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SUPERSONIC BOUNDARY LAYER STABILITY OVER A ROUGH WALL

Final Report, AFOSR Grant No. 80-0267
For the Periods 9/80 - 8/82 and 9/83 - 8/84

A. Demetriades, Principal Investigator
Montana State University

Bozeman, Montana

ABSTRACT

Measurements of the growth or damping of natural distubances at Mach 3 have

been made in the laminar boundary layer over an adiabatic, constant-pressure

flat-plate surface, from the leading edge to the transition onset point. The

effect was studied on the flow stability of the stream unit Reynolds number,

plate surface roughness and wind-tunnel sidewall boundary layer turbulence

radiation. A first-mode, 3-dimensional unstable region was identified which has

a minimum critical Re, of about 180 and a maximum amplified frequency of F =

0.00023. The amplification rates within this region fit available theoretical

predictions, but they, as well as the low-frequency end of the lower neutral

branch, show greater and earlier amplification than expected. A second unstable

region was discovered between this region and the transition onset defined by

the first departure from laminar self-similarity. This second region produces

higher amplification rates, and at much higher frequencies, than the first. The

effect of increasing unit Reynolds number is to decrease the overall

amplification rates and to increase the transition distance without affecting

the location of the neutral branches or of the maximum-amplitude line. When

noise radiation from sidewall turbulence was allowed to impinge on the plate, El

the stream disturbance amplitude increased by about 60 percent and the

amplification rates within the layer increased slightly, obliterating many

regions of damping. Random-distributed sand grain roughness was found to be

unsuitable for stability studies in supersonic flows, and the roughness effect .-,_-- ,
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was studied by using a two-dimensional periodic ridge-groove roughness

arrangement. This roughness was effective in moving transition forward,

primarily by increasing the rates in the second unstable region and moving the

latter forward. In all circumstances, the onset of boundary layer transition

required the stream disturbances to amplify by a factor of about 25, but of that

only a factor of 2 - 3 was supplied by the boundary layer instability. The

mechanism accounting for the other major portion of the gain is thought related

to some forcing process. S
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FOREWORD

The present program, AFOSR Grant 80-0267, was initiated in 1980. The

1980-82 period was devoted to work on the stability of an axi-symmetric model

laminar boundary layer, on which a graduate thesis was written; and on

preliminary work with the two-dimensional boundary layer. In the 1982-83

period, this program was interrupted to divert attention to free shear layer

mixing problems of interest to the USAF Weapons Lab. The stability work was

completed in the 1983-84 period. A paper entitled "The Two-Dimetnsional Laminar

Wake with Initial Asymmetry" describing work under this Grant was published in

the AIAA Journal (Vol. 21, No. 9, Sept. 1983, pp. 1347-1349). A second journal

paper, dealing mainly with results described herein, is under preparation. Two

graduate students in Mechanical Engineering did their theses on the present

research.

The following Technical Reports describing research under the present grant

* have been so far disseminated to the cognizant technical people and agencies:

1) Demetriades A.: "The Compressible Laminar Two-Dimensional Wake with Initial

Asymmetries", MSU/SWT Report 81-3, July 1981.

2) Demetriades A.: "The Hydrodynamic Stability of a Supersonic Laminar

Boundary Layer over a Rough Wall", AFOSR TR 83-1287, ADA 137056, Sept. 1983.

3) Demetriades A. and Brower T.L.: "Experimental Study of Transition in a

Compressible Free Shear Layer", AFOSR TR 83-0144, ADA 126450, MSU/SWT TR

82-05, Dec. 1982.

4) D'Sa J.M.: "Characteristics of a Supersonic Laminar Boundary Layer over a

Rough Wall", M.S. Thesis, MSU, July 1982.

5) Brower T.L.: "Experiments on the Free Shear Layer Between Adjacent

Supersonic Streams", M.S. Thesis, MSU, March 1983.
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Contact has been continuously maintained between this laboratory and

government agencies in order to discuss, cross-check, and disseminate the

results of this research. The principal contact points were the AFWL (Paul J.

Ortwerth, Bruce Masson) and the NASA-Air Force Transition Committee (L. Mack,

J. Kendall, NASA Langley).

It must be stressed that the stability results obtained in this program are

voluminous and still under reduction and analysis; this document is therefore,

in essence, only a summary of the principal results. A full Technical Report is

under preparation and will be soon submitted to the sponsor.
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1. Introduction and Motivation

It is common experience that surface roughness destabilizes the laminar

boundary layer. Nearly every text on boundary layers includes a summary of the

numerous experiments done to date, by which transition to turbulence was found

to move upstream when the surface is roughened. The body of available

literature is necessarily large because of the large variety of possible

roughness geometries and their distribution on the surface, i.e., of the

spectrum of the surface contour. For example, there are several prevalent

notions of turbulence generation by roughness: one is that the turbulent wakes

of a few isolated surface protrusions agitate the boundary layer into a

turbulent state; another, that the roughness distorts the mean flow field into a

hydrodynamically unstable shape. The latter view is attractive when the surface

is uniformly covered by "distributed" (statistically stationary) roughness of

height much smaller than (the layer thickness).

Ideally, one would hope to calculate the mean velocity profile distortion

due to small-scale, uniformly distributed roughness, and then subject this

profile to hydrodynamic stability analysis; a rational connection between the

roughness and transition would thus be found. Practically, this is an immense

task because of the difficulty of the flowfield calculation and the need to

repeat it for every conceivable type of roughness. As an alternative, Reshotko

(Reference 1) and Kendall (Reference 2) attempted to measure the velocity

profile instead, with a view of perhaps using the measured profile as an input

to stability analysis. One could then make parallel stability (e.g. disturbance

amplification) measurements, and compare the latter with stability

characteristics predicted from the measured mean flowfield.

The Reshotko and Kendall tests were done at low speeds. The work described

here is the analogue for supersonic flows. Specifically, the purpose here was

to measure both the mean profile and the amplification rates (stability diagram)It V A-%I
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of a supersonic laminar boundary layer, when the wall surface is rough. Under

. the best of circumstances, it was hoped that eventual use of the measured

profile could be made by stability theory and that the stability characteristics

so calculated would in turn be compared with the measured stability

characteristics. No information exists to date on the amplification of small

disturbances in a supersonic boundary layer over a rough wall; such information

would be in any way invaluable toward the understanding of the role of roughness

in promoting transition. Thus, the data could play a dual role as checks of the

stability theory and as practical guides to transition prediction.

At the inception of the present program, it was clearly understood that

previous knowledge on the supersonic boundary layer stability with a smooth wall

should be the necessary base on which the measurements with roughness should

rest. It soon became apparent that such knowledge was overestimated. A survey

of the experiments done on smooth-wall stability showed a number of reports

dealing with subsonic edge Mach Number Me (e.g. References 3 and 4), a series of

experiments at 1.5 < Me < 2.2 (Reference 5) and a rather heavy concentration at

6 < Me < 8.5 (References 6 through 12). Kendall (Reference 7) made another

series of measurements at Me = 3 and 4.5, but his presentation deals mainly with

the issue of boundary layer response to the free-stream noise, with little

information on the disturbance behavior within the boundary layer especially at

Mach 3.

Those with some experience in amplification measurements at M = 3 havee

given discouraging accounts of its suitability as a test-bed of linear stability

theory. Laufer and Vrebalovich (Reference 5) limited their published account of

stability to Me = 1.6 and 2.2 because "...at M = 3 the detection of self-excited

oscillations was much more difficult and less reliable." Kendall notes that in

his supersonic experiments "fluctuations of all frequencies were observed to

grow monotonically larger in the region of a boundary layer extending from the



flat plate leading edge to the predicted location of instability, i.e., in a

region where no growth was expected" (Reference 7, p. 291). This statement

portends grave difficulties for stability experiments aiming at the observation

of neutral boundaries for checking the linear stability theory. Such

experiments, furthermore, also depend on amplified "Tollmien-Schlichting waves"

as a reliable indicator of on-going instabilty, and indeed the accidental

discovery of such waves by Schubauer and Skramstadt in the 1940's (Reference 3)

supplied the major impetus for modern-day stability research. Even at

hypersonic speeds, laminar instability waves are so pronounced that they are

routinely visible even to unsophisticated sensors. This selectivity of the

boundary layer disappears at Me = 3, however, giving the experimenter no

immediate evidence of disturbance amplification.

An interesting theoretical explanation of the exceptional non-selectivity

and low amplification in the vicinity of Me = 3 is supplied by Mack (Reference

13, p. 282). It turns out that Me = 3 lies at the minimum of curves one can

plot of maximum spatial amplification rate vs. M This minimum marks the

intersection of 3-D, first-mode amplification rates, and the rates due to 2-D

second-mode disturbances. Thus Me = 3 occupies a unique spot in boundary-layer

stability, one which should present difficulties to the experimentalist and the

theoretician alike.

As a result of the ideas expressed above, the objective of measuring the

growth of damping of natural disturbances over the smooth wall, rather than

being a simple tare measurement, became quite prominent. The smooth-w]II

stability measurement provided, in the end, most of the measurements described

and conclusions reached here. A complete account will appear shortly in a more

detailed Technical Report.

3
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2. Wind-Tunnel Facility

All measurements described here were done in the continuous supersonic

wind-tunnel at MSU (MSU/SWT) at Mach number 3.0. A detailed description of the

facility appears in Reference 14. The relevant attributes of this facility are

its ability to run for long periods (e.g. 8 hours) at constant supply

(stagnation) pressures and temperatures, its steadiness and uniformity of flow,

its convenience of access to the test section, its broad expanse of optical view

of the flow, its automated probe control and data acquisition, and the ease of

controlling the sidewall boundary layer transition zone.

3. Early Experiments with the Axi-Symmetric Model

This program began as a M.S. thesis experiment to look at the rough-wall

flowfield, stability and transition on an axi-symmetric (ogive-cylinder) model

at Mach 3. This geometry was chosen mainly to alleviate possible problems of

model-wall interference common with flat-plate models. This phase of the

program is presented in detail in Reference 15.

The model consisted of a 20.3 cm. long, 2 cm. diameter cylinder attached to

an 11.7 cm long ogive with a sharp tip of 5.2 half angle. The rear end of the

ogive screwed on and blended smoothly with the front end of the cylinder, while

the latter was supported in the back by a sting. This model was always operated

at zero angle of attack, in the tunnel stagnation pressure P range of 200-6000

torr (unit Reynolds number range 20,000 < Re' < 60,000/cm), and stagnation

temperature range 75-125 F. Numerous photos of the tunnel, model, and of the

flow over it are shown on Reference 15.

The boundary-layer flowfield over this model was first examined when the

cylindrical afterbody had a smooth surface ( the ogive was always configured

with a smooth surface). The transition behavior dependence on Po was measured,

' and it was next attempted to determine the surface roughness suitable for

-4



stability measurements by introducing roughness on the cylinder and studying

changes in the transition location. Accordingly, duplicates of the cylindrical

afterbody were built which were covered by uniformly distributed sand-type

roughness; tests were then made to find the transition location dependence on

roughness height. In the process, ue verified the Schiller-Smith criterion that

the minimum critical roughness Reynolds number for tripping transition is about

120 but only if based on the flow conditions at the roughness top (References 16

and 17). This was discovered when it was found that transition on the model

remained unaffected unless the roughness height became excessive (40- or 60-grit

sandpaper). Such a roughness height was much too large a fraction of the

boundary layer thickness and made the flowfield measurements ill-defined and

awkward, as it would for any similar experiment with transition-tripping

roughness at high speeds. Work with the sand-grain roughness method was

therefore stopped.

Better results were achieved with a two-dimensional roughness made up of

the periodic grooves and ridges ("teeth") shown on Figure 1. The major

advantages of this roughness configuration were that I) the boundary-layer

profile was found independent of position relative to the ridge or groove, 2) an

equival.nt surface (i.e., the plane of the tops of the ridges) could be defined

from the data and 3) transition moved upstream over such a surface. Therefore,

this special kind of roughness became the one to use for studying the boundary

layer stability.

At about this time, it also became clear that the boundary layer

development over the ogive-cylinder had certain disadvantages. For example, the

boundary layer growth was not of the Blasius type, and especially at and

downstream of the shoulder the measured momentum Reynolds numbers Reg were too

large. Such behavior is typical of axi-symmetric flows but is not conducive to

7

% % V



the study of stability. This phase having exhausted its usefulness, the

experiments were continued with a flat plate geometry.

4. Flat Plate Experiment Geometry

Beginning in 1982, the program was continued with the design and

fabrication of a 2-dimensional sharp-tipped flat plate model for the stability

measurements. Like its axi-symmetric predecessor, this model, pictured on

Figure 2, had provisions for changing its top surface from a smooth to a

roughened one. This was done by the use of interchangeable inserts, one of

which was smooth, and the other roughened by parallel "teeth" of the same

geometry as used for the axi-symmetric model (Figure 1). All discussion will

henceforth pertain to this flat plate model only.

5. Mean Flowfield in the Boundary Layer

Detailed surveys of the flow in the boundary layer over the model were

first performed over a range of Po (i.e. Reynolds number) for both the smooth

and the rough wall. The plate installation in the SWT for these measurements is

shown on Figure 2. Three specific values of P0 were taken, P0 = 350, 475, and

600 torr which, at a supply temperature of 100 F (125 F for P = 350) gave

nominal unit Reynolds numbers of 30,000, 40,700, and 51,400 per cm. These

surveys showed that, for the smooth wall (Figure 3) the flow conformed well with

the Blasius theory ahead of transition, and the "first departure" of the laminar

toward the turbulent velocity profile was noted with unusual care to serve as

the downstream limit of the linear stability region.

On changing from the smooth to the rough surface, the transition zone

advanced upstream, typically from a "first departure" Re 0 = 400 to about Ree -

330. It is remarkable, however, that the velocity profiles over the rough wall

(Figure 4) showed no departure from the laminar (Blasius) theory for y/9 > 0.15.

It is conjectured that either (a) the profile change due to roughness occurred

6 1



in the lower 10 percent of the boundary layer where data were not taken or

S(b) whatever caused the roughness to trip the boundary layer produced a profile

change too small to be detected.

6.0 Measurements of Disturbance Growth

6.1 Instrumentation and Procedures

Data of the fluctuations were taken with the hot-wire anemometer for the

three stagnation pressures mentioned above, two surface configurations (rough

and smooth) and also along two paths over the plate surface, for a total of

3 x 2 x 2 = 12 data "sets". One of the two paths lay on the y/ = 0.6 line

above the surface where the wideband r.m.s. fluctuations were found to peak; the

second lay on a plane outside the layer parallel to the surface and 0.6 cm above

it, where the instrument responded only to the stream turbulence. For each of

these 12 sets, the hot-wire recorded the fluctuation spectrum every tenth of an

inch (0.25 cm.) beginning very near the leading edge and marching downstream

well beyond the point of "first departure". This provided the opportunity to

study the fluctuation development throughout the linear, non-linear, and

transitional zones. The number of spectra (i.e., of positions x along the flow)

varied from one set to another and averaged around 60.

The three tunnel pressures Po chosen covered all possible cases of noise

radiation from the tunnel sidewalls onto the plate. At Po = 350, transition on

the sidewalls was so far downstream that radiation from them never reached the

plate surface. At Po = 600 torr, the entire sidewall surface was covered by a

turbulent boundary layer; in this case, the plate received the maximum amount of

noise radiation. At Po = 475 torr, noise impinged on the plate starting at

about 5 cm. downstream of the leading edge.

The hot-wire signals for all sets were first processed by a Fast-Fourier-

transform computer, with each transform averaged 1024 times, and with a

7



resolution of 1.6 KHZ in the range 0-320 KHZ (200 Fourier components). These

S 200 x 60 x 12 = 144,000 Fourier amplitudes or "spectral densities" A(f;x) or

e(f;x) were stored as a data file in the IBM 9000 computer along with a very

large menu-driven program (STABLE02) which produced the following on demand:

1) The raw spectrum at each x of the set, i.e., A or e as a function of

frequency f or non-dimensional frequency F = 21Tf/UeRe' ("raw" means noise-

inclusive, and the units of A (or e) are r.m.s. voltage per 1.6 KHZ window).

2) Same as (1) but corrected for noise; henceforth, these are the only

amplitudes and spectra considered.

3) The wideband r.m.s. voltage erms (x), given in terms of x or of the

following functions of x: Rex (wetted Reynolds number), R = (Rex) 0 "5,

nominal Ree and actual Rea. The nominal momentum Reynolds number Reg

obtains from the'Blasius theory, while the actual includes a correction

dictated by the measured 0. The quantity erms is provided both with and

without noise subtraction.

4) The amplitude A(f;x) or e(f;x) (r.m.s. spectral density as in (1)) but now

for any chosen f, as a function of x or its dependencies (R, Rex, etc.) The

curve A(x;f) is called the amplitude change and is the basic source for

computing amplification rates.

5) A "dressing room" for choosing any desired A(x;f) from (4), and seeing what

polynomial degree will fit the best variation A(x;f) vs. x. This is a key

issue; it turns out that in this experiment the phenomena in the linear

range are most faithfully fitted with a 7th-degree polynomial. This

computation then also produces, for every frequency of each set, the non-

dimensional amplification rate

1 dA
2A dR

versus x or its dependencies.

8
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6) The "poles" and "zeroes" of the amplification rate curves for all f's of a

particular set. That is, viewing the 3-dimensional stability diagram

(-oei, F, R), this algorithm finds and stores the coordinates (F, R) of the

neutral branches and the amplification rate maxima and minima.

7) The amplification rate spectrum for any desired x (or R or Ree, etc.) of

each set. This first computes - O°i(x;f) vs. x for all f, then computes and

stores the variation - oi(f) or - oCi(F) for each desired x or R.

8) The total amplification spectrum between two desired x (or R), that is the

amplitude spectrum A(f;x 2 ) at x2 divided by the amplitude spectrum A(f;xl)

at x I - To smooth things out a bit, this was done indirectly by first

choosing a frequency, curve-fitting the variation A(x;f) with a 7th-degree

polynomial, forming Ac(x2;f)/Ac(xl;f) (where Ac means the fitted amplitude

from the curve-fit) and repeating for each frequency.

9) The boundary layer response spectra. This consists simply of first picking

a representative point in the free stream from the "free stream" set of data

and storing the spectrum Ao(f) at that point; then picking a spectrum A(f;x)

from a "boundary layer" set and computing A(f;x)/Ao(f) at that point x.

It is important to note that the hot-wire anemometer responds jointly to

fluctuations in the fluid speed, its temperature, density and pressure. The

process by which the latter fluctuations are extracted from the wire AC voltage

is called "modal analysis". In practice (References 5, 7, and 9 for example)

modal analysis is put aside in stability experiments because of its great

complexity, because of the theoretically-confirmed insensitivity of the

stability to the precise mode of fluctuation (Reference 13) and because of

recent experimental confirmation of such insensitivity by Stetson (Reference

10). Therefore, in this work the quantity A(f;x), while in reality the spectral

density of the AC anemometer output, is equated to the r.m.s. spectral density

of a typical fluctuation.

I



6.2 Results

S 6.2.1 Wideband Signals on the Smooth and Rough Walls

Figures 5, 6, and 7 set the stage by showing the observed relation among

velocity profiles, friction coefficient and wideband hot-wire output for the

smooth-wall Po = 350 and 450 data and for the rough wall, Po = 350 data. Note

that the abscissa is the nominal Re0 (the actual one is higher; see Figure 3).

The "first departure" of the velocity profile, and the departure of Cf from the

laminar values are clear. Note that as Po (and Re') increases, the first

departure is somewhat delayed from just under Reg = 400 to about Req-- 420,

possibly due to the unit Re' effect. These numbers should not be casually

compared with "transition" data obtained from sources which take no pains to

define the term precisely. The present data represent a very careful look at

the very beginning of the process, and from Figures 5, 6, and 7 in fact it seems

that arrival at the turbulent state is a long way off, to the right of the

graphs.

Also observe the wideband r.m.s. voltage variation. Note how it begins

growing far ahead of the "first departure" and how it is impossible to pinpoint

the latter from the wideband magnitude alone. It is important to the subsequent

discussion to note that the r.m.s. signal begins increasing in the laminar flow

far ahead of the first departure point.

The effect of Po and surface roughness on the wideband r.m.s. magnitudes is

shown on Figures 8 and 9. Attention is drawn here to the low free-stream level

compared to the level inside the boundary layer, a significant point as regards

stability. Reynolds number similarity of the fluctuating field is shown on

Figures 10 and 11.

6.2.2 Spectra of the Boundary-Layer Fluctuations

Typical spectra of the fluctuations for various sets (i.e., different

surface configurations, different Re' and various x stations) appear in Figures

Il) I



12 through 14, where the ordinate is the quantity A(f;x) here called "amplifier

output". Nearly in all cases the tendency appears for the signal at low

frequencies to increase going downstream, while the high-frequency signals

decrease. This is in accord with notions of linear stability theory.

In hypersonic (Reference 8) and low supersonic (Reference 5) Mach numbers,

spectra such as shown here would exhibit a sharp "peak" of intensity increasing

and of frequency decreasing as x increases. With the smooth wall, no such peak

appears clearly before Reg (nominal) reaches 370, which is just before the first

departure (Figure 5). This non-selectivity is obviously due to the special

niche occupied by Me = 3 in the linear stability theory (e.g. see Reference 13).

With the rough wall, the selectivity increases, as seen by the presence of

such peaks in Figures 12, 13, etc. (compare the x = 5.4 cm., Re' = 56,100 with

rough and smooth walls). This is mainly due to the displacement of the first

departure upstream when the wall is roughened; actually, however it was also

S e noted that the inherent selectivity of the boundary layer increased for the

rough wall.

6.2.3 The Maximum Amplitude Line

Figure 15 shows the position, on the stability diagram (F, Re ), of the

spectrum peaks discussed above. The locus is often called "maximum

amplification" line in the literature, which should not be confused with the

"1maximum amplification rate" line in the (-Ci' F, Re ) space. The data shown on

this Figure were taken directly from the spectrum peaks found from Figures such

as 12, etc.

The point made by Figure 15 is that, first, the maximum amplitude line is

fairly independent of Re'; second, there seems to be no effect of the roughness;

third, the data agree with those of Laufer (Reference 5) in that they form with

the latter a logical progression in the range M e = 1.5 - 3. In this respect,

note that the agreement improves when the actual Rea is considered. This

at Re 8
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argument implies that the observed spectrum peaks at Me = 3 are due to a first-

S mode type of instability (the first mode, presumably a 3-D mode, thus gives

maximum-amplitude wavelengths of order 256 , as can be computed from Figure 15.

By contrast, the second-mode instabilities prevalent in hypersonic flows

(References 8, 9, 10, etc.) give ; = 2.5 ).

6.2.4 The Amplification Rates

The next step in the process was to find the amplification rates -o i (see

Section 6.1) by cross-plotting the amplitudes A(f;x) versus x at constant f. It

has been already noted that the polynomial fit used was uniformly set to 7th

degree; this statement hides the substantial labor devoted to, and continuing

concern about, finding the proper polynomial degree. One can make serious

mistakes in the amplification factors and the location of neutral branches, for

instance, by using the wrong polynomial degree. Figures 16 and 17 show examples

of what we found in this issue. In Figure 16, a fixed range of data points on

amplitude (called here "spectral density") is fitted by a variety of

polynomials; in Figure 17, the degree is fixed and the effect on the fit is

found of the range of points fitted. Both effects are important since resulting

amplification rates computed on the right can vary widely. In the present case,

we did almost all analysis by fitting the points 0 < x < 10 cm. with 7th degree

polynomials.

Selected amplitude variations and amplification rates are shown on Figures

18 through 20. Here we show, too, on Figure 21 a direc- copy of the computer

CRT screen display of such results to illustrate the data-reduction program

capability.

Figures 22 through 25 show amplification rates at typical frequencies. It

is clear that for P0 = 350 and 475, there is always damping at low R and

%V ,% amplification at high R (the location of the "first departure" on these graphs

will be presented later). Almost always there is a clearly defined maximum in
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the - i curves at R of order 200 - 400, which is either submerged below the

- = 0 line to become a damping region or emerges above it to become an

amplified region. In many cases, there is also a second maximum in the - i

curves, possibly due to a second unstable region, but at Po = 600 and also at

the lowest frequencies there seems to be no damping present between these two

"modes". Around R = 600 the "first departure" occurs, but prior to that the

amplification rates suddenly "blow up", especially at the higher frequencies.

The amplification rates at Po (Figure 25) are especially interesting

because they show very little damping regardless of frequency, distance from

the leading edge and surface type (smooth or rough). This is the case where the

entire interior surface of the nozzle was covered by a tuirbulent boundary layer

which was in turn irradiating the plate model. And yet the maxima, mentioned

above, are quite visible and systematic. It looks as if reasonable neutral

boundaries would emerge from Figure 25 if one could judiciously move the -oi = 0

line upwards for each frequency. This idea, which implies that each

amplification curve is burdened with some extraneous gain, invites the

hypothesis that the incident sound increases the gain of the boundary layer.

Three-dimensional views of -o~i vs. F and R are shown on Figures 26 through

28. It is clear that roughness accentuates the gain phenomena. It is also

clear, again, that - 0i begins rising long before the first departure (R = 600

for smooth wall) is achieved. Also clear is the fact that the so-called first

instability region extends to lower R than expected at low F.

Figures 29 and 30 are an attempt to discern unit Reynolds number effects on

the amplification rates. It is seen from Figure 29 that for the smooth wall the

rates for Po = 350 and 475 are in fair mutual agreement, while for the rough

wall there is hardly a comparison. A comparison of the rates between the smooth

and rough wall is shown on Figures 31, 32, and 33. Especially for P = 350 it

appears that the maximum rates increase slightly when the wall is rough.
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6.2.5 The Amplification-Rate Spectra

The amplification rate spectra of - c~i vs. F are experimental landmarks

most easily compared with theory. For the smooth wall, such spectra are shown

for typical R on Figure 34. Accompanying the data are theoretical curves from

information supplied to this writer by L. Mack for the first unstable mode of 3-

dimensional disturbances with 9> 00 where q/ is the wavefront inclination.

Specifically, the range 550 < 4/ < 650 is considered to represent the most

unstable wavefront orientation. At this point, the short line segments shown on

Figure 34 are the sum total of the theoretical results available to Mack for the

flow conditions at hand.

It is evident from Figure 34 that theory and experiment are located in a

mutually consistent manner if one was to isolate the unexpected amplification

visible at low frequencies. The low-frequency amplification rates are out of

place with what the data, together with the theory, seem to indicate. This

4. phenomenon is typical of Me = 3, and in fact both Laufer (Reference 5) and

Kendall (Reference 7) have observed a continuous increase of the low-frequency

signal strength from the leading edge going downstream. The data of Figure 34

is the first documentation of this phenomenon known to this writer. Additional

amplification spectra are shown on Figures 35 and 36.

The data for R = 500 in Figure 36 show - oi levels as high as 0.003, and

an overall shape of the spectrum which now begins departing from any reasonable

extrapolation of the theoretical curve shown on the same graph. The value R =

500 is stil below R = 600 marking the "first departure" toward transition and is

still therefore in the laminar self-similar region. Thus there are occurrences

in the laminar flow not accounted for by stability theory. In this work, we

will refer to this large amplitude, large amplification region as the "non-

linear region".
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The collection of amplification rate spectra of Figures 35 and 36 should,

X in principle, permit some judgement to be made on the effect of roughness and of

Re'. In general, for the smooth wall the spectra for Re' = 29,400 and 43,900

seem to coincide except at R = 250 and 450. These departures are on the side

favoring lower amplification for the higher of the two Re', and is consistent

with the slight transition delay seen for the latter, i.e., the "unit Reynolds

number effect".

An effect of roughness can also be gleaned from Figures 35 and 36. For R <

300 no statement about the rate spectra over the rough wall can be made, for

reasons soon apparent; but for R > 300, it is clear that amplification rates

higher for the rough than smooth wall begin building up, even though the rates

for the rough wall start out at R = 300, below those for the smooth wall (this

latter effect might involve a measurement problem which is presently unclear).

In any way, the spectra for the rough wall reach a rate as high as 0.004 at R =

6.' 500 while at the same R the smooth wall rates are 0.0025 - 0.003.

6.2.6 The Stability Diagrams

At the outset it should again be borne in mind that Me = 3 occupies a

rather unique position in boundary layer stability because of low selectivity

and the suppression of amplification rates. No stability diagrams at M e = 3

have been presented to date. Previous investigators (References 5 and 7) warn

of a generally confused state of affairs at this Mach number and stress their

finding that the stability picture gets obscured by "continuously growing

disturbances". Regions of damping have apparently not been found before.

The smooth wall neutral branches (F, Re& ) are shown on Figure 37. The

outstanding features are (a) there is no Re' effect, (b) an upper unstable

frequency limit of F 0.00023 is indicated, (c) with the exception of the low

frequencies (F < 0.0001) the shape of the unstable region is as expected.

Furthermore, there is a very reasonable placement of the data relative to the
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Me = 2.2 data of Laufer. It should be recalled also that the present maximum

amplitude locus is very close to that found by Laufer (Figure 15).

The upper part of the lower neutral branch is more credible at this point,

an it gives a minimum critical Reynolds number of about Ree = 180. The lower

part of this branch lies at excessively low Re& , and is here showing the effect

reported elsewhere of amplification at the lower frequencies (F < 0.0001) and at

low Reynolds numbers. Aside from that, however, the situation here is much

clearer than expected regarding this amplified region, presumably the "first

mode".

Figure 37 has been slightly edited, only as regards data points far from

the main neutral branches of the first mode. The complete unedited collection

of neutral points and also amplification rate maxima and mimima for all cases

(sets) generated is shown on Figures 38 and 39. A striking aspect of the six

S graphs shorn is the appearance of a second amplified region to the right of the

first mode (this is not so much inferred by the second set of "lower neutral

branch" points shown, as much as the appearance of lines of amplification rate

minima past the first mode). In other words, there appears a second mechanism,

perhaps non-linear, but still in the laminar, self-similar flow, which provides

further disturbance amplification. Thus the stability diagram looks quite

complex.

Another feature of Figures 38 and 39 is the excessive scatter of points at

Po = 600, which is when the plate model is wholly immersed in the radiation

field of the sidewalls. For this reason, further analysis of the P = 600 caseso

has been stopped.

For the rough wall, the stable and unstable regions stand out with great

. -* clarity at Re' = 29,400/cm. (Po = 350). Figure 39 shows how the first mode,

again disfigured at the lower frequencies, has moved bodily to the lower Re;
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furthermore, the highest unstable frequency has also increased to about F =

' 0.0003. This caused some excitement at first, until it was realized that the

roughness section on the model did not begin until 3 cm. from the leading edge

(R = 300 at Re' = 2 9, 4 0 0 /cm.). The origin of this unstable region is therefore

hard to interpret. On the other hand, Figure 39 shows that another unstable

region appears at R.- 350 for the rough wall (the minima in the amplification

rates at P0 = 350, Figure 39).

Figures 40, 41, and 42 show a general view of the boundary-layer stability

findings in a geographic sense, plotting everything versus the nominal Re e.

The idea here is to give the viewer the location of the various phenomena

relative to one another, especially relative to the first departure

("transition") location. The latter is accurateLy pinpointed by the top two

graphs, especially the friction plot. It is important to note that, as already

mentioned, there exist several features in the stability diagram (bottom graphs

* in these Figures) which antedate the onset of transition.

6.2.7 The Boundary Layer Response

Since amplitude information was available all the way to the first

departure, it is natural to ask about the maximum amplitude change experienced

by the fluctuations before they became large enough to cause turbulence. Some

answers are shown oi, Figures 43 through 48.

Rather than integrate the amplification rates to get final amplitudes, the

spectra A(f;x) at various locations were simply divided by the spectrum at a

typical "most forward" position, such as at R = 150 (or ReP-= 100). On Figures

43 and 45 are shown such results for the smooth wall, picking spectra at

important landmarks of the stability diagram. For example, it is interesting to

see by how much disturbances amplified by the end of the "linear region", which

is marked (Figures 40, 41, etc.) by the appearance of an amplification rate

minimum line just beyond the first unstable region. According to our data, this

17
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occurs at about R = 400 (Re = 265) for the smooth wall and at about R = 350

(Re9 = 230) for the rough wall.

Also, how much have the disturbances amplified upon reaching the first

departure point beyond which Cf increases and the boundary layer loses laminar

self-similarity? As a reminder, this occurs at about R = 600 (Rev 9= 400) for

the smooth and R = 500 (Re,9 = 335) for the rough wall (recall that these are

nominal values of Re ).

Some surprising answers appear. For example, for the smooth wall at Po =

350 (Figure 43), the first mode has caused an indifferent 10 percent increase in

the fluctuation magnitude and that only for a very small frequency band below

F < 0.00005. At Po = 475, there is net attenuation for all frequencies up to

R = 500! And in the entire zone upstream of transition, the maximum

amplification observed with the smooth wall did not exceed a factor of 3 for Po

= 350 and 2 for Po = 475, again for a limited frequency band only. For the

* rough wall, similarly, the maximum amplification is about 2.3 (Figure 44).

These results have important implications to the mechanism of turbulence

generation in the boundary layer. It seems highly unlikely to this writer that

such modest gains could be responsible for transition and quite likely that some

other mechanism is at play, stemming perhaps from the idea that the layer is

"forced" (Reference 13). Kendall (Reference 7) pursued this idea by plotting

the spectrum of the ratio A/Ao(f) where Ao is the spectral density in the free

stream. Similar plots appear here on Figures 46, 47, and 48 (values R = 330,

470 ... on these plots were picked to correspond to Kendall's values). Now we

can draw some conclusions by comparing Figures 43, 44, etc. which show events

within the boundary layer with Figures 46, 47, etc. which compare events inside

and outside of the boundary layer. The former show that between the

neighborhood of the leading edge and transition onset, disturbances amplify

typically by a factor of 2. But the latter say that the disturbances have
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gained, say, a factor of 5 "upon entering" the boundary layer. Therefore most

of the disturbance growth appears to have little to do with linear stability

theory.

Experimentalists like this writer have observed, in fact, that an amount of

'noise" much larger than can be found in the free stream is always found inside

a laminar boundary layer no matter how close to the leading edge one gets.

Spurred by findings as the one above, it has been suggested that the

disturbances enter the boundary layer "near the leading edge"; until such

statements can be quantified, however, it must be recalled that fluid is

entrained into the layer continuously along its length. Thus it appears that a

"jump" in disturbance strength occurs upon crossing into the boundary layer at

any event, as opposed to the role of the leading edge above.

7. Discussion and Conclusions

This program has addressed two separate questions, the first being the

stability of the boundary layer over a smooth, adiabatic wall at Mach 3. The

classical method was followed of measuring the evolution of the hot-wire

anemometer signal Fourier components along the plate from the vicinity of the

leading edge to the transition zone. The latter was fixed securely by careful

observations of the velocity profiles. "First departure" was the term used to

define the position (at each stagnation pressure) where the ptofi]_s showed a

change over the theoretical Blasius profile.

In the upstream half of the laminar boundary layer, we have identified a

region of amplification surrounded by a region of damping in the F, R plane.

The upper part of this "stability loop" would be easily seen from the data and

fits preconceptions formed by previous test data a- lower Mach numbers (1.5 < Me

< 2.2) and by early stabil ity theory (e.g. Reference 18). The same can be said

about thL! "line of maximum amplitude". For the first time known to this writer,

the maximum amplified frequency could also be clearly seen (at F c--0.00023).

I |
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The lower neutral branch of the amplified loop does not fit earlier notions

from linear stability, however. Specifically, the lower neutral branch seems to

occur at a nearly constant Reynolds number. Laufer (Reference 5) also obtained

the lower neutral branch quite clearly; but he used artificial disturbances and,

more significantly, he used edge Mach number where the amplificatior. rates were

considerably higher. In fact, interpreting literally the comments by References

5 and 7, the existence of the entire lower neutral branch at Me = 3 would be in

doubt since disturbances were previously found to "increase monotonically from

the leading edge on". If the discernment of that branch is any standard of

quality at all, we should be fairly satisfied that the branch was visible here

at the lower frequencies.

There appears to be a small but definite unit Reynolds number Re' effect on

stability. For the largest of the two Re' employed, transition moved slightly

downstream. The neutral branches did not move, but at the higher Re' the

* amplification rates within them decreased slightly also. In fact at this Re',

the total result between the leading edge and R = 500 is a net decrease of the

amplitude at all frequencies.

Quantitatively, the amplification rates in the linear region (here defined

as ending by R = 400 or 450 at most) are in seeming agreement with theoretical

predictions for first mode 3-D instabilities ( = 550 - 650). The

qualification arises from the need to ignore the low frequency amplification

phenomenon mentioned above and from the incompleteness of the available

theoretical results.

The above remarks concern primarily those data obtained with a laminar

sidewall boundary layer. Data were also recorded (at Po = 600) with a turbulent

sidewall boundary layer, which would irradiate the entire working surface with

sound waves. The data show that in this case the amplification loop maintained

its position and shape but that an "amplification increment" was added to each

2()
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Fourier component. The principal result is that all amplification rate curves

are raised, leaving very little damping anywhere. Data were also taken with an

intermediate pressure (Po = 475) where irradiation occurred only in the non-

linear region (R > 400). One could see no abrupt change in the disturbance

history along this plate due to this effect. Furthermore, it is interesting

that transition was still delayed, even though the irradiation would normally

accelerate it.

It was found that amplification activity in the region preceding the first

departure is not limited to the "loop" identified in the previous paragraphs as

the first 3-D amplification mode. The data invariably show that soon after

Re 8 = 300, the upper neutral branch turns upward vertically and becomes a

"lower" neutral branch. This phenomenon actually sets in as early as Ree = 250

at Po = 350 (at Re -=300 at P0 = 475) where one notes that outside and past the

first mode loop the damping reaches a maximum while inside the loop the

amplification rates, while still positive, also reach a minimum. The

interesting feature of this new amplification region is the involvement of the

higher frequencies (F > 0.00015) and at higher Reynolds numbers. It must be

stressed that this is not related to the familiar, sudden activity generated at

high frequencies after transition occurs.

It should be noted that the possibility of unstable regions at high F and R

is quite real. We know from theory that around Me = 3.5 the 2-D second

instability mode appears; the hypersonic data show multiple unstable regions in

the range of 0 < F < 0.0005 and 1000 < R < 2000. 1t is net yet known where such

regions will fall extrapolated to lower R. There may well be 2-D or 3-D

unstable regions visible in the 300 < R < 1000 range which are not related to r

the first mode but connected to it in the stability diagram (these comments are

not meant to imply validity of recent numerical results by Wazzan et al.,
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(Reference 19) which have been disputed by Mack (Reference 20) and which,

besides, predict amplifications at very high frequencies).

The second question addressed in this work was the influence of wall

roughness on stability. The rough wall results have been a mixture of

interesting and disappointing incidents. The early history of this program

began with some important experimental lessons. The criterion for minimum

roughness height needed to trigger transition was confirmed with the axi-

symmetric geometry. For supersonic/hypersonic flows, the height is so large

that different laminar flow profiles obtain from one point to another on the

surface. This loss of similarity makes this writer suspect that no general

profile shape will ever be obtained at these speeds, theoretically or

experimentally, for transition-effective random-distributed roughness.

The chosen roughness of periodic grooves and ridges did the job of

destabilizing the boundary layer but by a mechanism which is presently obscure.

S It was frustrating that no profile distortion caused by the roughenss could be

found for y/$ > 0.15. It is possible that the destabilizing distortion occurred

very near the surface where the experiment scale prevented measurements. It is

more likely, though, that the distortion extended farther out but was too weak

to be captured by the diagnostic probes. (At low speeds, Kendall (Reference 2)

implies that both possibilities are valid.)

An interesting finding with the rough wall was that the disturbance history

became clearer, i.e., the inflections became more pronounced and less dependent

on the subtleties of the curve-fits. This behavior was reminiscent of the ease

with which artificial disturbances behave (e.g. Reference 5). It is implied

here that some peculiarity of the roughness geometry (such as instabilities

radiating sound wave , from the shear layers separating over every ridge)

provided a forced oscillation much clearer than the natural disturbances. Thus,

the "linear" region with the first mode loop shows up distinctly; this,
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unfortunately, is discounted as an effect of the roughness because it appears

ahead of the roughened zone. Even so, it may be stated here that the neutral

boundaries of the first mode are unaffected by the roughness. For example, the

location of the maximum amplitude line on the stability diagram is unaffected by

the roughness.

The effect of roughness comes into its own in the range 300 < R < 500, the

former limit signifying the beginning of the roughness patch and the latter the

first departure point. The amplification rates increase quickly with roughness

and substantially exceed the smooth wall rates.

From the data, it appears that whether the wall is smooth or rough, the

total "boost" given disturbances by boundary layer instability occurs only at

low frequencies and consists of a factor of about 2 (high frequencies experience

a net decrease by the boundary layer action alone, between the leading edge and

the first departure). The transition-triggering mechanism must therefore be

sought elsewhere, such as an amplification experienced by the disturbances while

entering the boundary layer. A comparison with the disturbances magnitude in

the free stream indeed shows a large increase in amplitude between free stream

and the formative (low R) stages of the layer. The data show that first

departure occurs when the disturbances have grown to about 25 times their stream

value.

The conclusions drawn from this research can be summarized as follows:

1) Three different regions of boundary layer behavior at Me = 3 have been

established: "linear" (R < 400), "non-linear" (400 < R < 600), and

"transitional" (R > 600).

2) An unstable region ("loop") fitting theoretical ideas of linear stability

has been found in the linear region of the stability diagram, with a maximum

amplified frequency F =-0.00023 and a minimum critical Reynolds number of

180. The landmarks of this unstable loop are also consistent with earlier
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stability data at 1.5 < Me < 2.2. The experimental amplification rates

furthermore conform to the available theoretical predictions. The lower

neutral branch of the loop is severely distorted at the low frequencies but

not in the extreme manner observed elsewhere.

3) The effect, on the above findings, of irradiating the plate surface with

sound emanating from the sidewall boundary layers was, in the main, to

increase the amplification rate uniformly so that regions of damping shrank

or vanished.

4) The effect of increasing the unit Reynolds number was to decrease slightly

the amplification rates without changing the neutral boundary position.

Transition to turbulence also moved slightly downstream.

5) A second region of amplification was discovered in the "non-linear region"

downstream of the "first mode" loop, while still upstream of the first

evidence of transition. This second region extends to higher frequencies

(F > 0.0002 and beyond) and involves higher amplification rates than found

in the linear region. The causative disturbance mode and geometry for this

phenomenon are unknown.

6) At M e = 3, random distributed sandgrains were found unsuitable for the study

of roughness-induced instability in general. A special type of 2-

dimensional roughness was discovered and used which caused transition to

move upstream, but a causative distortion of the mean velocity profile was

not found. Stability measurements with this roughness showed that the

linear-range amplified region shifted in an undetermined manner; and in the

non-linear range the newly-discovered second region of amplification became

much clearer, set in earlier and had larger amplification rates than the

rates with the smooth surface.

7) A final accounting of disturbance amplitude development in the boundary

layer shows that in the linear range (R < 400) the amplitude increases very
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little irrespective of frequency and may actually decrease. In the non-

1W linear range (400 < R < 600 for the smooth, 300 < R < 500 for the rough

wall) the amplitude increases by no more than a factor of 3 at most (at the

low frequencies) and often by no more than a factor of 2. However, a factor

of 5 in gain was observed when the disturbances entered the boundary layer

(the stream amplitudes needed a factor of 25 or so to "cause" transition).

Thus it is proposed that linear boundary layer stability in itself is

incapable of causing transition and that the major contribution must be

sought elsewhere.
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Figure 1 . Top: Schematic of flat plate model , showing "tooth"
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