479 460 CONCURRENT leﬂ mxcu ALGORITHMNS “ son:
DPLICHTINS(U) MSSﬂWSETTS INST OF TECII lebﬁ

86 AFOSR-TR-87-0488
UNCLASSIFIED F/G ’/2

EEEEFE

£ EEF) <

EE EFITITN —

= EE
‘ — eamm 2.) .ll’v
- L& |

.t.wwﬂ — }F

m

ROCOPY RESOLUTION TEST CHART

5

Y S

Unc

AD-A 179 460

SCURITY (L ao-

REPORT DOCUMENTATION PAGE

WLV WLTEN W WL W wwwwew

IMC FILE copy

A adadie

. ~
NEPORT SECUMITY CLASSIFICATION
"UncTassified

1o. RESTARICTIVE MAAKINGS

20 SEC.AITV CLASSIFPICATION AUTHOAITY

J DISTRIBUTION/AVAILABILITY OF REPOAT
Approved for public release; distribution

20 DECLASSIFICATION.COWNGRADING SCHEDULE

unlimited

e PEAECAMING ORGANIZATION REPORT NUMBEAS)

$. MONITORING ORGANIZATION REPORT NUMBEA(S)

AFOSR - R7-0408
6o NAME OF PEASOAMING ORGANIZATION 0. OFFICE SYMBOL To. NAME OF MONITOAING ORGANIZATIDN
1! appircable: \v
Massachusetts Inst. of Tech [AFOSR/NM N L) (
6c. AOORESS (City. Stete eng ZIP Code: To. ADDRESS /City. Staw and ZIP Code) \’ - 1
17 Massachusetts Avenue Bldg 410 «2‘&@

Cambridge, MA 02139

Bolling AFB DC 20332-644

G NAME OF FUNDING SPONSQRING

QAGANIZATION

. OFEI1CE SYMBOL
il spplcadie;

9. PROCUREMENT INSTRUMENT (DENTIBI

)

AFOSR NN AFOSR-82-0210
ﬁ'aaamctu Stete ane ZIP Code: 10 SOURCE OF FUNDING NOS.

Bolling AFB DC 20332-6448 clemintno | me ry e
17 TITLE Inciude Secunty Clamncstion: Concurrent Computing 61102F | 2304 Al

umerical Algorithms and Some Applications o

SONAL A

Bt ver Vi ta

1Ja TVYPE OF AEPONT
Annual _- .~

130. T ME COVERED

14 OATE OF AEPOAT.Yr Wo . Dey) 18 PAGE COUNT

£aQm o July 15, 198
10 SUPPLEMENTARY NOTAT.ON
17 COSAT CODES '8 SUBLECT TERMMS Conninue 0 rererse / recessers and .@eniify by biock numbder)
s8.0 saoue s.8_3m

19 ABBTRALT Coniinue 07 WLevse * 1ecesslry INE JENT’Y Dy BIOCR N mber

FinaHy, "an important issue 1n harmonic retrieval problems, as :n most computational
problems, 1s the well-posedness of a particular problem instance Specifically, when is a

harmonic signal reconstruction by these methods

detinitive answer to this question was obtained in the torm of a condition number for
harmonic retrneval problems and is based on the Vandermonde determinant of the
harmonic frequencies This result was obtained via a combination of relationships using
classical trigonometric moment theory and Toepiitz matrix conditioning A fundamental
new result, due to Davis and Bhatia, on the spectral sensitivity of unitary matrices was

used That result first appeared n the Princeton

Sciences Proceedings in_a paper titied’"Conditionin
Beamforming Problems™ while more recently a survey of this work will form the basis for
an invited presentation at the upcoming IEEE Workshop on Spectrum Estimation
survey is titled "The Sensitivity of Beamforming Probiems™ -

particularly sensitive to additive noise? A

Conference on information Systems and
of Eigenvector Methods for

That

0 OISTRIQUT'ON. AVA I LAGIL.TY OF ABEBTRAC”

— 37 I .sems

WNCLASS S 80 UNL MITED — SAME AS AT

2 AQSTRACT SECLUMITY CLASS I EICATION

Unclassified

236 NAME OF AGSPONS BLE NO vILLUAL
Captain Thomss
DD PORM 1473, 83 APR

CO'T'ONQOF ' Lan 738 OB80LETE

220 TELEP-ONE NUMBER
tnciude Arwa Code:

(202) 767-5026

¢ QFF CE SYMBOL

PP ERAREERRRAN" YIPPFPFyEraw | JANRAIIM

~

L9

T '.‘.'-f\'f\f\c‘\.’\-' s Q'\f T

m-- YT TR T T T O YT T ewT e TP TR W T

|
|
|
i

AFOSR.TR- 87-0408

INTERIM SCIENTIFIC REPORT--AFOSR-SZ-ONO-% "Concurrent Computing: Numerical
Algorithms and Some Applications,” Principal Investigator, Virginia C. Klema.

This progress report is for the period July 15, 1985 through July 14, 1986.

Given the progress described in our previous reports, we began the current period with
an operational, albeit primitive, version of the Software Tasker (Version 0) running on
our small concurrent Intel systems. This software system provided a set of communication
primitives that permitted the user to send code and data to worker processors, to initiate
the concurrent environment, and to obtain status information on the application as it
executed concurrently.

The first step in upgradin? the system to Version 1.0 of the software required that the
preliminary trap handlers for floating point arithmetic exceptions be incorporated in the
Worker portion of the Tasker. The initial implementation of these handlers, described in
our previous report, merely trapped the exception and aborted the job. Even though
abortion of the offending task is often an appropriate action, these initial handlers did
not provide enough information to enable the user to debug either his code or data.
Therefore, before adding the exception handlers to the Worker operating system, we first
needed to implement software to access the hardware on the Worker boards directly
whenever an interrupt occurs -- thus allowing us to report additional diagnostic
information to the user through the Manager. We then revised the trap__handlers to
include such information as an English language description of what occurred to trigger
the exception, address information for both code and data, and identification of the
offending operation and its parameters.

The remaining portion of the version 1.0 upgrade to the Tasker provides for badly needed
traceback information to aid in the debugging process. Microprocessor systems, due to
size limitations and the structure of their operating systems, do not maintain the data
structures from which traceback information can be readily obtained. To the user, given
only an address at which an exception occurs, this traceback information i1s essential;
particularly since that address is more often than not deeply buried in one of the
frequently called basic algorithmic models. Since the Tasker utilizes Intel's RMX operating
system kernel, the options for obtaining these data are somewhat imited However, we
have implemented a set of explicit primitives (notify in and notify out) which allow the
user to request that traceback tables be built and reported to him inthe event of an error -
- whether on one of the Workers or the Manager.

Tasker Version 1.1 contains a number of upgrades to the existing system that have been
designed but are not yet fully integrated into the software The most important new
features include: 1) the trap handlers that allow the user to take corrective measures and
restart the offending computation rather than terminate the task, 2) a separate
capability for logging information that adds time tags to user comments from either
Worker or Manager and files them on the disk, and 3) the use of "ghost” processes that
monitor both the hardware and selected software operations. Version 1.1 should be
completed by Fall of this year

In parallel with the development of the Tasker software, Richard Kefs has designed and
implemented a new kernel operating system that is custom taillored to the concurrent
computing environment. Based on the AMOS (A Minimal Operating System [Kr84])
design, this software provides the link between the hardware and a point just below the
Tasker interface. Because of its design and the fact that it accesses the hardware directly,
the potential exists for supporting more sophisticated diagnostic tables than 1s possible
under the IRMX kernel -- particularly in the area of automatic trace back and usage

records. This work is documented in a master's thesis [Ke86], a copy of which was
submitted to AFOSR.

Intel's iPSC system provides another environment for the development of concurrent
applications. Delivered in mid July, the cube (designated so because of its hypercube
architecture), presented a variety of software problems in its early days. Message
collisions, lost messages on the nodes, system crashes and the Iong turn around time
required to rebuild a core image, made the cube largely unusable by the project team until
such time as Version 1.1 of Intel's operating system arrived in late December. This
upgrade improved the development environment, however the message collision problem
persisted. Largely as a defensive measure, motivated by the experience of having user
processes die on individual nodes and losing even diagnosticinformation, we modified the
de:’ign of the "ghost” process used in our Tasker (Version 1.1) and implemented it on the
nodes.

From the perspective of the user, these three examples of concurrent operating systems
share a common feature. Implementation of algorithms within these environments
requires the creation of static load modules, with explicit communication requests and
diaﬁnostic commands. Although the Tasker interface provides services to the user at a
higher level than the other two, all merely provide the user with the CAPABILITY for
carrying out concurrent computing. None as yet provides the user with any assistance in
defining his application in the first place or with the type of support for describing the
decomposition of the algorithms or communications requirements of the problem.

A start has been made toward this objective in the form of a design for an application
oriented interface layer between an operating system kernel running on the nodes and a
set of specifications by which a user describes his application. This layer is intended to
simplify the programming of the concurrent applications significantly, particularly by
reducing the need to implement all communication paths and monitoring requests
explicitly. This programmable environment for the execution of distributed tasks creates
the link between an application and the minimal kernel. it supports the execution of the
distributed application tasks while providing the following: 1) dynamic process-processor
binding, 2) relative naming mechanisms inside the running task, 3) local trap handlers for
floating point exceptions, 4) deadlock recognition, 5) error recovery, and 6) automated
debugging mechanisms and performance analyzers.

VY s VW

The design calls for two distinct application entities: The first is the Application Code. The
Application Code is a code fragment, or portion of an algorithm, written by the
application programmer. This code fragment is combined with other code fragments and
a set of instructions (or specifications) that indicate how these pieces are to communicate
and be executed on different processors. The Application Code fragments plus
specifications constitute the user's description of his distributed application task. The
second application entity 1s the Application Manager, a unit of process control code which
is associated with each Application Code fragment. This process control code (the
programmable part of the operating system) is the software that services, monitors and
debugs each piece of the user's gistributed task during execution. Moreover, the
Application Manager successively spawns additional Application Managers when needed
to provide the connections between ail Application Code fragments called out in the
user's specifications until an entire application tree has been created The Application
Managers are written by the operating system programmer and are responsible for
maintaining the consistency of the overall environment.

v v 9 *

o
i

The approach being taken for the creation of the application interface described above is- Codes
to work from the inside out -- stopping short of the mechanisms by which the user would ja7¢¢ *

Jizt . Speclal

b gl Al o a hle 4o Al ala 4o b i d s A o b e b Al B el Bt Aol fa- At

actually enter his specifications into the system. in working from the outside in, on the
other hand, desi%ning the input description and design tools for the user, a number of
alternatives are being explored. One of the most promising paradigms at this time
appears to be graphical -- using networks to represent the flow of data through the nodes
(Application Code fragments). The initial design of a Concurrent Computing Graphics
Support System calls for the design of this input management subsystem encompassing
problem description, pre-execution analysis, and display, as part of Version 1.0 of the
System. Design of the second component of the graphics system, or system management
subsystem, will begin shortly thereafter. This second component receives the output from
the Application Managers and generates analyses and display of both system and
algorithmic efficiency; hence, it is also closely connected with the design of the
programmable application interface described above. The third component, the output
management subsystem, is the most problem dependent. Current plans call for the design
| of bdasic tools for displaying results which will be augmented as particular applications are
tried.

' During this same time period, we plan to establish a network linking the project's
concurrent computing engines, graphics system, software development stations and file
servers. We have a preliminary design for an application library that will permit network
access and data transfer from inside individual processes. This would be in addition to the
traditional file transfer capability needed to offload application development tasks from
the single user concurrent machines. The application library as envisioned would be
particularly valuable in passing much of the monitoring data to another node for analysis.
Moreover, for appropriately designed applications, the network (through the application
library) may serve as the communication media for a loosely coupled distributed system in
which the nodes are the tightly coupled concurrent engines.

The time estimate for completing this network will be strongly dependent on how many
of the appropriate hardware drivers and higher level network support routines are
available commercially. We are in the process of assessing this availability.

The networking of our concurrent computing systems and the graphical display of the
mapping of the application, debugging the computation and tge communication, and
monitoring the concurrent execution will be made possible by the recent award of a grant
to Virginia Klema from the Department of Defense University Research instrumentation
Program for FY 86. This grant for research equipment includes networking components
for linking the small concurrent Intel systems, the Intel cube, the VAX, and the associated
workstations together with monitors and computing engines for visual display.

Our emphasis on research for the forthcoming year will be to focus on the software
environment that supports numerical algorithms for scientific computation and its
applications. The research i1s interdisciplinary work on numerical algornthms designed to
take full advantage of IEEE floating point arithmetic as descrnbefm [AN85], and the
operating system extensions to assist the user We will build on the experience gained
during the past year, particularly the research, design, and implementation of the
Software Tasker [Du86] and the minimal operating system to permit concurrent
computing and support dynamic tasking for scientific applications [Ke86]

A major goal of the forthcoming research 1s to work on mapping a particular application
from user-written specifications onto a concurrent computing system, debug the
application pro?ram, and monitor its execution in real time. Such monitorning can aid the
continuation of the application itself and, even more importantly, identify constraints
that can be controlled to obtain portability among concurrent systems of different design
Examples of concurrent systems with quite different design constraints are the distributed

P . g s m oy s
A SO TR LT Rt L X O _\i{.\'.\i\".-.’;."._\"_\'.-.'Z\.'Z\.\'.\fj

systems such as the Intel hypercube with its point-to-point communication by message
passing and private memory on each node, the BBN Butterfly with global memory
available to each processing element, and the forthcoming IBM RP3 based on the
Ultracomputer from Courant, a machine with massive global memory available to all
processors.

In order to achieve this goal, certain research effort concentrates on a supporting software
environment to assist the application programmer in the design and implementation of
distributed algorithms. Explicitly, we are implementing a minimal node operating system
to provide debugging support, monitor computation and communication, and display this
information to the user.

The process of creating distributed algorithms and applications includes the design itself,
coding, testing and monitoring, alternative configurations and evaluations. This entire
process can be reduced significantly with an appropriate environment. The operating
system will simplify the testing stage by providing a local environment, programmable at
run-time, that monitors the execution of the distributed application depending on the
level of debugging. Such monitoring includes communication, deadlock, synchronization
of tasks, processors busy, and processors idle.

The operatin? system determines the mapping of the distributed application to available
processing elements depending on the specifications of the application, and also
establishes process-processor assignments and communication paths. Therefore the
numerical analyst, algorithm builder, or application designer can evaluate correctness and
efficiency of design and implementation by simply changing the associated specifications.

With such an operating system in place we can reduce significantly the amount of work
associated with getting an application onto concurrent systems. For example, the actual
coding need not include debugging statements (often new sources of errors). Location of
pieces of code is transparent to the user, and data are sent to entities with relative
identities, not to processors. Testing and reconfiguration are carried out without the need
for recompilation which simplifies the evaluation process and the determination of, say,
the optimum number of processors for the parallel execution. Furthermore, different
executions of applications can co-exist in the same system.

To provide these features, an application is translated into an application tree in which the
leaves correspond to the pieces of code to be executed by distinct processors The
operating system takes a set of specifications for the application from which 1t allocates
processing elements, establishes communication paths, and sets debugging and
monitoring levels. Monitoring of the application is carried out by the parent of each leaf
These parents are processes created by the operating system executing code belonging to
the operating system.

At the present time the operating system is in its simulation phase on our VAX 11/730 with
USD 4.2 Berkeley Unix. it consists of its kernel (memory, synchronization, process control,
communication, time, and naming management) and outer layers. The outer layers
manage application trees from a simplhified set of specifications, creation, deletion,
simulated processor and communication assignment, and paths. The outer layers also
provide partial monitoring and heurnistics on mapping. Further work will be done on
debugging and monitoring leveis, mapping, specification language, error detection and
error recovery, and data acquisition Following the completion of the simulation phase,
the operating s?/stem will be transported to our small intel tightly coupled systems and
then to the Intel hypercube.

LSS L AT A N, TR AL TR TR SR L S S L A I P 7 S A b
>, LA A L N » e . C ol ol L A

- -

L

s VY

.

AR,

WX ERAXD

»

'
&
)
o
o
<
L d

Along with the above work on operatm? system supporting environment, progress
includes components of a node library ot frequently used numerical aigorithms for
scientific computation. These components are designed to interface to the supporting
environment in the sense that all exception detection and trap handlers are anticipated
from the operating system side.

We emphasize that, up to the present time, our access to concurrent computing systems
has been limited to Intel equipment. Fortuitously, we anticipate that in the near term, we
will have access to the BBN Butterfly, and our software environments will migrate to that
system. Personnel associated with the above research include Patrick Barton, Elizabeth
Ducot, Richard Kefs, Virginia Klema and associated students. We are in the process of
trying to obtain large scale applications as test vehicles for our software environments
Professor Sanjoy Mitter has suggested an image processing application described in a
recent Ph. D. thesis by Jose Marroquin, "Probabilistic Solution of Inverse Problems,” which
was supported partially by AFOSR Grant 82-01358

Research in the area of eigenanalysis methods for harmonic retrieval has resulted in three
significant results. The first deals with an efficient method for orthogonalizing highly
structured Toeplitz data matrices. This algorithm is based on inner product computations
and derives from techniques and ideas originally used by Kailath and his Stanford
Universit ?roup to solve so-called "close-to-Toeplitz" systems of equations arising in the
theory of alpha-stationary processes. The major contribution of this method lies in the fact
that it provides an order of magnitude less complexity for orthogonalizing large
rectangular data matrices. A paper titled "Fast Orthogonalization of Toeplitz Matrices”
that describes this method will appear in the SIAM Journal on Scientific and Statistical
Computing in 1987.

The ability to orthogonalize such matrices then aliows for the more efficcent computation
of singular value decompositions. This is due to the fact, first observed by T Chan (Yale
University), that SVD's can be more efficiently computed when an efficient
orthogonalization method is available as opposed to the classical bidiagonalization used
in the Golub-Reinsch approach. Similar ideas are used in this work to simplify the singqular
value and hence eigenvalue computation. As above, an order of magnitude less work 1s
therefore required in the computation of singular values of large rectangular data
matrices. A paper describing these ideas titled "Fast Singular Value Computation of
Structured Matrices” will appear in the IEEE Transactions on Acoustics. Speech and Signal
Processing.

Finally, an 1mportant issue in harmonic retrieval problems, as 1n most computational
problems, i1s the well-posedness of a particular problem instance Specifically, when 1s a
harmonic signal reconstruction by these methods particularly sensitive to additive noise? A
definitive answer to this question was obtained in the form of a condition number for
harmonic retrieval problems and i1s based on the Vandermonde determinant of the
harmonic frequencies. This result was obtained via a combination of relationships using
classical trrigonometric moment theory and Toeplitz matrix conditioning A fundamental
new result, due to Davis and Bhatia, on the spectral seasitivity of unitary matrices was
used. That result first appeared in the Princeton Conference on Information Systems and
Sciences Proceedings in a paper titled "Condmonm? of Eigenvector Methods for
Beamforming Problems” while mare recently a survey of this work will form the basis for
an invited presentation at the upcoming IEEE Workshop on Spectrum Estimation That
survey 1s titled "The Sensitivity of Beamforming Problems”

Cybenko recently discovered a fundamental formula describing the bahavior of Lanzos
polynomials arising in the general Lanczos process for symmetric and unsymmetric

matrices. That result is one of the few available for the general case. It will appear in the
special issue of Linear Algebra and i1ts Application, dedicated to J. Wilkinson.

When one tries to parallelize any of these algonthms, a question that immediately arises is
how to allocate subprocesses of a distributed solution to processors within a parallel
machine s0 as to optimize some performance criterion. Our interest has been in harnessing
the power of the hypercube interconnection network. An important question is thus
whether a given dictributed algorithm can be mapped directly onto a hypercube in such a
way as to preserve the locality of communicating processes. This prob(em was solved by
David Krumme, N. Venkataraman (both of Tufts University) and G. Cybenko. The answer
obtained was quite negative - not only 15 1t not always possible to make such an allocation
but the question of deciding whether an allocation exists was found to be NP-complete.
Thus this problem s as difficult as classical intractable problems such as the Travelling
Salesman Problem, integer linear programming and various scheduling problems. For
practical purposes, any attempt at solving the problem will lead to an exponential growth
(and hence infeasible) computation. The technique used to establish this result used a
reduction of the boolean expression satisfiability problem to this hypercube embedding.
That work has resulted in a number of publications. Two papers are currently being
reviewed for publication in Information and Control, a third is submitted to Information
Processing Letters while a fourth will appear i1n the First Hyfercube Conference
Proceedings. All papers are authored by Krumme, Cybenko and Venkataraman.

A variety of questions related to hypercube communication and allocation were studied.
Some optimal routing algornithms were obtained and preliminary experiments with the
use of simmulated annealing for allocation were done. That research is described in a
series of publications by Krumme, Cybenko and Venkataraman. One will be presented at
the upcoming International Conference on Parallel Computing, another will appear in the
Proceedings of the Medium Scale Parallel Processors Workshop held at Stanford University
in January 1986, while another paper will soon be submitted to the Journal of the ACM.

Work on a graphics system for displaying parallel computations was started on the INTEL
1PSC hypercube. That work i1s the basis of Alva Couch’s (a Tufts University Ph.D. student)
thesis. The system allows users of both INTEL and NCUBE hypercubes to visualize parallel
algorithm executions That work will be described at the forthcoming Second Hypercube
Conference in an invited presentation by Cybenko

REFERENCES
[ANS8S] IEEE Standard for Binary Floating -Point Arithmetic, ANSI/IEEE Std 754-1985

(Du86] E R. Ducot, "Application Interface to the Concurrent Computing Environment,”
TR-86-02. Concurrent Computing Group, MIT Statistics Center, March, 1986

(Ke86] R Kefs, "Design and Implementation of a Minimal Multicoupled Operating System
for Tightly Coupled Multiprocessors,” Master's Thesis, Tufts University, and TR-86-01,
Concurrent Computing Group, MiT Statistics Center, February, 1986.

[Kr84] D W Krumme, "Impiementation of a Proposed Standard Real-time Operating
System,” Second IEEE Workshop of Real time Operating Systems, Wakefield, MA, 1984.

20

i

e

L)

F

587
[1C

.." .¢ ’I "‘u g’ \ "f’l"f e ; 'f ,' I~f 0‘~" "y "”f"r g A 4700 '- atet .‘ " A ‘- - "‘9 CC LY ARL SRR L K

M ren ~ i suy

