AD-R179 611  STUDV TO DEVELOP USE OF GRAVITV GRADIONETERS IN GRAVITY
NAPPING(U> STANFORD UNIV CALIF GUIDANCE AND CONTROL LAB
D DEBRA ET AL  FEB 86 AFGL-TR-86-8166 F19629-82-K-6442

UNCLRSSIFIED




L. MU LNELRUNTYE U JTREUT YUY UV UY YUY W W U YW W WY Y Y I T W TN T W TP U W Ir W I TP P U ™ TV IY T

'
N

i

I
I

ll

o
FITEER
FEEE

i
EFF

reer

H
e

I

i=

)
»n

it Nl

l

MICROCOPY RESOLUTION TEST CHART

e

NATIUNAL BUREAU @ TANpARDS

~ N

EAC AN,
S
hL.

X
2

"'\- _.‘-;-\.:’:: T

IR e



r\ L o3 o aa - A Aat ante N A Bt iubed) Aatr At aa Do an< ba tig ACH g pod A A Aid el Cuk 2l ad ea RS ogiodbe Sie dle gon a-a h S bl S Ml gt matBat a-oibi-obit il dRECHM AR A AEL A At A Aok Anl Sedi
' -

AFGL-TR-86-0166

- Study to Develop Use of Gravity Gradiometers
in Gravity Mapping

Daniel DeBra
John Breakwell

Stanford University

Guidance and Control Laboratory
Department of Aeronautics & Astronautics
Stanford, CA 94305

AD-A179 611

February 1986

Final Report
28 April 1982 - 31 October 1985

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

e

AIR FORCE GEOPHYSICS LABORATORY

AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE

HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731

o
4 4
. ce el e AL . et et Mt et At e e e e
- . F R BN A AT et W T T e T T e N e s s e G T NN T e L T T L T NN T s
e e A AT e R e L e L T e, St L g AU i RS TRTI
L‘-’ e i maint AAA} IR RN DT AR AT AT S . VTP RS 0T 0 T TR P W VW Ve 1 VY, N AR TR VALV VTR NN S S TR




Cn s
N e
i \ a "-.
W . )
k. .. ’:.
\':' ::-':-
. RS
N~ e
> o
‘. "!""
. This technical report has been reviewed and is approved for publication. ‘ ~“
o ¥
3 oY
W - s
: ‘-:. ‘:__..*
b Z t"‘-"-.j
‘o (Sigmatare) 77 (Signature) ( ~ o
‘}: TERRY J. FUNDAK THOMAS P . ROONEY {:{
:. Contract Manager Branch Chief e
A B
~ FOR THE COMMANDER

[ 3

- L
- -:}.
t Signature) =L
2 Ny
< DONALD H. ECKHARDT LS
g Division Director o
- Y
Ry o

_\ .~-<

b " This report has been reviewed by the ESD Public Affairs Office (PA) and is el

h - releasable to the National Technical Information Services (NTIS). -:.j—;

F Al

=

::_:: Qualified requestors may obtain additional copies from the Defense Technical
o Information Center. All others should apply to the National Technical e

i'- Information Service. T
.\ s
< s
L . .--_\

If your address has changed, or if you wish to be removed from the mailing
list, or if the addressee is no longer employed by your organization, please
notify AFGL/DAA, Hanscom AFB, MA 01731. This will assist us in maintaining
a current mailing list.

¥l

44

LR |
"'..11_.' F:.';";‘
R A PR

x
.

\. ".-..-
\J .

n _:.'_-.
- PR
& ‘--.'1
Do not return copies of this report unless contractual obligations or notices . T
- on a specific document requires that it be returned.
s NS
", -."',-\.
10 a®™a
L “w

LAY

. RN

ot (NS

." \' -
A R T T e T R A T BRI e T P e T £ " LA R P T R R R L S

RO RR Py S AN SRy, vyl ._.s._\_.x.w.f"-\. WO e .%__ YN e Y

i



4

i *l‘ - g

e Unclassified Y
. SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

o) STRU

o . REPORT DOCUMENTATION PAGE BEFOBE COMPLE NG FORM e
\). T. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER ::'1
: o

o AFGL-TR-86-0166 %

_'!!\.i 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED -7
. : Study to Develop use of Gravity Gradiometers in Final Report: 4-28-82-- g;

o Gravity Mapping 10-31-85 o2
1::1 8. PERFORMING ORG. REPORT NUMBER :-‘_
25 -
:. 7. AUTHOR(s) % CONTRACT OR GRANT NUMBER(S) Yy
b Daniel B. DeBra

F19628-82-K-004

" John Breakwell 9628-82 0042

A

"hu‘,.'

Sl 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROQJECT, TASK

E -.:; SFanfOtd University . AREA & WORK UNIT NUMBERS

e Guidance & Control Lab, Dept. of Aeronautics & 63701B

el Astronautics, Stanford, California 94305 320103AG

"A-iCONF"rROLLING OFFI;CE NAME ANC;K;DDRESS 12. REPORT DATE

s r Force Geophysics Laboratory

ARY February 1986

;i: Hanscom AFB, Massachusetts 01731 13. NUMBER OF PAGES

ra Contract Manager: Lt Terry Fundak/LWG 40

.‘,/-:; 14. MONITORING AGENCY NAME & ADODRESS(If dilferent from Controlling Oltice) 18, SECURITY CL ASS. (of thia report)

?J  - Unclassified

(3N 1Sa. DECLASSIFICATIONI DOWNGRADING

N nfa !

6. DISTRIBUTION STATEMENT (of this Report)

LS

?;\ APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

0

:" L)
M .5.'. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, i{ dilferent from Report)

r L

5;: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

2

o
N 8. SUPPLEMENTARY NOTES

oy

:;E Not applicable

g

:’: 19. KEY WORDS (Continue on reverse side !f necessary and identify by block number)
‘:_'.~ gravity gradiometer, gravitational mass sensor, gravity mapping,
"-":- mass attraction gradient, airborne gradiometer, inertial guidance,

navigation, MASCONS

20. ABSTRACT (Continue on reverse side If necessary and identify by bdlock numbot) Grav1ty mapplng requ1res a

: form for storing the data about the gravity field ‘as well as an ability to make
SO ’ measurements and interpret them. The studies at Stanford University have in-

. cluded comparisons of gravity field models as well as some of the concerns
associated with gathering data. Our earliest work included modeling of gravity
gradiometer instruments in an attempt to correct for instrumental errors and

. . ; o =~
reduce the residual measurement errors before doing gravity fitting. More o
: recent work has been concerned with the errors introduced by mass attraction =
. (OVER) n.
FORM
F - .
DD | an 73 1473  cEoiTion oF 1 NOV 68 15 OBSOLETE Unclassified :
S N 0102-LF-014-6601 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entersd) v

SR I Rt -’

'\.‘\"h“—.



T —vrTT ey haate i —ala Al A Sfe Abe Ak A fde Ala e Ace AR A A R -G A St etk A4S St Aok Rt Sak S dh Rall el B

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enteved)

! Continuation of Block 20:
= ,\; gradient of the vehicle carrying a gradiometer while data gathering and the
proper patterns to use to maximize the separation of uncertainties in the
gravity field from measurement noise. - ] ) = .
- " i 7 ! :*
' s [ "/' ' ' ‘A sl M -"
/ ' - N
- R
E
i
~_:
A
)
>
P
f.:u
e -
o8
>
<.
s SN 0102- LF-014- 6601

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)




S. il i i hidtniiiandtniinteinmitheke el N T T g e e - e ---*‘i’ ‘
o A
K| ]
[} : "in
-.\ 3
' 2
. TABLE OF CONTENTS N,
) LY
&'Sf
3 Introduction 1 -
. =0
- Mascor Approximations 5 '_:
A
Introduction 5 N '-f
[ X
3 The 2-Layer Mascon Model 6 Cagos
o . %a
Y e
X Error Analysis 9 e
v Yy
(n Numerical Results 12 ::“4‘"
Mascons With Improved Averaging 17 F‘
B ‘ﬁ;}
- References 19 o
5 Appendix A 21 Ny
i 4
_ ‘Efficient Gravity Gradient Data Gathering . : 25
b Introduction 26 s
b o
g Models 26 Lt
. ol
- Spectral Characteristics of the Field 26
Gravity Survey 28
. Criteria for Comparison 29
3 Theory /- e 29
R Numerical Results [ o 32
¥ References 36
“’i i
\I R T f’%
3 R
d -
D)
:‘ “ o/ .
| Loali a})d«’or
. ter 1 Spneind

: : 9,\ .

- a————— . et st - '--M.
iii

% T ST Y T R ST PLTRL - (ISR - . TRCLIALY TR UK TN
A R R e R o E ey R e e L R

et

AL AN ALS
WL O CREREINAN




e B-b i ara ail ala o -

TP T T T T T T YT T YT T YO

ey

iv

Pl A ol 'y

~.~....-L......u.-...u.

-

53]




h

% 7\ TSN

e
\‘h,‘l.l l‘

®_x

-
L )

T |

¥,

- e e
-
Ll of o)

'-’..t

" o P
ZURNDNENPAERE

-

v ¥l ‘-

LOML

-

11

.
2
‘o

s o
A o
i dy

INTRODUCTION

Most of our results have been documented in detail in the indi-
vidual progress and annual reports. Our research and activities have
included direct studies in support of gravity gradiometer survey missions
as well as participation in related activities in which gravity mapping,
instrument development work, reviews of gravity gradient programs and
technical conferences involving the development of gravity gathering
equipments, and reviews of states of the art. Indirectly related instru-
mental work in gravity gradiometry has included cryogenic gravity gradi-
ometer development supported from AFOSR and jointly funded with our
Physics Department. This class of instrument and its related technology
is a candidate both for future gradiometers for survey work in aircraft
and/or in orbit as well as for future, more accurate navigation require-

ments. We have benetited from studies we have performed for Goddard Space
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~$§‘{ Flight Center and the Johns Hopkins Applied Physics Laboratory in i
S connection with GRAVSAT and gradiometers for orbital measurements. ;
In addition to our direct support for their work, we have participated ;
on planning groups and chaired a workshop at Goddard reviewing the ?
technologies, both room temperature and low temperature, for orbital ;
gravity gradiometry. We have participated in a review of the National :i
Academy of Engineering of Precise Navigation for the Navy. Included g
in this advisory function was a study of the use of low-temperature ;'
technology for future Navy needs. Gravity gradiometers played an E
important role in all future navigation system considerations. In 37
\
addition, we participated in some internal DOD reviews of technology -
strategies to ensure the best possible results for investment in 5
development in gradiometry. ;
-
There are a variety of issues associated with data gathering and _ﬁ
fitting gravity fields which have been studied. The aliasing due to ?:
o
spacing between ground tracks is a subject appropriate both for satel- :
o lite data gathering as well as low altitude mapping missions. The =
;2 local weighting of GRAVSAT doppler data in estimating surface gravity ;:
? anomalies and undulations were reported on. The methods employed have E
:; application to other gravity gathering missions. An important step in T.
- B
EJ changing the methods of estimating accuracy of gravity model fitting 37
was made by inverting the classical problem. Typically, earlier studies L
were done by doing sensitivity analyses. Varying a parameter such as a L.
L
spherical harmonic coefficient of the gravity field and looking at the E:
effect on a measurement determined that there would be adequate sensi- ?:
tivity if a response was larger than the noise. However, many parameters ;
3
o2 4
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exist in the gravity field and this does not indicate whether they can
be separated or not. A study on estimating accuracy of gravity gradient
survey systems developed a theory of two-dimensional Fourier representa-
tion which changed the problem to the more direct estimation theory.
Here one can answer questions of observability and determine directly
the accuracy with which one could expect each of the parameters to

be measured.

A variety of parameterizations are possible with gravity fields.
Classically, spherical harmonic expansions have been used because the
expansions involve orthogonal functions. The advantage here is that
one can truncate such theories and know that the remaining functions
represent the best fit. By contrast, the spherical harmonic expansion
involves the gravity around the entire sphere. For much of the current
interest in gravity, small patches must be modeled. For high resolution,
the number of parameters needed becomes excessive when a world wide
parameterization is used. One solution to this is to use mass con-
centrations and the number, size, and location of masses then become
the parameters with which one works. Locally the size and variety is
intense whereas at greater distances they can be sparse and still
provide the resolution desired. An earlier report, 'MASCON
APPROXIMATIONS," has been revised during the past year (August 1985)

and is included as an enclosure with this report.

Designing a gravity survey can have a significant influence both
on the cost and the accuracy of the resulting model. Many investigators

have made contributions in terms of spacing and the proper utilization
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i of data gathered in order to make the numerical data reduction tech- -
[) ;-'. )
e , < . , . . . o
i niques efficient. During the closing portions of this contract, we o
. .
' have addressed the question of the pattern that would provide the best e
N "
k) T
:.’Q opportunity to separate instrument noise from uncertainties in the .
Ny -
"'; gravity field. If one takes an orthogonal set of tracks and keeps -
D P
aa that pattern constant, the question arises whether the order in which by 1
r.\,,:
o the tracks are traced would make a difference in the separability of R
& 3
N \-. .
B i instrument noise from the gravity uncertainties. Track crossings -
8% pmd
are when the measurements from the instrument should be the same along "i
A -
o | | | | :
,."_;,, each path. The conjecture was that it would since the crossings occur -
-
BN 2
N . . . . . : o
',:"-,- with a different distribution in time. Thus, a pattern in which no ”
1+H ¥ .
." crossings occurred until late in the survey would leave no check points b
.';_:, :<
g during the first half of the survey, for example. By contrast, skipping >,
}'. paths would allow one to get the first crossing much earlier and dis- \‘
* tribute the crossings more uniformly throughout the survey. A theory -
Y -
RS .
\:'- was developed to evaluate the relative expected values of error and
o -
i
-~ -
}_j.: some numerical examples were calculated to indicate the promise or '-‘
.r lack thereof of success. Unfortunately, the results do not indicate vy
*}u'f B
:",-:f the improvement would be significant. This theoretical development iy
~ "
NG .
~ -
". and the numerical examples have been prepared in a paper which will X
a2 LY
: be presented at the Air Force Academy on February 11, 1986. A copy o
of the paper is enclosed as a portion of this report. ':




REVISED AUGUST 1985

MASCON APPROXIMATIONS

by
John V. Breakwell Weslian Yang
Department of Chinese Academy of
Aeronautics/ Astronautics Space Technology
Stanford Unisversity Beijing

Stanford, CA 94305 Peoples Republic of China

1. INTRODUCTION

The error in representing the earth's gravity field by a large but finite
number of mascons is clearly concentrated in the short wavelength part of the
gravity spectrum. It is thus appropriate to use ‘‘flat-earth’” approximations, as in

[1], to estimate this error.

The most appropriate thin layers in which to locate the mascons are the

idealized oblate spheroidal surface and the Haddon-Bullen layer 15 km below the

surface, at the bottom of the earth’s crust. Assuming that, as in 2], the earth
density follows Jeffreys' model of regional isostatic compensation, the surface
density fluctuations, confined to these two layers, can be estimated as in [1] from
data of various sorts obtained from low satellites in polar orbit. Assuming a grid
of mascons in each layer with separation A both NS and EW, the mass of a
typical mascon may be chosen as the estimate of the integral of the surface

density over a square of side A centered at the mascon grid point.
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It is shown in this paper how to calculate the two-dimensional spectrum of
the additional error in such quantities as the vertical and horizontal gravity
components at satellite altitude 2z due to the finite separation A of the

mascons.

Numerical results are presented for the case where the density fluctuations
are estimated from gradiometer measurements taken in a low satellite, evaluated

for various ratios A/z.

2. THE 2-LAYER MASCON MODEL

According to Jeffrey’s dynamical model, the disturbing potential can be

expressed as

p1(u,v)dudv

R A N e e L
(2.1
o = po(u,v)dudy
I

o0 oo [(2-u) 2+ (y0) T+ (s H) R

where p(u,v) is the surface-density fluctuation of the surface of the earth and
po(u,v) is the surface-density fluctuation of a compensating layer at depth
H =15 km [2]. ~ is the universal gravitation constant. The relation between

pi(ur) and pofur) is

du* Jov~-

d‘“ 9” + au,,l + l}pg(u,r) = - plur) . (2.2)
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where d = 48.1 km in accordance with the Haddon-Bullen earth model, (2.1) can

. be rewritten as

‘ - ad ,v)dud
4 wWrg) =1 % % [f pi{u,v)dudy

n==-00 Mmm—-00 Dum [(z‘“) 1+ (y-v) 2+ 32] 1/z

(2.3)
[ oo 00 Pz(‘u U)d‘udv
) + v Z 2 f f 2 1/2
K, nm—co me-co Dem [(T-) % + (3-0) % + (2+H) 7|
o
b)
- where the integral areas D,,, are defined as
s D,, = {(zyl(n-1/2)az < z < (n+ 1/2)Az, (m-1/2)Ay < y < (m + 1/2)Ay}
. (2.4)
£ If Az,Ay are small enough, we can approximate
J [ p1(u,v)dudv
3 Do [(z-0)% + (y-0) 2 + 27 12
by
. MY
. {[z- nAzZ® + [y- mAy 2+ 22} 1/2
X and
N f f pol u,v)dudv
1 [(z-0) 2 + (y-0) 2 + (c+H) 3] /2
L by
: (- nda® + [y- mAy® + (:+ B} 12 B
Z and obtain the potential u?*(z,,2) of the 2-layer mascon model:
-
-
y , 2 o MO
" uHrys) = 1), ) - — ——  (2.6)
t-1 nem_-00 Mmmm-o0o [(I - nAI) ~+(y - mAy) -+(:+Hi) -] 1z
¥
b -7-
;
W
3
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where H, = 0, H, = H. The simplest choice of M/\) is AzAYp M ,m where
(,‘)A('J)m is the estimate, from satellite trackiag or otherwise, of the average over
D,,, of surface density p,. We shall be mainly concerned in this paper with this
definition of M9

am: but in the final section we shall look at more general

definitions of average density.

We may express u(z,y,:) and u?(z.y:) as two-dimensional convolutions:

ury:) = © = ‘,7 = & pfzy) (2.7)
-1 \/:r' +y +(z+ H)*

and

2 ~
sfrys) = 3 ———== = @ [0 (zy)Dzy)] . (28)
SN2+ gt (e + H)®

where ;J,- (z.y) denotes the estimate of the average density in layer ¢ over a
rectangle with center (r.y) and dimension Az - Ay, and D{ry) denotes the

periodic function:

Diry) = Ardy ¥ 5 §z-ndnsy- miy . (2.9)

n==_00 Mm=-o0
with period Az in z and period Ay in .

This periodic function is easily found to have the Fourier series

representation:

00 00 F4.9) 24’:‘[
Dzy) ~ ¥ ¥ e [+ (2.10)
nEm_-cO mem-00
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o 3. ERROR ANALYSIS N
)
W, -" l’
’ Assume that pfz,y) (#+=1,2) are stationary random processes. Using %
: two-dimensional Fourier transformation as in reference [1], (2.7) becomes --.
27y -z ~Hw :::
Ud,5) = — e ™[py(@) + e “py(@)] (3.1) <u
w %
-. W
‘i w - ;"
-t where 3 = l W‘l , w=y/w’+ w?and p{W) denotes N
S ¥ e
| o
{ . So “Nwes + w,y) ':?
L J I pdzy)e W dzdy :”'_.
o B w3
o o
{] The dynamic compensating relation (2.2) becomes: E
¥ '-.('-‘
- - ~ P :
b (@) = —— . (3.2) 3
¥ 1+ dtw o
5 Combining (3.1), with 2 =0, and (3.2), we obtain
2 ¥
o
) D) = C@U®) (3.3) o
KA %
) . L’ \
;) where [)(Z) denotes ({Z,0), and N
P ey
o~ - w e
s G = —1—— %
[ ‘-
o | 2”[" l+d‘w‘] 98
.
. W -
Co(T) =
o - 2ryle Y - (14 d'wt)] =
e . , i
o The mascon model potential becomes: =
[ o
) . 92; _ Ha )
% UH@.2) = =L e [pf(@) + e Hpd(@) (3.5) 2
.- -':‘
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where p}D) denotes the Fourier tranform of [7,-(:,y)D(:t,y)], expressible

because of (2.10) as

o0 [s o] ~
pi‘(w) = z Z P i(w_wnm) ' (3-6)
REm—-00 Ma=—-00
where
2nmw
Az
Tom = (3.7)
2mn
Ay

The aliasing of /7,- in (3.8) is due to the finite mascon grid size.

In general, some gravity-related quantity n(@), in which we are interested,

can be expressed as

@) = fi({@p(@) + Lo(@)po(@) (3.8)

or, using matrix notation,

@) = [T@p@), (3.9)
where
H(@) £1(D)
@) = , @) = (3.10)
L(@) p2(D)

And the approximation 7 %), of 5(3) in the mascon model is given by

@ =T ¥ S 5 (@Fm) - (3.11)

fnm_-c0 Mmms-00

The next step is to analyze the error An caused by using the mascon
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model, where

Ag@) = 94@) - n(@) (3.12)
Firstly, the average P over a typical rectangle has Fourier Transform:

Pah@W) = B@)p(w) (3.13)

where, in the case of simple averaging, B is the scalar:

. wAz) . w,Ay]
4sm[ 3 ]sml 3

ww,AzAY

B@) =

(3.14)

Next, assuming measurements:
(@) = HR)Uy(@) + W (3.15)
where W is a white-noise measurement error, the best estimate ? of p,y is
given, as in reference [1], by

p = TN , (3.16)

where

¢ i H-2)¢ (@) C T(@)B T(@)
1 + ¢y@H T(@) 3 H-D)

Y@) = : (3.17)

and &, and ¢y, are the spectral densities of the measurement error and the

disturbing potential at the earth's surface.

Combining (3.9), (3.11), (3.12), (3.15), (3.16) and (3.17) we can deduce the

spectral density of the error An. After some simplification (see Appendix A) this
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I (=D)a-2)¢ 0 C TDN=)
1+ o (QH (@) 3 H-)

0‘55,,(3) =

(3.18)

Sy I H T(2)® 3 H-) .
' I NB-NC-Nb (3
1 + ¢y (@)H T([@)0 3 H-2) { \‘:“n [ (@@ B-3) A -2)¢ (@)

 CT@)B I DAD-3um) +  T(-D)B-2)-1 A-D)6 (D) C T(@)(B T@)-MA=) |

where Y' denotes Y Y~ ,and I denotes the identity matrix.
m n

e myé0 or nyk0
The first term on the righthand side of (3.25) is the spectrum of the error in
estimating 7 due to measurement errors without any mascon approximation.
The terms in parentheses { } in the second term on the righthand side of (3.25)
constitute the error in 5 due to the mascon approximation, assuming perfect
measurements. The factor in front of the parentheses is the ratio

(signal )/(signal + noise ), and attenuates at high frequency.

4. NUMERICAL RESULTS

The quantity n of interest is taken to be the vertical gravity anomaly ¢ :)

at satellite altitude 2. Thus, as in reference [1], the scalar CT(u)flw) is just

we ™, where w=|3 = \/w,2+uy2. The XNSz) and EWly) spacings are

assumed equal: Az = Ay = A. The estimation of average densities is assumed

-12-




(1wwy"~|"v.'\a"'.'v--T-«—-v—.ﬂ.—_,‘..--—_-.v"——'-'-r-'“N“""""““W"“IY'I""'\V‘\"'Y'\‘I!-I"“I‘W'W"'\-“-*- R R A

%

b

%

7_\_25:: to be based on vertical gradiometer measurements in a polar satellite at the

\ altitude = =180 km. Thus, as in reference 1], H[J) is the scalar w®e~*

3 Independent gradiometer measurements are assumed to be available every 8 sec
for 6 months with an accuracy o, of either 0.1 Eotvos or 0.01 Eotvos, so that

e ¢, =27°R%3/N, with N =192 x 10%  R(km) = earth radius and

-_‘ o, = 10 %sec® or 10! sec 2. The spectrum ¢y, of the surface disturbing

o~

potential is obtained, as in reference 1], from the top 3 layers of a model due to

Heller containing 5 layers of fictitious white-noise potential. The constructed

-

¢

mascon model is assumed to be superimposed on a low-order potential coefficient

LA .'1'1‘1.4‘:;1.~
v 4. ¢ sl

model up to degree = 10. The mean squared JAn is thus obtained, as in

P

.
W ta’a

reference [1], by integrating (1/47°) times é44(J), in (3.23), over the region

4
-
' :". ' 2 lo/R
N Table 1 corresponds to the integral of the first term in (3.25), while Tables
j:':-j: 22 and 2b correspond to the integral of the second term. The effect of ¢ in
..
.J Tables 2 was not noticeable since the factor (signal)/{signal + noise) was
..
A essentially unity over the dominant frequency range.
.‘:,.:
A Comparison of Tables 1 and 2a suggest that the ratio A/: need not be
C f
L chosen less than 0.5 if &y is 0.1 Eotvos, or not much less than 0.2 if o}, is 0.01
::j‘_f Eotvos. However, in practice, a potential coeflicient model is truncated at some
re'y
maximum degree [/, and the consequent truncation error will often dominate the
St
X3
'_‘_Zt‘, estimation error 1n Table 1. The C’i;gm from truncation is the integral of
- (1/472) times (~'2€_2‘:0L;,(~')) over the region w > [,/R. The corresponding
o
.’:'4 ~-113-
WY
v
s ‘
P
o
O g e AP L T T 2 T o S T e T S

-
"
S



>

-
-
By

P a -+ 2 %

P LP L

b e L

rY XA

Table 1l 0,4, (m gal) From Estimation Error

180 240 300

0.1E 0.19 0.15 0.14
001E 0022 0.018 0017

Table 2a 0, . (m gal) From Mascon Model Error

180 240 300

0.2 0.027 0.027 0.027
025 0044 0041 0037
033 0077 0.068 0.062
0.5

0.18 0.15 0.15

Table 2b 0,4, (m gal) From Mascon Model Error

180 240 300

110 023 012 0075
165 076 033 0.20
220 2.1 071 038

Table 3 o4y, (m gal) From Truncation

120 240 300

S 043 0069 0011
135 .19 .048 012

00 78 28 11
-14-
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Oags is shown in Table 3.

Comparison of Tables 2b and 3 suggests, for example, that 2 mascon model
with A = 165 km will yield about the same accuracy (.78 mgal) at z = 180 km
as a potential coefflicient model truncated at degree l; = 80. Since the oumber of
potential coefficients ~ l,2 = 8,100, while the number of mascons in 2 layers
~ 2 X 47R*/A % ~ 37,470, the mascon model would appear to be less efficient
by a factor 4. However it is evident that in computing ¢z) at a particular
position in orbit the mascons located at a distance greater than r_  from the

subsatellite point can be omitted if r,_ is sufficiently large, without appreciable
degradation in accuracy. To give a quantitative answer to the approximate
choice of T It would be necessary to take into account the cross-correlation of
the mascons. This would lead to a quadruple integral for the spectrum of the
additional error and a sextuple integral for the mean-squared additional error

itself!

A crude criterion for the choice of r_  is obtainable if we pretend that the

mascons are statistically independent. Since the vertical gravity due to a mascon

2,32

m,; at relative horizontal position 7 contains the factor z/(:2+r,-]-) , the

additional error due to omission of mascons with r; > r_  is given by:
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Table 4 04, (m gal) From Mascon Model Error

With Optimal Scalar Averaging

180 240 300

110 .050 .0080 .0013
165 .39 11 031

220 110 37 14

Table 5 044, (m gal) From Mascon Model Error

With Optimal Matrix Averaging

180 240 300

110 .0088 .00068 .000052
165 .13 024 0045

220 .42 12 .034
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;Z:.: aAg(:)/ag(z) = f rz3(z2+-%) 3dr/ f rz%(z%4r2%) 34y *’
A Tuax 0 PR
£y

_ e

= (1+r, "%/ % s

"

where ag"(’_., is the a priors variance of ¢(z). Since Oy ~ 9 mgal at ::_

D-—*.

¢ =180 km, we can obtain o5y, ~ 0.55 mgal by choosing r = 3.9z With '\j,‘

T

the spacing A = 150 km, we need only about 138 local mascops to achieve a F‘”

total error of about 0.78 m gal, equivalent to that obtained from the potential

. R

coefficient model with 8,100 terms. hoh

5. MASCONS WITH IMPROVED AVERAGING i

iustead of the scalar averaging operator B(@) of (3.21) corresponding to _

uniform averaging over the typical rectangle, it is possible to choose B(T@) so as

to minimize the second term in (3.25). This can be carried out either by ,__

& restricting B(J) in (3.20) to be a scalar, or by allowing B(J) tobea 2 X 2 N

o i
:j'.; matrix. In either case, the averaging suffers from the disadvantage of being o

dependent on f[J); i.e. in either case the computed mascons would depend on

5 " 1N
T -
¥ s

- satellite altitude z. On the other hand, the improvements over simple averaging I
" o
- are surprising. Table 4 shows the mascon model error with optimal scalar i:
W .

g averaging in (3.20), and Table 5 shows the results for optimal matrix averaging.
"): .'.'.
t;: The improvement in Table 5 over Table 4 is presumably due to taking better
F.'r- 'n::'
"‘:.' advantage of Jeffreys' dynamic compensation. ]
?; ;
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APPENDIX A e

Firstly, the error An(7) like n (7 is no longer a stationary two-dimensional
process. Its autocorrelation function B a,(TP) éEI_\r)(ﬂ,Ar/(‘r}'ﬁ)]. depends on

—

the position 7 relative to the local rectangle, as does also its Fourier Transform
©44(T'3), the error spectral density. But we shall subsequently average over T.

Now 04, is expressible as

Osn = Ouint = Opin = Byt + 8y, (A1)

where

0 (e o]

on = gz [ S B [ ety Dad o a2 d )

(A.2)

(f [ oT(z+&-2" jy+n-y' A2 " )d2' dy' )|dEdn
and
Ep (-2 yy pT(z+6-2" ') = Cr, (§+7 -2" n+y '),

so that, using (2.9) and introducing §& = £+2 -2', 5 = n+y -¢':

o n(z-7 ) miy - )
e.x]{ Az * Ay

o o]
l =J“: ‘/ i' Wy - 4
On’n='4?ffffffeﬂ (€ 2 +2ralr 4+ o ¢
7 -00 il

2 ¢ )Cr (€ o M2' " )de dy d2" dy' dg' dy

Averaging over (r,y) removes all terms from the double sum except

~21-




n=0 m=0. Using the fact that

o7 ,3) = 4—'- [ [ e st e @ )de dy

4

we are left with:

OinlD) = fT( - D)oy (D) (A.3)
Similarly

O = [T - D)o, (M) (A4)
Next

¢,,r,,:(3) = 4—-;2— f f e'ﬂ“"f*“’r'?) E“f ffr(.‘t‘ .1/ );’(Z—;’ 'y_y )

D2 oy VA Ay N[ [Tz +E-2 y+n-y")

-00

Dlz+ €~ y+n -y AL Y )dP! dy ) dEdy

(A3)
— Loffffffe—)]w,(é' -7+ ruln -y +y' )
4n= -0

sz[L'“”"”f-/‘J Lmyy ) e ys g

n Az Ay
—

'

v e
n

31

A

i1

[M2 . Cr(€ o N2 ' VA2 dy d2' dy’ 4 dy
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Averaging over (z,y) removes all terms from the quadruple sum except

" =-nm = -m This leaves:

Spin(@) = T ¥ M- Do55(@ + 3, )3) (A.6)

Furthermore, from (3.3), (3.15) and (3.16):

07 ,(3) = vT( - DH - Doy (@)CT(@)
(A7)
0,7(3) = A -y @H(@)UD)
and
¢77(3) = v - H - Dy (@HT(D) + sWluD) . (A.8)

Substitution into (A.1) yields

¢An(3) = 2 fr(_D)wT(“:H'anm)[I-I(—Q+Uum)¢L’.,(D_anm)HT(a—anm)+cbW]

m.n

UDTp ) - [1-2) A-2),, (@HT@)UZ)AZ)

M2 (-2 H-2)8 () CTIUZHT-2) A-2)6 1 (HAII)

Since 0%, will be obtained as Lﬂ [[ ¢4,(F)dw,dw,, it is permissible to replace
4

4+ 3,m by T and T by J-3,, in each term of the summation in the first

term in ¢4, Finally, substituting for ©(J) from (3.17), we obtain (3.18).
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ABSTRACT

Efficient Gravity Gradient Data Gathering

M. Bilello, J. V. Breakwell, D. B. DeBra

3
N
Ny
o
)
K-
f;'. We are interested in how one can separate the variations in a gravity field from the
e measurement noise when making a survey. Given a survey pattern in which the path of the
N instrument crosses itself (as it does in a series of orthogonal tracks), there are a discrete
- number of instants at which the measurements should be identical. We have examined a
- number of different sequences in generating the survey pattern to vary the times at which
_Z-.:f these iden*ical conditions occur. The conjecture was that an appropriate choice of pattern
K- could take advantage of the time characteristics of the measurement noise in permitting a
- separation of noise from gravity data. We show the results as a function of the correlation
L time of the measurement noise for a simple model of the gravity field. For noise varying 9
~ from uncorrelated to a correlation time comparable to the survey time, the variation is -
}; approximately 10%. Large differences in accuracy of reconstruction do not appear likely
o since our results give variation between paths of approximately 2% for two very dissimilar
3 paths through the same grid. Thus the conjecture has not been borne out.
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Efficient Gravity Gradient Data Gathering

Introduction

The modern interest in measuring gravity gradients began in the late 19508 motivated
by determining the vertical in a satellite. Early papers considering the analytical aspect
of gradient determination were followed in the next decade by a number of innovative
approaches in how such an instrument might be built. The revolution in gradiometry was
to make the measurements in a moving vehicle and/or in a satellite without the gravity 4
needed for the geophysical pendulum instruments. An instrument developed at the Bell
Aerosystems was chosen for field application for improvements in navigation. This instru- :
ment has been very successful in its early field tests and is in production for deployment.

As a result of this success for the navigation mission, the Defense Mapping Agency (DMA) =k
through the Air Force Geophysics L aboratory (AFGL) began the modification of this in- oy
strument for gravity gradient measurements for gravity survey work. Many people have 7 e

subsequently contributed to the development of a survey plan and techniques for utilisa-
tion of such an instrument. In this paper we explore the possibility that given an area e
to be surveyed and a track spacing that has been determined by the necessary resolution

of gravity data, there might be improvements in accuracy depending upon the form of a

grid pattern used in overflying the area. The conjecture is based on the fact that instru-

ment noise, whether described in the time domain or spectrally, may be different than the

equivalent noise associated with gravity fields for a given velocity of the vehicle during the .
survey. When a survey is performed with a grid in which tracks cross each other, there
are a discrete number of crossings at which the measurements should be the same in both RN
directions. Different patterns provide a different distribution in time of when these points s
of identical measurement occur. It is this variation in the distribution and time which .

laboratory and early field trials, it would be possible to give a good model of the expected
noise from a gravity gradiometer. However, to investigate the potential for improvement
one can start with a much simpler model of the instrument noise and vary its parameters

could make a difference in being able to separate signal from noise. W
Models \
As indicated in the introduction, the spectral characteristics of the gravity field and ,.
of the instrument will have an influence on the separability of the gravity information ,}‘A
from the instrument noise. With the amount of experimental data that exists from the -

to see whether or not significant improvements are possible. We have chosen the latter ap- r '
proach to investigate the feasibility of improvement with the expectation that if significant v
- improvements appear possible we would then improve the model using available empirical
N I‘: data. \'_
L3 N
. RO
o, o
Spectral Characteristics of the Pield ~

o @

We have used a model of the gravity gradient field that allows us to determine the

" > spatial correlations of the gravity gradient. (J.V. Breakwell [1]). N
- . .
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0N
=
‘:: Using an approximation of flat earth, we can write:
U(S, h) = e ™U(J,0) where U(J, 0) is the Fourier transform of U(z, y, 0), potential on
. the reference surface of the earth andU(dJ, h), is the Fourier transform of U(z, y, h), gravity
-2 potential at altitude A.
:::f Then the gravity gradients components are given by:
7
: Uee(@, b [ —w? ]
- U,(@,h —w?
Y U..(3, h - 2 -
< "}:‘ h{ =e M| w U(3,0) (1)
o \w, —Wew,y
K U:x?d» h; —Jwew
" U,, <, h h—jw'w
s where
:" W = (wy, wy)
o w=[w]+w]
*- From Heller's model referenced in (1], we get the spectral density of U(z,y,0) with
'f" correlation distance D;:
3N 3
s - -
B 6v, (@) = du, (W) = Y die™>P
=1
-f:jz, Equation (1) can be viewed as a representation of a linear system with U(J, 0) as input
- and
:--: - -wz -
= -W2
J o
o H(jw) = e™™ nd
5 o
:}: _]-W:U
"'.';' | —Jwyw
T as the transfer function.
::::? Then we can compute the spectral densities of the gravity gradient components at
- altitude h:
R bu.(3, h) = [H(jw)|*ou,(5)
A [ bu.. (0. h)] [ wr ]
l ‘:-' ¢U'. ‘zv h w:
\:: Ull?‘z‘ hg — -2wh W‘ -
N M EN] Rk PEW A R
¢U..§‘5v hg wie?
. 2.2
i [ Ovp. (@, B) ] [ Wy )
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o By taking the inverse Fourier transform, we can determine the auto-correlation func-
o tions for the gradients, say Sy(z, y, h).
) Example: Say we want to compute Sy,,(z, y, h) we have
o Y
Y s
N ¢U"(‘3, h) = e-lwhu4¢u.(w) —_ Z¢'_w4e-u(l&+0.)
N =]
A« then
[
._: 3 400 4 A
N Sv(z 0, h) =3 ¢ / / eilartenm) de=2h D gy, 4y
.\; i=l -
B
or
. 3 3 pr4o0
b Suv,,(r,0,h) = Z ¢,-/ / grveos  (0-a) 8, ~2(h+D) g, dn
~ i=1 0 [}
\
" that is
"- 3 + 00
X Sv,.(r,h) =Y ¢.~21r/ wbeXB+D) o (ru)dw
. i=l 0
& Where Jo(rw) is a Bessel function of the first kind in rw, in the special case of a flight
. path over a point grid, we need to compute §, = E[a,af], where s, is the sequence of
‘s L3
-’_: signals we want to estimate s, = -
: U,N
_ ’ Let's suppose that we are measuring the component U,, of the gradient, then:
’
N
.J E[‘,Plal’;] = SU"(".'J', h)
>
:'.: where
ri; =l PP |,
- is the distance between points P, and P;.
" Gravity Survey
% . . . . .
¢ To perform a gravity survey, the craft which carries the instruments follows a particular
: path. In the simple case of a square survey area, a possible strategy is to fly parallel tracks
o as shown in Figure 1.
::: However, in order to remove drifts and red noise from the measurements, a better
o way is to make cross checks, taking two measurements at two different times at the same
> point. The grid of Figure 2.1 is an example of this type of flight. Also shown is the time
: of second crossing, Figure 2.2., and the time between the two crossings versus the point
K.
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.-I of interest, Figure 2.3. One can see that for the path of Figure 2.2, the crossings occur

essentially during the second half of the total survey time T and that when they begin to
occur, it is in such a way that they are close to each other in space.

‘ ' In order to get a better time and space distribution of second crossings, a path such
as the one shown in Figure 3.1 might be of interest. Here, a row or column is skipped at

each pass, and the effect can be seen in Figures 3.2 and 3.3. Basically, second crossings
occur earlier and two consecutive ones are more likely to be spread in time. Another
advantage of this kind of path is the possibility to continue to make measurements while
F turning between two tracks. If one row or column (or more) is skipped, then the radius of
- curvature in the turning is bigger, so that both the bank angle and the induced acceleration
" are smaller. This may allow the instrument platform to remain in tolerable perturbations
a and compensations may be possible.

. In view of the disappointing results that we are about to give, we did not pursue the
question of efficiency due to variations in the radius of turns, nor did we carry the stady
to include the effect of mass attraction and error modeling on the instrument.

.‘:_

F;:Z Criteria for Comparison

r

° Our purpose is to get an estimate of the gravity gradient at the grid points with the
&3 smallest error-standard deviation. Since all points are a priori of equal importance, we
take as the performance criterion the arithmetic mean of the standard deviation obtained

at each point, that is:

1 N
Oper = -i ZU,‘

=1

where 0, = /P, and P, is the variance of the error in the gravity quantity at point
g i : P; = E|(s,, — 3,,)%]. N is the number of points on the grid. Thus, we will be considering
A as the best path the one that minimises the criterion oy .

Theory

LI
LT
O s
[T

ARG )

The gradiometer output signals consist of the sum of a signal to be estimated (gravity
quantity) and the noise inherent in the instrument.

4
[

y =8+ n where s is any one of the gravity gradient components and n is the
instrument noise. If we take M measurements at M different times, we have in vector

- form:
n

1]} 8 ni
I y=s+n where y=| : |s=| : |;n=] :
s yM n nag
2

«

where n; is the instrument noise as time t;, etc. ...

~

If the pattern is a square grid with intersecting points, then M = 2p? where p is the
number of points on the side of the square grid.
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Figs. The sketches above show 4 by 4 grids. The speed of the
craft is uniform and the turning times are neglected. In Fig.
2.2 and 3.2, the time of the second crossing at each point
(from 1 to 16) is plotted, while Figs. 2.3 and 3.3 show the
time between the two crossings for each point (from 1 to
18).
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We assume for simplicity a linear estimate from the observations:

3 = Ky where K is an M x M gain matrix. This is a smoothing formula where we
use all the collected data to estimate the gravity quantity at each point.

The error in the estimate is 3 = s-3ors=(I-K)s— Kn.
Then the covariance matrix of the error, say P, can be computed:

P = E[3i"| = (I - K)S(I - K)T + KNKT - (I - K)E[enT|KT - KE[ns")(I - KT)

where S 2 EfssT)and N £ E[nn7).

The gravity signal s and the instrument noise being uncorrelated, the formula reduces
to:

P=(I-K)S(I- K)T + KNKT

Then we choose the gain matrix X that minimises the trace of P (least squares
estimate) that is:

d(tr(P)) = tr{(-(I - K)S + KN)dKT + dK(-S(I- K)T + NKT| =0

This yields —(/ — K)S + KN =0 or K = S(S + N)~ ! whenever the inverse exists
and in this case K exists and is unique. We remark that if (S + N) is non invertible then
E[yyr] is non invertible. Minimising every term P,; leads to the same gain matrix K. The
linear least squares estimate is then deduced 2 = S(S + N)~'y. The performance of the
estimate is judged upon the error covariance matrix and more precisely on the diagonal
entries of this matrix. Substituting for K in the expression of P, we get:

P=S(5+N)"'N

In addition to the fact that n and s are uncorrelated, we have implicitly assumed that
s and n are rero-mean signals. If this is not the case, (E(s) # 0 and/or E[n| # 0 but stili
E[nsT] = E|snT] = 0), then the formulae are modified in such a way that we replace the
random variables with their centered counterparts, namely:

where (y = s + n)
i = E(s) + K(y - E(y))
K=58'(S+N)!
P=5'(S'+N")"'N*
with
S*2E(ssT| — Els]E[sT)
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N*£E[nnT] - E[n]E[n7]
Then for a particular pattern that links times to points, we associate the variance
P(t;,t,;) with the point which is flown over at time ¢;.

However, for a grid with crossed points, it turns out that it is never necessary to take
the inverse of the M x M matrix (S + N) because as can be expected, there are a lot of
redundancies in the matrix P computed as P = S(S + N)~'N. For example, if at times j
and k the same point is flown over (with 5 # k), then obviously P(t;,t;) = P(ts, &) Vi;in
particular, P(t;,¢;) = P(ta, ts).

We detail this in the next section on preliminary numerical results.

Numerical Results

We take for our example p = 4 and there are 16 = p? points on the grid and we show
first how to reduce the size of the matrix to be inverted (S + N) (the path lasts M units

of time).
8, 8,. 'lgl ﬂ’l
se=| : and 8, =1/ : also n,=| : n,=| :
Sty Spn Rip oy

Let
where the subscripts ¢ stand for time and p for points (N = p?)
then

{a,:Fs,

n, = Fn,

where F is the M x p? matrix that maps the points to the times, i.e., F(i,5) = 1 if
point j is flown over at time ¢; and O otherwise.

F is full rank and let F; be the pseudo-inverse of F(F; is p? x M) then we can write

S = FS,FT [ S, =F,S,FF
N,= FN,FT \ N, = Fn FT

where

-“."- A"
‘e 'x- .?l"-'.l PR

S = E[ss7)
[;;3; N = Ejnn7]
=%

[ ]
o

From previous results we had:

P, =SS+ N,)'N,
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which yields
P, = FS,FT|FS,FT + FN,F*|"'FN,FT
or
P, = FS,FT|F(S, + N,)FT|"'FN,FT
but
FT[F(S,+ N,)FT|"'F = (S,+N,)™.
Then
P. = FS5,(S,+N,)"'N,FT =F P,FT where P, 2 Sp(Sp + Np) ™' N,

P, is a p? x p? matrix the diagonal entries of which are repeated in the diagonal of P..
P, gives directly the covariance of the gravity gradient at the points of interest.

For the numerical example, we chose a 4 x 4 grid with two different paths and we
wish to compare the performances using the criterion mentioned earlier. We have first to
define the covariance matrices N and S and to construct the F' matrix for the two different
paths.

The models used for the ;andom signals n and s are exponentially correlated. That is,
the entries of the covariance matrix N; vary as the exponential of the time difference and
the entries of the covariance matrix S, vary as the exponential of the distance, namely:

-"l"ll i-’n—".l
Ni(s,j) = e~ and S,(5,5) = e T
where r and & are correlation time and correlation distance, respectively.

These models do not claim to be accurate but represent only a first try to get numerical
performance.

Then we compute P, = S,(S, + N,)"'N, to determine the variance of the error
associated with the gravity gradient at each point of the grid.

For the two paths, we plot the mean of the standard deviation versus (7 = 0 corre-
sponds to a white noise).

Conclusion:

The spectral models of instrument noise and gravity gradient signal we used in our
simulations may not be realistic and this marks the limitation of the results we got. How-
ever, in the special case of exponential correlated signals, they allow us to answer the
question of the best path (among specified ones) according to the criterion we defined. In
terms of times of second crossing and times between crossings, the two paths chosen for
the simulation can be described as “very” different. Surprisingly enough, the performances
for the two paths are close to each other for the range of correlation times we have run.
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However, the gap is getting wider in favor of path 1 when the correlation time gets larger '_:f .
N but the performance of path 1 is only 1.5 % better for r = 13 units of time.* In these e
J conditions, the choice of a *better” path appears not to be an issue. e
Our final remark concerns the nature of the instrument noise. The way it has been o

modelled assumed that it was stationary (in particular constant variance at any time); if o

) this is not the case, quite different resulis may occur; for example, the importance of early e
crossings increases. i
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* 1 unit of time is the time required to fly from a point to the next one.
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