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A. STATEMENT OF WORK (FROM PROPOSAL) 2/1/85 - 10/31/86

a) A composite velocity/reduced Navier-Stokes (CV/RNS) code will be
developed for investigation of flow past lifting airfoils in both
subcritical and transonic flow. Full viscous-inviscid interactions shall be
evaluated for laminar and turbulent flow conditions. The CV/Euler solutions
shall be critically evaluated for accuracy, prediction of entropy and
vorticity patterns and variances from the full potential solutions.
Comparisons will be made with the CV/RNS solutions to assess the effect of
viscous interaction on the inviscid solutions.

b) A time-consistent relaxation procedure will be developed for modeling
transient behavior. The procedure will be tested on airfoil geometries with
transient boundary conditions or for cases where transient behavior occurs
due to large Reynolds number effects.

B. STATUS OF RESEARCH EFFORT 2/1/85 - 2/1/86

As given in the Work Statement the goals and status to date can be
summarized as follows:

(1) Application of the Composite Velocity (CV) formulation for the
Euler equations and comparison with the full potential soclutions. This has
essentially reached completion, see write-up, B.1l, enclosed.

(2) Composite Velocity/Reduced Navier-Stokes solutions. This has been
completed for steady transonic flow over a NACA 0012 at zero incidence, see
reference C.3 and reference E.2.

(3) Application of the CV formulation to lifting airfoils. The
formulations of (1) and (2) await the development of a grid generation
technique that is currently under investigation.

(4) Development of a time-consistent CV relaxation procedure for two~

dimensional transient flow. This has been completed, see write-up B.2 and
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B. 3. Preliminary tests have also been considered for three-dimensional ::

space marching (a task not scheduled until the option period 11/1/86 -
10/31/87), see write-up B.2. :

(5) A new {terative 'direct-solver' formulation to be applied for more j

efficient computation has also been developed and is discussed in B.A4. ‘-i
Generally speaking, research progress has been quite good and initial th

solutions for all {tems in the Work Statement should be completed by E:::
10/31/86. A

B.1 COMPOSITE VELOCITY EULER/POTENTIAL SOLUTIONS "

Solutions to the Reduced Navier-Stokes equations obtained with the E&:

composite velocity system were presented at the 22nd Aerospace Sciences
Meeting, January 1986, see reference E.2. It was noted that with the ‘
formulation of that time entropy was generated only by viscoscity and that :r
entropy was not generated by shock ivaves. The following describes a ':
procedure for obtaining Euler solutions for the outer (Euler) flow with :‘

il

accurate entropy generation due to shock waves. ;

The composite velocity representation may be written as -‘:3

U+1 ¢n N

u = = (1*¢E) = (U+1)ue VT (1a,b) _:“,-'

1 2 -~

The interpretation of the composite velocity terms for inviscid flows varies ,::
slightly from that for viscous flows. The ¢ term still represents an f
;: irrotational "pseudo" potential function. The U term, however, is no longer "
Eg associated with the viscous effects but rather it is associated with the E:::
effects of rotationality, l.e. vorticity Q = f‘(U,Un). 'r\

The following set of Euler equations are obtained for 2-D flow Ez

Continuity E

[ousty 1o ], + [oo ] =0 (2) :_.\

2
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,v:‘< E;Moméntum

1
ity du , ] 2 2 2 1
R PaE * D [(phg(U +U)ue)g + (ph1Uuev)n] + h1UueueE *5 pueth171
3’-‘:5': T 5 _2g (3)
\ - by
o S
:: 4 n-Momentum
! >
g s =G+ u [2(eg - U 2y (4)
o n n on' 2 h e 1
L !
;:,. where S is entropy and G is a Bernoulli like pressure term. All &-
.0".
nhi
' derivatives are differenced using backward differences except for ¢E which
& tad’
:"‘:' is forward differenced. 1In this manner ¢ is being relaxed;U is marched.
N
Wy
*:%. This differencing is consistent with Helmholtz's vorticity theorem.
o
i':’; For transonic flows the Enquist-Osher flux biasing scheme has been
, : adapted for the composite velocity system. This scheme consists of defining
o
s‘:“u a new density
G
a':'.\_
o Pi,3 = Pi,j % ({pq)_ 1, (pq)_ 1-1.J) (5)
Ahe '
7.
e where
LA\ * %
:3:'3’ (pq)_ = 0.0 Ms1, (pg)_=9p3-p4q M>1.
) * *
o Here p and q are the sonic velocity and density. This procedure produces
3
}

2!

very sharp shocks and guarantees that no expansion shocks can occur.

I * Density shifting is performed only on terms without U in the §-derivatives

_. in the continuity equation.

‘:( Equations 2-4 are the full Euler equations; the transonic solutions

.; calculated using these equations should contain the rotational effects and
‘:’: the correct entropy rise at the shock wave. If the equations are solved in
‘-E\ their present form, however, no entropy is generated at the shock wave and
P : the isentropic, irrotational full potential solution is obtained. If, on

" the other hand, vorticity is introduced into the flow being solved, this

&
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*z' form of the equations will convect this vorticity downstream with no

B additional generation of vorticity.

The reason this procedure fails to capture rotational effects lies in

t. the form of the E-momentum Equation 3. In order to more adequately capture
20
' the (Euler) shock wave in transonic flows, the {-momentum equation is
:' rewritten in a quasi conservation form
1GhS
"]
A,
: ) u, 1 [(ph (U +2U)u ) + (ph Uu v) ] o X pu _vUh
o at D 1" 7e 'n D e 1n
o : > : n, » h1
. - = — - — - -
o h1(p *ou e ) (pugv) —+ pu 2y - 2.0 =2 (pu V) (6)
o
v For transonic flow, values of U will be generated at the shock wave. Also,
o, the generation of U values will bring about a corresponding entropy rise at
0
Y \ the shock wave.
L .
fa The modifications to the f-momentum equation are easy to impliment in

. the numerical solution procedure. The right hand side of Equation 3 is
evaluated at the previous iteration level. The (p + pu:))E term may be

evaluated using a two point backward difference and a second order central

.J

’ difference is used for the (puev)n term. All the other terms are evaluated
-§ at the (i,J) location.

‘ While this form of the equations produces the required entropy rise at
',: the shock wave, it also produces spurious entropy in the regions of high
;:j.: gradients at the leading and trailing edges of the airfoil. Recalling that
-: the nonconservation form produces no entropy, but only convects vorticity
:‘;:: introduced into the system, this form of the equations will be used
5

:‘::; everywhere except in the shock region, where the quasi conservation form of
5 the equations i3 used. The shock region is defined as the region from the
4

:‘_‘ peak Mach number to the point where the change in pressure is less than one
O

g
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e “
' _ 2
:.E percent. This produces a solution procedure with the desirable ::
e
7;,._ characteristic that no entropy is produced except in the shock wave region :
¥ ' and this entropy is convected accurately downstream. =
J ""-t
) ',):
,\i One result for the pressure coefficient along a NACAOO12 airfoil for a ;
5{ g
b, freestream Mach number of 0.85 is presented in Figure B1,1. As expected the )
. Euler shock is weaker and lies upstream of the potential shock. The Mach .‘:_
v, oy
.."_3:, number ahead of the shock has a value of 1.3395. The calculated value of e
N o
" o,
VY the Mach number after the shock is 0.7683 and the entropy generated has a =3
TR
18 value of S=0.0270. These values compare well with the values M2-0.766u and Ny
‘-:: :"-.\‘
$-. S=0.0283 obtained from the shock jump conditions, see Figure B1.2. There is il
~, “-n 2
e ._-'*
*, a small jump in the value of entropy at the trailing edge and in the shock RN
~ : ==
} -
& structure. However, the former effect is localized to the trailing edge ‘-
_."*_ (’--
< region and arises due to the singularity in the present transformation. r_:
v_'. -\
’. e
W The latter overshoot is physical and typical of the entropy behavior in the :
. N shock structure. This procedure is now being applied for three-dimensional
< I
o and other two-dimensional geometries for the reduced Navier-Stokes -::
o =
D equations. e
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B.2 CONSISTENT STRONGLY IMPLICIT ITERATIVE PROCEDURES FOR TWO-DIMENSIONAL

UNSTEADY AND THREE-DIMENSIONAL SPACE-MARCHING FLOW CALCULATIONS

P.K. Khosla and S.G. Rubin

N‘

2} (To be submitted for publication)
>,

85

we Introduction

.

The success of a numerical formulation for the solution of two-

“.'l

dimensional time accurate or three-dimensional spatial accurate flow, e.g.,

e 50

RNS marching or global relaxation, depends largely on the solution

"

\" -
'f-
:j- algorithm. A non-iterative, unconditionally stable, consistent procedure
LS
- should provide maximum efficiency. For large time increments (At) i.e.,

steady state calculations, consistency is not critical; rather, the

g
VI

technique should have strong convergence properties. For moderate At and

AN

transient flows, or moderate Ax for spatial marching, consistency of the

numerical scheme plays an important role.

L3
Py
¥

A, Ay

Y Y
I

D aan 2
P
LA

L3
|
“~

The most generally applied implicit and consistent formulation is the

(1 (2)

J .\

2’ ADI factorization due to Douglas and Gunn . The Briley/McDonald and
23 (3)

:g Beam/Warming schemes are based on this ADI factorization. There are,
o

~

j{ however, a number of problems with the ADI technique that have been
- encountered by various investigators. These are (i) an "instability"
.:‘-.

25” assocliated with the boundary condition, which may be attributable to the

choice of intermediate boundary conditions and can only be controlled with

w_ 1
e

&

smaller values of At, (ii) poor rates of convergence for At > 1, i.e. steady

(4) (%)

state problems (see Nietubicz and Ghia et al ) and (iii) O(Atz)

accuracy of the factorization, which may not be desirable with certain types

.
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. of discontinuous initial conditions. For the ADI method and also Crank-

Nicholson scheme, it can be shown that odd and even time steps decouple for
larger At. Thus the solution is oscillatory. Additional time smoothing is
required in such cases to make the technique stable and convergent. For
At >> 1, inconsistent and 0(At) techniques, e.g. CSIP, typically possess

better convergence properties. Ghia et al.(S) have presented comparisons of

the CSIP and the CADI method for both steady and unsteady internal flows.
The advantages of the CSIP for steady calculations has been reaffirmed.
Although the CSIP has also been used by these investigators for unsteady
flow computations, it may be shown that the consistency and hence the time
accuracy of the CSIP will deteriorate as the spatial mesh width h is
refined, i.e., for a fixed time step, vat >> 1. A similar limitation exists

h2

for other relaxation procedures, e.g. LSOR, SSOR. This deficiency of
relaxation techniques has not b“een discuséed in any of the earlier time
accurate references cited here. Therefore, there is currently no single
implicit solution algorithm that has both the desirable properties of
consistency (small At), rapid convergence to the steady state (At >> 1) and
can also render an 0(At) scheme consistent so as to be applicable when first

order accuracy is desirable.

N In the present investigation a number of simple remedies have been
e
N investigated to render any of the well known relaxation procedures
EE consistent. These are (i) a modified predictor-corrector SIP or C_.P
Kff procedure (ii) a multi-grid predictor-corrector scheme and (iii) a new
NS .
LS
E;' algorithm based on the Sherman—Morrison( ) formula. The first two remedies
NS
A
i‘ require considerable programming steps and results in two step procedures
Wy A
ﬁg similar to the ADI technique. The third formulation is very simple to o
}l; -
E;:-." o
", 8 =
L .
N
3
. Y
Lhk. . LT el ex-;:;s“:::“:':};“s;:f:;:;;}sfa*z;:'u?—-}};“:":”:*:};};";u?»:;s-m;q;:-»qsésg.A::n«-;
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implement, requires little modification of existing codes and results in A
less than 5% additional computational effort. Furthermore, it is a single .;
step procedure that can be applied to to achieve either 0(At) or O(At2) ;g
accuracy. Intermediate boundary conditions are not required for either of 3-
the procedures. All of the algorithms have been tested successfully with g:
the SIP on a model problem. These algorithms have been investigated for
application to flow over an expanding airfoil.
MODIFIED SIP OR CSIP [;
The new procedures are described here for the model problem: ;
o, = W o)
Ay
A second order accurate Crank-Nicholson scheme (8 = 1/2) leads to the ,:
o)
following discrete form of the equations: i>
n+1 n o
%—Cbﬁ - wacee™ - (1-meM iy, 2 . _
where the various diagonals in the matrix operator A are typically of f;
O(1/h2); h is the mesh spacing and n the temporal index. This equation can i?
be rewritten as: {}
(1 - vats Ms™ = (T« asv(1=5)a) 8", (3) -
Sy
An exact solution for Dn*1 is obtained when the coefficient matrix (I-vAt8A) &
can be inverted. For matrices arising from general two dimensional (Navier- :;
Stokes, Euler or RNS) operators, this requires the use of Gaussian ?
s elimination or a variant thereof. For large systems, where many length :
éi% scales must be resolved, such a solution algcrithm is extremely inefficient 5;
;ﬁ and prohibitively expensive. An approximate factorization is usually f;
N preferable. This factorization should be efficient and ideally generate an g}
... -4
§§3 approximate solution which is within the truncation error of the scheme. E:‘
N =3
S ~
.-“ 9 :.
o
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) The CSIP is such a procedure; Application of the SIP for the inversion of

(I - vAtoA) introduces the diagonal elements or "corner points" ¢?_1 jer°
?

&
y
Lz ¢2+1 j=1° etc. These are treated explicitly and iterated upon in order to
[} ’
-
o achieve the converged solution. A closer examination of the coefficients of
\ these terms in the inversion algorithm reveals, that as noted previously
:& these diagonals are of O(Xéi). Thus an accurate and consistent prediction
*@ h
n+1 vAt

AN of ¢ij requires that > << 1. This restricts the choice of At to
\", h
[
.{“ unacceptable small values for h << 1. In the following section, a number of
L W

i_ simple remedies have been investigated for improving the consistency of the
O

‘3- SIP procedure. These remedies are quite general and can be used with other
‘: relaxation procedures too.
)
L
::. Predictor-Corrector
%3

*, In order to apply a single solution algorithm for both steady and
by unsteady or 3-D marching problems, i.e., a single formulation retaining the
b

'
't most desirable features for all values of At (or Ax marching), the present

.

o

2 authors have investigated a number of two-step and one-step techniques.
L,

‘; Intermediate boundary conditions are not required.
:f (i) The matrix A resulting from the spatial or "non-marching"
,’Q discretization is rewritten as:
a5 n+1 n+1 n n+1 n
7:? Ap = v(¢yy + €¢zz + (1 e)¢zz) Mo + (1-e)No . W)
f(:

o Equation (2) can then be written as:

<

4

= (1-vateM)s™ ! = (I + vat(1-8)A)¢" + 8(I-¢)No" (5)
v

n

35

Y

§

)

10

e

Vs, ) - P ST R R AT v LR R R R U I L D UL L S R S S i S P S0 S N R R I I
et AT e oty N N A e e e e A e e )
BN DO W PN A "* HANDNN ,.‘ o A L ,0 ) .0.'. | .J(‘ a A X a0 A T A.'(‘L'ﬂl:‘g'.’ '('.’J‘-(P.‘t&t'.{‘-‘.‘n{‘\..\ _‘1:.[':.‘_ -'r‘:.'v PURVEN




L e Al ol aB Mo aan Ab. aa aan g a0 s 4s Aae abe Aon 4.ad - S a0 s 0l ad A s ot e o Ao See

)
"é: In the predictor step, the coefficient matrix (I - -At8M) with e = €y and
X
’
s 8 = 1 is inverted by the SIP. The error arising from the diagonals 6?_1 Jo
brs,
,‘ and oT” 3-1 can be made independent of the mesh size by an appropriate
3
o . 1
o choice of the parameter €. This provides a reasonable predictor for o?; .
:;:': The error due to the inconsistency is within the truncation error of the
FAS
:f;: numerical approximation of the scheme. A second-order accurate corrector
,l
1
step repeats the procedure with eo = 1 and 8 = 3 The choice of the
.{:3
":,j appropriate value of €, is crucial to the success of the method. The
v
‘{ following expression was selected in the test problem:
2
) /
j e, - _&h__z (6)
. 1 + At/h
Other expressions or values of eo can also be chosen and still provide the
.:C:Z »
:::-j required consistency. It should be noted that for (At/h ) << 1, the order
A5
\' of inconsistency is bounded and independent of the mesh spacing h. For
3 2
Ny At/h” >> 1, € - 1 and the usual SIP algorithm is recovered. A model problem
-.’-
_:':_ with Dirichlet boundary conditions was chosen to test the predictor-
Cre 1
L H corrector SIP technique. Calculations for v = 15 “ere considered for
£
::::: "(17x17) and (51x51) grids and At = 1. For a single time step, the maximum
;-j::: error in the numerical solution is less than 2% and 7%, respectively.
Additional corrector iterations with € = 1 will further reduce this error.
>
-;f',- For comparison, the standard SIP on a (51'x51) grid incurs almost a 100%
T
':-.: error. The method requires the splitting of various derivatives in a manner
V5P
a0
o
W
2~ 1
A
o
“:'v
v : e e . S S L O Kt N <
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’ similar to the ADI method. The choice of ¢ is quite arbitrary and may even o

)y depend upon the nature of the differential equation and the flow parameters.
] By
XN e
SIP-Multigrid :‘:
o, _',b:
3 A complementary approach to improve the consistency of the CSIP ﬁ;‘:
3
o involves the application of a multigrid procedure. Since consistency error -
‘-.._' q:in
:'.-f is amplified for fixed At and fine meshes, a course mesh predictor minimizes ~R
N u:ﬁ
ey this error. The predictor step is then repeated on a succession of finer
[ &
grids, the fine grid corrector step will not require additional iterations. ™
AN i~
.. 2 2 2 o5
N Solutions obtained in this fashion are also O(At ,Ay ,Az"); however, local Y
a e w
{‘ !"‘l
1 convergence is enhanced by the multigrid smoothing process. Results similar "i'
to the one obtained in the previous method are also obtained by this 'ﬂ
lf-;: technique. However, the programming complexity increases. This technique -_',:‘\
-, =
can always be employed with the procedures described in this paper. A new
:::', iterative procedure that is based on this idea and the application of sparse \\
- )
SN P
:5: matrix direct solver is being currently investigated (reference C4) for the '}
> Ny
) solution of the reduced Navier-Stokes equations. The preliminary results "‘d
e are quite encouraging. j
-".- “"’q
3 t
- ""f;
L C. Stone's-SIP Y
::::f The consistency of the SIP procedure can be improved considerably by %
":'. using a second-order factorization similar to the one originally proposed by .\_‘5_5
.7EN
Stone. In the present section a number of techniques similar in character ‘;‘4
' - ]
\- \'h
j,'\:_ to Stone's procedure will be discussed. Although most of these techniques >l
{‘_- -_"
S, -~
$::. are unstable for steady state calculations (some more than the others), they :‘\{
‘. 'f\
provide simple extensions of SIP for time consistent computations, fairly )
Y. -
-:::: large At - 1 and highly stretched grids. Some additional inexpensive :I—:y
o e
v, 12 e
Ve .
<< s
A0 o
A R B o D N N B A O N N RN




.;' 1\ remedies are suggested which not only improve the stability for larger at,
3

v
:::" but also improve the consistency.
W St:one6 had proposed, the following second-order factorization. This

N

e ¢

“~
:,-:. cancels the corner values of ¢.
W ,

4 n+ n - n n - .,n

Oimq,ge1 = Foq e T WO g by g T 0

oy
"55 n+1 n+1 n+1

Y + - + -

Jo a0 9,5 % 01,501 7 01,5

LN

)

4.

; n+1 n n n _n

o Prer,5m1 T e, e T o000 gt 0 T 0y
[/

Py n+1 n+1 - n+l

{} -

s . f O,y e T 8Ly
',('
)f' ;
2"_{.‘;? Clearly the terms evaluated at the previous time level have a spatial

o truncation error of 0(AxAy) when a is chosen to be unity. This happens to
..' be the simplest method for making the method consistent. Originally,
_j' :: Stone's technique was abandoned because of the complexity of the factorizing

') procedure for more than one unknown.. However, the following simple
_) implementation has been found to be equivalent. )
‘\.“' .
A >,
P h)

*: Jelis

Given the algebraic system

o

\F
¥

P . g
3. Aoy, -1 T D105, 5 By 5 G0 ger t Byian, g ‘ (7 .
X =
L% --'.
ﬁ‘- the solution algorithm can be described as: a'a
1T
. =M, , +E +F . %
F 1,0 7 Mis T B0 n T T g%y =
‘Yagh ,_:
\‘".n: The elimination of the lower triangular terms ¢i-1 j and ¢1 5=1 along with ‘:.;
b ’ ’ ¢
a ""‘- '\f
.'Q~ W
B0 the cancellation of the corner points i1 31 and ¢i—1 341 can be carried ﬁ
’ [] -~
— Kl
'~ o
:’j: out in a single step as: _\‘
oy B
b #a, :-.'
iR 13 N
& 7
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’{5 Op,900 = (D moFy gng) T LOMy gy ¢ (B gty — oFy 520y 3
Ny et
i

n n n n
*oFy gl b,y t R ger (045 “(¢1+1,J*¢1,J-1'¢1,J)}]

(8)

and a similar expression for ¢.- . Substituting these in the governing
i-1,J

N e

,‘0 equations, we get, the following recurrence relation for 1“1 j (say),
» [ |
58 2
3 D.E, - !
bl - {C + a L_iiaL} ek
o : 1 1-aE
F - 1=1,J B
o 1,J R Fio1,17B501,4
' By * & T=%F * Dy TR b
i,3-1 i-1,3 o

A r
g % N

,“ It may be noticed that the values of E‘1 j do not depend upon the grid
1, . »
e : .
208 spacing and F /(1-F _.,) etc. are 0(1). The group of terms being ti.,
> 1,3 1,3-1 N
._-; o
computed explicitly in equation (8) are thus of O(AxAy). As such, the error ‘3
gt ] .
Wy
does not grow in a space maraching or time dependent problems due to the
~‘:', initial guess of the solution. A general block version of this algorithm :::
124 s
: for any number of equations and unknowns has been coded and as a test is :f::
1, Y _(~'
) being applied to the three dimensional boundary region equations for i
o
X "j supersonic flow past a cone. A second technique allows for the inclusion of :’}
19 "o
" 2
:". an additional diagonal (corresponding to ¢i+1 J+1) in the sparse LU ,j?.:
ol ' 2L
L)
factorization of the preconditioning matrix M. 1In this case, the source g,';
[ '_\
AR -
.«,‘_: terms computed at the nth time level can further be cancelled by addition -;:.;:
‘ .\ ‘I.“I
e - - Sep
iy and subtraction of a grouping of the form [¢1+1,J+1 °(¢1+1,J+¢1,J+1 -3
- B
B ¢i J)]. The storage required for the factorization step in this case T
- ' o
f‘_‘ increases from 3N to 4N. Other groupings can be devised to achieve similar :;,";f
J‘_'- -:~hl
) results. For a = 0, all the methods reduce to the simple SIP which has been ﬂ
>
: i
(o
l"" -,
,‘-r‘ [
O
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b o _‘:
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) e
N I'.‘u' |
PR
; o
s used by the present authors for coupled system and for a large number of tj‘;rf'
N Y
o 1Y
Ay steady state computations. t '
KN Al
) o
. The cancellation of the corner points °1—1,J+1 and ¢1+1.J-1 can also be oo
- '_-\.-
&‘ performed by changing the truncation error of the governing equation. For "_.
. 5
) example, the conservation form of the following equation o
Xk
g 3¢ , "Ie
. 4 ‘:’(‘
N where A and B are functions of ¢, ¢_and ¢ _, etc. ,{j'.-.(*
Ak X y Al
. Then, A‘,..
. (AX)J,_1 + (BY)i'” - (AX)i,J - (By)i’J ‘(.:
[} - - '}}‘
. (Ax)J,'1 + (By)i_1 (AX)i,J (By)i,J }é
- can be used to cancel the corner values of ¢1-1,J+1 and ¢1+1,J-1' This _-_j-_.;
K 2 .\“-
, RS
_'. procedure worked quite well for steady subsonic potential flows. Additional -‘_.:"
iterations with a = 1 did not diverge when used to compute flow past a .
- -_,,‘-‘.
. biconvex airfoil. However, this may be fortuitous. Unfortunately, this l::?.j
f: technique is quite complicated and becomes prohibitively cumbersome for more ":::i:'
Y %Y
than one unknown. -y
': In order to eliminate the sensitivity of Stone's procedure to the value :f_:l‘_:
of a, a rank one improvement of the iterative procedure was found to be
: a”
A quite useful. This is achieved by the application of a Sherman-Morrison _._'
> S
N
: formula. It must be emphasized that all iterations, required at a given '_:'f:'
B el
'Ca ntat
> time step for nonlinear convergence, can be performed with smaller values of N
a. A value of a = 0.9 has been utilized for this purpose.
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Sherman-Morrison Formul al?

This formula inverts a matrix of the following form:

A=B+ UV S

'_x::\

RSN

The matrix B is such that B ! can easily be computed and U and V are two -i?*
vectors. Then x-';l
_ _ -1, T =1 g
PR N N (9 o
1+VB U Ny
A
Wilf(e) used this formula to invert any non-singular square matrix. The h;l:
OO

NN
computational cost is 0(N3) which is comparable to Gaussian elimination. ;ytt
.4_:"‘-_
Memory requirements are 0(N2) for N large. As a direct solver the Sherman- '{ﬁ
l\ .

Morrison Formula is not competitive with iterative techniques. However, it ﬁ;ﬁ
Y

can be usefully employed for improving the consistency of iterative vjb
- -‘.’J' \
techniques. Most lterative methods are based on some type of splitting of e
Rkl
the coefficient matrix, e.g., :ft\
LA
Ad = b . (10) ni
o

can be written as X
(M+N)§ = b (11)

For most of the matrices arising in flow problems, M_1 can be computed with ;:i
ne

L 3

reasonable computational effort; however, the error matrix N cannot be Kl
o0

decomposed in the required form, i.e., ﬂﬂ?
i

N Uyt (12) S

[ S

Therefore equation (9) cannot be usefully exploited. However, the linear A
cquation (11) can be written as: :{5:
- e

(M + N9s)d =Db, (13) _
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where ¢ = ¢/<¢T,¢> is the unit vector. Equation (13) is non-linear and can
be solved iteratively for ¢ as:

n

M+ U Y™ < (14)
where
U = (N¢)

The solution of (14) can be written as:

- (M-1U)<¢:M-1b>
¢ =M b = r Y — (15)
n+1 1+ <¢$M 0>

This solution further improves the symmetry property, as well as, the time-
consistency of the solution. From equation (15), it can be seen that the

additional effort required in the present case, as compared to the
relaxation procedure based on the preconditioning by M-l. is associated with

the evaluation of two scalar products. M-1b and M-1U can be computed in the
same loop with very small increase in the computation. The overall increase
in time is between 2% to 5%. The maximum error is less than 2% for a
(17x17) grid with At = 1. The problem under consideration has smooth

initial conditions, with the exact solution having a ¢t of 0(1). For a

problem with sudden heating of the boundary, the initial conditions are
discontinuous. In such a case, time consistency of the solution requires

the use of a smaller At, at least in the initial stages of the calculation.

Y
.
3

The error matrices for SIP with and without the Sherman—Morrison update are

...-
Sy ".i
s

T
Pl

fo.

N¢ and (N¢) T respectively. Since
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the influence of the error matrix is reduced with the application of the

Sherman—-Morrison formula.

Error Analysis

The first order implicit formulation of the time dependent equation can

be written as:

(I + At(M*N)]cbn+1 = ¢n + At D

where the index corresponds to a time step and (M+N) 1s the coefficient
matrix arising out of the spatial terms. The time consistency of the
solution procedure with Sherman-Morrison update, can be investigated by

rewriting the lefthand side of the above equation as:

-~

[I+atM+atNo oo  +at{No o  -No ¢be,.

n+1

~

where ¢ represents the normalized unit vector defined earlier.

Using Taylor series expansion, it can be shown that the error term is

glven as
-~ -~ ~ -~ <¢ » ¢ > ~ ~
T T n+1 t T
No & =No . ¢ . =Aat[2 No, o
n 'n n+1 "n+1 <¢n*1’ ¢n+1> n+1 "n+l

T - T 2
- {No, o, ¢ N o t] 008t
Clearly, the error term is first order in time provided ¢t is 0(1) and N is

such that the spatial error does not dominate the error term as the grid is
refined. 1In such a case, the limits At » 0 will render the system
consistent. The strongly implicit procedure with a = 0, which has been

extensively used in previous calculations, does not lead to a consistent

18
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splitting of the coefficient matrix. The error matrix N, amplifies the

error as h » 0, leading to a limitation that (At/hz) << 1 for consistency.
However, for a = 1, the spatial error is not amplified as h + 0. Thus
consistency is achieved if At and h + 0 independently. The procedure is

also applicable to second order time accurate technique.

Applications

The technique has been tested on a variety of simple model problems.
Both linear diffusion and nonlinear Burger equations have been investigated
to test the validity of the procedure. In addition, the unsteady flow past
a biconvex airfoil was also considered. The results for simple diffusion
are described below.

The heat conduction equation is given as:

The exact solution to this problem is

—oQ2 -
2§et ﬁ% -x(1-82) 172
o(t,x,y) = e singx sinBy + e e sinBy

Exact initial and boundary conditions have been imposed on the numerical
solution. This problem was chosen, because the boundary conditions and the
solution are time dependent. The maximum residue on 17x17 and 51x51! uniform
grids are depicted in Figures B2.1 and B2.2 for both the consistent SIP and
the inconsistent SIP procedures. No additional iterations have been
performed for either case. Both techniques include the Sherman—-Morrison
procedure. This improves the accuracy of the standard or inconsistent SIP
method as well as the new procedure. On coarser grids, the two results are

similar; however, on the fine grid there is significant difference. This
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reflects the severe inconsistency of the standard SIP procedure. The new
formulation, however, retains the error of the order of truncation error.
This is even true for finer grids and large values of At.

As another example of the applicability of the new algorithm, the

composite velocity solution past a biconvex heaving airfoil at M_ = 0.65 has

also been computed. Computations have been carried out for number of time
steps on a 75x33 non-uniform grid. In these calculations, the non-linearity
has been treated via picard iteration. At least one additional iteration is
performed after time stepping and before the density is updated. 1In all the
calculations, only three density updates have been performed. For
comparison purposes, solutions using a direct solver have also been
obtained. Three iterations on density are also performed for these exact
computations., The results of these calculations are depicted in Figs. B2.
Figures (B2.3) shows the coefficient of pressure at different normalized
time levels. These calculations have been performed with At = 0.1 and 0.5.
The results are very sim‘lar at similar time levels. For comparison the
pressure time history at the mid chord has been depicted in Fig. B2.4 along
with a direct solver solution, see B.4., The two solutions are in excellent
agreement.

As another test problem the laminar boundary region equations for flow
over a 10° cone at M_ = 2 has also been considered. The boundary region

equations contain all cross flow diffusion terms and are solved, using the
coupled algorithm. Solution for this case 1s well known. The present
consistent CSIP requires only two iteration as compared to 5 to 6 iteration
with the o0ld CSIP to achieve the same order of accuracy for each marching

step.
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B.3 A COUPLED STRONGLY IMPLICIT PROCEDURE

FOR REDUCED NAVIER-STOKES EQUATIONS

Some solutions for the unsteady, compressible Reduced Navier-Stokes

equations obtained using the Sherman and Morrison technique were presented

at the AIAA 2UTH AEROSPACE SCIENCES MEETING , held in Reno, Nevada. This

algorithm is suitable only for a H-type grid. Since, there are some

inherent advantages in a C-type grid for many flow problems, an algorithm

that can be used for both the H-type and the C-type grid would be more

desirable. Such an algorithm has been developed. This algorithm is based

on the coupled strongly implicit (CSIP) procedure of Stones.
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The quasi-linearized form of the governing finite difference equations
together with the boundary conditions can be written as

n n n
ALg Visn,3-1 T B Vie, g G Vier g e

n n n
Py ViLamr T ELy Vi,g ot FiLy Vi ge

n n n

g Vier,go1 P Hy 3 Vier, g P 1y g Vg, g0 =9

i, (1)

where V is a vector of unknown pi

i3 and v at the grid points
?

i Y, i,3

(xi ’ yJ) . Ai , B I are known 3X3 coefficient matrices ,

. 1,90 s o Ly

Ji 3 is a known 3X1 matrix and 'n' refers to the present time level.
4

The CSIP is developed from the following approximate LU decomposition.

n n n

v = P, + .V . + R v 2
1,37 Pi,5 7 %, Vit Ry Vi (2)
Taylor series expansion is used to approximate Vi Z1,341 ° V?_1 =1 and
n .
vi+1,J~1 that appear in (1). We write
n n-1 n n-1
gt S Vierger T8 OV g TV ger)
' n n-1 n n-1
o * e, { ( vi-1,j Vi-1,j) (Vi,j Vi,J) } (3a)
h"‘
n n-1 n -~ n=1
Vict, 301 = Vg, =1 T 80 OV guq ~ Vg 4-1)
y 1 1
5 n v _ _ -
$ *+ e, f( vi-1.J i 1,J) ( Vl g Vi,j) } (3b)
:: n n-1 n n-1
E! Vier, 301 = Viwr,g=1 * 51 OV yoq = Vg 49)
N
N
N n _ yh-1 - n v 1
3 RO R I W R &
e

where 0 $ € » & S 1 are some constants. From (1) , (2) and (3) we obtain

the recursion relation
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::: Pi,j = Function ( Pi,JH , Qi,,j+1 , Ri,,jﬂ R

T'|'

Y -

: Piot,k * etk Brag e kedor 3et)

f Similar relations are obtained for Q d and R 1,3

i':

' We start the solution procedure by solving for P , Q and R

oY M, M,J M,J
'.:; The outflow boundary condition (px)i-M = 0 enables us to solve for PM 5
o ’

“l

‘,::: QM 3 and RM 3 from the governing equations. The boundary conditions for j=N
3 1] 1 ]

A,

( pi n™ 1, ui N~ u, ) together with the continuity equation for j=N-1/2

. 1] ’

e

.::; yield Pi,N . Qi,N and Ri,N » 2 S 1 S M., Since, PM,j ’ QM,J and RM,j and
N P » Q and R 2 S1 5Mare all known the recursion relation can be
Il 1’N 1’N i,N

b -

N used to obtain P , Q and R for i=M-1,M-2,....,2 in that order. The
\ 1:J inJ iaj
b
:j continuity equation at j=3/2 and the boundary conditions for j=1

. .

n n

= ( 91’1 =1, ui.1 = u_ ) are then used to solve for V1,1 . From p1’J ,
R

3 7 n 1s3SN and 2<$1S$MandP
g Y1,5 7 Y,y J and Py g o0 Uy g 0 Vi g0 and Pygs Qg g
¥

J R, ., 235 jsN, 2sisM onecan solve for V for all values of i and
__.' 1,] i'J

"

) j using equation (2).

ol
-" The unsteady breakdown of the laminar calculations for the flow past a
. sine-wave geometry was studied using this algorithm to explore the
::; possibilities of obtaining unsteady, unsymmetric solutions for large
,’l\ .
3 Reynolds numbers. So far such a solution has not been obtained. Instead it K
Xl was found that even without any imposed conditions of symmetry in the wake g‘\'
j:" the solution for R=U400,000 neither converges nor exhibits any tendency
:; towards unsymmetric shedding. The behaviour in time of the wall shear aa
. stress for R=400,000 is shown in Fig.B3.1. The size of the separated region
& .
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initially increases with time and for large values of t the separated bubble
breaks up into two and also the negative peak in the wall shear distribution
increases unboundedly with time. Further analysis is required to understand

this phenomenon better.

B.4 BLOCK ITERATIVE PROCEDURE FOR THE SOLUTION OF FULL

AND REDUCED NAVIER-STOKES EQUATIONS

Most relaxation methods slow down when the number of grid points
increase. Usually, such procedures are acceleralted by using either
conjugate gradient or multi-grid techniques. For algebraic equations
arising from large Reynolds number flows on stretched grids, both methods
require special considerations and become quite problem dependent. There is
no single procedure which the CFD community can reliably utilize, without
many changes in the codes, that will work for a large class of problems.
Usually the separated flow regions require special attention in applying
multi-grid or other acceleration techniques., 1In view of these problems, a
new technique is being investigated. This is based on a direct solver and
is iterative in character. The relaxation process is carried out by
simultaneously solving the equations on large blocks of the grid and
{terating between these blocks. Typically, direct solvers require very
large amounts of memory and become slow as the numbe of grids increases.
However, they can be used on smaller blocks of the grid in a fairly
efficient fashion. In this manner longer wave lengths of the solution error
can be treated more effectively; the length is determined by block size.

The block iteration procedure consists of directly solving for values

cn subgrids of the main grid. It has been found experimentally that

24

a2 ey e il 5 L '..-T-:-(‘.\-i\'.'q’;'&.;i.’-‘.;t'.;f.'-.‘ O R CR T CR CR LS S bl 2] T4
L1 LN N 54 o (M », i P, 5l . X

e

)

0
L.

Y

’

N "y v e
AR
a A 2 s

| 5



Sad Bad Aol Ad o gd aos ael o

A 3
i '
o ‘ .
R selection of the subgrids and the order in which the iteration takes place
Ei, _ has a significart effect on convergence rate. The method has been tested on
oo .
" the Laplace equation in the unit square. The fastest grid sequence found so \
:‘;;" far is described in Fig. B4.1, where the subgrid numbers show the sequence
AR X
:,, in which they are iterated. The first two subgrids split the main grid in "
_ half and a third grid that overlaps the other two is solved last. This .
.-:: subgrid sequence converges in 6 iterations (the error criterion was the Z‘
2 o
:: difference of the computed and exact solutions and was less than 10—11) for a -
e 21 by 21 grid, and 7 iterations for a 101 by 101 grid. Without the third f
L
;‘,:1_" grid the iteration count for the 21 by 21 case was 25. :
: The main grid was further divided into smaller grids as shown in Fig. '
. B4.2., The first four grids were solved in an upward sweep followed by a o
downward sweep for the three overlapping grids. This was done to ensure a f..:
s : -
"; uniform propagation of information over the solution domain. As expected 4
e this grid strategy needed more iterations to converge. For a 2! by 21 grid, ::.

a
L

.:fj'.] 15 iterations were required, and 25 iterations were required for a 101 by g
1_-: ,:-
e 101 grid. The convergence histories for these grid strategy in a model ?
) ’
NN problem are shown in Figures B4.3 and BL.Y4 respectively. Apparently the o
A N
{.Z method's sensitivity to main grid size increases with the number of :j:
e
o subgrids. &
'_-_.: It would seem initially that this strategy would be inferior to =
- ‘.
:::" directly solving for the entire grid (given enough computer memory). For .
o >
J‘-‘- ~
) nonlinear problems however, iteration is required anyway to converge the :
43
*_.:{ nonlinearities. The amount of time required by sparse matrix solvers
N0 i
la 1.5, . 3
j:; increases superlinearily with the number of unknowns (O0(n °"~) is optimum). -

¥,

-
(]

Therefore one iteration of this subgrid strategy can be faster than an

Y e
::: iteration of a fully direct solution. If the number of iterations using the -
b R
e 25 >3
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subgrid strategy is about the same as the number required to converge the

TEASA < BOAN
L4

nonlinearities, the subgrid strategy can be faster. The procedure has been
applied to the solution of flow in a driven cavity and the steady laminar

N flow past a NACA 0012 airfoil at Re = 2000 and M_ = .72. Similar rates of

convergence have been obtained for these problems.

X C. TECHNICAL PUBLICATIONS 2/1/85 - 2/1/86

o (1) Ramakrishnan, S.V. and Rubin, S.G., "Numerical Solution of Unsteady
]

Compressible Reduced Navier-Stokes Equations" (to be submitted to AIAA
: Journal or Computers & Fluids).
5 (2) Khosla, P.K. and Rubin, S.G., "Consistent Time and Space Marching
.; Coupled Strongly Implicit Algorithms " (to be submitted to Computers

and Fluids or J. Computational Physics).
'_ (3) Rubin, S.G. and Gordnier, R., "Composite Velocity, Potential Euler and
li RNS Solutions" (in preparétion).
§ (4) Knhosla, P.K. and Bender, E., "A 'Direct Solver' Iterative Formulation

and Application to Viscous Interacting Flows" (in preparation).
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D. PROFESSIONAL PERSONNEL 2/1/85 - 2/1/86

’2 S.G. Rubin, Professor of Aerospace Engineering

y P.K. Khosla, Professor of Aerospace Engineering

2 S.V. Ramakrishnan, Research Assistant (PhD student)
K) R. Gordnier, Research Assistant (PhD student)

)
.
" d
af
)
.
(1)
%
;.
- (2)
N
nY (3)
s (u)
; (5)
)
;

.-

AT ¥ b Y
B Tk ot SALOANASA NI A RO Ot

M.S. "Transonic Viscous and Euler Solution Using a Composite Velocity
Procedure", March 1985.

E. Bender, Research Assistant (PhD student)

E. OTHER ACTIVITIES AND INTERACTIONS 2/1/85 - 2/1/86

Papers, Presentations, Seminars, Short Courses

Ramakrishnan, S.V. and Rubin, S.G., "Numerical Solution of Unsteady
Compressible Reduced Navier-Stokes Equations", Paper No. AIAA 86-0205,
AIAA 24th Aerospace Sciences Meeting, Reno, NE, January 1986,
Gordnier, R., "Transonic Viscous and Inviscid Solutions Using a
Composite-Velocity Procedure", Paper No. AIAA 86-0074, AIAA 24th
Aerospace Sciences Meeting, Reno, NE, January 1986.

Reddy, D.R., Delaney, R. and Rubin, S.G., "Reduced Navier-~Stokes
Relaxation Procedure for Three-Dimensional Internal Flows with
Interaction", SAE Aerospace Technology Conference, Long Beach, CA,
October 1985.

Khosla, P.K. and Rubin, S.G., "Consistent Strongly Implicit Iterative
Procedures", (submitted to 10th Iﬁternational Conference on Numerical
Methods in Fluid Dynamics, Beijing, July 1986).

Rubin, S.G., "Global Relaxation Procedures for a Reduced Form of the
Navier-Stokes Equations"

a. Pennsylvania State University, June 1985
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(ii)

LF PRI

b. Institute for Computer Applications in Sclience & Engineering,
(ICASE), NASA Langley Research Center, Hampton, VA, May 1985

c. Allison Gas Turbine Division, General Motors Corporation,
Indianapolis, IN, February 1985

d. University of Tennessee, Knoxville, TN, July 1985. Short Course on
Finite Element Analysis in Fluid Mechanics and Heat Transfer.

Khosla, P.K., "Subsonic and Transonic Reduced Navier-Stokes Techniques

and Applications", International Conference on Fluid Dynamics, Tokyo,

Japan, September, 1985.

Consulting and Advisory Functions 2/1/85 - 2/1/86

S.G. Rubin: Principal Investigator

(a) Joint NASA/DOD Panel on Hypersonic Flow Research and Graduate
Training, NASA Headquarters, May 1985,

(b) NASA Lewis Computational Mechanics Advisory Committee. To advise
the Lewis Research Center on Computational Mechanics research and
development of a Computational Mechanics Institute under the
auspices of the University Space Research Association. Meetings
were held during 1984 and 1985.

(¢) NASA Aerospace and Research Technology Subcommittee (ARTS) of the
Office of Aeronautics and Space Technology (OAST). Appointed
December, 1985.

(d) Discussions with Dr. J. Shang of Wright-Patterson Air Force Base
for interaction on CFD and for sabbatical/consulting arrangement
starting later in 1986. Agreement in principle has been reached.

(e) Consultant to AVCO Corporation, Everett, Mass on CFD related

problems, November 1984 - March 1985,
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K, (f) Consultant to Allison Gas Turbine Division, General Motors
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Corporation on use of Reduced Navier-Stokes Methodology for

B

problems in internal flows, October 1984 - Present.

i
:j (g) Advisor to Aerospace Corporation on problems associated with 5*4
35 viscous interacting flows and CFD, September 1979 - Present. &
) -
F. OTHER INFORMATION ”’J‘
? The Reduced Navier Stokes (RNS), Composite Velocity (CV) and Coupled Egﬁ
J‘ Strongly Implicit Procedure (CSIP) have been and continue to be applied for éﬁi
i other agencies and by several cther investirators. Recent publications 32
E based on these ideas include: R.H. Pletcher (Iowa State University) for EE?
™ J. Heat Transfer (to appear 1986), M. Israeli and M. Rosenfeld at the AIAA w7
X 5th ZFD meeting in Cincinnati, June 1985, M, Barnett and R.T. Davis in :ﬁ:
L ey
'j Computers and Fluids (to appear 1986), H. Raven and M. Hoekstra at several :ﬁ;
'« aln
-: nydrodynamics symposia (most recently in Washington, D.C., June 1985) and by S
~ 3. Laksminarayana and co-workers at Pennsylvania State University at the ;%
b Ay
E: AIAA 24th Aerospace Sciences Meeting in Reno, January 1986. These S&
:: procedures are currently being investigated for hydrodynamics problems at ;:
f;, MARIN, the National Maritime Institute of the Netherlands by H. Raven and M. ?E
S AN
1} Hoekstra, for transonic viscous boattail configurations at the NASA Langley :%:
s (Y
N Research Center with R, Wilmoth, for primitive variable formulations with ::
;; subsonic viscous/inviscid interaction at ONR with T.C. Tai as technical Eé
:é monitor, at the Allison Gas Turbine Division of General Motors by D. Reddy §§
X for internal flow problems, for the NASA Lewis Research Center under J. f?
-
?: Adamcyzk and B. Anderson for internal and hypersonic flows, respectively. igi
é The AFOSR sponsored work has also been referenced in numerous papers during Ei:
- the past year and very similar ideas appear in the work of P. Bradshaw, 3:
*
E Imperial Zollege and R. Consteix at ZERT, France. 3;
' n
3 &
N 29 1t
hrd - ‘




el
¥

By " ey
vt e a

b

‘.';.: b _‘r‘_'l{ e

Vs r",-
s N

A
‘i ‘l
e

AU

AN
4, 8 1
L

Xy, 1) X A
W 'n‘,'\*‘.‘\',‘.0,l\¥.‘|',, “'hl‘g‘.\‘g'l ﬂ\

It has been approximately five years since the formulations considered
here were first proposed by the present investigators. These methods have
been shown to be accurate and efficient procedures for two-dimensional
steady flows when combined with the coupled strongly implicit, conjugate
gradient and global relaxation algorithms. The initial applications to two-
dimensional unsteady and three-dimensional steady problems, that have been
reported here, have further established the utility of such techniques.
Until such time as a fully coupled, time-dependent, compressible Navier-
Stokes solver becomes cost and computer efficient for solving general
viscous flow problems, the procedures discussed herein will continue to be
highly competitive for a significant class of aerodynamic configurations and

viscous/inviscid interactions.
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