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K- 1.1. t ction 5
!: \':u
o The research which was suggested in the propcsal dealt with the i
0y &

ap[':lication of quasi-Newton methods to optimal control problems. The main

2 L

~ e ~

FEISARCH (AR T

:'ﬁ motivation consisted of the fact that these methods are very useful for ::.:.'{
K :‘_'x.'
A“':‘ optimization problems and exhibit a superlinear rate of convergence. This L::}‘
( - h‘\
' statement on the convergence rate was known to hold in infinite-dimensional -
1A 'F‘
-; spaces only under additional assumptions. Optimal control problems were ;
ot
“': formulated in infinite-dimensional spaces and hence the superlinear ;*::
‘Nl' N"\
) : '\i\\

3 convergence behavior of quasi-Newton methods for these problems should be E
o investigated. I:’_QZ:
'.:’_'-(.:
k- BN
™ 1.2 Classical OQuasi-Newton Methods i
™ - ' *'.
_:_.: Optimal control problems of the following type were considered: Let e
- L: ™ roand £: ™! Lg% for somen, meRand T > 0, X € R". j'.::ji
,.-'\' _.;:'4
i Minimize P
Y o
.'.) ;.;,;
.._;' T P
< [Lexe), uee). 6 e (1) r
Ko 0 ar
o subject to . r'{—
oY . !
~ x(t) = f(x(t), u(t), t) . x(0) =x . (2) »\

L 'I -.
- ' N
B If it is assumed that (2) is uniquely'solvable for all iterates u, then the bk
1 » _-:'._
k _‘: objective can be written completely in terms of u :j::—
v ~‘ '-<"
o :_ J:
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F(u) = I L(x(u,t), u(t),t)dt. (3) &a

0 ;H

o

s.:;z

The gradient of F is given by Eﬁ

B?\

T =3

vF{u) = p (')fu(x('), u(-), -) + Lu(X(-), w(-),-), (4) N

35

|

where p solves the adjoint equation ~

3

L
™

. T £
'MH=PH)%MHLMHK)+%MHLNUNL (5) Y

p(T) = 0. D

|

)

The computation of the Hessian of F is obviocusly even more complex so that the e

use of Quasi-Newton methods which do not require the knowledge of the Hessian R

is a desirable choice. ILet F: H 4 R, H Hilbert space, be twice ﬂi;

Fréchet-differentiable and u, € H and B, < L(H), the space of linear and Ezj
bounded operates on H, be given. Then the BFGS method can be defined as S
Cg

-J‘:

follows: B
(i) Solve Bisi = - vF(ui) d

(1) ujy =uy +s; : 3

= - e

Yi = vF(ui+1) 'vF(ui) :

<yi,-> <Bisi,-> Zij
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o e
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It was shown in [1] that for the control problem the superlinear rate of {xj

I‘\'
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convergence in the Hilbert space norm
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i - u 5
1im 32 =0 (7) E
"h-. i i “-\'
h:.- \(
.. M
:;.' 2 '\..'E
.r holds, if B_and u_ are chosen close enough to v F(u,) and u, and if, in o
: . o o X
A addition Lt
e ~
¢
. . Bo = H‘m + Cl (8) Y.
!i;:
o =
e where C is a compact operator and I
37 N
e -
o T 5
HoV = (Pel ) £ (Xe (0 )oug(e), o) + Lo (3,0),0,(+), - ))v(-). -
o™ o
o Otherwise, one can expect at most a linear rate of convergence. : ,‘.
. Obviously, the control problem (1), (2) cannot be solved numerically =
- -]
::;-3' unless it is discretized. However, one might suspect, that the compactress -
.- 0
) condition (8) on the initial guess of the approximation of the Hessian 2
.~ influences also the convergence behavior of the discretized finite-dimensional 3
, - problem. In [1] a fourth order Runge-Kutta scheme was applied with a Hermite 1:::
e v
:‘"5 interpolation at intermediate points. For the approximation of the imner ‘
Al
< 5 product a composite Simpson's rule was used. Hence the discretized problein C
L
o looked as follows: =
(-2 ’
Pl -
B4 4
it For given uN € RZNH solve (1) and obtain xN € R2N+1_ . ‘
o wWH)
P oy
_\:'.:- Then use (5) to compute pN € R2n+1 and evaluate (4) (9) ::‘,
e . v
:j:: at the grid points. ‘::
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:, 3
% :
',1:‘: (]
o . "<
o .
.
o
S T

L , PRI TS TS
0, T AN P ) TR N T T N o,
. '2‘.3\’.,! M,n.q. » .0 b ,'- RV At At "lo‘.'c‘!'c il .M.’.‘,h ".‘!'l‘. !’0 ASARSCNA TSy

or o ms e n b et e
P o
N Lin . XN



A\ ,.
5
-‘
<~ :
e
LY
L.
>
) This procedure and the other possible route to discretize (1) and substitute
~\“~‘
e it into (2) are quite different. In the latter case one obtains very
T
e camplicated expressions for the gradient whereas the approach outlined in (9)
f;' is much easier to apply. However, (9) does not yield, in general, the
3%
hf' gradient of a functional, so that the Jacobian is not symmetric and an
]:,; application of the BFGS method seems not desirable because it maintains
- symmetry of the approximating matrices. But it was shown in [1] that this
‘333 does not give rise to problems which is due to the fact that the finite
‘:fj dimensional problem is close to an infinite dimensional problem which exhibits
R
@ all the features like self-adjointness and positive definiteness.
e
LN
j:j: As a measure for the convergence in [1] the first iteration index was
-~
}:} used for which the tolerance was achieved:
_— i{e) = min{i € N: qu(ui)H < e)
.
,-f."-ﬁ iN(e) = min{i € N: nvFN(u?) y < e},
.}:._4
£
w) Under appropriate conditions one can show, that for N large enocugh
i ‘
k) -ﬁ.:_,'
~":-~':
2% ie) = 1 ¢ dgle) ¢ ife), (10)
L
',Cﬁj i.e. the termination criterion for the finite dimensional problems is
-)"v',
ﬁé}j asymptotically at the same iterate satisfied when it holds for the underlying
infinite dimensional problem. Inequality (10) has been verified for numerical
o
1:$( examples, but these tests were even more revealing with regard to the rate of
LAY
.
tf{ convergence. In Fig. 1 a graph shows the decrease in the norm of the residual
ey

quw(uY)MN for two choices of BO: For choice a) the compactness condition (8)

)
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. was satisfied, for choice b) it was not true. Both choices had approximately
: the same distance from the Jacobian. Although these two different initial
4
; selections for Bo seem not to make a difference for the finite dimensicnal
£

convergence behavior, Fig. 1 illustrates the fundamentally different

n.

b, convergence rate. This effect can be explained and even predicted by making
v use of the infinite dimensional theory.

‘.l

j 1.3. Pointwise Apprcach
'j In [2) the same problem (1) and (2) was considered but the approach
4

: of applying quasi-Newton methods to it was quite different. Suppose, the

'Ca

:;’ necessary optimality conditions (2), (4) with ¢F(u) = 0 and (5) are treated as
¢
: a system of equationsin the unknowns (p,x,u). For u =m = 1 this means that
¢

- one wants to solve

4

¥ X - £(x,u,t)
~ Flp.xu) = | p+ £ (xut)p+ L (xut)] =0

Ny fu(x,u,t)p + Lu(x,u,t)

o

L}

o
: The Jacobian has the following structure in a proper function space:

[

‘

::_ 0 D—fx -fu
- F(p,x.h1) = D+, L o , (11)

- f H H
; u' xu uu
::‘E where D = a% is the differential operator,

*

o
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H(x,u,t) = f(x,u,t)p(t) + L{x,u,t),

AR e e s TAEEETY SR
~

: and
>
y P: X =Y withl<rge
. r r
X, = wHTro,T) x wFro, 1] x LF[0.T],
- Y, = LFto.1] x Lro.1] x LF[0,T].

Under a secord order sufficiency condition for optimality one can show the
regularity of F' and hence prove the quadratic rate of convergence for
Newton's method. If a quasi-Newton method is designed for this problem one
should take into account as much structure as possible. For example, the

terms D, fx and fu in F' are known exactly because they are needed for the

R RIS 19, TSN SRR Ay AR

e

evaluation of F. Hence it is only necessary to update the lower right 2x2

s Ww ¥
e

block of F' in (11). All the operators in this block are multiplication

operators so that an update should be performed with multiplication operators.

E This leads to updating the 2x2-block for each t separately. In a di scretized
N version this means that if u is replaced by a D-dimensional vector, then D

5 2x2-blocks need to be updated. This can be a decisive advantage over the

E method presented in (1) where a D x D-matrix need to be updated, if D is large
u

for the corresponding computing environment. Another perk of the pointwise

»

updates is that at each step a lirxéar two point boundary value problem needs

L

YN

to be solved, whereas in {1] the nonlinear state equation has to be solved at

(2
i

each iteration. The pointwise quasi-Newton method is described and analyzed
\ .

in detail in [2] and has been also very successful for the numerical example.

An interesting result is the rate of convergence which could be shown for the

methods: with z = (p,x,u) the following holds for all

¥d _amaial gaad)

l1{(s<r¢m=

e
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M
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Wz, o -z,
Mm Gis1 " Fels (12)
ouzg -z

This is not the superlinear convergence rate (7) because different nonns are
used for z, . - 2z, and z; - Z,, but these two noms can be arblrarily Close.
This result (12) comes from the fact, that the system of nonlirear equatians
F(p,x,u) = 0 contains algebraic equations. This approach to solve optimal

control problems shows a lot of potential for extension in directien of

constraints and control of partial differential equations.

1.4 Pseudoparabolic Control Problems
In [3]} a first approach towards optimal cuntrol problems with

partial differential equations is undertaken. A model from heat conductinn

with memory was taken and a boundary control applied. The differential

equation which is of pseudoparabolic type looks as follows:

~
-. ;:

ot
1"
>
-3
.l‘; l“& v

Ve = Yoo ¥ Ve x e (0.1), )

v(0,x) =0 x € (0,1) ::-}

."J

4

= ™ (Y

yx(t,l) 0 t e (07T =1

=

- - = s (0,7, K

Yx(t,O) EYxt(t.O) u{t) t e (0,7] 7

X

’ , e

Here ¢ > 0 is a material constant and u is the contro! functicn. The solution K
. *

9

of the differential equation can be represented by a Fourier expansion and is >
approximated by the first N terms of the series expansion. The theney ;’."Q

developed in [1] can be applied to approvimations of this problem ard all the

>} -3

™

assumptions can be verified.
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In the case that the objective functional is of an integral type,

.::::
.-.:: p a T 2

> (y(T.x) - z(x))7dx + 5 | u(t) dt

_ 0 0
'; with z € C[0,1] and a > O, p € N, then one can verify that the only
nonlinearity is described by a real-valued function depending on real numkers.
'_‘:j Based on the secant method one can construct an update which allows the same
‘Y
[
vy error estimates as the secant method and this yields a convergence rate of
N'F .

s . . ; :
a7 R-order (/5 + 1)/2. Several numerical éxamples in [3] illustrate that this
& W rate is actually observable. Similarly, a number of test runs were made for
)

__J

" decreasing values of tlie constant a in the cost function. Then the problem

>
R s .

"l became less and less well conditioned which resulted in a larger numbers of
::!" iterations to achieve the tolerance.

o

I'

K e

1 1.5 iptjc Boundary Value Problems

‘) .

::- Nonlinear elliptic boundary value problems are considered in [4].
N2

NN

-::_'- Obviously, a discretization of this problem leads to a Jacobian with a large
N,

) amount of sparsity. This is an advantage which should be used in the design

- of quasi-Newton methods. If one applies the Schubert algorithm to this

problem, then from the tridiagonal structure of the Jacobian the update is

4

given by [4, 1.12]. By letting the discretization parameters tend to the
o Zero, one obtains as a continuous version.
Wy
g
')"
ol
g
‘.!. .
- :
s = -
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(By,v) (%) = (Byu)(x) + (v; - Bys ) (x)v(x)(s;(x))",  (13)
yy = Flug,,) - Flyy)
1 .
+ {E ifa=ro0
a = .
0 ifa=0
Flu) = v2u + f(x,u,vu). (14)

If one starts with an operator BO which includes the Laplacian, then the
update (13) contains only multiplication operators. In the case where (14)
does not depend on vu this approach works find but otherwise the Jacobian is

of the form .
F'(u) = v2 + fz(x,u,vu) + fa(x,u,vu)v,

which contains a derivative term of first order. This term is approximated by
multiplication operators only and leads to problems in the numerical
performance of Schubert's method. The remedy to this problem is to update B
pointwise also for a derivative term:

(B,,,v)(x) =

(Byv) (%) + (y; - Bys;) () (s(x)v(x) + vs(x)ov(x)) (s(x)? + vs(x)%)*

The fact that derivative terms are accounted for also shows in the convergence

result:
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ha, - uh
u1+1 *

lim
jwo ha, - uH
i

=0 with #i-t the Cl—mrm

The numerical results include nonlinear two-dimensional elliptic problems.

Also, the updates in this paper are pointwise quasi-Newton updates.
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Inventory Control Pr-blem [1, p. 25 - 30] :

residual », = G'ul) |, . W= 200 :
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