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DEVELOPMENT Or RAPID METHODS TO MONITOR OXIDATIVE AND MAILLARD

(SUGAR-AMtNE) POLYMERIZATION IN ENERGY-DENSE,

ENCAPSULATED MODEL RATION SYSTEMS

INTRODUCTION

The work reported here is methods development to study degradative

mechanisms in encapsulated, energy-dense, military combat ration systems.

The ultimate objective is the prediction and extension of storage life

under extreme climatic and processing conditions.

The approach used was to develop encapsulated, energy-dense model

systems representative of dry, moist and fluid rations and to study their

quality loss due to Maillard (sugar-amine) and oxidative polymerization.

It was important to develop rapid measurement methods that could monitor

the two concurrent processes and could differentiate them, since they are

mutually competitive and interactive.

Quality loss for this work was defined as loss of functionality and

acceptance due to toughness, and loss of solubility and dispersibility.

The work is not concerned with loss of nutritional quality, flavor, odor

or color, although these may or may not be concomitants. The attributes

studied here are largely a function of cross-linking and resultant

polymerization, which it was found, are closely correlated with color and

fluorescence development. The latter two characteristics are the basis of

most methods derived in this report. In particular, fluorescence, when

judiciously applied, can be extremely sensitive and selective, permittinq

differentiation between oxidation and Maillard reactions, and separation

of these from test responses due to nondegraded food components.



In food storage life prediction, it is necessary to determine four

things: 1) the attribute (nutrients, toughness, odor) whose loss or

appearance will end storage lif,, giving an end point; 2) the rate of loss

of that attribute as a function of temperature (and for some applications,

humidity); 3) climatic or 'process distributions of ambient temperature in

time and space, and 4) the induced temperature in the food as a result of

cyclical ambient temperatures. For the purpose of this work,

pol~perization was chosen as the storage life limiter, and the rate of its

increase as a function of changing temperature was the desired kinetic

datum. Although three levels of water activity were used, quality loss as

a function of water activity was not a prime target. Data on extreme

induced temperatures in stored foods and the ambient climatic and

processing temperatures producing these induced levels are available to

this laboratory.
1

The ration models developed for this work were energy-dense paradigms

for the so-called "Nutritional Sustainment Modules" currently under design

for use by forward infantry elements under extreme mobility and stress

conditions anticipated in the year 2000. Energy density, whether per unit

mass or volume, implies dried, and, for volume density, cor,.prt=ssed items.

Beyond that for further densification, the substitution of lipid for

portions of protein or carbohydrate is mandatory. Under current

preventive nwkical protocols, a substantial fraction of polyunsaturated

lipid is recommended, which, in turn, means relatively fluid and

oxidizable material. Such lipid often requires encapsulation, to permit

water miscibility and prevent "oiling out". In addition, phospholipid

encapsulation (Fig 1) in conjunction with competent primary antioxidants,

2
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may reduce oxidative degradation, a primary cause of cross-linking.

Typical naturally occurring encapsulated energy-dense foods are soybeans,

egg yolk, and cream. Mayonnaise and salad dressing typify fabricated

foods using egg phospholipid encapsulants. The latter together with soy

and milk phospholipids share certain important advantages: 1) they are

GRAS, or generally regarded as safe as food components or adjuvants by the

Food and Drug Administration (FDA), 2) they are excellent encapsulants and

emulsifiers, and 3) as stated above, they are strong synergists with

antioxidants. These components have been used exclusively in the work

described in this report and became the basis of two important measurement

methods.

METHODS DEVELOPMENT

For food storage life prediction, there was a need for methods to

detect cross-linking and polymerization due either to sugar-amine

(Maillard)browning or to lipid oxidation (Fig. 2). It was desired that

the methods be rapid and labor-saving, so that real time measurement of

the level of quality loss could be made. It was also desirable that the

methods differentiate the two modes of loss, especially when both are

occurring concurrently.

A. Past Methods

Previous workers have developed general measurement methods for

sugar-amine browning and oxidative degradation. The early work was

targetted largely toward nutritional availability. Many of the standard

methods measure the first stable products formed, i.e., the Amadori

compound, a l-amino-l-deoxy-2-ketose compound, or lipid hydroperoxide.

Both are colorless, relatively bland in taste, odorless and do not involve

4
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polymerization. However, both render the ingredients, sugar and amino

acid or lipid, unavailable biologically. Hence, the early work was

nutrition centered. Such methods include the reducing power of the

Amadori compound assayed by acid-ferricyanide,2 the formation of the

artifact furosine from Amadori compounds after hot acid hydrolysis of a

protein as assayed on an amino acid analyzer and the iodometric

determination of peroxide value.4  The thiobarbituric acid test (TBA)

has been considered to measure the dicarbonyl, malondialdehyde, from lipid

oxidation, a secondary product which is a colorless, relatively odorless,

and unstable monomer.
5

The above methods are adequate for nutritional purposes and at initial

stages when products are monomeric and often water-soluble. They are,

however, in general, labor intensive and relatively slow. There is also

interference by common food ingredients. In addition, at the stage of

most interest to us, polymerization and cross-linking, those processes

most closely connected to chewiness and lubriciousness, the above

mentioned methods begin to fail because of the insolubility of the very

products that have to be to measured. A search was made, therefore, !or

rapid, reproducible, labor-saving assay methods for sugar-amine browning

and lipid oxidation targetted at polymeric products or products known to

be correlated with polymerization.

The method developed by Kim and Taub6 of colorimerric assay after

enzymatic digestion was modified for fluorescence assay. The

chloroform-methanol extraction method of Bouzas, Kamerei and Karel,'
8'9

which was developed for study of fluorescent chromophores resulting from

lipid oxidation in the presence of protein, was modified to study Maillard

reaction fluorescent chromophores.

6



B. Our Methods

1. The Energy-dense, Encapsulated Model System.

As an idealized pattern for the many kinds of energy-dense,

encapsulated combat rations which may be developed, the following model

system (Table 1) was developed, primarily to permit methods development in

quality loss:

TABLE 1. Encapsulated, Energy-dense Model Ration System

Component Percentage

Stripped corn oil 35

Stripped soy lecithin 1.5

Sodiun caseinate 15

Lactose 35

Starch 5

Assorted additives,* 8.5

as required,

including wheat

bran, cocoa non-

fat solids,

baker's yeast

*Not used in the work reported herein.

Both the triglyceride and the lecithin phosphatides (which included

the usual phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl

inositol and phosphatidyl serine as well as others) were largely, but not

completely, stripped of natural antioxidants during manufacture, the

7



triglycerides by vacuum distillation, the phosphatides by acetone

extraction. As constituted and without additives, the system has 40

weight percent lipid and about 60 percent of calories derived from lipid.

It is purposely nearly depleted of natural antioxidants in order to

compare concurrent browning and oxidation. The usual ration would have

much more delayed oxidation, and if sucrose were substitutedZ for lactose,

much more delayed Maillard browning.

For methods development in Maillard browning, this system was stored

in three moisture modes, aw 0.23, 0.5, 1.0 (fluid) and at controlled

temperatures close to 80, 90 and 1000 C. The storage for lipid oxidation

methods development was done at the three moisture levels and at 100 0C.

Stripped corn oil was procured from Eastman Kodak Co., Rochester,

N.Y. Most but not all, of the tocopherols have been removed by molecular

distillation (10 ppm maximum). Sodium caseinate was Savortone (R)* Low

Flavor, obtained from Express Foods Company, Louisville, KY. Soy lecithin

was Arlec (R )* (acetone-stripped granules, which we have shown to contain

very little natural antioxidant) obtained from Archer Daniels Midland Co.

Lactose was Baker's C. P. Analyzed, J. T. Baker Chemical Co. All were

used as received without further purification. The lactose (49 g) and

starch (7 g) were boiled for one minute in 937 mL deionized water, cooled,

and the casinate (21 g) added and blended with a Waring blender, after

which the lecithin (2.1 g) was blended. Next 49 g stripped corn oil was

added drop by drop, mixing with a magnetic stirrer. The dispersion was

freeze-dried for 24 hours and stored as a white powder in the freezer.

8



2. Sugar-amine Browning.

a. Enzymatic digest--absorption and fluorescence spectrophotometry.{6
using a modification of the method of Kim and Taub, 6 100 mg of a

relatively dry s.rnple of the model system which has been heated at a

suitable water activity to accomplish Maillard browning is comminuted in a

mortar and added to 4 mL (0.1M) ammonium bicarbonate solution, pH 7.8,

containing 2 mg Pronase (R)* (Calbiochem, Inc.) contained in a centrifuge

tube. The tube is stoppered and kept in a 37°C water bath (+3°C) for

24 hours. Two mL of chloroform are added, the tube is mixed 1 min on a

Vortex mixer*, and centrifuged for 1 h on a clinical centrifuge. The

aqueous supernatant is used for absorption spectrophotometry at 420 rm

without dilution and is appropriately diluted for fluorescence

spectrophotometry using excitation at 392 nm. If turbidity develops,

samples are filtered through a 0.22 pm Millex-GV* or 0.45 pm Millex-HV*

filter unit (Millipore Corp.) to produce a clear solution.

With suitable dilution to avoid fluorescence quenching, this metho I

gives good sensitivity and signal--to--noise ratio for both fluorescence

and absorption spectrophotometry, the latter being at least 10 times less

sensitive. The method failed when applied to samples heated at lower

water activities (aw 0.23, saturated potassium acetate solution) because

of unfilterable turbidity, the precipitate being fluorescent and colored.

The method is slow and labor-intensive.

Fluorescence is measured on a Baird-Atomic Fluorescence

Spectrophotometer, Model SF-1*. Absorption is measured on a Cary Model

15* Spectrophotometer.

9



Typical settings for the Baird Fluorescence Spectrophotometer are:

Coarse gain 10, fine gain 6, entrance slit fine, exit slit medium,

excitation wavelength 392 nm. All readings are expressed as the ratio

100 x Fluorescence Intensity of Sample/Fluorescence Intensity of Quinine

Sulphate (1 ppm in 0.1 N H2so4 ).

b. Chloroform-methanol extract (C/M). Using a modification of the

method of Bouzas, Kamerei and Karel7'8,9 a measured 100 mg of a

relatively dry sample which has been heated at a suitable water activity

to accomplish Maillard browning is comminuted in an agate mortar and added

to a separatory funnel containing 4 mL of deionized water and

20 mL of a chloroform-methanol solution (2/1, v/v, spectral grade, Burdick

and Jackson, Inc.) the water and organic solvent being left initially in

two layers. The separatory funnel is stoppered and shaken a timed 5

minutes. The contents are decanted into a centrifuge tube without washing

and centrifuged on a clinical centrifuge for a timed 5 minutes. Circa

4 mL of the clear lower layer (92% CHCl3/8% MEOH) are carefully

transferred by a 9" Pasteur disposable pipette into a 5 mL test tube,

stoppered with aluminum !oil. A measured 100 mg of anhydrous sodium

sulfate is added and stirred by careful plunger action of a glass rod. An

initial colloidal opalescence usually clears immediately and the

fluorescence of the solution is measured or, a Baird-Atomic Fluorescence

Spectrophotometer at excitation wavelength of 380 rm. F~nission is in the

450-460 nm range. Compartment slits are at medium and coarse gain is 100,

fine gain 9. This method is about ten times as fast as the enzymatic

method, is reproducible and much less labor intensive, especially when

turbidity is a problem, as mentioned above. It is applicable in all

10



cases, even those for which turbidity renders the enzymatic method

tnsuitable. The only interfering compound of importance in biological

systems is retinol, vitamin A, which can be destroyed by brief irradiation

at 360 n. The method has recently been successfully automated using the

Soxtec System HT*, an accelerated Soxhlet extraction method permitting

analysis of six samples in two hours.

c. Front-face fluorescence of acid-precipitated casein slurry. To

five mL of a suitably browned fluid sample (100 C, 2.5 hours),

containing 2.43 g dry weight, is added 20 mL deionized water. The

dispersion is acidified to pH 4.6 with 1N HCi, with stirring. The

precipitate is centrifuged and washed with 10 mL deionized water three

times. By pressing a 9 mm thick quartz wedge into the 10 mm silica cell

containing 0.5 mL of a 15 percent slurry of the precipitate in water, a

I nn thick slab of slurry is forced up into the void space. The slurry

shows little to no settling and on the Baird-Atomic Fluorescence

Spectrophotometer, using excitation at 360 rrn and front-face viewing at an

inclination of 520C from normal to the cell face, produces reproducible

fluorescence emission at 445 rfn. It was demonstrated that any riboflavin

interference is removed by the water washings of the acid-precipitated

protein. Table 2 gives values of the fluorescence index at selected

heating times for a heat-browned fluid nonfat dry milk. The index is a

normalizing procedure to create an internal reference by dividing

fluorescence intensity at the emission maximun by intensity at the minimu,

between the scattered 360 nm peak and the fluorescence emission peak. In

scattering samples like these, the fluorescence index so derived

b1



TABLE 2. Slurry Fluorescence of Acid-precipitated Casein from

Heat-browned Fluid Nonfat Dry Milk (1000C, 2.5 h)

Time (min) Fluorescence Index

0 1.22

30 1.34

60 1.93

90 2.32

120 2.88

150, 3.05

is a dependable normalization method when only event marking (induction

period) or relative rates are required.

Alternatively, front-face slurry fluorescence is measured on a Spex

Fluorolog Spectrophotometer* at an angle of 220. Excitation i. at 360

am, typical emission 438-445 rin, slit-widths, ex 2.0 rm, em 1.0 rm. with a

1 nm increment and integration time of 0.1 second. The instrument is in

the DC mode. For this instrument, a 390 nm cut-off filter is placed in

the arission path, and the spectrum is scanned through the residual of the

excitation scatter peak at 360 nm. The latter is then used as the

normalizing reference for the fluorescence index, instead of the minimum.

3. Lipid Oxidation.

a. Chloroform-methanol extract (C/M). It has been found by us and

others7'8'9 that the standard method described above (Para II, B., 2-b)

can be used also to monitor lipid oxidation. Oxidation was found in dry

samples which were browned at 1000C and low water activity (aw 0.23,

12



saturated potassium acetate solution), for periods of 24 hours or longer,

at which time oxidation is known to comence, as is revealed by vapor

phase methods (see below, Para II, B., 3-b). Fluorescence measurements

(Baird-Atomic instrument) on the C/M extract using an excitation

wavelength of 380 rn, as is used for Maillard browning measurements, in

the presence of lipid oxidation begin to show a greatly enhanced

fluorescence to color intensity ratio. This intense emission at low color

levels (highlightness--Hunter L) is highly atypical for Maillard browning

and can be used to measure lipid oxidation, since its magnitude dwarfs the

Maillard contribution. Work is currently underway to differentiate more

sharply the Maillard from the oxidative contribution to the C/M extracts.

b. Front-face fluorescence of acid-precipitated casein slurry. It

was found that, as in the chloroform-methanol method, front-face

fluorescence is a very sensitive method to measure extent of oxidative

polymerization as well as Maillard reaction by means of fluorescence of

the amino-imino-propene product from lipid carbonyl reactions with protein

lysine. Enission can be distinguished from Maillard fluorescence emission

by the high values at high lightness (Hunter L) and by the independent

confirmation provided by oxidative polyamide fluorescence or 232 nm

absorption of a hexane extract.

c. Oxidative polyamide fluorescence (OPF). Porter et al.1 0 showed

that the vapors from oxidizing lipids (whether triglyceride, polar lipid,

or simple esters or acids) when in contact with polyamide powders, produce

characteristic fluorescence, similar to that shown for amino-im:,o-propene

compounds by Chio and Tappel.11 Solid sample methods for measuring this

13



fluorescence and many examples of its use, have been reported by
10

Porter.

The method was applied Lo the present energy-dense, encapsulated model

systems in three modes, dry, moist and fluid. In all cases, terephthalate

plates measuring 2 x 3 an and coated with a 250p polyamide layer were

suspended powder face down on aluminum mesh screen over open 5 an petri

dish bottons containing a caretully weighed 300 mg of dry model system

comminuted powder. The petri dish, in turn, was supported on an

overturned 25 mL beaker standing in a half-pint Ball Corp. mason jar

containing approximately 20 mL of either saturated potassium acetate,

(aw 0.23) or saturated sodium bromide (aw 0.5). The screw-top lid of

the Ball Corp. mason jar was carefully lined with aluminum foil, since it

has been found that the rubber seal ring contributes oxidative

fluorescence. The jars were equilibrated overnight in the dark at room

temperature after sealing, and were placed in a 1000C draft oven for

various storage times. Polyamide plates were read on a solid sample

holder in a Baird-Atomic Fluorescence Spectrometer, using excitation

wavelength

360 nm. Coarse gain is 10, fine gain 0, with entrance slit fine, exit

slit medium. Emission begins at 425 r-n and undergoes a steady red shift

as oxidation proceeds, which is a characteristic of oxidative but not

Maillard fluorescence. A jar containing all elements except the model

system is heated as a blank control and no increase in emission over that

of blank occurs during Maillard browning alone.

4. Reflectance Colorimetry.

Color values, expressed as Hunter L, a, b, were measured and computed

on a Hunter lab D54P-5 Reflectance Spectrophotometer*. The instrument was

14



suitably standardized with a light trap, white standard and gray standard,

with specular component included.

RESULTS AND DISCUSSION

The detailed use of the methods developed here awaits longer and more

extensive kinetic studies of quality loss. However, the results obtained

while developing the methods are reported below.

A. Sugar-Amine Browning

1. Enz-rmatic Digest--hbsorption and Fluorescence Spectrophotonetry.

Figures 3, 4, and 5 show the progress of Maillard browning during storage

of the model system at 89CC and water activity 0.5 (saturated sodium

bromide). Compared with 420 nm absorption, fluorescence shows a higher

ratio of browned Pcitple value to control value, is more sensitive and

gives an earlier indication of the onset of l ymerization. Previous work

with gel filtration showed that both fluorescence and 420 mi absorption

correlate with each other and with the appearance of high molecular weight

matprial, travelling near the void volumne in certain gels. The

reproducibility of the enzymatic method can be assessed by comparing

Figures 3 and 4, which depict two separate browning experiments by the

same worker. Figure 5 shows browning measurements under the same

conditions by another worker, the double sets of points reptesenting

repeats of the enzymatic digest and measurements.

Figures 6 and 7 show res lts using the same method, but for browning

conducted at 100aC and aw 0.5, by two different workers. Conspicuous

at the higher temperature is the greater lacj until onset of rapid phase

15
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browning, whether assayed by fluorescence or color, found by both

workers.** Again, fluorescence is an earlier and more sensitive

indicator.

2. Chloroform/Methanol Extract.

Figures 8, 9, and 10 show C/M measurements of the same browned samples

which had been assayed enzymatically above, which were stored at 890 C
and a 0.5. Results from. the two samples heated by the same worker

w

agree well with those of the second worker and show roughly typical

Maillard kinetics (first order asymptotic) with little initial lag. The

ratio of browned sample value to control value is much less than for the

enzymatic digest fluorescence, but is very reproducible.

Results for the C/M extract method on the sample browned at 100 C

and aw 0.5 (Figure 11) show the same lag as those from the enzymatic

digest method (Figure 6). The C/M method also duplicates the high anomaly

of the 1.5 hour sample, giving evidence that this is a browning anomaly

and not a measurement error.

**A careful check of internal temperatures in the reaction vessels

indicates a 30-40 min lag in reaching 1000C, from initial room

temperature. Subsequent readings are not affected by this lag, since jars

and contents are hot.
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When the C/M method was employed on samples browned at aw 0.23

(saturated potassium acetate), it proved far superior to the enzymatic

method, which failed because of intractable turbidity in the final

solutions. Figures 12 and 13 show results of C/M analysis of two sets of

the drier samples browned at 1020C by the same worker. Figure 12 shows

a slightly greater initial lag, out the values for the first four storage

times are quite reproducible and show normal Maillard kinetics comparable

to results with the moist samples. However, the fifth sample for each

shows anomalously intense fluorescence at relatively high lightness (high

Hunter L) of the powder, particularly in Figure 13, where the fifth sample

was stored 24 hours. The product of fluorescence intensity and Hunter

lightness (C/M x L in Table 3) of the latter is anomalously high, and it

is accompanied by a wavelength shift. These data, coupled with

observations made by the polyamide fluorescence method, which in vapor

phase is specific for oxidation, suggest that the intense fluorescence at

high lightness in the C/M extract is due to amino-imino-propene

phospholipid products, possibly stemming from malonaldehyde, but

correlated much more with oxidation than with Maillard reactions.
7'8'9
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TABLE 3. Fluorescence of Chlorofor-Methanol Extract and Reflectance
Color Values. Encapsulated Energy-Dense Model Syustent
Stored at 100 C Under Maillard Versus Oxidative
Conditions.

SAMPLE CONDITIONS TIME HUNTER1  C/M1  C/M(L)
(H) L a b FLUORESCENCE 100

Heavily No CoCl 2,NaBr 12 46.2 10.4 15.9 630 291
Browned TBHQ 1% + + + +

f.21 0.03 1710 -0

Heavily CoCl , Drierite 30 69.8 5.7 24.6 978 683
Oxidized No THQ + + + +

1.53 0.30 0:25 186

'Values are neans + nean deviation (N=2)

Figure 14 shows results front browning of a dry sample (aw 0.23) for

periods of up to 10 days at 800C. The intense fluorescence is probably

largely oxidative in origin and will be discussed below. Figure 15

records increase in fluorescence of a fluid sample browned at 100 0C.

The typical lag at 100 0C and the relatively low level, even after 12

hours, indicates probably little oxidative contribution to the

fluorescence.

3. Front-face Fluorescence ot Acid-precipitated Casein Slurry.

Figure 16 shows the develop, ent of Maillard front-face fluorescence in

acid-precipitated casein front a 1/1 dispersion of nonfat dry milk in water

at 1000C. The sinilarity to Figure 15 is striking.

B. Lipid Oxidation

1. Chloroforr/Methanol Extract.

As we indicated in paragraph A. 2. above, if heating is prolonged,

particularly under dry conditions where Maillard browning is much reduced,
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an intense fluorescence supervenes at high lightness (L) as illustrated in

Table 3. This is not paralleled by increase in brown color of the

powder. The model systen powders become rancid in odor and the vapor

phase polyamide fluorescence test indicates the onset of oxidation.

Figure 14 shows the increase in C/M fluorescence resulting from browning

of a dry (aw 0.23) sample at 80°C for periods of up to ten days. In

the very early stages (less than one day) Maillard browning predominates,

but the figure shows the onset of the intense, presumably oxidative,

fluorescence, reaching very high levels at high lightness in 10 days of

storage.7,8,9 Work in this laboratory is underway to differentiate the

oxidative frot the Maillard fluorescence by excitation and emission

wavelengths, synchronous scanning and 3-D depiction of "fingerprints" of

wavelength families, since the spectra are complex.

2. Oxidative Polyamide Fluorescence (OPF).

Using the vapor phase detection of oxidation by means of polyamide

fluorescence and plotting fluorescence index as defined above, the curves

of Figure 16 were obtained for the freeze-dried model system alone and

with cobaltous chloride added as pro-oxidant, both at 1000C and room

temperature. The effect of the cobalt accelerator is clear, as is the

accelerating effect of temperature. The room temperature sample, with

cobalt, began moderate oxidation at about one day. Under these very dry

conditions, the highest levels of fluorescence index are achieved. If one

heats the sample at the samte temaperature, but at aw 0.23 over saturated

potassim, acetate (Figure 17) the rate is sonewhat reduced, but again,

high levels of OPF adducts are produced. When, however, as in Figure 18,

water activity is at the moist level of 0.5 (sodim, bromride), the maximnum
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level of oxidized products is much reduced, although the time of

initiation of fluorescence is little delayed. The data of Figures 17 and

18 were obtained without pre-equilibration of the samples against the

specified water activity. When 24 hour pre-equilibration was done in a

concurrent experiment with both levels of water activity (Figure 19)

essentially the same curves were obtained. Figure 20 shows results with a

fluid system, both with and without antioxidant. The oxidation rate is

the lowest found and the maximum intensity of fluorescence is also low.

The reproducibility of the method is shown by the two samples containing

antioxidant, and the effect of antioxidant is clear, although propyl

gallate is not the most suitable antioxidant for this application

(Figure 21).

3. Front-face Fluorescence of Acid-precipitated Casein Slurry.

Results using this method to detect oxidation where Maillard browning

is suppressed have shown it to be very sensitive. As in the

chloroformr-rethanol extract, high fluorescence intensity at high color

lightness is diagnostic of oxidation.

CONCLUS IONS

The purpose of this work was to develop methods suitable for rapid,

reproducible assessment of polymerization due either to sugar-arine

browning or lipid oxidation in energy-dense, encapsulated model ration

systems, so that shelf life pred.ction and preventive measures could be

developed. It is concluded that both fluorescence and near ultraviolet

absorption due to compounds formed between primary amine groups and

products of the degradation processes are available for the purpose.
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The amine groups may arise from proteins, amino acids or amine-con-

taining phospholipids and the complexing carbonyl groups from reducing

sugars or aldehydes resulting as secondary products from oxidation, like

malondialdehyde, enals or dienals.

For sugar-amine (Maillard) browning, enzymatic digest methods give

high signal-to-noise results, but are time- and labor- consuming. Cold

acid-precipitated casein slurries give a rapid, but less intense and

slightly less reproducible signal. Automated methods based on

chloroform-methanol extracts of polymerized, fluorescing phospholipids and

front-face fluorescence of slurries of the residual protein are the most

prL ising for rapid, reproducible results, and are reconended for use in

most food systems, since interfering compounds are usually few and can be

removed simply, unlike aqueous system contaminants.

For lipid oxidation, a vapor phase method using polyamide fluorescence

due to compounds arising from gas phase products of oxidizing lipids hac

been found most satisfactory, since the method cleanly separates oxidation

from possible concurrent Maillard browning. A back-up method was found in

the chloroform-methanol extract of phospholipids, which, at the onset of

lipid oxidation, produces an enhanced fluorescence-to-color intensity

ratio which differs sharply from the low fluorescence-to-color ratio

characteristic of Maillard browning. Front-face fluorescence of slurries

of the residual protein after extraction is also a sensitive detector of

oxidative cross-linking, characterized by high fluorescence at high

lightness (Hunter L).
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