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A. STATEMENT OF WORK (FROM PROPOSAL) 2/1/85 - 10/31/86

a) A composite velocity/reduced Navier-Stokes (CV/RNS) code will be

developed for investigation of flow past lifting airfoils in both

subcritical and transonic flow. Full viscous-inviscid interactions shall be

evaluated for laminar and turbulent flow conditions. The CV/Euler solutions

shall be critically evaluated for accuracy, prediction of entropy and

vorticity patterns and variances from the full potential solutions.

Comparisons will be made with the CV/RNS solutions to assess the effect of

viscous interaction on the inviscid solutions.

b) A time-consistent relaxation procedure will be developed for modeling

transient behavior. The procedure will be tested on airfoil geometries with

transient boundary conditions or for cases where transient behavior occurs

due to large Reynolds number effects.

B. STATUS OF RESEARCH EFFORT 2/1/85 - 2/1/86

As given in the Work Statement the goals and status to date can be

summarized as follows:

(1) Application of the Composite Velocity (CV) formulation for the

Euler equations and comparison with the full potential solutions. This has

essentially reached completion, see write-up, B.1, enclosed. I
(2) Composite Velocity/Reduced Navier-Stokes solutions. This has been

completed for steady transonic flow over a NACA 0012 at zero incidence, see

is reference C.3 and reference E.2.

(3) Application of the CV formulation to lifting airfoils. The

formulations of (1) and (2) await the development of a grid generation

technique that is currently under investigation. I
(4) Development of a time-consistent CV relaxation procedure for two-

dimensional transient flow. This has been completed, see write-up B.2 and

2
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B. 3. Preliminary tests have also been considered for three-dimensional

space marching (a task not scheduled until the option period 11/1/86 -

10/31/87), see write-up B.2.

(5) A new iterative 'direct-solver' formulation to be applied for more

efficient computation has also been developed and is discussed in B.4.

Generally speaking, research progress has been quite good and initial

solutions for all items in the Work Statement should be completed by

10/31/86.

B. 1 COMPOSITE VELOCITY EULER/POTENTIAL SOLUTIONS

Solutions to the Reduced Navier-Stokes equations obtained with the

composite velocity system were presented at the 22nd Aerospace Sciences

Meeting, January 1986, see reference E.2. It was noted that with the

formulation of that time entropy was generated only by viscoscity and that

entropy was not generated by shock waves. The following describes a

procedure for obtaining Euler solutions for the outer (Euler) flow with

accurate entropy generation due to shock waves.

The composite velocity representation may be written as
on

U+I (U e -- . (la,b)
uh e' h12

The interpretation of the composite velocity terms for inviscid flows varies

slightly from that for viscous flows. The 0 term still represents an

irrotational "pseudo" potential function. The U term, however, is no longer

associated with the viscous effects but rather it is associated with the

effects of rotationality, i.e. vorticity 0 - f(U,Un).

The following set of Euler equations are obtained for 2-D flow

Continuity

[p(U+1)(1'0€)] [Pn] - 0 (2)

Ns .
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&-Momentum

p u +1 I [(ph (U2 +U)u 2 ) + ( UUv)] + PeUu u + i PUevUh
at D 2 e 1e h 1e e & DP eV I

.T s E G (3)
hl h &

n-Momentum2

2
a U (U+1) u2

TS G + U [ - h (4)

where S is entropy and G is a Bernoulli like pressure term. All &-

derivatives are differenced using backward differences except for 0 which

is forward differenced. In this manner 0 is being relaxed;U is marched.

This differencing is consistent with Helmholtz's vorticity theorem.

For transonic flows the Enquist-Osher flux biasing scheme has been

adapted for the composite velocity system. This scheme consists of defining

a new density

p q pb qi,j U(pq)- i,j -(Pq)- i-l,J

where

(pq)_ = 0.0 M S 1, (pq)_ = pq - p q M > 1.

Here p and q are the sonic velocity and density. This procedure produces

very sharp shocks and guarantees that no expansion shocks can occur.

Density shifting is performed only on terms without U in the i-derivatives

in the continuity equation.

Equations 2-4 are the full Euler equations; the transonic solutions

calculated using these equations should contain the rotational effects and

the correct entropy rise at the shock wave. If the equations are solved in

* their present form, however, no entropy is generated at the shock wave and

the isentropic, irrotational full potential solution is obtained. If, on

the other hand, vorticity is introduced into the flow being solved, this

4
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form of the equations will convect this vorticity downstream with no

additional generation of vorticity.

The reason this procedure fails to capture rotational effects lies in

the form of the t-momentum Equation 3. In order to more adequately capture

the (Euler) shock wave in transonic flows, the &-momentum equation is

rewritten in a quasi conservation form

Sau [(Ph2 (U 2+2U)u) +(PhiUueV) 1 pu vUh1

h h
2 h 2 1

22
;. . _ lhl(P +pUe) - - Cp (ev)n + -(pv 2  pus) - 2.0 - (PUeV). (6)

For transonic flow, values of U will be generated at the shock wave. Also,

the generation of U values will bring about a corresponding entropy rise at

the shock wave.

The modifications to the E-momentum equation are easy to impliment in

the numerical solution procedure. The right hand side of Equation 3 is

evaluated at the previous iteration level. The (p + pu2 ) term may be
e

evaluated using a two point backward difference and a second order central

difference is used for the (Puev) term. All the other terms are evaluated

at the (i,j) location. .5

While this form of the equations produces the required entropy rise at

the shock wave, it also produces spurious entropy in the regions of high

gradients at the leading and trailing edges of the airfoil. Recalling that

the nonconservation form produces no entropy, but only convects vorticity

introduced into the system, this form of the equations will be used

everywhere except in the shock region, where the quasi conservation form of

the equations is used. The shock region is defined as the region from the

peak Mach number to the point where the change in pressure is less than one

4 5
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percent. This produces a solution procedure with the desirable

characteristic that no entropy is produced except in the shock wave region

and this entropy is convected accurately downstream.

One result for the pressure coefficient along a NACAO012 airfoil for a

freestream Mach number of 0.85 is presented in Figure B1.1. As expected the

Euler shock is weaker and lies upstream of the potential shock. The Mach

number ahead of the shock has a value of 1.3395. The calculated value of

the Mach number after the shock is 0.7683 and the entropy generated has a

value of S-0.0270. These values compare well with the values M2= .7664 and

S-0.0283 obtained from the shock jump conditions, see Figure BI.2. There is

a small jump in the value of entropy at the trailing edge and in the shock

structure. However, the former effect is localized to the trailing edge

region and arises due to the singularity in the present transformation.

The latter overshoot is physical and typical of-the entropy behavior in the

shock structure. This procedure is now being applied for three-dimensional

and other two-dimensional geometries for the reduced Navier-Stokes

equations.

I 6

=-4." ,,..3.'t, . ,55.. [ / , ."" "" ") .:'- '; ) -) '"2' " ".; ... . .. .'-.''"''-'- - ... ";-. . . .'- .



-- ~~~~~ - -n nIr~~n J

w w.

1 0

00

00

0 L E~ '

Z4-0
'a

_ _ _ _ _ _ _ _ _ _ 0 0N

*~~~ 0 .000

**
id0

0 0.
z 4*0I..::

p0



w (N
I-4J

< I-

-J-

'4-1

to 0*

0 0 0 0 L
0~~ C; C

-

L



B.2 CONSISTENT STRONGLY IMPLICIT ITERATIVE PROCEDURES FOR TWO-DIMENSIONAL

UNSTEADY AND THREE-DIMENSIONAL SPACE-MARCHING FLOW CALCULATIONS

P.K. Khosla and S.G. Rubin

(To be submitted for publication)

Introduction

The success of a numerical formulation for the solution of two-

dimensional time accurate or three-dimensional spatial accurate flow, e.g.,

RNS marching or global relaxation, depends largely on the solution

algorithm. A non-iterative, unconditionally stable, consistent procedure

should provide maximum efficiency. For large time increments (At) i.e.,

steady state calculations, consistency is not critical; rather, the

technique should have strong convergence properties. For moderate At and

transient flows, or moderate Ax for spatial marching, consistency of the 5*

numerical scheme plays an important role.

The most generally applied implicit and consistent formulation is the

(1) (2)
ADI factorization due to Douglas and Gunn . The Briley/McDonald and

Beam/Warming (3 ) schemes are based on this ADI factorization. There are,
5'..

however, a number of problems with the ADI technique that have been

encountered by various investigators. These are (i) an "instability"

associated with the boundary condition, which may be attributable to the

choice of intermediate boundary conditions and can only be controlled with

smaller values of At, (ii) poor rates of convergence for At > 1, i.e. steady

(4)) 2state problems (see Nietubicz and Ghia et al ( 5 ) ) and (iii) O(At 2 )

accuracy of the factorization, which may not be desirable with certain types

0 7o.
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of discontinuous initial conditions. For the ADI method and also Crank-

Nicholson scheme, it can be shown that odd and even time steps decouple for

larger At. Thus the solution is oscillatory. Additional time smoothing is

required in such cases to make the technique stable and convergent. For

At >> 1, inconsistent and O(At) techniques, e.g. CSIP, typically possess

better convergence properties. Ghia et al. have presented comparisons of

the CSIP and the CADI method for both steady and unsteady internal flows.

The advantages of the CSIP for steady calculations has been reaffirmed.

Although the CSIP has also been used by these investigators for unsteady

flow computations, it may be shown that the consistency and hence the time -'-

accuracy of the CSIP will deteriorate as the spatial mesh width h is
- b,

vAtrefined, i.e., for a fixed time step, - 1 > 1. A similar limitation exists2
h

for other relaxation procedures, e.g. LSOR, SSOR. This deficiency of

relaxation techniques has not 'een discussed in any of the earlier time

accurate references cited here. Therefore, there is currently no single

implicit solution algorithm that has both the desirable properties of

consistency (small At), rapid convergence to the steady state (At >> 1) and

can also render an O(At) scheme consistent so as to be applicable when first

order accuracy is desirable.

In the present investigation a number of simple remedies have been

investigated to render any of the well known relaxation procedures

consistent. These are (i) a modified predictor-corrector SIP or CP

procedure (ii) a multi-grid predictor-corrector scheme and (iii) a new

(6)algorithm based on the Sherman-Morrison formula. The first two remedies

require considerable programming steps and results in two step procedures

similar to the ADI technique. The third formulation is very simple to

* . .. . .. .... . . ...... .-,.- . .... .. . .- • ,, -- . -



implement. requires little modification of existing codes and results in

less than 5% additional computational effort. Furthermore, it is a single

2
step procedure that can be applied to to achieve either O(At) or O(At )

accuracy. Intermediate boundary conditions are not required for either of

the procedures. All of the algorithms have been tested successfully with

the SIP on a model problem. These algorithms have been investigated for

application to flow over an expanding airfoil.

MODIFIED SIP OR CSIP

The new procedures are described here for the model problem:

2 (I)
0:t

W A second order accurate Crank-Nicholson scheme (8 = 1/2) leads to the

following discrete form of the equations:

n 1 nn
i= vA(e n+1 (+ n) )ij, (2)

where the various diagonals in the matrix operator A are typically of

0(1/h 2); h is the mesh spacing and the temporal index. This equation can

be rewritten as:

n+1 n
(I - vAt6 A)± I + Atv(l-)A) , (3)

An exact solution for n + l is obtained when the coefficient matrix (I-vAteA)

can be inverted. For matrices arising from general two dimensional (Navier-

Stokes, Euler or RNS) operators, this requires the use of Gaussian

elimination or a variant thereof. For large systems, where many length

scales must be resolved, such a solution algorithm is extremely inefficient

and prohibitively expensive. An approximate factorization is usually

preferable. This factorization should be efficient and ideally generate an

approximate solution which is within the truncation error of the scheme.

.4



The CSIP is such a procedure. Application of the SIP for the inversion of

(I - vAtOA) introduces the diagonal elements or "corner points"

n
€I+I J-I' etc. These are treated explicitly and iterated upon in order to

achieve the converged solution. A closer examination of the coefficients of

these terms in the inversion algorithm reveals, that as noted previously
a4

o( VAt
these diagonals are of ). Thus an accurate and consistent prediction

n+1 At
of requires that << 1. This restricts the choice of At to

unacceptable small values for h << 1. In the following section, a number of

simple remedies have been investigated for improving the consistency of the

SIP procedure. These remedies are quite general and can be used with other

relaxation procedures too.

Predictor-Corrector

In order to apply a single solution algorithm for both steady and L>.

unsteady or 3-D marching problems, i.e., a single formulation retaining the

most desirable features for all values of At (or Ax marching), the present

authors have investigated a number of two-step and one-step techniques. ".

Intermediate boundary conditions are not required.

(i) The matrix A resulting from the spatial or "non-marching"

discretization is rewritten as:

n1 n+1 n Mn+1 n
A - n+1 + en1 + (1-)zz = n + (I-E)N .  (4)A= (yy Czz z

Equation (2) can then be written as:

(I-AteM) n+  = (I + vAt(1-e)A) n + O(I-)NOn  (5)

10



In the predictor step, the coefficient matrix (I . ,6tM) with E c £ and

n

i - 1 is inverted by the SIP. The error arising from the diagonals i ,jnI

n
and *i+1,-1 can be made independent of the mesh size by an appropriate

choice of the parameter c. This provides a reasonable predictor for 0 n1

The error due to the inconsistency is within the truncation error of the

numerical approximation of the scheme. A second-order accurate corrector

step repeats the procedure with c o = 1 and 8 = " The choice of the

appropriate value of c is crucial to the success of the method. The0

following expression was selected in the test problem:

At/h
2

= (6)
I At/h2

Other expressions or values of E can also be chosen and still provide the

2

required consistency. It should be noted that for (At/h ) << 1, the order

of inconsistency is bounded and independent of the mesh spacing h. For

2.-
At/h >> , - 1 and the usual SIP algorithm is recovered. A model problem4.,

with Dirichlet boundary conditions was chosen to test the predictor-

corrector SIP technique. Calculations for v - o were considered for

(17x17) and (51x51) grids and At - 1. For a single time step, the maximum

error in the numerical solution is less than 2% and 7%, respectively.

Additional corrector iterations with c - 1 will further reduce this error.

For comparison, the standard SIP on a (51x51) grid incurs almost a 100%

eosav
4-" error. The method requires the splitting of various derivatives in a manner .

_____ .

i 4, • .,.;. ,- .. -. ...- . . .- , .. ..-..- ,. .- , , - ,-.-:,- ., - -'-"- ,'p



similar to the ADI method. The choice of E is quite arbitrary and may even

depend upon the nature of the differential equation and the flow parameters.

SIP-Multigrid

A complementary approach to improve the consistency of the CSIP

Involves the application of a multigrid procedure. Since consistency error

is amplified for fixed At and fine meshes, a course mesh predictor minimizes

this error. The predictor step is then repeated on a succession of finer

grids, the fine grid corrector step will not require additional iterations.

2 2 2
Solutions obtained in this fashion are also O(At ,Ay ,Az ); however, local

4convergence is enhanced by the multigrid smoothing process. Results similar

to the one obtained in the previous method are also obtained by this

technique. However, the programming complexity increases. This technique

can always be employed with the procedures described in this paper. A new

iterative procedure that is based on this idea and the application of sparse

matrix direct solver is being currently investigated (reference C4) for the

solution of the reduced Navier-Stokes equations. The preliminary results

are quite encouraging.
%,' ."

C. Stone's-SIP

The consistency of the SIP procedure can be improved considerably by

using a second-order factorization similar to the one originally proposed by

Stone. In the present section a number of techniques similar in character

-. ' to Stone's procedure will be discussed. Although most of these techniques

are unstable for steady state calculations (some more than the others), they

provide simple extensions of SIP for time consistent computations, fairly

large At - 1 and highly stretched grids. Some additional inexpensive

12
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remedies are suggested which not only improve the stability for larger At,

but also improve the consistency.

Stone 6 had proposed, the following second-order factorization. This

cancels the corner values of 0.

n+I . Cn I n n ni- , J+1 i-l,j+1 i-lJ +  elJ+1 i ,

( n+1 n+1 n+1l
i'1, *i, j+1 - 0i,j %

1 1+1n 1+n € n n
,j-1 ,J-1 a J i ,J-1 0i J

'.,
+ C(¢ l1,j + l,j+l - i~j

Clearly the terms evaluated at the previous time level have a spatial

truncation error of O(AxAy) when a is chosen to be unity. This happens to

be the simplest method for making the method consistent. Originally,

Stone's technique was abandoned because of the complexity of the factorizing

procedure for more than one unknown.. However, the following simple

implementation has been found to be equivalent.

.1V

Given the algebraic system

AI¢i,jI + Dli..i j + BIi j + Cl~i,j+I + Eii+ij (7)

the solution algorithm can be described as:

¢i,J - GMi,j + E i,Ji,J+1 + F i,j0 i+1,J

The elimination of the lower triangular terms 0i-l,J and 0i,j-1 along with

the cancellation of the corner points ¢i+IJ-I and *i-I,j+I can be carried

out in a single step as:

13

%A.Y



*iJ-1 =(laFij. I) - [GMi3 j I + (Ei~_ I -aF

+Fn n n ni'j-1 ¢i+1'j +  i'j-1 {i+I,'J-I i+1 ,J+ iJ-1-¢i j)

(8)

and a similar expression for €i_ 1 ,j . Substituting these in the governing

equations, we get, the following recurrence relation for F (say),
i,"

- {C 1 1-l1 'j}

'1 1-aE i-i "j
F'j B= +A E i,j'1-F i,j-1 + D Fi-,,j-aE il,

B A - 11 -czE
1 1 1- ct-i...

It may be noticed that the values of F ij do not depend upon the grid

spacing and Fi  /(1-F ij I ) etc. are 0(0). The group of terms being

computed explicitly in equation (8) are thus of O(AxAy). As such, the error

does not grow in a space maraching or time dependent problems due to the

<< initial guess of the solution. A general block version of this algorithm -_

for any number of equations and unknowns has been coded and as a test is

being applied to the three dimensional boundary region equations for

supersonic flow past a cone. A second technique allows for the inclusion of

'V an additional diagonal (corresponding to * )in the sparse LU
i*iJ

factorization of the preconditioning matrix M. In this case, the source

terms computed at the nth time level can further be cancelled by addition

and subtraction of a grouping of the form oI , - (¢ + , -

The storage required for the factorization step in this case
i".

increases from 3N to 4N. Other groupings can be devised to achieve similar

results. For a - 0, all the methods reduce to the simple SIP which has been

14 '
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used by the present authors for coupled system and for a large number of

steady state computations.

The cancellation of the corner points ¢i-j 1 and 0 I+IJ-1 can also be

performed by changing the truncation error of the governing equation. For -.

example, the conservation form of the following equation

30 .+A +B =0at x y ,

where A and B are functions oft, and *yetc.

Then,

(Ax) j' + (By)i+1 -(Ax) iJ " (BY)i "j

(Ax) + (BY)iI - (Ax)lij  (By)I j

can be used to cancel the corner values of 1-,J+I and 01 ,J-I" This

procedure worked quite well for. steady subsonic potential flows. Additional

iterations with a = I did not diverge when used to compute flow past a

biconvex airfoil. However, this may be fortuitous. Unfortunately, this

technique is quite complicated and becomes prohibitively cumbersome for more

than one unknown.

In order to eliminate the sensitivity of Stone's procedure to the value

of a, a rank one improvement of the iterative procedure was found to be

quite useful. This is achieved by the application of a Sherman-Morrison

formula. It must be emphasized that all iterations, required at a given

time step for nonlinear convergence, can be performed with smaller values of -U

a. A value of a = 0.9 has been utilized for this purpose.

15 .-
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Sherman-Morrison Formula(7 )

This formula inverts a matrix of the following form:

A - B + UVT
-- 1

The matrix B is such that B can easily be computed and U and V are two

vectors. Then

-1 -1 B~ TV-
A-B - B +VT-B - 1 U  (9)

(8)
Wilf used this formula to invert any non-singular square matrix. The

3 .~

computational cost is O(N ) which is comparable to Gaussian elimination.

Memory requirements are O(N 2 ) for N large. As a direct solver the Sherman-

Morrison Formula is not competitive with iterative techniques. However, it

can be usefully employed for improving the consistency of iterative ..

techniques. Most iterative methods are based on some type of splitting of

the coefficient matrix, e.g.,

AO - b . (10)

can be written as

(M N)o - b (11)

For most of the matrices arising in flow problems, M can be computed with

reasonable computational effort; however, the error matrix N cannot be

decomposed in the required form, i.e.,

N * uvT (12)

Therefore equation (9) cannot be usefully exploited. However, the linear

cquation (11) can be written as:

(M + N 0.L)0 - b , (13)
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T
where 0 = O> is the unit vector. Equation (13) is non-linear and can

be solved iteratively for * as:
nI

Tn n+1
(M + UOT )0 -b (14)

where

U - (No0)

The solution of (14) can be written as:

-1 n
- (M-1U)<On M- b >

* M b-Ai(51 + O M U>

This solution further improves the symmetry property, as well as, the time-

consistency of the solution. From equation (15), it can be seen that the

additional effort required in the present case, as compared to the

-1
relaxation procedure based on the preconditioning by M is associated with

-1 -1

the evaluation of two scalar products. M- b and M IU can be computed in the

same loop with very small increase in the computation. The overall increase

in time is between 2% to 5%. The maximum error is less than 2% for a

(17x17) grid with At = 1. The problem under consideration has smooth

initial conditions, with the exact solution having a *t of 00). For a

problem with sudden heating of the boundary, the initial conditions are

discontinuous. In such a case, time consistency of the solution requires

the use of a smaller At, at least in the initial stages of the calculation.

The error matrices for SIP with and without the Sherman-Morrison update are

NO and (No) T respectively. Since(0 T
17
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Tj 1 T
I (NO) S I II * I I ' 1 INOI I V '

the influence of the error matrix is reduced with the application of the

Sherman-Morrison formula.

Error Analysis

The first order implicit formulation of the time dependent equation can

be written as:

[I + At(M+N)]O n 1 ' n + At b

where the index corresponds to a time step and (M+N) is the coefficient

matrix arising out of the spatial terms. The time consistency of the

solution procedure with Sherman-Morrison update, can be investigated by -

rewriting the lefthand side of the above equation as:

A T r~ T A Tj[I + At M + At N *n nn 1 * At {N - N @n n n+1

where 0 represents the normalized unit vector defined earlier.

Using Taylor series expansion, it can be shown that the error term is

given as

A T A T <+ I At A T
N - N n n At (2n n n+1 n+1 On+1 > Nn+1 On+1

N T + N T}] + 0(At2)-NC n+1 ¢n+1I

Clearly, the error term is first order in time provided t is 0(I) and N is

such that the spatial error does not dominate the error term as the grid is

refined. In such a case, the limits At + 0 will render the system

consistent. The strongly implicit procedure with a - 0, which has been d
extensively used in previous calculations, does not lead to a consistent

18



splitting of the coefficient matrix. The error matrix N, amplifies the A.-

V2

error as h + 0, leading to a limitation that (At/h 2 ) << 1 for consistency.

However, for a - 1, the spatial error is not amplified as h + 0. Thus

consistency is achieved if At and h + 0 independently. The procedure is ?1

also applicable to second order time accurate technique.

Applications

The technique has been tested on a variety of simple model problems.

Both linear diffusion and nonlinear Burger equations have been investigated

to test the validity of the procedure. In addition, the unsteady flow past

a biconvex airfoil was also considered. The results for simple diffusion

are described below.

The heat conduction equation is given as:

1 2
T 7

The exact solution to this problem is

-28 2 t t 1/2
Re Re | •

0(t,x,y) = e sin8x sinBy + e e sin~y -j

Exact initial and boundary conditions have been imposed on the numerical

solution. This problem was chosen, because the boundary conditions and the

solution are time dependent. The maximum residue on 17x17 and 51x51 uniform

grids are depicted in Figures B2.1 and B2.2 for both the consistent SIP and

the inconsistent SIP procedures. No additional iterations have been

performed for either case. Both techniques include the Sherman-Morrison

procedure. This improves the accuracy of the standard or inconsistent SIP

method as well as the new procedure. On coarser grids, the two results are

similar; however, on the fine grid there is significant difference. This

19



reflects the severe inconsistency of the standard SIP procedure. The new

formulation, however, retains the error of the order of truncation error.

This is even true for finer grids and large values of At.

As another example of the applicability of the new algorithm, the 4.

composite velocity solution past a biconvex heaving airfoil at M. - 0.65 has

also been computed. Computations have been carried out for number of time

steps on a 75x33 non-uniform grid. In these calculations, the non-linearity

has been treated via picard iteration. At least one additional iteration is

performed after time stepping and before the density is updated. In all the

calculations, only three density updates have been performed. For :"

comparison purposes, solutions using a direct solver have also been

obtained. Three iterations on density are also performed for these exact

computations. The results of these calculations are depicted in Figs. B2.

Figures (B2.3) shows the coefficient of pressure at different normalized

time levels. These calculations have been performed with At - 0.1 and 0.5.

The results are very sim'lar at similar time levels. For comparison the

pressure time history at the mid chord has been depicted in Fig. B2.4 along

with a direct solver solution, see B.4. The two solutions are in excellent N,

:% agreement.

j As another test problem the laminar boundary region equations for flow

over a 10 cone at M = 2 has also been considered. The boundary region

equations contain all cross flow diffusion terms and are solved, using the

coupled algorithm. Solution for this case is well known. The present

consistent CSIP requires only two Iteration as compared to 5 to 6 iteration

with the old CSIP to achieve the same order of accuracy for each marching

step.
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B.3 A COUPLED STRONGLY IMPLICIT PROCEDURE

FOR REDUCED NAVIER-STOKES EQUATIONS

Some solutions for the unsteady, compressible Reduced Navier-Stokes

equations obtained using the Sherman and Morrison technique were presented

at the AIAA 24TH AEROSPACE SCIENCES MEETING , held in Reno, Nevada. This

algorithm is suitable only for a H-type grid. Since, there are some

inherent advantages in a C-type grid for many flow problems, an algorithm -

that can be used for both the H-type and the C-type grid would be more

desirable. Such an algorithm has been developed. This algorithm is based

on the coupled strongly implicit (CSIP) procedure of Stones.

21 4.
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The quasi"linearized form of the governing finite difference equations

together with the boundary conditions can be written as

A n +B i n J ~ ~ Vn
n vn n

AI,j Vi-1.J-I B1 i-l ~ + CjVi-l,J+1 +

n+E Vn +F, VDij i ,j 1 i ,J Fi,j i VJ i,j+l

G V n  +Hi Vn lj+I V ni,j i+l,j- 1 Hi,j i+1J i+lj+ i,J

where Vi j is a vector of unknown pi j , ui and vij at the grid points

(xi , y) , Ai, j , I, ..... , Ii j are known 3X3 coefficient matrices,

Ji is a known 3X1 matrix and 'n' refers to the present time level.
1 ,J

The CSIP is developed from the following approximate LU decomposition.

n + + R n (2)i,j i i,j i,j i-1,J

.1 n nanTaylor series expansion is used to approximate Vn 1 J 1  V

Vn  that appear in (1). We writei+l,j-i

Vi-1,J+1 i-l 91+1 + I(Vi,J+1 -iJ+1 )

n n-1 n n-1
2{( Vi-l1j - Vi-1,j) (V i,j -Vi,J) (3a)

Vn  n-1 n - n n-1i-lJ-1 "i-1,J1 ViJ-1 -i,J-V 1 V
nn n-1 n  n-1

i12 { i-lJ n-i n (3b)

V n  V vn-1 V n  Vn-1-i+IJi+1, J Vi- 1 (  lJ-1 i,JV 1  .

2n- (n n-1 - n  n-1

2 Vi+ 1 ,j -i+1 ,j i,j i,j ) 3

where 0 ; S , E2 S 1 are some constants. From (1) , (2) and (3) we obtain

the recursion relation

22
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PIJ Function( P Q R

P ,Q ,R k-j or J+1Pt+l,k ' i+l,k ' i+l,k kjo ~

Similar relations are obtained for Qij and Ri j .

We start the solution procedure by solving for P QMJ and RMJ

The outflow boundary condition (pi-M - 0 enables us to solve for PM,J'

Q and RMj from the governing equations. The boundary conditions for j-N

( Pi,n U , uiN - u ) together with the continuity equation for J-N-1/2

yield Pi,N i,N and RiN , 2 S i S M. Since, PM,J 'M,j and RNj and

P i,N ' Qi,N and R i,N 2 S i S M are all known the recursion relation can be

used to obtain Pij Qi and Ri, j for i-M-1,M-2 ..... ,2 in that order. Thei ,ij

continuity equation at J-3/2 and the boundary conditions for J-1

n nP ui u,, ) are then used to solve for v i, 1 *From P 1 1

u 1  vin 1 Z j S N and p u, 1  vi 1 .2 i < M and PiJ Qi

R i-j , 2 S j S N , 2 S i M one can solve for Vi' j for all values of i and

J using equation (2).

The unsteady breakdown of the laminar calculations for the flow past a

sine-wave geometry was studied using this algorithm to explore the

possibilities of obtaining unsteady, unsymmetric solutions for large

Reynolds numbers. So far such a solution has not been obtained. Instead it

was found that even without any imposed conditions of symmetry in the wake

the solution for R-400,000 neither converges nor exhibits any tendency

towards unsymmetric shedding. The behaviour in time of the wall shear

stress for R-400,000 is shown in Fig.B3.1. The size of the separated region

23
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initially increases with time and for large values of t the separated bubble

breaks up into two and also the negative peak in the wall shear distribution

increases unboundedly with time. Further analysis is required to understand

this phenomenon better.

B. 4 BLOCK ITERATIVE PROCEDURE FOR THE SOLUTION OF FULL ,-

AND REDUCED NAVIER-STOKES EQUATIONS

Most relaxation methods slow down when the number of grid points

increase. Usually, such procedures are acceleralted by using either

conjugate gradient or multi-grid techniques. For algebraic equations

arising from large Reynolds number flows on stretched grids, both methods

require special considerations and become quite problem dependent. There is

no single procedure which the CFD community can reliably utilize, without

many changes in the codes, that will work for a large class of problems.

Usually the separated flow regions require special attention in applying
.4..

multi-grid or other acceleration techniques. In view of these problems, a

new technique is being investigated. This is based on a direct solver and

is iterative in character. The relaxation process is carried out by

simultaneously solving the equations on large blocks of the grid and

4.iterating between these blocks. Typically, direct solvers require very

large amounts of memory and become slow as the numbe of grids increases.

However, they can be used on smaller blocks of the grid in a fairly

efficient fashion. In this manner longer wave lengths of the solution error

can be treated more effectively; the length is determined by block size.

The block iteration procedure consists of directly solving for values

cn subgrids of the main grid. It has been found experimentally that

2~4



selection of the subgrids and the order in which the iteration takes place

has a significant effect on convergence rate. The method has been tested on

the Laplace equation in the unit square. The fastest grid sequence found so

far is described in Fig. B4.1, where the subgrid numbers show the sequence

in which they are iterated. The first two subgrids split the main grid in

half and a third grid that overlaps the other two is solved last. This F

subgrid sequence converges in 6 iterations (the error criterion was the

difference of the computed and exact solutions and was less than 10 ) for a

21 by 21 grid, and 7 iterations for a 101 by 101 grid. Without the third
5,

grid the iteration count for the 21 by 21 case was 25.

The main grid was further divided into smaller grids as shown in Fig.

*. B4.2. The first four grids were solved in an upward sweep followed by a

downward sweep for the three overlapping grids. This was done to ensure a

uniform propagation of information over the solution domain. As expected

this grid strategy needed more iterations to converge. For a 21 by 21 grid,

15 iterations were required, and 25 iterations were required for a 101 by

101 grid. The convergence histories for these grid strategy in a model

problem are shown in Figures B4.3 and B4.4 respectively. Apparently the

method's sensitivity to main grid size increases with the number of

subgrids.

. It would seem initially that this strategy would be inferior to

directly solving for the entire grid (given enough computer memory). For

nonlinear problems however, iteration is required anyway to converge the

nonlinearities. The amount of time required by sparse matrix solvers

1.5
increases superlinearily with the number of unknowns (O(n 1 ) is optimum).

Therefore one iteration of this subgrid strategy can be faster than an

iteration of a fully direct solution. If the number of iterations using the

25
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I
subgrid strategy is about the same as the number required to converge the

nonlinearities, the subgrid strategy can be faster. The procedure has been

applied to the solution of flow in a driven cavity and the steady laminar

flow past a NACA 0012 airfoil at Re = 2000 and M = .72. Similar rates of

convergence have been obtained for these problems.
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F. OTHER INFORMATION

The Reduced Navier Stokes (RNS), Composite Velocity (CV) and Coupled

Strongly Implicit Procedure (CSIP) have been and continue to be applied for

other agencies and by several other investigators. Recent publications

based on these ideas include: R.H. Pletcher (Iowa State University) for

J. Heat Transfer (to appear 1986), M. Israeli and M. Rosenfeld at the AIAA

6th FD meeting in Cincinnati, June 1985, M. Barnett and R.T. Davis in

Computers and Fluids (to appear 1986), H. Raven and M. Hoekstra at several

hydrodynamics symposia (most recently in Washington, D.C., June 1985) and by

B. Laksminarayana and co-workers at Pennsylvania State University at the

A:AA 24th Aerospace Sciences Meeting in Reno, January 1986. These

procedures are currently being investigated for hydrodynamics problems at

MARIN, the National Maritime Institute of the Netherlands by H. Raven and M.

4., Hoekstra, for transonic viscous boattail configurations at the NASA Langley

Research Center with R. Wilmoth, for primitive variable formulations with

subsonic viscous/inviscid interaction at ONR with T.C. Tai as technical

monitor, at the Allison Gas Turbine Division of General Motors by D. Reddy

for internal flow problems, for the NASA Lewis Research Center under J.II7
Adamcyzk and B. Anderson for internal and hypersonic flows, respectively.

The AFOSR sponsored work has also been referenced in numerous papers during

the past year and very similar ideas appear in the work of P. Bradshaw,

Imperial :ollege and R. Consteix at CERT, France.
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It has been approximately five years 
since the formulations considered

here were first proposed by the present investigators. These methods have

been shown to be accurate and efficient procedures for two-dimensional

S. steady flows when combined with the coupled strongly implicit, conjugate

gradient and global relaxation algorithms. The initial applications to two-

dimensional unsteady and three-dimensional steady problems, that have been

-. reported here, have further established the utility of such techniques.

Until such time as a fully coupled, time-dependent, compressible Navier-

Stokes solver becomes cost and computer efficient for solving general

viscous flow problems, the procedures discussed herein will continue to be

highly competitive for a significant class of aerodynamic configurations and

viscous/inviscid interactions.
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