

1

+ (15)
P

—'+m—=a

ay, . oV, Y @
or ° oy 3y’

o 4ot o
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oT . oT 9T )
+m — =g — +Q — (16)

or ° Jy dy? pC

where a = p’D was assumed constant and Q is the heat of combustion

Equations (15) and (16) can be written as

aYu + - aYu - azYu 17
3r TMe 3y T ° 5y (7
where
T
.= & - (18)

is a Shvab-Zel'dovich variable.

We will assume that Y = constant This assumption permits us to relate Y to T. For a
second—order reaction, ij.e.,
(19

c'.v‘=--Aexp<--ﬁET—)Y‘YzPW2
2

::1 is only a function of T .

In equation (19) A is the pre—exponential factor and E is the activation energy of the

reaction. Substitution of equation (19) into equation (16) yields

oT . o7 T .
— 4+ — = — 4+
355 "™ 3y a 3y m (20)
where
Q .
KT = ;E @, {21}

Equation (20) can be non-dimensionalized by introducing

T-Tu . X . . ¥y .
= T L X = : cm, . ¢y = -P—E cm, (22)
u '}
. uo °
t =7 I Cp m° (23)

This results in
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00 00 J% o) 0g
— t —— = —— +
ot Jy° 9Iy*? : 24
where
G®) = FM P 2
- m? .C, M,-T) 125

is a highly nonlinear function of © .

Gi©) can be approximated as [Spalding, 1957].
GO = a e b - e (26)

where a, b, n and £ are constants. The case b = n = £ = 1 corresponds to Fisher's
equation [Fisher, 1937, Reitz, 1981).

We will consider two reaction rate terms:
Gie) = 81 - ) 27)

in Section 5 and
Gi6) = 8%1 - @) (28)

in Section 6. For convenience we will introduce V ( = 1) in equation (24) and replace © .

tand y'b . T, tand x, respectively. Thus, equation (24) will be written as
oT oT o

—_— V — = — O3

ETRRE PR oM (30
where

GM=T1-N or G =T1-7 31

Equation (30) is subjected to the following boundary conditions
Ti-00. 0 =1 , Tho. =0 (32

Note that the reaction terms, /.e., equation (31), sre identically equal to zero in the burned
and unburned gases. Therefore., no cold boundary difficulty exists [Williams, 1985] and
the problem is well-posed. In chemically reacting flows, the reaction rate is small (but not
zero) at the cold (unburned gas) boundary, the problem is ill-posed and can only be treated

by means of time-dependent numerical techniques [Aldushin, et a/., 1981, Zel'dovich, et

a/., 1985] to achieve the steady state. However, it can be shown that the reaction rate at

LERREL I

\



13

the cold boundary is many orders of magnitude smaller than that at the flame front and,
asymptotically, is exponential small [Clavin and Linan, 1984]. Equations (30) and (31) have
been the subject of numerous analytical and numerical studies [McKean, 1975; Murray,

1977; Fife, 1979; Ramos, 1983, 1985, 1986b).
5 Lumped Control Strategy

5.1 Introduction

We consider here equation (30) /.e.,

oT 9% oT
a——t=$-vg+'ﬂ1-'ﬂ {33

where G(T) = T(1 - TYand x € [ O, L ] subject to the boundary conditions:
Tix=0) = 0 ; Tix=L) = 1 (34)

The solution to equation (33) subject to (34) at a given time is a monotonically increasing
function in the spacial variable as illustrated in Figure 1. A positional error, ® , can be
defined by:

e=x" - X, (35)

where x' is the x—coordinate of a well-defined (moving) point on the temperature profile
and x_ is the desired location of that point For instance, the point x" might be defined as
the location of the point where T(x") = 0.5 or the inflection point, where 9°T(x")/dx? = 0 .
The point x° must be defined such that it exists and is unique at all times. It is assumed
that the coefficient V in equation (33) can be manipulated to alter the solution, and thus
alter the error, @ . Changing V alters both the shape of the profiie and the rate at which

the point x° moves. Expresssed in functional form:

dx’

= fV.0 (36)

or, equivalently:

de
prry = fz(V,t) (37)
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Figure 1: Solution to Equation (33) Subject to Conditions (34).
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It is also assumed that the temperature distribution, T(x), in equation (33) can be sensed at

discrete points, T, :
T=Tx);i=1...N (38)

where N is the number of sensors. These temperature measurements are further assumed

to be related to the error:
T = f, (et _ (39)

Even without explicit knowledge of the functions f,, . the existence of equation (39 is
implicitly assumed when a measurement of the form (38) is used to control the error, e .
If the relationship implied by equation (39) does not exist. a controller based on these

measurements cannot control the error.

We next begin discussion of the control problem, the goal of which is to drive the

error defined by equation (35) to zero and to regulate it there.

5.2 Definition of the Control Problem

Given the above definitions, the following control problem can be posed Find a
relationship from the sensor measurements, Ti , to the control, V , such that the well~
defined point is driven to a desired location, x* -» x,  lor equivalently, e » 0). That is, we

seek a function, f o
V=f ‘(T v T .8 {40)

such that e & 0 subject to:

de
Y =fz{f‘(T,, A IR (] ) 41)

or, equivalently:
de
at = fs(e't) 42)

Equation (42) indicates the .dependence of e on itselif. The probiem thus defined

represents a classical or lumped closed-loop control problem. The objective of the

problem is to find a function f, such that the function f, is at least stable. In addition, 1t
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Figure 2: Closed-Loop Control System.

TRTRTA IEATATN 1)\"\;»-.’\(\’\.’ \*\'\_,\-’\_,\.,\.'.-.'.-...-.._\f\.’._ N
L] . . '\ S . o ] A



£

4 gt 2.0 gt o ¥ ) 4 ot FRNwYWwl ‘a d'ad'a B ad 3 i 8% B2 (%a B'a A2 A'a B's 2% A\ 2 a B'e 1Y

. 16

may be desired to require equation (42) to satisfy certain constraints or to minimize a

functional that includes the control V.

8.3 Synthesis of a Controller

The control problem defined in equation (41) is nNot a distributed parameter
problem  Equation (41) is an ordinary differential equation; the distributed system of
equation (33) is implicit in the functions f, and f, . This apparent simplification is a result

of the way in which the error, e , and the sensor measurements, T‘ . were defined. The

simplification is not a result of aspproximating the partial differential equation (33). An
evaluation of these functions still requires a solution of (33). Once these functions have
been obtained. a design procedure can be developed that treats the system as being

noniinear and non-autonomous (time-varying).

The structure of the problem is shown in Figure 2. The control objective is to
regulate a point on the temperature profile that can be identified with a weli-defined

spacial coordinate, x° , at a desired location

One method of designing a system like that illustrated in Figure 2 is to apply a
stability criterion and find a range of controller gains that leads to a stable closed-loop
system. A satisfactory stability criterion might be the off—axis circle criterion [Hedrick and
Paynter. 1980). This criterion yields a sufficient condition for stability of a control loop
with a single nonlinearity in terms of a minimum and a8 maximum gain. If the noniinearity is
bounded by these two gains, the closed-loop system will be stable. To apply the criterion,
it is necessary to transform the control system shown in Figure 2 to the system shown in
Figure 3. Figure 3 represents a system with simpie proportional control. The off-axis
circle criterion requires an approximation of the shape of the Nyquist plot of the linear
block in Figure 3. Since there is a free integration in the loop of Figure 2, the linear
biock in Figure 3 must also contain a free integration It is also known that the steady

state response to a constant value of the control, V , is a constant value of x’

Therefore, the linesr block cannot contain another free integration  This information is

enough to specify the low frequency part of the Nyquist diagram The high frequency
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U R Y - et . - P N N . S S S R S ST T T N S Y TR T v a* -~
P T P L N A N P N O N Oy L-x_.’L o ¢ @t e L{L,LIL. o

s - a % ey - o

PR

AL IR EAN



ANFVIAPEPRTF " A NRRTETE N NTRANF " A P TR F T T TR TP I V. N TWIPV P YdITINI NI T T T T RN~y rT

18

s ¢ k Linear
- Block

Lol Vol SaRbal tal g Ale ATy Ale Ate o' g Al §

Nonlinear

Block

Figure 3: Closed-Loop System for Stability Analysis.
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portion of the curve can be approximated from the requirements of the Hurwitz criterion
for physical systems. Figure 4 illustrates two possible curves that satisfy these
requirements. Note that the shape of these. curves was determined deductively and not
snalytically. However, an analytical approach is possible. Application of the off-axis circie
criterion to the Nyquist curves in Figure 4 suggests that the gain, k , that can be tolerated
by the system of Figure 3 is bounded from above and is not bounded from below.
Numerical simulations suggest that the upper bound on k is quite high In order to
compensate for the fact that the value of V is not known exactly, the proportional control
scheme must be augmented by an integrator. The following controller is proposed

V=k(@T+T, - 1)+sz(T‘+T2- 1)dt 43)

Since the stability criterion used is a sufficient one for proportional control, the gains
should be selected such that k, is small and k, > k, . This is effectively proportion-

plus—integral (Pl) control.

5.4 Comparison With Alternate Control Scheme

The control law (43) was compared with a control law proposed by Ramos (1984).
dv
— =k T, +T, -V 44)
The controllers given by equations (43) and (44) were compared with respect to their
abilities to move from an initial state to a prescribed equilibrium state, x' = x, where Tix")
= 0.5 . The relative settling times are known to be directly related to the relative stability
of the two controlled systems [Ogata, 1870). The method used to solve equation (33)
was a fourth-order accurate method of lines approximation, and the differential equations

were integrated by a means of a fourth—order Runge-Kutta method

The results from the first simulation with controlier (44} are shown in Figures 5 and
6. The following values of gain and sensor locations were used: x(T) = 45 , x(T J =95
k, = 0.1 . With a large initial error, the controller is ineffective as can be seen in Figure
5. The system with controller (43) responded so quickly that the resolution with the

number of points recorded (100 points separated by 5 units of time) was not enough for

TR T
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Figure 4: Nyquist Curves for the System of Figure 3.
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Figure 5: Location of the x° Point as a Function of Time.
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Figure 6: Control Signal as a Function of Time.
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the transient to be observed and the results are not shown. Figure 5 also shows the g
comparatively siow response of the system when dx’/dt < 0 . The time required for x' to
go from its minimum value x" ~ 0 to its maximum value x° ~ 100 is about one-fourth of
the time required for the return. The reason for this can be seen in the plot of the

control signal shown in Figure 6. Because the control signal, V , is very smail when the

PR A AR

temperature profile passes the x° = x, point in the negative direction, the effective time-
constant is very small, which results in the slow response. Because V is much larger when 4
the profile crosses in the other direction, the response is much quicker. Without a proper :

justification, this is an undesirable property. A

Figures 7 and 8, and Figures 9 and 10 illustrate a more telling comparison. Here the )
sensors have been moved closer to the initial value of x" . The following gains and sensor
locations were used with control law (44) x(T) = 75 , x(T) = 125 , k, = 0.1 . Results
from this simulation are shown in the first pair of figures. Figures 9 and 10 are the -
results of a simulation with control law (43}, with the same sensor locations and the 3
following gains: k, = 30 , k, = 0.1 . For the purposes of comparison, these gains were
selected so that the maximum values of the control would be about the same for the two
control laws. At t ~ 50 , Figure 9 shows the system with Pl control nearly at steady- :
state. The system controlled by equation (44) is still far from the desired equilibrium point
The temperature responses at the desired location, x = 10 , are plotted for these two y
simulations in Figures 11 and 12 Results from another simulation are presented in Figures ‘
13 and 14. In these simulations the gain of the proportional part of control law (43) was ‘-
set to k, = 50 . The settling time with these parameters is over an order of magnitude A
faster than with the lower value. It is also several orders of magnitude faster than the

response with control law (44).

A more concrete comparison can be made by defining a performance index. The L

following quadratic cost function was chosen:
J = Ae? + AV? (45)

46) :
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Figure 7: Location of the x" Point as a Function of Time.
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Figure 8: Control Parameter, V, as a Function of Time. »
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Figure 9: Location of the x* Point as a Function of Time.
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Figure 10: Control Parameter, V, as a Function of Time
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Figure 11: Temperature Response at x with Control Law (43).
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Figure 12: Temperature Response at x with Control Law (44).
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Figure 13: Location of the x’ Point as a8 Function of Time.
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Figure 14: Control Parameter V as a Function of Time
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and T
av? = S vV -V )t 47)

-]
where V_ is the target value of the control that results in the desired steady-state solution.
The interpretation of Ae is an integrated error, and AV is the integral of the excess control

used over that required for the stabilization of the front

Table 1 compares the three criterion for the simulations presented in Figures 7
through 14. Notice that the performance of the first Pl controller is an order of
magnitude better than controller (44). The Pl controller with the large proportional gain is
over two orders of magnitude better than the controller with the smaller gain. Since the
magnitude of the final error was not penalized, the cost for the system controlled by

equation (44) is actually higher.

Table 1. Values of Integrated Cost Functions.

Control Law J Ae? AV?
Equation (44) 6026 5975 51
Pi-Control (43), k, = 3 821 786 35
Pi-Control (43), k, = 50 10 0 10

5.5 Discussion of Lumped Control

Several comments can be made regarding the control laws given by equations (43)
and (44). The use of control law (43) suggests itself logically from the requirements of
zero steady-state error and fast response. Controller (43) can be shown to satisfy a
sector-gain constraint stability criterion. It provides better regulation of the error, Ae® .
and is more efficient in its use of control effort, AV? . Equation (44) is heuristically-

based, and has been motivated by the desire to drive the system error to zero. It requires

s finite time to drive the system to zero steady-state error.

<
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Thus, a8 control law, equation (43), has been suggested that appears to control the

system in a desired way. The gains, k, and k, can be selected by simulating the system

behavior and identifying the set of gains that yields optimum performance. It is important

to recognize that the control problem discussed here represents a very simplified problem.
The solution based on simulation does not provide insight nor understanding into the
structure of the control problem. The next part of this project report devqlops a
heuristic-based design procedure for this type of problem. After such a design procedure
has been deveioped, then more difficult and realistic distributed parameter problems can be

approached.

8 Heuristic Control Strategy

We consider here equation (30) with GM = TX1-T), i.e.,

T +VI =T_+ T (-1 “8
subject to
T(-o0.t) = 1 (49)

Tioo,t) = 0 (50)

In steady state, equation (48) can be reduced to the following system of ordinary
differential equations
T =6 51

8 .=Vve -T2 (-7 ' (52)

which has the following critical points

T

(0.0) (53)

and

T.6) = (1,0 (54)

Linearizing equation (48) around (T.8) = (0,0) the following system results

T =0 (55)
;

x

ve (56
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where the primes denote perturbations around the steady state. Equations (55) and (56)

indicate that (T,.8) = (0,0) is a stable (unstable) node for V. < 0 (V > 0

Linearizing equation (52) around (T.8) = (1,0) we obtain
T =6 57) :
8; =V8 + T (58) .
The eigenvalues of the matrix given by equations (57) and (58) are b
.h
%
x=[venea] 2 59) 5
|
Therefore, the critical point (T.8) = (1,0) is a saddie-point for any value of V. For positive
values of V there exists a unique trajectory emanating from the unstable node (T.8) = (0,0)
and passing through the critical point (T,.8) = (1,0). Travelling wave solutions of the form
T = ¥ix-Vt) 60)
are then only possible for a particular value of V. Note that in our case V = 1. N
.
integration of the steady form of equation (48) yields .~
00
V= S T2 (1-T) dx 1) g
-00 *»
b
where the conditions N
b))
T (o0t =T (o0t} =0 62) ;
’
have been used. ?
’
If O ST S 1, equation (61) yields a positive value of V and corresponds to the by
unique trajectory which connects the unstable node and the saddle point Furthermore, if O ,
r
ST<1 .
VY@ >0 63) A
J
for finite vaiues of z = x - Vt because N
¥(-o00) = 0 and Yioo) = 1 64) N

Therefore, the front is a monotonically increasing function (Fife, 1979) and since GM € C'
[0.1], there is a one—to-one correspondence between the travelling wave front and the

positive solution of equation (52) subject to

L) RN e e N T e e e e e T e P N . - [ B [,
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810y = 6(1) =0 (65)
Evidently, equation (65) is identical to equation (62).

Equation (48) can be solved numerically by means of finite—difference or finite
element methods for different values of V (Ramos, 1985). Howaever, it can be shown that
its analytic solution is

Tt = Wiz) = 1/ [1 + exp V(z-Vt)] (66)
where V = 2°% |

In this section, equation (48) is used to devise a control strategy on the value of V so that
the wave front can be placed between two stationary sensors located at x, and x,. The
temperatures measured by these sensors are denoted by T, and Tz(t), respectively. The
value of V may be physically interpreted as the air—fuel velocity which in steady state

should be equal to the wave front velocity, /.e., equal to 2°% .

The following control strategy is proposed Suppose a gas tut"bine combustor
where fuel and air are injected at a velocity V and two sensors are located at x, and x,.
Based on the temperatures T  and T, measured by the sensors, a control strategy is

derived so that the flame is driven towards a position located between the sensors.

Although the analytic steady state solution of equation (48) is known, cf. equation
(66), it will not be used in establishing the contro! law. The reason is that in practical
combustion problems, the value of V depends on the reaction rates of the different
species participating in the reaction and .these are not well known except for very simple
reactants. Furthermore, in a gas turbine combustor there will be uncertainties on the
thermophysical propertias, inlet and boundary conditions, etc.. in addition to errors in the
modeliing of turbulence and errors in the numerical scheme empioyed to solve the

governing equations.

We thus consider equation (48) subject to equations (48) and (50) and develop a
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heuristic control strategy to vary the value of the air—fuel velocity V so that the flame is
located between the two sensors located at x, and x, The strategy uses the fact that T
is monotonic, 0 £ T < 1 as follows. The wave front location is arbitrarily defined as the

temperature at which
Tix.ti = 05 67

ie., the average of the temperatures at the upstream and downstream boundaries. This
temperature is referred to as T = 0.5. Because of the monotonicity of Tix.t) it is known
that if x, < x, the following possibilities exist

1. T, <T,<T,

2 T T «T,

3 T, T, <T,

Possibility 1 corresponds to a wave front located upstream of sensor 1. Therefore,

V should be increased to move the front somewhere between the two sensors.

Possibility 2 does not require any control strategy as the front is already located
between the two sensors. If the value of V does not correspond to the exact steady

state wave speed, the front may be moving toward either sensor 1 or sensor 2.

Possibility 3 indicates that the front is located to the right of the second sensor.

Therefore, the value of V should be decreased so that possibility 2 is satisfied.

A simple control strategy which accounts for these possibilities is as follows:

v Vv
i ;(T,—Tw) it T T, ©8)
av v
w ° :(TZ-T‘) it T, CT, 69)

where r is a non-dimensional time constant Equations (68) and (69) can be integrated to

yield

1 A}
VI = Vit) + — 5 (1-1) a (70
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1 t
VIO = Vit ) + - S' (T,-T) dt (71)
7 w

t
(-]

respectively, where t and t denote the initial times at which equations (68} and (69)

are employed.

in the calculations reported here equations (70) and (71) were not used; equations
(68) and (69) were discretized as follows
vl = VY[1-ANTY - T )7 (72)

and

V!

VYL1-AYT - T 7] (73)

Note that if either T) = T or T) = T_, V™' = V" , where n and n+1 correspond to nAt

and (n+1)At and At is the time step.

The control strategy represented by equations (68) and (69) is a simple proportional
control where the temperatures measured by the two sensors are employed to vary the
value of V in equation (1) V is, of course, assumed positive, cf. equation (61). Other

control strategies are also possible, e.g., (Ramos, 1984; Dzielski and Nagurka, 1985}

dv v
;3-’-”1*’1'2—1) (74)

Equation (74) was found to be much inferior to equations (68) and (69) and will not be
discussed in this section Note that equations (68) and (69) do not empioy the exact
steady state wave front speed, but they do drive the front towards a position located

between the two sensors, ie. this is not a conventional control strategy.

Equation (48) subject to equations (49) and (50) and the control laws of equations

(72) and (73) were solved numerically by means of the following time-linearization algorithm

B Sad Sal Ba Satl Sal Bat B,V Aat Bat Rgv Rk fLgv BRat Bat _bet g _Rat he' Bat_Sa- AE ke Aat Ba' Bt - Ra Bl e ol o RE ala- ol

(Ramos, 1983)
ney n neY ne
Tn Tu n T:‘l T|-1 - 1 +1 ne 1 -1 N+
- + V = — T"‘ - 27 + T + S (75)
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where the source term S:‘“ was linearized as

sn¢1 = §" + ( f )“ ( T“" - T } (76)
i i dT ' i i
where Ax is the grid spacing and i denotes the grid point x. = (i-1)Ax, i = 1,2,., N+1 and

N+1 is the number of grid points employed in the calculations; N=450.

The domain -0o0 < x < oo was truncated to -50 £ x £ 400 and the locations of the
truncated domain boundaries were selected so that the wave front is not affected by them
In the calculations reported here Ax = 1 and At = 05, and the values of X, x, and r
were varied in order to analyze their effects on the numerical results and time required by
the front to reach a position located between the two sensors. The initial value of V was

also varied; however, only results for V(0) = 1 are presented here.

The initial value of the temperature profile corresponds to the exact solution, /.e.,

equation (66) with t = 0 and V = 2% .

1 Heuristic Control Results

In Figures 15-17 the temperatures measured by sensors 1 and 2 and the value of V
are shown as a function of time for x, = 44 , x, = 49 and r = 5. Figures 18-20 show
similar results for the same sensors locations and r = 25, whereas in Figures 21-23, x

19,x2=493ndr=5.

1

Figures 15 and 16 indicate that initially the wave front was located to the left of
sensor 1 but it moved with time to some position located between the two sensors.
These figures indicate that the T, and T2 profiles show high frequency oscillations which
are caused by the change in control strategy given by equations (68) and (69). These

oscillations are aiso due to the steepness of the wave front

The wave front speed as a function of time is shown in Figure 17. This figure

indicates that when the wave front is located to the left of sensor 1, the wave velocity is

increased according to equation (68). This velocity increase steepens the temperature
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Figure 15: Temperature measured by the first sensor as a function of
time (x = 44, x, = 49, r = 5)
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Figure 16: Temperature measured by the second sensor as a function
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Figure 17: Wave front speed as a function of time b, = 44,
X, =49, r = 5)
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Figure 18: Temperature measured by the first sensor as a function of
time (x, = 44, x, = 49, r = 25)
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Figure 19:

1
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1

Temperature measured by the second sensor as a8 function
of time (x, = 44, x, = 49, r = 25).
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Figure 21: Temperature measured by the first sensor as a function of
time (x, = 19, x, = 49, r = 5)
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Figure 22: Temperature measured by the second sensor as a function of
time (x, = 19, x, = 48, r = 5)
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Figure 23: Wave front speed as a function of time (x, = 19,
x, = 49, r = 5).
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gradient at the wave front On the other hand, when the wave front is located to the right
of sensor 2, the velocity is decreased according to equation (69) so that the front moves
towards a position located between the two sensors. This velocity decrease smooths the

temperature gradient at the wave front

in steady state conditions there is a balance between diffusion and reaction at the
wave front, away from the front, the reaction terms are exponentially small and convection
is balanced by diffusion If the temperature profile at the wave front is steeper (smoother)
than the steady state profile, the front velocity is larger (smaller) than its steady state value.
Therefore, when the temperature gradients at the wave front are larger (smaller) than their
steady state vaiues, the diffusion terms do not balance the reaction terms, and the front .
continues moving towards sensor 2 (sensor 1). This behavior is similar to the flashback

and blowoff phenomena observed in Bunsen burners (Glassman, 1977).

a s e

Figures 15-17, as well as Figures 18-23, indicate that the heuristic control strategy
given by equations (68) and (69) drives the wave velocity to its steady state value, ji.e., V =
2% . The high frequency oscillations shown in Figures 15-17 are superimposed on the
mean temperature responses measured by sensors 1 and 2, and on the mean wave velocity
response, respectively. Similar high frequency oscillations are also observed in Figures

18-23.

Figures 18-20 indicate that larger time constants result in slower control processes.

Even when the time constant is very large, the control stratégy represented by equations
{68) and (69) still drives the front to a position located between the two sensors. Note
also that the control strategy proposed here also drives V to its steady state value, i.e.,

V= 2%, g

Figures 15-17 and 21-23 indicate that, for the same time constant, the distance
between the sensors does not seem to play an important role in the control of V. This is
shown in the T, and V profiles presented in Figures 15 and 17, and 21 and 23
respectively. Figure 22 indicates that for r = 5 x = 19 and x, = 49 and the initial

conditions employed in this simulation, the temperature measured by the second sensor is
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that of the downstream boundary. This is not surprising as the control is made through

equation (68) only.

The results shown in Figures 15-23 indicate that the smaller the time constant the
shorter the time required to achieve the control obiective. They also indicate that there
are circumstances under which the control is only executed by the temperature measured

by one of the sensors.

1 Conclusions

The heuristic control strategy proposed in the section above only uses the
temperatures measured by two sensors located at two different spatial locations and only
involves 8 minimum knowledge about the temperatures expected in the model equation as
well as the temperature monotonicity. It may also be used in more practical combustion
phenomena such as those occurring in gas turbines where the temperature or heat transfer
losses through the turbine walls may be measured in order to vary the secondary air flow
rate or fuel flow rate so that they are within the limits of the material of the wall or
turbine blades. In these situations, however, the temperature may not be a monotonically
increasing function of the distance along the combustor, but one can always estimate the
lower and higher temperatures and define an appropriate heuristic control strategy. In this
sense the heuristic control strategy differs in a substantiai manner from conventional
control problems where the state variables are acted upon by controllers so that ‘a state is
achieved, say, in the shortest time. Furthermore, conventional control problems are usually
based on reasonable accurate models of the process that it is to be controlled
Reasonable models for the combustion process in gas turbines, for example, do not exist
at the present time; these models may predict recirculation zones, temperatures, etc., within
a factor of 2 or 3 or those observed experimentally because of inadequate knowledge of
the initial and boundary conditions, thermophysical properties, turbulence, reaction rates, etc.
For these problems which are (within a factor of 2 or 3) from their real life counterparts
simple heuristic control strategies such as the one proposed here may prove useful for the

design and control of practical combustors.
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