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The ultimate goal of work in cognitive architecture is to provide the foundation for a system
capable of general intelligent behavior. That is, the goal is to provide the underlying structure that
would enable a system to perform the full range of cognitive tasks, employ the full range of
problem-solving methods and representations appropriate for the tasks, and learn about all aspects
of the tasks and its performance on them. In this article we present Soar, an implemented
proposal for such an architecture. We describe its organizational principles, the system as cur-
rently implemented, and demonstrations of its capabilities.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order No.
3597, monitored by the Air Force Avionics Laboratory under contracts F33615-81-K-1539 and N00039-83-
C-0136, and by the Personnel and Training Rescarch Programs, Psychological Sciences Division, Office of
Naval Research, under contract number N00014-82C-0067, contract authority identification number
NR667-477. Additional partial support was provided by the Sloan Foundation and some computing support
was supplicd by the SUMEX-AIM facility (NIH grant number RR-00785). The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing the official
poticics, cither expressed or implied, of the Defense Advanced Research Projects Agency, the Office of Naval
Rescarch, the Sloan Foundation, the National Institute of Health, or the US Government.

[)
iy

0
Ve,

\SIRTN T ‘
AR D)
I ’v’*\f‘wu

v
M

Xy "h’.?t*f'*"fi“.e"?ti o "o

AL LN AR
: h:‘i.f’l.:"’.e"-&";ﬁ‘w.’%"ﬁn".ﬁuﬂ vé,

o
L
v

(X
“

- -

‘!‘.

-t
F

A X
g,
Rt
E )

1 S
-~ ‘-‘

el
Sl
.,..,‘—""t

S

P

o’
b U e
Bt S,

¥ B4
T
S




. REFERENCES PAGEI

Table of Contents

1. Preview 3
1.1. Uniform task representation by problem spaces 4
, 1.2. Any dccision can be an objcct of goal-oriented attention 6
tf. 1.3. Uniform representation of all long-term knowledge by a production system 6
:!: - 1.4. Knowlcdge to controi scarch expressed by preferences 8
i’:"_ 1.5. All goals arise to cope with impasses 8
Wy ‘ 1.6. Continuous monitoring of goal termination 8
1.7. The basic problem-solving methods arisc directly from knowledge of the task 9
) 1.8. Continuous learning by experience through chunking 9
;.:'. . 2. The Soar Architecture 10
,;u: 2.1. The Architecture for Problem Solving 10
;:: 2.2. The Working Memory 12
b 2.3. The Processing Structure 15
2.3.1. The claboration phase 17
e 2.3.2. The dccision procedure 18
;5 2.3.3. Implementing the eight puzzle 23
‘.:.. 2.4. Impasses and Subgoals 27
Y 2.5. Default Knowledge for Subgoals 29
- 2.6. Chunking 33
2.6.1. The chunking mechanism 34
" 2.6.2. An example of chunk creation 37
&3 3. Discussion 40
R 3.1. Combining knowledge and problem solving 40
Ve 3.2. Weak Mcthods 43
3.3. Learning 46
W 3.3.1. Caching, within-trial transfer and across-trial transfer 46
:. 3.3.2. Learning in an cxpert-system task 51
:.: 3.3.3. Chunking, generality, and representation 53
s 4, Conclusion 57
et References 59
- :Q‘
g
;“
=2
J 4:
.
o .
A
i
"
‘l
;: !
G
RS
,;f:
8
b
o

AN EL Ty VT F v DOAOAOHCOOGRCA0 CLAUTOTIC ) N A S : X Of W o A NG XY RN, i
Co Lt ot ."""-"‘ W i 'i"‘-w‘.‘ v "-"*‘i"?‘.“.&“?i"'“J‘n"‘ -ﬂg‘;l', -ﬁ.‘a".‘t':"u N 4 Y '-' R ;"‘h’!,“. X




PAGEIl SOAR: AN ARCHITECTURE IFOR GENERAL INTELLIGENCE

% List of Figures :55
D Figure 1: Summary of Soar performance scope. 3 o
Figure 1-1: The structure of problem-space search for the eight puzzle. 5 -
o Figure 1-2: The tree of subgoals and thc;: problem spaces. 7 ,
;::é;: Figure 2-1: Problem-space trace in the cight puzzle. (Task implementation steps are bracketed.) 11 :!
:‘:::: Figure 2-2: Architectural structure of Soar. 12 :&;
g:»:c‘ Figure 2-3: Snapshot of fragment of working memory. 13 A
el ' Figure 2-4:  Working mcmory representaticn of the structure in Figure 2-3. 15 e
Figure 2-5: Graphic representation of an cight puzzle state, 16 3
\:' Figure 2-6: A sequence of decision cycles, 17 iyt
;:o:'., Figure 2-7: The encoding of preferences. 20 o
;'.::.: Figure 2-8: The semantics of preferences. 21 o
Tn:..:' Figure 2-9: Productions that set up the cight puzzle, 24 h i
oY Figure 2-10: Production for creating cight puzzle operator instantiations. 25 .
e Figure 2-11: Productions for applying cight puzzle operator instantiations. 25
.;\f.‘. Figure 2-12: Secarch-control productions for the eight puzzle. 25 ’ :;
‘:"1‘ Figure 2-13; Tracc of initial cight puzzle problem solving. 26 :.
‘r;f‘:;‘. Figure 2-14: 'T'he subgoal structure for the eight puzzle, k) .::
N Figure 2-15: A trace of steepest ascent hill climbing. 33 W
Figure 2-16: Partial production tracce of an cight-puzzle evaluation subgoal. 37 L
i Figure 2-17: Production built by chunking the evaluation subgoal. 39 y
N Figure 3-1: Task problem spaces for the extended version of R1-Soar [75]. 41 ¥
)'; Figure 3-2: 'I'ask operators for the extended version of R1-Soar [75). 42 )
‘ Figure 3-3: Performance of the extended version of R1-Soar (without learning). 44 4}
¥ Figure 3-4: Weak methods, as patterns of behavior. 47 N
Figure 3-5:  Structure of weak methods realized in Soar {29]. 48 '
:.;;: Figure 3-6: 1.carning in the cight puzzle [33). 49 i
O Figure 3-7:  Across-task transfer in the eight puzzle [33). 50 q‘:‘
:::: Figuie 3-8: 1.carning in R1-Soar, 51 Y
o:::.: Figure 3-9:  Performance of the extended version of R1-Soar (with bottom-up learning) [75]. 52 ':
’ ")" Figure 3-10: ‘Transfer possible with macro-operators in the cight puzzle. 56 -'f
:::l; '::~,
e X
o i
::;;n )
‘l:':l }
oL
:'::: W
ki §
. A
i s
o 73
T::g v
::“.: .:'0
i:‘;.t .:'
R 3
A
:‘1‘: %,
-~ i"
o o )
e o

IR R LR A b
Sy ChrhheRye SO NANARN izrz,,“‘vﬂ‘,’\,,.t‘ A RK)

) A _0, AP0 o £ L A IS EASTFLN A * N E OO
LG E R, D { AT ‘Q..\U‘w i ."#.‘?v.\t, 'ty e v’,'\.?t‘o‘s‘sfn“




- .

“:: o
’ ] :’

ot PAGE: | "
i 2.,;

',Q Soar: An Architecture for General Intelligence! Y
a Soar is an architecture for a system that is to be capable of general intelligence. Soar is to be able to: (1) ;
fi" work on the full range of tasks, from highly routine to extremely difficult open-ended problems; (2) employ t :
E . the full range of problem-solving methods and representations required for these tasks; and (3) learn about all "2
:.:: . aspects of the tasks and its performance on them. Soar has existed since mid 1982 as an experimental software :;g
. system (in OpsS and Lisp), initially as Soar 1 {31, 32], then as Soar 2 [29, 35], and currently as Soar 4 [30]. Soar T
: 3 ) realizes the capabilities of a general intelligence only in part, with significant aspects still missing. But enough ' :;
' has been attained to make worthwhile an exposition of the current system. E‘
R < "
/ Soar is one of many artificial intelligence (Al) systems that have attempted to provide an appropriate -
:‘3‘ organization for intelligent action. It is to be compared with other organizations that have been put forth, ._ T!
‘;.. especially recent ones: MRS [22]; Eurisko [38, 39]; blackboard architectures [4, 16, 24, 56]; Pam/Pandora E}f_
:, [79] and Nasl [40]. Soar is also to be compared with machine learning systems that involve some form of 'C‘. i
:‘ problem solving [10, 15, 37, 45, 46). Especially important are existing systems that engage in some significant ‘“1;'
," form of both problem solving and learning, such as: ACT*[2]; and Repair theory [8], embodied in a system .
;;.' called Sierra [77]. ACT* and Repair theory are both psychological theories of human cognition. Soar, whose :%

o antecedents have layed a strong role in cognitive theories, is also intended as the basis for a psychological ; ‘
. theory, but this aspect is not yet well developed and is not discussed further. “’
b M)
i;;': Soar has its direct roots in a continuous line of research that starts back in 1956 with the Logic Theorist "“3
;:;: [53) and list processing (the IPLs) [55]. The line goes through GPS [17, 54], the general theory of human g;
:) problem solving [S1] and the development of production systems, PSG [48], Psanls [66] and the Ops series [20, ! L
'::: 21]. Tr< roots include the emergence of the concept of cognitive architecture {48], the Instructable Production _,.
:;:: System project [67, 68] and the extension of the concept of problem spaces to routine behavior [49]. They also '\:
'::: include research on cognitive skill and its acquisition [11, 35, 50, 63]. Soar is the current culmination of all this Iy n:
e work along the dimension of architectures for intelligence. "'_ ‘
L R
". Soar's behavior has already been studied over a range of tasks and methods (Figure 1), which sample its :}*\
KN intended range, though unsystematically. Soar has been run on most of the standard Al toy problems [29, 31]. ::.::‘
A These tasks elicit knowledge-lean, goal-oriented behavior. Soar has been run on a small number of routine, : !
;‘n' T cssentially algorithmic, tasks. such as matching forms to objects, doing clementary syllogisms, and searching .'s:_‘
,.r: for a root of a quadratic equation. Soar has been run on knowledge-intensive tasks that arc typical of current ‘-r:
g, expert systems. The tactic has been to do the same task as an existing Al expert system, using the same :::
o ‘
:- IWc would like to thank David Steier and Danny Bobrow for thetr helpful comments on carlier drafls of this article, and Randy j':
E§ Gobbel for assistance in the final preparation of the manuscript, ‘:::‘ !
$ |
: -
i 3
B O S R £ A A e R A R e HE e PN




wwwww T L6 8 Ao & o aia Al m Ao af Ak Al SEEn-al et - an AR . ab AR Aab ‘ol anh Bak wik 4ok . . - 0 0 g ‘e mb \

PAGE 2 SOAR: AN ARCHITECTURE I'OR GENERAL INFELLIGENCE "
knowledge. The main efiort has been R1-Soar [65], which showed how Soar would realize a classical expert J
system. R1, which configures Vax and PDP-11 computers at Digital Equipment Corporation {3, 41]. Rl is a
large system and R1-Soar was only carried far enough in its detailed coverage (about 25% of the functionality o
of R1) to make clear that it could be extended to full coverage if the cffort warranted [75]. In addition, Soar t
versions of other substantial systems are operational although not complete: Neomycin [13], which itself is a ,,
reworking of the classical expert system, Mycin [71]; and Designer [26], an Al system for decsigning al- C
gorithms. Soar has also been given some tasks that have played important roles in the development of ,
artificial intelligence: natural-language parsing, concept learning, and predicate-calculus theorem proving. In X $
each case the performance and knowledge of an existing system has been adopted as a target in order to learn 5‘:
as much as possible by comparison: Dypar [6]), Version Spaces [44] and Resolution [60). These have so far l

o

been small demonstration systems; developing them to full-scale performance has not seemed profitable.

-

e 2n 1 2k o
ooy,
&

(3

A variety of different representations for tasks and methods can be realized within Soar’s architecturally
given procedural and declarative representations. Essentially all the familiar weak methods [47] have been

realized with Soar and used on several tasks [31]). In larger tasks, such as R1-Soar, different weak methods _
occur in different subparts of the task. Alternative decompositions of a task into subtasks [75] and alternative ‘_
basic representations of a task have also been explored [31}, but not intensively. :::

Soar has a general mechanism for learning from experience {33, 36] which applies to any task it performs. :
Thus, it can improve its performance in all of the tasks listed. Detailed studies of its learning behavior have 'f
been done on several tasks of varying characteristics of size and task-type (games, puzzles, expert-system ‘_:
tasks). This single learning mechanism produces a range of learning phenomena, such as improvement in 3 :
related tasks (across-task transfer); improvement even within the learning trial (within-trial transfer); and the ;1
acquisition of new heuristics, operator implementations and macro-operators.

Several basic mechanisms of cognition have not yet been demonstrated with Soar. Potentially, each such "
mechanism could force the modification of the architecture, although we expect most of them to be realized ':
without major extension. Some of the most important missing aspects are deliberate planning, as developed _
in artificial-intelligence systems [69]; the automatic acquisition of new tasks [23]; the creation of new task ‘
representations [1, 27]; extension to additional types of learning (e.g.. by analysis, instruction, example,

) reading); and the ability to recover from errors in learning (which in Soar occurs by overgeneralization [34]). ) i‘f";
,_ It is uscful to list these lacunac, not just to indicate present limitations on Soar, but to cstablish the intended ‘,.
\ t;‘? scope of the system. Soar is to operate throughout the entire spectrum of cognitive tasks. ‘;"k
x.‘-{ :\

0 The first section of this paper gives a preview of the featurcs of Soar. The sccond section describes the Soar

:.-‘:,7 architecture in detail. The third scction discusses some examples in order to make clear Soar's structure and :
::. : operation. The final scction concludes with a list of the principal hypotheses underlying the design of Soar. 3
o 2
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Small, knowledge-lean tasks (typical Al toy tasks):
Blocks world, cight puzzle, cight queens, labeling line drawings (constraint satisfaction),
magic squares, missionarics and cannibals, monkcy and bananas, picnic problem,

robot location-finding, three wizards problem, tic-tac-toe, Tower of Hanoi, 3.3
water-jug task !
{
Smnall routine tasks: :
Expression unification, root finding, sequence extrapolation, syllogisms, Wason verification task ,,:
Knowledge-intensive expert-system tasks: R A
. R1-Soar: 3300 rule industrial expert system (25% coverage) -
Neomycin: Revision of Mycin (initial version) .._
Designer: Designs algorithms (initial version) ~
i)

Miscellaneous Al tasks:
Dypar-Soar: Natural language parsing program (small demo) !
Version-spaces: Concept formation (small demo)
Resolution theorem-prover (small demo)

St
L

’
+
-

Muitiple weak methods with variations, most used in multiple small tasks: &
Generate and test, AND/OR search, hill climbing (simple and steepest-ascent), means-ends analysis, =
operator subgoaling, hypothesize and match, breadth-first search, depth-first search, 3,‘ \
heuristic search, best-first search, A*, progressive deepening (simple and modified), *J
B* (progressive deepening), minimax (simple and depth-bounded), alpha-beta, iterative deepening, B* 3

R

Multiple organizations and task representations:

Eight puzzle, picnic problem, R1-Soar v
gt

Leamning: !
Learns on all tasks it performs by a uniform method (chunking) O

Detailed studies on eight puzzle, R1-Soar, tic-tac-toe, Korf macro-operators o
Types of learning: {

Improvement with practice, within-task transfer, across-task transfer, strategy acquisition, by

operator implementation, macro-operators, explanation-based generalization ;-'

Major aspects still missing: P
Deliberate planning, automatic task acquisition, creating representations, varieties of learning, il
recovering from overgeneralization, interaction with external task environment ’;

by
Figure 1: Summary of Soar performance scope. ?_‘
l1.

, -

1. Preview

)
».

\v‘l In common with the mainstrcam of problem-solving and rcasoning systems in Al, Soar has an explicit .
symbolic representation of its tasks, which it manipulates by symbolic processes. It encodes its knowledge of ‘r
the task environment in symbolic structures and attempts to usc this knowledge to guide its behavior. It has a Ay
general scheme of goals and subgoals for representing what the system wants to achieve, and for controlling e

N its behavior. ,
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PAGL 4 SOAR: AN ARCIHITECTURE FOR GENERAL INTELLIGENCE

Beyond these basic communalitics, Soar embodies mechanisms and organizational principles that express
distinctive hypotheses about the nature of the architecture for intelligence. These hypotheses are shared by
other systems {0 varying extents, but taken together they determine Soar’s unique position in the space of
possible architectures. We preview here these main distinctive characteristics of Soar. The full details of all
these features will be given in the next section on the architecture.

1.1. Uniform task representation by problem spaces

In Soar, every task of attaining a goal is formulated as finding a desired state in a problem space (a space
with a set of operators that apply to a current state to yield a new state) [49). Hence, all tasks take the form of
heuristic search. Routine procedures arise, in this scheme, when enough knowledge is available to provide
complete search control, i.e., to determine the correct operator to be taken at each step. In Al, problem spaces
are commonly used for genuine problem solving [18, 51, §7, 58, 59, 72}, but procedural representations are
commonly used for routine behavior. For instance, problem-space operators are typically realized by Lisp
code. In Soar, on the other hand, complex operators are implemented by problem spaces (though sufficiently
simple operators can be realized directly by rules). The adoption of the problem space as the fundamental
organization for all goal-oriented symbolic activity (called the Problem Space Hypothesis[49]) is a principal
feature of Soar.

Figure 1-1 provides a schematic view of the important components of a problem-space search for the eight
puzzle. The lower, triangular portion of the figure represents the search in the eight puzzle problem space,
while the upper, rectangular portion represents the knowledge involved in the definition and control of the
search. In the eight puzzle, there are eight numbered tiles and one space on a three-by-three board. The
states are different configurations of the tiles on the board. The operators are the movements of an adjacent
tile into the space (up, down, left and right). In the figure, the states are represented by schematic boards and
the operators are represented by arrows.

Problem-space search occurs in the attempt to attain a goal. In the eight puzzle the goal is a desired state

f‘ representing a specific configuration of the tiles — the darkened board at the right of the figure. In other
;—:; tasks, such as chess, wherce checkmate is the goal, there are many disparate desired states, which may then be
E;E represcnted by a test procedure. Whenever a new goal is encountered in solving a problem, the problem
[ ] solver begins at some initial state in the new problem space. For the cight puzzle, the initial state is just a
"?Q particular configuration of the tiles. The problem-space scarch results from the problem solver's application
;_:"; of operators in an attempt to find a way of moving from its initial state to one of its dcsired states.

Tt

Only the current position (in Figure 1-1, it is the board pointed to by the downward arrow from the

knowlcdge box) cxists on the physical board, and Soar can gencrate new states only by applying the operators,

AR
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Likewise, the states in a problem space, except the current state and possibly a few remembered states, do not
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1.2. Any decision can be an object of goal-oriented attention

»
v et S
ST
« 0 ose
K

. Al dectsions in Sear relate w searching a problem space (selection of operators, selection of states, etc.).
o IFe oo brgure 101 represents the knowledge that can be immediately brought to bear to make the
.:‘:" decisions ina paricular space. However, a subgoal can be set up to make any decision for which the «j'.
-:r_f immediate knowledge 15 insutficient.  For instance. looking back to state S1, three moves were possible:
" moving 1 tile :djucent o the blank left. nght or down. If the knowledge was not available to select which R
.__ moeve oy, then a subgoal w sclect the operator would have been set up. Or, if the operator to move a tile i
.-:::: left had been sclected. but it was not known immediately how to perform that operator, then a subgoal would :::
;:.. have been set up to do that. (The moves in the eight puzzle are too simple to require this, but many operators :'.E
L are more complex. e g.. an operator to factor a polynomial in an algebraic task.) Or, if the left operator had 2
o been applied and Soar attempted to evaluate the result, but the evaluation was too complicated to compute F
:j'.:\‘:' directly. then a subgoal would have been set up to obtain the evaluation. Or, to take just one more example, if '
'_:'_EZ: Soar had attempted to apply an operator that was illegal at state S1, say to move tile 1 to the position of tile 2, 73
- then it could have set up a subgoal to sausfy the preconditions of the operator (that the position of tile 2 be
blank).
a .
\:_E}- In short, a subgoal can be set up for any problematic decision, a property we call universal subgoaling.
.\,,- Since setting up a goal means that a search can be conducted for whatever information is needed to make the _
decision. Soar can be described as having no fixed bodies of knawledge to make any decision (as in writing a -
:-::‘:EI specific Lisp function to evaluate a position or select among operators). The ability to search in subgoals also .
i: implies that further subgoals can be set up within existing subgoals so that the behavior of Soar involves a tree _r
::'C::j of subgoals and problem spaces (Figure 1-2). Because many of these subgoals address how to make control ;:
f) decisions, this implies that Soar can reflect [73] on its own problem-solving behavior, and do this to arbitrary
-'i levels [64]. o
| -‘r: '"
L;_: 1.3. Uniform representation of all long-term knowledge by a production system ;
z ' There 1s only a single memory organization for all long-term knowledge, namely, a production system [9, &
t;f: 14, 25, 42, 78]). Thus. the boxes in Figures 1-1 and 1-2 are filled in with a uniform production system. :"
;_".: Productions deliver control knowledge, as when a production action rejects an operator that leads back to the ‘
,,;' prier position. Productions also provide procedural knowledge for simple operators, such as the eight-puzzie -,
iyaa moves. which can he accomplished by two productions, one to create the new state and put the changes in - i
’E:": place and vne to copy the unchanged ules. (As nuted above, more complex operators are realized by \
":_‘;: operating in an implementation problem space) The data structures examinable by productions — that is, :\
:-."';. the preces of knowledge in declarative form = are ail in the production system'’s short-term working memory, &
S However the tong-term storage of dus knemaledge 15 in productions which have actions that gencrate the data .
:EE‘_ structures. ¢
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PAGE S SOAR: AN ARCINTECTURE FOR GENERAL ANTELLIGENCE

Soar employs a specialized production system (a modified version of OpsS [20]). All satisfied productions
are fired in parallel, without conflict resolution. Productions can only add data clements to working memory.

All modification and removal of data elements is accomplished by the architecture.

1.4. Knowledge to control search expressed by preferences

Search-control knowledge is brought to bear by the additive accumulation (via production firings) of data
elements in working memory. One type of data element, the preference, represents knowledge about how
Soar should behave in its current situation (as defined by a current goal, problem space, state and operator).
For instance, the rejection of the move that simply returns to the prior state (in the example above) is encoded
as a rejection preference on the operator. The preferences admit only a few concepts: acceptability, rejection,
better (best, worse and worst), and indifferent. The architecture contains a fixed decision procedure for
interpreting the set of accumulated preferences to determine the next action. This fixed procedure is simply
the embodiment of the semantics of these basic preference concepts and contains no task-dependent
knowledge.

1.5. All goals arise to cope with impasses

Difficulties arise, ultimately, from a lack of knowledge about what to do next (including of course
knowledge that problems cannot be solved). In the immediate context of behaving, difficulties arise when
problem solving cannot continue — when it reaches an impasse. - Impasses are detectable by the architecture,
because the fixed decision procedure concludes successfully only when the knowledge of how to proceed is
adequate. The procedure fails otherwise (i.e., it detects an impasse). At this point the architecture creates a
goal for overcoming the impasse. For example, each of the subgoals in Figure 1-2 is evoked because some
impasse occurs: the lack of sufficient preferences between the three task operators creates a tie impasse; the
failure of the productions in the task problem space to carry out the selected task operator leads to a

no-change impasse; and so on.

In Soar, goals are created only in response to impasses. Although there are only a small set of architec-
turally distinct impasses (four), this suffices to generate all the types of subgoals. Thus, all goals arise from the
architecture. This principle of operation, called automatic subgoaling, is the most novel feature of the Soar

architecture, and it provides the basis for many other features.

1.6. Continuous monitoring of goal termination
The architecture continuously monitors for the termination of all active goals in the goal hicrarchy. Upon
detection, Soar procceds immediately from the point of termination. For instance, in trying to break a tie

between two operators in the eight puzzle, a subgoal will be set up to evaluate the operators. If in cxamining

| gy g g

20X,




AT N AT T T L T L L T

o .i.m <

LI N

1. PREVIEW PAGL9

the first operator a preference is created that rejects it, then the decision at the higher level can, and will, be
made immediately. The sccond operator will be selected and applied, cutting off the rest of the cevaluation
and comparison process. All of the working-memory clements local to the terminated goals are automatically

removed.

Immediate and automatic response to the termination of any active goal is rarely used in Al systems because

of its expense. Its (efficient) realization in Soar depends strongly on automatic subgoaling.

1.7. The basic problem-solving methods arise directly from knowiedge of the task

Soar realizes the so-called weak methods, such as hill climbing, means-ends analysis, alpha-beta search, etc.,
by adding search-control productions that express, in isolation, knowledge about the task (i.e., about the
problem space and the desired states). The structure of Soar is such that there is no need for this knowledge
to be organized in separate procedural representations for each weak method (with a selection process to
determine which one to apply). For example, if knowledge exists about how to evaluate the states in a task,
and the consequences of evaluation functions are understood (prefer operators that lead to states with higher
evaluations), then Soar exhibits a form of hill climbing. This general capability is another novel feature of

Soar.

1.8. Continuous learning by experience through chunking

Soar learns continuously by automatically and permanently caching the results of its subgoals as produc-
tions. Thus, consider the tie-impasse between the three task operators in Figure 1-2, which leads to a subgoal
to break that tie. The ultimate result of the problem solving in this subgoal is a preference (or preferences)
that resolves the tie impasse in the top space and terminates the subgoal. Then a production is automatically
created that will deliver that preference (or preferences) again in relevantly similar situations. If the system
ever again reaches a similar situation, no impasse will occur (hence no subgoal and no problem solving in a

subspace) because the appropriate preferences will be generated immediately.

This mechanism is directly related to the phenomenon called chunking in human cognition [63], whence its
name. Structurally, chunking is a limited form of practice learning. However, its effects turn out to be
wide-ranging. Because lcarning is closcly tied to the goal scheme and universal subgoaling — which provide
an extremely fine-grained, uniformly structured, and comprehensive decomposition of tasks on which the
learning can work — Soar learns both operator implementations and scarch control. In addition, the com-
bination of the fine-grained task decomposition with an ability to abstract away all but the rclevant features
allows Soar to exhibit significant transfer of learning to new situations, both within the same task and between
similar tasks.  This ability to combine lcarning and problem solving has produced the most striking ex-

perimental resalts so far in Soar [33. 36, 62].
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PAGLE 10 SOAR: AN ARCHITECTURE FOR GENERAL INTELLIGENCE

2. The Soar Architecture

In this section we describe the Soar architecture systematically from scratch, depending on the preview
primarily to have cstablished the central role of problem spaces and production systems. We will continue to
usc the eight puzzle as the example throughout.

2.1. The Architecture for Problem Solving

Soar is a problem-solving architecture, rather than just an architecture for symbolic manipulation within
which problem solving can be realized by appropriate control. This is possible because Soar accomplishes all
of its tasks in problem spaces.

To realize a task as search in a problem space requires a fixed set of task-implementation functions, involv-
ing the retrieval or generation of: (1) problem spaces, (2) problem-space operators, (3) an initial state
representing the current situation, and (4) new states that result from applying operators to existing states. To
control the search requires a fixed set of search-control functions, involving the selection of: (1) a problem
space, (2) a state from those directly available, and (3) an operator to apply to the state. Together, the task
implementation and search-control functions are sufficient for problem-space search to occur. The quality
and efficiency of the problem solving will depend on the nature of the selection functions.

The task-implementation and search-control functions are usually interleaved. Task implementation
generates (or retrieves) new problem spaces, states and operators; and then search control selects among the
alternatives generated. Together they completely determine problem-solving behavior in a problem space.
Thus, as Figure 2-1 shows, the behavior of Soar on the eight puzzle can be described as a sequence of such
acts. Other important functions must be performed for a complete system: goal creation, goal selection, goal
termination, memory management and learning. None of these are included in Soar’s search-control or
task-implementation acts. Instead, they are handled automatically by the architecture, and hence are not
objects of volition for Soar. They are described at the appropriate places below.

The deliberative acts of search-control together with the knowledge for implementing the task are the locus
of intelligence in Soar. As indicated earlier in Figure 1-1, search-control and task-implementation knowledge
is brought to bear on each step of the scarch. Depending on how much search-control knowledge the
problem solver has and how cffectively it is employed, the search in the problem space will be narrow and

focused, or broad and random. If focused enough, the behavior is routine,

Figure 2-2 shows a block diagram of the architccture that generates problem-space search behavior, There
is a working memory that holds the complete processing state for problem solving in Soar. This has three

components: (1) a context stack that specifies the hicrarchy of active goals, problem spaces, states and
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2. THE SOAR ARCHITECTURE PAGE 11

[Retrieve the eight-puzzle problem space]
Select eight-puzzle as problem space
[Generate S1 as the initial state]

Select S1 as state

[Retrieve the operators Down, Left, Right]
Select Down as operator

[Apply operator (generate S2)]

Select Left as operator

[Apply operator (generate S3)]

Select Right as operator

[Apply operator (generate S54)]

Select S2 as state

[Retrieve the operators Down, Left, Right]
Select Down as operator

[(Apply operator (generate S5)]

Select Left as operator

[Apply operator (generate S6)]

Select Right as operator

[Apply operator (generate S7)]

Select S7 as state

Figure 2-1: Problem-space trace in the eight puzzle. (Task implementation steps are bracketed.)

operators; (2) objects, such as goals and states (and their subobjects); and (3) preferences that encode the
procedural search-control knowledge. The processing structure has two parts. One is the production memory,
which is a set of productions that can examine any part of working memory, add new objects and preferences,
and augment existing objects, but cannot modify the context stack. The second is a fixed decision procedure
that examines the preferences and the context stack, and changes the context stack. The productions and the
decision procedure combine to implement the search-control functions. Two other fixed mechanisms are
shown in the figure: a working-memory manager that deletes elements from working memory, and a chunking
mechanism that adds new productions.

Soar is embedded within Lisp. It includes a modified version of the Ops5 production system language plus
additional Lisp code for the decision procedure, chunking, the working-memory manager, and other Soar-
specific features. The OpsS matcher has been modified to significantly improve the efficiency determining
satisfied productions [70]. The total amount of Lisp code involved, measured in terms of the size of the source
code, is approximately 255 kilobytes — 70 kilobytes of unmodified Ops5 code, 30 kilobytes of modified Ops5
code, and 155 kilobytes of Soar code. Soar runs in CommonLisp, FranzLisp, Interlisp and ZetaLisp on most
of the appropriate hardware (Unix Vax, VMS Vax, Xerox D-machines, Symbolics 3600s, T1 Explorers, IBM
RTPCs, Apollo and Sun workstations).
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Figure 2-2: Architectural structure of Soar. et

2.2. The Working Memory A

Working memory consists of a context stack, a set of objects linked to the context stack, and preferences.
Figure 2-3 shows a graphic depiction of a small part of working memory during problem solving on the cight Wt
puzzle. The context stack contains the hicrarchy of active contexts (the boxed structures). Each context . (L3

contains four slots, one for each of the different roles: goal, problem space, state and operator. Each slot can e

. . . . . TN
be occupicd cither by an object or by the symbol undecided, the latter meaning that no object has becn $ t“
selccted for that slot. The object playing the role of the goal in a context is the current goal for that context; .H.:‘

&
;
;
¥

) the object playing the role of the problem-space is the current problem space for that context and so on. The ﬁ.—,—-
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2 THESOAR ARCHITECTURE PAGE 13

top context contains the highest goal in the hierarchy. The goal in cach context below the top context is a
subgoal of the context above it. In the figure, Gl is the current goal of the top context, Pl is the current
problem space, S1 is the current state, and the current operator is undecided. In the lewer context, G2 is the
current goal (and a subgoal of G1). Each context has only one goal for the duration of its existence, so the

context stack doubles as the goal stack.

binding

4 A —— .
operator desired binding
. preferences G1 > D1 —_ ...

O}l
AN )
I:l.v\f.n

o1 name
P1 e EIGHT-PUZZLE
02 « binding cell cell
St > c1
o3 binding name

B1 =
\tile
undecided 82 T 1
N\ cell
B3

binding c2

item
o1
item
02
item
o3
role
‘ OPERATOR
supergoal impasse
N— 9 G2 TIE
name
P2 p——————————3» SELECTION
undecided
undecided

Figure 2-3: Snapshot of fragment of working memory.

The basic representation is object-centered. An object, such as a goal or a state, consists of a symbol, called
its identifier, and a set of augmentations. An augmentation is a labeled relation (the attribute) between the

object (the identifier) and another symbol (the value), i.e., an identifier-attribute-value triple. In the figure,
Gl is augmented with a desired state, D1, which is itself an object that has its own augmentations
(augmentations are directional, so G1 is not in an augmentation of D1, even though D1 is in an augmentation
: of G1). The attributc symbol may also be specified as the identifier of an object. Typically, however,
situations are charactcrized by a small fixed set of attributc symbols — here, impasse, name, operator, ..:;\.

binding, item, and role — that play no other role than to provide discriminating information. An object may A
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have any numbecr of augmentations, and the sct of augmentations may change over time.

A preference is a more complex data structure with a specific collection of cight architecturally-defined
relations between objects. Three preferences are shown in the figure, one each for objects Ol, O2, and O3.
The preferences in the figure do not show their full structure (shown later in Figure 2-7), only the context in
which they are applicable (any context containing problem space P1 and state S1).

The actual representation of objects in working memory is shown in Figure 2-43 Working memory is a set
— attempting to add an existing element does not change working memory. Each element in working
memory represents a single augmentation. To simplify the description of objects, we group together all
augmentations of the same object into a single expression. For example, the first line of Figure 2-4 contains a
single expression for the four augmentations of goal G1. The first component of an object is a class name that
distinguishes different types of objects. For example, goal, desired, problem-space, and state are the class
names of the first four objects in Figure 2-4. Class names do not play a semantic role in Soar, although they
allow the underlying matcher to be more efficient. Following the class-name is the identifier of the object.
The goal has the current goal as its identifier. Following the identifier is an unordered list of attribute-value
pairs, each attribute being prefaced by an up-arrow (*). An object may have more than one value for a single
auribute, as does state S1 in Figure 2-4, yielding a simple representation of sets.

The basic attribute-value representation in Soar leaves open how to represent task states. As we shall see
later, the representation plays a key role in determining the generality of learning in Soar. The generality is
maximized when those aspects of a state that are functionally independent are represented independently. In
the eight puzzle, both the structure of the board and the actual tiles do not change from state to state in the
real world. Only the location of a tile on the board changes, so the representation should allow a tile’s location
to change without changing the structure of the board or the tiles. Figure 2-5 contains a detailed graphic
example of one representation of a state in the eight puzzle that captures this structure. The state it represents

is shown in the lower left-hand corner. The board in the eight puzzle is represented by nine cells (the 3x3
square at the bottom of the figure), one for each of the possible locations for the tiles. Each cell is connected

Pl Ay

via augmentations of type cell to its neighboring cells (only a few labels in the center are actually filled in). In
addition, there are nine tiles (the horizontal sequence of objects just above the cells), named 1-8, and blank
(represcnted by a small box in the figure). The connections between the tiles and cells are specified by objects .
called bindings. A given state, such as S1 at the top of the figure, consists of a sct of nine bindings (the

2’lhc culent of the memory structure is necessarily limited by the physical resources of the problem solver, but currently this is
assumced not to be a problem and mechanisms have not been created to deal with it

3Sorm: basic notation and structurc is inheritcd from OpsS. v
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(goal G1 tproblem-space P1 tstate S1 toperator undecided tdesired Di)
(desired D1 tbinding DB1 tbinding DB2 ...)
(problem-space P1 tname eight-puzzle)
(state S1 tbinding B1 82 B3 ...)
(binding B1 tcell C1 ttile T1)
(cell C1 tcell C2 ...)
(tile T1 tname 1)
{(binding B2 tcell C2 ...)
- (cell C2 tcell C1 ...)
(binding B3 ...)

(preference tobject O1 trole operator tvalue acceptable

: tproblem-space P1 tstate S1)
(preference tobject 02 trole operator tvalue acceptable

tproblem-space P1 tstate S1).
(preference tobject 03 trole operator tvalue acceptable
tproblem-space P1 tstate S1)

(operator 01 ...)
(operator 02 ...)
(operator 03 ...)

(goal G2 tproblem-space P2 tstate undecided toperator undecided
t+supergoal G1 trole operator timpasse tie
titem 03 titem 02 titem O1)
(problem-space P2 tname selection)

Figure 2-4: Working memory representation of the structure in Figure 2-3.

horizontal sequence of objects above the tiles). Each binding points to a tile and a cell; each tile points to its
value; and each cell points to its adjacent cells. Eight puzzle operators manipulate only the bindings, the

representation of the cells and tiles does not change.

Working memory can be modified by: (1) productions, (2) the decision procedure, and (3) the working-
memory manager. Each of these components has a specific function. Productions only add augmentations
and preferences to working memory. The decision procedure only modifies the context stack. The working-

memory manager only removes irrelevant contexts and objects from working memory.

2.3. The Processing Structure
The processing structure implements the functions required for search in a problem space — bringing to

bear task-implementation knowledge to generate objects, and bringing to bear search-control knowledge to
sclect between alternative objects. The scarch-control functions are all realized by a single generic control act:
the replacement of an object in a slot by another object from the working memory. The representation of a
problem is changed by replacing the current problem space with a new problem space. Returning to a prior
state is accomplished by replacing the current state with a preexisting one in working memory. An operator is
sclected by replacing the current operator (often undecided) with the new one. A step in the problem space

occurs when the current operator is applicd to the current state to produce a new state, which is then selected

to replace the current state 10 the context.
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Figure 2-5: Graphic representation of an eight puzzle state.

A replacement can take place anywhere in the context stack, €.g., a new state can replace the state in any of

AER:
L

]
the contexts in the stack, not just the lowest or most immediate context but any higher one as well. When an .f
object in a slot is replaced, all of the slots below it in the context are reinitialized to undecided. Each lower "'v :
slot depends on the values of the higher slots for its validity: a problem space is set up in response to a goal; a '.":
state functions only as part of a problem space; and an operator is to be applied at a state. Each context below .:,:::
the one where the replacement took place is terminated because it depends on the contents of the changed ::::::j
context for its existence (recall that lower contexts contain subgoals of higher contexts). ::;:;:

:-‘ :

The replacement of context objects is driven by the decision cycle. Figure 2-6 shows three cycles, with the -.*G
first one expanded out to reveal some of the inner structure. Each cycle involves two distinct parts. First, . \"_;'\-.

during the elaboration phase, new objects, new augmentations of old objects, and preferences are added to ;“\‘
working memory. Then the decision procedure examines the accumulated preferences and the context stack, . ! "’

w and either it replaces an existing object in some slot, i.e., in one of the roles of a context in the context stack, or ~. !

% it creates a subgoal in response to an impasse. _"':
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DECISION 1 DECISION 2 DECISION 3
Elaboration Decigion \l' ‘l’

‘l, Phase ‘L Procgdure \L\l’ \l, \l, \1“1,\1,
2222} A2 222

Gather
Preferences

Quiescence i‘ Replace
Interpret —> Context
Preferences Object

v

Impasse

V

Create
Subgoal

Figure 2-6: A sequence of decision cycles.

2.3.1. The elaboration phase
Based on the current contents of working memory, the elaboration phase adds new objects, augmentations
of existing objects, and preferences. Elaborations are generated in parallel (shown by the vertical columns of

arrows in Figure 2-6) but may still require multiple steps for completion (shown by the horizontal sequences Ny ey
SIS
of elaborations in the figure) because information generated during one step may allow other elaborations to f:}j;}_’-*
>
. .
be made on subsequent steps. This is a monotonic process (working-memory elements are not deleted or "
modified) that continues until quiescence is reached because there are no more elaborations to be generated.‘ bt
NS
The monotonic nature of the elaboration phase assures that no synchronization problems will occur during n.{-..ﬁ‘\- A
'.' " '
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and preferences from the context stack to the object. An augmentation can be a link in the chain if its
identificr appears either in a context or in a previously linked augmentation or preference. A preference can
be a link in the chain if all the identifiers in its context ficlds (defined in Section 2.3.2V appear in the chain.
This property of linked access plays an important role in working-memory management, subgoal termination,
and chunking, by allowing the architecture to determine which augmentations and preferences are accessible

from a context, independent of the specific knowledge encoded in elaborations.

A production is successfully instantiated if the conjunction of its conditions is satisfied with a consistent
binding of variables. There can be any number of concurrently successful instantiations of a production. All
successful instantiations of all productions fire concurrently (simulated) during the claboration phase. The
only conflict-resolution principle in Soar is refractory inhibition — an instantiation of a production is fired
only once. Rather than having control exerted at the level of productions by conflict resolution, control is

exerted at the level of problem solving (by the decision procedure).

2.3.2. The decision procedure

The decision procedure is executed when the elaboration phase reaches quiescence. It determines which
slot in the context stack should have its content replaced, and by which object. This is accomplished by
processing the context stack from the oldest context to the newest (ic., from the highest goal to the lowest
one). Within each context, the roles are considered in furn, starting with the problem space and continuing
through the state and operator in order. The process terminates when a slot is found for which action is
required. Making a change to a higher slot results in the lower slots being reinitialized to undecided, thus

making the processing of lower slots irrelevant.

This ordering on the set cf slets in the context stack defines a fixed desirability ordering between changes
for different slots: it is always more desirable to make a change higher up. The processing for each slot is
driven by the knowledge symbolized in the preferences in working memory at the end of the elaboration
phase. Each preference is a statement about the selection of an object for a slot (or set of slots). Three

primitive concepts are available to make preference statements:>

acceptability: A choice is to be considered.
rejection: A choice is not to be made.

desirability: A choice is better than (worse than, indifferent to) a refcrence choice.

S.

“There s an additional preference type that allows the statement that two choiees for an opcerator slot can be cxplored 1n parallel  This
1s a speaial opuon o cxplore parallel processing where muluple slots are created for parallel operators  'or more details, «ee the Soar
manual {30}
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Together, the acceptability and rejection preferences determine tiie objects from which a selection will be
made, and the destrability preferences partially order these objects. The result of processing the slot, if
successful, is a single object that is: new (not currently selected for that slot): acceptable: not rejected; and

more desirable than any other choice that is likewise new, acceptable and not rejected.

A preference encodes a statemcent about the selection of an object for a slot into a set of attributes and
values, as shown in Figure 2-7. The object is specified by the value of the object attribute. The slot is
specified by the combination of a role and a context. The role is either the problem space, the state or the
operator; a goal cannot be spccified as a role in a preference because goals are determined by the architecture
and not by deliberate decisions. The context is specified by the contents of its four roles: goal, problem space,
state and operator. A class of contexts can be specified by leaving unspecified the contents of one or more of
the roles. For example, if only the problem space and state roles are specified, the preference will be relevant

for ali goals with the given problem space and state.

The desirability of the object for the slot is specified by the value attribute of a preference, which takes one
of seven alternatives. Acceptable and reject cover their corresponding concepts; the others — best, better,
indifferent, worse, and worst — cover the ordering by desirability. All assertions about ordering locate the
given object relative to a reference object for the same slot. Since the reference object always concerns the
same slot, it is only necessary to specify the object. For better, worse, and some indifferent preferences, the
reference object is another object that is being considered for the slot, and it is given by the reference attribute
of the preference. For best, worst, and the remaining indifferent preferences, the reference object is an
abstract anchor point, hence is implicit and need not be given. Consider an example where there are two
eight-puzzle operators, named up and left, being considered for state S1 in goal G1. If the identifier for the
eight-puzzle problem space is P1, and the identifiers for up and left are Ol and O2, then the following

preference says that up is better than left:
(preference tobject 01 trole operator tvalue better treference 02
tgoal G1 tproblem-space P1 tstate S1)

The decision procedure computes the best choice for a slot based on the preferences in working memory
and the semantics of the preference concepts, as given in Figure 2-8. The preference scheme of Figure 2-8 is a
modification of the straightforward application of the concepts of acceptability, rejection and desirability.
‘The modifications arise from two sources. The first is independence. The claboration phase consists of the
contributions of indcpendently firing individual productions, cach expressing an independent source of
knowledge. There is no joint constraint on what cach asserts. ‘These separate expressions must be combined,
and the only way to do so is to conjoin them. Independence imptics that one choice can be (and often is) both

acceptable and rejected. For a decision to be possible with such preferences. rejection can not be
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Attribute
Object The object that is to occupy the slot

Role The role the object is to occupy
(problem space, state, or operator)

I
|
I
Goal | |
| | Slot :
Problem space | |
| Context in which the preference applies |
State | (A set of contexts can be specified) |
| |
Operator ] I
Value acceptable The object is a candidate for the given role
reject The object is not to be selected
best The object is as good as any object can be
better The object is better than the reference object
indifferent The object is indifferent to the reference object
if there is one, otherwise the object is indifferent
to all other indifferent objects
worse The object is worse than the reference object
(the inverse of better)
I worst The object is as bad as any object can be
L~ {the inverse of best)
Reference The reference object for order comparison
J
Vpe. Figure 2-7: The encoding of preferences.
; —acceptable, which would lead to a logical contradiction. Instead, rejection overrides acceptable by eliminat-
_:"::-: ing the choice from consideration. Independence also implies that one choice can be both better and worse
- than another. This requires admitting conflicts of desirability between choices. Thus, the desirability order is
~'_3‘_-: quite weak, being transitive, but not irreflexive or antisymmetric, and dominates must be distinguished from
"‘OQ-.D . . . . . . . . age . »
SES simply better — namely, domination implies better without conflict. The possibility of conflicts modifies the -
"L,
0}& notion of the maximal subsct of a sct to be those elements that no other clement dominates, For example, in
' the set of {x, y} if (x > y) and (y > x) then the maximal subset contains both x and y.
}.:Z; The sccond source of modifications to the decision procedure is incompleteness. The claboration phase will
A
X '_ dcliver some collection of preferences. These can be silent on any particular fact, ¢.g., they may assert that x is
e better than y, and that y is rcjected, but say nothing about whether x is acceptable or not, or rejected or not.
‘.-:; Indeed. an unmentioned object could be better than any that are mentioned. No constraint on completeness
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Primitive predicates and functions on objects, x, y, z, ...

currant The object that currently occupies the slot
acceptable(x) x is acceptable

reject(x) is r2jected

(x > y) is better than y

(x ~y) is indifferent to y
(x > y) dominates y = (x > y) and =(y > x)

Reference anchors
indifferent(x) = Vy [indifferent(y) = (x ~ y)]
best(x) = Vy [best(y) = (x ~ y)] A [best(y) A —~(y > x) = (x > y)]
worst(x) = Yy [worst(y) = (x ~ y)] A [-worst(y) A =(y < x) = (x < y)]

X
X
(x < y) x is worse than y (same as y > x)
X
X

Basic properties
Desirability (x > y) is transitive, but not complete or antisymmetric
Indifference is an equivalence relationship and substitutes over >
(x > y) and (y ~ z) implies (x > z)
Indifference does not substitute in acceptable, reject, best, and worst.
acceptable(x) and (x ~ y) does not imply acceptable(y).
reject(x) and (x ~ y) does not imply reject(y)., etc.

Default assumption
A11 preference statements that are not explicitly mentioned and not
implied by transitivity or substitution are not assumed to be true

Intermediate definitions
considered-choices = {xcéobjects | acceptable(x) A —reject(x)}
maximal(X) = {xeX | Vy =(y > x)}
maximal-choices = maximal(considered-choices)
empty(X) = —JxeX
mutually-indifferent(X) = Vx,yeX (x ~ y)
random(X) = choose one element of X randomly
select(X) if currenteX then current else random(X)

Final choice
empty(maximal-choices) A —reject{current) = final-choice(current)
mutually-indifferent(maximal-choices) A —empty(maximal-choices)
= final-choice(select(maximal-choices))

Impasse
empty(maximali-choices) A reject(current) = impasse
-mutually-indifferent(maximal-choices) = impasse(maximal-choices)

Figure 2-8: The semantics of preferences.
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can hold, since Soar can bc in any statc of incomplete knowledge. Thus. for the decision procedure to get a
result, assumptions must be made to close the world logically. The assumptions all flow from the principle
that positive knowledge is required to state a preference — to state that an object is acceptable, rejected or has
some desirability relation. Hence, no such assertion should be made by default. [hus, objects are not
acceptable unless explicitly acceptable; are not rejected unless explicitly rejected: and are not ordered in a
specific way unless explicitly ordered. To do otherwise without explicit support is to rob the explicit state-

ments of assertional power.

Note, however, that this assumption does allow for the existence of preferences implied by the explicit
preferences and their semantics. For example, two objects are indifferent if either there is a binary
indifferent-preference containing them, there is a transitive set of binary indifferent-preferences containing
both of them, they are both in unary indifferent-preferences, they are both in best-preferences, or they are

both in worst-preferences.

The first step in processing the preferences for a slot is to determine the set of choices to be considered.
These are objects that are acceptable (there are acceptable-preferences for them) and are not rejected (there
are no reject-preferences for them). Dominance is then determined by the best, better, worst, and worse
preferences. An object dominates another if it is better than the other (or the other is worse) and the latter
object is not better than the former object. A best choice dominates all other non-best choices, except those
that are explicitly better than it through a better-preference or worst-preference. A worst choice is dominated
by all other non-worst choices, except those that are explicitly worse than it through a better or worst

preference. The maximal-choices are those that are not dominated by any other objects.

Once the set of maximal-choices is computed. the decision procedure determines the final choice for the
slot. The current choice acts as a default so that a given slot will change only if the current choice is displaced
by another choice. Whenever there are no maximal-choices for a slot, the current choice is maintained, unless
the current choice is rejected. If the set of maximal-choices are mutually indifferent — that is, all pairs of
elements in the set are mutually indifferent — then the final choice is one of the elements of the set The
default is to not change the current choice, so if the current choice is an element of the set, then it is chosen;
otherwise, one element is chosen at random.® The random selection is justificd because there is positive
knowlcdge. in the form of preferences, that explicitly states that it does not matter which of the mutually

indifferent objects is selected.

If the decision procedure determincs that the value of the slot should be changed - that is, there s a final

6In place of 2 random sclection. there i1s an option 1n Soar to allow the user to select from the set of wdfTerent chotces
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choice different from the current object in the slot — the change is installed, all of the lower slots are
reinitialized to undecided, and the elaboration phase of the next decision cycle ensues. If the current choice is
maintained, then the decision procedure corsiders the next slot lower in the hicrarchy. If either there is no
final choice, or all of the slots have been exhausted, then the decision procedure fails and an impasse7 occurs.

In Soar, four impasse situations are distinguished:

1. Tie: This impasse arises when there arc multiple maximal-choices that are not mutually indif-
ferent and do not conflict. These arc competitors for the same slot for which insufficient
kniowledge (expressed as preferences) exists to discriminate among them.

2. Conflict: This impasse arises when there are conflicting choices in the set of maximal choices.
3. No-change: This impasse arises when the current value of every slot is maintained.

4. Rejection: This impasse arises when the current choice is rejected and there are no maximal
choices; that is, there are no viable choices for the slot. This situation typically occurs when all of
the alternatives have been tried and found wanting.

The rules at the bottom of Figure 2-8 cover all but the third of these, which involves cross-slot considerations
not currently dealt with by the preference semantics. These four conditions are mutually exclusive, so at most
one impasse will arise from executing the decision procedure. The response to an impasse in Soar is to set up

a subgoal in which the impasse can be resolved.

2.3.3. Implementing the eight puzzle

Making use of the processing structure so far described — and postponing the discussion of impasses and
subgoals until Section 2.4 — it is possible to describe the implementation of the eight puzzle in Soar. This
implementation consists of both task-implementation knowledge and search-control knowledge. Such
knowledge is eventually to be acquired by Soar from the external world in some representation and converted

to internal forms, but until such an acquisition mechanism is developed, knowledge is simply posited of Soar,
encoded into problem spaces and search control, and incorporated directly into the production memory.

Figures 2-9, 2-10, and 2-11 list the productions that encode the knowledge to implement the eight puzzle
task ® Figure 2-9 contains the productions that set up things up so that problem solving can begin, and detect
when the goal has been achieved. For this example we assume that initially the current goal is to be
augmented with the name solve-eight-puzzle, a description of the initial state, and a description of the desired

. state. The problem space is selected based on the description of the goal. In this case, production

sclect-eight-puzzle-problem-space is sensitive to the namc of the goal and suggests eight-puzzle as the

7The term was first used 1n this sense in Repair theory (8]; we had originally used the term difficulty [29).

ll‘hcsc desenptions of the productions are an abstraction of the actual Soar productions, which are given in the Soar manual [30).
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problem space. The initial state is determined by the current goal and the problem space. Production
define-initial-state translates the description of the initial state in the goal to be a state in the eight-puzzle
problem space. Similarly, define-final-state translates the description of the desired state to be a state in the
eight-puzzle problem space. By providing different initial or desired states, different eight puzzle problems
can be attempted. Production detect-eight-puzzle-success compares the current state, tile by tile and cell by
cell to the desired state. If they match, the goal has been achieved. ‘

seloct-eight-puzzle-space:
If the current goal is solve-eight-puzzle, then make an acceptable-preference for eight-puzzle as the current problem
space. ’
define-initial-state:
If the current problem space is eight-puzzle, then create a state in this problem space based on the description in the
goal and make an acceptable-preference for this state.
define-final-state:
If the current problem space is eight-puzzle, then augment the goal with a desired state in this problem space based
on the description in the goal.
detect-eight-puzzle-success:
If the current problem space is  eight-puzzle and the current state matches the desired state of the current goal in
each cell, then mark the state with success.

Figure 2-9: Productions that set up the eight puzzle.

The final aspect of the task definition is the implementation of the operators. For a given problem, many
different realizations of essentially the same problem space may be possible. For the eight puzzle, there could
be twenty-four operators, one for each pair of adjacent cells between which a tile could be moved. In such an
implementation, all operators could be made acceptable for each state, followed by the rejection of those that
cannot apply (because the blank is not in the appropriate place). Alternatively, only those operators that are
applicable to a state could be made acceptable. Another implementation could have four operators, one for

each direction in which tiles can be moved into the blank cell: up, down, left, and right. Those operators that
do not apply to a state could be rejected.

In our implementation of the eight puzzle, there is a single general operator for moving a tile adjacent to the
blank cell into the blank cell. For a given state, an instance of this operator is created for each of the adjacent
cells. We will refer to these instantiated operators by the direction they move their associated tile: up, down,
left and right. To create the operator instantiations requires a single production, shown in Figure 2-10. Each .
operator is represented in working memory as an object that is augmented with the cell containing the blank A

and one of the cells adjacent to the blank. When an instantiated operator is created, an acceptable-preference
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instantiate-operator:
If the current problem space is cight-puzzle and the current state has a tile in a cell adjacent to the blank’s  cell, then
create an acceptable-preference for a newly created operator that will move the tile into the blank’s cell.

Figure 2-10: Production for creating eight puzzle opcrator instantiations.

operator produces a context in which productions associated with the operator can exccute (they contain a
condition that tests that the operator is selected). Whatever happens while a given operator occupies an
operator role comprises the attempt to apply that operator. Operator productions are just elaboration produc-
tions, used for operator application rather than for search control. They can create a new state by linking it to
the current context (as the object of an acceptable-preference), and then augmenting it. To apply an instan-
tiated operator in the eight puzzle requires the two productions shown in Figure 2-11. When the operator is
selected for an operator slot, production create-new-state will apply and create a new state with the tile and
blank in their swapped cells. The production copy-unchanged-binding copies pointers to the unchanged
bindings between tiles and cells.

create-new-state:
If the current problem space is eight-puzzle, then create an acceptable-preference for a newly created state, and
augment the new state with bindings that have switched the tiles from the current state that are changed by the
current operator.

copy-unchanged-binding:
If the current problem space is  eight-puzzle and there is an acceptable-preference for a new state, then copy from
the current state each binding that is unchanged by the current operator.

Figure 2-11: Productions for applying eight puzzle operator instantiations.

The seven productions so far described comprise the task-implementation knowledge for the eight puzzle.
With no additional productions, Soar will start to solve the problem, though in an unfocused manner. Given
enough time it will search until a solution is found.® To make the behavior a bit more focused, search-control
knowledge can be added that guides the selection of operators. Two simple search-control productions are
shown in Figure 2-12. Avoid-undo will avoid operators that move a tile back to its prior cell.
Mea-operator-select is a means-ends-analysis heuristic that prefers the selection of an operator if it moves a

tile into its desired cell. This is not a fool-proof heuristic rule, and will sometimes lead Soar to make an

incorrect move.

avoid-undo:
If the current problem space is eight-puzzle, then create a worst-preference for the operator that will move the tile
that was moved by the operator that created the current state.

mea-operator-selection:
If the current problem space is cight-puzzle and an operator will move a tile into its cell in the desired state, then
make a best-preference for that operator.

Figure 2-12: Scarch-control productions for the cight puzzle.

9111(: default scarch 1s depth-first where the choices between competing operators are made randomly. Infinite loops do not arise
because the chowces are made non-deternunistically.
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',a oS Figure 2-13 contains a trace of the initial behavior using these nine productions (the top of the figure shows ]
iy the states and operator involved in this trace). The trace is divided up into the activity occurring during each .
")
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]
augmented with an acceptable-preference for cight-puzzie for the problem-space role. The decision proce- '_-:.'::".}:
durc then selects cight-puszle as the current problem space. In cycle 2, the initial state, S, is created with an :‘«:s ,‘E
acceptable-preference for the state role, and the problem space is augmented with its operators. At the end of D
cycle 2. the decision procedure selects S1 as the current state. In cycle 3, operator instances, with correspond- :;*.“i’
ing dcceptable-preferences, are created for all of the tiles that can move into the blank cell.  Production {S::E‘.
mea-operator-selection makes operator O1 (down) a best choice, resulting in its being selected as the current :"-';"
operator. [n cycle 4, the operator is apphed. First, production create-new-state creates the preference for a .'.'.E,_'.‘_"
new state (S2) and augments it with the swapped bindings, and then production copy-unchanged fills in the W
rest of the structure of the new state. Next, state S2 is sclected as the current state and operator instances are ::"?t;é:
created — with corresponding acceptable-preferences — for all of the tiles that can move into the cell that E::?;::o}::l
now contains the blank. On the next decision cycle (cycle 5), none of the operators dominate the others, and “ -
an impasse occurs. ‘:‘3.
L‘_E‘;';‘- N
2.4. Impasses and Subgoals L?:
When attempting to make progress in attaining a goal, the knowledge directly available in the problem ’ z
space (encoded in Soar as productions) may be inadequate to lead to a successful choice by the decision Ij-_',":-f‘.
procedure. Such a situation occurred in the last decision cycle of the eight puzzle example in Figure 2-13. ‘:.- g
The knowledge directly available about the eight puzzle was incomplete — it did not specify which of the :::":'.’ 4
operators under consideration should be selected. In general, impasses occur because of incomplete or ™ -
inconsistent information. Incomplete information may yield a rejection, tie, or no-change impasse, while :&:E;';:E
inconsistent information yields a conflict impasse. .s'\i.:%:
G
e
When an impasse occuss, returning to the elaboration phase cannot deliver additional knowledge that might .
removc the impasse, for elaboration has already run to quiescence. Instead, a subgoal and a new context is Mg’
created for each impasse. By responding to an impasse with the creation of a subgoal, Soar is able to : :’\‘\;\
deliberately scarch for more information that can lead 1o the resolution of the impasse. All types of ""{E )'
knowledge. task-implementation and search-control, can be encoded in the problem space for a subgoal. ) 'g j
.:_j. o -
If a tic impasse between objects for the same slot arises, the problem solving to select the best object will :j:f.‘;,-‘.j
usually result in the creation of one or more desirability preferences, making the subgoal a locus of search- j;:_.
. control knowledge for sclecting among those objects. A tic impasse between two objects can be resolved in a *
number of ways: ane object is found to lead to the goal, so a best preference is crcated; one object is found to \': . k
be better than the other, so a better preference is created: no difference is found between the objects, so an ::'
indifferent preference is created; or onc object is found to Icad away fromn the goal, so a worst preference is E,. .:‘5:‘
created. A number of different problem solving strategies can be used to generate these outcomes, including: '
further claboration of the ticd objects (ur the other objects 1in the context) so that a detled comparison can be
b -
S
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‘\E‘s made: look-ahead searches to determine the effects of choosing the competing objects; and analogical map-
": pings to other situations where the choicc 1s clear.

’ If a no-changc impasse ariscs with the operator slot filled, the problem solving in the resulting subgoal will
;:,: usually involve opcrator implementation, terminating when an acceptable-preference is generated for a new
:::: state in the parent problem space. Similarly, subgoals can create problem spaces or initial states when the
a required knowledge is more casily encoded as a goal to be achieved through problem-space scarch, rather
:3. than as a set of elaboration productions.

B
~j‘,‘.' When the impasse occurs during the fifth decision cycle of the eight-puzzle example in Figure 2-13, the
following goal and context are added to working memory.
, (goal G2 tsupergoal Gl timpasse tie tchoices multiple trole operator
o titem 04 05 06
::':T tproblem-space undecided tstate undecided toperator undecided)
w
""!. The subgoal is simply a new symbol augmented with: the supergoal (which links the new goal and context
-.’ . into the context stack); the type of impasse; whether the impasse arose because there were no choices or
: multiple choices in the maximal-choices set; the role where the impasse arose; the objects involved in conflicts
-’: or ties (the items); and the problem-space, state, and operator slots (initialized to undecided). This infor-
o] mation providces an initial dcfinition of the subgoal by defining the conditions that caused it to be generated
" and the new context. In the following claboration phase, the subgoal can be elaborated with a suggested
: 3- problem space, an initial state, a desired state or even path constraints. If the situation is not sufficiently
elaborated so that a problem space and initial state can be sclected, another impasse ensues and a further
" subgoal is created to handle it.
. 2 Impasses are resolved by the addition of preferences that change the results of the decision procedure.
:: When an impasse 1s resolved, allowing problem solving to proceed in the context, the subgoal created for the
e impasse has completed its task and can be terminated. For example, if there is a subgoal for a tie impasse at
. the operator role, it will be terminated when a new preference is added to working memory that cither rejects
!‘ all but one of the competing operators, makes one a best choice, makes one better than all the others, etc. The
::" subgoal will also be terminated if new preferences change the state or problem-space roles in the context,
A because the contents of the operator role depends on the values of these higher roles. If there is a subgoal
h created for a no-change impassc at the operator role — usually because of an inability to implement the
::: opcrator dircctly by rules in the problem space — it can be resolved by cstablishing a preference for a new
;:' state, most likely the one gencerated from the application of the operator to the current state.

In general, any change to the context at the affected role or above will lead to the termination of the
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subgoal. [tkewise, achange in any of the contexts above a subgoal will lead to the termination of the subgoal
because its depends on the higher contexts for its existence.  Resolution of an impasse terminates all goals

below it.

When a subgoal is terminated, many working-memory elements are no longer of any use since they were
created solely for internal processing in the subgoal. The working-memory manager removes these useless
working-memory clements from terminated subgoals in essentially the same way that a garbage collector in
Lisp removes inaccessible CONS cells. Only the results of the subgoal are retained — those objects and
preferences in working memory that meet the criteria of linked access to the unterminated contexts, as
defined in Section 2.3.1. The context of the subgoal is itself inaccessible from supergoals — its supcrgoal link

is one-way — so it is removed.

The architecture defines the concept of goal termination, not the concept of goal success or failure. There
are many reasons why a goal should disappear and many ways in which this can be reflected in the
preferences. For instance, the ordinary (successful) way for a subgoal implementing an operator to terminate
is to create the new result state and preferences that cnable it to be selected (hence leading to the operator role
becoming undecided). But sometimes it is appropriate to terminate the subgoal (with failure) by rejecting the

operator or sclecting a prior state, so that the operator is never successfully applied.

Automatic subgoal termination at any level of the hierarchy is a highly desirable, but generally expensive,
feature of goal systems. In Soar, the implementation of this feature is not expensive. Because the architecture
creates all goals, it has both the knowledge and the organization necessary to terminate them. The decision
procedure iterates through all contexts from the top, and within each context, through the different roles:
problem space, state and operator. Almost always, no new prefercnces are available to challenge the current
choices. If new preferences do exist, then the standard analysis of the preferences ensues, possibly deter-
mining a new choice. If everything remains the same, the procedure continues with the next lower slot; if the
valuc of a slot changes then all lower goals are terminated. The housckeeping costs of termination, which is
the rermoval of irrclevant objects from the working memory, is independent of how subgoal termination

occurs.

2.5. Default Knowledge for Subgoals

An architecture provides a frame within which goal-oriented action takes place.  What action occurs
depends on the knowledge that the systemn has. Soar has a basic complement of task-independent knowledge
about its own operation and about the attainment of goals within it that may be taken as an adjunct to the
architecture. A total of fifty-two productions embody his knowledge. With it. Soar cxhibits rcasonable

defaultbehavior; without it (or other task knowledge), Soar can flounder and fall into an infinitely deep serics
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of impasses. We describe here the default knowledge and how it is represented. Al of this knowledge can be

over-ridden by additional knowledge that adds other preferences.

Common scarch-control knowledge. During the problem solving in a problem space, search-control rules

are available for three common situations that rcquire the creation of preferences.

1. Backup from a failed state. If therc is a rcject-preference for the current state, an acceptable- -
preference is created for the previous state. This implements an elementary form of backtracking.

2. Make all operators acceptable. If there are a fixed sct of operators that can apply in a problem
space, they should be candidates for every state. This is accomplished by creating acceptable-
preferences for those operators that are directly linked to the problem space.

3. No operator retry. Given the deterministic nature of Soar, an operator will create the same resuit
whenever it is applied to the same state. Therefore, once an operator has created a result for a state
in some context, a preference is created to reject that operator whenever that state is the current
state for a context with the same problem space and goal.

Diagnose impasses. When an impasse occurs, the architecture creates a new goal and context that provide
some specific information about the nature of the impasse. From there, the situation must be diagnosed by
scarch-control knowledge to initiate the appropriate problem-solving behavior. In general this will be task-
dependent, conditional on the knowledge embedded in the entire stack of active contexts. For situations in

which such task-dependent knowledge does not exist, default knowledge exists to determine what to do.

1. Tie impasse. Assume that additional knowledge or reasoning is required to discriminate the items
that caused the tie. The selection problem space (described below) is made acceptable to work on
this problem. A worst-preference is also generated for the problem space, so that any other
proposed problem space will be preferred.

2. Conflict impasse. Assume that additional knowledge or reasoning is required to resolve the
conflict and reject some of the items that caused the conflict. The selection problem sPace is also
the appropriate space and it is made acceptable (and worst) for the problem space role. 0

3. No-change impasse.

a. For goal, problem space and state roles. Assume that the next higher object in the context is
o responsible for the impasse, and that a new path can be attempted if the higher object is
¢ rejected. Thus, the default action is to create a reject-preference for the next higher object in
b the context or supercontext. The dcfault action is taken only if a problem space is not
oL selected for the subgoal that was gencrated because of the impasse. This allows the default
action to be overriden through problem solving in a problem space selected for the no- .
changc impasse. [f there is a no-change impasse for the top goal, problem solving is halted

because there is no higher object to reject and no further progress is possible.

lO’I‘hen: has been hitle expericnce with conflict subgoals so far. Thus, little confidence can be placed in the treatment of conflicts and
they will not be discussed futther
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b. For operator role. Such an impasse can occur for multiple reasons. The operator could be
too complex to be performed directly by productions, thus needing a subspace to implement
it, or it could be incomplctely specified, thus needing to be instantiated. Both of these
require task-specific problem spaces and no appropriate default action bascd on them is
available. A third possibility is that the operator is inapplicable to the given state, but that it
would apply to some other state. This does admit a domain-independent response, namely
attempting to find a state in the same problem space to which the operator will apply

PAGE 31

(operator subgoaling). This is taken as the appropriate default response.

4, Rejection impasse. The assumption is the same as for (nonoperator) no-change subgoals: the
higher object is responsible and progress can be made by rcjecting it.

If there is a rejection

impasse for the top problem space, problem solving is halted because there is no higher object.

The selection problem space. This space is used to resolve ties and conflicts. The states of the selection
space contain the candidate objects from the supercontext (the items associated with the subgoal). Figure 2-14
shows the subgoal structure that arises in the eight puzzle when there is no direct search-control knowledge to
select between operators (such as the mea-operator-selection production). Initially, the problem solver is at
the upper-left state and must select an operator. If search control is unable to uniquely determine the next
operator to apply, a tie impasse arises and a subgoal is created to do the selection. In that subgoal, the

selection problem space is used.

initial

state
task goal

21813
eight puzzle 6]4
problem space 7 5

operator tie evaluate-object

evaluate-object

desired
state
down
2 3 112})3
2 1 ] 4
7 5 71615
down>left
down>right

Teft=right

evaluate-object

subgoal down Teft right)
9 ' (down) (1eft) (/9\) N
selection
problem space
down=1 left=-1
Tuati down left\
evaluation
Subgoa) AE AE 83 AE 2
e1ght puzzle 1]6 et 1 6| 4 P> 6 1
problem space| 7 5 716 5 715 7

Figure 2-14:  T'he subgoal structure for the cight puzzle.
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>
N . . Lo o .
N The one opcerator in the selection space, ¢valuate-object, is a general operator that is instantiated with each
! tving (or conflicting) object; that is, a unique evaluate-object operator is created for each instantiation. Each
state in the sclection spacc is a set of evaluations produced by evaluate-object operators (the contents of these
) . . . . .
o states is not shown in the figure). In the figure, an evaluate-object operator is created for cach of the tied
:j operators: down, left. and right. Each cvaluate-object operator produces an evaluation that allows the crea-
h‘.‘

tion of preferences involving the objects being evaluated. This requires task-specific knowledge, so either
productions must exist that evaluate the contending objects, or a subgoal will be created to perform this

evaluation (see below for a default strategy for such an evaluation). Indifferent-preferences are created for all
of the evaluate-object operators so that a selection between them can be made without an infinite regression
of tie impasses. If all of the evaluate-object operators are rejected, but still no selection can be made, problem

solving in the selection problem space will have failed to achieve the goal of resolving the impasse. When this

happens, default knowledge (encoded as productions) exists that makes all of the tied alternatives indifferent

{or, correspondingly, rejects all of the conflicting alternatives). This allows problem solving to continue.

S

The evaluation subgoal. In the selection problem space, each evaluate-object operator must evaluate the

R 7 iR

-
L]

item with which it is instantiated. Task-dependent knowledge may be available to do this. If not, a no-change

e

CaA Y

impasse will occur, leading to a subgoal to implement the operator. One task-independent evaluation tech-

.

.

nique is lookahead — try out the item temporarily to gather information. This serves as the default. For this,
productions reconstruct the task context (i.e., the supercontext that lead to the tie), making acceptable-
preferences for the objects selected in the context and augmenting the new goal with information from the

original goal. In Figure 2-14, the original task problem space and state are selected for the evaluation
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subgoals. Once the task context has been reconstructed, the item being evaluated — the down operator — is oK

selected (it receives a best-preference in the evaluation subgoal). This allows the object to be tried out and i&
1.": possibly an evaluation to be produced based on progress made toward the goal. T-‘?‘
3 A
.;:. When knowledge is available to evaluate the states in the task space, the new state produced in the evalua- ::-.{j:u
b tion subgoal will receive an evaluation, and that value can be backed up to serve as the evaluation for the ;"L

down operator in this situation. One simple eight-puzzic evaluation is to compute the number of tiles that are

’-

- changed relative to the locations in the desired state. A value of 1 is assigned if the moved tile is out of

5 position in the original state and in position in the result state. A value of 0 is assigned if the moved tile is out

}‘.‘ . . . . . . . . .o . . . .

] of position in both states. A value of -1 is assigned if the moved tile is in position in the original statc and out

r . - . .

'.j of position in the result state. When an cvaluation has been computed for down, the evaluation subgoal

LY

g . ) .

:4 terminates. and then the whole process is repeated for the other two operators (left and right). These

iy .

v cvaluations can be used to generate preferences wmong the competing operators. Since down creates a state
with a better cvaluation than the other operators, better-preferences (signified by > in the figure) are created
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for down. An indifferent-preference (signified by = in the figure) is also created for left and right because
they have equal evaluations. The preferences for down lead to its selection in the original task goal and
problem space. terminating the tic subgoal. At this point down is reapplied to the initial state, the result is

sclected and the process continues.

Figure 2-15 shows, in a state-space represcntation, two steps of the search that occurs within the cight puzzle
problem space. The distinctive pattern of moves in Figure 2-15 is that of steepest-ascent hill climbing, where
the state being selected at each step is the best at that level according to the evaluation function. These states
were generated in the attempt to solve many different subgoals, rather than from the adoption of a coor-
dinated method of hill climbing in the original task space. Other types of search arise in a similar way. If no
knowledge to evaluate states is available except when the goal is achieved, a depth-first search arises. If it is
known that every other move is made by an opponent in a two-player game, a mini-max search emerges. The

emergence of methods directly from knowledge in Soar is discussed further in Section 3.2.

218|3
1164
7 5
down Iﬂ:t right
218}|3 21813 2{8}3
1] Ja4l=+1 [1]6[4] =1 [1]6][4] =1
71615 5 715
down igft right
2 3 2(8(3 2 3
118(4[=0 114} [=0 114 =-1
71615 6|5 7 5

Figure 2-15: A trace of steepest ascent hill climbing.

2.6. Chunking

Chunking is a Icarning scheme for organizing and remembering ongoing expcericnce automatically on a
continuing basis. It has been much studied it psychology [7. 12. 43, 50] and it was developed into an explicit
learning mechanism within a production-system architecture in prior work [35, 61, 63]. The current chunking
scheme in Soar is dircetly adapted from this latter work.  As defined there, it was a process that acquired

chunks that generated the results of a goal, given the goal and its parameters. The paramcters of a goa!l were
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defined to be those aspects of the system cxisting prior to the goal’s creation that were examined during the
processing of the goal.  Each chunk was represented as a sct of three productions, one that encoded the
parameters of a goal, onc that connected this encoding in the presence of the goal (o (chunked) results, and
one that decoded the results. Learning was bottom-up: chunks were built only for terminal goals — goals for
which there were no subgoals that had not alrcady been chunked. These chunks improved task performance
by substituting efficient productions for complex goal processing. This mechanism was shown to work for a
set of simple perceptual-motor skills based on fixed goal hierarchies [61] and it exhibited the power-law speed
improvement characteristic of human practice [S0]. Currently, Soar does away with one feature of this
chunking scheme, the three-production chunks, and allows greater flexibility on a second, the bottom-up
nature of chunking. In Soar, single-production chunks are built for either terminal subgoals or for every

subgoal, depending on the user’s option.

The power of chunking in Soar stems from Soar’s ability to generate goals automatically for problems in
any aspect of its problem-solving behavior: a goal to select among alternatives leads to the creation of a
chunk-production that will later control search; a goal to apply an operator to a state leads to the creation of a
chunk-production that directly implements the operator. The occasions of subgoals are exactly the conditions
where Soar requires learning, since a subgoal is created if and only if the available knowledge is insufficient
for the next step in problem solving. The subgoal is created to find the necessary knowledge and the
chunking mechanism stores away the knowledge so that under similar circumstances in the future, the
knowledge will be available. Actually, Soar learns what is necessary to avoid the impasse that led to the
subgoal, so that henceforth a subgoal will be unnecessary, as opposed to learning to supply results after the
subgoal has been created. As search-control knowledge is added through chunking, performance improves
via a reduction in the amount of search. If enough knowledge is added, there is no search; what is left is an
efficient algorithm for a task. In addition to reducing search within a single problem space, chunks can
completely eliminate the search of entire subspaces whose function is to make a search-control decision or
perform a task-implementation function (such as applying an operator or determining the initial state of the

task).

2.6.1. The chunking mechanism

A chunk production summarizes the processing in a subgoal. The actions generate thosc working-memory
elements that climinated the impasse responsibie for the subgoal (and thus terminated the subgoal). The
conditions test those aspects of the currunt task that were relevant to those actions being performed. The
chunk is created when the subgoal terminates — that is when all of the requisite information is available. The
chunk's actions arc based on the results of the subgoal — those working-memory elements created in the
subgoal (or its subgoals) that are accessible from a supergoal. An augmentation is a result if its identifier

either existed before the subgoal was created, or is in another result. A preference is a result if all of its
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specified context objects (goal, problem space, state and operator) cither existed before the subgoal was

created, or are in another result.

The chunk’s conditions are bascd on a dependency analysis of traces of the productions that fired during the
subgoal. The traces are accumulated during the processing of the subgoal, and then used for condition
dctermination at subgoal termination time. FEach trace contains the working-memory elements that the
production matched (condition elements) and those it generated (action elemems).11 Only productions that
actually add something to working memory have their traces saved. Productions that just monitor the state
(that is, only do output) do not affect what is learncd, nor do productions that attempt to add working-

memory elements that already exist (recall that working memory is a set).

Once a trace is created it needs to be stored on a list associated with the goal in which the production fired.
However, determining the appropriate goal is problematic in Soar because elaborations can execute in parallel
for any of the goals in the stack. The solution comes from examining the contexts tested by the production.
The lowest goal in the hierarchy that is matched by conditions of the production is taken to be the one
affected by the production firing. The production will affect the chunks created for that goal and possibly, as
we shall see shortly, the higher goals. Because the production firing is independent of the lower goals — it
would have fired whether they existed or not — it will have no effect on the chunks built for those goals.

When the subgoal terminates, the results of the subgoal are factored into independent subgroups, where
two results are considered dependent if they are linked together or they both have links to a third result
object. Each subgroup forms the basis for the actions of one production, and the conditions of each produc-
tion are determined by an independent dependency analysis. The effect of factoring the result is to produce
more productions, with fewer conditions and actions in each, and thus more generality than if a single
production was created that had all of the actions together. For each set of results, the dependency-analysis
procedure starts by finding those traces that have one of the results as an action element. The condition
clements of these traces are then divided up into those that existed prior to the creation of the subgoal and
those that were created in the subgoal. Those created prior to the subgoal become conditions of the chunk.
The others are then recursively analyzed as if they were results, to determine the pre-subgoal clements that

were responsible for their creation.

Earlier versions of chunking in Soar {36] implicitly embodied the assumption that problem solving was

perfect — if a rule fired in a subgoal, then that rule must be relevant to the gencration of the subgoal’s results.

”lf there is a condition that tests for the absence of a working-memory element, 1 copy of that negated condition is saved in the trace
with its vanables instantiated from the values bound clsewherc in the production.
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e
i:' The conditions of a chunk werc based on the working-memory clements matched by all of the productions
):.:::: that fired in the subgoal. When the assumption was violated, as it was when the processing involved searches
) down paths that led to failure, overly specific chunks were created. By working backward from the results,
V:i.' the dependency analysis includes only those working-memory elements that were matched by the productions
:: M that actually led to the creation of the results. Working-memory elements that are examincd by productions,
;:. but that turn out to be irrclevant, are not included.
;:3',‘ A generalization process allows the chunk to apply in a future situation in which there are objects with the p,
‘. same descriptions, but possibly different identifiers. Once the set of chunk-productions is determined, they v
':.:E:E: arc generalized by replacing the identificrs in the working-memory elements with variables. Each identifier 5
serves to tie together the augmentations of an object, and serves as a pointer to the object, but carrics no
:ﬁ meaning of its own — in fact, a new identifier is generated each time an object is created. Constant symbols
. o — those that are not used as the identifiers of objects — are not modified by this variablization process, only
E ) the identifiers. All instances of the same identifier are replaced by the same variable. Different identifiers are
O replaced by different variables which are forced to match distinct identifiers. This scheme may sometimes be
\ in error, creating productions that will not match when two elements just happen o have the same (or
':-‘;_: different) identifiers, but it always errs by being too constraining.
A
* The final step in the chunk creation process is to perform a pair of optimizations on the chunk productions.
\.-, The first optimization simplifies productions learned for the implementation of a complex operator. As part
. :‘:.S of creating the new state, much of the substructure of the prior state may be copied over to the new state. The
0 5’-: chunk for this subgoal will have a separate condition, with an associated action, for each of the substructures
")' ' copied. The chunk thus ends up with many condition-action pairs that are identical except for the names of
‘, the variables. [f such a production were used in Soar during a new situation, a huge number of instantiations
w -r would be created. one for every permutation of the objects to be copied. The optimization eliminates this
" problem by removing the conditions that copy substructure from the original production. For each type of
g substructure being copied. a new production is created which includes a single condition-action pair that will
‘l‘:g‘l copy substructurcs of that type. Since all of the actions are additive, no ordercring of the actions has to be
:": ¥ maintained and the resulting sct of rules will copy all of the substructure in pacallel. ,
"
i‘:";‘ The second optimization is to order the production conditions in an attempt to make the matcher faster.
A Each condition acts like a query — returning all of the working-memory elements that match the condition — ’
f.. and the vverall match process returns all of the production instantiations that match the conjunctive querics
::::,. specified by the condition swles of the productions. Lhe ctficicncy of such a maich process s heavily
:':':': dependent on the order of the quenies [74]. By automatically sidenng the condinons i Soar, the number of
ol
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intermediate instantiations of a production is greatly reduced and the overall efficiency improvcd.12
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2.6.2. An example of chunk creation
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Figure 2-16 shows a trace of the productions that contribute to a chunk built for the evaluation subgoal in -

(]
[

the aight-pussic example discussed in Section 2.5. The first six decision cycles lead up to the subgoal that

LACREN
.
[ a4
x
b

s »_ .
o) r ey
T

T 2

A2l 2o

implements ovaluate-object(down) (evaluate the cight-puzzle operator down). Gl is the initial goal, G2 is the

w_1r
ol ol

subgoal to chiminate a tie between operators, and G3 is the subgoal to implement evaluate-object(down).

h

Included i this trace are the names of those productions fired during subgoal G3 that provide traces used by oA
Beti sty
the Jdependency analysis. Listed for cach of these rule firings are the condition elements that existed prior to - "-»..':-.
the goal. and which therefore become the basis of the chunk's conditions: and the action elements that are A RON,
linked to preexisting structure, and which therefore become the basis of the actions of the chunk, - X 3
Cycle ,-'_._,"' y
v G G! [Solve the eight puzzle] SR
1 P Pl [Eight-Puzzle] ',.:a',',."\
2 S. st ORI
3 G G2 (Tie impasse. operators {O1[down] 02[left] 03[right]}) Wlyt)
4 P P2 {Selection]
5 S Sot
6 O 04 [evaluate-object{O1[down]]] A
7 G G3 (No-change impasse, operator) ,‘-}'_-:.\-_
eval®*select-role-operator ;wm elements tested to >:‘.~,‘.-::
(goal G2 toperator 04) ;establish the context Ca e
{operator 04 rtname evaluate-object tdesired D1 ;in which operator Ol[down] ;-.* -
trole operator tsuperoperator 01 ;can be evaluated O
tsuperproblem-space Pl tsuperstate S1)
AN ,
8 P Pl [Eight-Puzzle] e
) 5 s e
RS A
17 0 0t (den] o -.l..-q
cr2ate-naw-state g " )
{preniem-space Pl rname eight-puzzle) ;wm elements tested to ;:"#E
(operator Ol tname move-tile tadjacent-cell Cl) ;apply operator that moves .ﬂ?
{state S1 tbinding B1 tbinding B2) ;the tile in C1 into the L X
(dinding Bl rtile Tl rtcell C2) ;cell with the blank (C2) ,u?:'_ﬂ;
{tila Il tname blank) ;:T1 is the blank ."_-'_:_-::;
(brading B2 rtrle T2 rcell C1) ;T2 is the tile in cell C1 AN
: R
11 S s2 S
es11*31 1te plus-one ~*ﬂ !’)\E
(p oL te space PLotname eight-puzzle) ;win elements tested to )
Loperator 04 cname evaluate-object icreate evaluation for T
rdesired Dl revaluation E1) ;state based on detecting el
tdasirad D1 binding 0D81) .that the operator S
!hindong DBL *tcell €2 ttile T2) ihas moved a tile into AT
(eebi L2 rewll C1) ;its desired position G )
N “;4".'-.’\:;
svaluition t1 svatuye 1) ;the result/action
: 120 0% {svaluate-object(02[left]] EATATO
Figure 2-16: Partial production trace of an cight-pussle evaluation subgoal.
I . A‘I .

et e e denie s wigonsthm are not miportant here. exeept that the most recent version (Sept. 86), by Dan Scales and ;‘r:r@
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Once the cvaluation subgoal is generated. the production eval*sclect-role-operator fircs and creates
acceptable-preferences for the original task problem space (P1), the original task state (S1), and the opcrator
being evatuated (O1). The production atso augments goal G3 with the task goal’s desir~d state (D1). Many of
the production’s conditions match working-memory elements that are a part of the definition of the
evaluate-object operator, and thus existed prior to the creation of subgoal G3. These test that the subgoal is to
implement the evaluate-object operator, and they access identifiers of super-objects so that the identifiers can
be included in the preferences generated by the actions of the production. Following the selection of Pl and
S1, a production instantiation fires to gencrate a best-preference for operator Ol for this specific goal,
problem space, and state. This production firing is not shown becausc it does not add new conditions to the
chunk.

The problem solving continues with the selection of Ol and the generation of a new state (S§2). The
unchanged bindings are copied by a rule that is not shown because it does not affect the subgoal’s result. S2 is
selected and then cvaluated by production eval*state-plus-one, which augments object E1 with the value of
the evaluation. This augmentation is a result of the subgoal because object El is linked to the state in the
parent context. Immediatcly afterwards, in the same elaboration phase, a production generates a reject-
prefercence for operator 04, the evaluatc-object operator. This production has no effect on the chunk built for
subgoal G3 because it looks only at higher contexts. Once the rcject-preference is created, operator O4 is
rejected, another operator is sclected, the no-change impasse is climinated, subgoal G3 is terminated, and a

chunk is built.

Only certain of the augmentations of the objects are included in the chunk; namely, those that played an
explicit role in attaining rthe result. For instance, only portions of the state (S1) and the desired state (ID1) are
included. Even in the substructure of the state, such as binding B2, its tile (T2) has only its identificr saved,
and not its value (6), because the actual value was ncver tested. The critical aspect to be tested in the chunk is
that the tile appears as a tilc-augmentation of both bindings B2 and DB1 (a binding in the desired state, D1).
The exact value of the tile is never tested in the subgoal, so it is not included in the chunk. The conditions
created from these working-memory clements will test: that a tile (in this case T2) in the current state (S1) is
in a ccll adjacent to the cell containing the blank; and that the ccll containing the blank is the ccll in which the
tilc appears in the desired state. In other words, the chunk fires whenever the evaluate-object operator is

sclected in the selection problem space and the operator being evaluated will move a tile into place.

‘The action of the chunk is to create an cvaluation of 1. This valuc is used to create preferences by compar-
ing it to the values produccd by evaluating other operators. The other evaluation values arise when a tile is
neither moved into nor out of its desired cell (0), or when a tile is move out of its desired cell (-1). Symbolic
values ceuld have been used in place of the numeric oncs, as long as there are additional productions to

compare the values and create appropriate preferences,
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7

Figure 2-17 contains the one-production chunk built for this example in the format used as input to Soar, :
which is similar to that used for OpsS productions. Each production is a list, consisting of a name, the ::A
conditions, the symbol "-->", and the actions. Each condition is a template to be matched against working- gj
memory ¢lements. Symbols in a production of the form "<..>" (e.g., <G1>) are variables, all others are :'_4
constants. The actions are templates for the generation of working-memory elements. In building the chunk, ‘21

i

all identifiers from the original working-memory elements have been replaced by variables. The constants in

2

the working-mcmory clements, those symbols that have no further augmentations (evaluatc-object,

cight-puzzle, blank), remain as constants in the conditions. Identifier variablization is also responsible for the
additional negation predicates in the specification of objects <S1> and <B2>, such as { <> <B1> <B2> } in
object <S1>. This is a conjunctive tcst that succeeds only if <B2> can be bound to a value that is not cqual to
the value bound to <B1>, thus forcing the objects that are bound to the two variables to be different.

(sp p0038

b bt AAAAAN.

v,r
ALY

(goal <G2> toperator <04>) t;
(operator <04> tname evaluate-object trole operator -
t+superproblem-space <P1> tsuperstate <S1> -

tsuperoperator <01> tevaluation <E1> tdesired <D1>)
(problem-space <P1> tname eight-puzzle) s
(operator <01> tadjacent-cell <C1>) -
(state <S1> tbinding <B1> tbinding { <> <B1> <B2> }) 7
(binding <B1> ttile <T1> tcell <C2>) N
(tile <T1> tname blank) -
(binding <B2> tcell { <> <C2> <C1> } ttile { < <T1> <KT2> }) L
{cell <C2> tcell <KC1>) : g
(desired <D1> tbinding <DB1>) oY
(binding <DB1> tcell <C2> ttile <T2>) s
-=> Ot
(evaluation <E1> tvalue 1)) tﬁ
Figure 2-17:  Production built by chunking the evaluation subgoal. "_%
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3. Discussion

Y The Soar architecture has been fully described in the previous section. However, the consequences of an
’ architecture arc hardly apparent on surface evamination. The collection of tasks that Soar has accomplished,
"_j exhibited in Figure 1, provides some uscful information about viability and scope. Howcver, simply that Soar

Bl “J

can perform these tasks — that the requisite additional knowledge can be added — is not entirely surprising.

P
;‘-“x,‘ e oo St

YR
'\'.c'."' [

The mechanisms in Soar are variants of mechanisms that have emerged as successful over the history of Al !

rescarch. Soar’s accomplishing these tasks docs provide answers to other questions as well. We take up some

2l

-

el
A

of these here. This discussion also attempts to ensurc that Soar's mechanisms and their operation arc clear.

O

We limit ourselves to aspects that will shed light on the architecture. The details of Soar’s behavior on specific

2

e tasks can be found in the references. .
&% 3, . . . . . . . - .

.' ) The first question we take up is what Soar is like when it runs a real task consisting of multiple aspects with

P a

o 4 :‘ varying decgrecs of knowledge. The second question is how Soar embodics the weak methods, which form the

- .

.‘,\ foundation of intelligent action. The third question involves learning by chunking. by
r b
"" 3.1. Combining knowledge and problem solving >
LT R1 is a well-known large knowledge-intensive expert system — consisting of 3300 rules plus a data base of o~
o 8 p .

X f.‘}' over 7000 component descriptions, circa 1984 — used at Digital Equipment Corporation to configure Vax and " !

PDP-11 computers [3, 41]). R1-Soar is an implementation in Soar of a system that cxhibits about 25% of the B
" . . . . » P . at
" \-{ functionality of R1, using the same knowledge as obtained from R1's OpsS rules [65, 75). This is a big enough -
~ . . . . . - -
"“-sj,' fraction of R1 to assure that cxtension to a complete version would be straightforward, if desired.”® The part -
\ R
,:‘ ‘-}. covered includes the most involved activity of the system, namcly, the assignment of modules to backplanes, 5
3 Ry
) taking into account requirements for power, cabling, ctc.
. q
By A
Wl R1-Soar was crcated by designing a set of problem spaces for the appropriate subpart of the configuration N
AR e . . )
"*.:- task. ‘Thc problem spaces were added to the basic Soar system (the architecture plus the default knowledge, =
N . . . . . (N
X ; as described in the previous section). No task-dependent scarch-control knowledge was included. The
b4 resulting system was capable of accomplishing the configuration subtask, although with substantial scarch. %
Ny -
%“:“! R1-Soar’s behavior was initially explored by adding various amounts of scarch control and by turning chunk- ' ]
’ \ ing on and off. Later cxperiments were run with variations in the problem spaces and their organization. :_
el Thus, R1-Soar is a family of systems, usced to explore how to combine knowledge and problen solving. .
T A -
2 . "
! :‘;: In the cight puzzIlc there was a single operator which was realized entircly by productions within a single '
::2 problem space. However, the configuration task is considerably more complicated. In an extended version of
Vg (i
::,o'.: nlndccd. arevision of R1is underway at DI-C that draws on the problein structure descloped for R1-Soar [706). '
. ]
¥ 3
4.‘:1:‘ : d
q:‘ﬂ(:
rh, {
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R1-Soar [75]. which covered about 25% of R1 (compared to about 16% in the initial version [65)), therc were
thirty-four operators. Twenty-six of the operators could be realized dircctly by productions, but eight were

complex cnough to require implementation in additional problem spaces. Figure 3-1 shows the nine task

* 28 E

e dld b
s‘.. I

spaces used in the extended version of R1-Soar. This structure, which looks like a typical task-subtask SN
AR
hicrarchy, is gencrated by the implementation of complex operators. In operation, of course, specific in- ’::_f; )
, . AT,
stances of these problem spaces were created, along with instances of the selection problem space. Thus, o '-r“
Figure 3-1 represents the logical structure, not the dynamic subgoal hierarchy. . ,’-""Tl;-:
e
- S

L4
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)

~>{ Initialize Order >{ Unibus Priority

e M4

LY

s
o

1)

—»{Configure Cabinet

—>{ Configure CPU >

Configure System |—

+— Conligure Box

Configure
Backplane

L] Conligure Unibus

L1 Configure Module

Figure 2-1; "Task problem spaces for the extended version of R1-Soar [75).

The total set of task operators is given in Figure 3-2. Many opcrators arc generic and have instantiations, a
feature of the operator in the cight-puzzle task as well. However, in R1-Soar, some of the instantiations of the
samc operator have quite distinct character. Two problem spaces, configure-cpu and configure-unibus, make
use of the same genceric operators (although they instantiate them differently), such as configured-cabinet.
This accounts for Figure 3-1 not being a pure hicrarchy, with both configurc-cpu and configure-unibus

linking to the same four subspaccs.

The task decomposition used by R1-Soar is very different than the onc used by R1. Soar is a problem

. "

sobver capable of working in lean spaces by cxtensive search. R! is a knowledge-intensive shallow expert

r,

%,

system. in which as much direet recognition and as little search as possible is done. It is built around a very

large pre-cstablished subtask hicrarchy (some 321 subtasks, circa 1984) plus a database containing templates

R8P T A . Wy M . ] j.\" . % T \'\.'
R S T D T A e DX R M DT 4 T e e TR D SO DT

Wy ‘g| L%
4, ‘jl'.'x" "’..




. -
NDRE ¥
e O ‘!'1‘0

haaddedlecal cal el Aad Aakobad Jak Ao Aok ol Sl b b b Al A A A O a L ach Ale A4 el d o o

PAGE 42 SOAR: AN ARCIHITECTURE IFOR GUNLRAL INTFLLIGENCE:

PROBLEM-SPACE OPERATOR

configure-system initialize order
configure CPU
configure unibus
instance = place modules in sequence
instance = maximum module placement
show output

initialize-order get component data from database

assign unibus-module priority numbers
unibus-priority sequence unibus modules iy
configure-cpu configure cabinet

instance = cpu cabinet
configure box
instance = cpu box ]
configure backplane
instance = cpu backplane
configure module
instance = maximum module placement
unused component
go to previous slot

configure-unibus configure cabinet
instance = unibus cabinet
instance = empty cabinet
configure box
instance = unibus box
instance = empty box
configure backpiane
instance = unibus backplane
instance = empty backplane
instance = unibus repeater
instance = special backplane
configure module
instance = place modules in sequence
instance = maximum module placement
unused component
remove backplane .
instance = replace backplane with repeater
instance = put backplane in next box

configure-cabinet configure cabinet
add component to order

configure-box configure box
next cabinet
install unibus repeater
add component to order

configure-backplane configure backplane
next section
next box
install unibus repeater
add component to order

configure-mocule configure module in special backplane
configure module with one board
configure module with more than one board
next slot

Figure 3-2: Task opcrators for the oxtended version of R1-Soar [75}).

for the variety of coinponcnts available. R1-Soar was given a sct of basic spaces that corresponded closcly to
the physical manipulations used in configuring computers, The component templates are encoded as rules
that implement the opcrator that adds components to the order. It thus has an appropriate physical model in

terms of which to do basic rcasoning about the task.

‘The use of basic spaces in the initial version of R1-Soar was dcliberate, to demonstrate that a general

+ L))

OLNOCULERN A

i

O o o ¥ (A 0 ne AR UGS OAACHONONTSOL
‘?‘-’\.!'l‘f|l e RN ‘?".-"~z'*‘ DRSO . ,-;ﬁwe*'.*ii\:?*.g‘l,:"tﬁfa;:‘« qfa::';:;‘a;,'ef.'N“

B

.
)
Dy

%

-
-

» v w .
‘..8 | Jn e o o,

o




ok
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problem solver (Soar) could operate in knowledge-intensive modc: and could also mix scarch-intensive and
knowledge-intensive modes as appropriate, dropping back to scarch whenever the task demanded it (and not
by predesign). To do this, Soar was given 2nly the task-implementation knowledge — the basic spaces,
desired states, and path constraints — without hcuristic scarch control. Expertise was then to be given by
adding scarch control. Thus, in one small configuration task the base system (no domain-dependent search
control at all) ook 1731 decision cycles to solve the task; a version with a small amount of scarch control took
243 cycles; and a version with a large amount of search control (equal to that in the original R1) took 150

).14 One surprise in this cxperiment was how little search control was involved in moving to the

cycles [65
knowledge-intensive versions. Thus, the basc system contained a total of 232 rules (for basic Soar plus the
configuration task); only two productions were added for the small amount of scarch control; and only 8
more productions for the large amount of search control (for a total of 242). Thus, there is no correspondcnce

at all between the number of productions of R1 and the productions of R1-Soar.

POAAS
> P>

[

The version of R1-Soar described in Figures 3-1 and 3-2 cxtended the coverage of the system beyond the

>
.
s
..

initial version and modificd the problem spaces to allow it to run larger orders more cfficiently. The
previously scparate rules for proposing and checking the legality of an operator (using acceptable and reject
prefercnces) were combined into a single rule that only made the operator acceptable when it was legal. Also,
additional domain-dependent search-control productions were added (a total of 27 productions for the nine
spaces). Thesc changes converted R1-Soar to a system somewhat more like the original R1. Figure 3-3 shows
the performance of this system on a set of 15 typical orders. This figure gives a bricf description of the size of
the order (Components) and the number of dccision cycles taken to complete the order (Dcecisions). From
the performance figures we sce that the times range from onc to three minutes and reflect the amount of work
that has to be done to process the order, rather than any search (approximately 60 dccisions + 7
decisions/component). The extended version of R1-Soar pretty much knows what needs to be done. These
times are somewhat stower than the current version of R1 (about a factor of 1.5, taking into account the spced
diffcrences of the OpsS systems involved). This is encouraging for an experimental system, and more recent

improvements to Soar have improved its performance by a factor of 3 {70].

3.2. Weak Methods
Viewcd as behavior, problem-solving methods are coordinated patterns of operator applications that attempt
to attain a goal. Viewed as behavioral specifications, they arc typically given as bodics of code that can control

behavior for the duration of the method, where a selection process determines which method to use for a

M‘lhc.sc runs took about 29, 4 and 2.5 munutcs respectively on a Symbolics 3600 running at approximately one decision cycle per
sccond. Lach decision cycle comprises aboult 8 production firings spread over two cycles of the claboration phasc (because of the parallel
finng of rulcs).
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Tasks
T1 T2 T3 T4 15 16 T7 T8 T9 T10 T11 T12 T13 T14 T15

Components 5 5 2 7 5 8 2 3 5 5 15 2 11 7 9

Decisions 88 18 78 196 94 100 70 14 88 90 173 78 124 123 129

Figure 3-3: Performance of the extended version of R1-Soar (without learning).

given attempt. In Soar, methods are specified as a collection of scarch-control productions within a sct of
related problem spaces — a given task problem space and its subspaces. Analogously to a code body, such a
collection can be coordinated by making the search-control productions conditional on the method name
(plus perhaps other names for relevant subparts), where method selection occurs by establishing the method
name in working memory as part of a goal or state. Thus, methods in Soar can be handled according to the

standard scheme of selecting among pre-established specifications.

Method bchavior may also cmerge as the result of problem solving being guided by the appropriate
knowledge, even though that knowledge has not been fashioned into a deliberate method (however specified).
Behind every uscful method is knowledge about the task that justifies the method as a good (or at least
possible) way to attain the goal. As bodies of code, methods are simply the result of utilizing that knowledge
at some prior design time, in an act of program synthesis. The act of program synthesis brings together the
relevant knowledge and packages it in such a way that it can be directly applied to produce behavior. What
normally prevents going directly from knowledge to action at- behavior time is the difficulty of program
synthesis. Howcver, under special conditions dircct action may be possible, hence avoiding the task of
program synthesis into a stored mcthod, and avoiding the pre-choice of which knowledge is relevant for the
task. Instcad, whatever knowledge is relevant at the time of behavior is brought to bear to control behavior.
Although no prepackaged method is being used, the behavior of the system follows the pattern of actions that

characterizc the method.

This is the situation with Soar in respect to the weak methods!® — methods such as depth-first search, hill
climbing, and means-ends analysis. This situation arises both because of the naturc of the weak methods and
because of the nature of Soar. First, the weak methods involve relatively little knowledge about the task [47].
Thus, the generation of behavior is correspondingly simple. Sccond, all the standard weak methods are built
on heuristic search. Thus, rcalizing their behavior within Soar, which is based on problem spaccs, is relatively
straightforward. In addition, scarch control in Soar is realized in a production system with an additive
claboration phase and no built-in conflict resolution. Thus, new search control can be added without regard

to the existing scarch control, with the guarantee that it will get considered. Of course, the relevant total

15Wc have called this a universal weak method. on the analogy that Sear behaves according to any weak method, given the appropriate
knowledge about the task [31).
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scarch-control knowledge does interact in the decision procedure, but according to a relatively clean seman-

tics that permits clcar cstablishment of the role of each bit of added knowledge.

Our previous example of steepest ascent hill climbing in Figure 2-15 provides an illustration of these three
factors. First. the central knowledge for hill climbing is simply that newly generated states can be compared

, to cach other. The comparison may itself be complex to compute, but its role in the method is simple.

Second, the other aspects of hill climbing, such as the existence of operators, the nced to select one, ctc., are

implicit in the problem-space structure of Soar. They do not need to be specified. Third, the knowledge to :.j_.::_u ,5
' climb the hill can be incorporated simply by scarch-control productions that add preferences for the operators _.:‘::nf;..‘& ,
that produce better states. No other control is necessary and hence complex program synthesis is not re- :;SZ‘J
quired. In short, Soar can be induced to hill climb simply by providing it the knowledge of a specific function g i
that permits states to be compared plus the knowledge that an operator that generates a better state is to be .'.'C:-;_f
Lol
preferred. F:ﬁ%’;f \
il ,1.*
Methods require two types of knowledge. The first is about aspects of objects or behavior. Examples are Sl __1
the position of the blank squarc in the eight puzzle or the number of moves taken since the blank was in the B _-.‘r_:_
center. Such knowledge says nothing about how a system should behave, The second type of knowledge ¥ ;}::
provides the linkage from such objective descriptions to appropriate action of the system. For the weak “5{2”
methods in Soar this takes the especially simple form of single productions that have objective task descrip- 7_ )
tions as conditions and produce preferences for behavior as actions. No other coordinative productions are ::IE‘:
required, such as cuing off the name of the mcthod or explicitly asscrting that onc action should follow :E: '{ \
another as in a scquential program. Sowmectimes several control productions arc involved in producing the :ﬁ-_:?\
behavior of a weak method, but each are independent, providing links between soine aspect of task structure .
and preferences for action. For instance a depth-limited lookahead has one production that deals with the :S:::i.;‘
evaluation preferences and one that dcals with enforcing the depth constraint.  Soar would produce ap- _::E":}:.E"'
propriate (though different) behavior with any combination of these productions.  Another important deter- ) : J.;:Fd"
mincr of a method may be specialized fask structure, rather than any deliberate responses encoded in search ‘ by
control. As a simple instance, if a problem spacc has only onc operator, which gencrates new states that are 5 s i‘"‘
¢ candidates for attaining the task, then gencrate-and-test behavior is produced, without any scarch control in ;‘:f\‘ %
addition to that dcfining the task. «’2;:: -; :
PERL NG W
- . Ky
The methods listed in Figure 3-4 constitute the aggregate that have been realized in the various versions of i‘ "': ";
Soar, mostly in Soar I {31] and Sear 2 [29). where deliberate explorations of the universal weak method were X
v

conducted.  The purpose of these explorations was to demonstrate that cach of the weak methods could be
realized in Soar. Most of the weak methods were realized in a general form so that it was clear that the

mcthad could be used for any task for which the appropriate knowledge was available. For a few weak
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o~ :
methods, such as analogy by implicit gencralization and simple abstraction planning, the method was realized :::
for a single task, and more general forms arc currenly under investigation. ::: E
L\
‘T'he descriptions of the weak mcthods in Figure 3-4 arc extremely abbreviated, dispensing with the operat- ::.
ing environment, initial and terminating conditions, side coastraints, and degenerate cases. All these things :_::::
are part of a full specitication and sometimes require additional (independent) control productions. Figure ) f,
3-5 shows graphically the structural relationships among the weak methods implemented in Soar 2 [29]. The %
common task structure and knowledge forms the trunk of a tree, with branches occurring when there is f:::f
different task structure or knowledge available, making each Icafin the tree a different weak method. Each of 3'-;
the additions as one goes down the tree are independent control productions. “_:';

These simplc schemes are more than just a neat way to specify some methods. The weak methods play a

1
[PV

-

v

central role in attaining intelligence, being used whencver the situation becomes knowledge lean. This occurs

in all situations of last resort, where the prior knowledge, however great, has finally becen used up without

PRI
LN A 4

attaining the task. This also occurs in all new problem spaces, which are necessarily knowledge lean. The
weak methods are also the essential drivers of knowledge acquisition. Chunking necessarily implics that there S

exists some way to attain goals before the knowledge has been successfully assimilated (i.e., before it has been

chunked). The weak methods provide this way. Finally, there is no need to /earn the wcak methods
themsclves as packaged spccifications of behavior. The task descriptions involved must be acquired and the @i
linkage of the task descriptions to actions. But these linkages arc single isolated productions. Once this :
happens, behavior follows automatically. Thus, this is a particularly simple acquisition framework that avoids 'f‘E
any independent stage of program synthcsis. "'; ‘

N
3.3. Learning ;

The opcration of the chunking mechanism was described in detail in the previous scction. We present here

a picture of the sort of lcarning that chunking provides, as it has emerged in the cxplorations to datc. We N

have no indication yet about where the limits of chunking lic in terms of its being a general lcarning

L
¢ Y
2 ALAN
4
A

rhe mechanism [36). e
T Ny - *
r o
'rn.'{ " .".'-
_‘t\j 3.3.1. Caching, within-trial transfer and across-trial transfer o
AT N
v e . . . . . . . . o e
V) Figure 3-6 provides a demonstration of the basic effects of chunking, using the cight puzzle [33]. The <
5 left-hand column (no lcarning) show the moves made in solving the cight puzzle without learning, using the - o
* l\ -
W represcatation and heuristics described in the prior section (the cvaluation function was uscd rather than the -
v mea-opurator-sclection heurstic). As doseribed in Figures 2-14 and 2-15, Soar repeatedly gets a tic impasse
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between the available moses, goes into the selection problem space, evaluates cach move in an incarnation of

the task space. chooses the best alternative, and moves forward, Figure 3-6 shows only the moves made in the
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Heuristic search Select and/or reject candidate operators and/or states.

Avoid Duplication Produce only one version of a state. (Extend: an cssentially identical state.)

Operator Subgoaling. [f an operator does not apply to the current state, find a state where it does.

Match  Put two patierns containing vanables into correspondence and bind vanables to their correspondents.
Hypothesize and Match. Gencrate possible hypothesis forms and match them to the exemplars.

And-Or heuristic scarch. Makes all moves at and-states and selects moves at or-states until goal is attained.

Waliz Constraint Propagation. Repeatedly propagate the restrictions in range produccd by applying constraints in variables with finite
ranges.

Means-Ends Analysis. Make a move that reduces the difference between the current state and the desired state.

Generate and Test. Generate candidate solutions and test cach for success; terminate when found.

Breadth-Virst Search. Make a move from a state with untried operators at the least depth.

Depth-First Search. Make a move from a state with untried operators at the greatest depth.

Lookahead Consider all terminal states to max-depth.

Simple Hill Clinibing. Make a move that increases a given value.

Steepest Ascent Hill Climbing. Make a move that increases a given value most from Lhe state.

Progressive Deepening. Repeatedly move depth-first unul new information is obtained, then return to initial state for repeat.
Modified Progressive Decpening  Progressive Decpening with consideration of all moves at each state before extension.

B* (Progressive Deepening). Progressive Deepening with optimistic and pessimistic values at each state (not a proof procedure).
Mini-Max. Make moves of cach player untl can select the best move for each player.

Depth-Bounded Mini-Max  Mini-viax with max-depth bound.

Alpha-Beta. Dcepth-Bounded Mini-Max. without lines of play that cannot be better than alrcady examined moves.

Ordered Alpha-Beta. Alpha-Beta with the moves tned in a heuristic order. -

Iterative Deepening. Repeat ordered Alpha-Beta with increasing depth bound (from 1 to max-depth), with cach ordering improved.
B*® (Mini-Max). Analogous to Alpha-Beta, with each state having optimistic and pessimistic values [5).

Branch and Bound. Hcunstic search, without lines of scarch that cannot be better than already examined moves.

Best-First Search. Move from the state produced so far that has the highest value.

Modificd Best-First Search. Best-First Scarch with one-step lookahead for each move.

A® Best-First Scarch on the minamum depth (or weighted depth).

Exhaustive Maximization Generate all candidate solutions and pick the best one.

Exhaustise Maximization with Cutoffs. Fxhaustive Maximization without going down paths to candidate solutions that cannot be better
than the current best candidate.

Macro-Operators for Serially-Decomposable Goals {28). [earn and use macro-operators that span regions where satisfied goals are
violated and reinstated.

Analogy by Implicit Generalization  Find a related problem. solve the related problem, and transfer the generalized solution path to the
original problem.

Simple Abstraction Planning  Analogy by Tmipheit Generalization in which the related problem is an abstract version of the original
problem.

Figure 3-4: Weak methods, as patterns of behavior.
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Figure 3-5: Structure of weak methods rcalized in Soar [29]. N
]
iask space, coalescing the various incarnations of it. [ach state, except for the initial and desired states, is FR
shown as a black square. ‘The move made to reach the state is shown as a single letter (either Left, Right, Up, E
or Down). Soar cxplores 20 states in all to solve this problem. Nt
Xy
'ﬂ"v
The sccond column (with lcarning) has chunking turncd on. Although Soar starts out cxamining the same ‘
states as in the run without learning (L., U and R in each of the first two levcls), it soon dcviates. The ::
L .
chunking that occurs in the early part of the task alrcady bccomes cffective in the later part.  This is K
t "'
within-trial transfer. It answers onc basic question about chunking — whether it will provide any transfer at be
,.*‘5; all to new situations, or only simple practice cffects. Not only is there transfer, but it occurs on the initial . ;‘
AN . . . - o)
4 performance — a total of 15 states is cxamined, compared to 20 without learning. Thus, with Soar, no rigid N
i..' ]
RO . L . . . . :
-:.;i. behavioral separation is possible between performance and learning — Icarning becomes integral to cvery ::s
il."I ..‘.
ot performance. nt
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Figure 3-6: Learning in the eight puzzle [33).

If Soar is run again after it has completed its with-learning trial, column 3 (after learning) results. All of the
chunks to be learncd in this task have been Iearncd during the onc with-learning trial, so Soar always knows
which move to make. This is the dircct effect of practice — the usc of results cached during earlicr trials. The
number of states examincd (10) now reflects the demands of the task, not the demands of finding the soiution.
This improvement depends on the original evaluation function being an accurate measure of progress to the
goal. Chunking climinates the necessity for the look-ahead search, but the path Soar takes to the goal will still

be determined by the evaluation function cached in the chunks,

Figurc 3-7 shows across-task transfer in the Eight Puzzle. The first column (task 1, no Icarning) is the same
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trace as the first column in Figure 3-6. In the sccond column (task 2, during lcarning) Soar has been started

over from scratch and run on an cntircly different cight-puzzle task — the initial and final positions are

different from those of task 1, as are all the intermediate positions. This is preparation for the third column

(task 1, after learning about task 2 but without any learning during task 1), where Soar shows across-task

transfer. If the learning on task 2 had no effect, then this column would have been identical to the original

one on task 1 (first column), whereas it takes only 16 states rather than 20.
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Figure 3-7:  Across-task transfer in the cight puzsle {33).

What Soar has lcarned in these runs is search control ta choose moves, and rules which implement the

cvaluate-object operators.  The comparison hased on the evaluation functionas cached mto productions that

create preferences hased on direct compaisons between the current and desired states,
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chunking docs not improve the cvaluation function. If the evaluation function is imperfect, as it is in this
casc, the imperfections are included in the chunks. Also in this example, no cight-puzzle operators have been
learned because the operator was alrcady realized directly by productions in the task space. But if the
operator had required subspaces for implementation (as the cvaluate-object operator in the selcction problem

space did), it would have been lcarned as well.

3.3.2. Learning in an expert-system task

A striking feature of chunking is that it applies automatically to every task Soar performs, without modifica-
4 tion of Soar or any special additions. For example, the investigations that uscd R1-Soar to show that general
problem-solving capability can be combincd with domain expertise (by adding domain-dependent search
control to a basic task representation) became immediately a demonstration that the domain expertise can be
acquired automatically. Figure 3-8 shows that on the task mentioned above that took 1731 decision cycles

with no domain-dependent search control, a pattern of results cmerged that followed cxactly the pattern on

the cight puzzle [65].
R1-Soar Decisions with Decisions Decisions
Version no learning with learning after learning
Base 1731 4385 72% [+59) 7
Partial [+2] 243 111 54% [+ 14) 7
Full  [+8] 150 9% 40% [+12] 7

Figure 3-8: l.carning in R1-Soar. 1y
SRS

The first column of Figure 3-8 shows the effects of the manual addition of search control from none for the
basic version. to 2 productions for the partial version, to 8 more productions (for a total of 10 scarch control
productions) for the full version. This was the basic investigation, and no learning was involved. The second
column shows the cffect on performance of running with chunking turned on — the nuinber of decision
cycles, the pereent improvement over the trial without learning, and the number of chunks learned. ‘There is
within-task transfer, just as in the cight puzzlc. As the system starts with morc initial knowledge, the cffect
duninishes (from 72% to 54% to 40%) but the effect is appreciable in all cases. Finally, the result of rerunning
the sk after learning 1s complete 1s to reduce the task to its necessary processing steps (namely, 7). The
o automatic acgusition of knowledge does involve the addition of many more productions than was involved in
the manual acquisition (shown in brackets in the second column), because the chunks are more specific than

the manually encoded rules.

Fhe extensive tost on the extended version of R1-Soar yiclded additional data on Icarning, as shown in the
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N four right-hand columns of Figure 3-9. In these runs, chunking occurred from the bottom up, that is, chunks
L) were built for a goal only if no subgoals occurred. Enough runs with bottom-up chunking will yicld the same

results as all-at-once chunking (which was uscd in both the eight puzzle and initial R1-Snar cases). Bottom-up
chunking has the advantage of tending to create only the chunks that have a greater chance of being
repeatedly used. The higher up in the subgoal hierarchy (measured from the bottom, not the top), the more
specific a chunk becomes — it performs a larger proportion of the task — and the less chance it has to be ¢
used [50}. Thus, in R1-Soar all-at-once chunking will create many productions that will never be evoked
again in any but identical reruns of the same task. Figure 3-9 shows two passes of bottom-up chunking (Pass
' 2 and Pass 4), embeddcd in three passes with chunking turned off to assess the effects (Pass 1, Pass 3, and Pass
! 5), giving a total of 30 trials with chunking. The test mimics what would be exﬁected in the real situation with
an expert system, namely that the chunk-productions accumulate throughout the entire series of 30 chunking

A runs (and remain fixed during the lcarning-off passes).16

>

]

s Pass 1 Pass 2 Pass 3 Pass 4 Pass §
Y Before Durin After Durin After
D 9 9

TASK (learn off) {(1earn on) (learn off) (learn on) (learn off)

‘b
) T 88 88 [ 6] 44 a4 [ 3] 9
a T2 78 68 [ 4] 40 40 [ 3] 9
13 78 78 [ 6] a8 38 [ 3] 9
) T8 196 174 [14] 113 113 [ 6] 58
15 94 84 [ 6] 48 48 [ 3] 9
. 16 100 85 [ 3] a8 48 [ 3] 9
17 70 a8 [ 3] 38 38 [ 3] 9
£ 74 59 [ 3] 40 40 [ 3] 9
19 88 713 [ 3] 42 a2 [ 3] 9
10 90 75 [ 3] 48 48 [ 3] 9
1 T 173 158 [10] 86 88 [ 2] 48
T12 78 52 [ 3] 38 38 [ 3] 9
113 124 102 [ 7] 58 58 [ 3] 9
. T14 123 108 [ 7] 67 67 [ 4] 28
X 116 129 109 [ 5] 84 64 [ 2] 28
. Productions =--- ===
-
Total: 314 397 [83) 397 444 [47] 444
- Figure 3-9: Performance of the extended version of R1-Soar (with bottom-up lcarning) [75). ‘
! The figure reveals several interesting features. First, there is a 14% average improvement during the first
lcarning pass. This is primarily due to within-trial transfer in cach of the 15 tasks. Therc is only a smalt effect -
F. duc to across-task transfer, both positive and ncgative. Negative transfer comes about from overly-general
b scarch-control chunks that guide the problem solving down the incorrect path. Recovery from the misguided

16Thus‘, the table is nat 10 be read as if it were 15 independent little lcarning experiments.
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scarch occurs, but it takes time. On Pass 3, the assessment pass after the first le:rning pass, there is a
substantial improvement, reflecting the full force of the cached chunks: an additional drop of 35% from the
original times, for a total savings of 49% of the original times. The sccond learning pass (Pass 4) Icads to no
further within-task or across-task transfer — the times on this pass are identical to the times on the prior
assessment pass. But after this sccond learning pass is completed, the final assessment pass (Pass 5) shows
another large drop of 35% from the original times, yielding a total drop of 84% from the original times. All
but four large tasks have reached their minimum (all at 9 steps). Thus the contribution of this second pass has

been entirely to cache results that then do not have to be performed on a rerun.

The details of this version of R1-Soar and the test must be taken with caution, yet it confirms some
expectations. This extended version has substantial domain-dependent knowledge, so we would not expect as
much improvement as in the carlicr version, even beyond the effect of using bottom-up chunking. Inves-
tigation of the given productions in the light of the transfer results reveals that many of them test numerical
constants where they could have tested for inequality of two values, and the constant tests restricted their
cross-situational applicability. But even so, we sce clearly that the transfer action comes from the lowest level
chunks (the first pass), which confirms theoretical expectations that they have the most generality. And, more

globally, learning and performance always go together in Soar in accomplishing any task.

3.3.3. Chunking, generality, and representation

Chunking is a learning schemc that integrates learning and pcr-formancc. Fundamentally, it simply records
problem-solving cxperience. Viewed as knowledge acquisition, it combincs the existing knowledge available
for problem solving with knowledge of rcsults in a given problem spacc, and converts it into new knowlcdge
available for future problem solving. Thus it is strongly shaped by the knowledge available. This integration
is especially significant with respect to generalization — to the transfer of chunks to new situations (e.g., as
documented above). Generalization occurs in two ways in Soar chunking. One is variablization (replacing
identifiers with variables), which makes Soar respond identically to any objects with the same description
(attribute-value augmentations). This gencralization mechanism is the minimum necessary to get learning at
all from chunking, for most identifiers will never occur again outside of the particular context in which they

were created (e.g., goals, states, operator instantiations).

The second way in which gencralization occurs is implicit generalization. The conditions that enter into a
new chunk-production are bascd only on those working-memory elements that both cxisted prior to the
creation of the goal and affected the goal's results. This is simplc abstraction — ignoring cverything about a
situation cxcept what has been determined at chunk-creation time to be relevant. It is cnabled by the natural
abstraction of productions — that the conditions only respond (o sclected aspects of the objects available in
the working memory. [If the conditions of a chunk do not test for a given aspect of a situation, then the chunk

will ignore whatever that aspect might be in some new situation,
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'z'n :
~'_‘ A good cxample is provided by the implementation in Soar of Korf's technique for learning and using -
'h macro-operators[28). Korf showed that any problem that is serially dccomposable — that is, when some _:
' ordcring of the subgoals exists in which cach stbgoal is decpendent only on the preceding subgoals, and not on -
R . the succeeding ones — can have a macro table defined for it. Each entry in the table is a macro-operator — a j‘,
':Q'. sequence of operators that can be treated as a single operator {19]. For the cight puzzle, a macro table can be ¥
:g,» created if the goals are, in order: (1) place the space in its correct position; (2) place the space and the first tile ¢
' in their correct positions; (3) place the space, the first tile, and the second tile in their correct positions; etc. ;'
f::i" Each goal depends only on the locations of the tiles alrcady in position and on the location of the one new tile. . ::E
:E:l::..: The macro table is a simple two dimensional structure in which each row represents a goal, and each column ":}
"ZE}: represcnts the position of the new tile. Each macro-opcrator specifies a scquence of moves that can be made :}
i to satisfy the goal, given the current position of the new tile (the positions of the previously placed tiles are -
4t : fixed). The macro table enables efficient solutions from any initial state of the problem to a particular goal
; ’: state. P
5‘ i by
i), . - . . . !
2 Implementing this in Soar requires two problem spaces, one containing the normal eight-puzzle opcrators ?
" _; : (up. down, lcft, right), and onc containing operators corresponding to the serially-decomposable goals, such as
,‘_:,: place the space and the first tile in their correct positions [36). Problem solving starts in this latter problem ;‘
\;.:) space with the attempt to apply a scrics of the high-level operators. However, because these operators are too "
’ complex to encode directly in productions, they are implemented by problem solving in the normal eight- i
.:. puzzle problem space. "
S :
: ,:‘ Bascd on this problem solving, macro-operators arce learned. Fach of these macro-opcrators specifies the :'
n! sequence of cight-puzzle operators that nced to be applied to solve a particular higher-level goal for a ‘
;',)-y; particular position of the new tile. These macro-operators then lead o cfficient solutions for a large class of K
%é ” cight-puzzic problems, demonstrating how choosing the right problem solving decomposition can allow a .
,::0., simple caching scheme to achieve a large degree of generality. The generality, which comes from using a )
p singlc goal in many ditfcrent situations, is possible only because of the implicit generalization that allows the
;:" macro-operators to ignore the positions of all tiles not yet in place. [f the identitics of the not-yet-placed tiles b
;;." are not cxamined during problem solving, as they need not be, then the chunks will also not examine them. . 3
".:::. The subgoal structure by itself does not tap ail of the possible sources of gencrality in the cight puzzle. One :
e additional sourcc of generality comes from transfer between macro-operators. Rather than a macro-opcerator .
"72;" “ being encoded as a monolithic data structure that specifics cach of the moves, it is represcnted in Soar as a sct ’ :i
:;" -v of scarch-control rules that sclect the appropriate cight-puzzle operator at each state. Thesc rules arc general ::
:’:E' cnough to transfer across different macro-operators.  Because of this transfer, only 112 productions arc ::
' required to cncode all 35 of the macro-operators, rather than the 170 that would otherwise be required. '
e g
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Onc of the most important sources of generality is the representation used for the task states.  Stated
generally, if the representation is organized so that aspects that are relevant are factored cleanly from the parts
that are not (i.¢.. are noise) then chunking can learn highly general concepts. Factoring implies both that the
aspects are encoded as distinct attributes and that the operators are sensitive only to the relevant attributes
and not to the irrelevant atiributes. One representational possibility for the eight-puzzle state is a two-
dimensional array, where cach array cell would contain the number of the tile that is located at the position on
the board specificd by the array indices. Though this representation is logically adequate, it provides poor
support for learning general nules in Soar. For example, it is impossible to find out which tiles are next to the
blank cell without looking at the numbers on the tiles and the absolute positions of the tiles. It is thus
impossible, using just implicit generalization, to abstract away these irrclevant details. Though this is not a
good representation for the cight puzzle, the results presented in the previous paragraphs, which were based

on this represcntation, show that even it provides significant transfer.

By adopting a better representation that explicitly represents the relative orientation of the tiles and the
relationship between where the tile is and where it should be — the representation presented in Section 2.2 —
and adding an incremental goal test, the amount of sharing is increased to the point wherc only 61 produc-
tions arc required to represent the entire macro table. Because the important relationships are represcnted
directly, and the absolute tile position and namc are represented independently of this information, the
chunks are invariant over tile identity as well as translation, rotation, and reflection of groups of tiles. The
chunks also transfer to different desired states and between macro-operators for different starting positions,

ncither of which were possible in Korf's original implementation.,

Figure 3-10 shows the most complex casc of transfer. The top two boards arc intermediate subgoals to be
achieved on the path to getting all eight tiles in place. Below them are possible initial states that the relcvant
tles might be in (all others are X's). A scries of moves must be made to transform the initial state to the
corresponding desired intermediate subgoal. The arrow shows the path that the blank takes to move the next
tile into position. The paths for both problems are the same, except for a rotation. In Soar, the chunks

learned for tie first subgoal transfer to the second subgoal, allowing it to be solved directly, without any

additional search.
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4. Conclusion
Soar embodics eleven basic hypotheses about the structure of an architecture for general intelligence:

1. Physical symbol-system hypothesis: A g.ncral intelligence must be realized with a symbolic system
{52}

2. Goal-structure hypothesis: Control in a general intelligence is maintained by a symbolic goal
system.
3. Uniform elementary-representation hypothesis: There is a single elementary represcntation for 0¥ ;t;;ig.:q;y
declarative knowledge. ;% HEEN
o
3 . . . SR
4. Problem-spacc hypothesis: Problem spaces are the fundamental organizational unit of all goal- ':a Y
. . '.! af'l"’ii‘an
directed behavior [49]. AN
5. Production-system hypothesis: Production systems are the appropriatc organization for encoding

all long-term knowledge.
6. Universal-subgoaling hypothesis: Any dccision can be an object of goal-oriented attention.

7. Automatic-subgoaling hypothesis: All goals arise dynamically in response to impasses and are

. . STt
generated automatically by the architecture, RRYH

Rttt}
S hn i

H

8. Control-knowledge hypothesis: Any decision can be controlled by indefinite amounts of !
knowledge, both domain dependent and independent.

9. Weak-method hypothesis: The weak methods form the basic methods of intelligence [47].

10. Weak-method emergence hypothesis: The weak methods arise dircctly from the system respond-
ing bascd on its knowledge of the task.

11. Uniform-learning hypothesis: Goal-based chunking is the general lcarning mechanism.

These hypotheses have varying standing in current research in artificial intclligence. The first two, about
symbols and goals, are almost universally accepted for current Al systems of any scopc. At the oppositc end,
the weak-method cmergence hypothesis is unique to Soar. 'The remaining hypothceses are familiar in Al or at
least components of them are, but are rarcly, if ever, taken to the limit as they are in Soar. Soar uscs a

o problem-space represcntation for all tasks, a goal-based chunking mechanism for all lcarning, and a produc-
tion system for a/l long-term memory. Many systems use production systems exclusively, but they are all pure

performance systems without learning, which doces not test the use of productions for declarative memory.

Many aspects of the Soar architecture are not reflected in these cleven hypothescs. Some examples are:
automatic goal terinination anywhere in the goal hicrarchy; the structure of the decision cycle, with its parallel

‘ claboration phasc; the language of preferences; the limitation of production actions to addition of working-

N

i

| memory clements; the removal of working-memory clements by the architecture: the restriction of produc-
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SOAR: AN ARCIHUTECTURE FOR GENERAL INTELLIGENCE

tion conditions to test only memory clements accessible through the context stack. There are also details of
the mechanisms mentioned in the hypotheses — attribute-value triples, the form of conditions of productions,
ctc. Some of these are quite important, but we do not yet know in Al how to describe architcctures com-
pletely in functional terms or which features should be stipulated indepcendently.

Much is still missing in the current version of Soar. Figure 1 pointed out several aspects that are under
active investigation. But others are not recorded there -— the acquisition of declarative knowledge from the
external environment and the use of complex analogies to name a couple. Until Soar has acquires: the
capabilities to do all of these aspects, there will be no assurance that the Soar architecture is complete or
stable.
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