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1. Status of Research

1.1. Introduction

The research which was suggested in the proposal dealt with the

application of quasi-Newton methods to optimal control problems. The main

motivation consisted of the fact that these methods are very useful for

optimization problems and exhibit a superlinear rate of convergence. This

statement on the convergence rate was known to hold in infinite-dimensional

spaces only under additional assumptions. Optimal control problems were

formulated in infinite-dimensional spaces and hence the superlinear

convergence behavior of quasi-Newton methods for these problems should be

investigated.

1.2 Classical Ouasi-Newton Methods

Optimal control problems of the following type were considered: Let
LRn+m+1 n+m+1 Rnn

L:R Rand f: .Rn for some n, m e R and T > O, xo e Rn .

Minimize

fL(x(t), u(t), t) dt (1)

subject to

x(t) = f(x(t), u(t), t) , x(O) = x (2)
p0

9NO,

£o

If it is assumed that (2) is uniquely'solvable for all iterates U, then the -

, objective can be written completely in terms of u

T 'i fA, -e

- 1).



F(U) = O L(x(u,t), u(t),t)dt. (3)
0

The gradient of F is given by

TVF(u) = p (.)f (x(.), u('), -) + L (X(), ((x)(-), (4)
U. U

where p solves the adjoint equation

T-p(t) = p(t) f x(x(t),u(t),t) + Lx (x(t),u(t),t),  (5)

p(T) = 0.

The computation of the Hessian of F is obviously tven more complex so that the

use of Quasi-Newton methods which do not require the knowledge of the Hessian

is a desirable choice. Let F: H - IR, H Hilbert space, be twice

Frchet-differentiable and ui e H and B. e L(H), the space of linear and

bounded operates on H, be given. Then the BFGS method, can be defined as

follows:

(i) Solve B.s. = - vF(ui)

()Ui+1 '= u i + si

y = vF(U ) - F(u
<yi' "> <Bs. • l>i~l 1

(iii) B B + 1- B.s..
i+1 i <yi,si> 8 <B si,si> I i

0
It was shown in (1) that for the control problem the superlinear rate of

convergence in the Hilbert space norm
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2
holds, if B and u. are chosen close enough to v F(u*) and u, and if, in

0 0

addition

B = +C, (8)

where C is a compact operator and

Huuv (p (fT fx(x*(.),u*(.),.) +
)Tuu (X

Otherwise, one can expect at most a linear rate of convergence.

Obviously, the control problem (1), (2) cannot be solved numerically

unless it is discretized. However, one might suspect, that the compactness

condition (8) on the initial guess of the approximation of the Hessian

influences also the convergence behavior of the discretized finite-dimensional

-'I, problem. In [1] a fourth order Runge-Kutta scheme as applied with a Hermite

interpolation at intermediate points. For the approximation of the inner

product a composite Simpson's rule as used. Hence the discretized problem

looked as follows:

N 2N+1 N 2N+1
For given u G N solve ('1) and obtain x Q +

Then use (5) to compute p1 E R2n+l and evaluate (4) (9)

at the grid points.



5

This procedure and the other possible route to discretize (1) and substitute

it into (2) are quite different. In the latter case one obtains very

complicated expressions for the gradient whereas the approach outlined in (9)

is much easier to apply. However, (9) does not yield, in general, the

gradient of a functional, so that the Jacobian is not symmetric and an

application of the BFGS method seems not desirable because it maintains

symmetry of the approximating matrices. But it was shown in [1] that this

does not give rise to problems which is due to the fact that the finite

dimensional problem is close to an infinite dimensional problem which exhibits

all the features like self-adjointness and positive definiteness.

As a measure for the convergence in [1] the first iteration index was

' used for which the tolerance was achieved:

i(e) = min(i e w: tIvF ui)it < L)

N)
i. (6) = min(i e IN: ,vFN(u)IN < E.

Under appropriate conditions one can show, that for N large enough
5.

... i(s) - 1 _< iN(E.) _< i(s), (10)

i.e. the termination criterion for the finite dimensional problems is

asymptotically at the same iterate satisfied when it holds for the underlying

infinite dimensional problem. Inequality (10) has been verified for numerical

examples, but these tests were even more revealing with regard to the rate of

[., convergence. In Fig. 1 a graph shows the decrease in the norm of the residual

UvFN(ui)N for two choices of Bo: For choice a) the compactness condition (8)
0
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was satisfied, for choice b) it ws not true. Both choices had approximately

the same distance from the Jacobian. Although these two different initial

selections for B seem not to make a difference for the finite dimensional -. "
0

convergence behavior, Fij. 1 illustrates the fundamentally different

convergence rate. This effect can be explained and even predicted by making

use of the infinite dimensional theory.

1.3. Pointwise Approach

In [2] the same problem (1) and (2) ws considered but the approach

of applying quasi-Newton methods to it was quite different. Sippose, the

necessary optimality conditions (2), (4) with vF(u) = 0 and (5) are treated as

a system of equationsin the unknowns (p,xu). For u m = I this means that

one wants to solve

x - f(x,u,t)

F(p,x,u) = p + f (x,u,t)p + L(xu,t = 0,, x
f (x,u,t)p + L(x,u,t)

The Jacoblan has the following structure in a proper function space:

0 D-f -f/x u

F, p'XAuj= D+f H H ,(1

f H H

where D is the differential operator,

"j"
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H(x,u,t) =f(x,u,t)p(t) + L(x,u,t), '

and 
'"

F: X Y with 1 < r <_ 
"---

r r. 
"rXr = w [0,T] × f'xT] LrLxO,T],

r r r[ [Xr = .lrOT] x nr~oT] ~ riO ,T] .-""
Y O[,T] x L T] x L fOTj.r

Under a second order sufficiency condition for optimality one can show the

regularity of F' and hence prove the quadratic rate of convergence for

Newton's method. If a quasi-Newton method is designed for this problem one
should take into account as much structure as possible. For example, the

terms D, fx and fu in F' are kiown eactly because they are needed for thex U
evaluation of F. Hence it is only necessary to ,pdate the lower right 2x2

block of F' in (11). All the operators in this block are multiplication

operators so that an update should be performed with multiplication operators.

This leads to updating the 2x2-block for each t separately. In a di 3cretized

version this means that if u is replaced by a D-dimensional vector, then D

2x2-blocks need to be updated. This can be a decisive advantage over the

method presented in (1) where a D x D-matrix need to be updated, if D is large ',

for the corresponding ccmputing environment. Another perk of the pointwise

updates is that at each step a linear two point boundary value problem needs
to be solved, whereas in (1] the nonlinear state equation has to be solved at .-

each iteration. The pointwise quasi-Newton method is described and analyzed j

in detail in (2] and has been also very successful for the numerical example.

An interesting result is the rate of convergence which could be shown for the .

methods: with z = (p,x,u) the following holds for all

<s < r

AH
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lim Iz.+l- z H<s (12)
Ilzj - Z.il

This is not the superlinear convergence rate (7) because different r'orn' are r

used for zi+1 - z* and zi - z., but these two nors can be arbtrar ily Cloie.
This result (12) comes from the fact, that the system of nonillnear equaticns

F(p,x,u) = 0 contains algebraic equations. This ap-jrsach to -ive "ptind

control problems shows a lot of potential for exter-sion in direction of

constraints and control of partial differential equations.

1.4 Pseudorarabolic Control Probhen

In [3] a first approach towards optimal control problems with

partial differential equations is undertaken. A model fran heat conductiq

with memory was taken and a boundary control applied. The differenval

equation which is of pseudoparabolic type looks as f ,lows:

Yt =Y + ey X e (0,), t - (O,T)

y(0,x) = 0 x E (0,I)

YX(t,1) = 0 t e (0,T]

- y(t,0) - yx(t,0) = u(t) t 77,T.

Here ' > 0 is a material constant and u is the control flinction. ThQ sohtion

of the differential equation can be repre-en-te-I by a Foturier expansion and is

approximated by the first N terYLs of the eries5 expansion. The then"y

developed in (1] can be applied to approximation-s of this problem and all the

assumptions can be verified.
V'.4/,1. 60

% r



In the case that the objective functional is of an integral type, V

(y(Tx) - z(x))Pdx + f u (t)2 dt

with z e C[O,1] and a > 0, p 4E N, then one can verify that the only

nonlinearity is described by a real-valued function depending on real niinbers.

Based on the secant method one can construct an update which allows the same

error estimates as the secant method and this yields a convergence rate of

R-order (W'3 + 1)/2. Several numerical Lxamples in [3] illustrate that this

rate is actually observable. Similarly, a number of test runs were made for

decreasing values of tlne constant a in the cost function. Then the problem

became less and less well conditioned which resulted in a larger numbers of

iterations to achieve the tolerance.

1.5 Elliptic Boundary Value Problems

Nonlinear elliptic boundary value problems are considered in (4].

Obviously, a discretization of this problem leads to a Jacobian with a large

amount of sparsity. This is an advantage which should be used in the design

of quasi-Newton methods. If one applies the Schubert algorithm to this

problem, then from the tridiagonal structure of the Jacobian the update is
I

given by (4, 1.12]. By letting the discretization parameters tend to the

zero, one obtains as a continuous version.

V..

Ui >
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(B1 1v) (x) = (B v) (x) + (Y- Bs)(x)v(x) (s (x)) , (13)
i+1

Y= F(u.+) - F(u.)
1 f

+ if 

.-

0

if a=O

F(u) = v2u + f(x,u,vu). (14)

If one starts with an operator B which includes the Laplacian, then the

update (13) contains only multiplication operators. In the case where (14)

does not depend on vu this approach works find but otherwise the Jacobian is

of the form

F'(u) = 2 + f 2 (x,u,vu) + f3 (x,u,vu)v,

which contains a derivative term of first order. This term is approximated by

multiplication operators only and leads to problems in the numerical

performance of Schubert's method. The remedy to this jroblem is to update B

pointwise also for a derivative term:

(B lv)(x) =

(B lv)(x) + (Yi- isi)(x)(s(x)v(x) + vs(x)vv(x))(s(x)2 + Vs(X2)

The fact that derivative terms are accounted for also shows in the convergence

result:

---------



H u -i+1 u
urn ira = 0 with 11.11 the C -norm

i%, 1

,he numerical res-ults include nonlinear two-dimensional elliptic problems.

Also, the updates in this paper are pointwise quasi-Newton updates.
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Superlinear vs. Linear Rate of Convergence

compactness condition true

false

10 15 Iter.

-1

log

Figure 1.

Inventory Control Pr-blern, [1, p. 25 -30]

N N
residual , (u) , N =200
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(I] Quasi Newton Methods and Unconstrained Optimal Control Problems, (with
C.T. Kelley), SIAM J. Contr. Optim. (submitted). -"

[2] A Pointwise Quasi-Newton Method for Unconstrained Optimal Control
Problems (with C.T. Kelley), submitted.

[3] An Application of Quasi Newton Methods to Pseudoparabolic Optimal Control
Problems (with C.T. Kelley), to appear in 'Proceedings on Optimal Control
of Partial Differential Equations, Oberwolfach 1986', edis. K.H. Hoffmann Ft
and W. Krabs, Birkhauser, Boston.

[4] A Quasi-Newton Method for Elliptic Boundary Value Problems (with C.T.
Kelley), SIAM J. Num. Analysis (to appear).
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3. Interaction

3.1 Invited Talks

Conference on Optimal Control of Partial Differential Equations,
Oberwolfach (West Germany), May 18-24, 1986.

Conference on Optimal Control and Calculus of Variations, Oberwolfach
(West Germany), June 15-20, 1986.

International Conference on Control and Identification of Distributed
Systems, Vorau (Austria), July 6-11, 1986.

Mathematics Colloquium, Pennsylvania State University, August 14, 1986.

3.2 Contributed Talks

12t h International Symposium on Mathematical Programming, Boston, August
~~5-9, 1985. p

SIAM Fall Meeting 1985, Tucson, October 28-30, 1985.

th11 Symposium on Operations Research, Darmstadt (West Germany),
September 1-3, 1986.

.. 3.3 M

During the SIAM National Meeting 1986 in Boston, July 20-25, 1986, a

minisymposium was jointly organized by Tim Kelley and the P.I.. The topic was
,.' •.

Quasi-Newton Methods in Infinite Dimensional Spaces, and the speakers were:

E. Allgowes (Colorado State University) a.

M. Trosset (University of Arizona)

A A. Grievank (Southern Methodist University)

C.T. Kelley and E. Sachs 9

',.
• . . .. .. -. *,
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