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1.0 BACKGROUND

The pumpjet is considered to be one of the most promising

E

candidate propulsors for high speed underwater vehicles and,

as a matter of fact, it has recently been employed for MK-48 };
. torpedoes, ALWT--Advanced Light Weight Torpedo (now called fﬁ
*:- MK-50), and other wunderwater vehicles. The pumpjet o
i superiority over other propulsion devices is represented by E
; two major factors, i.e., high efficiency and guietness. :f
:_ The pumpjet is one of few fluid devices which positively -
-' utilizes retarded wake flow and produces high propulsive !,
o efficiency. This peculiar situation may be wunderstood :
E; readily by considering the momentum equatﬁn applied to a ?E
;ﬂ. control volume surrounding an underwater vehicle, fixed to =
g' the inertial coordinate system. For a conventional pro- 3
E peller, the velocity of flow coming into a propeller blade

is approximately equal to the vehicle speed since the pro-

peller diameter 1is large enough to enjoy the free stream
flow. In order for the propeller to generate an effective
thrust, it should accelerate the flow, the ejected flow
speed being faster than the incoming flow. It means that a

, ¥

KAAARE NNK
¢

certain amount of the energy imparted on the fluid by the EQ
thruster is dumped in the surrounding water. On the other

s (g
¢

hand, for a pumpjet, the incoming flow velocity is retarded )
and slower than the free stream velocity. In order to i

L R e gt
AL

generate a thrust, again this flow has to be accelerated. o

LA

However, if the pumpjet is properly designed, the acceler-

4 Wl

ated flow velocity can be almost the same as the vehicle

» 4N
LN

speed. The ejected flow out of the pumpjet has little rela- o)
tive velocity and thus leaves hardly any jet wake behind the

AP R
.

vehicle. Compared to a vessel with a conventional pro-

A
RPN I
BRI b
LN
P ey

Q: peller, a vehicle with a pumpjet generates much less wasted
E: energy in the flow field. This is the major reason why the igi
VF; pumpjet can produce a high propulsive efficiency such as 90% b

FE

e

or higher when it is properly designed. 7?1
=

3
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Quietness is a guaranteed aspect with the pumpjet. As can

be seen from its configuration (Figure 1-1), a long shroud ; .

completely surrounding the rotor helps prevent rotor noise . i

from emitting into the outside flow field. Furthermore, _2;5

this ™internal™ flow machine has better resistance charac- 'Q}:

teristics against cavitation, resulting in quieter sha;low Eﬁf

‘ water operation where propulsors are most susceptible to ;;
cavitation. e

However, in order to achieve such a high standard of perfor- Eik

mance, there are many penalties to be paid in reality. The P
first such penalty naturally stems from the pumpjet’s util- {f'
izing the velocity-retarded wake flow. A typical meridional S
A flow distribution at the inlet of pumpjet rotor is shown in ]
. Figure 1-2; the velocity at the hub is only 30% of the free
stream velocity and rapidly increases to 75% at the shroud .;ig
internal boundary. This large velocity gradient in the ?‘

transverse direction is, of course, built up by the viscous ﬁfi
,", boundary layer effect and is one of the key features causing crd
difficulties in design, fabrication and eventually in :f?f

achieving the pumpjet high performance. -

When one designs an axial or a near axial pump, it is cus- ﬁgi

tomary to distribute the blade loading from hub to tip in a f”v

forced vortex or a free vortex distribution method, such as f‘?
shown in Figure 1-3. Such distribution methods are impor- N

tant in obtaining a nearly uniform discharge jet behind the ltf

rotor in order to minimize the mixing loss. However, a f§¥

serious problem arises in attempting to implement either gfﬁ
forced vortex or free vortex loading distribution against %E?

':, the flow field having a large velocity gradient as shown ;&5
in Figure 1-2. Due to the lack of enough meridional flow P
velocity near the hub, the blade there should be designed :&3

to have extremely large incidence angle as well as large rf
s camber. It is for this reason that the pumpjet rotor 'i?;
designed to date has a distorted profile shape from hub to S
tip (Figure 1-4). 1If this were a conventional propeller, ftﬁ
B

L 2 ‘x;
Bay
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the stagger angle would become smaller towards the hub and
the camber would stay more or less constant. However, for ;ﬁt
the reason mentioned above, the pumpjet blade stagger angle
first becomes smaller up to the midspan area but becomes
larger toward the hub and thus the camber is designed to be
substantially larger.

This unusual rotor blade setup causes various hydrodynamic
problems. Since a typical flow incidence angle near the hub
has to be extremely high (e.g., 30°), even a slight error in
design may cause flow separation, possibly cavitation and
then noise generation. Furthermore, even if design is made
properly, the same vulnerable situation is generated with a
slight flow disturbance or blade deformation due to fabrica-
tion inaccuracyl. The existing one-dimensional graphic
pumpjet design method with empirical corrections for the
cascade effect fails to design a pumpjet free of flow
separation. The three-dimensiocnal effect due to the diag-
onal flow configuration and the cascade effect are not prop-
erly taken into account. It is for this reason that
development of a more accurate three-dimensional pumpjet
design theory is in order.

1 some pump jet rotors are produced by investment casting
process so that the fabrication accuracy cannot be

expected to be high.
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ANy A it ol ot

.....




2.0 0BJECTIVES

The objectives of the work under the GHR program are:

1) to develop a more reliable and accurate pumpjet
design theory based on a three-dimensional pump
design concept,

2) to accurately incorporate the cascade effect into'
the theory and then,

3) to improve the pumpjet performance characteristics.

The objective of the FY-86 study was tc develop a mathemati-
cal model for the blade-to-blade flow for the three-
dimensional pumpjet design method selected in FY-85. In
Fy-86, the blade-through flow theory will be incorporated
into the blade-to-blade theory, resulting in forming a

complete three-dimensional pumpjet design theory.




3.0 THREE -DIMENSIONAL DESIGN METHOD

Design of a pumpjet for an underwater vehicle requires pre-
liminary information on the vehicle including its geometry
and hydrodynamic drag coefficient. . Furthermore, most
importantly, the velocity profile at an upstream reference
section should be obtained either analytically or
experimentally. Any error in the velocity profile would
result in a pumpjet of lower efficiency or failure of the
pumpjet meeting the specifications at the design pocint. In
the present study, it is assumed that this velocity profile
is given at a goal speed or at the corresponding Reynolds
number.

The first step for design of a pumpjet (Figure 3-1) is to
determine the shroud intake diameter. From the viewpoint
of cavitation, the maximum and minimum shroud diameter to
prevent cavitation must exist. If it 1is too large, the
rotor blade tip speed becomes too high so that cavitation
occurs. O0n the other hand, if it is too small, the rotation
speed must be increased to generate the required head so
that the chance of cavitation inception also increases.
Another aspect of determining the shroud diameter stems from
the consideration of overall propulsive efficiency. The
equation for global momentum balance should be able to
determine an efficiency-optimum shroud diameter for the
given velocity profile and vehicle drag.

Once the shroud diameter is determined, streamlines will
be calculated by wusing the streamline curvature method
(SCM). In this calculation, the loading distributinn on the
rotor and blade thickness must be assumed in advance. 0One
of the major concerns in using the existing streamline cur-
vature method lies in the fact that SCM may only be used for
relatively uniform incoming flow, but may generate a sub-
stantial error for a thick wake flow, i.e., highly retarded

flow due to the viscous boundary layer on the vehicle hull.
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Detailed mathematical formulation and sample calculations Ei
[-y have been presented in the 1985 report (Furuya and Chiang, &;

X 1986). Also included are discussions regarding the problems o]
" of application of conventional SCM to the thick wake flow.

The next step of the design method is to map the stream tube
or surface calculated by SCM onto a plane so that the rotor
blades are mapped into cascade configuration. If the stream
é surface is totally cylindrical shape, the governing equation
to be wused for the cascade analysis will be a Laplace Zié
equation. unfortunately, the stream surface is of three- ;_
dimensional cone shape in general for the tail cone section ??

CALA

of the underwater vehicle. The field governing equation now
becomes a Poisson equation, and the results of powerful
potential theory analysis are no more applicable. A method
of correcting the effect of the Poisson equation on the
potential theory results is introduced to modify the blade _
profile shape obtained in the potential theory. In choosing jb

;;'11“ AN ALY
't

X
Y e T

b the blade profile shape, the experimental data are used to o
N ensure that there is no chance of flow separation due to e
overloading on the blade. Furthermore, based on the calcu-
lated velocity along the blade, the cavitation inception is

".'r

[ N

Attt e e Y

i o',
.

7 checked. If there exists a chance of either flow separation
3 or cavitation, the loading distribution from hub to tip
A should be changed. If such a change is made, and/or
;T thickness of blades is changed, the streamline curvature

A Ny

:< method should be used again to determine the new location of

L STRORERE

streamline or stream surface. This iterative procedure is e
- to be repeated wuntil an overall convergent solution Iis 5}
obtained. Section 3.3 describes the technical approach to
= be used for the blade-to-blade flow analysis. The two- e
dimensional theory applicable to the mapped stream surface
is summarized in Section 3.2. The overall product of three-

- dimensional pumpjet design is described in Section 3.4.° R
’ - e
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3.1 BLADE-THROUGH FLOW ANALYSIS - STREAMLINE CURVATURE
METHOD

The mathematical formulation for the streamline curvature
method (SCM) has been described in the 1985 report (Furuya
and Chiang, 1986).

3.2 TWO-DIMENSIONAL ANALYSIS

In the following, the major concept of Mellor's two-
dimensional <cascade theory will be summarized for the
reader’ s convenience.

3.2.1 Linearized Cascade Theory

A two-dimensional cascade theory is implemented here to be
used for calculating the 1lift coefficient for the three-
dimensional flow discussed in Section 3.3. The boundary
conditon (Egn. 3.2-14) has to be modified, as discussed in
Section 3.3, when this cascade theory is applied in the
quasi three-dimensional flow.

The 1lift coefficient is determined for any given cascade
geometry which is specified by the solidity (blade chord-gap
ratio, c/s) and the stagger angle, A (Figure 3-2). Symbols
used 1in Mellor (1959) were followed; use Lj and Cr; in
denoting the ideal 1ift force and 1lift coefficient when the
drag is zero. Then (see also Weinig, 1964)

Li = (s/c)oWpaVe (3.2-1)
and CLy = (L1/6)/(Gowg?)
= 2(s/c)(bVe/Wp) (3.2-2)

where s is the blade pitch, ¢ is the chord length, p is the
fluid density, Wy is the mean relative velocity, and Avg is

the difference between the peripheral velocity at the exit
and that at the inlet.
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t: Replacing the product sAVe by the line integral $v-dr on a :;3\
% closed path comprising two streamlines s distance apart and :’}:
'. joined by two lines parallel to the e~direction, we have :.:I
! (Weinig, 1964) 2
v e
: CL; = 2IV(cWp) (3.2-3) 2
-, , Y
v where I'® §v-dr (3.2-4) %
» is the circulation around a profile (Wislicenus, 1965). w-_i\
'. The camber is assumed to be sufficiently small so that the ﬁé_
chord length is substantially equal to the distance measured ..r.;"ﬁ
along the camber line. Then, the circulation around a thin E’_t-f‘
E wing profile is given by (Abbott and von Doenhoff, 1959) "23
1“ T = IC y dx (3.2-5) X
. o] Sl
: where y is the difference in velocity between the suction -Z’tj
5 and pressure surfaces, which is also the strength of the ig:ij
.'% vortex sheet comprising the blade camber line (von Kdrmdn s
. and Burgers, 1963). Therefore, equation (3.2-3) is a3
expressed by w
T CLy = 2 F (x/Mn) d (x/c) (3.2-6) 73
1 The cambered blade is built up by superimposing vortices on *
E the camber line and a distribution of sources and sinks an ,
2 the camber line to account for the profile thickness ‘“
h - effects. The distribution of source (sink), g, is (Mellor, b
1959) o
)
qQ = Wy dyp/dx + d(uyg)/dx (3.2-7) *"ﬂ
- where the thickness of blade is denoted by yt and the 1';
. induced chord-wise velocity, u, is considered constant along (
K- the y-direction within the profile. The second term can be _:.';;
o shown to be negligible (Mellor, 1959) and so we have ﬁ
5
g
1< 8 !;";
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4 q/Wy = dyt/dx i&

= (t/e)felx/c) (3.2-8) ...;
: =

where ft(x) = aft/ax (3.2-9) ::

; and the thickness function fy is defined by R

“ ‘Eij
yt/c ® (t/c)fe(x/c) (3.2-10)

-
Py

-

£y
g,

[ Ay &%

.
T s
v

where t is the maximum thickness of the blade.

: Y
2 & The camber function f, is defined by %j
: =
3 yo/c ® Cp folx/c) (3.2-11) e
B Ry
:, where yo denotes the camber distribution and Cp is defined ﬁii
b by
] 35
; Cy, ® 2 S (dy /dx)cose de (3.2-12) §;
;. in which e
4
cose * 1 - 2 x/c (3.2-13) NN
9 o
3 A blade is approached by a mean velocity Wn at a mean angle iﬁ
& an - To satisfy the condition that the normal velocity b
E vanishes at the boundary, the flow velocity, together with gﬁ
) the induced velocity, should be tangent to the surfaces. f;
¢ Neglecting the thickness effect, the boundary condition at Sg
'_ xg becomes [_zg
X (Wp sin ap + vg)/(Wy cos ag + ug) = (dyg/dx)g ES
FE ® Cp f; (x,/c)  (3.2-14) EE
e where ug and vg denote respectively the x- and y-components 35
¥ of the induced velocity at xg on the O0th blade with x <
Y measured along the chord from the leading edge. i
\ To find the 1lift coefficient by equation (3.2-6), we assume N
: that y/Wy may be represented by a trignometric series as E;
‘ (Abbott and von Doenhoff, 1959) "
& 9 L:
' -
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Y/W_ = 2A_ (l+cos e)/sin e + 43 A_sin ne (3.2-15)
m 0 n=1 n

which is zero at the trailing edge of & = w so that the
Kutta condition is satisfied. This distribution of vor-
tices, together with the distribution of sources/sinks shown
in equation (3.2-8), may be used to obtain the components of
induced velocity, ug and vg. The components of induced
velocity are then substituted into equation (3.2-14). With
the aid of (von K4rmdn and Burgers, 1963; Milne-Thomson,
1966)

fo lcos ne/(cos e - cos eo)] de = 7 sin neg/sin eq
(n = 0, l’ 2, oc-) (3.2"16)

the following equation is obtained:

o ?
0 AnGn = sinay - Cy fc(eo) cosa
hd t
*+ Cy ég% Ah, - T (CpB-T) (3.2-17)

where gn, hpn, B, and T are defined in Mellor (1959) except
that fg{(eg) should be replaced by f¢(e) in defining T. A,
are the Fourier coefficients to be evaluated.

For a cascade of certain solidity, incident angle, and
stagger angle, equation (3.2-17) 1is wused to calculate N
coefficients, An, based on the camber and thickness at N
locations along the chord. This study follows the solution
method of Mellor (1959) which greatly reduces the calcula-
tion labor when a set of solutions as functions of the
solidity and stagger angle is desired.

Equation (3.2-17) is multiplied by cos keg and integrated
from O to m to obtain an equation for numerical integration.

Having the double Fourier integral functions calculated, the
cascade coefficients, AL, were computed. Then the 1lift

coefficient was obtained from
10
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CLy = 2m(Ag + A1) (3.2-18)

which is derived by inserting equation (3.2-15) to equation
(3.2-6).

3.2.2 Data Analysis

The NACA 65-series experimental data given by Herrig, et al.
(1951) are used to do the multiple regression analysis in
the present study. The data include the cascade 1lift coef-
ficient and the design angle of attack. The design angle of
attack is a function of solidity and blade camber (Figure
3-3). The lift coefficient is a function of stagger angle,
solidity, blade camber, and angle of attack. Among the lift
coefficient values, only those associated with the design
angle of attack are used in the data analysis.

Based on 28 data points in Figure 3-3, the fourth order
polynomial equation of the design angle of attack, ag,
obtained by the multiple regression analysis is

ag = - 1.78681 o4 + 0.51975 o3Cp + 0.02078 02Cy2
- 0.06408 oCp> + 0.01716 Cp% + 7.68063 o>
- 2.50213 02Cp + 0.30280 oCp2 + 0.01298 Cp?
- 12.95580 02 + 6.54778 oCp - 0.30496 Cp2
+ 12.87888 o + 2.78086 Cp - 2.22656
(3.2-19)

where o denotes solidity and Cp represents the camber.
Figure 3-4 shows the correlation between the calculated
value from Egn. (3.2-19) and the experimental data. The
mean residual is -0.00002, the standard deviation is 0.04,
and the maximum residual is 0.09 degrees which is smaller
than the error bound of the original data.

Cascade lift coefficient at the design angle of attack has
79 data as a function of stagger angle, solidity, and camber
in Herrig, et al. (1951). Two data at the falling limb, in
the figure of 1ift coefficient vs. angle of attack, are

2

o
s
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removed from the sample. A total of 77 data is used in the
multiple regression analysis. The resultant fourth order
polynomial equation is

Cp = 0.00000038594 B4 - 1.66604 o4 - 2.74752 C,4
- 0.000050739 B30 - 4.42872 03Cy - 0.093633 C,>8
+ 0.0013187 8202 - 10.87314 02Cy2 - 0.0016033 C,282
- 0.0014369 803 - 9.83274 oCp> - 0.000035308 C,8>
- 0.000020018 B3 + 8.26201 o3 + 20.91537 C,°
+ 0.0040173 B20 + 26.19466 02C, + 0.33569 C,28
- 0.11946 B2 + 41.23668 aCy2 + 0.0059786 C,B2
- 0.00080978 B2 - 14.15108 02 - 45.84094 C,2
- 0.010265 Bo - 47.03403 oCy - 0.39504 C48
+ 0.015917 B + 13.59117 o + 36.29869 Cy
- 5.23047

(3.2-20)

The results calculated from this equation are shown as solid
lines in Figures 3-5 to 3-8 for different relative flow
angle at the blade inlet. Also shown in these figures are
discrete data at different conditions. The results from the
regression analysis fit well with the data.

3.3 THREE-DIMENSIONAL ANALYSIS -
BLADE-TO~BLADE FLOW

This section illustrates the theory and procedure to solve
the blade-to-blade flow on each stream surface in an axisym-
metric three-dimensional flow environment.

3.3.1 Differential Equations

Under the assumption that an axisymmetric stream surface
exists in a rotating machine, from the conservation equation
of steady circulation, i.e, Vv x w + 2w = 0, the following
relation is obtained for the relative flow,

W 3 ( I'w ) ’
m T .
36 - 3m 8 = 2wr %F = 2wr sini (3.3-1)
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where wp and wg are relative flow velocities in the direc-
tions of m and e, r measures the radial distance, and A’ is
the angle of the line tangent to the stream surface at the
point of interest made with the axis of rotation (Figure
3-9). The continuity equation for the same stream surface
is also written

a(bowg) d(bprw, )

where b is the thickness of stream surface and p is the

fluid density.

Then, a stream function ¥ can be defined by

LY,
<

w =
e

1 Y
" bp rae (3.3-3)

8-
3l
3‘

Substitution of wg and wy in Egn. (3.3-3) into Eagn.
(3.3-1) yields

32 32 1 3r 1 3b ¥ _ C
T73e% ﬁig *T3m "B 3m 3m = ~2bew sini
(3.3-4)
3.3.2 Transformation

Consider a Cartesian coordinate system (X,Y) with the origin
0 at the leading edge of a blade and the X-axis in the axial
direction (Figure 3-2), the three-dimensicnal axisymmetric
stream surface given by Egn. (3.3-4) can be mapped onto this
two-dimensional X-Y plane by the following mapping functions

dx To gy

TS T 0 g ° _ro , (3,3-5)
where ro is an arbitrary constant which is used for the pur-
pose of scaling between the physical coordinate space and
mapped plane (X,Y). By using Egn. (3.3-5), the governing
equation (3.4-4) can now be written in the (X,Y) coordinate
system as

13
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e
= 3
r .2
vl = ~2bpw (2 sim
0
& 1 Ja(bp) 3V , a(bp) 3V
' * Bo) ax 3X TTav 3v(. (3.3-6)
Also, the relative velocities in the X- and Y-directions are
given by
L
D L S 3
(a) wy = bpo 3y © T, m = T, Cn
N S| S < - I (c-
v (b)wY"B?ax"ﬁwe'ro(ceu)
where cp and cg are absolute flow velocities along m and e
directions, respectively.
C . .
On the mapped plane, the relative flow angles at the inlet
and exit of a blade, B; and B, respectively, are obtained
from the equivalent velocity diagram to be
A
W
tan B, = (3.3-8)
X
W
Y2
tan 8, = =—= (3.3-9)
[ 2 wa
where the subscripts 1 and 2 denote the condition at the i};;
inlet and exit, respectively, of a blade, and wxeo is the ?QS'
. mean value of w and . NN
- e alu X1 wx2 @
ae
3.3.3 Effects of Streamline Inclination and PSS
Meridian Velocity variation iﬁx
i
. As seen from Egn. 3.3-6, the governing equation for the o
* (X,Y) plane is now a Poisson equation instead of the Laplace ."
equation which exists only for a flow on a perfectly cylin- -
drical stream surface with uniform velocity distribution.
° Therefore, the results obtained from the two-dimensional
linear cacade theory should be corrected according to the
right-hand side term of Egn. (3.3-6). It is readily
=S 14
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understood that these right-hand side terms are satisfied by
distributing the following vortices, ¢, and sources, u, on
the entire (X,Y) plane

r 2 ’

(a) ¢ = (Vv x wly y = 2w (3) sim
’ 0
(3.3-10)
- . _ 1 a(bp) 3 (b 3
(b)“‘”!)x,v"w{ﬁ%&a—g' 3 %%}

By adding the induced velocities calculated from ¢ and yu,
the blade profile shape or equivalently the camber obtained
in the conventional two-dimensional analysis will be
corrected. It should be noted that the first term on the
right-hand side of Egn. (3.3-6) arises from non-zero k’,
i.e., the stream surface is not parallel to the axis of
rotation, whereas the second group of terms is due to the
non-uniform thickness of stream surface or tube caused by
the variation of meridional velocity. Needless to say, if
A = 0 and bp is constant, Egn. (3.3-6) becomes a Laplace
equation and thus a two-dimensional 1linear cascade theory
holds.,

A method similar to the present one was developed by Inoue
and his colleague. In their study (e.g., Inoue, et al.,
1980), there exist a few major drawbacks, some of which
could potentially lead to a substantial error in the final
design. First of all, since they use a two-dimensional
linearized cascade theory, the error becomes significant for
high solidity and high stagger angle area, i.e., near the
hub, although they introduce experimental data in a later
step of the analysis. Secondly, their velocity triangle
used for determining the incoming flow angle to the blade is
in error of the first order since they did not take into
consideration the effect of non-cylindrical and variable
thickness stream surface. Finally, due to the use of the
linearized cascade theory, they failed to obtain the veloc-
ity distribution and therefore a boundary layer analysis




|
! and cavitation inception analysis are not possible.
)
»
With these aspects in mind, effort has been made in the
1 current GHR project to improve the accuracy of the linear
cascade theory as well as to avoid the singular behavior of
velocity at the leading edge of blade. Detailed discussions
‘ on the loading correction and leading edge correction have
et been presented in the FY ’85 Report.
3.3.4 Induced vVelocities
@ If the inclination of stream surface is small such as that

in an axial-flow case, an approximation solution of the

velocity induced by the distributed vortices (Egn. 3.3-10a)

are obtained by a replaced average vorticity 7 (Inoue,
& et al., 1979):

C COSA
- 1
& T T cosh cax
&
ug r22-rl2
= T cosk L 2 (3.3-11)
0

L where ¢ is the chord length, ug is the speed of blade at the
reference radius rgy, and subscripts 1 and 2 indicate the
inlet and exit, respectively, of the blade.

& Similarly, when the variation of axial velocity is small,
the distribution of sources (Egn. 3.3-10b) is replaced by a
uniform distribution:

- -— -

- "x27%x1
M = T cosx
wa .
o = =5y (3.3-12)

where w denotes the average relative velocity.
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Consider another Cartesian coordinate system (x,y) with the
origin at 0 and the x-axis in the chordwise direction, which
has a stagger angle A relative to the axial direction
(Figure 3-4). The mean flow velocity along the chord direc-
tion is

W = Wyg COSA + wy, SinA

w

X COSA (1 + tanB_ tani). (3.3-13)

The induced velocities, relative to wye, due to the uniform
distribution of vortices, ¢, and sources, u, are

v

X _ X _y tan A
v, - x (o - gt M et tane,
Joy x _y 1
W X (T -cta V) 15 am tang_
(3.3-15)
WX e X Y opan a) 1
Wow ¢~ ¢ -® 1 + tan tanB
(3.3-16)
Z!l X Y tan A
Wow (T -t V) T tang_
(3.3-17)
where
7 _c _cos)
w
X
1 r22'r12
- 4 (3.3-18)
To
and
£ L _C cos)
w
X
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T, W ., - T, W %};
_ % 2 mi - 1 ml (3.3-19) S
o o o —
are streamline 1inclination parameter and axial velocity fff
variation parameter, respectively, and R
o row w e,
o w _1L “ml = T2 “m2 L
2 T, u -
w et ="
X® A
[ = —Jc-) (3.3—20) !’-

is a local flow coefficient, with subscript m denoting the
meridional component of the velocity.

Egns. (3.3-14) and (3.3-15) are good only if the streamline e
inclination 1is small. Eqns. (3.3-16) and (3.3-17) are e
obtained by ignoring the blockage effect of blade thickness.

) In the following discussion, the blockage effect 1is con- _q"%
sidered and the induced velocity from the distributed vor- N
tices given by Egn. (3.3-10a) are obtained by solving the
Poisson equation

L ;.
r 2 -_‘—_"'~_
v = -2bpw () sina (3.3-21) .
o N
to give the solution :L}:
- A
r 2 rl2 + r22 -
Vey = U (7)) - ———— (3.3-22) :
0 2rO .

where uqg is a reference velocity.

The 1induced velocity due to the distribution of sources
given by Egn. (3.3-10b) is approximated by (Inoue, et al.,
1980)

....................
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Y =k CBe) Tt et 2 (e ) (3.3-23) i

with the blockage factor of blade thickness, Kp, put into D

the consideration. B

By decomposing both vgy and vyx into the x and y directions, e

Egns. (3.3-22) and (3.3-23), together with (3.3-13), become 9f$

2 2

V;x _ UO (L)z - rl * r2 tani R

v "o e | Ip or 2 I + tanB_ tani ;;

0 T~

(3.3-24) S

v, Vey T

—=Y . =X / tana (3.3-25) NN

- ¥ Wy N,

- [

-

‘ux 11 (blpl o) "x1 "x2 T "xi 1 s

LIV Ky =~ be W 2Wy o 1 + tang_ tani o0

) (3.3-26) =
-

and !!!

v Vux -:.-:

Lo B tam, (3.3-27) o

X® x® PR
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3.3.5 Boundary Condition

KSAY

W

The flow approaches the blade by a velocity vye at an angle RN

Bo Trelative to the axis of symmetry. This velocity, ﬁ%

. - . . . Q

< together with flow velocities induced by distributed vor- awk

tices and sources, should satisfy the following condition of ﬁk;

flow tangency: ;g;

d W + oW + + el

oLy iy Ty oy (3.3-28) o

dx Mo * Max T Vo Vg N

where y. denotes the y coordinate of the camber line,. and :3;

I‘ wpy and Woy, respectively, are the x and y components of iﬁé
L

velocities induced by bound vortices and sources along the N

chord. éﬁ
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3.3.6 Flow Skewness in Diagonal Contracting Channel Ny
N ::\_
b The major goal of the proposed theory is to make corrections e
" of flow stream tube nonuniformness and diagonal flow effects o
) on the two-dimensional axial cascade flow. This is per- :::'__
formed within the framework of perturbation method by uni- ]
:. formly distributing vortices, Yy, and source/sink,z,’ in NG
‘ cascade row, as described in Section 3.3.4. The blade pro- r;
file shape will be properly modified in order to take Y and ';','-'-
’5 7 into account. Due to the distribution of uniform vortices NS
?,. and source/sink, the flow skewness problem exists, i.e., the h“'
" first order effect on the flow incidence angle is generated F"
(A
; by such singularity distribution. L
! ’.’(..
Y —_ ::‘.'
R As shown in Figure 3-10, the constant vortices, &, are -;.:"
A distributed in a strip over the entire cascade row. The X
3 complex potential W for a point vortex ¢ placed at z' |is ::'_;::.'
o expressed ._::-.;
. s
2, -o ..
g W= 322en (z-27) (3.3-29) "
< and the induced velocities are obtained by taking the
N @ deviations of W ;“
.l .:\'
:' Y
K . iy dw _ 1T x-x' + iy’ e
:’. u_ = iv_ = = == . (3.3-30) N
K+ g S I EPNINTEY Y. N
R s
o The induced velocities due to the uniform distribution of ﬁ
" vortices over a strip of cascade region are obtained by Z':;'-'.g
9 integration ;‘_:}::
: 5
< [
Lcos) = ., RS
: VC = I Ve dx dy
b 0 -
X
e Lcosn
: |
3 0 -
g
i ¢

. <3 ;p )
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b _.'-,‘-':
~ Lcosi » ® e
=== tan~t X ] dx’ e
n J X=X -__,,-_‘::
LA
™ 0 0 an
As x+ -®, :_‘.-.:."
) e
h ~  tcos) - R
: v, === f (- 2-0) dx’ = 2 tcosh, (3.3-31) S
g n J 2 2 oy
® 0
\.::\.i‘
whereas x+ +® g
- N
o V. = - % Lcosh. (3.3-32) ey
— .‘. -
Therefore, by distributing ¢ uniformly as described above, S
el
the upstream and downstream flows are equally deviated from S
e the geometric mean flow, we {see Figure 3-10 again). -ﬁ&i
Spy—
! On the other hand, a more rigorous mathematical model by
Mani and Acosta (1968) will lead to a totally different
conclusion. Since this point has been ignored by many |
e researchers, let us review herein the details of Mani and %
Acosta’s work. In their work, the channel contraction was fﬁé;
chosen to be of an exponential shape as shown in Figure %gﬂ;
“ 3-11. By satisfying the proper boundary conditions, the ,3;’;:,
velocity component in the y-direction due to a point vortex !&ﬁ
of unit strength at the origin is obtained (see the report kﬁj
of Mani (1966)), N
- P
- 4 ’ 1.2, 12 | 3
s (L X 1 a (2a-x_ ) “+y A
: voszm [—T_i' (1-z00) + g tn =297 (3.3-33)
x “+y Xty RO
ﬁ + 0 (a?) for x’ <-b Egi
. alaall
v 1 x’ 1 a (x"+2b) 24y’ 2 1
7 |57,z (tFea) * g 0 Teeeg (3.3-34) R
L x “+y X Tty N
e
+ 0 (a?) for x’ 2a O
6 L}

Therefore, the induced velocity due to a distribution of the
vortices over a chord length in the cascade configuration is
obtained
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as x + +o, (3.3-37)
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Let’s simplify the first term of the above integration by
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defining
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From the identify (see Mellor (1959)),

n=r 1 x=£ _iA
Z = coth (ﬂ' e )
N==0 T'. E:g -inn S

e-ll s

?

then,

S

P = %— [— coth (—n k;e'l)‘) + coth (rr X_-Séell)] (3.3-38)
Therefore,

asS X<+ -®
(3.3-39)
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The second terms of (3.3-36) and (3.3-37) are defined,
respectively

-
Q* | en [E-(x+£)cosx]2+n252-2ns(x-g)sink+(x-g) Sirf 2
Nz (x-g)2+n232-2ns(x-§)sinl
< for x g¢-1
Ei en [(x+£)cosk+E]2+n252-2ns(x-g)sink+(x-g) %ir?k
= 2, 2.2 . .
\P"-m (x=-E) “+n“s “-2ns(x-E)sinx
for x 21
Then,
o E2_2E(x-E)cos) + & 3 ]
Q = z: anll+ - - 0S EXCOS
N==® (x-£)2+n232 - 2ns(x-§) sini |
< , X 5-1
o -

55 enll+ E2+2E(x+E)cosA + 4Excos A
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or

EZ-ZE(xﬂ;)cos)\ + agxcoszk
Nz=x (x-£)2+n252 - 2ns(x=§) sinA

as X+ -o

- Q =

o 4,

' fa

- E2+28(x+;)cos>\ + agxcoszx

N=-o (x-§) 2+n 252 - 2ns(x=£) sinx

-

e
T

as x+ +w,

T
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"
LY AT
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From (A-11), o
2 2 Ty
E“-2E(x+E)cosh + 4Excos®]A Sy
T Q =(-5 as x+ -o ‘
hd S (x-£) cosx ’ i“:‘f-1
4500
2 2 ook
T ES+2E(x+E)cosA + 4Excost ) o
S (X-E) CoSA ’ as x+ +=o, ::i;;
o

Ny
.
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Q = -g (-2E + 4F cos)) , as x+ -«

o
[

o !
'
.l’v .
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(2E + 4F cos)) , as x+ +w,

¢
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where I’ ® -f vy(E)dE and y(g) is positive in the clockwise
L. -1
direction. If € = 23 = 2b,
by o]
v = |53 (1- 2E) as x+ -«
(3-3'4’0)
[ - a
55 (1+ 7E) as x+ +o =
Rewriting this induced velocity in two parts, by vp and vg, 5335
L
e
- - + 4o .'_‘F -
Vp = V4 3 X Tt
4h4
1 a
r I . oa RN
a — —— . — - '_.-
where Vp " 35 VY, n >3 2E. g
. -
The velocity diagram is now written in Figure 3-12. It is NSO
LSCSAN
clearly seen that there exists an error of first order of a -ﬁﬁiﬁ
if we is chosen as the reference velocity. Instead, we ;Sii:
should be chosen as the reference velocity so that the blade iiii
setting will be changed. This error is substantial since
the three-dimensional, diagonal flow correction handled
under the current method is order of magnitude a. This fact
indicates that not only the blade camber profile needs
correction as discussed earlier but also the blade setting
should be changed in order to take such 3-D correction into
account correctly. Inoue, et al. (1979, 1980) did not see
© this point in their series of papers.
There exist two possible ways of implementing this idea:
1) by assessing the flow channel contraction or expansion in
& terms of equivalent a, Equation 3.3-40 will be used, and
2) a more accurate calculation will be made by using the
distributed vortices over the cascade strip. The method of
actually incorporating this flow "skewness™ into the current
w design theory will be one of the major tasks in the FY-87
GHR project. -
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3.3.7 Secondary Flow Correction
The secondary flow theory commonly used for axial flow is
g applicable to the current diagonal flow. The strength of
vortex at the exit of blade channel due to the secondary
flow, Zsr, is expressed
* .. N L. 4§ 9 __L_gr
SF T ZWr.cosB "I "1 b w_~ cose dgq
2 2 2
where N = number of blades,
® S = the component of vortex normal to the direction
of relative flow on the rotating surface,
W, o= relative incoming velocity
s = line element along the blade on the rotating
v surface
w = relative flow velocity on the blade surface
I' = circulation of blade
o g = g-line used for the streamline curvature method
€ = angle of a tangent line of meridional line made
with g-line
- by, bp = widths of flow at inlet and exit, respectively
Bo = flow angle at exit relative to chord line.
By distributing the above secondary vortex at the exit of
° blade channel and satisfying the boundary condition on the
hub and casing, the induced flow effect on Cg (called ACg
hereafter), will be calculated by solving the corresponding
Poisson’s equation. In the current design problem, this ACg
. will be taken into consideration for determining the blade
-
profile shape. More detailed numerical analysis will be
developed in future work.
3.4 DESIGN PROCEDURE
w
The design procedure presented here is based on the assump-
tion that the shape and steady velocity of wunderwater

26
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vehicle is given. The whole procedure can be repeated for a
modified shape or velocity. At the beginning, some parame-
ters, such as the location of the rotor, the number of
blades, and rotation speed, have to be chosen based on
experiences.

Then (Figure 3-1), the stream curvature method (SCM) is used
to determine the streamlines for a through-flow in a merid-
ional plane. As discussed in Section 3.1, the method is
based on solving the momentum equation along quasi-
orthogonal lines (g-lines) and the conservation of mass is
kept along the meridional direction.

After streamlines are determined, average stream surfaces

are taken to be the revolution of streamlines about the axis
- of rotation. Then a program, OSN3, is used to do the
remaining design procedure. Figure 3-13 depicts the macro
view of the procedure while Figures 3-14 through 3-18 show
details of each substep based on the theory presented in
Sections 3.1 to 3.3,

Figure 3-14 shows the input data required in the general
background. Input data related to each individual cross-

- section are to be read in Subroutine INP2 as shown in Figure
3-15. Some input data are obtained from the meridional flow
solutions computed in the SCM program.

< Figure 3-16 shows the subroutine to calculate the flow vel-
ocities in the mapped (X,Y) plane as discussed in Section
3.3.2. The subscripts 1 and 2 denote conditions at inlet
and exit, respectively, of a blade.

One basic concept in the present design procedure is that

the blade camber design based on cascade experimental data
is adjusted, by considering the effects of streamline incli-

nation and nonuniform velocity distribution, such that both
the final flow turning angle and the incident angle relative’
to the axis of rotation are the same as those obtained in :f?«
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the two-dimensional flow without the three-dimensional fac-
tors.

The camber and turning angle for the case of wuniform,
parallel flow are evaluated based on the required 1ift coef-
ficient and solidity (Figure 3-17). The method relies on
the experimental data presented in Section 3.2.2. '

In the presentation of three-dimensional effects, which are

to be considered in the boundary condition as discussed in }i:
Section 3.3.5, the camber and stagger angle are adjusted Y,
until the turning angle in the mapped two-dimensional plane A
is the same as that with original camber in the uniform, ;{;f
parallel flow (Figure 3-18). A linearized cascade theory

(Section 3.2.1), together with proper boundary condition o
which has the three-dimensional effects considered (Section d;g
e

3.3.5), 1is used to calculate the cascade lift coefficient -?55
and the associated total circulation. DA
ConT

If the calculated turning angle for the three-dimensional I
flow case is different from the desired value, the camber S
and stagger angles are adjusted in an iteration process ii%j
until the desired value 1is achieved to within certain e
Loy~ p W,

tolerance criterion. wWhen the result is converged, the . X
final camber 1is the one which, under the influence of three- ;gfﬁ-
dimensional flow, will yield the desired lift coefficient. }fﬁé
RS

: )

Q%

S

:‘:\':'\‘

Jat s
'&:.:.: )
:':\":\-'-
AR

- ) \\
 dst
e

28 P
e e T g I T T e TN e DN .




£ a oon 2ag 0l s Bag g a s aaa aen s o) A nd Aar i i VA At ate anet ot gt ¥ A Nai ake aih ALA A AbA a0 alAallatale abac iV ath it Sat bty hed ot Sab adt et et Ak ol Sad Bed Aol Aok Al Aok 4
< AN

4.0 CONCLUSIONS

During the FY-86 GHR study, the mathematical model of the
A blade-to-blade theory for the three-dimensional pumpjet flow

has been developed. The stream surface of nonuniform
thickness in the diagonal flow was mapped into plane by a
functional mapping function. The rotor blades now become a

row of blades, i.e., cascade configuration. The Laplace
equation in the three-dimensional coordinate system is then

converted into a Poisson’'s equation. This Poisson's
equation 1is solved as the corresponding Laplace eguation i
combined with the source/sink and vortex distribution on the s
rotating flow field as a correction. More specifically, the i
two-dimensional cascade solution is corrected in terms of
blade camber profile shape due to the induced velocities
generated by the source/sink and vortex distribution. An

iteration procedure is necessary to satisfy the boundary
condition on each blade, namely, the flow tangency con- S
dition since the original two-dimensional cascade solution L
will not satisfy the tangency condition after the correction
is made.

An additional important correction due to the correction by

the singularity distribution, particularly by the vortex
distribution, is that of flow skewness. It seems that this
point was ignored by most researchers, but is as important

as the camber correction. It is of first order of three AT
dimensionality. This skewness changes the flow directions !ﬁﬁ;
at upstream and downstream in the same direction so that the ;igt
blade setting should also be changed. It means that the )
stagger angle of the cascade blade should be changed prop-

erly. -'__""
During the FY-87 GHR study, these two theories, i.e., blade- o
through flow theory (i.e., Streamline Curvature Method) and fﬁﬁg
hd blade-to-blade flow theory, will be combined and the itera-
tion procedure will be established. After developing com- ;;¥

t
r
; puter codes, a sample pumpjet design will be attempted.
:
t
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FIGURE 1-1

A typical pumpjet blade and
shroud configuration
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A typical meridional flow velocity
(Vm) distribution for a pumpjet
where V_ 1s upstream flow velocity
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Figure 3-14 Flow chart for Subroutine INP
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