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INTRODUCTION ,-

Most of our results have been documented in detail in the indi-

vidual progress and annual reports. Our research and activities have

included direct studies in support of gravity gradiometer survey missions

as well as participation in related activities in which gravity mapping,

instrument development work, reviews of gravity gradient programs and

technical conferences involving the development of gravity gathering

equipments, and reviews of states of the art. Indirectly related instru-

mental work in gravity gradiometry has included cryogenic gravity gradi-

ometer development supported from AFOSR and jointly funded with our

Physics Department. This class of instrument and its related technology

is a candidate both for future gradiometers for survey work in aircraft

and/or in orbit as well as for future, more accurate navigation require-

ments. We have benetired from studies we have performed for Goddard Space

. . . . ...
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Flight Center and the Johns Hopkins Applied Physics Laboratory in

connection with GRAVSAT and gradiometers for orbital measurements.

In addition to our direct support for their work, we have participated

on planning groups and chaired a workshop at Goddard reviewing the

technologies, both room temperature and low temperature, for orbital

gravity gradiometry. We have participated in a review of the National

Academy of Engineering of Precise Navigation for the Navy. Included

in this advisory function was a study of the use of low-temperature

technology for future Navy needs. Gravity gradiometers played an

important role in all future navigation system considerations. In

addition, we participated in some internal DOD reviews of technology

strategies to ensure the best possible results for investment in

development in gradiometry.

There are a variety of issues associated with data gathering and

fitting gravity fields which have been studied. The aliasing due to

spacing between ground tracks is a subject appropriate both for satel-

lite data gathering as well as low altitude mapping missions. The

local weighting of GRAVSAT doppler data in estimating surface gravity

anomalies and undulations were reported on. The methods employed have

application to other gravity gathering missions. An important step in

changing the methods of estimating accuracy of gravity model fitting

was made by inverting the classical problem. Typically, earlier studies

were done by doing sensitivity analyses. Varying a parameter such as a

spherical harmonic coefficient of the gravity field and looking at the %

effect on a measurement determined that there would be adequate sensi-

tivity if a response was larger than the noise. However, many parameters

-2- p
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exist in the gravity field and this does not indicate whether they can

be separated or not. A study on estimating accuracy of gravity gradient

survey systems developed a theory of two-dimensional Fourier representa-

tion which changed the problem to the more direct estimation theory.

Here one can answer questions of observability and determine directly

the accuracy with which one could expect each of the parameters to

be measured.

A variety of parameterizations are possible with gravity fields.

Classically, spherical harmonic expansions have been used because the

expansions involve orthogonal functions. The advantage here is that

one can truncate such theories and know that the remaining functions

represent the best fit. By contrast, the spherical harmonic expansion

involves the gravity around the entire sphere. For much of the current

interest in gravity, small patches must be modeled. For high resolution,

the number of parameters needed becomes excessive when a world wide

parameterization is used. One solution to this is to use mass con-

centrations and the number, size, and location of masses then become

the parameters with which one works. Locally the size and variety is

intense whereas at greater distances they can be sparse and still

provide the resolution desired. An earlier report, "MASCON

APPROXIMATIONS," has been revised during the past year (August 1985)

and is included as an enclosure with this report.

Designing a gravity survey can have a significant influence both

on the cost and the accuracy of the resulting model. Many investigators

have made contributions in terms of spacing and the proper utilization

-3- 55
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of data gathered in order to make the numerical data reduction tech-

niques efficient. During the closing portions of this contract, we

have addressed the question of the pattern that would provide the best

opportunity to separate instrument noise from uncertainties in the

gravity field. If one takes an orthogonal set of tracks and keeps

that pattern constant, the question arises whether the order in which

the tracks are traced would make a difference in the separability of

instrument noise from the gravity uncertainties. Track crossings

are when the measurements from the instrument should be the same along

each path. The conjecture was that it would since the crossings occur

, with a different distribution in time. Thus, a pattern in which no

0 crossings occurred until late in the survey would leave no check points

during the first half of the survey, for example. By contrast, skipping

paths would allow one to get the first crossing much earlier and dis-

tribute the crossings more uniformly throughout the survey. A theory

was developed to evaluate the relative expected values of error and

some numerical examples were calculated to indicate the promise or

lack thereof of success. Unfortunately, the results do not indicate

4.... the improvement would be significant. This theoretical development

and the numerical examples have been prepared in a paper which will

be presented at the Air Force Academy on February 11, 1986. A copy

of the paper is enclosed as a portion of this report.

.- 4-
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REVISED AUGUST 1985

MASCON APPROXIMATIONS

by

John V. Breakwell Weilian Yang
Department of Chinese Academy of

A eronautics/Astronautics Space Technology
Stanford University Beijing
Stanford, CA 94305 Peoples Republic of China
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1. INTRODUCTION

The error in representing the earth's gravity field by a large but finite

number nf mascons is clearly concentrated in the short wavelength part of the

gravity spectrum. It is thus appropriate to use "flat-earth" approximations, as in

[1], to estimate this error. .1

The most appropriate thin layers in which to locate the mascons are the

idealized oblate spheroidal surface and the Haddon-Bullen layer 15 km below the

surface, at the bottom of the earth's crust. Assuming that, as in 121, the earth

density follows Jeffreys' model of regional isostatic compensation, the surface

density fluctuations, confined to these two layers, can be estimated as in [1] from

data of various sorts obtained from low satellites in polar orbit. Assuming a grid

of mascons in each layer with separation A both NS and EIV, the mass of a

typical mascon may be chosen as the estimate of the integral of the surface

density over a square of side A centered at the mascon grid point.

-5-
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It is shown in this paper how to calculate the two-dimensional spectrum of

the additional error in such quantities as the vertical and horizontal gravity

components at satellite altitude z due to the finite separation A of the

mascons.

Numerical results are presented for the case where the density fluctuations

are estimated from gradiometer measurements taken in a low satellite, evaluated

for various ratios A/z.

2. THE 2-LAYER MASCON MODEL

According to Jeffrey's dynamical model, the disturbing potential can be

,- expressed as

00 00 pl(u,v)dudv
U(,-y, _= f [(z-u) + (y-v) + 21 1/

(2.1)

p2(u,v)dudv

-0 _ 0 [(x-u) 2 + (y_-v) 2 + (:+H) 2/2

where pl(u,v) is the surface-density fluctuation of the surface of the earth and

p2(u,v) is the surface-density fluctuation of a compensating layer at depth

H-= 15 km [2]. -t is the universal gravitation constant. The relation between

Pl(U,V) and P2(U,') is

-- "fd 0u + 2 + ] P~lu, 2 = pt(u. I) (2.2)(9." 2  (9 V
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where d 48.1 km in accordance with the Haddon-Bullen earth model, (2.1) can

be rewritten as WW

Z) 00 0 pl( u,v)dudv .? ,

u(Z,y,z) = t ff " 2 (V)2+Z1"
,,--co rn--co 1).. [(-u,)- + (y-v) 2 + z2] 1/2 (2.3)

(2.3) '" '"

+ 00 ff P2(u,v) dudv
+ -- co rn- - Df [(X-u) 2 + (-v) 2 + (z+H) 21 1/2
J-, oo.

where the integral areas Dnm are defined as

D.m = {(x,y)l(n - 1/2) x < z < (n + 1/2)Ar, (m - 1/2)Ay < y < (m + 1/2)Ay} .

(2.4)

If Az,.Ay are small enough, we can approximate

pl(u, v) dudvf f
D. [(z-u) 2 + (y-v) 2 + z21 1/2

by

{[- n 2i" + [y- mAy 2 + Z21 1/2
and ,

P2(u,v)dudv
D..+ (-v) 2 + (Z+H) 21 1/2

by

(~2 )
(2.5)% -1 = nX ] 2 + [Y -M A Y ]l -+ 1 -+ H ) 2 ) 1/ ... .

{[z_ -nA [

and obtain the potential u (z,y,z) of the 2-layer mascon model: ..

2 oo c0onM-
u (X, y,z) = ( .6)

- -- o rn--o [(x - naz) 2+(y - mAy) "+(.+H,) 2] 1/2 (2.6

-7-
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where H1 = 0, H2 = H. The simplest choice of AfMl is 'IA.Oyp. 0).,, where '-.4an A V

(k. )nm is the estimate, from satellite tracking or otherwise, of the average over

Dnm of surface density pi. We shall be mainly concerned in this paper with this
'"- °

definition of AfI' , but in the final section we shall look at more general

definitions of average density.
,- .,1

We may express u(z,y,:) and ut(z,y,:) as two-dimensional convolutions:

u(z,y,Z) = X , p Yz,y) (2.7)
i 2 Iz2 + y 2 + (z + H) 2

and .

12

utz, yz)-- V p (z,y)D(z.y) (2.8)
VT +z2 y 2 ±V H
i- /x" y2+ (z + H.)" 2.

where p j(x.y) denotes the estimate of the average density in layer i over a

rectangle with center (zy) and dimension Az Ay, and D(x,y) denotes the
'a..

periodic function:

D(z.y) = Az.Ay V N  (z- nAX)6(y- mAy) (2.9)
i--cO M-00

. with period Az in z and period Ay in y.

- This periodic function is easily found to have the Fourier series

representation:
,J....'.

00 00 2, 1 , + ,

D(-, y)- e e210
n--e M-00

,a"., . 4-.

,4, ' p..
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3. ERROR ANALYSIS

Assume that p,(z,y) (i-= 1,2) are stationary random processes. Using

two-dimensional Fourier transformation as in reference [1], (2.7) becomes

2 r -j H
S- e- [P,( ) + e P2(2)] , (3.1)

where "= j , w = V r +  
2 and p,(:) denotes

00
Jff px,y)e-""" + d,)ddy
-00

The dynamic compensating relation (2.2) becomes:

P2: ) =(3.2)
1 + d 4W 4  ()4

Combining (3.1), with z = 0, and (3.2), we obtain

pA)-= C,;)Uo(W) (3.3)

where o(-) denotes U(,O), and

(3.4)

q p( ) =-
21- - (1+dlw4 )]

The mascon model potential becomes:

= e- -)[p 1 (Z) + e -Hp.(:)] , (3.5)

-9-
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where p,() denotes the Fourier tranform of [p (z,y)D(z,y)], expressible

because of (2.10) as

p,-(P) -- E i P - Zm) , (3.6)

where

Zyn = (3.7)
2 mir

The aliasing of p in (3.6) is due to the finite mascon grid size. 4
In general, some gravity-related quantity r( ), in which we are interested,

can be expressed as

TIP) -A)pl() + f2()p2(ZZ) (3.8)

or, using matrix notation,

17P)= f ()() (30)

where

f I I P)
A ) = , ip(O) = (3.10)

Sf2 ) P2(Z)I

And the approximation q /t(:), of j7(::) in the mascon model is given by

r7 (q ) = ,T( ) Z Z p(O -- m) (3.11) u.

n--00 M•-00

The next step is to analyze the error AU caused by using the mascon

-10-
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model, where

i= (Z:- ,7(W) (3.12) t

?.*'

Firstly, the average over a typical rectangle has Fourier Transform:.

PAY(w)-= B(W)p(w) (3.13) .~

* -'A-A

where, in the case of simple averaging, B is the scalar:

4sink ]sin WA

B(Z) = (3.14)

Next, assuming -measurements:

P) -- ()Uo(O) + W (3.15)

where W is a white-noise measurement error, the best estimate p' of P"y is

given, as in reference [11, by,.-.

P _ T( ) ) , (3.16) C.

where

- $ (-Z ) u0PZ) C T(W)B T(Z)
+ Uo(W) H T(M) (P -v'M-ZZ) .

and 4 w and O are the spectral densities of the measurement error and the .

disturbing potential at the earth's surface.

Combining (3.9), (3.11), (3.12), (3.15), (3.16) and (3.17) we can deduce the

spectral density of the error Aq. After some simplification (see Appendix A) this
.?1!
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is: 

"A,.

f r(_=) C _ ) L-0 ) C T(:):) ",,,.

I +, 0 (3.18) 2.-

+ UO'Z H r(*(Zl -)q l 0o: W1 14-1 + Oul )H T(l:) 0 - -) ,,, 1 f

C rl)B T(:)A ) + / 7 (_)[T(_ )_4q_ ) ;(-) C r(Z)[B T( )

p

where Nj' denotes , , and I denotes the identity matrix.
,n,n - M a

MO~O or L9

The first term on the righthand side of (3.25) is the spectrum of the error in

estimating ql due to measurement errors without any mascon approximation.

The terms in parentheses { } in the second term on the righthand side of (3.25)

constitute the error in q/ due to the mascon approximation, assuming perfect

measurements. The factor in front of the parentheses is the ratio

(signal )/(signal + noise), and attenuates at high frequency..;

4. NUMERICAL RESULTS

The quantity q7 of interest is taken to be the vertical gravity anomaly g(:)

at satellite altitude z. Thus, as in reference [1], the scalar C T(.)A) is just

e -u,:, where w = = vw 7+7'. The NS~r) and Ehtly) spacings are

assumed equal: Iz = Ay = A. The estimation of average densities is assumed

-12-
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to be based on vertical gradiometer measurements in a polar satellite at the

altitude Z 180 km. Thus, as in reference [11, M:Y) is the scalar w 2 e-

Independent gradiometer measurements are assumed to be available every 8 sec

for 6 months with an accuracy aw of either 0.1 Eotvos or 0.01 Eotvos, so that

w -" 2,rT2R 2 /N, with N Z 1.g2 X 106, R(km) = earth radius and

aitr 101 sec or 10 s -2 The spectrum Ot, of the surface disturbing

potential is obtained, as in reference [1], from the top 3 layers of a model due to

Heller containing 5 layers of fictitious white-noise potential. The constructed

mascon model is assumed to be superimposed on a low-order potential coefficient

*1 model up to degree =10. The mean squared A is thus obtained, as in

reference [II, by integrating (1/47r2 ) times 01,(=), in (3.25), over the region

> 101R.

Table I corresponds to the integral of the first term in (3.25), while Tables

2a and 2b correspond to the integral of the second term. The effect of aiw in

Tables 2 was not noticeable since the factor (signal)/(signal + noise) was

essentially unity over the dominant frequency range.

Comparison of Tables 1 and 2a suggest that the ratio A/: need not be

chosen less than 0.5 if aw is 0.1 Eotvos, or not much less than 0.2 if alt, is 0-01

Eotvos. However, in practice, a potential coefficient model is truncated at some

maximum degree 11 and the consequent truncation error will often dominate the

estimation error in Table 1. The rali from truncation is the integral of

(1/4-r 2) times (2 2e 2. ) over the region . > 11/R. The corresponding

-13-
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Table 1 Oa .) (m gal) From Estimation Error

180 240 300

O.1E 0.19 0.15 0.14
0.01E 0.022 0.018 0.017

Table 2a oA (m gal) From Mascon Model Error ",

180 240 300

0.2 0.027 0.027 0.027
0 25 0.044 0.041 0.037
0.33 0.077 0.068 0.062
05 0.16 0.15 0.15

Table 2b : (m gad From Mascon Model Error

180 240 300

110 0.23 0.12 0.075
165 0.76 0.33 0.20
220 2.1 0.71 0.38 I

Table 3 ((m gal) From Truncation

180 240 300

180 .043 .0069 .0011
135 .19 .048 .012

00 .78 .28 .11 1

I*.

-14-
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0 - is shown in Table 3.

Comparison of Tables 2b and 3 suggests, for example, that a mascon model

with A = 165 km will yield about the same accuracy (.78 mgal) at z - 180 km

as a potential coefficient model truncated at degree 11 -- g0. Since the number of

potential coefficients _ 1I- = 8,100, while the number of mascons in 2 layers

2 X 4rR ,/. 37,470, the mascon model would appear to be less efficient

by a factor 4. However it is evident that in computing g(z) at a particular

position in orbit the mascons located at a distance greater than r from the

subsatellite point can be omitted if rM. is sufficiently large, without appreciable

degradation in accuracy. To give a quantitative answer to the approximate

choice of r it would be necessary to take into account the cross-correlation of

the mascons. This would lead to a quadruple integral for the spectrum of the

additional error and a sextuple integral for the mean-squared additional error

itself!

A crude criterion for the choice of rr is obtainable if we pretend that the

mascons are statistically independent. Since the vertical gravity due to a mascon

mn. at relative horizontal position ri contains the factor z/(-+ ri,.) , the

additional error due to omission of mascons with r,- > r is given by:

-15-
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Table 4 ag(,) (m gal) From Mascon Model Error

With Optimal Scalar Averaging

180 240 300

110 .050 .0080 .0013

165 .3g .11 .031

220 1.10 .37 .14

Table 5 o'(: (m gal) From Mascon Model Error

With Optimal Matrix Averaging

,- 180 240 300

110 .0088 .00068 .000052

165 .13 .024 .0045 -.

220 .42 .12 .034

A-16-
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00- 00

- f rz-(z. '2 ) 4 dr/ f rz 2 (z 2+ r 2)-dr
t "0 ""

,MAX0I. F-_o :i'
-~~2 (Z4 r~ 2 )-2

where ork) is the a priori variance of g(z). Since ag(.) 9 mgal at

z = 180 km, we can obtain -. 0.55 mgal by choosing rM = 3.9r. With

the spacing A = 150 km, we need only about 138 local mascons to achieve a

total error of about 0.78 m gal, equivalent to that obtained from the potential

coefficient model with 8,100 terms.

5. MASCONS WITH IMPROVED AVERAGING

ustead of the scalar averaging operator B(Z) of (3.21) corresponding to

uniform averaging over the typical rectangle, it is possible to choose B(Z) so as
K-..

to minimize the second term in (3.25). This can be carried out either by

restricting B,) in (3.20) to be a scalar, or by allowing B(=) to be a 2 X 2

matrix. In either case, the averaging suffers from the disadvantage of being

dependent on A); i.e. in either case the computed mascons would depend on

satellite altitude z. On the other hand, the improvements over simple averaging

are surprising. Table 4 shows the mascon model error with optimal scalar
averaging in (3.20), and Table 5 shows the results for optimal matrix averaging.

The improvement in Table 5 over Table 4 is presumably due to taking better

advantage of Jeffreys' dynamic compensation.

V.'
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APPENDIX A

Firstly, the error .q(7- like t t(r') is no longer a stationary two-dimensional

process. Its autocorrelation function 0%,-((7,7) . EA ( (7+A)], depends on

the position 7 relative to the local rectangle, as does also its Fourier Transform

.1,7 ), the error spectral density. But we shall subsequently average over -

Now 0 .,7 is expressible as

= - - ,+ , (A. 1)

where

z00
-,:f f g E(f f f( V- ) '(-i y--V )D(x- ,y-Y' )d' d-

(A. 2)

(f f yrX+- rl,-Y" )AP ,Y' )di' dY' )jd~dq '

and

EL (x- i ,Y-y )pr(z+-j y+-Y') - C -p (.+.t -z",i+Y Y),

so that, using (2.9) and introducing = +z -x, q' -7+ -Y'.

= 00 e2  + :-ZJ *i
fff ff 4) +/')l V-

fT(' , )C7",(S Fi' )AZ" Yy )dYz dV di" dV' de d 1' I .

Averaging over (z,y) removes all terms from the double sum except
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n 0, m 0 . U.sing the tact that

f L f e-' iYq C-,~ q )de dW1
-00

we are left with:

= fT - ~~Z,()A:)(.3)

SimilIarly

0 fT( (A-4

- T1717) ~ ( 4 4

Next

=7 :P. f f e - EI(f f fT(zlj ,y^ )(Zzi Y Y
411- -0 -00

00

iZ-sl ,y-Y )dz ' /) f f pT(z + -z" ,y + tii- y"'
-00

D(--+ Y- z' + q ')Az",Y/')dz" dl )1d~dq

(A4.5)

I -z +i'+ , 4 +1e)d
- -2 fffff

fT(2 'y )C -- (e' , )Ail Y9' )dz' di di' dif' dl- d 1
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Averaging over (z,y) removes all terms from the quadruple sum except

n - n, m -m. This leaves:

'p = t( - )77( + m)AIh (A.6)

Furthermore, from (3.3), (3.15) and (3.16):

: ' -(: =:) U((:7 C -"0

(A.7)

¢,(:) = q! -) (H 1) .

and

= w - ) - )u()g() + Cit) (A.8)

Substitution into (A.1) yields

Z) - f(_ Z) C1

Since a2 will be obtained as ff it is permissible to replace

I4.,

Z + Z", by and by :Y - % in each term of the summation in the first

term in 0 ,. Finally, substituting for i'( ) from (3.17), we obtain (3.18).
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ABSTRACT

Efficient Gravity Gradient Data Gathering

M. Bilello, J. V. Breakwell, D. B. DeBra

We are interested in how one can separate the variations in a gravity field from the
measurement noise when making a survey. Given a survey pattern in which the path of the
instrument crosses itself (as it does in a series of orthogonal tracks), there are a discrete
number of instants at which the measurements should be identical. We have examined a V7
number of different sequences in generating the survey pattern to vary the times at which
these ideD'cal conditions occur. The conjecture was that an appropriate choice of pattern
could take advantage of the time characteristics of the measurement noise in permitting a
separation of noise from gravity data. We show the results as a function of the correlation
time of the measurement noise for a simple model of the gravity field. For noise varying
from uncorrelated to a correlation time comparable to the survey time, the variation is
approximately 10%. Large differences in accuracy of reconstruction do not appear likely
since our results give variation between paths of approximately 2% for two very dissimilar
paths through the same grid. Thus the conjecture has not been borne out.

A 
4

'.4

4-7

-p.. -25-

7'4'. 

-

',,.'+:



Efficient Gravity Gradient Data Gathering

Introduction

The modern interest in measuring gravity gradients began in the late 1950s motivated
by determining the vertical in a satellite. Early papers considering the analytical aspect
of gradient determination were followed in the next decade by a number of innovative
approaches in how such an instrument might be built. The revolution in gradiometry was
to make the measurements in a moving vehicle and/or in a satellite without the gravity
needed for the geophysical pendulum instruments. An instrument developed at the Bell
Aerosystems was chosen for field application for improvements in navigation. This instru-
ment has been very successful in its early field tests and is in production for deployment.
As a result of this success for the navigation mission, the Defense Mapping Agency (DMA)
through the Air Force Geophysics L aboratory (AFGL) began the modification of this in-
strument for gravity gradient measurements for gravity survey work. Many people have
subsequently contributed to the development of a survey plan and techniques for utiliza-
tion of such an instrument. In this paper we explore the possibility that given an area
to be surveyed and a track spacing that has been determined by the necessary resolution
of gravity data, there might be improvements in accuracy depending upon the form of a
grid pattern used in overflying the area. The conjecture is based on the fact that instru-
ment noise, whether described in the time domain or spectrally, may be different than the
equivalent noise associated with gravity fields for a given velocity of the vehicle during the
survey. When a survey is performed with a grid in which tracks cross each other, there
are a discrete number of crossings at which the measurements should be the same in both
directions. Different patterns provide a different distribution in time of when these points
of identical measurement occur. It is this variation in the distribution and time which
could make a difference in being able to separate signal from noise.

Models
of.As indicated in the introduction, the spectral characteristics of the gravity field and
of the instrument will have an influence on the separability of the gravity information
from the instrument noise. With the amount of experimental data that exists from the
laboratory and early field trials, it would be possible to give a good model of the expected
noise from a gravity gradiometer. However, to investigate the potential for improvement
one can start with a much simpler model of the instrument noise and vary its parameters
to see whether or not significant improvements are possible. We have chosen the latter ap-
proach to investigate the feasibility of improvement with the expectation that if significant
improvements appear possible we would then improve the model using available empirical
data.

Spectral Characteristics of the Field
We have used a model of the gravity gradient field that allows us to determine the

spatial correlations of the gravity gradient. (J.V. Breakwell (11).
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Using an approximation of flat earth, we can write:
1(Z, h) = e-U(, o) where U( , o) is the Fourier transform of U(z, y, o), potential on
the reference surface of the earth andU(Z, h), is the Fourier transform of U(z, y, h), gravity
potential at altitude h.

Then the gravity gradients components are given by:

u.(,W h) -W2
U,, Z, h) .,W2.

U . C h )

where
, = (,w,,,) -

From Heller's model referenced in [1], we get the spectral density of U(z, y, o) with
correlation distance Di:

3

Ou.(P) = 0W.() = e
i=1

Equation (1) can be viewed as a representation of a linear system with U(:, o) as input
and

2
z

H(jw) =e -

as the transfer function.

Then we can compute the spectral densities of the gravity gradient components at
altitude h:

Ou. (,, h) H

4

o , , h) W 4 v.

Ou, Z W2)
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By taking the inverse Fourier transform, we can determine the auto-correlation func- Z

tions for the gradients, say Su(z, y, h).

Example: Say we want to compute 5U,(z, y, h) we have

ou.('P, h) = e- 2 "W4 'u.(w) = O e-
iml -

then
..:,

Suv (x ,: Ih) ei(wsz+wvy)wje474h(h+D)dWzdw,
or

3(V+00Sua (r , h) ()e (h+)dwda"

that is

3

Su.. (r, h) = W 2 j we(h+D)Jo(rw)dw

Where Jo(rw) is a Bessel function of the first kind in rw, in the special case of a flight

path over a point grid, we need to compute S, = E[sPsTI, where s is the sequence of

signals we want to estimate 8 v = [ .]

Let's suppose that we are measuring the component U,, of the gradient, then:

E[a, a,J =.Sv.(r,' h)

* where .

',, =11 P4P II.

is the distance between points P and Pj.

Gravity Survey
To perform a gravity survey, the craft which carries the instruments follows a particular

path. In the simple case of a square survey area, a possible strategy is to fly parallel tracks
. as shown in Figure 1.

However, in order to remove drifts and red noise from the measurements, a better

.B.. way is to make cross checks, taking two measurements at two different times at the same
point. The grid of Figure 2.1 is an example of this type of flight. Also shown is the time

of second crossing, Figure 2.2., and the time between the two crossings versus the point

-28-
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of interest, Figure 2.3. One can see that for the path of Figure 2.2, the crossings occur
essentially during the second half of the total survey time T and that when they begin to
occur, it is in such a way that they are close to each other in space.

In order to get a better time and space distribution of second crossings, a path such
as the one shown in Figure 3.1 might be of interest. Here, a row or column is skipped at
each pass, and the effect can be seen in Figures 3.2 and 3.3. Basically, second crossings
occur earlier and two consecutive ones are more likely to be spread in time. Another
advantage of this kind of path is the possibility to continue to make measurements while
turning between two tracks. If one row or column (or more) is skipped, then the radius of
curvature in the turning is bigger, so that both the bank angle and the induced acceleration
are smaller. This may allow the instrument platform to remain in tolerable perturbations
and compensations may be possible.

In view of the disappointing results that we are about to give, we did not pursue the
question of efficiency due to variations in the radius of turns, nor did we carry the study
to include the effect of mass attraction and error modeling on the instrument.

Criteria for Comparison
Our purpose is to get an estimate of the gravity gradient at the grid points with the

smallest error-standard deviation. Since all points are a priori of equal importance, we
take as the performance criterion the arithmetic mean of the standard deviation obtained
at each point, that is:

1 N

where ai = v and P is the variance of the error in the gravity quantity at point
S : Pi - E[(sp, - j)2j. N is the number of points on the grid. Thus, we will be considering
as the best path the one that minimises the criterion o.,.

Theory

The gradiometer output signals consist of the sum of a signal to be estimated (gravity
quantity) and the noise inherent in the instrument.

y = a + n where s is any one of the gravity gradient components and n is the
instrument noise. If we take M measurements at M different times, we have in vector
form:

y=s+n where y= S= ' J ;n=
M M

where n, is the instrument noise at time ti, etc.

If the pattern is a square grid with intersecting points, then M - 2p2 where p is the
number of points on the side of the square grid.

-29-
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Figs. The sketches above show 4 by 4 grids. The speed of the
craft Is uniform and the turning times are neglected. In Fig.
2.2 and 3.2, the time of the second croing at each point
(from I to IS) Is plotted, while Figs. 2.3 and 3.3 show the
time between the two cromings for each point (from 1 to
16).
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We assume for simplicity a linear estimate from the observations:

I = Ky where K is an M x M gain matrix. Ths is a smoothing formula where we
use all the collected data to estimate the gravity quantity at each point.

The error in the estimate is i A s - I ori = (I - K)s - Kn.

Then the covariance matrix of the error, say P, can be computed: 7'
P = E[3l = (I - K)S(I - K)T + KNKT - (I - K)Esn jK T - KEtns.](I - K ')

where S A E[sr) and N " E[nnr].

The gravity signal s and the instrument noise being uncorrelated, the formula reduces
to: -

P= (I- K)S(I- K)T + KNKT

Then we choose the gain matrix K that minimises the trace of P (least squares
estimate) that is:

d(tr(P)) = tr[(-(I - K)S + KN)dK r + dK(-S(I - K) r + NK] = 0

This yields -(I - K)S + KN = 0 or K = S(S + N)- I whenever the inverse exists
and in this cas K exists and is unique. We remark that if (S + N) is non invertible then
E[yyT ] is non invertible. Minimizing every term P.. leads to the same gain matrix K. The
linear least squares estimate is then deduced I = S(S + N)-y. The performance of the
estimate is judged upon the error covariance matrix and more precisely on the diagonal
entries of this matrix. Substituting for K in the expression of P, we get:

P =S(S + N)-'N

In addition to the fact that n and 8 are uncorrelated, we have implicitly assumed that
s and n are zero-mean signals. If this is not the case, (E(s) # 0 and/or E[n] # 0 but stili
E[nsr] = E[snTl = 0), then the formulae are modified in such a way that we replace the
random variables with their centered counterparts, namely:

where (y =s + n)

i =E(s)+K(p-E(y))
." K =S'($" + N*)-' ",

P S'(" + NT'N"

with

S'-E[JsTj - E~sEIIIT-
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Then for a particular pattern that links times to points, we associate the variance
P(tj,ti) with the point which is flown over at time ti.

However, for a grid with crossed points, it turns out that it is never necessary to take
the inverse of the M x M matrix (S + N) because as can be expected, there are a lot of
redundancies in the matrix P computed as P = S(S + N)-N. For example, if at timesj
and k the same point is flown over (withj 9 k), then obviously P(t, t1 ) =P(tb, to) Vl; in
particular, P(ti,t,) =P(tk't&).

We detail this in the next section on preliminary numerical results.

.Numerical Results

We take for our example p =4 and there are 16-p 2 points on the grid and we show
first how to reduce the size of the matrix to be inverted (S + N) (the path lasts M units
of time).

Let

So J and s. als Jo [J

where the subscripts t stand for time and p for points (N =p 2)

then

.: ?.: N" A= £n:] = Fn~.° .

where F is the M x p matrix that maps the points to the times, i.e., F(i,c) I if
point w is flown over at time t, and 0 otherwise.

F is fu rank and let Fm be the pseudo-inverse of i p2 xMe the we a wrteo

.{ Si = FSpF T  p S=FS )rf
N = FNFr p=T F

where

S p tE ,a- ,

N =E~nn71

From previous results we had:

PA- S(S + No)R Not
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which yields

P, = FSPFT[FSFT + FNFT]- IFN,FT

or

P, = FSFFT[F(S, + N,)F7-FNF 7

but

FTF(Sp + N,)F -'F = (S, + N,) 1 .

Then

Pe = FS,(S,+N,)-NF =F PF7 where P, S, (S, + N,)-N,. 5,

p is a p2 x p2 matrix the diagonal entries of which are repeated in the diagonal of P.
P, gives directly the covariance of the gravity gradient at the points of interest.

For the numerical example, we chose a 4 x 4 grid with two different paths and we
wish to compare the performances using the criterion mentioned earlier. We have first to
define the covariance matrices N and S and to construct the F matrix for the two different
paths.

The models used for the andom signals n and a are exponentially correlated. That is,
the entries of the covariance matrix N, vary as the exponential of the time difference and
the entries of the covariance matrix S, vary as the exponential of the distance, namely:

N,(i,j) = c and S,(i,j) = e1

where r and 6 are correlation time and correlation distance, respectively.

These models do not claim to be accurate but represent only a first try to get numerical - -

performance.

Then we compute P, = S,(S, + N,)-'N, to determine the variance of the error --

associated with the gravity gradient at each point of the grid.

For the two paths, we plot the mean of the standard deviation versus r(r = 0 corre-
sponds to a white noise).

Conclusion:

The spectral models of instrument noise and gravity gradient signal we used in our
simulations may not be realistic and this marks the limitation of the results we got. How-
ever, in the special case of exponential correlated signals, they allow us to answer the
question of the best path (among specified ones) according to the criterion we defined. In
terms of times of second crossing and times between cro ings, the two paths chosen for
the simulation can be. described as 'cvry* different. Surprisingly enough, the performances
for the two paths are close to each other for the range of correlation times we have run.
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However, the gap is getting wider in favor of path I when the correlation time gets larger
but the performance of path 1 is only 1.5 % better for r = 13 units of time.* In these
conditions, the choice of a *better* path appears not to be an issue.

Our final remark concerns the nature of the instrument noise. The way it has been
modelled assumed that it was stationary (in particular constant variance at any time); if
this is not the case, quite different results may occur; for example, the importance of early
crossings increases.
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[1] Breakwell, J.V., 'Satellite Determination of Short Wavelength Gravity Variations,' .:
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