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SUMMARY

This report is made up of two parts. In the first part we present additional
results on the performance of random access protocols for mobile packet radio
networks. The effect of three diflerent types of diversity reception in Nakagami
fading environment on the channel throughput and the average packet delay of
nonpersistent carrier sense multiple access (NPCSMA) protocol is considered.
Expressions for the probability of packet error with diversity receptions are newly
obtained for both independent and correlated diversity branches. A noncoherent
frequency shift keying modulation scheme is assumed.

In the second part a comprehensive study of the problem of synchronization
over fading dispersive channels is presented. Synchronization is a fundamental
problem in digital communications as used in mobile radio. In the first chapter,
we consider a simple binary detection problem. The effect of receiver mismat.ch
is investigated. A closed form expression for the probability of false alarm and
probability of detection are given, also a set of curves are provided to demon-
strate the am;)unt of degradation for under-spread channels with some special
scattering. - . :

Chapter"II deals with the performance of serial synchronizer over fading
dispersive channels. The performance indices are the mean and variance of syn-
chronization time. Upper and lower bounds on the mean and variance of syn-
chronization time for a very general serial search system are derived and
evaluated. It has been found that the results are highly dependent on the scattcr-
ing function of the channel, the degree of the spread, number of the cells used in
the search procedure, and the time required to reject an incorrect ccll when a
false alarm occurs. An optimum closed loop structure for symbol synchronizer is
derived in chapter IIl. The optimum synchronizer is similar to those already
known symbol synchronizers that are being used over additive white Gaussian
noise (AWGN) channels, except that the control signal is completely random;
even in the absence of the AWGN. It is shown that the synchronizer structure is
highly dependent on the scattering function of the channel. For a Gaussian
shaped scattering function, a simple closed loop structure is obtained and expres-
sions for tracking error statistics are derived.

In chapter IV the method of stochastic approximation is applied to the prob-
lem of synchronization over fading dispersive channels. A recursive estimation
procedure is developed to estimate the two parameters nceded by the synchron-
izer. The result is a closed loop in which the component of the error signal is
proportional to the expected value of the derivative of the likelihood function
with respect to the appropriate parameter.




PERFORMANCE EVALUATION OF DIVERSITY IN RANDOM ACCESS PROTOCOLS

-L

-

1

OI. Probability of Packet Error
IV.
Vv

TABLE OF CONTENTS

Part 1

Introduction
Probability of Block Error of MRC Diversity System

W O =

Probability of Packet Error for Equal Gain Combining
Modified Expressions for the Channel Throughput for NPCSMA Scheme 11

Part 11

SYNCHRONIZATION OVER FADING DISPERSIVE CHANNELS

Performance Degradation Due to Receiver Mismatch in communication Over

Fading Dispersive Channels 18
1.1- Introduction 18
1.2- Channel Model 20
1.3- Receiver Structure 21
1.4- Performance of a Mismatch Receiver 24
1.5- Conclusions 27
Serial Search Synchronization Over Fading Dispersive Channels 32
2.1- Introduction 32
2.2- Synchronizer Structure 34
2.3- Performance Analysis 37
2.4- Conclusions 40
Closed Loop Synchronizer Over Fading Dispersive Channels 46
3.1- Introduction 46
3.2- Closed Loop Structure 49
3.3- Numerical Results 51
3.4- Conclusions 53

Synchronization Over Fading Dispersive Channels Using Stochastic Approxi-
mation Methods

4.1 Introduction 59
4.2 The Method of Stochastic Approximation 60
4.3 Numerical Results 63

4.4 Conclusions




PART I

PERFORMANCE EVALUATION OF DIVERSITY
IN RANDOM ACCESS PROTOCOLS

- I. Introduction

The effect of Rayleigh fading on the throughput of different random access
protocols such as Aloha and NPCSMA have been introduced [1,2]. However, the
Nakagami distribution [3] covers a wider class of fading than any other model.
Experimental as well as theoretical [4,5] studies showed that it is the best fit for
data obtained from a model of urban radio multipath channels. The effect of
diversity reception on the probability of bit error with Nakagami fading was first
considered in [6]. The analysis was confined to CPSK which is not suitable for
mobile communications, beside that these results cannot apply to packet switch-
ing where we have packets of N bits. Some other results were obtained {7,8] for
NCFSK with MRC and selection combining diversity techniques. Again these
results were obtained for the probability of bit error as well as the third combin-
ing technique, namely equal gain combining, was not considered. The effect of
Nakagami fading on the NPCSMA throughput was first considered in [9] for suc-
cessive correlated packet retransmissions. However, the analysis of the diversity
reception on the probability of packet error and consequently the channel
throughput represents an uninvestigated case. In section II, the probability of
packet error with MRC receiver is obtained when the diversity branches are
independent with either identical parameters on each branch or not. The effect
of correlation among two diversity branches is also considered.

Similar results are presented in Section IIl for selection combining. Section
IV includes the results for equal gain combining. Modified expressions for the
throughput and the delay are obtained in Section V for NPCSMA protocol along
with conclusions.

II. Probability of block error of MRC
diversity system:

The following assumptions are made to obtain the results:
a) NCFSK modulation mode is considered.

b) The fading on each branch is nonselective flat type of fading that is
modeled using Nakagami distribution.

c) The noise is additive white Gaussian with spectral height 2N, and is the
same at all branches. One of the known diversity techniques [10] is the MRC
which allows the signal to noise ratios to be added noncoherently along the M
branches. In other words

BRSO B T S 2 N N P RIT (S TP
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r M
7= % (1)
k==1
The fading envelope S(t) at the it branch has a Nakagami-m distribution as fol-
lows:
2 2me-1
S 1§79 exp - S) 2
_ f(s) = Tm) n iy (= (2)
where (), = <S;?>
0 1 : ¢
, M, = , M > — 3
oS> T T 2 : @)
The signal to noise ratio at the i branch will be
S;2
%= 2N, 4)
The probability density function (p.d.f.) for ~; will be
(k)™
%) = Ty 3 o exp(-ki) (5)
where
2N.m; L=
ki = i R , % = Average SNR (6)
0; N

This can be recognized as a Gamma distribution. The probability of packet error
is defined as follows

Ppo = J [1-(1- PN () d @)

where N is the number of bits in each packet. Py is the probability of bit error
for a certain modulation scheme. For NCFSK Py, is given [12] by:

Pb=%e""/2,’7520 (8)

Case (A) : Independent Diversity Branches
For identical parameters m, 3 on all branches, we have

=1- 2 ( )(—-—)n f e/ f(~) dy (9)

n=0
The sum of i.i.d. Gamma dxstnbutlon with parameters m,k is also a Gamma dis-
tribution [13]. i.e.

. ) = KL et

Ty 7 ) ao
where

- i
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Substituting for (lO) in (9) and performing the integration we get
| Pp=1- 2( )(‘—)n -——n—'—" (12)
4+ o 2k

_Equation (12) can be easily evaluated when N is not large. This is a reasonable
assumption [14], since a large N would cause an unacceptable probability of error.
If the pa.ra.meters differ in each branch we have

po=1- z%wuuaerm o (13)

where L.T. is the Laplace transform operator. The characteristic (c/c) function
for ~; is given by [13]

K; m,
= (m) (14)
Then the c/c function for 4 will take the form:
= I (™ (15)
=1 Ki -t

Consequently, the L.T. for f(v) will be

FO) = I (g™ (16)
Substituting for (16) in (13) one gets
pe-l—z( )(___)n El( n) (17)
n=0 K; + r}

m
For arbitrary branch parameters my, {3, but equal (-h—k) for all branches we get
k

f{7) ~ Gamma (k, i‘] my) (18)
k=1
And consequently
o Kk E™
=1- n§0( ) (- ) (Tc—+71/—2-) (19)

Case B: Correlated Branches (M = 2)

In this case we assume that the fading envelope has the same parameters in
both branches. The envelope in this case will take the form [3]):

R acacs to v L caomariod
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0(1-p) S? = - 3 mv R?
'[_Szif/l;_l L (ﬂ(l—p))

(20)

where Iy(-) is the modified Bessel function of the first kind of order X. Substitut-

ing for equation (4) in (20) one gets:
2V7 N 2N,m~y

() = —— 0 (Bym exp(-

T@)i-p® 0 =)

Bp)2ND) jm-3 ,  2mNVor
2mvp m-2' 0(1-p)

Hence the probability of packet error will take the form:
P=1-C % M1y

n=0

o0 2N.C
{ exp(- Bi,l)exp(- :};ﬂ)

2N,y m-%
( 2, ) Im_%(2No Civ) dy
where
_ 2N,V (B ym
I'(m) (1-0)™
Vp
,Cy = —BVP
YT -pn
Rearranging (22), one obtains:
T N1
=1 - _° 2 _ 3
Pre=1-K(g) P8 ()63

Ld

‘ .

(21)

(22)

(23)

(24)

."'-f
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w . .- .
* [ (P! L(b7) exp(-a7)dy (25)
o
1 1

wherex==m——2-,y_m+?,

- 2N,C

. a=12’-+ j;‘,b=2N°c, (26)

The integration in equation (25) is found to be [15]

1
r@m)- (2N,C,) 2

1
1 m--z'_ n 2I\Ioclgm
I‘(m+2)2 (2+Tp)
1 1 2N C
!2F][m+51m1m+?9( o )2] (27)

7 + 2NC/ Ve

where , oF,(*) is the hypergeometric function.
The conditions to be satisfied for the above integration to exist are

1) x+y>0
2) |al > |b] (28)
(3) Reja] > Re|b]|

It is clear that equation (28) is satisfied for every value of n and m. Using the
relations from [16]

y oF 1(a,byey2) =, ,Fl(b a,c,2) (29)
y oF1(b,a,8,2) = ( )b (30)
1
, F(2m) = -\/—‘2_;[- 2 2 [(m)I(m + -,}) (31)

Cdl N P 2 )

one gets for Ep,

Ppo=1- (W)m 2 M- Ly

n=0

1

(3 + 252 - @NC e

- s GEDWwWW E ®_08_

(32)
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III. Probability of packet error

for selection combining:

For two diversity branches we have:
Case A: Independent fading on the diverssty branches.

The resulting signal to noise ratio can be described by:

¥ = Max (%, 72) (33)
Then, for arbitrary parameters, we get: .
() =1(1) | 3y = 7 Fol1) + 1(72) | oy = 7 Fo{m) (34)

Then

fv) =K, f(tlnT 7™~ exp(-K;7)

7 sz, m.-1
f—— 1 exp(-Ky¥,) dv
{r(mz) 2 ( 2 2) 2

1

m, mg-1 _
+ K, o () ~ exp(-Ky7)

. ,.]' ]

Consequently, the probability of packet error will be:
5, K MKy
pe — (m)r(mQ)IE( )(

n=0
{f f exp(-5 - K1)

™ exp(-Kpvg) 1o d’72 dv

0 v

+[J exp(—% - Kpy) ™!
o 0
cexp(-Kim) n d m dv)] (36)

In the above integrals let x = 4,/v, i=1,2, Then we get:

K, 'K, .
mlz ( )(-—)

n=0

LS
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.,’m.-nn.—l d'ydx-l-fxm'-l f
o °

exp = 5 + Kp + Kyx) 7™ = dndx}]
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(37)

Or using the definition of the hypergeometric function and making some manipu-

lations, we arrive at:

= Ki'K;* N 1. N

PPC =1- —B(m; , mz) ngo (-.E)f‘ (n)
1. 1

* oFy(m; + my, my, m; + 1:—:‘1—')

n
K, + 3
1 1
m

+

X,
* oF 1(m, + my, my, my + 1, ————)}

n
K1+?

Case (B): Correlated Branches:

(38)

The joint pdf of two SNR's «,, 7, whose envelopes are jointly random vari-

ables is given by [9]:
L
f(ns %) = K'(mm) ?

K “
* exp - 1 (m + M) (K" V1)
where
m+1
T(m)(1-pXo) =5~ f

Because of the symmetry of ; <, in (39), one can write for f(7) :

.
() = 2 [ f(wm)dm

Pu=1-2 5 ()X-3P

(39)

(40)

(41)

Py s




exp(--'—;!-) f(vm) dvy dvy (42)

0 oy 2

1

Let 7x = +, in (42) and change the order of integrations we obtain using [15]:

—_ N
Pp=1-2¢ 3 (‘:x—%)n
' 1 x2L riom) v
! 2=-1 I(m) (1;- + -13_(—; (1+x)y™ <
Fymm o+ A m (e (43)

n K
r} + —17 (1+4x)

It is obvious that the conditions for the integration to exist are satisfied
Vo<x<1,0<5< |p] <1.

Using a similar approach to case A and after some simple manipulations one
arrives at:

Pu=1-1 3 B3

n=0
1 m-1 b
{ X [ax + ]m - T dx (44)
[(ax + b)? - 4pa%x] 2
where
o I'em) k2
L= 2 Far@ (1" (49)
L= 1% (46)

P
The above integration can be easily evaluated Vn numerically.

IV. Probability of Packet (block) Error
for Equal Gain Combining

For M diversity branches with identical parameters, the fading envelope can
be described by

M
S(t) = 35 Sk(t) (47)

ka1

Case A Independent diversity branches:

From (3], the p.d.f. of S(t) can be approximated by:
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2 my m
f(S) = Ty ()T s™7 ! exp - e s? (48)

where

Fr = M+ MRLLE ¢

- M - 22
m
The probability of packet error will take the form:
Pr=1-3 () (-1p
n=0 2
? S?m-r-l 2 (Er_)m-r
o [(mt) " Of

- exp - (Kp + -‘2-‘-) s? ds

2
Let %; = ~ and integrate, we get

Pro=1-3 (M- 1p

n=0

Case B: Correlated diversity branches (M = £2)

[ )
S’

et

()

(49)

(50)

(51)

(52)

We assume that the two branches have identical parameters (m,{2). The

p.d.f. of the combined output will be
s

f(S) = [ 1(S,, S-S,) dS,

Hence,

(63)

Ppom1-— 4 (B § MLy

M(mX1-p) o(Z1) =

ha ' Ba" A ! Ca o
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. R
. { exp(- _21_1_!:%) { [Ry(R-R,)]"™ exp - n(lln-p)

* [R? + (R-R,)]

) 2m VZR,(R-R))
e

) dR,dR (54)

If we let R; = Rx, we get .
1

P=1-4 ¥ 3PQ) J =

(-}

* n
* [ exp -~ R?[a(x? + (1-x)?) + ?]
[+

R®™I__ (";m‘{‘; R? x(1-x)) dRdx (55)

where L and a are constants,

L= 4

= (g e= ——ndn_,,) (56)

P(m)(1-p) p 2

Using [15], and after satisfying and regularity coxidiiions, we géﬁ

m=1-3 Qh-LpL,

n=0

— N

} _[x(1-x))2m-1 P(n,x)l dx

(57)
° Pax)-PAx) 2

where P(n,x) = % + 'l'}'_(; [x* + (1- x)} | (58)

o I YO )
F§2m!

y Ly = 2( 1 )m rﬁ(m) (60)
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77 X7 Modified Expressions for the Channel
Throughput for NPCSMA Scheme

The channel throughput and the average packet delay for NPCSMA proto-
col are given by [17]

S = G exp(-aG) e
G(1 + 2a) + exp(-aG) (61)
) Ea+l+2a+(£s;--l)(l+2a+6+a)
The modified expressions for S and D, if the packet and acknowledgement chan- A
nels are fading and identical, will be
S, =S(1-P )2
m ( pe (62)

m=—’:oz-i-1+2a.+(gc‘.--—l)(l-l-2a+6+oz)

m

For the last 3 diversity schemes, we can always compute the expressions for S,
and D, to investigate the effect of different combining techniques on the channel
throughput. '

Numerical Results '

The improvement in the throughput and the delay of a channel with Naka-
gami fading using MRC diversity technique is displayed in figures 1 through 8. It
is obvious that the performance approaches that of a nonfading channel with 4
diversity branches. However the approach is quicker when the branches have
different parameters. Correlation among two diversity branches is shown to
greatly affect the performance. Consequently, serious attention must be directed
to assure independence between branches. It is also noticed that the limiting case
where p — 1 is achieved for MRC at a SNR 3 dB less than that needed for a sin-
gle channel. This is expected from equation (1). Similar results are presented for
both SGC and EGC. For SGC the performance degrades to reach that of a sin-
gle channel at p — 1. For SGC the limiting case as p — 1 occurs at an average
SNR 1.5 dB less than that needed for a single channel. It is also to be noticed
that for SGC a high SNR branch along with the worst fading figure (m), the per-
formance is better than that of two identical branches with relatively good fading
figure. This implies that the average SNR affects the performance in a more
effective way than the fading figure (which describes the severity of fading) does.
The MRC technique shows a better performance followed by EGC and then the
SGC. However, the improvement in performance of MRC over EGC is not
attractive to favor MRC over EGC keeping in mind that EGC is easier to imple-
ment than MRC. The results obtained here contain the case of Rayleigh fading
(at m = 1) as well as the case of single bit transmission (at N =1).

V1. Conclusions:

. The probability of packet error for three different diversity combining tech-
niques is evaluated for independent fading envelopes over each branch. The
effect of correlation among two different branches was also considered. The fading
was modeled according to the Nakagami-m distribution. The results were used

to obtain modified expressions for the channel throughput and th
delay for NPCSMA protocol. ghp e average packet

PR
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PART II
SYNCHRONIZATION OVER FADING DISPERSIVE CHANNELS

CHAPTER I
PERFORMANCE DEGRADATION DUE TO RECEIVER MISMATCH
IN COMMUNICATION OVER FADING DISPERSIVE CHANNELS +

The engineering importance of fading dispersive channels has increased
markedly in the recent years. Optimum detection over such channels requires a
perfect knowledge of the channels scattering functions which completely charac-
terize the behavior of fading dispersive channels. Lack of such knowledge may
result in performance degradation. The objective of this study is to analyze the
performance degradation under mismatch conditions. Two types of receiver
mismatch will be considered. First, the receiver is assumed to have knowledge of
the shape of the scattering function but the mean time delay and the mean fre-
quency shift are unknown. Secondly, we will investigate the performance degra-
dation when the shape of the scattering function is not known to the receiver. A
closed form expression for the probability of false -larm and probability of detec-
tion are given, also a set of curves are provided to demonstrate the amount of

degradation for under-spread channels with some special scattering functions.

-_——T

1.1 INTRODUCTION
During recent years there has been an increasing amount of attention
given to the study of fading dispersive channels, channels that exhibit both fad-
ing and dispersion. The determination of optimum modulation and demodulation
techniques and the evaluation of the efficacy of optimum and suboptimum
receivers for such channels are of major importance to the system designer.
Fading dispersive channels are usually best described as random, linear,

time-invariant filters [1]. The characterization of time-variant, linear filters in
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terms of system .unctions received its first general analytical treatment by
Zadah (2], who introduced the time-variant transfer function and the bi-frequency
function, as frequency domain methods of characterizing time-variant linear
filters. There is another common approach to describe the channel, an approach
which involves the notion of scatterers. This approach leads to a physical picture
of the channel as a continuum of moving scatterers. In such model, propagation
is established by a single scattering from a large number of independent scatter-
ers.

In many applications, it is reasonable to suppose that the impulse
response of the filter is a sample function of a Gaussian random process. Using
such supposition, the specification of the channel reduces to the specification of
the mean and correlation functions either of the channel's random impulse
response (first approach) or of the received process conditioned upon the
transmitted waveform (second approach). Many channels are adequately modeled
by taking the mean to be zero and the correlation function to be a special form,
which is determined by the scattering function of the channel as will be seen in
the next section.

In section 1.2 mathematical model of the channel is presented, and the
statistics of the output of the channel are given in terms scattering function of
the channel and the complex envelope of the transmitted waveform.

In section 1.3 we present the receiver’s structure and discuss a way of

obtaining an approximation to the probability of detection and the probability of
false alarm. The discussion in this section is limited to special category of prob-
lems; namely, the low-energy-coherence problems.

In section 1.4 we investigate the degradation in performance due to the

mismatched receiver, by that it is meant that the receiver has not enough

T AN RSN NS 2 AN AN LY e
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information regarding the scattering function of the channel. The two cases of

interest are

(1) The shape of the scattering is known, except for some unknown parame-

ters.

(2) The scattering function of the channel is completely unknown to the

receiver.

1.2 CHANNEL MODEL

The channel to be considered is depicted in Figure 1.1. This channel is
completely described by the scattering function o(r,f). The most important
parameters of o(r,f) are B, the frequency interval in f outside of which o(r,f) is
essentially zero, and L, the time interval in r outside of which ofr,f) is effectively
zero. The quantity B is called the Doppler spread, and represents the average
amount that an input waveform will be spread in frequency, while L is known as
the multipath spread, and represents the average amount in time by which an
input signal will be spread. The product S=BL is called the spread of the chan-
nel, channels for which S < 1 are called under-spread channels, while channels
with S > 1 are called over-spread channels. Characterization and classification of
fading dispersive channels are given in [3].

Throughout the discussion, we denote the channel input and output
waveforms by s(t) and y(t), respectively. These waveforms will usually be

represented by their complex envelopes, thus

s(t)=Re{u(t)exp [jwot - }, (1.1-a)

y(t)=Re{v(t)exp et | } (1.1-b)
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where Re {.} denotes " the real part” of the indicated quantity, and w,, denotes
the nominal carrier frequency in radians per second.

In many applications it is reasonable to assume that the received signal is

- conditionally Gaussian. By conditionally Gaussian, we mean that given the

-transmitted waveform, the received waveform is Gaussian random process. If one

accepts this supposition, the description of the channel reduces to the

specification of the mean and correlation function of the received process condi-

tioned upon the transmitted waveform. It can be shown [3] that

Ry(t,r)=Re{R(t,'r)exp [jwo(t—r) ] }, (1.2)
where
R(t,r)=}o }oa(r,f Ju(t-r)u’(r-r)exp [j21rf(t-r) ]drdf . (1.3)

The function R(t,7) defined by (1.3) is the complex correlation function of the

complex envelope of y(t), that is

R(t,'r)=E{v(t)v'(r) } (1.4)

Insight into the scattering function and methods of measuring it are discussed in

[4]

1.3 RECEIVER STRUCTURE

Optimum receiver structure for digital signaling over fading dispersive
channels have been determined [5], and the performance of binary signaling sys-
tems has been thoroughly investigated. In this section a brief discussion of the
optimum receiver structure for simple binary detection problem is presented. The

received waveforms under the two hypotheses are

v
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H;: 3(t)=v(t)+w(t), T,<t<T,,
He:  s(t)=w(t), T,<t<Ty, (1.5)

We assume that that w(t) is a complex white, zero-mean Gaussian process with
) spectral height N, and v(t) is zero-mean complex Gaussian random process with

covariance function R(t,r).
The approach to design the optimum receiver is analogous to the approach

used in the deterministic signal case [6]. It can be shown that the optimum

receiver compares the likelihood ratio, [, with a threshold n,

H,
l Z 7, (1.8)
H,
where
T
l=-l—ffz'(t)h(t,r)z(r)dtdr, (1.7)
N, 1,

and h(t,7) satisfies the integral equation

Ty
Noh(t,7)+ [b(t,u)R(u,)du=R(t,r), T,<t,r<T, (1.8)
Ty

The solution to (1.8) can also be written in terms of eigenfunctions and eigen-

values of the complex correlation function R(t,) [6],

b= & 5z 40600 TSLIST, (19)

of2

One possible realization to generate [ is the filter-correlator receiver see [5].
Even though the procedure is well defined, the actual implementation is difficult,
mainly because of the dependence of h(t,7) on X\, and ¢,(t); i=1,2,... . There are

several categories of processes for which one can obtain a reasonably nearly
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optimum solution [5, Ch. 4]. One of these categories is the low-energy-coberence
(LEC) processes, in such cases the energy is distributed over large number of
coordinates and for which all of the eigenvalues are small compared to the white

- noise one-sided power spectral density. It may appear that the LEC condition
'implies poor performance and is therefore uninteresting. This is not true because
the receiver output is obtained by combining a large number of components, and
the LEC condition can be met even though the ratio E;/N, is larger than unity,
where E, is the average received energy over the entire observation interval.
Under LEC conditions Eq. (7) reduces to

Te

I=—r{ "1': z2'(t)R(t,7)z(r)dtdr. (1.10)

1
2
o

The final question of interest is the performance of the optimum receiver
under LEC condition. Van Tress [5, p. 136] showed that the probabilities of

false alarm and detection are

PrQ(3+1) (1.11)

PD“Q(%-%), (1.12)

o]

respectively, where

and

Q(x)=}°L"exp [——;— ]dx. (1.14)
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Egs. (1.11) and (1.12) are highly dependent on the scattering function of the
channel through their dependence on d, therefore; in order to implement the
optimum receiver and to evaluate its performance one needs to know the scatter-

.-ing function,o(r,f). Lack of complete knowledge of o(r,f) will result in degrada-

tion of the receiver’s performance.

1.4 PERFORMANCE OF A MISMATCHED RECEIVER
Under mismatch conditions, the square root of the numerator in Eq. (1.13)
can be written in terms of the true channel scattering function, oy(r,f), and the

assumed known to the receiver scattering function, o,(r,f), as follows

E{l | H, }E{l | H, }= 1\}2 j_of; [Jourfo.r f )| x(r—r f-f )| 2drdfdr df (1.15)

and the denominator is

Var{l|H°}= 1\;2 j_{o [ [ou(rfo.r )| x(r=r f~f ) | 2drdfdr df , (1.16)

where x(7,v) is the ambiguity function of the complex envelope of the transmitted

signal, namely

x(rv)= [ u(t)u*(t-r)exp [j27rut ]dt. (1.17)

Case 1: Scattering Functions With Unknown Parameters
The first case under consideration is the case when there is a mismatch in
the mean time delay and the mean Doppler shift by say x; and x, respectively.

Then the true and the assumed scattering functions can be related as follows

o,(r,f)=0(r-x,,f-X,) (1.18)

syl




Substituting in Egs. (1.15) and (1.16), we obtain

2
[ J [fodrfolr )| x(r— +x,0-f +x;) | 2drdfdr df
1 -00

d’=
N2

%) (1.19)
IIff ou(rNoa(r f )| x(r-r f-f ) | 2drdfdr df

In order to proceed further with the calculations, one needs to specify the
shape of the true scattering function and the envelope of the transmitted
waveform. If the true scattering function of the channel is assumed to have the

following shape

E
o(rf)= 21rI:B exp [— 2 /21212 /2B? ], (1.20)

where E, is the total received energy when the complex envelope of the transmit-

ted waveform has unit energy. And the envelope of the transmitted signal is

u(t)={1/\/T 0<t<T

0 elsewhere. (1.21)

Then the true autocorrelation function is

E/T exp |-2(nB(r-1)f ]{Q(max(r—T)/L)—Q(min(t,r)/L)} |7t | <T

R(t,r)= 0 elsewhere.  (1.22)

Equation (1.19) can be evaluated numerically. Then the probabilities of detec-
tion, Pp, and false alarm, Pf, can be determined by substituting in Equations
(1.11) and (1.12). Figures 1.2 and 1.3 demonstrate the change in the probability
of detection, Pp, versus SNR for probability of false alarm, Pf, of 10 and !
different values of mean time delay, x;, and the mean frequency shift, x,. It is
clear that the receiver is more sensitive to misalignment in frequency shifts than

misalignments in time delays. Also, the amount of degradation in performance for

.
- et
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under-spread channels (s==0.1) for x,>B and x,;>5L is severe and the system

designer should provide the adequate circuitry to insure synchronization.

.-Case 2: Completely Unknown Scattering Functions

If the shape of the true scattering function is not known, the receiver has,
either to estimate it or use an approximation for oy(r,f). In both cases the true
and the assumed scattering functions may differ in shape and the resulting meas-

ure of performance, d2, is

2
o0
[ [for 0o (r f )| x(r-r' £ ) | 2drdfdr’ df
l =00
2_
d’= ) pos . (1.23)
[ [fourfo (r £ )| x(r-r f-f ) | 2drdfdr df
=00
For the present discussion, o,(r,f) will be taken as
E/LB |t| <B/2, 0<r<L
oy(rf) = 0 elsewhere, (1.24)

while the true scattering function, oy(r,f) will be represented by Eq. (1.20).
Figure 1.4 illustrates the eflect of mismatch in the scattering functions for this
specific case.

For over-spread channels, (s > 10.0), equation (1.22) is very closely
approximated by a knife-edge (ridge) function along the t-r axis. In this case we
expect that the system become more sensitive for any time delays, frequency
shifts, or mismatch in the shape of the scattering functions.

It is noticed also that higher values of Pg will not change the previous

results significantly.

AT 4



1.5 CONCLUSIONS

In order to implement the optimum receiver over fading dispersive chan-

nels in practice, one needs the filter impulse response h(t,r). This is obtained by

- solving the integral equation (8) which depends on the scattering function ofr,f)

‘through the autocorrelation function R(t,7). Both measurement of the ofr,f) and

the solution of the integral equation present barriers to the actual receiver imple-
mentation.

This triggered the need to study the sensitivity of a mismatched receiver.
We began by studying the effects of mismatch in the location of the scattering
function. It has been demonstrated that for a Gaussian shaped scattering func-
tions and under-spread channels, the amount of degradation is severe if x,>5L
and x,>B. We next studied the degradation due to mismatch in the shape of the
scattering functions. A degradation of about 1 dB is encountered if a rectangular
scattering function instead of a Gaussian shaped scattering function is used at
the receiver, provided that the true scattering function was Gaussian.

It worthwhile mentioning that if we change the role of o, and o, the
amount of the degradation will not the same. As a matter of fact, it can be
shown that if o,(r,f) is Gaussian but o,(r,f) is rectangular, then the degradation in
performance is less severe.

For over-spread channels, the autocorrelation functions, R(t,7) tend to con-
centrate around the t=r axis and any misalignment in location or mismatch in
shape will have a greater degradation effects on the performance of the receiver.

The study emphasis the fact the synchronization over fading dispersive
channels is important and in some cases the degradation due to missynchroniza-
tion may be more severe than mismatch in the shape of the scattering function,

this mismatch may be a result of error in measuring of the scattering function.
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CHAPTER II
SERIAL SEARCH SYNCHRONIZATION OVER
FADING DISPERSIVE CHANNELS

Although; the engineering importance of fading dispersive channels has increased
markedly in the recent years. The problem of synchronization over such channels
has not been given the attention it deserves. The following analysis derives and
evaluates upper and lower bounds on the mean and variance of synchronization
time for a very general serial search system. The objective is to find a simple
result that the system designer will be able to use to make design trade-off stu-
dies to minimize mean synchronization time.

It has been found that the results are highly dependent on the scattering function
of the channel, the degree of the channel spread, number of the cells used in the
search procedure, and the the time required to reject an incorrect cell when a

false alarm occurs.

2.1 INTRODUCTION

Synchronization is a fundamental problem in digital communication,
radar, sonar, and navigation systems. Power-efficient receivers generally require
the existence of a clock that is accurately time-aligned with the received pulses,
and a local carrier reference, that agrees closely in frequency and phase with the
received carrier. In general terms, two sequences of events are said to be synchro-
nous if the corresponding events in the two sequences occur simultaneously, with

one of the two sequences of events takes place at the transmitter, and the other

: takes place at the receiver. Due to transmitter oscillator instability and propaga-

tion effects, the two sequences of events may be misaligned.
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Losing synchronization reduces the efficiency in the data detection process;
because the inaccurate symbol sync directly reduces the probability of making
correct decisions. Moreover, when a loss of synchronization occurs, it may some-
. times lead to successive errors before it is regained; these successive errors affect
the overall performance of the system.

Synchronization is defined simply as the process of bringing about, and
retaining, a synchronous situation. It is generally convenient to separate the syn-
chronization process into two distinct modes. In the first mode, the clock syn-
chronization mode, the clocks which regulate the two sequences being synchron-
ized (i.e., the transmitter and receiver clocks) are forced to run at the same rate.
In the second mode, the higher order synchronization mode, a corresponding pair
of events in the two sequences are identified and made to occur simultaneously,
and if the sequences are progressing at the same rate, the sequences are, and will
remain, synchronized.

If the transmitter and the receiver clocks are both sufficiently stable rela-
tive to the required synchronization accuracy, the clock synchronization mode
may be by-passed. Most generally, however, this will not be the case and some
technique must be devised to provide the needed clock synchronization.

Once the transmitter and receiver clocks have been synchronized the
second mode of the synchronization process begins, this includes symbol, code
word, data word, and frame synchronization. The second mode can be further
subdivided into two components, the first component is the determination of the
initial parameters from whatever a priori information available. This component
is known as the acquisition phase The second component is to maintain syn-
chronization after initial acquisition . This problem is known as the tracking

phase.
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Although; the problem of synchronization over additive white Gaussian
noise (AWGN) channels has been investigated extensively [7-10], synchronization
over fading dispersive channels has not been given the attention it deserves, in

.'spite of the fact that the the engineering importance of such channels has
increased markedly in the recent years. Fading dispersive channels are usually
best described as random linear time-varying filters . In many applications it is
reasonable to suppose that the impulse response of the filter is a sample function
of a Gaussian random process.

In most of the work done concerning detection over fading dispersive chan-
nels, the assumption that synchronization is available is either understood impli-

citly or declared explicitly.

2.2 SYNCHRONIZER STRUCTURE
In communicating over fading dispersive channels, the received energy is
peaked at some point P (see Figure. 2.1), which is shifted from the transmitter
clock pulse and oscillator frequency, point T, by T sec. in time and f Hz in fre-
quency, where t and f are the mean time delay and mean frequency shift of the
channel respectively. All the points are referred to the receiver clock pulse and
oscillator frequency which are located at the origin of the figure. It is clear that
no matter what offset exists between the receiver R and the transmitter T, the
important information to the receiver is the vector x , where x = (x;, X5). There-
fore the main objective of the receiver is to come up with a good estimate of the
vector X.
The vector x is the misalignment in time and frequency between the
. receiver and transmitter is the result of two effects, the first is the contribution of

the channel, and the second is due to the lack of synchronization between the

2 N P P 'l"-‘-'-"tﬁ\'ﬁ‘\’-\'-'\'-'.“'.‘.-‘-"n b YR T IR . TN SR e I R SN T
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receiver’s and transmitter’s clock pulses and oscillator frequencies. This lack of
synchronization always exists initially even if the channel introduces no delay in
time or shift in frequency. Since these two effects are of the same nature they can
- be lumped together into the mean values of the scattering function. therefore

‘from now and on we will assume that the scattering function is of the form
o(r,f:x)=0(r-x,,f-x,). (2.1)

For such scattering function the correlation function of the complex envelope of

the output of the channel for single pulse is

R(t,7x)=R(t-X, 7-X;)exp [j27rx2(r—t) ] (2.2)

where R (t,7) is the complex correlation function of the complex envelope of the
output of the channel in the case of perfect synchronization.

The theory of maximum likelihood (ML) estimation provides us with a
technique to estimate the channel parameters needed for the sync procedure. In

[4] we derived the likelihood function. The rule is x is more likely than x' iff
W(x) > WK ),
where :
W(x)=f [z°(t)h(t,=x)z(7)dtdr. (2.3)
h(t,mx) is the solution of the following integral equation
JR(t,u:x)h(u,m:x)du+Noh(t,x=R(t,7x). (2.4) N

N,/2 is the two sided power spectral density of the AWGN, z(t) is the complex
envelope of the received waveform (see Figure 1.1 ). "

Under low-energy-coherence condition [5] equation (2.3) is reduced to

o
»
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W(x)=[ [2*(t)R(t,r:x)z(r)dtdr. (2.5)

The precise implementation of the maximum likelihood estimator would involve a
continuum of detectors (or calculations) for each value of x in the region of
-interest. Certainly, in general such estimator cannot be built. One realizable
approximation to the maximum likelihood estimator results from specifying a
finite set of points, say { X, ,i=1,...,N}, and record z(t) then perform the parallel
processing operation shown in Figure 2.2 in which h(t,n)x) is viewed as a linear
time-varying filter with as the input time variable and t as the output time vari-
able. The output of this processor is N numbers, each is an output of a detector
matched to a particular x. The ML estimator finds the largest detector output
and assumes that the correct value of x is the one corresponding to that detector.
The result is a parallel processor, in each parallel branch the likelihood function
is evaluated and the maximum is chosen to represent the maximum likelihood
estimate of the vector of parameters under consideration. This synchronizer
which is optimum in the sense that it achieves synchronization with a given pro-
bability in the minimum possible time requires a detector for every cell and thus
is not optimum in a minimum hardware sense. Thus minimum acquisition time
systems is never implemented because of excessive hardware complexity. A syn-
chronization system that evaluates the cells serially until the correct cell is found
is said to use serial search. Such systems are designed to achieve a compromise
between acquisition time and reasonable complexity without compromising any
other important system characteristic. The performance of such serial search syn-

chronizers are analyzed in the next section.
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: 2.3 PERFORMANCE ANALYSIS

. If the uncertainty region is divided into N cells as shown in Figure 2.3,
where the size of each cell is proportional to the width of the autocorrelation
p - ambiguity function. This function is the expected value of the random variable
W(x) A complete discussion of the properties of this autocorrelation ambiguity
function is given in [11].

Because it is equally likely that the correct vector is in any cell, the search

- e =

can begin at any corner of the uncertainty region. The search will advance
through one cell at a time until N cells have been evaluated. If synchronization

has not been achieved at that time, a retrace will start the search over again at

e e e W

the starting position.

\ The mean synchronization time is calculated by considering all possible
sequences of events leading to a correct synchronization. An event in the proba-
' bility space being considered is defined by a particular location, n, for the correct
i cell, a particular number of missed detection, j, of the correct cell, and a particu-
lar number of false alarms, k, in all incorrect cells evaluated. The total synchroni-

zation time for a particular event defined by (n,j,k) is
T(n,j,k) = nT, + jNT, + kT, (2.6)

where T, is the evaluation time for each cell, and T, is the time required to

reject an incorrect cell when a false alarm occurs. It can be shown that the pro-

bability of the event (n,j,k) is

: pr(n,j,k) = %Pd (1-pq) (E)Pfﬁ(l-ma)x'k- (2.7)

The mean synchronization time is

: T, = ¥ T(n.jk)pr(n,jk). (2.8)
n,jk

\-“. .‘Q.“\ ¥ \ " W
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After some straightforward algebraic manipulation [30-Ch. 10}, equation (12) is

reduced to
(N—l)'r.d(—'—"i) +=X, (2.9)
where
Tag = Te + TiaPta (2.10)

is the average dwell time on each cell. Equation (2.9) also, has been derived in
[12] using signal flow graph techniques. It can be shown also, that the variance

of the synchronization time is approximated by

of, ~ Tasz(—-— -1—) (2.11)
Pa pd

The approximation is valid for N> >1, p;,< <1, and 1-p3<<1.
Calculations of py and py,:
The serial search synchronizer under consideration, evaluates each cell by
estimating whether or not signal energy is present at the output of each processor
in Figure 2.2 or simply

H,

W(x) 2 7. (2.12)

HO
where, H, is the hypothesis that the x; is the correct x, while H, is the
hypothesis that x; is not the correct cell. This problem is identical to the prob-
lem of detection over fading dispersive channels which is well treated in (3] and

[5]. Van Trees [5, Ch. 4] showed that

) (2.13)
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where
e{wim bo{win, by
d’a , (2.15)
Var{W | Ho}
and
Q(x) =f2— exp 2 dx. (2.16)

In order to proceed further with the calculations, one needs to know the
shape of both the channel scattering function and the complex envelope of the

transmitted wave form. Assuming Gaussian-shaped functions

El‘
27LB

o(r fix) = exp [—(r—x1)2/2L2-(f—x2)2/2B2 ] (2.17)

where E, is the total received energy when the complex envelope of the transmit-

ted waveform has a unit energy. The complex envelope of the transmitted

waveform is
u(t) = (2—:—)1/4exp [—o:t2 ] (2.18)
It has been shown that [4] the optimum value of « is
a=rT— (2.19)

Figures 2.4 and 2.5 demonstrate how py behave as a function of the
signal-to-noise ratio (SNR) and py, for both under-spread, and over-spread chan-
nels respectively. These results are valid only under LEC condition, and if the

width of each cell is greater than or equal to the width of the autocorrelation

ambiguity function in both time and frequency. This put a restriction on the

pamragr - a2

-

P ot
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accuracy of the estimate, and the number of cells N ‘

N<Z (24)

_'where A and T are the width of the autocorrelation in time and frequency respec-

tively.

2.4 CONCLUSIONS

A method to estimate the mean synchronization time for synchronization
over fading dispersive channels has been shown. Equation (13) demonstrates the {
dependence of the mean synchronization time, 'f, on P4, Ptay T Ty and N. To ’
minimize Ts one has to select the optimum set of parameters. Some of the these
parameters, as N, can be controlled by the designer, the remaining, pg, ps,, and

T, are dependent on the shape of the scattering function, the amount of spread

of the channel, and SNR.
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CHAPTER III
CLOSED LOOP SYNCHRONIZER OVER
FADING DISPERSIVE CHANNELS

In this chapter an optimum closed loop structure for symbol synchronizer
over fading dispersive channels is developed. The optimum synchronizer is simi-
lar to those already known symbol synchronizers that are being used over addi-
tive white Gaussian noise (AWGN) channels, except that the ccntrol signal is
completely random; even in the absence of the AWGN. The reason is clear, and
simply because of the structure of the received signal over fading dispersive chan-
pels. It is shown that the synchronizer structure is highly dependent on the
scattering function of the channel. For a Gaussian shaped scattering function, a
simple closed loop structure is obtained and expressions for tracking error statis-
tics are derived. The dependency of such statistics on the signal-to-noise ratio

and on the spread of the channel is investigated.

3.1 INTRODUCTION

It is generally convenient to separate the synchronization process into two
distinct modes. In the first mode, the clock synchronization mode, the clocks
which regulate the two sequences being synchronized (i.e., the transmitter and
receiver clocks) are forced to run at the same rate. In the second mode, the
higher order synchronization mode, a corresponding pair of events in the two
sequences are identified and made to occur simultaneously, and if the sequences
are progressing at the same rate, the sequences are, and will remain, synchron-

ized.

If the transmitter and the receiver clocks are both sufficiently stable
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relative to the required synchronization accuracy, the clock synchronization mode
may be by-passed. Most generally, however, this will not be the case and some
technique must be devised to provide the needed clock to maintain synchroniza-
tion after initial acquisition . This problem is known as the tracking phase.

"The advent of highly compact, inexpensive digital computers has now made it
possible to exploit well-known results from statistical estimation theory and con-
trol theory to develop systems that automatically respond to changing signal
environment. This self adjusting or adaptive capability renders the operation of
such systems more flexible, reliable, and more importantly offers improved recep-
tion performance that would be difficult to achieve in any other way. These rea-
sons motivate the idea of developing a synchronizer which updates itself (closed
loop structure).

In the following sections, a closed loop structure synchronizer is derived
and its performance is investigated.

As in chapter II, the vector x, is used to indicate the misalignment in time
and frequency between the receiver and transmitter is the result of two effects,
the first is the contribution of the channel, and the second is due to the lack of
synchronization between the receiver's and transmitter’s cicck pulses and oscilla-
tor frequencies. This lack of synchronization always exists initially even if the
channe] introduces no delay in time or shift in frequency. Since these two effects
are of the same nature they can be lumped together into the mean values of the
scattering function. This will result in scattering functions as described by equa-

tion (2.1). The optimum estimate of x is such that

W) > W) (3.1)
where
W(x)= N‘ — [ [2°(Vh(t.rx)e(r)dedr, (3.2)
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h(t,:x) is the solution of the following integral equation given by equation (2.4),
and N_/2 is the two sided power spectral density of the AWGN, and z(t) is the
complex envelope of the received waveform (see Figure 1.1). Under low-energy-

_-coherence condition [5] equation (3.2) is reduced to

12 [ [2°(t)R(t,mx)z(7)dtdr. (3.3)

W(x)= N

=}

The low-energy-coherence condition is more realistic for over-spread channels.

In the case of repeated transmission the transmitted waveform can be

written as

)= L5(-(-1)/) (34)

where p is the transmission rate. It can be shown that [4] the likelihood function

for estimating x, in the case of repeated transmission is

12 i S [2 (R (t,mx)z(r)dedr, (3.5)

W(x)= NED

where R,(t,7x) is the complex correlation function associated with the i-th
transmitted waveform.

As mentioned before, the precise implementation of the maximum likeli-
hood estimator would involve a continuum of detectors (or calculations) for each
value of x in the region of interest. Certainly, in general such estimator cannot be
built. One realizable approximation to the maximum likelihood estimator results
from specifying a finite set of points, say { x; ,i=1,...,,N}, and record z(t) then
perform the parallel processing operation in which h(t,nx) is viewed as a linear
time-varying filter with 7 as the input time variable and t as the output time
variable. The output of this processor is N numbers, each is an output of a detec-

tor matched to a particular x. The ML estimator finds the largest detector output

“, .
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and assumes that the maximum likelihood estimate of x, is the one corresponding
to that detzctor. The result is a parallel processor, in each parallel branch the
likelihood function is evaluated and the maximum is chosen to represent the
- maximum likelihood estimate of the vector of parameters under consideration.
‘This synchronizer which is optimum in the sense that it achieves synchronization
with a given probability in the minimum possible time requires a detector for
every cell and thus is not optimum in a2 minimum hardware sense. Thus
minimum acquisition time systems is never implemented because of excessive
hardware cSmplexity. A synchronization system that evaluates the cells serially
until the correct cell is found is said to use serial search. Such systems are
designed to achieve a compromise between acquisition time and reasonable com-

plexity. The performance of a serial synchronizer is discussed in [13].
In the following sections a closed loop synchronizer is derived and its per-

formance is analyzed.

3.2 CLOSED LOOP STRUCTURE

Our objective is 2 closed loop structure that can be derived from the ML
equations. The reluctance to develop a closed loop structure for the synchronizer
is due principally to the continuously changing nature of the characteristics of
the channel. The technique we will use to transform the open loop structure
(parallel processor) derived from the maximum likelihood theory to the desired
closed loop structure is the gradient approach. The gradient approach is very
popular since it is a relatively simple and generally well understood method that
permits the solution of a large class of problems. When the likelihood function is
near quadratic, then the performance measure can be visualized as a bowl-

shaped surface, so the synchronizer has the task of continually seeking the ‘“top

Wmm&mmmm, .
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of the bowl”. In this case, seeking the maximum of the likelihood function can be

accomplished by ‘‘hill climbing” method of which the various gradient methods

are representative. For the ML function (3.5), the gradient is obtained by
-'diﬁ'grentiating with respect to the vector x to yield

‘;\Q%xl=§ If zi‘(t)%’j'mzi(r)dtdr, j=1,2 (3.8)

i=1
In order to proceed further with the analysis, one needs to know the shape of the

channel scattering function. By assuming a Gaussian-shaped scattering function

of the form

o(rfx)= 231:3 exp [-(r—x,)2/2L2—(f-x2)2/2B2 ] (3.7)

where E; is the total received energy when the complex envelope of the transmit-

ted waveform has unit energy. Using such scattering function, equations (12) can

be reduced to

%?‘—Qr-ij(x)—f: If zi'(t)Rij(t,nx)zi(r)dtdr, j=1,2 (3.8))
] =1
where
R (t,7x)=[ [ro(r,f:x)uj(t-r)u;"(r-r)exp [j21rf(r—t) ]drdf, (3.9-a)
and
Rig(t,7:x)=[ [fo(r,f:x)u,(t-r)u,*(r-r)exp [j21rf(r—t) ]drdf. (3.9-b)

Equating (3.9-a) and (3.9-b) to zero and solving the two transcendental equations
simultaneously will yield the maximum likelihood estimate of x,.

An alternative to be considered in this paper is to use the partial derivatives

\
aw(x) j=1,2 (3.10)

-
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to control the current estimate of X. Since this expression will be zero when x
equals the true vector X,, and since it is monotonically increasing function of x in
the vicinity of x=x,, a feedback device should be able to force x to converge to
- the maximum likelihood estimate of x,. The resulting symbol-tracking device is

shown in Figure 3-1. The output of the box labeled ‘‘accumulator” is

e = x;W(x) - W;(3), j=1,2% (3.11)
where
Wix) = g S 2" (O)R;j(t,mx)z(r)dtdr, =12 (3.12)

The error signals e, j=1,2 are random variables, their means and variances are

given by

E{ej }=ij{W(l) }~E{Wl(3_)} (3.13)
Var{ e; }=x,-2var{ W(x) }+var{ W;(x) }~2xjcov{ W,W, } (3.14)

3.3 NUMERICAL RESULTS
To evaluate the different variances one needs to specify the complex
envelope of the transmitted signal. For Gaussian-shaped scattering function, it

has been found that a Gaussian-shaped envelope in the form
u(t) = (2a/7)/4exp [——at? ], (3.15)

is optimum from the detection point of view [4]. Other reasons for the choice of
(3.7) and (3.15) for the forms of the scattering function and the complex envelope

of the transmitted waveform are based on the fact that the Gaussian function
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1. is a simple and smooth function,

2.  has elegant properties when integrated against another Gaussian function

on the infinite interval,

3. can be used to approximate many of the finite-duration pulse signals com-

monly used in communications, and

4. s easily generated [14).
It has been shown that the value of a in (3.15) which minimizes the area of

the uncertainty ellipse [4] is
a=nr—, (3.18)

The statistics of W(x) and W; are

E{W}=§ [SNR-I- ; 5 ) Ri'(t,nx_t)Ri(t,r:x_)dtd‘r,] (3.17)
=1 o)
E E{Wj }=i§=(3l X; SNR+'NI—2I J Ri'(t,nx,t)Rij(t,nx)dtdr ], (3.18)

var{W}=.§ 1\:4 [ TR (6 iz R(6,7X)R; (b1,7% JRi(tg,7y:x)dtdrdt, dry

1=1

1

E + N3 J R (62 )R (4, xR (7,7y:x)dt drdry
(o4
+ I\: 3 f f f Ri‘(tlvm)Ri(tl9t:X)Ri(t,T:X)dthdtl
. (¢
+ 1\: 7 Ri'(t,ﬂx)Ri(tmx)dtdr] (3.19)
[«]
the quantity va.r{Wj} has a similar expression as in equation (3.19)
]
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expect R;(t,rx) is replaced by R;j(t,r:x)

eov{W,Wj }=§1 I\: I I Ri'(t,rl:xt)Ri(t,fzx)Ri'(t,,r:x,,)Rij(tl,r,:xt)dtdrdt,drl

1

* N3 S IR (tmx )R;(6,mx)Ryi(ryry x)dedrdry
+ 1303 I f I Ri‘(tlaﬂ&)Rij(tht:x_)Ri(t,TZ&)dthdtl
* 1302 Iy R“("’"‘X)Rii(tv’”&)dtdf] (3.20)

Substituting in Equations (3.13) and (3.14), we obtain Figures 3.2, 3.3, 3.4.
Without loss of generality we will assume that x,,=0. Figure 3.2 illustrates
the behavior of the expected value of the error signal as a function of
6=(x;—x,,)/L for two values of SNR and channel spread of 10. Observe that
there is a range of & for which the expected value of the error signal is
almost linearly related to 6. This region may be selected as a normal
operating region for the tracking loop.

Figure 3.3 demonstrate the behavior of the expected value of the error sig-
nal for channels with spread =1.0. Figure 3.4 shows the how the variance

of the control signal changes with § for different values of SNR.

3.4 CONCLUSIONS
A closed loop structure for synchronization over fading dispersive chan- :
nels, with Gaussian shaped scattering function, is developed. The effects of

various system parameters (such as signal-to-noise ratio, the spread of the

channel and the duration of the envelope of the transmitted waveform) on

PRI e = B W

the shape of the S-curve are demonstrated. Dependency of the variance of
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the tracking error on the SNR and the spread of the channel is investi-
gated.

It is known that in AWGN environment the optimum tracking discrimina-
tor for arbitrary wideband signal is a multiplier which forms the product of
the received signal plus noise and the first derivative, with respect to the
parameter under consideration, of the receiver generated replica of the
transmitted signal. This discriminator is optimum in that its output is the
maximum likelihood estimate of the that parameter difference between the
two wideband signals. In synchronization over fading dispersive channel it
is shown that the optimum tracking synchronizer is a multiplier which
forms the product of the received signal and a filtered version of it, the
filter impulse response is the first derivative with respect to time (or fre-

quency) of the autocorrelation function of the signal part of the received

waveform.
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CHAPTER IV
SYNCHRONIZATION OVER FADING DISPERSIVE CHANNELS
USING STOCHASTIC APPROXIMATION METHODS

In this chapter we consider the problem of synchronization over fading
dispersive channels. Using stochastic approximations methods; a recursive
estimation procedure is developed to estimate the two parameters needed
by the synchronizer. The result is a closed loop in which the component of
the error signal is proportional to the expected value of the derivative of
the likelihood function with respect to the appropraite parameter. This
method possesses the simple computational structure of the stochastic
approximation methods, and under certain regularity conditions, it can be
shown that the variance of the error in the estimates approaches the
Cramér-Rao bound. This chapter is organized as follows: In the next sec-
tion an introduction to the problem is presented, in section 4.2 a brief dis-
cussion to the method of stochastic approximation is given. In section 4.3
the method of stochastic approximation is applied to estimate recursively
the parameters under consideration. Lastly an example is given in section
4.4 to illustrate that the suggested procedure is asymptotically efficient and

derive the conditions under which asymptotic efficiency is

4.1 INTRODUCTION

In this chapter the channel model used is the same one used in section 1.2,
and the main objective is to develop a synchronizer which updates itself
recursively. In [15) Sakrison described an efficient recursive estimation pro-

cedure to estimate some target parameters from repeated observations using
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stochastic approximation methods. Under certain conditions these methods

provide many computational advantages, and it can be shown that the
error in the resulting sequence of the estimates approaches the Cramér-Rao
bound.

In the following section a brief coverage of the method of stochastic
approximation is given. This method is then applied to the problem of

estimating the vector x described in section 2.2.

4.2 THE METHOD OF STOCHASTIC APPROXIMATION

Stochastic approximation methods are applicable to any problem that can
be formulated as some form of regression problem in which repeated obser-
vations are made. To be more specific, let the length of the processing
subintervals be denoted by T. Denote the data observed on the kth subin-
terval by z;. If our observations start at t=0 and the observed quantity is
a continuous-time random process, z(t), then z, represents the sample of the
process of T sec duration, z(t), (k-1)T <t<kT. The objective is to find the

value of an unknown parameter X which solves the vector valued equation

mx) & E{I(zk,x_)} = m, (4.1)

Robbins and Monro [16] originally studied an iterative procedure of solving
this problem from repeated independent observations in which f, m, and z
are scalar valued. A multidimensional version of this procedure is described
in Sakrison [17] where it is shown that the sequence of estimates {x}

chosen according to the recursion relation

Xir1 = Xk + [ﬂzk,xk) - mo] (4.2)
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converges to the solution vector X, in the mean square sense,
. 2
tim E{ Il § = Jim E{ > (%, i)“'} —o0 (43)
k—00 k—o00 j=1 ' !

provided that the following assumptions are satisfied.

1. There exist constants a, and a,, 0<a,<a,; <oo, such that

8] x-x:1? < (x%)T (mx)-mo) < ayllx-—x1% (4.4)

where xT represent the transpose of the vector x.

2. The random entities z;,i=1,2,... are identically distributed and statisti-

cally independent.

3. For all values of x

var{ M(zk,x”"’}(oo. (4.5)

4. The sequence of constants {c}, k==1,2,... are positive monotone decreas-

ing, and satisfy

00 00

Y =00, ¥ cl<oo. (4.6)
k= k=

The usage of the stochastic approximation methods yields the following advan-

tages:
1. Only a small interval of data needs to be processed at a time.

» 2. Only simple computations are required, even when the functional depen-

dence of the regression function on the parameters of interest is nonlinear.

3. The method may be employed in the absence of the detailed knowledge of
the process statistics and in the absences of the detailed knowledge of the

relationship between the desired parameters and the observed data.
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If sufficient a priori knowledge concerning the statistics of z(t) and the functional

relationship between the parameters and the observed data is available, the third

advantage can be replaced by the following desirable property: the methods can

.be made to be asymptotically eflicient.

We can apply these results to the synchronization problem under con-
siderations mainly to find an asymptotically efficient Robbins-Monro procedure
for estimating x from the observations, z,, k=1,2,.... The motivation for this goal
is clear; such a method would be computationally simple and yet would have per-
formance which, for a large number of observations, k, could not be surpassed
by any other method, no matter how computationally complex.

To see how we might approach this objective, define
ﬁ(x)=grad{wk(x)} (4.7)

where Wi (x) is W(x) defined in (2.3) based on z(t), (k-1)T<t<kT. The gradient

in (4.7) is with respect to the partial derivatives axi, j=1,2. We notice that
)
% (x) is a random vector, even in the absence of the AWGN, and a useful charac-

terization is the its expected value. Define the vector-valued function m(x) as

m-k(x-)=E{3ék(?£)}- (4.8)
We also notice that
=0 X=X,
m,(x) #0 in general (4.9)

Thus if Eq. (4.9) has only the unique solution x=x,, we can hope to carry out

Robbins-Monro method for estimating x, by using the ¥ (x) of Eq. (4.7) in the

procedure.
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The most rapid convergence is obtained when the weighting constants ¢, are
chosen to be of the form c¢/n. It can be shown that [17] if c= G7)(x,), where the

ijth entry of the matrix G(x,) is given by

. *W(x,)
gij(x) = E{ XN }

e s w0

then the Robbins-Monro method is asymptotically efficient. The only problem is

. o e

AR

e

how to pick e=G7(x,) ? since x, is unknown. One solution is to make the pro-

cedure adaptive by substituting an estimate for G(x,). The ‘‘adaptive” Robbins-

LI T

Monro procedure takes the form

-

i X1 =2 H(1/k)G(x)y (x). (4.11)

-
4

Sakrison [18] considered the convergence of this method. Under certain assump-

-

tions, Sakrison has shown that C,, the covariance matrix of the error (x,-x,), ’

satisfies

- e P

(b,Cy, b) < (1/k)(2,Gb) + d/k!*7,  d<oo, 7>0 (4.12)

o
=

- o,

where (x,y) is the inner product of the in the M-dimensional Euclidean space, and

n b is an arbitrary vector. That is, the sequence of estimates x;, generated by Eq.
: (4.11) is asymptotically efficient. The interested reader is referred to [18] for the
1

y proof of the last statement.

K

4.3 NUMERICAL RESULTS

Combining Egs. (2.3) and (4.10), yields

-~ -

my =

TT
le If [R‘(t"m)‘Noé(t’_T) ] Ri(tvnl)dtdr =12 (4.13)
o 00
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where superscript denote partial differentiation with respect to the corresponding
component of X. In order to proceed further we need to specify the shape of the
scattering function, o(r,f). Let

E, 2 o1 2 2 2]
o(rfx) = 2 oXP [—(r—x,) [2L°~(f-x,)*/2B* |, (4.14)
also assume that the complex envelope of the transmitted signal be
u(t) = (%)l/‘exp —atz] (4.15)

Substituting in Eq. (1.3) yields

2
E/ =
R(t,=x) =

— 5 P [‘ %((t’_xl)2 + (mxp)? + 2aL%(t-1)?)

+ j2m(r-t )Xg-27,By(7-t), ] (4.16)

where
B =1+ 40l (4.17)
It is known that [4] the optimum value for a is
a=nr (4.18)
The elements of the matrix G(x) are
g1 = 2 1(27Ax,*-1)Q (4.19-a)

B2 = Bz = 4 YAX;Ax,Q (4.19-b)

g22 = 2 A 274x,*-1)Q (4.19-¢)
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and

Q= SNsz exp [—q (Ax,? + Ax,?) ] (4.21)

The vector m(x) is

A
n@x)=-2Q" [A:;] (4.21)
From (4.21) and (4.19), the quadratic form q = - (x - x,)T G(x) m(x) is

q= 8'7Q2{LAx12('72Ax,2 + PAX,? - 4) + BAX X (PAx,? + YAx,? - '7)} (4.22)

4.4 CONCLUSIONS

The ML solution is the one for which -‘?—XN- = 0 In the case of fading
i

dispersive channels, the decision variable, even in the absence of the AWGN, is a
random variable, a useful characterization is the expection of W. One way to do
approximate this solution is to update the estimate by a quantity proportional to

the error. We wrote the error function as

e )=E{e(x)} + (e(x) - E{ e(x) })

The first term is used to control the new estimate and the second term is treated
as an internisic noise. Eq. (4.11) simply indicates that we update the estimate of
any component of X by using a quantity proportional to the error . The propor-
tionality factor is chosen to speed up the convergence process. The resulting The
estimate £ is asymptotically efficient as long as x-x, lies in a given region. which

we called the pull-in region.
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