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/ SUMMARY

This report is made up of two parts. In the first part we present additional
results on the performance of random access protocols for mobile packet radio
networks. The effect of three different types of diversity reception in Nakagami
fading environment on the channel throughput and the average packet delay of
nonpersistent carrier sense multiple access (NPCSMA) protocol is considered.
Expressions for the probability of packet error with diversity receptions are newly
obtained for both independent and correlated diversity branches. A noncoheretit
frequency shift keying modulation scheme is assumed.

In the second part a comprehensive study of the problem of synchronization
over fading dispersive channels is presented. Synchronization is a fundamental
problem in digital communications as used in mobile radio. In the first chapter,
we consider a simple binary detection problem. The effect of receiver mismatch
is investigated. A closed form expression for the probability of false alarm and
probability of detection are given, also a set of curves are provided to demon-
strate the amyunt of degradation for under-spread channels with some special
scattering. _

Chapter'II deals with the performance of serial synchronizer over fading 7
dispersive channels. The performance indices are the mean and variance of syn-
chronization time. Upper and lower bounds on the mean and variance of syn-
chronization time for a very general serial search system are derived and
evaluated. It has been found that the results are highly dependent on the scatter-
ing function of the channel, the degree of the spread, number of the cells used ill
the search procedure, and the time required to reject an incorrect cell when a
false alarm occurs. An optimum closed loop structure for symbol synchronizer is
derived in chapter 111. The optimum synchronizer is similar to those already
known symbol synchronizers that are being used over additive white Gaussian
noise (AWGN) channels, except that the control signal is completely random;
even in the absence of the AWGN. It is shown that the synchronizer structure is
highly dependent on the scattering function of the channel. For a Gaussia1n
shaped scattering function, a simple closed loop structure is obtained and expres-
sions for tracking error statistics are derived.

In chapter IV the method of stochastic approximation is applied to the prob-
lem of synchronization over fading dispersive channels. A recursive estimation
procedure is developed to estimate the two parameters needed by the synchron-
izer. The result is a closed loop in which the component of the error signal is
proportional to the expected value of the derivative of the likelihood function
with respect to the appropriate parameter.
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PART I

PERFORMANCE EVALUATION OF DIVERSITY
IN RANDOM ACCESS PROTOCOLS

I. Introduction
The effect of Rayleigh fading on the throughput of different random access

protocols such as Aloha and NPCSMA have been introduced [1,2]. However, the
Nakagami distribution [3] covers a wider class of fading than any other model.
Experimental as well as theoretical [4,5] studies showed that it is the best fit for
data obtained from a model of urban radio multipath channels. The effect of
diversity reception on the probability of bit error with Nakagami fading was first
considered in [6]. The analysis was confined to CPSK which is not suitable for
mobile communications, beside that these results cannot apply to packet switch-
ing where we have packets of N bits. Some other results were obtained [7,8] for
NCFSK with MRC and selection combining diversity techniques. Again these
results were obtained for the probability of bit error as well as the third combin-
ing technique, namely equal gain combining, was not considered. The effect of
Nakagami fading on the NPCSMA throughput was first considered in [9] for suc-
cessive correlated packet retransmissions. However, the analysis of the diversity
reception on the probability of packet error and consequently the channel
throughput represents an uninvestigated case. In section II, the probability of
packet error with MRC receiver is obtained when the diversity branches are
independent with either identical parameters on each branch or not. The effect
of correlation among two diversity branches is also considered.

Similar results are presented in Section III for selection combining. Section
IV includes the results for equal gain combining. Modified expressions for the
throughput and the delay are obtained in Section V for NPCSMA protocol along
with conclusions.

H. Probability of block error of MRC
diversity system:

The following assumptions are made to obtain the results:
a) NCFSK modulation mode is considered.
b) The fading on each branch is nonselective flat type of fading that is

modeled using Nakagami distribution.
c) The noise is additive white Gaussian with spectral height 2N., and is the

same at all branches. One of the known diversity techniques [101 is the MRC
which allows the signal to noise ratios to be added noncoherently along the M
branches. In other words
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hi= (1)k-1

The fading envelope S(t) at the it branch has a Nakagami-m distribution as fol-

h f(S) 2 (,) " Snr- exp(- !Iit S) (2)

where Oi =-- < Si2 >
ni 2

Mi -= < (Si2_) ,m i > -(3)

The signal to noise ratio at the ith branch will be
Si2S2 

(4)

The probability density function (p.d.f.) for -y/ will be

f(=i) ( i) m r  exp(-ki-yi) (5)

where

2Nomi mi
ki 1- M= --- = Average SNR (6)

This can be recognized as a Gamma distribution. The probability of packet error
is defined as follows

00Ppe fif [1 - (I - Pb )N] f(-y) d-y (7)

0

where N is the number of bits in each packet. Pb is the probability of bit error
for a certain modulation scheme. For NCFSK Pb is given [12] by:

Pb =C Ie ,'li --0 (8)
2

Case (A) : Independent Diversity Branches

For identical parameters m, f) on all branches, we have

N NN 1 00 -,1 (l -Pp. =1 - E (n) (N-) e-'n-/ f(fy)d&y (e)
U-O 0

The sum of i.i.d. Gamma distribution with parameters m,k is also a Gamma dis-
tribution [13]. i.e.

A(1) = (k) m ' -ym-' exp(-ky) (10)

r(mt)

where

"is . .. .; . . ¢. , .,: .*1 V. V V V .. .* : . ;'7;.;, . ,''f:. :' ;:1:.:':?
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= Mm (11)

Substituting for (10) in (9) and performing the Integration we get
S N N)1f 1 (12)

R- ...o" (1 + -n -) "

- Equation (12) can be easily evaluated when N is not large. This is a reasonable
assumption [14], since a large N would cause an unacceptable probability of error.
If the parameters differ in each branch we have

N N 1
=p - , ( n) (--i) L.T.jf(y)J5 . (13)

n-O T

where L.T. is the Laplace transform operator. The characteristic (c/c) function
for "yi is given by [131

Ki ,

- i( - t)I (14)

Then the c/c function for -y will take the form:

in' (K- t )K i (15)

Consequently, the L.T. for f(-y) will be
M Ki

F(S) =-- I ( K- S)m  (16)

Substituting for (16) in (13) one gets:
N NN 1 M K (17)), E ))( (17)

n-0o ~ Ki + n.
2

For arbitrary branch parameters Mk, Ok but equal (ak-) for all branches we get

M
f4-y) - Gamma (k, E Mk) (18)

k-i

And consequently
M

N N 1 M k mkPpe =i - E (N,) (_,),,n£ (_,,_2 '-  (19)

n-B0 + n/2)k

Case B: Correlated Branches (M - 2)

In this case we assume that the fading envelope has the same parameters in
both branches. The envelope in this case will take the form 13]:

_ S

-i
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2_'_(a -mS 2
(-S))= exp[m) fl (p)I nl(1-p) I

"[__(_-_2m _ 2' jm 1 m - (m'(lp-R) (20)

where Ix(-) is the modified Bessel function of the first kind of order X. Substitut-
ing for equation (4) in (20) one gets:

- 2V N O  2Nom'y

f(-,) (m)(1-p) m ( .) exp(- p)

l 2mNoN/T

fl(l-p)(2Noy) )m - ¥2 . I21I

2mv) I f(P) (21)

Hence the probability of packet error will take the form:
N N IN - 1 n

Ppe= I - C r, (n)_ .

0o n 2NoCI-yf exp(-- exp(-
2

2Njy M -1(2

2C, 2 1M-I(N ,I y(2

where

2Novi'  (m)2m (23)c =r(m) (-p) m "2"

= m vp (24)
S (1 -P)

Rearranging (22), one obtains:

Ppe=~ ~" l-K Em (N)_.

-e K( U-N n

I

,v € € . • • . . . , % . . , . o . . % %q , ' ' . o '' .' , ' ' o '° - '' , °' * '' . ' -b- ' ' " 
.



*f (P)Y- Ik(by) exp(-ay)d-y (25)
0

1 1

wherex =I m- -y=m +
2 2

S 2NOCI b 2N (26)

The integration in equation (25) is found to be 1151

I

r(2m) (2NoC,) 2

1+ -M 2NOCl)2r(m + 1) 2" T( +  W )2

2FIJm + m , m + 2' n N 1  )2] (27)
2 ~2n j + 2N°CI/-,"p

where , 2 F () is the hypergeometric function.
The conditions to be satisfied for the above integration to exist are

(1) x+y>0 1
(2) lal > IbI (28)

(3) Relal >RejbI

It is clear that equation (28) is satisfied for every value of n and m. Using the
relations from [16]

2F 1(a,b,c,z) -- , 2F(b,a,c,z) (29)

2F,(b,a,a,z) z (- )b (30)

r(2) 1 2m-1(1

r(2m) ~2 2 r(m)r(m + )(31)

one gets for Pp: :

2Nom 22m N N 1
-=/E I)
PtnxO 2

(32)
2NOCI 21(2 + 2 )' - (2NoCt)']3

-I

2~ *,p'i~* S. ~ ~ Si 4,i( *.
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c

Ill. Probability of packet error

for selection combining:

For two diversity branches we have:
Case A: Independent fading on the diversity branches.

The resulting signal to noise ratio can be described by:

-Y = Max (11, 12) (33)

Then, for arbitrary parameters, we get:

f("I) = f(j1j) I " , F 1 "2) + f( 2) "- Fyl) (34)

Then
f(-y) == K m, I 1 ep(-, ".)

-I K'm 2 i-I

m -12 exp(-K 2 y2 ) d-,2
f r(m2) .I

+ K,. 1 F 1 eyp(-K 21)
r(m 2)

" K m,-I
* f 11 exp(-K'1) d-11 (35)

Consequently, the probability of packet error will be:

-KI K2m3 N

{f f exp(1 n K- -)

S'-I exp(-K 21 2) .-2 d 2 d-007 -1

+ f f exp(--Y2 - K2'y) -
0 0 2

• exp(-Kl'y) "hm '-1 d yj d'1}] (36)

In the above integrals let x = -yi/-y, i1=,2, Then we get:
K M 1 K2 N

P"C =1- lr(m I(m 2) nO N) -1 )

1 
%0

{f xm r1 f exp - -y(-- + K, + K 2x)
0 0o
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rl + Mr-1 d ryd r + xn-1 f
0 0

exp - -A-! + K2 + KIx) -r + "'d-ydx}J (37)

Or using the definition of the hypergeometric function and making some manipu-
lations, we arrive at:

=I- K 2 ..N 1 aN

e F -B(m, m 2 ) - Q

1 1 -K1

2FI(ml + M2, I, MI + 1,

K n -

K2

+1
Mn2 ( + K,)n' + ms,

2

2FI(M1 + Mn2, M2, in2 + 1, nK (38)

Case (B): Correlated Branches:

The joint pdf of two SNR's -y, "j2 whose envelopes are jointly random vari-
ables is given by 19]:

M-I

f(-yl, 12) = K'(-1 '12) 2
K

- K (' + 12) Im-t(K" V'/1) (39)1-p

where

K - Km+ 1 , K"it = 2-k (40)
r(m)(-p Xp) 2 1-P

Because of the symmetry of -/z, -Y2 in (39), one can write for f(y):
-r

II A-y) = 2 f f(y,y)dy 1  (41)
0

Hence
N N I

Pp 1 -2 E (n)- 2
n-0 1
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f f exp(-2j) f('y,'y) d'-y dy (42)
0 0

Let -x = -y in (42) and change the order of integrations we obtain using [15):
Pp,,N 1 K' N  I

PO = 1- 2K' NEX (.X--i)'
aRnOrn-i(n-i

x-1 r(2m) (K"Nvfi)m-'
I 2

0 2"-, r(m) (-! + K (i+))2m
2 i-p

mF+(m 1m+1 K"VI )) dx (43)
2 +! (i+x)

It is obvious that the conditions for the integration to exist are satisfied
V 0<:5x_<1, 0<5 10 < 1.

Using a similar approach to case A and after some simple manipulations one
arrives at:

- N Ni

x- 1[ax + b] dx (44)

[(ax + b) 2 - 4pa 2x]m + 2

where

L =2 r(2m) k2  (45)
r(m)r(m) i-p

K (46)
i-p

The above integration can be easily evaluated Vn numerically.

IV. Probability of Packet (block) Error
for Equal Gain Combining

For M diversity branches with identical parameters, the fading envelope can
be described by

M
S(t) = Sk(t) (47)

k-i

Case A Independent diversity branches:

From 131, the p.d.f. of S(t) can be approximated by:



2 ()mT S2M- 1 exp - S2  (48)(S) - r(mT) T" nT

where

UT Mm
-- r(m + )

rT = M0 + M In-1){ r(m)

= M2 (l_ 0-.2)"
In

The probability of packet error will take the form:
N N 1

n==O

f S2 m7-r1  21 MTTo r(mT) ( T

exp - (KT + S) S2 dS (50)
2

Let _= y and integrate, we get
2N T

nKT T KT= 2NTmT (51)

(KT + n/2) Kn= (1

, NT = MN (52)

Case B: Correlated diversity branches (M = 2)

We assume that the two branches have identical parameters (m,fl). The

p.d.f. of the combined output will be
S

f(S) - f f(SI, S-SI) dS1  (53)
0

Hence,

r(mXl-p) p( -2) n-o

S"
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0f nR2( R~) (R(R-R)J m exp - m___

(R11 + (R-RI)2J

IMA2m NfpRl(R-RI)) dRjdR (54)

If we let R, Rx, we get

-L N I N
=p E- H ()n(n) f xm(1-x)"'

n-0 0

00

f exp - R2[ck(X2 + (iX)2) +
o 2

R~m i (- RV R2 x(I-x)) dRdx (55)

where L and a are constants,

L=) , - -M56

r~2)(i-p)pp

Using 1151, and after satisfying and regularity conditions-, weget

- I N N 1

f xix1rnlPnx dx
0op(nX (57)

_p(nx I P 2(X)j 2.

vhere P(D,X) = + K JX2 + (,I (582 i-p (8

P,(x) .2Kv/' (IX

2( K2 )m r(2m) (0
F-pMr2 (i0)



." Modified Expressions for the Channel
Throughput for NPCSMA Scheme

The channel throughput and the average packet delay for NPCSMA proto-
col are given by [17)

= G exp(-aG)
G(1 + 2a) + exp(-aG) (61)

-a +1+(- 1)(1 + 2a+ -a

The modified expressions for S and D, if the packet and acknowledgement chan-
nels are fading and identical, will be

Sm S- (1 - Ppe)2  (62)
D.m a + l + 2a + ( -2- 1 _)(1+2a+6+a)

SM

For the last 3 diversity schemes, we can always compute the expressions for Sm
and Dm to investigate the effect of different combining techniques on the channel
throughput.

Numerical Results

The improvement in the throughput and the delay of a channel with Naka-
gami fading using MRC diversity technique is displayed in figures 1 through 8. It
is obvious that the performance approaches that of a nonfading channel with 4
diversity branches. However the approach is quicker when the branches have
different parameters. Correlation among two diversity branches is shown to
greatly affect the performance. Consequently, serious attention must be directed
to assure independence between branches. It is also noticed that the limiting case
where p --# I is achieved for MRC at a SNR 3 dB less than that needed for a sin-
gle channel. This is expected from equation (1). Similar results are presented for
both SGC and EGC. For SGC the performance degrades to reach that of a sin-
gle channel at p -- 1. For SGC the limiting case as p --+ 1 occurs at an average
SNR 1.5 dB less than that needed for a single channel. It is also to be noticed
that for SGC a high SNR branch along with the worst fading figure (in), the per-
formance is better than that of two identical branches with relatively good fading
figure. This implies that the average SNR affects the performance in a more
effective way than the fading figure (which describes the severity of fading) does.
The MRC technique shows a better performance followed by EGC and then the
SGC. However, the improvement in performance of MRC over EGC is not
attractive to favor MRC over EGC keeping in mind that EGC is easier to imple-
ment than MRC. The results obtained here contain the case of Rayleigh fading
(at m - 1) as well as the case of single bit transmission (at N -

VI. Conclusions:
The probability of packet error for three different diversity combining tech-

niques is evaluated for independent fading envelopes over each branch. The
effect of correlation among two different branches was also considered. The fading
was modeled according to the Nakagami-m distribution. The results were used
to obtain modified expressions for the channel throughput and the average packet
delay for NPCSMA protocol.

'B.
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PART H

SYNCHRONIZATION OVER FADING DISPERSIVE CHANNELS

CHAPTER I

PERFORMANCE DEGRADATION DUE TO RECEIVER MISMATCH

IN COMMUNICATION OVER FADING DISPERSIVE CHANNELS t

The engineering importance of fading dispersive channels has increased

markedly in the recent years. Optimum detection over such channels requires a

perfect knowledge of the channels scattering functions which completely charac-

terize the behavior of fading dispersive channels. Lack of such knowledge may

result in performance degradation. The objective of this study is to analyze the

performance degradation under mismatch conditions. Two types of receiver

mismatch will be considered. First, the receiver is assumed to have knowledge of

the shape of the scattering function but the mean time delay and the mean fre-

quency shift are unknown. Secondly, we will investigate the performance degra-

dation when the shape of the scattering function is not known to the receiver. A

closed form expression for the probability of false -larm and probability of detec-

tion are given, also a set of curves are provided to demonstrate the amount of

degradation for under-spread channels with some special scattering functions.

1.1 INTRODUCTION

During recent years there has been an increasing amount of attention

given to the study of fading dispersive channels, channels that exhibit both fad-

ing and dispersion. The determination of optimum modulation and demodulation

techniques and the evaluation of the efficacy of optimum and suboptimum

receivers for such channels are of major importance to the system designer.

Fading dispersive channels are usually best described as random, linear,

time-invariant filters [1]. The characterization of time-variant, linear filters in
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terms of system iunctions received its first general analytical treatment by

Zadah [2], who introduced the time-variant transfer function and the bi-frequency

function, as frequency domain methods of characterizing time-variant linear

filters. There is another common approach to describe the channel, an approach

which involves the notion of scatterers. This approach leads to a physical picture

of the channel as a continuum of moving scatterers. In such model, propagation

is established by a single scattering from a large number of independent scatter-

ers.

In many applications, it is reasonable to suppose that the impulse

response of the filter is a sample function of a Gaussian random process. Using

such supposition, the specification of the channel reduces to the specification of

the mean and correlation functions either of the channel's random impulse

response (first approach) or of the received process conditioned upon the

transmitted waveform (second approach). Many channels are adequately modeled

by taking the mean to be zero and the correlation function to be a special form,

which is determined by the scattering function of the channel as will be seen in

the next section.

In section 1.2 mathematical model of the channel is presented, and the

statistics of the output of the channel are given in terms scattering function of

the channel and the complex envelope of the transmitted waveform.

In section 1.3 we present the receiver's structure and discuss a way of

obtaining an approximation to the probability of detection and the probability of

false alarm. The discussion in this section is limited to special category of prob-

lems; namely, the low-energy-coherence problems.

In section 1.4 we investigate the degradation in performance due to the

mismatched receiver, by that it is meant that the receiver has riot enough
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information regarding the scattering function of the channel. The two cases of

interest are

(1) The shape of the scattering is known, except for some unknown parame-

ters.

(2) The scattering function of the channel is completely unknown to the

receiver.

1.2 CHANNEL MODEL

The channel to be considered is depicted in Figure 1.1. This channel is

completely described by the scattering function a(r,f). The most important

parameters of a(r,f) are B, the frequency interval in f outside of which o(r,f) is

essentially zero, and L, the time interval in r outside of which a(r,f) is effectively

zero. The quantity B is called the Doppler spread, and represents the average

amount that an input waveform will be spread in frequency, while L is known as

the multipath spread, and represents the average amount in time by which an

input signal will be spread. The product S=BL is called the spread of the chan-

nel, channels for which S < 1 are called under-spread channels, while channels

with S > 1 are called over-spread channels. Characterization and classification of

fading dispersive channels are given in [3).

Throughout the discussion, we denote the channel input and output

waveforms by s(t) and y(t), respectively. These waveforms will usually be

represented by their complex envelopes, thus

s(t)=Re-u(t)ex Iwot ] . ,(1jW.1a

y(t)=Re v(t)exp [Jwot]} (I.)-b

MLS
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where Re {.} denotes " the real part" of the indicated quantity, and wo denotes

the nominal carrier frequency in radians per second.

In many applications it is reasonable to assume that the received signal is

-conditionally Gaussian. By conditionally Gaussian, we mean that given the

transmitted waveform, the received waveform is Gaussian random process. If one

accepts this supposition, the description of the channel reduces to the

specification of the mean and correlation function of the received process condi-

tioned upon the transmitted waveform. It can be shown [3] that

Ry(t,,r)=Re{ R(t,,T)exp [iwo(t-T) ] ,(1.2)
where

R(t,T)= f f a(r,f)u(t-r)u*(Tr-r)exp [i2rf(t-T) ]drdf. (1.3)

The function R(t,r) defined by (1.3) is the complex correlation function of the

complex envelope of y(t), that is

R(tr)=E{ v(t)v*(-) }. (1.4)

Insight into the scattering function and methods of measuring it are discussed in

[4]

1.3 RECEIVER STRUCTURE

Optimum receiver structure for digital signaling over fading dispersive

channels have been determined [5], and the performance of binary signaling sys-

tems has been thoroughly investigated. In this section a brief discussion of the

optimum receiver structure for simple binary detection problem is presented. The

received waveforms under the two hypotheses are

~ ... fl.> % ~ ~ .
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HI: s(t)ffiv(t)+w(t), T<t_<Tj,

H: z(t)iw(t), T t<T, (1.5) 

We assume that that w(t) is a complex white, zero-mean Gaussian process with

spectral height N o and v(t) is zero-mean complex Gaussian random process with

covariance function R(t,r).

The approach to design the optimum receiver is analogous to the approach

used in the deterministic signal case [6]. It can be shown that the optimum

receiver compares the likelihood ratio, , with a threshold il,

H,> ,,(1.6)

Ho

where

Tf

I- ffz(t)h(t,r)z(r)dtdr, (1.7)
No T,

and h(t,r) satisfies the integral equationT !
Noh(t,,r)+fh(t,u)R(u,r)du--R(t,r) , T,<t,r<Tf. (1.8)

The solution to (1.8) can also be written in terms of eigenfunctions and eigen-

values of the complex correlation function R(t,r) [6],

0) 0(t) 1(r), T ,!_t,r< T . (1.9)

=1Xj+ N0/2

One possible realization to generate I is the filter-correlator receiver see [51.

Even though the procedure is well defined, the actual implementation is difficult,

mainly because of the dependence of h(t,r) on X, and 0,(t); i=1,2,.... There are

several categories of processes for which one can obtain a reasonably nearly

ON
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optimum solution [5, Ch. 4]. One of these categories is the low-energy-coherence

(LEC) processes, in such cases the energy is distributed over large number of

coordinates and for which all of the eigenvalues are small compared to the white

- noise one-sided power spectral density. It may appear that the LEC condition

implies poor performance and is therefore uninteresting. This is not true because

the receiver output is obtained by combining a large number of components, and

the LEC condition can be met even though the ratio Er/No is larger than unity,

where Er is the average received energy over the entire observation interval.

Under LEC conditions Eq. (7) reduces to

: Tr

o-'-- -ffz*(t)R(t,r)z(r)dtdr. (1.10)
N0  T,

The final question of interest is the performance of the optimum receiver

under LEC condition. Van Tress [5, p. 136] showed that the probabilities of

false alarm and detection are

d) (1.12)

respectively, where

d2 IH(1.13)varl( I Ho}

and

00 12 
1 xQ(x)f -exp dx. (1.14)

x27
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Eqs. (1.11) and (1.12) are highly dependent on the scattering function of the

channel through their dependence on d, therefore; in order to implement the

optimum receiver and to evaluate its performance one needs to know the scatter-

- ing function,a(r,f). Lack of complete knowledge of a(r,f) will result in degrada-

tion of the receiver's performance.

1.4 PERFORMANCE OF A MISMATCHED RECEIVER

Under mismatch conditions, the square root of the numerator in Eq. (1.13)

can be written in terms of the true channel scattering function, at(r,f), and the

assumed known to the receiver scattering function, ao(r,f), as follows

E{I [H 1 }E( I Ho--N 2 f ffat(r,f)a.(r' , )Ix(r-r' ,f-f) 2drdfdr' df (1.15)
]0 -00

and the denominator is

Var Il Ho -}-A f f ffaa(r,f)aa(r' ,e ) X(r-r' ,f-f ) 2 2drdfdr' dfe , (1.16)

where x(r,v) is the ambiguity function of the complex envelope of the transmitted

signal, namely
00

X(r,v)= f u(t)u*(t-r)exp [j27rvt Jdt. (1.17)
-00

Case 1: Scattering Functions With Unknown Parameters

The first case under consideration is the case when there is a mismatch in

the mean time delay and the mean Doppler shift by say x1 and x2 respectively.

Then the true and the assumed scattering functions can be related as follows

aa(r,f)=at(r-x ,f-x2) (1.18)

rI -. ._,]
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Substituting in Eqs. (1.15) and (1.16), we obtain

f 1 ffa.(r,f)a(r' ,f' )x (r-r +X 1,f-f' +x 2 ) I 2drdfdr' d'1

d2 =  1 

.)00
ff fffa.(r,f)a.(r' f )I x(r-r' ,f-f) 2drdfdr' df

-00

In order to proceed further with the calculations, one needs to specify the

shape of the true scattering function and the envelope of the transmitted

waveform. If the true scattering function of the channel is assumed to have the

following shape

Er exp[-r2 /2L 2 -f2/2B2], (1.20)
Sat(r,f)- 2-E-exp [r/L

where Er is the total received energy when the complex envelope of the transmit-

ted waveform has unit energy. And the envelope of the transmitted signal is

J1/-/T 0<t<T
u(t)---1 0 elsewhere. (1.21)

Then the true autocorrelation function is

Er/Texp [2(7rB(r-t)2 ]{Q(max(r-T)/L)-Q(min(tr)/L)} r-t I < T

R(t,r)-- 0 elsewhere. (1.22)

Equation (1.19) can be evaluated numerically. Then the probabilities of detec-

tion, PD, and false alarm, F F , can be determined by substituting in Equations

(1.11) and (1.12). Figures 1.2 and 1.3 demonstrate the change in the probability

of detection, PD, versus SNR for probability of false alarm, PF, of 10-4 and

different values of mean time delay, xj, and the mean frequency shift, x 2. It is

clear that the receiver is more sensitive to misalignment in frequency shifts than

misalignments in time delays. Also, the amount of degradation in performance for

iIok - i
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under-spread channels (s=0.1) for x2>B and xj >5L is severe and the system

designer should provide the adequate circuitry to insure synchronization.

-- Case 2: Completely Unknown Scattering Functions

If the shape of the true scattering function is not known, the receiver has,

either to estimate it or use an approximation for ot(r,f). In both cases the true

and the assumed scattering functions may differ in shape and the resulting meas-

ure of performance, d2 , is

-00

For the present discussion, oq(r,f) will be taken as

fEr/LB If I < B/2, 0< r < L

f =elsewhere,

while the true scattering function, ot(r,f) will be represented by Eq. (1.20).

Figure 1.4 illustrates the effect of mismatch in the scattering functions for this

specific case.

For over-spread channels, (s > 10.0), equation (1.22) is very closely

approximated by a knife-edge (ridge) function along the t-r axis. In this case we

expect that the system become more sensitive for any time delays, frequency

shifts, or mismatch in the shape of the scattering functions.

It is noticed also that higher values of PF will not change the previous

results significantly.

. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .... . . S- - =% F • "fZL • qp
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1.5 CONCLUSIONS

In order to implement the optimum receiver over fading dispersive chan-

nels in practice, one needs the filter impulse response h(t,r). This is obtained by

- solving the integral equation (8) which depends on the scattering function a(r,f)

through the autocorrelation function R(t,T). Both measurement of the o(r,f) and

the solution of the integral equation present barriers to the actual receiver imple-

mentation.

This triggered the need to study the sensitivity of a mismatched receiver.

We began by studying the effects of mismatch in the location of the scattering

function. It has been demonstrated that for a Gaussian shaped scattering func-

tions and under-spread channels, the amount of degradation is severe if xj>5L

and x 2 >B. We next studied the degradation due to mismatch in the shape of the

scattering functions. A degradation of about 1 dB is encountered if a rectangular

scattering function instead of a Gaussian shaped scattering function is used at

the receiver, provided that the true scattering function was Gaussian.

It worthwhile mentioning that if we change the role of a t and o the

amount of the degradation will not the same. As a matter of fact, it can be

shown that if ac(r,f) is Gaussian but at(r,f) is rectangular, then the degradation in

performance is less severe.

For over-spread channels, the autocorrelation functions, R(t,r) tend to con-

centrate around the t=r axis and any misalignment in location or mismatch in

shape will have a greater degradation effects on the performance of the receiver.

The study emphasis the fact the synchronization over fading dispersive

channels is important and in some cases the degradation due to missynchroniza-

tion may be more severe than mismatch in the shape of the scattering function,

this mismatch may be a result of error in measuring of the scattering function.
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CHAPTER 11

SERIAL SEARCH SYNCHRONIZATION OVER

FADING DISPERSIVE CHANNELS

Although; the engineering importance of fading dispersive channels has increased

markedly in the recent years. The problem of synchronization over such channels

has not been given the attention it deserves. The following analysis derives and

evaluates upper and lower bounds on the mean and variance of synchronization

time for a very general serial search system. The objective is to find a simple

result that the system designer will be able to use to make design trade-off stu-

dies to minimize mean synchronization time.

It has been found that the results are highly dependent on the scattering function

of the channel, the degree of the channel spread, number of the cells used in the

search procedure, and the the time required to reject an incorrect cell when a

false alarm occurs.

2.1 INTRODUCTION

Synchronization is a fundamental problem in digital communication,

radar, sonar, and navigation systems. Power-efficient receivers generally require

the existence of a clock that is accurately time-aligned with the received pulses,

and a local carrier reference, that agrees closely in frequency and phase with the

received carrier. In general terms, two sequences of events are said to be synchro-

nous if the corresponding events in the two sequences occur simultaneously, with

one of the two sequences of events takes place at the transmitter, and the other

takes place at the receiver. Due to transmitter oscillator instability and propaga-

tion effects, the two sequences of events may be misaligned.
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Losing synchronization reduces the efficiency in the data detection process;

because the inaccurate symbol sync directly reduces the probability of making

correct decisions. Moreover, when a loss of synchronization occurs, it -nay some-

times lead to successive errors before it is regained; these successive errors affect

the overall performance of the system.

Synchronization is defined simply as the process of bringing about, and

retaining, a synchronous situation. It is generally convenient to separate the syn-

chronization process into two distinct modes. In the first mode, the clock syn-

chronization mode, the clocks which regulate the two sequences being synchron-

ized (i.e., the transmitter and receiver clocks) are forced to run at the same rate.

In the second mode, the higher order synchronization mode, a corresponding pair

of events in the two sequences are identified and made to occur simultaneously,

and if the sequences are progressing at the same rate, the sequences are, and will

remain, synchronized.

If the transmitter and the receiver clocks are both sufficiently stable rela-

tive to the required synchronization accuracy, the clock synchronization mode

may be by-passed. Most generally, however, this will not be the case and some

technique must be devised to provide the needed clock synchronization.

Once the transmitter and receiver clocks have been synchronized the

second mode of the synchronization process begins, this includes symbol, code

word, data word, and frame synchronization. The second mode can be further

subdivided into two components, the first component is the determination of the

initial parameters from whatever a priori information available. This component

is known as the acquisition phase The second component is to maintain syn-

chronization after initial acquisition . This problem is known as the tracking

phase.

- -
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Although; the problem of synchronization over additive white Gaussian

noise (AWGN) channels has been investigated extensively [7-10], synchronization

over fading dispersive channels has not been given the attention it deserves, in

--spite of the fact that the the engineering importance of such channels has

increased markedly in the recent years. Fading dispersive channels are usually

best described as random linear time-varying filters . In many applications it is

reasonable to suppose that the impulse response of the filter is a sample function

of a Gaussian random process.

In most of the work done concerning detection over fading dispersive chan-

nels, the assumption that synchronization is available is either understood impli-

citly or declared explicitly.

2.2 SYNCHRONIZER STRUCTURE

In communicating over fading dispersive channels, the received energy is

peaked at some point P (see Figure. 2.1), which is shifted from the transmitter

clock pulse and oscillator frequency, point T, by F sec. in time and f Hz in fre-

quency, where rand f are the mean time delay and mean frequency shift of the

channel respectively. All the points are referred to the receiver clock pulse and

oscillator frequency which are located at the origin of the figure. It is clear that

no matter what offset exists between the receiver R and the transmitter T, the

important information to the receiver is the vector x , where x = (x I, x2). There-

fore the main objective of the receiver is to come up with a good estimate of the

vector x.

The vector X is the misalignment in time and frequency between the

receiver and transmitter is the result of two effects, the first is the contribution of

the channel, and the second is due to the lack of synchronization between the

N N M "W
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receiver's and transmitter's clock pulses and oscillator frequencies. This lack of

synchronization always exists initially even if the channel introduces no delay in

time or shift in frequency. Since these two effects are of the same nature they can

_ be lumped together into the mean values of the scattering function, therefore

from now and on we will assume that the scattering function is of the form

o(r,f:x)=o(r-x,f-x 2). (2.1)

For such scattering function the correlation function of the complex envelope of

the output of the channel for single pulse is

R(t,r7.x)=Ro(t-xl-xl )exp [j27rx2(r-t)] (2.2)

where Ro(t,r) is the complex correlation function of the complex envelope of the

output of the channel in the case of perfect synchronization.

The theory of maximum likelihood (ML) estimation provides us with a

technique to estimate the channel parameters needed for the sync procedure. In

[41 we derived the likelihood function. The rule is x is more likely than x' iff

W(x) > )I

where

W(x)=f fz*(t)h(t,rx)z(r)dtdr. (2.3)

h(t,r.x) is the solution of the following integral equation

fR(t,u:x)h(u,r.x)du+Noh(t,r.x=R(t,r :.x). (2.4)

No/2 is the two sided power spectral density of the AWGN, z(t) is the complex

envelope of the received waveform (see Figure 1.1 ).

Under low-energy-coherence condition [5] equation (2.3) is reduced to

AXPR
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W )=ffz (t)R(t,r.x)z(r)dtdr. (2.5)

The precise implementation of the maximum likelihood estimator would involve a

continuum of detectors (or calculations) for each value of x in the region of

interest. Certainly, in general such estimator cannot be built. One realizable

approximation to the maximum likelihood estimator results from specifying a

finite set of points, say { 2 ,i-=1,...,N), and record z(t) then perform the parallel

processing operation shown in Figure 2.2 in which h(t,r.x) is viewed as a linear

time-varying filter with as the input time variable and t as the output time vari-

able. The output of this processor is N numbers, each is an output of a detector

matched to a particular x. The NL estimator finds the largest detector output

and assumes that the correct value of x is the one corresponding to that detector.

The result is a parallel processor, in each parallel branch the likelihood function

is evaluated and the maximum is chosen to represent the maximum likelihood

estimate of the vector of parameters under consideration. This synchronizer

which is optimum in the sense that it achieves synchronization with a given pro-

bability in the minimum possible time requires a detector for every cell and thus

is not optimum in a minimum hardware sense. Thus minimum acquisition time

systems is never implemented because of excessive hardware complexity. A syn-

chronization system that evaluates the cells serially until the correct cell is found

is said to use serial search. Such systems are designed to achieve a compromise

between acquisition time and reasonable complexity without compromising any

other important system characteristic. The performance of such serial search syn-

chronizers are analyzed in the next section.

"I
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2.3 PERFORMANCE ANALYSIS

If the uncertainty region is divided into N cells as shown in Figure 2.3,

where the size of each cell is proportional to the width of the autocorrelation

- ambiguity function. This function is the expected value of the random variable

W(W). A complete discussion of the properties of this autocorrelation ambiguity

function is given in [11).

Because it is equally likely that the correct vector is in any cell, the search

can begin at any corner of the uncertainty region. The search will advance

through one cell at a time until N cells have been evaluated. If synchronization

has not been achieved at that time, a retrace will start the search over again at

the starting position.

The mean synchronization time is calculated by considering all possible

sequences of events leading to a correct synchronization. An event in the proba-

bility space being considered is defined by a particular location, n, for the correct

cell, a particular number of missed detection, j, of the correct cell, and a particu-

lar number of false alarms, k, in all incorrect cells evaluated. The total synchroni-

zation time for a particular event defined by (nj,k) is

T(nj,k) = nTe + jNTe + kTfa, (2.6)

where Te is the evaluation time for each cell, and Tf1 is the time required to

reject an incorrect cell when a false alarm occurs. It can be shown that the pro-

bability of the event (nj,k) is
I . K p klpf) . (2.7)

pr(n,j,k) = " 'Pd (1-Pd)y (k)Pfa(-Pfa)K• (2.7)

The mean synchronization time is

T . T(n,j,k)pr(nj,k). (2.8)
n,j,k
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After some straightforward algebraic manipulation [30-Ch. 10], equation (12) is

reduced to

2-Pd TeT, ~P ff N 1T l-p )+--, (2.9)

where

Tad Te + Tapfa, (2.10)

is the average dwell time on each cell. Equation (2.9) also, has been derived in

[12] using signal flow graph techniques. It can be shown also, that the variance

of the synchronization time is approximated by

1 1 + (2.11)
T ad T 12 Pd Pd

The approximation is valid for N> > 1, Pfl< < 1, and 1-Pd< < 1.

Calculations of Pd and pia:

The serial search synchronizer under consideration, evaluates each cell by

estimating whether or not signal energy is present at the output of each processor

in Figure 2.2 or simply

H,

W(xi)>Y. (2.12)

Ho

where, H1 is the hypothesis that the xj is the correct x, while Ho is the

hypothesis that xi is not the correct cell. This problem is identical to the prob-

lem of detection over fading dispersive channels which is well treated in [3] and

[5]. Van Trees [5, Ch. 4] showed that

PdQ( d (2.13)
d 2

d (2.14)

Pf&;ZQ(-!

d&- **~
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where

d2 (E(W (2.15)

Var(WI Ho}

and

00

Q(x)-] -Lexp ]d.(2.16)
X27r 2

In order to proceed further with the calculations, one needs to know the

shape of both the channel scattering function and the complex envelope of the

transmitted wave form. Assuming Gaussian-shaped functions

a(r,f:x) = exp -(r-xi)2/2L2-(f-x )2/2B 2 , (2.17)27rLBx

where Er is the total received energy when the complex envelope of the transmit-

ted waveform has a unit energy. The complex envelope of the transmitted

waveform is

u(t) - (2 C- )1/4exp [-at2 ]. (2.18)

It has been shown that [4] the optimum value of a is

B
a = 7rS (2.19)L

Figures 2.4 and 2.5 demonstrate how Pd behave as a function of the

signal-to-noise ratio (SNR) and Pfa for both under-spread, and over-spread chan-

nels respectively. These results are valid only under LEC condition, and if the

width of each cell is greater than or equal to the width of the autocorrelation

ambiguity function in both time and frequency. This put a restriction on the

I -- I
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accuracy of the estimate, and the number of cells N

N< TO (24)

-Ar
-'where A and r are the width of the autocorrelation in time and frequency respec-

tively.

2.4 CONCLUSIONS

A method to estimate the mean synchronization time for synchronization

over fading dispersive channels has been shown. Equation (13) demonstrates the

dependence of the mean synchronization time, T. on Pd, pf,, Te, Tf,, and N. To

minimize T. one has to select the optimum set of parameters. Some of the these

parameters, as N, can be controlled by the designer, the remaining, Pd, Pfa, and

T. are dependent on the shape of the scattering function, the amount of spread

of the channel, and SNR.

I
:1 p .,r .,r J .., . . .,'t., ,m . .- ',-m ' .. , .,, v %- ',.- .p .%' - -. %, .- v' , - - . ,. . ,W ..' .' .' .' ..,.,,,.L ' 1



41

1.0

- o

bC



42

* NX

*x22

ci
I-



43

S , 0S I 9 9 9 0

I - I-- I ----- r- ---
I I I II "I - -

i II 5 I
-- - ---- 1- I .i _ --_ -

S II l I | I

- -I - I i I I"-I I I- - Ir
-_i _ _ _ I I !

I I I '

*2I I I I

S I I -

Figure 2.3 Time Frequency Uncertainty Region

I -I -I

i ; ,5I5, I I



I vmm I
44

...................

N --

* - *

(I*) ci:
U0.140400jo A!1!qqO6A



45

V ... .. ..-. ........ .... " -. ... .... . . .. .... .. .... .- : .. ..... .... r 00

.. I i ........ ... .. . !.. ... .- ..... ... : .. ..........

-o6
c(N

= a

C) 0a

cie

..... ~ ~ ~ ~ ~ ~ .. ...- .. . \  . . : . . --

oc

co t

000 0.409 oA!!oOd

+ I III •

": ,. ,' ' 4.00 0 0 0 4 '' - '¢% '''' :" ""0€ " ". '



46

CHAPTER III

CLOSED LOOP SYNCHRONIZER OVER

FADING DISPERSIVE CHANNELS

In this chapter an optimum closed loop structure for symbol synchronizer

over fading dispersive channels is developed. The optimum synchronizer is simi-

lar to those already known symbol synchronizers that are being used over addi-

tive white Gaussian noise (AWGN) channels, except that the ccaltrol signal is

completely random; even in the absence of the AWGN. The reason is clear, and

simply because of the structure of the received signal over fading dispersive chan-

nels. It is shown that the synchronizer structure is highly dependent on the

scattering function of the channel. For a Gaussian shaped scattering function, a

simple closed loop structure is obtained and expressions for tracking error statis-

tics are derived. The dependency of such statistics on the signal-to-noise ratio

and on the spread of the channel is investigated.

3.1 INTRODUCTION

It is generally convenient to separate the synchronization process into two

distinct modes. In the first mode, the clock synchronization mode, the clocks

which regulate the two sequences being synchronized (i.e., the transmitter and

receiver clocks) are forced to run at the same rate. In the second mode, the

higher order synchronization mode, a corresponding pair of events in the two

sequences are identified and made to occur simultaneously, and if the sequences

are progressing at the same rate, the sequences are, and will remain, synchron-

ized.

If the transmitter and the receiver clocks are both sufficiently stable

. . ?%~%%V ~ ~%*%



47

relative to the required synchronization accuracy, the clock synchronization mode

may be by-passed. Most generally, however, this will not be the case and some

technique must be devised to provide the needed clock to maintain synchroniza-

- tion after initial acquisition. This problem is known as the tracking phase.

The advent of highly compact, inexpensive digital computers has now made it

possible to exploit well-known results from statistical estimation theory and con-

trol theory to develop systems that automatically respond to changing signal

environment. This self adjusting or adaptive capability renders the operation of

such systems more flexible, reliable, and more importantly offers improved recep-

tion performance that would be difficult to achieve in any other way. These rea-

sons motivate the idea of developing a synchronizer which updates itself (closed

loop structure).

In the following sections, a closed loop structure synchronizer is derived

and its performance is investigated.

As in chapter H, the vector Y,, is used to indicate the misalignment in time

and frequency between the receiver and transmitter is the result of two effects,

the first is the contribution of the channel, and the second is due to the lack of

synchronization between the receiver's and transmitter's 1cock pulses and oscilla-

tor frequencies. This lack of synchronization always exists initially even if the

channel introduces no delay in time or shift in frequency. Since these two effects

are of the same nature they can be lumped together into the mean values of the

scattering function. This will result in scattering functions as described by equa-

tion (2.1). The optimum estimate of x is such that

w(oo > W(xi (3.1)

where

W (xL)---- -- fz (t)h(t,r.)z(r)dtdr, (3.2)
N O0
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h(t,riF) is the solution of the following integral equation given by equation (2.4),

and No/2 is the two sided power spectral density of the AWGN, and z(t) is the

complex envelope of the received waveform (see Figure 1.1). Under low-energy-

-coherence condition [5] equation (3.2) is reduced to

W( 0)-- ff z(t)R(t,.x)z(r)dtdr. (3.3)

The low-energy-coherence condition is more realistic for over-spread channels.

In the case of repeated transmission the transmitted waveform can be

written as

K
s(t)= E s(t-(i-1)/p) (3.4)

where p is the transmission rate. It can be shown that [4] the likelihood function

for estimating x in the case of repeated transmission is

1 K
W~x --- , f zi (t)Rj(t,r.x)zj,r)dtdr, (3.5)

where Ri(t,r.x) is the complex correlation function associated with the i-th

transmitted waveform.

As mentioned before, the precise implementation of the maximum likeli-

hood estimator would involve a continuum of detectors (or calculations) for each

value of X in the region of interest. Certainly, in general such estimator cannot be

built. One realizable approximation to the maximum likelihood estimator results

from specifying a finite set of points, say { ,i1,...,N}, and record z(t) then

perform the parallel processing operation in which h(t,n-.x) is viewed as a linear

time-varying filter with r as the input time variable and t as the output time

variable. The output of this processor is N numbers, each is an output of a detec-

tor matched to a particular x. The ML estimator finds the largest detector output

• & s. ." ° °- - ; -.
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and assumes that the maximum likelihood estimate of Xt is the one corresponding

to that detector. The result is a parallel processor, in each parallel branch the

likelihood function is evaluated and the maximum is chosen to represent the

-maximum likelihood estimate of the vector of parameters under consideration.

This synchronizer which is optimum in the sense that it achieves synchronization

with a given probability in the minimum possible time requires a detector for

every cell and thus is not optimum in a minimum hardware sense. Thus

minimum acquisition time systems is never implemented because of excessive

hardware cdmplexity. A synchronization system that evaluates the cells serially

until the correct cell is found is said to use serial search. Such systems are

designed to achieve a compromise between acquisition time and reasonable com-

plexity. The performance of a serial synchronizer is discussed in [13].

In the following sections a closed loop synchronizer is derived and its per-

formance is analyzed.

3.2 CLOSED LOOP STRUCTURE

Our objective is a closed loop structure that can be derived from the ML

equations. The reluctance to develop a closed loop structure for the synchronizer

is due principally to the continuously changing nature of the characteristics of

the channel. The technique we will use to transform the open loop structure

(parallel processor) derived from the maximum likelihood theory to the desired

closed loop structure is the gradient approach. The gradient approach is very
popular since it is a relatively simple and generally well understood method that

permits the solution of a large class of problems. When the likelihood function is

near quadratic, then the performance measure can be visualized as a bowl- 1
shaped surface, so the synchronizer has the task of continually seeking the "top

I



50

of the bowl". In this case, seeking the maximum of the likelihood function can be

accomplished by "hill climbing" method of which the various gradient methods

are representative. For the ML function (3.5), the gradient is obtained by

--differentiating with respect to the vector x to yield

8W~)-K , R,(t,i (3.6
---- f f S zi*(t) la . zi(T)dtdr, j-1i,2 (3.6)

In order to proceed further with the analysis, one needs to know the shape of the

channel scattering function. By assuming a Gaussian-shaped scattering function

of the form

Er [(rxi)2/2L2-(f-x 2 )2/2B2], (3.7),LBfx~f exp[+ x2/1

where Er is the total received energy when the complex envelope of the transmit-

ted waveform has unit energy. Using such scattering function, equations (12) can

be reduced to

-- W& xjW()- E ffz(t)Rj(t,X)z(r)dtd, j1,2 (3.8))

where

Rji(t,r.j)=f fra(r,fx)ui(t-r)ui*(i-r)exp [j2?rf(r-t) ]drdf, (3.9-a)

and

Ri2(t,rx)=ff fa(r,f:x)u(t-r)u, (-r)exp [j27rf(r-t) ]drdf. (3.9-b)

Equating (3.9-a) and (3.9-b) to zero and solving the two transcendental equations

simultaneously will yield the maximum likelihood estimate of &.

An alternative to be considered in this paper is to use the partial derivatives

j=1,2 (3.10)
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to control the current estimate of x. Since this expression will be zero when x

equals the true vector It, and since it is monotonically increasing function of x in

the vicinity of , a feedback device should be able to force x to converge to

- the maximum likelihood estimate of &. The resulting symbol-tracking device is

shown in Figure 3-1. The output of the box labeled "accumulator" is

ej = xjW(K) - WjW, j=1,2; (3.11)

where

K
W(X) f f zi*(t)Rij(t,r)zi(r)dtdr, j=1,2; (3.12)

The error signals ej, j=1,2 are random variables, their means and variances are

given by

Ef ej }xjE{ W(x) E(WI()) (3.13)

Var( ej }=xj2var( W(2) }+var{ Wj(2) }2xicov( WlWj (3.14)

3.3 NUMERICAL RESULTS

To evaluate the different variances one needs to specify the complex

envelope of the transmitted signal. For Gaussian-shaped scattering function, it

has been found that a Gaussian-shaped envelope in the form

u(t) = (2&/,r)1/4exp [-at2 ], (3.15)

is optimum from the detection point of view [4]. Other reasons for the choice of

(3.7) and (3.15) for the forms of the scattering function and the complex envelope

of the transmitted waveform are based on the fact that the Gaussian function
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1. is a simple and smooth function,

2. has elegant properties when integrated against another Gaussian function

on the infinite interval,

3. can be used to approximate many of the finite-duration pulse signals com-

monly used in communications, and

4. is easily generated [14].

It has been shown that the value of a in (3.15) which minimizes the area of

the uncertainty ellipse [4] is

B (3.16)

The statistics of W(x) and Wj are

a(W )=I  [SNR+ (L ffRj(tr.x)R *(t,r.x)dtdt (3.17)

+ W -![jffR*(t,Tlf )Ri(t,r.x)Ri(trx)ddr (3.1)NNo+ [-ffffRi*(t1 ,I.x)Ri(t 1,t:2L)R(tl,r.&i~r)dtdrdtdr

the qunt fafR(ths silax)R xdreso as in equation

I

No~ ,
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expect Ri(t,i-.) is replaced by Rij(t,rX)

eov{Wj }=iI [-L- 'o f f1 j R i*( t ' ri ' )R i( t 'r X) R i*( t l ', :'i[t )R ij ( t l ',rl .-2t ) d t d rd t l d rI

cov(W~Wi 1=I N,,

+ao 1 f ffi*(t,,rl : t)Ri(t,l-.x)Rij( r,,rl.x d t d r d r I

N0

+1 3- fffRi,(tivr. )Rij(tlpt: xRi(t,r.,xdtdrdtI

+ --. [FfRi*(t,r.X)Rij(t,7-a)dtdr] (3.20)
0

Substituting in Equations (3.13) and (3.14), we obtain Figures 3.2, 3.3, 3.4.

Without loss of generality we will assume that x 2t=O. Figure 3.2 illustrates

the behavior of the expected value of the error signal as a function of

=(xl-xlt)/L for two values of SNR and channel spread of 10. Observe that

there is a range of b for which the expected value of the error signal is

almost linearly related to 6. This region may be selected as a normal

operating region for the tracking loop.

Figure 3.3 demonstrate the behavior of the expected value of the error sig-

nal for channels with spread =1.0. Figure 3.4 shows the how the variance

of the control signal changes with 6 for different values of SNR.

3.4 CONCLUSIONS

A closed loop structure for synchronization over fading dispersive chan-

nels, with Gaussian shaped scattering function, is developed. The effects of

various system parameters (such as signal-to-noise ratio, the spread of the

channel and the duration of the envelope of the transmitted waveform) on

the shape of the S-curve are demonstrated. Dependency of the variance of

FI

I.



54

the tracking error on the SNR and the spread of the channel is investi-

gated.

It is known that in AWGN environment the optimum tracking discrimina-

tor for arbitrary wideband signal is a multiplier which forms the product of

the received signal plus noise and the first derivative, with respect to the

parameter under consideration, of the receiver generated replica of the

transmitted signal. This discriminator is optimum in that its output is the

maximum likelihood estimate of the that parameter difference between the

two wideband signals. In synchronization over fading dispersive channel it

is shown that the optimum tracking synchronizer is a multiplier which

forms the product of the received signal and a filtered version of it, the

filter impulse response is the first derivative with respect to time (or fre-

quency) of the autocorrelation function of the signal part of the received

waveform.

-S
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CHAPTER IV

SYNCHRONIZATION OVER FADING DISPERSIVE CHANNELS

USING STOCHASTIC APPROXIMATION METHODS

In this chapter we consider the problem of synchronization over fading

dispersive channels. Using stochastic approximations methods; a recursive

estimation procedure is developed to estimate the two parameters needed

by the synchronizer. The result is a closed loop in which the component of

the error signal is proportional to the expected value of the derivative of

the likelihood function with respect to the appropraite parameter. This

method possesses the simple computational structure of the stochastic

approximation methods, and under certain regularity conditions, it can be

shown that the variance of the error in the estimates approaches the

Cram6r-Rao bound. This chapter is organized as follows: In the next sec-

tion an introduction to the problem is presented, in section 4.2 a brief dis-

cussion to the method of stochastic approximation is given. In section 4.3

the method of stochastic approximation is applied to estimate recursively

the parameters under consideration. Lastly an example is given in section

4.4 to illustrate that the suggested procedure is asymptotically efficient and

derive the conditions under which asymptotic efficiency is

4.1 INTRODUCTION

In this chapter the channel model used is the same one used in section 1.2,

and the main objective is to develop a synchronizer which updates itself

recursively. In [15] Sakrison described an efficient recursive estimation pro-

cedure to estimate some target parameters from repeated observations using

-u . ~1 %~~ .* ~ *~ *.~-u~m
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stochastic approximation methods. Under certain conditions these methods

provide many computational advantages, and it can be shown that the

error in the resulting sequence of the estimates approaches the Cramer-Rao

bound.

In the following section a brief coverage of the method of stochastic

approximation is given. This method is then applied to the problem of

estimating the vector x described in section 2.2.

4.2 THE METHOD OF STOCHASTIC APPROXIMATION

Stochastic approximation methods are applicable to any problem that can

be formulated as some form of regression problem in which repeated obser-

vations are made. To be more specific, let the length of the processing

subintervals be denoted by T. Denote the data observed on the kth subin-

terval by Zk. If our observations start at t=O and the observed quantity is

a continuous-time random process, z(t), then zk represents the sample of the

process of T sec duration, z(t), (k-1)T<t<kT. The objective is to find the

value of an unknown parameter x which solves the vector valued equation

m(x) E(IZk,X)} =M (4.1)

Robbins and Monro [16] originally studied an iterative procedure of solving

this problem from repeated independent observations in which f, m, and z

are scalar valued. A multidimensional version of this procedure is described

in Sakrison [17] where it is shown that the sequence of estimates {X_}

chosen according to the recursion relation

Xk+1 =Xk+ Ckkzk~ ).Mo] (4.2)
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converges to the solution vector 2t in the mean square sense,
2!

lm E IIXk-&Il2} = Ei L {X(k Xt)2= 0 (4.3)k -* o () = k-oo t fi llj

provided that the following assumptions are satisfied.

1. There exist constants a. and a, 0<ao0aj<oo, such that

aoll.X..ll2 < (N- &)T (M(.Xy-'M0) =5 a,.llX.-&ll2.  (4.4)

where xT represent the transpose of the vector x.

2. The random entities zi,i=1,2,... are identically distributed and statisti-

cally independent.

3. For all values of x

var( I (ZkXLI12) <0. (4.5)

4. The sequence of constants {Ck}, k=1,2,... are positive monotone decreas-

ing, and satisfy

Ck oo, 0 c2 < 00. (4.6)
k=1 k=i

The usage of the stochastic approximation methods yields the following advan-

tages:

1. Only a small interval of data needs to be processed at a time.

2. Only simple computations are required, even when the functional depen-

dence of the regression function on the parameters of interest is nonlinear.

3. The method may be employed in the absence of the detailed knowledge of

the process statistics and in the absences of the detailed knowledge of the

relationship between the desired parameters and the observed data.

.5, -w ~
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If sufficient a priori knowledge concerning the statistics of z(t) and the functional

relationship between the parameters and the observed data is available, the third

advantage can be replaced by the following desirable property: the methods can

-. be made to be asymptotically efficient.

We can apply these results to the synchronization problem under con-

siderations mainly to find an asymptotically efficient Robbins-Monro procedure

for estimating x. from the observations, Zk, k l,2,.... The motivation for this goal

is clear; such a method would be computationally simple and yet would have per-

formance which, for a large number of observations, k, could not be surpassed

by any other method, no matter how computationally complex.

To see how we might approach this objective, define

lwk(x)=grad{ Wk(x) } (4.7)

where Wk(x) is W(x) defined in (2.3) based on z(t), (k-1)T<t<kT. The gradient

in (4.7) is with respect to the partial derivatives a j=1,2. We notice that_5x i'

Ak(X) is a random vector, even in the absence of the AWGN, and a useful charac-

terization is the its expected value. Define the vector-valued function r(2L) as

mk(x)=E{ 4(x) }. (4.8)

We also notice that

(=0 x x4
l (x) 30 in general (4.9)

Thus if Eq. (4.9) has only the unique solution x7=2, we can hope to carry out

Robbins-Monro method for estimating & by using the Ak(x) of Eq. (4.7) in the

procedure.



The most rapid convergence is obtained when the weighting constants Ck are

chosen to be of the form c/n. It can be shown that [17] if c- G-(W), where the

jith entry of the matrix G(2L) is given by

gij(xt) E {-2 }
axitO' jt

-- E- },& (4.10)

then the Robbins-Monro method is asymptotically efficient. The only problem is

how to pick c=G-'(xt) ? since xt is unknown. One solution is to make the pro-

cedure adaptive by substituting an estimate for G(xt). The "adaptive" Robbins-

Monro procedure takes the form

Xk+ =xk+(l/k)G-(x)Ak(x). (4.11)

Sakrison [18] considered the convergence of this method. Under certain assump-

tions, Sakrison has shown that C., the covariance matrix of the error (2[k-&),

satisfies

(h,Cxk h) _< (1/k)(l_,Gh) + d/k 1 +', d<oo, y>O (4.12)

where (x.y) is the inner product of the in the M-dimensional Euclidean space, and

b is an arbitrary vector. That is, the sequence of estimates Xk generated by Eq.

(4.11) is asymptotically efficient. The interested reader is referred to [181 for the

proof of the last statement.

4.3 NUMERICAL RESULTS

Combining Eqs. (2.3) and (4.10), yields

TT
mk 1..o..ff [R*(t,r2t)-No6(t-r) J Rj(t,r.x)dtdr j=1,2; (4.13)

000

l1 11 11, 10 1
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where superscript denote partial differentiation with respect to the corresponding

component of X. In order to proceed further we need to specify the shape of the

scattering function, o(r,f). Let

-"o(r,f.X) f 21rLexp [-(r-xI)/2L2-(f-x 2) 2/2B2 1, (4.14)

also assume that the complex envelope of the transmitted signal be

u(t) - (1-2)'/exp [at2] (4.15)

Substituting in Eq. (1.3) yields

zr
= exp _- ((t-xl) 2 + (r-x2)2 + 2aL2(t-r)2)

+ j27r(r-t)x2-2ir2B2(r-t)2  (4.16)

where

-- 1 + 4aL2. (4.17)

It is known that [4] the optimum value for a is

B
L (4.18)L

The elements of the matrix G(x) are

g = - 2 -y(2-yAx, 2 -1)Q (4.lg-a)

g12 = g21 - 2 AXAX2Q (4.19-b)

g22 2 -( 2"IAx 2
2-1)Q (4.19-c)

where

x -x~tx2-x rSA x - i Ax2 -X t , rS- (4.20)L ' B '

. ,, W - ,-,, . , ,' .,' 'V " N,. - ',-.,,, .. ' , . ,'. '. ,' I
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and

SNR xp [..(., 2 + '& 2 2)]. (4.21)-- ---

The vector m(z) is

r(x)=-2 Q -Y AxJ (4.21)

From (4.21) and (4.19), the quadratic form q = - (X - XT G(x) re(x) is

q = 8PQ2{LAxl2(-y2Ax,2 + -?Ax22 - _y) + BAx 2
2(?Ax 2

2 + -? 2Ax 1
2 - _y)} (4.22)

4.4 CONCLUSIONS

The NL solution is the one for which 2W = 0 In the case of fading

dispersive channels, the decision variable, even in the absence of the AWGN, is a

random variable, a useful characterization is the expection of W. One way to do

approximate this solution is to update the estimate by a quantity proportional to

the error. We wrote the error function as

e~x)El W )+ (e(x) -Elex

The first term is used to control the new estimate and the second term is treated

as an internisic noise. Eq. (4.11) simply indicates that we update the estimate of

any component of x by using a quantity proportional to the error. The propor-

tionality factor is chosen to speed up the convergence process. The resulting The

estimate j, is asymptotically efficient as long as x-xt lies in a given region. which

we called the pull-in region.

.,[
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