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A Unified Theory of Inference for Text Understanding
Peter Norvig
Abstract

{Natural languages, such as English, are difficult to understand not only because of
the variety of forms that can be expressed, but also because of whaf};, not explicitly
expressed. The problem of deciding what was implied by a text, of “reading between
the lines”” is the problem of inference. For a reader to extract the proper set of inferences
from a text (the set that was intended by the text’s author) requires a great deal of general
knowledge on the part of the readsr. as well as a capability to reason with this
knowledge. When the teader” is a cu:nputer program, it becomes very difficult to
represent this knowledge so that it will be accessible when necd=d.

Past approaches to the problem of inference have often coacentrated on a particu-
lar type of knowledge structure (such as a script) and postulated an algorithm tuned to
process just that type of structure. The problem with this approach is that it is difficult to
modify the algorithm when it comes time to add a new type of knowledge structure.

An alternative, unified approach is proposed. This approach is formalized in a
computer program named FAUSTUS. The algorithm recognizes six very general classes
of inference, classes that are not dependent on individual knowledge structures. Rather,
the classes describe general kinds of connections between concepts. New kinds of
knowledge can be added without modifying the algorithm. Thus, the complexity has
been shifted from the algorithm to the knowledge basc. To accommodate this, a power-
ful knowledge representation language named KODIAK is employed. <— ——

The resulting system is capable of drawing proper inferences (and avoiding
improper ones) from a variety of texts, in some cases duplicating the efforts of other sys-
terrs, and in other cases improving on them. In each case, the same unified algorithm is
used, without tuning the program specifically for the text at hand.
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Chapter 1:
Introduction

Making Proper Inferences from Texts

This thesis addresses the problem of understanding written English texts. The
reader of a text is faced with a formidable task: recognizing the individual words of the
text, deciding how they are struciured into sentences, determining the explicit meaning of
each sentence, and also making inferences about the likely implicit meaning of each sen-
tence, and the irplicit conaections between sentences. This study is primarily concerned
with the problem of inferencing, and touches on lexical and syntactic issues only in that
they interact with the problem of infereacing.

An inference is defined to be any assertion which the reader comes to believe to
be true as a result of reading the text, but which was not previously believed by the
reader, and was not stated explicitly in the text. Note that inferences need not follow log-
ically or necessarily from the text; the reader will often jump to conclusions that seem
likely but are not 100% certain. The terms logical inference and plausible inference will
be used to differentiate between inferences that are certain and non-certain.

People are very good at interpreting texts and making inferences. They generally
do not notice when the text is under-specified and they havz to make inferences to
resolve ambiguities, or to gain a fuller understanding of the text. As an example, con-

sider the following text, excerpted from a book of fairy tales [9]. It will be referred to as
text (1).

In a poor fishing village built on an island not far from the coast of China,
a young boy named Chang Lee lived with his widowed mother. Every
day, little Chang bravely set off with his net, hoping to catch a few fish
from the sea, which they could sell and have a little money to buy bread.

A reader of text (1) shiould be able to make inferences like these:

(2a) There is a sea which is used by the villagers for fishing,
surrounds the island, and forms the coast of China.

(2b) Chang intends to trap fish in his net, which is a fishing net.

(2c) The word which in which they could sell refers to the fish.

(2d) The word they in they could sell refers to Chang and his mother.

There are four important properties of the inferences listed in (2): they are non-explicit,
Plausible, relevant, and easy. To elaborate:
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o The inferences are not cxplicitly stated in the text.

o They are plausible; ro: only is it possible for a reader to believe (2a-d) after reading (1),
but it seems likely that any reader would.

¢ They are relevant, in that they serve to tis together concepts mentioned in the text.

o They are easy inferences; they seem to be made without conscious effort.

Inferences that meet these four criteria will be called proper inferences. To understand a
text, a reader must make the proper inferences, and avoid making improper irnferences.
A representative set of improper inferences for (1) is listed below:

2 T ™ o T a0 S TR T T e Tl TR T

(3a) The villagers fish on a river in the middle of the island.
The island is on a lake which is near the coast.

(3b) Chang wili use the net, which is a butterfly net,

g as a deposit on a motor boat to go out fishing.

" (3c) The word whick in which they could sell refers to the sea.

(3d) The word they ‘n they could sell refers to the fish.

(3¢) The square root of 169 is 13.

(3f) Chang has a grandmother (who is perhaps deceaser).

(3g) Chang lived with his mother.

(3h) Chang is wearing blue pants.

T e

Most readers find it difficult to take seriously the inferences in (3a-d). They often
have to go back to the tex: to see that (3a-d) are indeed possible at all; that they are not
explicitly contradicted by the text. In fact, each of (3a-d) is perfectly consistent with
everything stated in the text, they are just less plausible than the corresponding inferences
in (2a-d). There are alsc other problems with some of them: in (3b) the motor boat seems
irrelevant, and (3a) is a convoluted example that would fail on both the relevance and
easiness criteria.

While (3e) is highly plausible, ir fact is 100% certain, it is completely irrelevant.
Although (3f) refers to a character in the story, it still is not a relevant inference because
it does not tie together concepts from the text; it just adds peripheral information. We
could go on from (3f) and infer that Chang’s grandmother had a grandfather, and that he
had a pancreas, and that his pancreas secreted insulin, and so on. In each case we have a
highly plausible inference which is connected in some way to either the text itself or a
previous inference. However, it is not enough for a fact to be inducible, or even deduci-
ble, from the text. The intuition is that we don’t think of (3e,f) after reading the text.
This intuition is formalized by the relevance criterion, which says that (3e,f) are not
proper inferences because the connection between them and the text fails to add anything
to the interpretation of the story.

Example (3g) is not considered an inference because it was stated explicitly in the
text.

Text (1) was taken from a book where it was accompanied by some pictures. The

.2.
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illustrator presumably made inference (3h), because that is how Chang is depicted. I will
speak of (3h) as an idiosyncratic inference. People bring many such inferences to the
interpretation of a text, but are still ~ble to distinguish idiosyncratic inferences from
proper ones. In order to draw a picture, it was necessary to choose some attire for Chang,
but another choice, say, brown shorts, would have done as well. On the other hand, the
picture in question also showed Chang with a fishing net; here a butterfly net could not
have been substituted. The reader is aware that the author of the text intended for him to
infer that the net is a fishing net, but did not have any intention one way or the ouier with
regards to the color of Chang’s clothes. Herb Clark [30] makes a simiiar distinction,
speaking of authorized and unauthorized inferences.

There is an implicit contract between the author and reader wherein the anthor
agrees to make =xplicit enough of the story so that the reader, if he searches for the set of
proper inferences, will be able to recover the information the author wanted him tc
recover about the story, and make sense of the text. In a perfectly-structured text there
will always bc easy, plausible connections between each pair of adjacent sentences.
When these connections are missing, or when inferences prove to be incorrect, it is usu-
ally a signal that the writer is being humorous, ironic, mysterious, has a different view cf
the world, or is just being confusing. Indeed, much of what makes texts interesting is the
intentional daunting of this implicit contract.

Note that plausibility is a relative term. In the phrase which rhey could sell from
(1), it is more plausible that which refers to the fish than to the sea, and that they refers to
Chang and his mother rather than the fish. When faced with a choice of possible
referents, it is possible to decide which is better using default assumptions like the acrors
of selling events should be people, and the object of selling events should be products
which are conventionally bought and sold. When faced with no good referent, some-
times these assumptions have to be violated. Given sentence (4) below, the reader would
be forced to infer that which refers to the sea and rhey refers to the fish, even though this
constitutes a very unusual event in the real world. In the domain of fairy tales, it is more
common to have animals acting in a manner similar to human beings, but this would sill
be an unusual event. The point is that the sentence is acceptable, despite its unlikeliness,
and moreover, it is easier to detcrmine the better of two proposed interpretations of the
sentence than it is to decide if any single interpretation is acceptable. In other words,
there appears to be no threshold of acceptability.

(4) The fish hoped to acquire a sea which they could sell.

It should be clear by this point that making proper in“:rences requires a great deal
of knowledge. The reader must know the meanings of individual words, as well as the
grammatical rules of the language. More importantly, the reader must have specific
world knowledge about the subject matter. For text (1), this would include knowledge of
spatial relations (in, on, near), geography (village, island, coa-t, sea, China);, familia!
relations (boy, mother, widow), commercial transactions (buy, sell, have, money), as well
as other sources of knowledge. Collectively this will be called common sense knowledge,
to distinguish it from expert and grammatical knowledge. Without this knowledge, we
would be unable to decide among alternative interpretations of the text. For example,
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inference (2b) above, Chang intends to trap fish in his net, comes from our knowledge of
nets, not from the structure of the sentence. If the sentence had been (5) instead, we
would not make the infcrence that Chang intends to trap fish in his deg.

(5) Chang set off with his dog, hoping to catch a few fish.

The FAUSTUS Approach to Inferencing

My approach to the problem of making inferences from texts has five main com-
sonents. First, I formally define the notion of proper inference, in terms of the three cri-
teria f ease, plausibility and rclevance. I characterize the class of proper infevences, and
compare this class to inferences described by other researchers. Second, I present an
algorithm for making proper inferences and avoiding improper ones, given a text aid a
knowledge base. The algorithm is implemented in a program called FAUSTUS (Fact
Activated Unified STory Understanding System). The algorithm employs a marker-
passing mechanism that finds key concepts, a collision classificaiion mechanism that
determines a set of potenual inferences, and an evaluatnon m- -hanisra that determines
which potential inferences should actually be made.

As we have just seen, a suitablc knowledge base is a prerequisite to making
proper inferences. Building the knowledge base comprises the third and fourth com-
ponents: first defining a knowledge representation formalism, and then using the formal-
ism to model facts about the world. The representation language is called KODIAK (Key-
stone to Overall Design for In*~gration and Application of Knowledge), and was
developed jointly with Robert W  asky [140] and others in the Berkeley Al Resea.ch
group. Tae fifth and final componc.:: s an evaluation of the strengths and weaknesses of
the basic approach, and of the implementations (FAUSTUS and KODIAK).

The name FAUSTUS serves three purposes: it obeys the time-honored Al conven-
tion of naming systems with inscrutable yet cute acronyms; it convevs the key idea of
achieving understanding through kncwledge (or facts); and finally it alluaes to the
difficulty, the hubris, of this goal of achieving all knowledge.

The system is diagramed schematically in Figure 1. First, input sentences are
converted to KODIAK representations by a program called a conceptual analyzer. Arens
and Wilensky’s PHRAN program [133] was used where possible. For some input, PHRAN
was not up to the task, so a representation was constructed by hand instead. A major flaw
with this approach is the lack of interaction between the understanding component and
the analyzer comr~onent, but that was not the topic of this thesis, so I have settled for a
one-way connect .n. The understanding component, FAUSTUS, takes in representations
and immediatel; stores them in the story memory. In addition, it makes inferences,
based on what is l:nown about the story so far as well as what is known in the general
knowledge base. These inferences are also added to the story memory.
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Figure 1: Overview of the FAUSTUS System

Comparison to Previous Approaches

Chapter 2 will cover related systems in detail, while in this section I will intro-
duce just enough previous research to show where FAUSTUS fits in; what it is a reaction
to, and what problems it attempts to solve. There have been several recent Al programs
that each attack the problem of finding inferences by describing a new type of knowledge
structure (script, plan, TAU, plot unit, etc.), showing its pervasiveness in actual texts and
efficacy for understanding them, and then designing an inferencing algorithm based on
the new type of knowledge structure. For example, Cullingford’s [33] Script Applier
Mechanism (SAM) made inferences by way of one main technique: identifying a script
for the situation being described, and inferring the default actions in the script. As a vari-
ant of this idea, the FRUMP program, developed by DeJong [34], was based on the notion
of sketchy scripts: scripts with less allowable variation and Jess detail than Callingford’s
scripts. This allowed FRUMP to process a wider range of input texts, but to extract less
information from the texts, and to accept less variation from the pre-stored scripts. The
FRUMP program was tested with stories taken directly off the UPI newswire, and was
able to correctly summarize over half the news stories that referred to scripts it had
knowledge of.
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The scriptal approach worked when a script could be identified, and when the
story followed the script closely, but failed otherwise. Wilensky’s [131] Plan Applica-
tion Mechanism (PAM) could handle stories that deviated more from stereotypical situa-
tions. PAM’s control structure had a main loop that reacted to each input sentence by
classifying it as either a goal or an action. For every action, PAM would try to find a plan
it could be a part of, such that that plan could be explained as arising from a known goal.
This assured that many plan/gozl connections were found, but it was difficult to find
other types of connections. Alterman’s NEXUS system [3] made event-concept coherence
inferences, and had a similar architecture where it was searching for certain specific types
of connections.

These programs were able to make some inferences beyond the scope of their
main type of knowledge structure. For example, SAM, PAM and NEXUS each resolved
definite noun phrase and pronominal references, but only as a side-effect of the matching
process. This meant some references went unresolved; these programs had no instruc-
tions to ‘‘look harder’’ when no referent turned up as a result of the matching process. It
also meant that it was difficult to integrate syntactic knowledge or other knowledge about
constraints on the possible referents into the algorithm.

Each of these programs makes a trade-off between top-down and bottom-up pro-
cessing. FRUMP was almost exclusively top-down; zafter deciding what script was
relevant, it tried only to fit new input into the existing script structure. In contrast, PAM
and NEXUS were more bcttom-up in their approach. Both programs read one statement at
a time, and tried to explain the new input by finding a connection to previous statements.

To put these programs in perspective, each was designed primarily as an experi-
ment to discover more about the particular knowledge structurc they were concentrating
on. Each of the programs was successful from this point of view, but none of them zould
serve as a basis for an extensible system to which it would be easy to add new kncwledge
without redesigning the entire algorithm. Each program was tied too closely to the par-
ticular processing algorithm to allow such extensibility.

There have been attempts to allow flexible control structures. Tharniak [23] pro-
posed a demon-based system with arbitrarily complex procedures that could look either
forward or backwards to find connections. Dyer [37] describes another demon-based
system that makes use of multiple knowledge sources. Although both systems theoreti-
cally allow for the addition of new sourccs of knowledge, both still suffer from three
problems:

e They often require what is intuitively the same piece cf knowledge to be duplicated in
several places in the system, in several forms. I term this the knowlecge-duplication
problem.

e They process different types of knowledge in very different ways. I will call this the
non-uniformity problem.

e There is little provision for sharing between different knowledge sources, or for
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weighing different types of knowledge sources in coming to an interpretation. This is the
knowledge incompatibility problem.

The work that is closest to my etfort 1s presented by Chamniak in [28]. He
presents an understanding program that uses marker passing to parse, disambiguate and
fi- ! inferences. The major difference is that I propose a specific set of path shapes and
associated inference classes, while Charnial- uses a more general resolution theorem-
proving based approack. Another difference is that Chamiak’s knowledge base is four to
ten times smaller (depending on how you count nodes and links).

Advantages of the FAUSTUS Approach

The FAUSTUS approach removes the complexity from the rules in the processing
system, and places it in the knowledge network. There are several advantages to this
approach.

e Declarative knowledge, when organized propesrly, can be used in several ways, while
procedural knowledge by definition can only be used one way. If we are going to go to
the trouble of building a large knowledge base, it would be desirabie for the knowledge
to be applicable to other tasks, such as language production and planning, rather than
having all the knowledge being specific to language understanding.

e Another difficulty is dealing with multiple possible inferences at the same time. The
FAUSTUS processing algorithm keeps a queue of potential inferences. Because the
knowledge base and the possible inferences are in a declarative form, it is relatively easy
to combine them, to consider several inferences at the same time (as when two or more
possible inferences each suggest a referent for the same pronoun). If the knowledge
needed to make inferences were represented procedurally, it would be more difficulr to
inspect, compare, and merge inferences together. If the procedures were going to have
any interaction, they would have to be written as co-routines, and would have to know
some of the details of other procedures. This is often confusing and difficult, and would
probably require the knowledge base modeler to modify existing inference rules to
interact with new rules as they are added.

e It was possible to define the notion of easy, plausible, relevant inferences, ~::d to make
some guarantees about the inferences made, guarantees that could not be made with pre-
vious systems.

e FAUSTUS employs a general inferencing algorithm that is not dependent on any particu-
lar knowledge structure and is relatively simple. Of course, text understanding is still a
difficult task. The complexity has not disappeared; it has just moved fro the algorithm
to the knowledge base. Undeistanding goal-based stories still requires knowledge of
plans and goals; understanding script-based stories still requires knowledge of scripts.
The difference is that FAUSTUS is designed to allow incremental add’ s to the
knowledge base, without having to redesign the entire processing algor . Thus, I
draw on work done by cther researchers in describing new kilowledge structures, but I
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incorporate them in a declarative form. This is possible beczuse of the representational
power of the KODIAK formalism.

¢ While similar in many ways to Quillian’s (93] spreading activation model, FAUSTUS has
the advantage of being able to incorporate grammatical constraints into the marker pass-
ing process, rather than checking them only as an afterthought. This helps avcid spurious
inferences. This capability is discussed in the first section of Chapter 5.

("wt™lay W M b ow

e FAUSTUS can handle texts based on ‘‘script-like’’ know..dge, as described in
(109,110}. It is not a single-minded script-application program, though, and is capable
of reading the word ‘‘restaurant’’ without necessarily expecting the restaurant script to
occur. It can also make selective connections between the events that are actually men-
tioned in the text without muking all possible script-related inferences.

e FAUSTUS also handles what have been called plan-based inferences, cohereice-based
inferences, and several other types. Each of these is covered in Chapter 5. The impor-
tant point is that, although these different inference classes have been proposed by previ-
ous researchers, FAUSTUS makes no distinction between the classes. Yet it has been pos-
sible to extend the program to handle these classes because of the generality of the infer-
ence types it does distinguish.

The FAUSTUS Algorithm

In this section I briefly present the inferencing algorithm as a six-step process.
This presentation will be repeated in Chapter 4 in more detail.

Step 0: Construct a knowledge oase defining general concepts like actions,
locations, and physical objects, as well s specific concepts like fishing, islands, and nets.
This is done once and the same know!edge is applicd to all texts, whereas steps 1-5 apply
to an individual text. The knowle~.ge base is in the form of a semantic network, in the
KODIAK formalism, as will be discussed in Chapter 3.

Step 1: Construct a semantic representation of the next piece ot the text. This
is done by the PHRAN conceptual analyzer or by hand. In some cases, the resulting
representation is vague, and FAUSTUS resolves soimne particular kinds of ambiguities in
the input using two non-marker-passing inference classes.

Step 2: Pass markers from each concept in the semantic representation of the
input text to adjacent nodes, following along links in the semantic net. Markers start out
with a given amount of marker energy, and are spread recursively through the network,
spawning new markers with less energy, and stopping when the energy value hits zero.
Each marker points back to the marker that spawned it, so we can always tra  ‘he
marker path from a given marker back to the original concept that initiated marker pass-
ing.

Step 3: Suggest Inferences bascd on marker collisions. When two or more
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markers are passed to the same concept, a marker collision is said 1 have occurred. For
each collision, look at the sequence of links along which markers were passed. Each link
has a primitive link type associated with it, and the list of primitive link types determines
the shape of the marker path that lead to the collision. We look at the two halves of the
marker path involved in the collision, and if the total path shape matches one of five pre-
specified shapes, then an inference is suggested. Suggested inferences ure kept in a list
called the agenda, rather than being evaluated immediately. (Primitive link types will be
discussed below, and in more detail in Chapter 3.)

Step 4: Evaluate potential inferences on the agenda. The result can be either I
making the suggested inference, rejecting it, or deferring the decision by keeping the '
suggestion on the agenda. If there is explicit contradictory evidence, an inference can be
rejected immediately. If there are more than one potential inferences competing with one
another, as when there are several possible referents for a pronoun, then if none of them
is more plausible than the others, the decision is deferred. If there is no reason to reject
or defer, then the suggested inference is accepted, and new concepts are added to the
model of the text.

Step 5: Repeat steps 1-4 for each piece of the text.

Step 6: At the end of the text there may be some suggested inferences ruimaining
on the 2agenda. Evaluate them to see if they lead to any more inferences.

I now illustrate these steps with a specific example, taken from story (1) abcve. I
will show how the program infers from the first sentence that there is a body of water
which surrounds the island, and serves as the location for the village’s fishing.

Step 0 says to construct a knowledge base. A portion of this is shown in Figure 2. '
The complete knowledge base is more than 60 times larger than this portion. The '
representation language is discussed in Chapter 3; for now, suffice it to say that concepts s
(depicted in boxes) are associated with each other by primitive representational links.
The link ‘S’ means ‘has as a slot,” ‘D’ means ‘is a. minated by (is a sub-category of),’
and ‘C’ means ‘is constrained to be a member of this ¢.tegory.’ Thus. Figure 2 says the
following: a ccast has (at least) two things associated wii* it: a land-border which must
be a land-mass, and a water-border which must be a body-of-wate.. An island is a kind !
of land mass, and it is surrounded by something which must be a body-of-water. Finally,
an instance of fishing must have a location, which is a body-of-w ter.

Step 1 is to construct a representation of the input seatenc. This consists of an
interconnected network of individual concepts, which are marked a - being instances of
more general concepts in the knowledge base. This would include : n instance of the
action of fishing, and an instance of the concept island. To indicate that these instances
stem from the input, they are given names consisting of the concept followed by the
number of the input sentence in which they appeared. In this case, th-t would be ,
dshing.1 and island.1. 3

After constructing the representation of the input, Step 2 is to pass mark.rs from
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Figure 2: Part of the Knowledge Base Network

each concept in the input to neighboring concepts in the network, and recursively on to
other concepts, following primitive links. An arbitrary number of markers can end up
being passed from each concept in the input. In fact, since the passing is recursive, there
would be an infinite number of markers if not for a set of rules that limit where and when
markers can be passed. The exact rules for marker passing are covered in Chapter 4, and
the implementation of the rules in Chapter 6.

Step 3 is to suggest inferences based on marker collisions. Figure 3 shows a col-
lision at the concept body-of-water. Marker collisiors denote concepts that are related to
two different concepts in the text. Thus, they are relevant to the text, in some way. Just
how relevant, and what inference they suggest, is determined by the shape of the marker
path. In Figure 2, both halves of the marker collision have the shape -I-S—-C—-. It
happens that such a path shape does have a suggested inference associated with it. The
suggestion is to find or introduce a ncw conczpt and two new relations relating it to the
two concepts in the input. This is shown in Figure 4, where the suggested new concepts
are depicted in italic font.

If the suggested inferences were evaluated immediately, some would be accepted,
only to have a betier suggestion turn up later. Therefore, the suggestions are stored in a
queue called the agenda, and are evaluated along with potential competing suggestions.
This is Step 4. The suggestion- that are eventually accepted are printed out by the pro-
gram, and changes are made to the network to reflect the inference. The suggestion from
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Figure 4. Inference Suggested by Marker Collision

Figure 4 is accepted, because tliere is nothing to contradict it, and no similar competing
suggestion. The actual output from the program is as follows:
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Inferring: there is a BODY-OF-WATER such that
it is the LOCATION of the FISHING and
it is the SURROUNDER of the ISLAND.
This is a DOUBLE-ELABORATION inference.

in summary, the FAUSTUS algorithm breaks down into threec main components:

e A set of rules for marker passing. These determine how far, and along which links,
markers are spread.

e A list of six important path shapes, which determine the inference classes. Each has a
suggested inference assnciated with it.

e A set of evaluation rules for deciding when to accept a suggested inference. This is

" necessary when there are multiple competing suggestions that would contradict one
2 azother.
é, ’ The number of hasic inference classes, <ix, is quite small compared to other sys-
» tems. There are no inference nvles that refer to domain concepts. That is, no rule is asso-
" ciated with a concept like ‘person’ or ‘island.” Instead, the inference classes refer to gen-
i eral representational primitives like ‘is an instance of’ and ‘participates in a relation.’

These primitive associations are depicted by the links in Figures 2 and 3.

An Annotated Example

This example shows the inferences that are generated by FAUSTUS in the .ourse
of processing text (1). FAUSTUS does not receive the text directly as input, instead it is
passed a semantic representation of each input sentence; these are shown below as capi-
talized expressions in parenthesis. The output from FAUSTUS is in typewriter font.
The output is annotated with comments, in regular font, explaining what is going on.
Chapter 5 will go over several examples like this one, showing in more detail how each
inference is made.

[1] Input: In a poor fishing village built on an island
near the coast of China,

Rep: (VILLAGE /MOD ¢~ FISHING) (MOD ¢~ POOR)
(LOCATION ¢~ A ISLAND) WHERE
(BEING~-AT (FIGURE ¢ ~ VILLAGE) (GROUND ¢ A ISLAND))
(BEING-NEAR (FIGURE ¢~ ° VILLAGE)
(GROUND ¢~ A COAST (OF €~ CHINA)))

Inferring: a MOD of the VILLAGE is probably the PREDOMINANT-OCCUPATION

because the FISHING fits it best.
This is a RELATION-CONCRETION inference.
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Inferring: the VILLAGE is a FISHING-VILLAGE.
This is a2 CONCRETION inference.

The inpui says ihat the village is modified by the concept ‘“fishing’’ in some unspecified
manner. The program determines that fishing should be interpreted as the predominant
occupation of the village. It is able to do this because of a collision between two marker
paths that begin at ‘‘village’’ and end at ‘‘job.”” One path follows the links that say vil-
iage.1 is a village, a village is a kind of polity, polities can have a predominant occupa-
tion, occupations are jebs of some kind, and fishing can be a job. The other half goes
from village.1, which has a mod relation, which is filled by fishing.1, wlich is a kind of
fishing, which can be a job. Associated with a path of this shape is the suggested infer-
ence that ‘‘mod’’ should be interpreted as ‘‘predominant-occupation.’”” Once this
assumption is made, the village can be further classified as a fishing-village. The
knowledge base contains other facts about fishing-villages, such as the fact that they are
usuaily near water. Both these inferences are called concretion inferences, because they
take an abstract representaticn (like *‘mad’’) and interpret it as a more concrete one (like
‘‘predoniinant-occupation’’).

Inferring: a MOD of the VILLAGE is probably th2 AVERAGE-~INCOME
because the POOR fits it best.
This is a RELATICON-CONCRETION inference.

Rejecting: a MOD of the VILLAGE is probably the OVERALL-QUALITY
bacause another possibility, AVERAGE-INCOME, is nore specific.

Determining how *‘poor’’ modifies *‘village’’ is difficult not only because the modifying
relation is vague, but also because ‘‘poor’’ is ambiguous between “‘low in wealth’’ and
“low in overall quality.”” The knowledge base says that people have incomes, polities
have average incomes, and objects in general can have an overall quality level. Markers
from the instance of ‘‘poor’’ in tue input are therefore propagated to the concepts for
people, polities, and things. Markers propagating from ‘‘village’’ reach polity and thing,
and thus there are marker collisions at those two concepts. Each collision suggests an
inference, but when FAUSTUS fries to evaluate the first of these two, it notices there is
another inference competing with it, in the sense that accepting one of the two means
rejecting the other. The evaluation rule in tnis case says to accept the inference associ-
ated with the relation that has the most specific constrainer, if there is one. In this case,
the constrainer of average-income is ‘‘polity,”” which is more specific than the con-
strainer of overall-quality, which is ‘‘thing.”” Thus, the average-inconie interpretation is
accepted, and the overall-quality interpretation is rejected.

Notice that the possibility of interpreting ‘‘poor’’ as referring to income rather
than average-income was never considered, because there was no person mentioned in
the input, and thus no marker collision that would suggest that interpretation.

Another possible interpretation is that ‘‘poor’’ modifies ‘‘fishing’’ rather than
“‘village.”” The whole phrase would then mean ‘a village where the fishing was not
good.” This interpretation can not be considered by FAUSTUS because the input it gets —
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the ~utput of the parser ~ has aiready specified the association between modifiers. The
parser can return a representation that is ambiguous as to how something is modified, but
it can not return a representation that is ambiguous as to what modifies what.

Inferring: the CHINA is viewed as a GEOGRAPHICAL-ENTITY.
This is a VIEW-APPLICATION inference.

Inferring: a OF of the COAST is probably the LAND-BORDER
because the CHINA fits it best.
This is a RELATION-CONCRETION inference.

Hare we see a view application inference. The knowledge base defines China as a coun-
try, which is a political entity. However, political entities can not have coasts; only geo-
graphical entities can. Part of the knowledge base is a general mapping, called a view,
stating that political entities can be viewed as the geographical location they have jurisd-
iction over. So FAUSTUS infers that in this situation, China is being viewed as a geo-
graphical entity. After that is done, the ambiguous modifier ‘‘of”’ can be resolved: coasts
have two components, a land-border and a water-border; China is known to be a land-
mass, and thus can only fill one of those roles. What it means to view one concept as
another is covered in Chapter 3, while view application inferences are discussed in
Chapter 4.
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Inferring: there is a BODY-OF-WATER such that
it is the LOCATION of the FISHING and
it is the SURROUNDER of the ISLAND.
This is a DOUBLE-ELABORATION inference.

Inferring: there is a BODY-OF-WATER such that
it is the LOCATION of the FISHING and
it is the WATER-~-BORDER of the COAST.
This is a DOUBLE-ELABORATION inferance.

Here we see the first inferences that create something new, rather than just further speci-
fying some ambiguous input. The first of these is the inference discussed in the previous
section and diagrammed in Figure 4. Although no body of water was exglicitly men-
tioned in the text, concepts that impiicitly refer to a body of water were mentioned. In
particuiar, there are three marker paths, starting at the fishing, the island, and the coast,
that all collide at the concept body-of-water. Each of these is of the -I—S-+C— path
shape shown in Figure 4. The three paths considered in pairs result in three collisions,
and each collision suggests an inference. These are called double-elaboration infer-
ences because they elaborate on two concepts at the same time by relating them to a
third. Two of the suggested inferences are accepted, and lead to the results printed
above. The third suggestion vsas that the body-of-water is the surrounder of the island
and the the water-border of the coast. This suggestion is now redundant because both of
its con.jonents have already been adopted. Thus, FAUSTUS ignores it. Chapter 4 has a
section covering elaboraticn inferences.
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[2) Input: & young boy named Chang Lee lived with his widowed mother.

Rep: (INHABITING (EXPERIENCER ¢« A BOY (MOD ¢ YOUNG-AGE)
{NAMED ¢ CHANG))

(WITH « A WIDOW MOTHER (OF &« "~ BOY))

(LOCATION « ° VILLAGE))

Inferring: the EXPERIENCER of the INHABITING must be the INHARITER
This is a RELATION-CLASSIFICATION inference.

This is an exaniple of a non-marker-passing inference. The input describes an inhabiting
state with the experiencer being the boy. The definition of inhabiting in the knowledge
base says that it 1s a kind of ‘‘being-at’’ state, with an inhabiter that plays the role of the
experiencer of the state and the figure of the being-at. In other words, by definition any
experiencer of an inhabiting must be an inhabiter. FAUSTUS recognizes this fact and
prints the message. It is a non-marker-passing inference because it was detected
automatically, by virtue of the definition of inhabiting, rather than by a search procedure
involving markers.

Inferring: a WITH of the INHABITING ls probably the CO-INHARITER
because the MOTHER fits it best.
This is a RELATION~-CONCRETION inference.

Inferring: a OF of the MOTHER is piobably the OFFSPRING
because the BOY fits it best.
This is a RELATION-CONCRETION inforence.

Inferring: the BCY must be a SON, because it is a OFFSPRING
This is a RELATION-CONSLRAINT inference.

Inferring: the INHABITING is a FAMILY-LIVING.
This is a COMCRETION inference.

Here there are two more cases of resolving ambiguous modifiers via concretion infer-
ences. A ‘‘with’’ can mark an accompanier, an instrument, or a manner, but in this case
there is a very specific type of accompanier, the co-inhabiter, that is compatible with
‘‘with.”” The mechanism for discovering this is a collision at ‘‘inhabiting’’ between a
marker path originating at the instance of inhabiting, and the path originating at the
instance of with. The path goes through the concept accompanier, and the suggested
inference is that the “‘with’’ is actually an instance of accompanier. Once it is esta-
blished that the inhabiting situation holds with the mother and son as participants, the. it
can be inferred that the inhabiting is an instance of family-living, a more specific situa-
tion known in the knowledge base.

{3) Input: Every day, little Chang set off with his net,

Rep: (TRAVELING (ACTOR ¢« CHANG (MOD « SMALL-SIZE))
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(WITH « A NET (OF « ° BOY)))

+uferring: the ACTOR of the TRAVELING must be the TRAVELER
This is a RELATION~CLASSIFICATION inference.

Inferring: a WITH of the TRAVELING is probably the ACCOMPANIER
because the NET fits it best.
This is & RELATION-CONCRETION inference.

In this case, there is no specific information on how ‘‘with a net’’ could medify an
instance of traveling, so the default, the ‘*accompanier case,’’ is selected. Note that the
phrase ‘‘every day’’ is ignored completely in the semantic translaton. FAUSTUS does not
have a sophisticated model of time, and does not deal well with the notion of habitual
action.

o’ IHWWﬁﬂ*ﬂllﬂ:mﬁmszﬂwuﬂlllan’GWmmrtzc-nmmmT

{(4) Input: hoping to catch a few fish frcm the sea,

Pep: (WANTING (EXPERIENCER & ° BOY)
(WANTED 4~ CATCHING (ACTOR ¢« ~ BOY)
(PATIENT & SOME FISH)
(SOURCE & THEE SEA)))

Inferring: the EXPERIENCER of the WANTING must be the WANTER
This is a RELATION-CLASSIFICATION inference.

Inferring: the CATCHING must be a GOAL-SITUATION, because it is a WANTED
This is a RELATION-CONSTRAINT infarence.

Here we see both types of non-marker-passing inferences. First, the experiencer of a
wanting state has a more specific name, wanter, which is renorted by FAUSTUS. In addi-
ton, the catching is cxplicitly described in the input as being the wanted of a wanting.
Things that fill the wanted slot are constrained to be goal-situations, that is, situaticas that
have beer: considered but have not actually come to pass. FAUSTUS asserts that the catch-
ing must belong to this category.

Inferring: the CATCHING is a CATCHING-FISH.
This is a CONCRETION inference.

Inferring: the SEA refers to the BODY-OF-WATER.
This is a REFERENCE inference.

Inferring: the NET is a INSTRUMENT of the CATCHING-FISH.
This is a SINGLE-ELABORATION inference.

Inferring: the NET must be a FISHING-NET,

because it is a CATCHING-FISHSINSTRUMENT
This is a RELATION-CONSTRAINT inference.
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The first thing done here is to make the concretion inference that a catching action where
the patient is some fish is actually an instance of catching-fish. This is detected because
of a mavker collision between one marker thay starts at fish.4 and goes through fish to
catching-fish and ther up to catching, and another marker that starts at fish.4, goes to
catching.4, and up to catchirg. The action catching-fish is more specific than catching,
and includes other information besides the fact that fish are caught. For instance, it is
known that fish are caught either in a net or on a line. Another connection is found by a
marker collision at the concept trapping-device. One marker goes from net.3 up the
hierarchy to net and to trapping-device. The other marker starts at catching.4, goes to
catching, then to the slot catching$instzument (the instrvment of a catching action) and
on to that slot’s constrainer, trapping-device. Note that the two markers did not originate
at the same time; such an inference serves to tie sentences together. After it is asserted
that the net is the instrument of the catching, a non-marker-passing inference notices that
the net can only satisfy the constraint on instruments of catching-fish if it is interpreted as
a fishing net.

{8) Input: which they could sell
Rep: (SELLING GOAL (ACTOR & THEY) (PATIENT ¢ WHICH))

Inferring: the ANTOR of the SELLING must be the SELLER
This is a RELATION-CLASS1FICATION inference.

Inferring: the PATIENT of the SELLING must be the THING-SOLD
This is a RELATION-CLASSIFICATION inference.

Inferring: ‘THEY’ refers to the I'AMILY.
This is a REFERENCE inference.

Rejecting: ‘THEY’ refers to the FISH.
because the FISH i3 not a SENTIENT-AGENT.

FAUSTUS represents the word ‘‘they’’ as a group of unspecified nature. So markers are
passed from the the representation for they.S up the hierarchy to the concept group.
Other marker paths that collide at group originate at the representation for the fish stated
in input {4], and the family inferred in input (2). These later two paths collide with the
first one at group, each suggesting a possible referent for ‘‘they.”’ The reference is
resolved because fish are not considered capable of performing a selling action. Note
that if the program had not previously inferred the existence of the family (which was
never mentioned explicitly), this inference could not be made.

Inferring: ‘WHICH’ refers to the FISH.
This is a REFERENCE inference.

Rejecting: ‘WHICH’ refers to the SEA.
because it could not be a THING-SCLD.

.17

AT a n" s "¢ p WD LA RN R E. R NN § &

.
.
.
-
L)
¥

L 000_TRLIE SR S B Y IR

W

)

| -

e J

Whew A0 YN s

N AL

e

[ PTRL J

Fagre

v NP EY K A I T




Rejecting:
because

Rejecting:
because

Rejecting:
because

Rejecting:
because

Rejecting:

‘WHICH’ refers to
it could not be a

‘WHICH’ refers to
it could not be a

‘WHICH'’ refers to
it could not be a

‘WHICH' refers to
it could not be a

‘WHICH’ refers to

the BOY.
THING~SOLD.

Chang.
THING=SOLD.

the MOTHER.
THING~SOLD.

the FAMILY.
THING~SOLD.

the VILLAGE.

because FISH is more recent.
V Rejecting:

because

‘WHICH’ refers to the ISLAND.
FISH is more recent.

‘WHICH’
FISH is

Rejecting:
1 because

refers to the COAST.
more recent.

*WHICH'
FISH is

Rejecting:
] because

refers to the CHINA
more recent.

Rejecting: ‘WHICH'
because FISH is

refers to the NET.
more recent.

The reference inference for the word ‘‘which’’ has mauy more possible referents. Ten
different collisions each suggest a referent, and the evaluation algorithm must choose
between them. Several possibilities can be rules out because they can’t play the role of
thing-sold, a role that the word *‘which’’ is explicitly filling. Of the remaining possibil-
ity, exactly one, the fish, was more recently mentioned than all the others. Thus, it is
selected as the referent, and the others are rsjected.

Inferring: there is a HAVING such that
it is a RESULT of the CATCHING and
it is a PRECONDITION o%f the SELLING
This is a DOUBLE-ELABORATION inference.

T N T

Here we have th. introduction via a double elaboration inference of a new ‘‘having”’
state, wherein the family has possession of the fish. This state was inferred because it
mediates between two other acticns: it is the result of catching the fish, and is a precondi-
tion for selling them.

T T

o st s

[6] Input: and have a little money
Rep: (HAVING GOAL (EXPERIENCER &« - GROUP) (PATIENT ¢« A piONEY))
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Inferring: the EXPERIENCER of the HAVING must be the HAVER
This is a RELATION~CLASSIFICATION inference.

Inferring: the PATIENT of the HAVING muast be the HAD
This is a RELATION=-CLASSIFICATION inference.

Rejecting: the HAVING mentioned in [6] is a PRECONDITION of the SELLING.
becaus2 of a mis-match.

Inferring: the HAVING mentioned in [6] is a RESULT of the SELLING.
This is a SINGLE-ELABORATION inference.

Inferring: the MONEY is the PRICE of the SELLING.
This is a SINGLE-ELABORATION inference.

Here another instance of ‘‘having’’ is explicitly mentioned. FAUSTUS finds two single-
elaboration connections between having and selling, but since the selling action above
already has its precondition met, this one can only be the result.

{7] Input: to buy br-ad.
Rep: (BUYING GOAL (ACTOR ¢« ~ GROUEB) (PATIENT & BREAD))

Inferring: the ACTOR of the BUYING must ke the BUYER
This is a RELATION-CLASSIFICATION inference.

Inferring: the PATIENT of the BUYING must be the THING-BOUGHT
This is a RELATION-CLASSIFICATION inference.

Inferring: the BUYING is a PRECONDITION of the HAVING mentioned in [6&].
This is 2 SINGLE-ELABORATION inference.

Inferring: the MONEY is the PRICE of the BUYING.
This is a SINGLE-ELABORATION inference.

Note that single-elaboration paths have found that the money can fill the price role in
both the buying and selling. A more realistic interpretation might be that the money goes
into the femily cache, and is used a little at a time to buy bread, but FAUSTUS assumes

that exactly the same money that was received from selling the fish is then used to buy
bread.

The rest of this thesis is laid out as follows. Previous research is covered in
Chapter 2. Chapter 3 presents the knowledge representation language KODIAK, while the
inferencing algorithm is described in Chapter 4, and the way the algorithm is used to
duplicate inferences made by other systems is covered in Cnapter 5. Finally, details
about the implementation of the program are included in Chapter &, and Chapter 7 gives
some conclusions.
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Chapter 2:
Previous Research

Chapter 1 described the topic of this thesis: using common sense knowledge to
make inferences from texts. This chapter will review some of the relevant past research
on this tcpic. This will include research into both inferencing techniques and knowledge
representation techniques, even when the two have been studied independently. Since I
am defining the field so broadly and there has been much previous research done, I will
not attempt to cover every relevant research effort. Rather, I will concentrate in detail on
a few representative approaches.

SN R e RO T T s TN P TS

This chapter will present related work ar.d comment on some of the strengths and
weaknesses of the work, but will not present solutions to the problems uncovered. That
will come in subsequent chapters, with chapter 3 covering the knowledge representation
formalism ir detail and chapter 4 covering the inferencing algorithm. Chapter 5 shows
how examples that were processed by other systems (including some that are presented in
this chapter) can be handled by the FAUSTUS system.

Before presenting the previous research, I will attempt to classify the work I
cover, as well as the work I ignore. First, I make a division between inferencing and
representation techniques, while acknowledging that the two are often intertwined.

There has been a large body of work in many fields on the subject of inferencing,
but I will concentrate on work related to the three criteria for common sense inferences:
plausioility, ease, and relevance. The first two criteria separate my work from most
expert system research; there they are dealing primarily with inferences that are difficult
to make, and require long chains of reasoning. There are millenia of work in mathemati-
cal logic, but most of that fails to meet the relevance as well as the ease criteria; in
almost all logics, proofs are acceptable regardless of their length, and it is always permis-
sible to conjoin or disjoin any two terms to infer a third. There are some exceptions to
this approach within logic, notably Anderson and Belnap's [S] work on relevance logic.

>y

It tums out that most previous work relating to common sense inferencing in Al
has been done under the guise of natural language processing. This does not imply that
common sense inferences are language-specific. For example, when we read about a
character going into a store, we may infer that the character wants to buy something.
This inference stems from knowledge about stores and buying, not from any linguistic
knowledge about the word buying. In fact, the knowledge that people buy things in
stores can be used in many places. It can be used to understand motivations for going to
the store. We can also turn the fact around; if we know someone wants a commodity, we
can reason he may go to a store to ger it. This reasoning can go on in reading a story, in
viewing a silent movie with no words at all, in interpreting someone’s actions in the real
world, or in plarining our own course of action.
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I will call the type of knowledge that enables these inferences common sense
knowledge. Knowledge of this type has been incorporated into natural language under-
standing systems, planning programs, some expert systems, and language generation pro-
grams. All will be examined in turn.

Previous Research in Common Sense Inferencing

Thie research covered in this section attempts to find plausible inferences from
single sentences (or in some cases from rairs of sentences), but not from connected
discourse. As we shall see, there are many approaches to this problem.

Procedural Inference Molecules

Rieger [95] recognized that understanding a situation can involve making many
different types of inferences. Furthermore, when presented with a situation, it is not
immediately clear what inferences wi'l be important. In Rieger’s model, the under-
stander takes an input and represents it in conceptual space. From there the understander
starts generating inferences, each inference spreading out from the input or from the pre-
vious inference in a ‘‘multi-dimensional inference space.”” When two contradictory
inferences are generated, the system has to stop and resolve the contradiction. The pro-
cess is seen by Rieger as an exercise in bi-directional search, using well-understood algo-
ri;hms (see, for example, Nilsson’s [86] ).

Rieger makes a point of classifying the types of inferences that can be generated.
As an example, consider the situation where person P obtains object X somehow. Infer-
ences about this situation would be made by posing questions from the sixteen inference
classes shown in Figure 1.

For every concept in the knowledge base, sixteen inference molecules must be
defined, one for each inference class. Each molecule is a LISP procedure, written in the
form of a discrimination net of tests. The overall control structure is to observe the input,
and for eact. concept mentioned in the input, call the sixteen inference procedures. Each
procedure increases or decreases activation of a particular inference, and when the
activation reaches a threshold, the system does a ‘‘careful’’ test and assert.

Figure 2 below is part of the normative inference molecule for the concept own,
adapted slightly from [95]. This procedure is intended to figure out just how likely it is
that a person P owns an object x. There is a certain amount of appeal to this approach.
If we are asked Does John own a hammer? and if we know John is a carpenter, then we
] can in fact be moderately confident in answering yes. However, there are also quite a
few problems with this approach.

There are several problems associated with the use of a discrimination net. The
discnmination net approach often poses counter-intuitive questions. When asked Does
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Normative - Is it normal that P has a X?

Specification — From where would P obtain X?

Causative — Why does P obtain X?

Resultative - What does P obtaining X lead to?

Motivational — What results of P obtaining X were intended by P?
Enabling - What would have to be true for P to obtain X?

Missing Enablement — Why would P fail to obtain X?

Enablement Prediction — What could P be able to do now that he has X?
Action Prediction — What plans might P invoke to obtain X?

Function — Infer P will use X for its normal purpose, if it has one.
Intervention — How could C keep P from obtaining X?

Knowledge Propagation - If X knows P obtains X, what else will X know?
State Duration — How long is P likely to keep his X?

Feature — What does P obtaining X tell us about P or X?

Situation - In a particular circumstance, is it raore likely for P to obtain X?
Utterance Intent — Why would the author tell me that P obtains X?

Figure 1. Rieger’s Sixteen Inference Classes

is P a member »f a pure communal society, or an infant?

if so, very unlikely that P owns X otherwise, is X living?
if so, is X a person?
is P a slave owner, and could X be a slave?
if so, likelihood is low but non-zero
otherwise likelihood is zero
otherwise, is X an animal or plant?
if 8o, is X domestic in P’s culture?
if so, does P have a fear of X's, or an allergy to X's?
if so likelihood is low
otherwise, likelihood is moderate
otherwise, does X have a normal function?
if so, does P do actions like this function?
if so likelihood is moderately high

Figure 2: Normative Inference Molecule for (owns p x)

John own a hammer? it does not seem that we immediately ask ourselves if Jchn lives in
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a communal society. The net is organized in a manner that assumes we can answer the
top-level questions before we get to the more specific questions near the leaves of the
tree. In some cases, we may have specific information that is relevant, but which never
gets used because we caanot answer a question that would lead to the node where the
question is asked. In other words, discrimination nets are by definition oriented towards
top-down processing, and therefore they sometimes ignore useful bottom-up information.
Other problems with discrimination nets are discussed by Barsalou and Bower in [11],
although most of their comments do not apply to the kind of discrimination net Rieger is
using.

Another major problem is that information is not easily shared in this approach.
While it is certainly true that if P is allergic to X he is less likely to own X, this is not
only a fact about owning. P would also be less likely to be near X, tn be holding X, or to
like X if he were allergic to it. In Rieger’s approach we would have to rewrite the same
information four times under owning, holding, being near, and liking. In fact, we might
have to rewrite it up to sixty-four times, since there are sixteen inference raolecules for
each concept, and often the same information must be re-expressed under different infer-
ence classes. For example, if asked does John own six different hammers? the normative
inference molecule for own could infer that the probability is very low, unless John is a
carpenter. However, we would also like to be able to infer, given that John bought six
ham:ners, that he probably is a carpenter. This would be a causative inference. Thus, the
single fact that carpenters own hammers must be represented in several different places.
Even definitions, like the fact that buying something causes the buyer to own it, need to
be represented multiple times (in this case, as a causative and resultative inference).

Another criticism is that the inference classes are ad-hoc, and serve no purpose
other than to remind the knowledge engineer what types of things to consider. One prob-
lem is that each inference class hides a varying number of possible inferences. Some
classes give rise to one type of inference, but others can be used in multiple ways. Take
the ‘feature’ class, for instance. John bought a Mercedes implies something different
about John than John bought a Pinto. In these examples, a feature of the object deter-
mines something about the agent, but the opposite is also possible. In the art coilector
bought a painting we autribute greater value to the painting than in the child bought a
painting.

In addition, inference molecules are unwieldy to modify. Because the inference
molecules are structured like programs rather than like data, adding a new piece of
knowledge means editing an existing program, with all the possibilities of introducing
bugs aue to unforeseen interactions among components.

The final criticism of this approach is that it biases the researcher towards
explaining individual sentences. The whole mechanism is geared towards explaining,
say, John bought a hammer, rather than explaining a complex passage where buying is
mentioned in several places. As researchers attempted to handle multi-sentential pas-
sages, several new problems arose. One of th. most vexing was the reference resolution
problem, to be described in the next section.

A




Rieger is a prime example of drawing distinctions that are not drawn in the
FAUSTUS model. Other authors draw different sets of distinctions. For example, it is
common to treat pronominal reference resolution or word sense disambiguation as a
separate process. In FAUSTUS an atteinpt has been made to describe inference processes
at a higher level: asserting that any rwo concepts are co-referential, asserting that a con-
cept should be classified under a more specific category, and so on. These general
infecencing processes can then be applied to a variety of situations, as long as the
knowledge base provides the proper support. The upshot of this is that this chapter will
be reporting on research as it was conceived by previous researchers, not necessarily
along the lines that are advocated by FAUSTUS.

Reference Resolution Inferences

Reference resolution is the process of deciding what a pronoun or an ambiguous
word or phrase in a text refers to. For example, in the phrase he saw him the pronouns he
and him are ambiguous; they could be referring to any male. The syntax tells us they
refer to different males (otherwise himself would have been used), but nothing more.
The references can be resolved by consulting the context set up by the interpretation of
previous sentences to find likely candidates. Almost any information about the likely
candidates could be crucial in deciding the referent, reference resolution shares much
with inferencing in general.

Cuarniak studies reference resolution extensively in his thesis, [23]. He tries to
te in reference resolution with other kinds of inference, claiming that the information
which is used to ‘‘fill in the blanks’’ can be directiy used to help with reference. By this
he means that there is a certain amount of inference that must be done to understand each
sentence and relate it to previous sentences, and that these inferences are also useful for
reference resolution.

Chamiak goes on to categorize the known types of information that can be used
to resolve reference problems. First, there is descriptive information. The pronoun he
must refer to a male, while she must refer to a female, and the red ball, clearly enough,
must refer to a ball that is red. Charniak points out that other phrases, like Jack’s house
are less precise. Jack’s house could be the house he lives in, or the one he owns and rents
to someone else.

The concept of recency also plays a role in resolving references. Concepts that
have been mentioncd or alluded to recently can be referred to with elliptical construc-
tons, while concepts that are not in context cannot be. Chamiak estimates that perhaps
90% of pronouns could be resolved correctly by picking the most recent referent with
matching gender and nurniber, and then backing up if this choice leads to a contradiction.
However, a quick computation, using Chamniak’s own thesis as the source material, gives
a figure closer to 50% for that heurisdc.

In addition, selectional restrictions can come into play. In She landed the 747
safely, the pronoun she might refer to Captain Smith or co-pilot Jones, but it could not
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no—mally refer to a female dog that happened to be on board, because piloting a 747 can
only be performed by weil-trained humans. While it is easy to specify restrictions that
are normally appropriate, it is much rarer to find a restriction that is universally applica-
ble. There are three reasons for this. First, in fiction, and especially fantasy, it is reason-
able for animals to act like humans, and for other restrictions to be violated. By
definition, fiction must differ from reality, and it is very difficult to say a priori in exactly
what way it can be different, and what things cannot change. Second, we need a
mechanism tc express hypothetical or counterfactual statements. The passage ‘‘It is false
that a dog can pilot a 747"’ is a perfectly reasonable and understandable sentence, yet it
seems to violate a selectional restriction. Third, expressions that seem to violate selec-
tional restrictions when interpreted literally often have a valid metaphorical interpreta-
tion. Wilkes [143] recognizes that selectional restrictions cannot be absolute, and for-
mulates a system of ‘preferences’ rather than ‘restrictions’.

Finally, according to Charniak, there may be other semantic considerations that
determine reference resolution. Charniak presents the following example:

(1) Today was Jack’s birthday. Penny and Janet went to the store. They were going to
get presents. Janet decided to get a top. ‘‘Don’t do that’’ said Penny. ‘‘Jack has a
top. He will make you take it back.”

Here the problem is to decide what the pronoun ir refers to in the last line.
Recency would suggest the top that Jack owns, while it is only detailed knowledge about
owning, tops, wanting, and gift giving that can lead to the determination that ir refers to
the top that Janet is considering buying. The most important fact is that unwanted gifts
are sometimes returned to the store at which they were bought. Charniak’s algorithm
calls for the program to invoke this fact and expect the possibility of the nev: top being
returned to the store. The phrase take it back matches this possibility, with the result of
the match being both that ir is identified as the new top, and also that the destination is
the store. Thus, the same process that resolves pronoun references also adds additional
information to the construal of the story. As a conclusion, Charniak suggests that the
best referent ‘‘might be the referent which allows the most links to what has already hap-
pened.”’ This sentiment will be echoed by many other researchers; the problem is in
determining exactly what the links are. (Charniak ends up rejecting this approach,
mainly because he feels it is too computationally expensive. However, he never imple-
mented the final version of his thesis model, so the computational complexity is
unknown.)

Herb Clark [30] also discusses the problem of reference resolution. He presents
example sentence pairs like the following, and discusses the reference relation between
the first and second sentence in each pair.

(2a) I'metaman yesterday. The man told me a story.

(2b) I'meta man yesterday. He toid me 2 story.

(2c) I'metaman yesterday. The bastard stole all my money.
(2d) I met two people yesterday. The woman told me a story.
(2e) I walked into the room. The ceiling was high.
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(2f) I walked into the room. The windows looked out to the bay.
(2g) I walked into the room. The chandelier sparkled brightly.
(2h) John was murdered vesterday. The murderer got away.

(2i) John died yesterday. The murcerer got away.

(2j) John fell. What he wanted to do was scare Mary.

(2k) John fell. What he did was trip on a rock.

(21) John fell. What he did was break his arm.

(2m) Johnis a Republican. Mary is slightly daft too.

Sentences (2a-d) are characterized as ‘‘direct reference’’ involving identity, pro-
nominalization, epithets and set membership, respectively. For sxample, in (2b), the pro-
noun ke in the second sentence refers back to the man mentioned in the first sentence.
Some authors will speak of the word he referring to the phrase a man, but since we are
more interested in the semantics of the referring relationship than in the syntax, we will
adopt the more common terminology where phrases refer to objects, and where pairs of
phrases can be co-referential. Sentences (2¢-g) are examples of ‘‘indirect reference by
association’’ with necessary, probable, and inducible parts, while (2h,i) are ‘‘indirect
reference by characterization’’ involving necessary and optional roles. Finally, (2j)
involves a reason, (2k) a cause, (21} a consequence and (2m) a concurrence.

While these examples demonstrate the pervasiveness of the reference problem,
the classification system does not shed any light on how to resolve a particular reference.
Clark starts to address this question by positing what he calls the given-new contract [29]
between the author and reader of a text, or the speaker and listener of an utterance. The
idea of the given-new contract is that each sentence conveys some old information and
some new. The speaker implicitly agrees to construct each sentence so that the listener
can compute from memory the unique antecedent that was intended for the given infor-
mation, and so that the new information is genuinely new.

Clark then suggests the following rule for resolving references: ‘‘Build the shor-
test possible bridge that is consistent with the Given-New Contract.’’ In other words, the
listener should make the inference that requires the least assumptions to connect the
given and new information in a way that is consistent with the situation. For instance,
another example of a concurrence relation shows up in the sentence pair: Alex went to a
party last night. He's going to get drunk again tonight. The concurrence bridge is the
inference that he got drunk at the party last night. However, Clark claims, we could have
made the bridging inference that *‘every time he goes to a party he meets women, and all
women speak in high voices, and high voices always remind him of his mother, and
thinking about his mother always makes him angry, and whenever he gets angry, he gets
drunk.”” Clearly this chain was not intended by the speake:, and thus the listener is not
authorized to make this inference, in Clark’s terminology. The listener is authorized to
make only the simplest possible bridging inference.

Clark’s theory is relatively comgpicte, in that it addresses the three crucial points
of a theory of inference. First, he has a classification of the possible types of inferences.
Second, he has a criterion for generating inferences: make inferences that serve to con-
nect given and new information. Finally, he has a metric for deciding among competing,
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contradictory inferences: the bridge with the smallest number of links is preferred.

This is not completely satisfactory, though. There is no way to decide which of
{ two corilpeting bridges of the same number of links is to be preferred, and there is no
allowance for, say, a bridge of three straightforward links to be preferred over one with
two highly unusual links. In other words, it seems desirable to have a metric for link
strength, and Clark offers no such metric. Even if one could be develnped for individual
links, it is not clear how these measures should be combined; the strength of a chain may
not be the purely additive sum of the strengths of its links. This is illustrated by trying to
; interpret flicked the light switch in the following text:

(3a) John got a beok.
(3b) He saton a couch.
(3c) He flicked the light switch.

| One interp--tation is that he flicked the switch on, which makes the room brighter,
thereby illuminating the book, which enables John to attend to the writing in thie book,
which enables him to understand the contents. This is a bridge of length four which
makes use of pre-existing knowledge of switches, lights, reading, and books. Another
interpretation is that he flicked the switch off, which makes the room dark, which enables
him to sleep on the couch. This is a bridge of length two, which uses pre-existing
knowledge of switches, lights, sleeping, and couches. However, even though the second
path s shorter, it seems less appealing.

Another problem with this approach is that it assumes given and new information
can be distinguished by syntax and intonation alone. In some cases this will work; in
(4a) the given information is that someone left and the new information Mel performed
that action. In (4b) the opposite holds. However (4c) is ambiguous between the two
interpretations. When spoken, (4¢) might be disambiguated by intonation, but it could
also be spoken with neutral intonation.

(4a) It was Mel who left.
(4b) What Mel did was to leave.
{(4c) Mel left.

Lockman and Klapphoiz [71] consider a broad range of inference types, classify-
ing them under the heading contextual reference. They include pronominal reference,
identity reference, and in general most Hf the categories considered by Clark. However,
they go beyond that, and include examples like (5a) below, where the walking in the
second sentence is co-referential with the going to school in the first sentence.

(5a) Mary went to school early today. She walked the entire three miles.
(5b) Mary went to school early today. She walked up the stairs.
(5¢) Mary went to school early today. She arrived at 7:00.

A distinction is made between references that hold between complete sentences,
and those that hold between parts of sentences. There is also a reference from she to
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Mary and from the entire three miles to the distance-traveled of the event in the first
sentence, even though the distance is not explicitly mentioned in the first sentence.
Lockman and Klappholz are especially inerested in this type of reference, and they are
not concerned with any inference that can be made solely on the basis of syntactic rules.
There are two main types of connections between sentences in their theory: expansion,
where a sentence provides more infrrmation about the preceding one, as in (5a), and tem-
poral continuation, where the second sentence is an event that occurs after the first, as in
(5b). Expansion comes in two types, expansion of the entire seatence, as in (5a), and
expansion of a component of the sentence, as in (5c), where the second sentence refers to
the arriving component of the going to school, and not to the entire event.

Lockman and Klappholz provide some notion of control structure. For each sen-
tence, they prefer to find a connection to the preceding sentence, but aliow the sentence
to refer back to preceding sentences. They provide an ordering for searching backwards
for an antecedent if the preceding sentences does not provide a satisfactory connection.
Unfortunately, they have little to say about how one can decide if an antecedent is satis-
factory. Similarly, they provide nc way to tell the difference between an expansion and a
continuation. Their theory says (5a) and (5b) should be classified differently, but they do
not say how to make that classification, and there do not seem to be any syntactic clues to
distinguish them.

As we go from Chamiak in 1972, to Clark in 1975, to Lockman and Klappholz in
1980, there is an expansion of the term reference. At first it applies primarily to pro-
nouns, then to arbitrary noun phrases, and finally to verb phrases and complete sentences.
The term is also expanded in that originally the antecedent had to appear explicitly in the
text, while the later authors allow implicit antecedents. It would be possible to continue
in the vein of Lockman and Klappholz, and try to frame all semantic relations between
components as references, but other authors have resisted that trend, and have come up
with different terminology for semantic relations, as we shall see in the following sec-
tions.

Concept Coherence

Alterman (3] presents a story understanding program, NEXUS, that finds cornec-
tions between events and states mentioned in the text. He defines seven concept coher-
ence relations that form the connections. The relations are subclass, subsequence, coor-
dinate, antecedent, preccdent, consequent, and sequel. Rather than having an ency-
clopedic knowledge base which attempts to completely define concepts, Alterman calls
his knowledge base a dictionary. In this dictionary he defines concepts in terms of the
seven coherence relations and in terms of default values for case arguments, but does not
try to add any other type of information about the conceprs. The idea is that this set of
relations can be used to make an analysis of the text at an interesting level; other
processes besides NEXUS could be used to make a more complete analysis of the text, and
to find other classes of inferences.

The control structure is to take each input state or event in turn, and do breadth-
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first search through the dictionary of concepts, looking for a connection to an existing
event or state. When a connection is found, it is checked for consistency, and as soon as
a consistent connection is found, the search is stopped and an inference is made. There
are rules that cut down the size of the search space by pruning paths that cannot lead to a
valid inference, and there is a mechanism that does pronominal reference resolution as a
side-effect of the matching process.

In other words, the theory of inference embodied in NEXUS is that events and
states are connected by the seven coherence relations, and processing a story means
finding the shortest path along these relations that will connect each line in the story to
some other line in the story. Each line is expecied to have exactly one connection to the
rest of the story, no more, no less. Although implerented as a bi-directional breadth-first
search procedure, NEXUS could also be seen as a spreading activation or marker-passing
approach, which looks for the shortest path between nodes.

Alterman resolves the question of deciding if an event is an expansion of a previ-
ously mentioned eveni with & rule that states that before doirg the search for a connec-
tion, each new event is first checked to see if it could be a expansion of the previous
event. If there is no explicit contradiction, it is assumed that the new event is in fact an
expansion.

Hobbs (55, 56} and Mann {75] independently proposed classifications of the types
of coherence relations thzi can hold between sentences. For instance, one sentence can
provide an example for the previous sentence, or it can be an elaboration or a generaliza-
tion. Although both researchers have interesting classification schemes, neiiher of them
is very useful for generating inferences. The systems seem better suited to explaining the
options that an author has in constructing a text to make a point than to the task of under-
standing the connection between two sentences. For example, one of Hobbs' classes is
parallel structiire. An example of a sentence with this struciure is ser stack A empty and
set link variable P to T. It is important for the author to know that there is a parallel sen-
tence structure, which uses the word and, and which can be used to join two similar
ideas. However, for the reader, recognizing the parallel structure does not add any
interesting inferences that he could not have made if the two clauses were presented
independently.

Case Relation Based Inferencing

Case relations on verbs have had great importance in natural language systems,
frame-based representation languages, and in the development of linguistics. This sec-
tion covers some of the history of systems that have used czses, and discusses a few of
the theoretical problems,

An early example of a natural language processing system that used case frames
extensively is presented by Hendrix in [52]. It is representative of a simplistic approach
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to handling case relations, yet it treated them seriously, and derived much of its power
from them. The system consists of a parser, a simple generator, a modeling system, and
a lexicon. As an example, the iexical entry for buy indicates that it is a verb, that it refers
to the exchange event (which they call a canonical verb), and that it has the following
case frame:

BUY:
(OK (HUMAN ORGANIZATION) RUYER)
(OK (PHYSOBJ) THINGBT)
(FROM (HUMAN ORGANIZATION) SELLER)
(FOR (MONEY) THINGGIVEN)
(AT (PLACE) LOC)
(IN (PLACE) LOC)
(OK (DAYPART) TIME)
(IN (DAYPART) TIME)

Here the first element of each list is the preposition expected i0 mark a noun
phrase in the input (or ok for an unmarked noun phrase), the third element is the deep
case that that noun phrase should map into, and the second element is a disjunction of
possible types; the noun pnrase must be one of those types to be a valid filler.

Anc.. - approach to detecting inferences from single sentences using case rela-
tions was work done by Simmons [119-121]. While this work covered a number of
points, the part relating to case relations was similar enough to Hendrix’s that we will not
discuss it further.

There wer= many problems with Hendrix's system. The only way it could distin-
guish the subject and dative cases, both marked by ok was by the ordering of entries in
the case frame: BUYER comes before THINGBT (the thing bought). Thus, the system
could not hanadle passives, where the order is reversed. There was a great deal of redun-
dancy; the fact that either humans or organizations can be actors in certain types of
actions is represented twice in this case f~ame alone, and will be mentioned many other
times in cther verbs. Also, the case relations specifyiag that an event can occur at a par-
ticular time and place need to be repeated many times over. One of the motivating ideas
behind case systems is to capture generalizations, but Hendrix’s approach misses impor-
tant generalizations. This happers mainly because the level of description is too close to
the surface verbs.

. "
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Chamialc’s Case-Slot Identity Theory [25] addresses most of these problems. In
this theory, there is no need to translate between surface and deep cases (the deep cases
are called slots as is the custom in many frame-based representation languages) because
surface cases and slots are or.c and the same. Redundancy is eliminated because slots are
inherited. For example, there is a co.icept called transitive-ac. which has an agent and a
patient slot. Once transitive-act is defined, it is simpler to define more specific actions.
For example:

[frame: transitive-act
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slots: agent patient ...}

(frame: reading
isa: transitive-~act
slots: language ...]

Here reading inherits the agent and patient slots from transitive-act and
adds a new slot, language. Charniak used this example for expository purposes; a more
complete specification might have transitive-act declare only the patient slot, and
inherit the agert slot from act, which in turn inkerits the location and time slot
from event, or some such. Similarly, as Chamiak points out, the language slot should
be inherited from the linguistcic~-communication frame.

T

The question remains: what is the status of the language slot? ‘“harniak claims
that since it is a slot, and cases and slots are identical, it must be » "ui-fledged case, just
like agent or patient. However, Charniak does not explain hov/ the language case is
associated with the word in, as in Fredrica read a book in French. he could make this
association with an explicit declarafion, as in Hendrix’ PRULES, but this would fail to
capture the mconing behind the word in. Another solution would be to have the
linguistic-communication frame inherit from something like the transfer-~along-
conduit frame (see [94] ) which has a medium-of-transfer slor which is mapped to
the word in. In general, Charniak represented slots well, but faiizd to prmvide a natural
association between surface forms and underlying meaning. He ziso failed to address the
question posed in the next section.

T R AT e e T T TP e

How Many Cases Are There?

Consider the following quote from Fillmore’s influential article The Case for
Case [42) :

The sentence in its basic structure consists of a verb und one or
more noun phrases, each associated with the verb in a particular case
relationship. The ‘cxplanatory’ use of this framework resides in the
necessary claim that, although there can b2 compound instances of a sin-
gle case (through noun phrase conjunction), each case relat.onship occurs
only once in a simple sentence.

Fillmore is maki-g a very strong claim, that each case occurs only once in a sim-
ple sentence. This claim is worth investigating, for two reasons. First, if we adopt the
claim, it can lelp us disambiguaie case relations, because we will know that each new
case relation must be distinct from the previous relations of each simple sentence.
Secondly, by comparing acceptable and unacceptable senterices we can tll if two uses
mark the same case or not. Fillimore tells us that two noun phrases denoting the same
case must be conjoined. Conversely, Zwicky and Sadock [150] say that conjunction can-
not occur with an ambiguous case marker.
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Consider the sentences in (6) (some of these are from [54] ). Sentences (6a-d)
show that the preposition wirh can mark the instrumental case (in two ways), the accom-
panier case, or the manner case. Sentences (6¢,f) together support the analysis that (6a,b)
both mark the instrumental case, and hence cannot be used as t'vo separate case relations,
but must be conjnined into one noun phrase. Conversely, (6g,h) show that the instrument
and manner cases are distinct. The curious example is in (6i,j). If there are distinct
instrumental and acc * :panier cases, then (6i) should be acceptable, and (6j) shoula be
rejected. However, most informarnts reject (6i), suggesting a problem with Fillmore’s
«laim (unless (6i) is rejected for some reason unrelated to the single-case claim).

(6a) John painted the wall with latex paint.

{6b) John painted the wall with a roller.

(6c) John painted the wall with Mary.

(6d) John painted the wall with reckless abandon.

(62) ?John painted the wall with latex paint with a roller.

{6f) John ;ainted the wall with latex paint and a roller.

(6g) John painted the wall with latex paint with reckless abandon.
(6h) ?John painted the wall with latex paint and reckless abandon.

(61) ?ohn painted the wall with latex paint with Mary.
(6j) ohn painted the wall with latex paint and Mary.

There is an alternative analysis of this situation. An important rhetorical rule (see
[49] ) can be stated simply as do not be repetitive. It is this rule that makes (7a) below
unusual, while (7b) is much better. It may be that part of the reason why (6¢.,i} sound bad
is the repetition of the word with. As evidence for that, compare (7c) with (6e). Simply
substituting using for with makes the sentence much better, even though the same case
relations seem to be represented. Fillmore would nct have to accept this as evidence, as
the using clause makes (7c) a complex sentence, and his claim mentions only simple sen-
tences. In this analysis, (6h) is still bad because it conjoins two semantically distirct
siots, but there is no explanation why (6g) seems better than (6e) or (6i).

Case-slot identity claims that there is an instrumental slot somewhere high iu the
hierarchy (perhaps on acticn), and that both painting-implement and applied-
paint are s)jecializations of the instrumental slot. Thus, it predicts that (6e) above
should be acceptable, or at least it makes no claims as to why (6e) is unacceptable.

(7a) ?Ann got a book. Bob got » book. Cathy got a book.
(7b) Ann got 2 book. Bob got a ook, too. So did Cathy.
(7c) John painted the wall with latex paint using a roller.

Another problem shows up when two different case relations necessarily have the
same filler. For example, the definition of selling states that the ictor and the donor
are one aud the same. The do not be repetitive rul= blocks us from mentioning the over-
loaded case twice. Thus, (8a) is acceptable, but (8b) is not.

(8a)
(8b)

John sold the book tc Mary.
?John sold the book from John.
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What Type of Cases Are There?

So far we have seen two approaches to handling case relations. Hendrix
emphasizes grammatical relations like subject, object, and indirect object, and tries to fit
semantics into that framework. Chamiak, on the other hand, emphasizes semantic rela-
tions like agent, recipient, and donor, and fits the grammatical information on top of that.
We have yet to see a completely satisfactory way to handle both at the same time. To
make matters worse, there are other components that also come into play. Katz [60] dis-
tinguishes the grammatical, semantic, and rhetorical components, where the later include
notions like given, new, topic, and comment. Filimore adds a fourth way of looking at
sentences, the orientation, where a concept can be either in perspective or out of perspec-
tive. Using an example common to Fillmore and Hendrix, the commercial-event, the
speaker can put the buyer in perspective by choosing the verb buy, as in (9a), the seller
by choosing the verb sell, as in (9b), or both the buyer and to an extent the money with
the verb pay, as in (9¢). Oriertation is a matter of degree; in (9a) and (9b) we could
elevate the money by mentioning it in a for clause, but the money would still not be as
prominent as the subject.

(9a; Iraq bought some bombs from Peru.
(9b) Peru sold some bombs to Irag.
(9c) Iraq paid $1M for some bombs.

The rhetorica! component is similar to the idea of orientation. One example of a
rhetorical case is the notion of ropic. Often, the grammatical case subject is both the
semantic agent and the rhetorical topic. Topic is important for problems such 2« pronoun
disambiguation. In (10a) there are two pe. e rcferents for he, but mest infonnants
interpret the pronoun as referring to Jok.s, since John is the topic of the first sentence.
This preterence to choose the topic can be overruled, as in (10b), where she refers to
Mary because it does not agree in gender with John, or in (10c), where he is interpreted
by most informants as referring to Bill, because of the added information which fits
better.

(10a) John is over there talking with Bill. He’s an old friend of mine.
(10b) John is over there talking with Mary. She’s an old friend of mine.
(10c) John is over there talking with Bill. He’s a good listener.

Script-Based Story Understanding

The basic idea of a schema goes back to Bartlett [12]. It is also present in Nor-
man and Rumelhart’s work [87]. Minsky’s idea of a frame [83] is similar to the schecma
idea. Although frames were originally conceived for work in computer vision, they have
wide applicability, and in fact several natural language systems using frames were built
at MIT by Winston [144, 145] and others [44,118]. Charniak’s Ms. Malaprop program
[24] is constructed along similar lines. The notion of a script, or stereotypical sequence
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of actions with variable actors, objects, and locations, was proposed and developed by
Schank and Abelson [110]. They use the example of the restaurant script to ¢xplain the
concept. The idea is that unless you knew what typically happens in a reztzi:dnut, you
would not be able to understand a story like (13). You would nui know that John
intended to eat some food, or who they referred to in they didn’t have any, or that he
probably got angry and left without eating or paying.

(13) John went to a restaurant. He ordered a hamburger. The waiter said they didn’t
have any. John asked for a hot dog. When the Lot dog came, it was burnt. He left
the restaurant.

The two major problems to contend with are script recognition and script appli-
carion. Recognition is the process of deciding what scripts, if any, are applicable to the
current situation. Application involves tracking the current situation in term of the appli-
cable script(s), deciding how each new input relates to the script, and making default
inferences for parts of the script that are not explicitly mentioned. For example, in (13)
the recognition problem is to notice that the eat-at-restaurant script is appropriate.
Once the eat-at-restaurant script is recognized, script application would lead to
inferences such as identifying the waiter as ‘‘the waiter who is eniplcyed by the restau-
rant and who was assigned to provide service for John’’. Other inferences are that John
probably sat down at a table and looked at a menu before ordering, and that he probably
was dissatisfied with the restaurant. Cullingford’s [33] SAM (Script Applier Mechanism)
program was able to make inferences like these, although it did not seriously address the
script recognition problem.

T R T T T e I T S T i B S TN, N R TR D IR W IR | P

Although limited, the scriptal approach had four main points going for it:

e It emphasized the role of real world knowledge as the source of intelligent understand-
ing.

e It had a well-defined control structure whereby inferences were made as they were
needed to track progress through the script.

e It showed how context could influence the interpretation of subsequent input.

A
b
5

e [t dealt with probable inferences, rather than strict logical deductions.

W

»
1

Scripts, and indeed, world knowledge in general, seem to have gotten more credit
than they deserved. For example, in [38], Dyer states that scripts are useful in word
sense disambiguation. He claims as evidence the fact that ordered and to go have dif-
ferent meanings in a restaurant than in the military, as seen in (14a,b). But these exam-
ples have nothing to do with scripts, per se. Both of them can be understood unambigu-
ously, out of context, by virtue cf the restrictions on semantic case frames of the various
senses of the verbs. In other words. it is not the fact that the ordering is occurring in a
restaurant or in a military context that gives it its meaning. Rather it is the object of the

ordering (a pizza or a person) that determines the interpretation. This is shown in
(14c¢c,d).
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(14a) John cordered a pizza to go.

(14b) The general ordered the private to go.

(14c) At the restaurant, the customer ordered the waiter to go.

(14d) Working late at the pentagon, the general ordered a pizza to go.

Dyer points out two other major problems of scripts. First, there was no sharing
of structure. There was knowledge of tipping imbedded in the restaurant script, but it
was unrelated to tipping in other situations, like taking taxis or getting a haircut. Simi-
larly, knowledge about eating could not be shared between the restaurant script and the
eat-at-home script.

The secord problem was a lack of intentionality. The restaurant script said that
the customer looks at the menu and then orders his meal, but it does not explain that the
menu tells him what the restaurant has to offer, and thus helps him decide what to order.
Dyer solves these two problems by re-representing scripts as MOPs. MOPs are Memory
Organization Packets, as described by Schank in [114].

There is another problem of sharing memc y that scripts did not cover: represent-
ing the commonality between the restaurant script from the customer’s point of viLw vs.
the waiter’s point of view, or the cook’s. Each has very different scripts, but there is also
a great deal of information that is shared.

Another important frame-based story understander was Charniak’s Ms. Malaprop
system [24]. Chamniak used frames to represent all knowledge in this system, so he
avoided the uniformity problem of SAM, but otherwise the system suffered from many of
the same problems, and was eventually abandoned.

The major limitation of script-hased processing is that it only works for situations
for which a known script exists. Whenever the story deviates from a stereotypical situa-
tion, which interesting stories must do, script application become imporsible. This
should not be seen as a limitation of the concept of a script, but rather on the process of
script application. SAM had only this one process at its disposal, and therefore it should
not be expected to do all of story understanding. Schank and Abelson pointed out this
limitation and suggested that goals and plans could be used where scripts failed.

Goal/Plan Based Story Understanding

As a reaction against the limitation of script-based systems, Wilensky [131]
designed the PAM (Plan Applier Mechanism) program to track the goals and plans of the
characters in the story. This allowed PAM to process a broad class of stories that could
not be handled by the script-based approach, and was also 2 means of controlling infer-
ence. The algorithm was to try to interpret each input as either a goal for one of the char-
acters in the story, a plan for achieving a goal, or as an expected input based on previous
processing. Each new goal or plan generated expectations for what might come next.
These were stored in a discrimination net, and matched against all input. Each new input
could be explained by matching an expectation, or by being a plan for some known goal,
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or by being a plan for something which was in turn explainable. Thus, the resulting
representation of the input text included a set of 1. tentional explanations for each action
in the text. ‘The following story is from [131] :

(15a) John was lost.
(15b) He pulled over to a farmer standing by the side of the road.
(15c) He asked him where he was.

PAM processes this story as follows. From (15a) it infers that John will have the
goal of knowing where he is. From that it infers he is trying to go somewhere, and that
going somewhere is often instrumental to doing something there. From (15b) PAM infers
that John wanted to be near the farmer, because he wanted to use the farmer for some
purpose. This rather vague inference constitutes the explanation of (15b). Finally (15¢)
is processed. It is recognized that asking is a plan for knowing, and since it is known that
John has the goal of knowing wherc he is, there is a match, and (15¢) is explaired. Asa
side effect of the matching process, the three pronouns (He, him and he) in (15c) are
disambiguated.

Wilensky’s model has the following important characteristics:

e There was an underlying theory of human planning behaviour. Although not shown in
this example, there was a great deal of detail on what happens when several goals
interact.

e There was an asstumption that planning behaviour is important in many stories. The
important points in a story were taken to be the interesting goal interactions between the
characters, or the resolution of a single character’s quest to achieve his goal.

e There was a theory of inference. PAM was able to make a fairly long chain of infer-
ences to find a connection between an action (e.g. Willa picked up the Michelin Guide)
and a known goal (e.g. Willa was hungry). PAM would not attempt to infer any connec-
tion between, say, two states (e.g. Willa was hungry. and Willa was angry.), and would
not waste time trying to make inferences that could not lead to an intentional explanation.

Granger [45] adopted Wilensky’s intentional explanation approach, and added the
capability to l=arn new inference rules from the text, and to recover from incorrect infer-
ences. His system, ARTHUR, (A Reader THat Understands Reflectively) could process
stories like the following:

INPUT STORY:
MARY PICKED UP A MAGAZINE.
SHE SWATTED A FLY.

INPUT QUESTION:
WHY DID MARY PICK UP A MAGAZINE?
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OUTPUT ANSWER:
AT FIRST I THOUGHT IT WAS BECAUSE SHE WANTED TO READ IT,
BUT ACTUALLY IT’S BECAUSE SHE WANTED TO GET RID OF A FLY.

PAM could understand some stories where a character changed his goal or plan,
by keeping its expectation vague, or by entertaining several explarations simultaneously.
However, it could not back up and retract an erroneous inference once it was committed
to the inference. Granger’s program added the ability to recover from such a mistake.
Such a capaoility is becoming more standard in Al programs, due to works like Doyle’s
on truth maintenance system [35, 36].

Story Skimmers

All the programs mentioned so far processed only a small number of texts, and
adding a new text to the repertoire usually meant a great deal of work on the part of the
programmers of the system. DeJong’s FRUMP (Fast Reading Understanding and Memory
Program) system [34] was designed to be different. The program interpreted news
stories taken directly off of the UPI news wire. The approach was to use sketchy scripts,
which were knowledge structures similar to Cullingford’s scripts, but without as much
detail. Sketchy scripts inciude only the important likely events in a situation. The sys-
tem has the same two <ubproblems that Cullingford’s program had (script recognition
and script application) but in DeJong’s case it is not necessary to process all of the input.
Once a script is selected, predictions are made for the likely events in that script, and the
prograrn ignores any input that does not fit the predictions.

Liebowitz’s IPP (Integrated Partial Parser) operated in a manner similar to FRUMP,
but it also had the ability to generalize and to ‘‘learn’’ new scripts.

Both programs owe at least part of their success to the fact that newspaper stories
follow prescribed formats, and have the specific purpose of reporting the important facts
relating to a siory.

Integrated Story Understanding Systems

There have been attempts to put several of these capabilities together. The most
notable in this class is Dyer’s BORIS [38] systein (Better Organized Reasoning and Infer-
ence System). It used a demon-based control structure and was able to find many dif-
ferent classes of inferences on the same text. BORIS incorporates and distinguishes
seventeen classes of knowledge: object primitives, scripts, settings, goals, plans, affects,
themes, interpersonal relationships, physical states, events, social acts, memory organiza-
tion packets, thematic abstraction units, scenes, scenarios, reasoning, and oeiiefs.

These structures interact in certain predefined ways. For example, inferences can
be made to connect events to goals (as in Wilensky’s approach), but emotional affect can
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never be directly related to settings. Thus, if given the passage ‘‘At the resraurant Bill
punched John in the mouth. John got mad.”’ and the question ‘‘How did John feel at the
restaurant?’’, BORIS would not be able to directly recall John’s affect. Instead, it would
have to first infer the ect-at-restaurant scenario from the restaurant setting, then
recall that the punching event occurred 2s an unexpected event in the restaurant scenario,
then infer some goal of John's, and finally infer his affect.

Thus, Dyer has a theory of memory search which is dependent on the knowledge
structures and their interconnections. He has adequate representational power to cover a
wide range of input. He has some guidelines on how to generate possible inferences.
However, the inference demons can be criticized as being ad-hoc. Here are some sample
inference demons:

(16a) IF an ACT at the DESTINATION SETTING of a transition
scenario is enabled by that SETTING
THEN build an ENABLES link between the GOAL achieved
and the CHANGE OF PROXIMITY goal in the transition scenario

(16b) IF the word just read is a pronoun and a HUMAN
is found with matching GENDER and CASE
THEN bind the concept to that HUMAN

(16c) IF the word jus: read is a name, then
IF character exists with matching GENDER and FIRST-NAME
THEN return that CHARACTER
ELSE create a new CHARACTER

(16d) IF the word just read is ‘glass’ then
IF it is followed by a LIQUID
THEN glass is used as a MEASURE (e.g. a glass of coke)
ELSE glass is used as a MATERIAL (e.g. a glasc plate)

(16e) IF the story refers to a MEAL and
a HUMAN is found modified by the preposition ‘with’
THEN that HUMAN is an EATER in the MEAL

There is a great range in the specificity of these rules. The first one is fairly gen-
eral. It could be used to infer from John went to Shea stadium that he intended to watch
a ball game, and that he went to the stadium in order to watch the game. The same rule
could be applied to numerous other situations. The rule is automatically self-extensive in
that every time the system learns about a new action that is enabled by a setting, the rule
will automatically apply to the setting. However, the rule can only be used in one way; it
cannct be used to infer from John wanted to watch a ball game that he should go to a ball
park, or even to infer that John is watching the game from John is at Shea stadium.

Some rules are incomplete. For example, (16b) and (16c) do not state what to do
if several matching humns are found. Other rules are just plain wrong. For example,
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(16¢) cannot handle Aricia is a pretty name and (16d) would fail on glass wine glass. Of
course, it is always possible to come up with new examples that a particular system can-
not handle, and it should not be considered a fundamental flaw that BORIS could not han-
dle these particular examples. A more serious problem is that mary rules are written at a
too specific level. For example, rather than having one rule saying that the preposition
with can be used to designate an accempanier in an event, there would have to be many
rules similar to (16e), approximately one for each verb. In addition to its lack of general-
ity, (16e) is still wrong in that it would interpret Bill was talking with the waiter as mean-
ing the waiter was an eater in the meal.

Dyer also addresses the problem of deciding what is an adequate explanation for
an event (although not for a concept in general). There are two main traditional
approaches: (1) settle for the first adequate explanation found, and (2) search for all pos-
sible explanations. A problem not addressed by Dyer is deciding when an explanation is
adequate, but leaving that aside, he comrectly points out that searching for all possible
explanations is computationally prohibitive, while settling on the first explanation can
lead to an incomplets interpretation of the text, since some events have multiple motiva-
tions. Dyer decides the best approach is a modification of strategy (1): find the first
explanation at each of four levels: scriptal, goal/plan, thematic, and role. For example, in
the main example story Dyer uses, two old friends meet for lunch to discuss some busi-
ness. The meeting would be understood three ways: in tertns of the restaurant script, the
fnendshxp theme, and the businessman role. While this approach may be a good heuris-
tic in many cases, it will fail in others. An event could just as casily have multiple expla-
nations at the same level. For example, in ‘John was hungry when it started to rain. He
ducked into a restaurant.’’, a single action can be interpreted as a plan towards two
goals: staying dry and having food.

In summary, Dyer’s work is more a model of memory organization than it is a
model of story understanding or inference. The tynes of knowledge structures and the
connections between them are well worked out, but the class of inferences covered is
under-specified, due to the arbitrary nature of the inference demons. Dyer’s is the only
work discussed here that can infer multiple connections between concepts in the story,
but there is no clear statement of what inferences will be found. One view is that this is
just in the nature of natural language understanding: it is a complex task, and one should
] not expect simple statements of principles. Another view is presented in the next section.

Story Understanding Principles

A slightly different tradition of research concentrates on characterizing the con-
straints on the story understanding process, rather than describing an algorithm in detail.
For example the following principles were presented in Wilensky’s [136] and in an ear-
lier version of FAUSTUS [88].

The Principle of Coherence: Build a coherent construal of the input.

The Principle of Concretion: Always use the most specific interpretation of the
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input as is possible.

The Principle of Least Commitment: Make only the minimal assumptions
necessary to interpret the input.
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The Principle of Exhaustion: Make sure that all of the input is accounted for in
the construal of the text.

The Principle of Parsimony: Construct representations which maximize the con-
nections between inputs.

The Principle of Poignancy: Determine the point of what is being said.

The principle of coherence instructs the understander to find connections between
various parts of the text. Causal relatiuns are particularly important here. The principle
of concretion says to go beyond a strict interpretation of the text, and induce details. The
principle of least commitment limits the understander from inventing characters, objects,
events and explanations that are unrelated to the text. The principle of exhaustion
assures that an explanation does not use just part of the input, if using more of the input
could produce a better, or more complete explanation. The parsimonry principle says to
find connections in such a way that the connectivity is maximized and the number of new
objects introduced is minimized. Finally, the principle of poignancy assumes that the
story teller has a reason for presenting the text, and that this is worth discovering.

The difficulty with applying these principles to any particular text is that they
contradict each other, and it is never clear how to resolve the contradictions. Wilensky
suggests a ceteris paribus interpretation of each principle. Given this approach, the prin-
ciple of concretion, for example, would be interpreted as if it were always use the most
specific interpretation that is consisient with the other principles. Consider the principle
of least commitment, which was originally suggested by David Marr [76] for use in com-
puter vision programs. This principle instructs the understander not to jump to unneces-
sary conclusions. The principle shows up often in AI research. Sacerdoti’s non-linear
planner, NOAH [102,103], was also based on the least-commitment strategy, although he
did not formulate it as a principle. In the abstract, the principle sounds like a good idea,
but it contradicts the principle of concretion and the principle of parsimony, which each
instruct the understander to make unproven assumptions, if the assumptions will lead to a
more specific or better connected interpretation.

Accepting the ceteris paribus interpretation, we still need some type of com-
parison mechanism for mediating the contradictions between principles. For example, in
interpreting John went from New York to San Francisco in six hours it would be a proper
use of the principle of concretion to assume he went by plane, but it would be a violation
of the principle of least commitment to assume he sar in seat 3A of a Boeing L1011.
Some mechanism must determine there is enough evidence for the first inference but not
for the second.

The parsimony principle has a particularly long geneology. In the early
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fourteenth century, William of Occam proclaimed ‘it is vain to do with more what can
be done with less.”” This principle is now known as Occam’s Razor. Paul Kay and
Charles Fillmore {43,61] formulate a parsimony principle for inferencing, ac well as
what they call the parsimony promotion principle:

Whenever it is possible to link two separate scenarios into a single larger
scenario by imagining them as sharing a common participant, the ideal reade: does so.

Select schemata in such a way as to give the parsimony principle the widest pos-
sible scope of operation.

Kay illustrates these principles with the following example:

(17) One day a chef went to Fisherman’s Wharf and bought some fish from a fisher-
man.

He claims that an ideal reader of (17) will make the following inferences-

(17a) The chef will cook the fish at his restaurant.

(17b) The fisherman caught the fish.

(17¢) The fisherman is a commercial fisherman.

(17d) The chef used the restaurant’s money.

(17e) The purpose of the chef’s trip was to buy fish.
(17f) The transaction took place on Fisherman’s Wharf.

These inferences are not explicitly stated in the text, and they are all probable but
not necessary inferences. The parsimony principle applies to this sentence because it
involves four separate schemata: chef-cooking, traveling, commercial-event,
and fishing. These end up being linked together in various ways: the chef in the
chef-cooking is the traveler in the traveling event and the buyer in the
commercial-event; the fishisthe foodin the commercial-event, the merchandise
in the commercial-event, and the catch in the fishing. The parsimony promotion
principle leads to the interpretation of the fisherman as a commercial fisherman rather
than a sport fisherman, since that interpretation leads to more sharing of participants
between schemata.

There arz limits to the parsimony principle that are not addressed by Kay. For
instance, it would not be valid to envision the fisherman as the diner in the chef’s rcstau-
rant, or the chef as the first mate on the fishermar’s boat, even though such envision-
ments would link scenarios.

Granger [45] independently presents his own parsimony principle as follows:

The best representation of a story is the one requiring the fewest number of goals
to explain the actions of a story character.
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Wilensky's parsimony principle is thus a generaiization of Granger's. The intent
of Granger’s principle is similar to Kay’s and it has similar problems in its applicability.
The principle could be appiied to (17) to infer (17a) and (17¢). This would be a parsi-
monious explanation because we know that chefs normally nave the goal of acquiring
food to cook in their restaurants. It is certainly a more parsimonicus explanation than an
interpretation where the chef went to Fisherman's Wharf with the goal of visiting the
Wax Museum, and then just happened to see some nice fish, which he bought to take
home to his mother in law. However, we can invent even more parsimonious explana-
tions. Perhaps the chef has only the single goal of, say, immpressing his girl friend, or of
serving God, and all his actions are in service of this goal. The parsimony principle as
Granger states it gives no limits to intcrpretations of this sort.

Drew McDermott’s TOPLE story understanding system [79] presented a calculus
for measuring parsimony, aithough he did not use those tcrms. He dealt with structures
called belief rings, and distinguishes tension-causing and tension-reducing elements
within the belief structures. McDermott draws a parallel between his approach and the
ideas of good form and stable organization of the Gestalt psychologists {64].

Finally, Fillmoie [43] acknowledges Harvey Sacks [104] and Yorick Wilks
[142, 143] as having independently formulated similar parsimony principles.

Stc 'y Grammars

The above research has been primarily aimed at the ‘‘undersanding’’ part of
story understanding, and has all but ignored the “‘story’’ part. How does the fact that one
is reading a story (as opposed to watching the news or reading a journal article) affect the
interpretation? The basic ability to do common sense inferencing, to recognize a situation
and the implications of that situation, is a necessary precondition to understanding a
story, but it is not the only precondition. There are some inferences that the reader makes
precisely because he is reading a story, inferences that he would not make if he observed
in the real world the same situation that is reported in the story.

Consider what we must know to undersvand a typical murder mystery story. First,
we know that pc:son can kill people and that murder is a crime. These are facts thar are
of relevance to every day life; we avoid swallowing poison, cr giving it to our friends.
Secondly, we know some things about the capacity for being mystified. We know that
problems hold our interest if they deal with important issues (such as life and death), and
if they are neither too obvious nor too obscure. Thus, a story which relates events in
chronological order, starting with the butler buying poison and sneaking it intc the
master’s food is not a good murder mystery. We expect that the identity of the murderer
will be kept hidden until the end of the story, but that there will be ample clues along the
way. Third, we know something of the structure of mystery stories. We know that if it
seems obvious who the murderer is early in the story, thea the author is probably trying
to mislead the reader, and the real murderer wili be someone else. Such facts are
relevant to understanding a story, but not to, say, witnessing or planning an actual
murder. At another level is language specific knowledge. We must be able to
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understand the words and grammatical patterns of English. Note that the first levels did
not require this; we can understand a pantomime or silent movie; or understand the
consequences of drinking poison without any recourse to language.

There have been many attempts to define the concept ot ‘‘storiness,”’ going back
to Propp’s [92] analysis of folk tales (as formalized by Lakoff [66] ) and continuing
more recently with Rummelhart [101], Thorndyke {126, 1271, and Mandler & Johnson
[72,74). 7he initial idea was that just as sentences can be decomposed into words
according to grammatical rules, so stories must be decomposable according to story-
grammar rules. The question then is what are the coraponents of a story? For spoken
sentences the lowest level components are phonemes, which are combined into words,
which fit into categories such as noun and verb, and can be combined into higher level
categories such as noun phrase and verb phrase. This type of analysis is compelling for
sentences because it is relatively easy to isolate and classify words, and because the
grainmatical structure can lead to much of the meaning of the sentence. However, note
that the grammatical structure of a sentence does not determine the complete meaning of
the sentence.

In the case of stories, a grammatical analysis is more problematic, because there
is no easy way to classify the components. Wilensky & Black [132] point out that story
grammars have relied on constructs such as causes, initiations, and motivations, which
are on quite a different level than nouns, verbs and adjectives. In parsing a sentence, one
can appeal to the lexicon to determine that shoelace is a noun, but in ‘‘parsing’’ a story
there is no similar recourse to determine that Mary was sad could be a motivation for a
subsequent action on her part. This could only be determined by scme unspecified
understanding process. The problem .s that there is a circularity; the story cannot be
parsed until it is understood, but story grammarians claim that the understanding is
achieved through parsing.

On the other hand, Wilcnsky & Black seem to concentrate on the problem of
understanding situations that are described in a straightforward fashion, and do not really
address the difference in understanding a story tex: based on that situation. Thus, they
have no explanation of how formulaic expressions like once upon a time or they lived
happily ever after make their way into stories. This is one of the complairts made by
Mandler & Johnson in [73]. Wilensky provides a more complete exposition of story
points ar.d a criticism of story grammars in [137].

What is needed is a theory of understanding that takes into account the structure

of stories. Unfortunately, most current models have been either theories of understand-
ing that ignore storiness, or theories of storiness that ignore the understanding process.
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Point Based Story Understanding

Wilensky’s (111, 135, 137] theory of story points was proposed as an alternative
to the story grammar approach. The theory concenirates on human drarnatic situations
that involve interacting goals. The important points of a story are defined to be the
interesting goal interactions. A story point analysis of a text could produce a summary of
the important points, once a thorough interpretation of the goal structure was made.

Lehnert’s [70] theory of plot units is very similar. The main difference is that
she allows affect, as well as plans and goals, to figure into the analysis. She uses
Roseman’s [99] treatment of affect, which identifies five dimensions of affect (desirabil-
ity, attainment, certainty, deservedness and agency) and about thirteen primary emotions
(joy, hope, relief, etc). A character’s emotional reaction to an event can be predicted by
ranking the event on each of these dimensions. Similarly, given a character’s affective
state, likely consequences can be predicted.

One problem with Lehnert’s approach is that it depends only on positive or nega-
tive changes, and does not recognize that some feelings are more important than others.
Thus, the passage ‘‘John got a new pencil. Then it broke.”” would be given exactly the
same plot unit analysis as ‘‘Jokn married Mary. Then she died.’’ Wilensky's story points
theory suffers from the same problem. In both cases, the analysis would be that John had
a recurring goal, achieved subsumption of that goal, and then suffered a loss of his goal-
subsumption state. There would be no indication that the death of a spouse is more
important than the loss of a pencil. Wilensky mentions that the value of a point is a func-
tion of the goals involved, but he does not elaborate on determining how important par-
ticular goals are, other than to say the importance of goals are given. Another difficulty
with both theories is that for long stories there is no good way to compare different parts,
and decide which parts are more important. Lehnert has a summarization mechanism
that generates as a summary the plot unit or units most heavily connected to other units.
However, she does not allow the surnmary to abstract away from the literal text, nor does
she distinguish storiness from coherency.

Schank [112] had the idea of allocating inferencing resources based on the
interestingness of the text at hand. Some concepts, like death, sex, and money are intrin-
sically interesting, in this theory, while other concepts ~ould be interesting if a personal
relatedness was perceived by the understander. Under this theory, the understander
would make more inferences about interesting concepts, and hence they would figure
more prominently in the resulting interpretation of the text.

Previous Research in Memory Models

This section will review research in Al and psychology on models of human
memory. There are a number of reasons why Al researchers should be concermed with
results in psychology. From a sciertific point of view, one of the goals of Al is to better
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understand human cognition. From an engineering poirt of view, humans are the best,
and only, example of working intell:ent systems, and thus are worth examining.
Finally. because lancuage is a means of communicating mental concepts between
humans, understanding language requires an understanding of human mental processes.
At the end of this section is a short discussion of how these results from psychology have
been applied to computer models of knowledge representation.

Network Models of Human Memory

Network models depict semantic memory as a large network of associated con-
cepts. The concepts are normally called nodes, and the associations are called /inks. In
most models there are a small number of different types of links. In some models the
links themselves are full-fledged concepts, in others they are primitive elements, with
semantics known to the processes that interpret the network. All other concepts are
defined circularly, in terms of their links to other concepts.

In any memory model, the representation of concepts must be related to processes
like recall, r.+morizing, inference, leamning, and forgetting. Most research to date has
concentrated on recall and inference.

Quillian’s model, presented in [93] and [31], is one of the first memory models,
yet is fairly representative. Although the model explains some experimental data well, it
was not intended to account for data. Instead, the model was designed primarily to facili-
tate programming of a language understanding system, TLC, the Teachable Language
Comprehender.

Quillian’s memory system had five primitive link types: superordinate, modifier,
conjunction, disjuniction, and property. Using these, the concept client can be defined
as a node with a superordinate link to person, and a modifier link to a node which
might be called employs-professional. This node is in turn defined with a superordi-
nate link to employs, and a property link saying that its first argument is profes-
sional, and its second another property with superordinate by and first argument
client. Quillian chose not to give the nodes names in the actual network, using an
external dictionary instead, but the system is easier to understand if names are explicitly
used.

The Spreading Activation Model

Quillian’s system viewed memory search as a process of spreading activation.
Given two or more starting concepts, a search procedure spreads out from each of the
starting nodes along links to adjacent nodes. An activation tag is left at each node visited
by this procedure. Eventually, an intersection will occur where one node receives tags
from two starting nodes. At this point an evaluation procedure is invoked to determine if
the intersecting occurred because of some inference which should be made, or if the
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intersection is nure!; accidental, and should be ignored.

The idea of blindly spreading out from the starting point and searching tor infer-
ences is similar to Rieger’s approach. The difference is that in Quillian’s case, no infer-
ence is 2ctually made until there is an intersection.

TLC atteinpted to deal with three classes of inferences: word sense disambigua-
tion, property corr “nsition, and anaphoric references. It attacked these problems with a
«ingle mechanism. For example, if TLC is processing the phrase lawyer’s client, it first
buiids a node for lawyer. Activation tags are spread from this entry, but as there has been
no previous input, there is no chance for a.. intersection. In processing client activation
tags are again spread to neighboring nodes, aad an intersection occurs along the path
client - employs - orofessional - lawyer. At this point a decision process is
called which checks the syntactic relation of the words in the text to determine if this
path should be incorporat ° into the representation of the text, or if the path is purely
coincidental. In this case, ne path would be accepted. Other paths might be rejected.
For example, the phrase the fall leaves might lead to an intersection where leaves are
recognized as an object of to fall, but that path would be rejected in favor of the path
where the season fe11 is a modifier of leaves. One important limitation of Quillian’s
approach is that he did not make a clear distinction between words and the concepts they
represent.

Although not showr in these examples, the same mechanism that infers connec-
tions such as the one betwsen lawyer and client is used to choose the best sense of ambi-
guous words, and to resolve anaphoric 1eferences. For each word in the text, TLC sets up
a new node which initially has a set of pointers to candidate senses. The candicates are
all the dictionary entries for the word, and any existing instances of those entries that
were mentionsd previously in the text. The system spreads activation tags from each
candidate; the une that first connects in an acceptable path is declared the winner. Thus,
if TLC were to cortinue processing with the phrase she argued a case the word she
would ini<ally have three candidate senses, the lawyer, the client, and the generic
female. the same process that connects she to argued would pick out the lawyer dis-
cussed previously as the ccrtrect sense.

The Quillian mode’ is defended and extended in Collins and Loftus [32]. Tc¢
explain various psycholog:cal data they introduced refinements to the model. In their
extended theovy activation tags have strengths associated with them, which decay over
time and distance. An -atersection is redefined as a node where the accumulated activa-
ticn exceeds a certain thres'. Id of activation.

The theory was extended pnmarily to counter the feature model of Rips, Shoben
and Smith [96,97]. They showed, for instance, that subjects were faster at answering /s a
robin a bird? than Is a penguin a bird? According to Collins and Quillian’s {31] presen-
tation, the response time should be proportional to the number of kinks traversed in the
me-niory search. If in both cases the only relevant traversal was the superordinate link to
bird, then bot" . -estions should take the same time to answer. Rips, Shoben and Smith
thus propose a icature¢ model, where instead of comparing superordinate links, one
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compares the properties of the the two concepts at hand. The decision is made through a
two-step process that first compares a small set of ‘‘defining’’ features, and then if a deci-
sion has not been made, compares the complete set of features.

Collins and Loftus point out that Quillian did not intend the superordinate link to
be the overriding, or even the primary factor used to determine matches. Instead,
categorization can in general be determined by weighing any number of pieces of posi-
tive and negative evidence. Besides superordinate links, properties can be contrasted,
prototynes or examples can be compared, counierexamples can be searched for, and so
on. Following these provisions, a network model can perform similarly to a feature-set
model. One can be considered a notational vanant of the other. This should rot be
surprising to anyone who has ever attempted a computer implementation of such a
model; one obvious way to implement featurss is with property lists, which are just nodes
and links. McDermott expands on this point in [81].

There were still some problems with the Quillian model. Eis syntactic rules were
impoverished. He could not easily extcnd the test for lawyer’s client to handle the
lawyer’s new client. Quillian’s networks were missing many of the representational capa-
bilities of more recent proposals, and I think many of the problems with his system stem
not from his basic approach, but from the lack of representational expressiveness he had
at his disposal at the time. This showed up at three levels. One, there was confusion
about levels of description, about the intensional/extensional distinction, and about the
representation of sets. These types of problems are discussed in [14, 15, 117]. Two, the
vocabulary of domain-level concepts that, for exampls, Dyer uses in [38] (scripts, plans,
goals, plct units, service triangles, etc.) was unavailable then. And finally, a new way of
looking at categorization has developed since then, due to works like [67, 68, 98, 149].

Quillian freely admits that certain :ypes of knowledge, such as mental imagery
and perceptual-motor capabilities, were ‘‘far beyond our present scope.”’ These remain
beyond the scope of current research to this day. Despite these shortcomings, the Quii-
lian model had a number of importart points, some of which have been lost in the inter-
vening 15 years.

o The emphasis is on a very extensive memory network, rather than on complex process-
ing strategies. The processing consists mainly of searching memory for closely related
concepts.

¢ Word sense disambiguation, property composition, and anaphoric reference resolution
all emerge from this searching strategy.

e The strategy employs an automatic, autonomous search procedure coupled with a con-
trolled decision procedure.

¢ Processing is based on semantic relationships. Syntax serves a secondary role.
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Other Network-Like Memory Models

Although Quillian’s model is typical of many proposition-based network models
of semantic memory, it is by no wueans the only such model. Kintsch presents a model
[63] that has more examples worked out than Quilliar, and has more of a background in
psychology. He coers a number of important concepts, like quantification, modality,
presupposition, and time. However, as a ten-year old work, the findings are not up to
date, and are not worth discussing here. Similar remarks apply to Norman and
Rumelhart’s model {87].

John Anderson has presented two major models of semantic memory. The HAM
model {4], developed with Gordon Bower, included a computer implementation that
could accept statements like In a park a hippie touched a debutante and questione |ike
Who was touched by the hippie? and produce answers like The debutante. The model
was motivated largely by experimental results on list-learning tasks, and thus had less to
do with inference and understanding than the other models discussed here.

The ACT model [6-8] is in Anderson’s words a model of factual memory, and is
not primarily a model of semantic memory. Like HAM, it is more concerned with the
mathematical specifics of encoding, storage, and retrievai than with higher-level infer-
ence processes.

Another important knowledge representation formalism of the 1970’s is Schank’s
Conceptual Dependency model [105, 110]. While representations in this formalism look
quite different than Quillian or Rumelhart’s diagrams, the differences are largely
cosmetic. One difference that is important is Schank’s commitment to reductionism. In
[106], he describes fourteen primitive acts which can be combined, he claims, to specify
all verbs of action. The key point was that there are a well-defined set of inferences that
can be made from each primitive act. For example, when something is moved, its loca-
tion is no longer the source location but rather becomes the destination location. The
problem with primitive acts is that there are many non-primitive acts that have inferences
associated with them that cannot be derived from a composition of the primitives. For
example, it is a fact that if a person moves through the air for a distance of 300 miles, he
probably was in an airplane. This is not a fact about the psmitive concept moving, how-
ever, so in CD there is no good place to store this fact, and no good way to represent it.

Schank extended and modified Conceptual Dependency greatly in his theory of
Dynamic Memory [113]. Here he was concerned with the types of memory confusions
one m:akes over a period of time, and with how one recalls and reconstructs past events.
For example., why is it that we could confuse ‘vhat happened while waiting in the
dentist’s office with what happened in the doctor’s office? How do one remember the
last time renting a car? Much cf the theory is an attempt to make up for the unfortunate
decision to utilize the primitive acts to the extent of ignoring perfectly good non-
primitive concepts. Like Conceptual Dependency, the Dynaiiic Memory theory has a
tendency to categorize and enumerate rather than to explain or motivate. Kolodner
extended this work, concentrating on episodic memory, in [65].
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Connectionist Models of Memory

4 Fahlman’s NETL architecture [40] led to a small renaissance of the spreading
activation approach. The trend at that time had been to consider inferencing as a prob-
lem in heuristic search, and to discover ways of limiting the search space to avoid the
combinatorial explosion. Fahlman’s conclusion was that syntax-directed heuristics could
never reduce search effectively in the general case, but special-purpose parallel hardware
could allow blind search to take place in a reasonable amount of time. This was a popu-
lar approach because it matched, on some level, the architecture of the brain, and also
hecause it matched the architecture of supercomputers that are just starting tc be
designed.

ol han AL

Fahlman concentrated on question verification (e.g. Does a nautilus have a
shell?) and retrieval (e.g. What kinds of molluscs are there?) rather than on making
plausible inferences. His system was designed to do all processing in parallel, but for the
types of inferences we are concerned with in this report, that is clearly not possible. To
choose a pronominal referent, for example, it is possible to gather candidates in parallel,
but choosing between them requires sequential comparisons. To see this, recall
Chamiak’s example of the birthday-present story, given as (1) above. The last sentence
is He will make you take it back. A parallel process could decide that possible referents
for it are the top Jack already has and the top Janet is considering buying. The parallel
process could even give some score to each referent indicating how plausible it is. How-
ever, only a sequential process could compare these scores and pick out the best referent.

L e T e gl R

Waltz and Pollack [128, 129] work in a new sub-field called connectionist pars-
ing. They take spreading activation models to an extreme, allowing them to do all the
work, with no higher-level decision processes. This requires highly tuned weightings for
values of activation and irhibition between nodes. It is not clear yet if this approach will
be feasible for more than very simple examples. Small and Cottrell {123, 124] have dons
similar work in connectionist parsing. The idea is to train a network to automatically
acquire the ‘‘right’” weights. This is done by presenting sample inputs, letting the net-
work compute an output, and then using a process called back-propagation to reconcile
any difference between the network’s output and the expected output. The obvious
advantage of such a system is that the experimenter need not understand the internal
workings of the resulting system; indeed, he may not be able to understand it, even if it
does work. The disadvantage lies in the fact that language understanding and common-
sense inferencing appear to require many levels of processing, and it is nct ki.own if con-
nectionist models will ever be able to generate the recessary intermediate levels between
the input and output. Connectionists are encouraged by the iatuition that human brains
seem to have a connectionist archi:ecture, and infants learn to reason and comprehend
with only a few years of leaming time. However, this neglects the four million or so
years of evolution required to generate the initial configuration of the brain.

.49 .

N nt" a1, el T e, RS e T, a7 S RIRTRCICH N LR o Lk
A et T, - T . E) e e
-‘ h -f‘. n'.J"L[ .J\’., Ny L{ A;(-.'(‘n. \_"u." a}'n."-.'a.",a. oL ‘“\.;A‘ »"}.{p P A TSN A VISRV E PSR AT S G 00 S U PRI R VN



L]
1
S

Y
‘\-.{‘:“;‘;\} )‘ ‘\J‘- \\'\t‘ L) 'L\ \‘-‘ \-\\'{\ J‘& '&. \‘R‘\‘ '\{ 'L\ L el "f '* k)\. NN, L{\_ '\L*L PAVESOYT P L PPN

B RS AAN

Marker-Passing-Based Research

Granger, Eiselt and Holbrook [46] present an integrated parser/understander
called ATLAST. This svstem has three main components: the capsulizer, which takes care
of lexical access and local syntax; the proposer, which searches for inferences by spread-
ing activation; and a filter, which evaluates inferences and handles more complex syntax.
Each component runs in parallel, and cain communicate with the others. For example, the
filter can tell the proposer to stoo looking once it has accepted an inference.

Charniak [28] presents the system that is perhaps most similar to FAUSTUS. The
Wholy Integrated Marker Passer, or WIMP, parses, disambiguates and draws inferences
from texts. The examples presented have all been one or two sentences. WIMP passes
markers and finds marker collisions in a manner very similar to FAUSTUS. The rules for
passing are somewhat different, involving what Charniak calls zorch strength. The idea
is that marker energy is divided equally among all paths leading out of a node. When
this energy falls below 1 it is truncated to 0, and marker passing stops. Collision evalua-
tion is different as Charniak uses a more general and formal resolution theorem-proving
based approach, while I give a set of pre-defined marker paths which have interesting
inferences associated with them. Conflicting suggested inferences are settled by accept-
ing the one with the shortest path length (or maximum path zorch, in his terms). Another
difference is that Chamiak passes markers only from open-class words, while I pass
markers from all input, including prepositions, and thus can disambiguate vague case
relations. Finally, WIMP’s knowledge base is much smaller than FAUSTUS's, and it seems
the program has only been tested on one to three sentence texts. This system is a con-
tinuation of earlier papers [26,27] which propose that spreading activation could be a
good starting point for a model, like Quillian’s, that made maximal use of semantic infor-
mation. and only checked syntax when necessarv. However, Charniak uses an ATN
parser ~"ich is much more powerful than Quillian’s ad hoc syntactic formalism.

Hendler [51] extends Charniak’s approach to address the problem of problem
solving in a spreading activation model. He is primarily concerned with avoiding back-
tracking in planning; this is done by having a marker-passing mechanism make appropri-
ate suggestions as to what to try first.

Granger [47, 48] is doing similar research, but he concentrates on the problems of
lexical access and word sense and case slot disambiguation, rather than on higher level
inferences.

One important unanswered question is how these systems will scale up as the size
of the knowledge base is increased. This is a problem both in terms of execution speed,
and in terms of unpredicted interactions as new concepts are added tn the knowledge
base. In the case of connectionist models, we will not know how easy it is to add a large
number of concepts until the next generation of hardware becomes available. Waltz’s
models takes on the order of several minutes to run a small example with a few dozen
nodes. Charniak’s 1985 model [27] has about 75 generic concepts, and runs somewhat
faster, since spreading activation models are at a higher level than connectionist ones.
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The FAUSTUS data base has roughly 8 times as many concepts as Charniak’s, and the
transition in FAUSTUS from 60 to 600 concepts resulted in a qualitatively different sys-
tem. A system with 10 times more concepts would be qualitatively different again.

T 1w T

How Large Must a Memory Be?

Many Al researchers have tried to speculate as to how many facts or concepts are
known by the average person, and how many are needed to perform ‘‘intelligently.’”’ In
[82], Minsky concludes that ‘‘a million, if properly organized, should be enough for a
very great intelligence. If my argument does not convince you, multiply the figures by
ten.”” It is not clear if the last sentence is meant to be applied recursively, or only once.
John McCarthy has stated that as few as 100,000 facts might do. David Waltz gave the
3 figure of two million, which is ordinary in its magnitude, but extraordinary in that he
seems to be the first to start an estimate with anything other than the digit ‘1’. Therc are
several ways of arriving at an estimate, or at least of setting bounds. For a lower bound,
A a small dictionary has about 20,000 words; somecne who knew half of the words, knew
only one ‘fact’ about each word, and knew nothing else would have 10,000 facts. As a
more realistic estimate, Elizabeth Bates has estimated that the average person has a voca-
tulary of 40,000 words; this would include proper nouns and names that are not in a dic-
tionary. If we accept this estimate and guess that one knows an average of 10 facts about
each word, and if one knows twice as many non-verbal facts as verbal ones, then we
arrive at a figure of 1,200,000 facts.

TR AR LR

A 32 year old adult who leamed one fact per second throughout her life would
have acquired a billion facts. This does not account for forgetting, for generalization of
learned facts, or for the reduced rate of learning during sleep. In addition, one fact per
second seems to be a high rate of leamning; as Simon points out [122], there have been a
wide variety of psychological experiments that show a maximum learning time of about
one syllable every ten seconds, and that is achieved only when the subject is concentrat-
ing on the learning task. On the other hand, these experiments dealt with nonsense syll-
ables; presumably meaningful information would be learned faster. As a rough estimate,
assume that the rate-of-acquisition argument leads to an upper bound of about one billion
facts. The number of neurons in the human brain is about ten billion. Most current neu-
rological theories ascumne that information is stored by patterns of neuron activation,
rather than in individual neurons, and it is unknown what these patterns are like. But if
we arbitrarily assume ten neurons per fact, we arrive at an upper bound of a billion facts
from two different sources.

In summary, if we accept the given assumpuons we can be almost certain that the
total number of facts in a human mind is between 10% and 10" , and fairly confident that
it is between 10 and 10°. To wy to narrow the gap betwecn these bounds any more
seems a little premature, since we are not even sure what exactly should count as an indi-
vidual ‘fact,” let alone a million of them, and since even AI systems that are called
‘‘large’’ number their facts in the thousands, not millions or billions. There has been lit-
tle or no published speculation along these lines; the estimates in these paragraphs from
McCarthy, Waltz, and Bates are from personal communication.
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Summary of Previous Research

A theory of inference must be able to answer three questions: what classes of
inferences are supported? What control structure is used to generate individual infer-
ences? If contradictory inferences are suggested, how is the conflict resolved? Most of
the researcher reported here attempts to handle the first question. Rieger, Lockman &
Klappholtz, Clark, and Kay make this the primary thrust of their work. Most of the Al
researchers address the second question. Unfortunately, the third question remains
elusive; no researcher makes it the main point of his work, and some fail to address the
question at 2'l.

There is a trend among the Al text understanding systems (Alterman, Cullingford,
Wilensky, Granger, DelJong, Lehnert) that should not go unnoticed. In each case, a new
type of knowledge structure (e.g. coherence relation, script, plan, plot unit) was
developed, along with a set of inference rules appropriate for that knowledge structure.
However, in each case the inference rules were in the form of a new top-level inferencing
algorithm; there was no way to incorporate different types of rules in one system. For
example, Wilensky’s PAM was designed as an improvement on Cullingford’s SAM, but
PAM had a completely new top-level algorithm that could not easily incorporate the class
of inferences that SAM made. Furthermore, PAM could not make certain inferences that
should have been within its power to make. For example, PAM could find the connection
between the two sentences in (18a) and determine who he refers to because the sentences
involve a character’s actions and affect. PAM could not determine what it refers to in
(18b) because there are no goals or plans involved. Yet both examples are similar in that
the first sentence causes the second. PAM could not represent this commonality.

(18a) Bill hitJohn. He cried.
(18b) The ball hit the vase. It broke.

Dyer’s work is an exception to this trend towards champioring a single new
knowledge structure, since he allows inference rules for various knowledge types at vari-
ous levels to be operating in the same system. However, Dyer suffers from the same
problem as Rieger; he presents very specific inference rules that can only be used in one
particular context, even though they represent knowledge that should be applicable in a
variety of ways. Furthermore, he has no unified control structure; instead he relies on
demon activation to do the right thing.

I have pointed out two flaws in past systems that both stem from the same source:
the inability to represent knowledge in a neutral declarative fashion and use that
knowledge whenever it is applicable. In the next chapter I present a knowledge represen-
tation system that allows representations to exist at the proper level of abstraction, and
allows commonalities in representation to be reflected by commonalities in processes.
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Chapter 3:
Knowledge Representation

An im.portant claim made in chapter 1 was that the inferencing algorithm for a
text understanding system could be made simpler, if the system could represent declara-
tively a variety of knowledge structures that were handled procedurely in other systems.
In this chapter I formulate the criteria that such a kiowledge representation language
(henceforth, RL) would have to meet, and describe KODIAK, a RL which meeis these cri-
teria.

There is a distinction to be made between what goes into the RL itself, that is,
what are the primitives of the language, and what sorts of concepts are represented using
these primitives. The first process, RL design, is the topic of this chapter. The second
process is often referred to as modeling the domain of interest. Some of the concepts
modeled in the FAUSTUS system will be discussed in chapter 5.

Another important trichotomy separates the RL, which is a descriptive notation,
from the operations that manipulate those descriptions, and the application programs that
use those operations. The combinaticn of RL and operators I call the representation sys-
tem (RS). This tenninology is not in general use; in fact sometimes even those who warn
most strenuously of the dangers of confusing descriptive issues with processing issues are
guilty of using the term ‘‘representation language’ to mean RL at some times and RS at
others. For example, one will often find mention to ‘‘an efficient knowledge representa-
tion language.”’ In my terminology this would be nonsensical; a RL can lend itself to
efficient implementation of a RS, which can in turn iead to efficient implementation of a
parser, or theorenm prover, or whatever, but the RL itself cannot be ‘“‘efficient’’ or
““‘inefficient.”’

T LT

A RL capable of supporting a text inferencing system must be able to represent
three types of knowledge. First, the RL must be able to define terms and describe facts
about the domain. Second, it must allow fo: the representation of the meaning of the
l input text. It must be able to represent the meaning of the text as far as it is known, and
X represent ambiguities in the text until they are resolved. Third, the RL must be able to
represent inferences derived from the text. There is by no means universal agreement on
this characterization of RL’s. Some RL designers, such as Brachman and Moser {16, 85],
feel there should be two distinct languages, one for defining terms in the domain, and
another for making assertions involving those terms. In a separate article {18], Brachman
argues that text can be represented within the assertional RL, inaking use of a syntaxon-
omy, a taxonomy of syntactic entities. A similar approach is taken in {125]. Moser does
not discuss the representation of text; perhaps he would favor a third language for that.

Another issue of debate is the range of applicability of a RL. It is often easier to
define RL’s, and to build models in a RL, if the use of the representations is restricted.
For example, in one large natural language understanding project being developed jointly
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ATHS IS A

S at BBN and ISI, there are two separate representations of English grammar, an ATN

grammar for parsing and a systemic grammar for generation of language. The idea is
3 that each representation is better for the task it was designed for, and tiaat it would be
] more difficult to specify a single grammar that could handle both tasks. If the goal is to
N apply available technology and produce a working program, this may be the best
E; approach. However, if the goal is to make the most effective use of knowledge, then it

would be better to have a sysiem where the same knowledge base can be used for a
variety of purposes: to understand stories about a given situation, to generate stories or
answer questions about that same situation, or to act in a reasonable fashion when faced
with a similar situation. He1o Simon defines understanding as: understanding a piece of
knowledge K means using K whenever it is appropriate to do so.

KODIAK [138] is a RL which was designed to allow the modeling of a large
knowledge base that could be applied to a variety of tasks. In other words, representa-
tions in KODIAK shouid be constructed to address the question how can I accurately
model my conception of the domain rather than the question how can I describe the facts
{ need to ger this particular application to work. An earlier version of FAUSTUS had a
knowledge base that it shared with a common-sense planning program, PANDORA [41].
The PHRAN parser used in FAUSTUS has always shared its syntactic knowledge with the
language generation program, PHRED [59]. When the generator was redesigned as
Jacobs’ ACE, sharing knowledge was stiil a priority. KODIAK is also used as the RL for
UC [139], a corsultation system that answers natural language questions about the UNIX
file system. Thus the idea of sharing knowledge between systems that perform different

tasks is well established at Berkeley, and is also an important thrust of recent work at
Brown [54, 146].

Few other researchers have addressed the problem of sharing linguistic and real-
world knowledge to this exient. However, there have been several attempts to allow one
grammar to serve for both parsing and generating tasks. The programming language
PROLOG is designed so that a procedure can in some cases solve for any one of its iniss-
ing arguments, when the others are supplied. For example, we might be able to write *‘X
=Y + Z" and solve for any of X, Y or Z whenever the other two are given. In actual
practice, PROLOG does not always perform this way, and in fact simple arithmetic is one
of the areas in which it fails to exhibit the desired behaviour. However. several gram-
matical formalisms have been been developed that can be manipulated by PROLOG in just
this manner. Pereira and Warren (91] introduced definite clause grammars or pcc’s,
which are designed for parsing using PROLOG, but could also be used fcr generation.
More recently [130], they describe extraposition grammars, and show how they can be
applied to the problem of translating natural language queries to a data base. Martin
Kay’s functional unification grammar [62] has the property of reversibility with respect
to translation; sentence a in language A can translate to sentence b in language B if and
only if b can also translate to a. Jacob’s ACE formalism [57] has the explicit goal of pro-
viding a direction-independent association between language and meaning, which is also
somewhat independent of the grammatical formalism used.

KODIAK, like Conceptual Dependency (CL) theory [105], reprcsents a conceptual
level of analysis that is independent of the actual words and syntactic constructions in the
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sentence. It is a meaning representation language, not a word or sentence representation
ianguage. Thus, the outpu* of the conceptual analyzer, and the input to FAUSTUS is a
meaning representation, not a syntactic parse tree.

Unlike CD, a single KODIAK knowledge base does not claim to be an interlingua,
a universal language to represent any thought expressible in any language. Rather, the
knowledge encoded in a KODIAK knowledge base is designed as a model of one particu-
lar person’s conceptual knowledge. Different people in different cultures speaking dif-
ferent languages and having different experiences will conceptralize the world dif-
ferently, so we should not expect there to be one ‘‘correct’’ representation of all
knowledge.

One guiding principle is that any concept that is important enough to have a word
denoting it is important enough to be modeled as a full-fledged concept, not just as a
composition of other concepts. Thus, we have explicit representations for concepts like
buying and selling; we are not forced to decompose them into primitive actions as one
would in CD.

Conversely, if a concept is represented in KODIAK, it means the concept is of
sone import. Other representation languages like KL-ONE that were concerned primarily
with defining terms explicitly often ended up generating spurious intermediate level
categories, such as left-handed-person-with-two-supervisors-and-red-hair. In
KODIAK there is a difference between forming a category like this, and forming a
description that l:appens to {it into several categories.

CD also makes a commitment to the idea of reductionism: providing a small set of
primitive concepts that can be composed to represent any other concept. This is closely
related to the interlingua issue, but they are ultimately orthogonal issues. KODIAK makes
no such commitment to reductionisni; in fact it promotes a proliferation of corcepts, each
defined recursively in terms of the others, but with no pre-determined set of primitive
concepts.

Criteria for Representation Languages

The most basic criterion of a RL is what McCarthy and Hayes [78] call epistemo-
logical adequacy. By that they mean the RL must have sufficient expressive power to
represent the concepts the modcler wants to define. If, for exarnple, the modeler is
interested in the domain of algebra, then it would be useful for the RL to have mechan-
isms for d=aling with sets and numbers built in as primitives. This notion has been re-
discovered by a number of researchers; McDermott [80] calls it analytic adequacy and
Woods [148] calls it expressive adequacy.

As another example of expressive power, in KL-ONE one can assert a minimum
and maximum on the number of role fillers (of each role) that a concept can take. For
example, we can say that a mammal has a minimum of two and a maximum of four legs,
and that a person has exactly two legs. A language with more expressive power might
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allow the modeler to assert that all animals have an even number of legs (except perhaps
starfish). However, adding expressive power like this can have repercussions in terms of
efficiency and inferential power of various operations in the RS. If the only restriction
allowed on the nvmber of role fillers is a maximum and a minimum, then there is an easy
algorithm for determining if all instances of a given category must be instances of
another category. This is called the subsumption relation in KL-ONE.

Determining subsumption becomes more difficult if we allow more expressive
power. Suppose we wantzd to define the concept prime-pose to mean a pcse that an
animal adopis whereby a prime number of legs are bent and a prime number of legs are
straight. Let us also define prime-animal as an animal that is capable of adopting the
prime-pose. T1hen, asking the RS if all animals with more than two legs are prime-
animals would be equivalent to asking it to prove Goldbach’s conjecture, a well-known
and long unsolved problem in mathematics. This is unfortunate, because we would like
all operations in the RS to be easily computable. For more examples of how easy it is for
the computational complexity of queries to the RS to get out of hand as we increase the
expressive power of the RL, see [17]. He also gives a proof of a subsumption algorithm
there.

Epistemological adequacy is a matter of degree, rather than of an absolute
adequate/inadequate distinction. But just as important as the numkber of concepts we can
represent is the ease with which they can written, extended, shared, and modified. There
is a parallel here between RL’s and programming languages. The ‘‘epistemological ade-
quacy’’ of ADA or COMMON LISP is no better than machine language, yet much tine and
effort has been spent in developing these new languages, because they make it easier to
express complex algorithms and data structures.

McCarthy and Hayes also introduce the criterion of heuristic adequacy. A prob-
lem sclver meets this criterion if it can use the facts it has represented whenever it is
appropriate to do so. As mentioned above, the approach taken in KODIAK is to encourage
the domain modeler to define concepts in a form that is neutral with respect to the
intended use. If this is done coasistently, heuristic adequacy will take care of itseif.

Ejficiency of operaticns in the RS is another criterion, but it is not one I will be
overly concerned with, since it is not directly a property of the RL. The data bases
involved in understanding short texts are (unfortunately) still quite small, and the
inferencing mechanisms I am using are designed to be efficient, so that a wide range of
RS implementations will all be efficient enough. In general, it behooves the RS designer
to worry about efficiency to a degree, but it is important to maintain the distinction
between efficiency issues and representation issues. For example, in the PEARL represen-
tation language [134], there'was 2 mechanism for saying that every time an instance of a
given concept was created, allocate storage and fill in the default value for certain rela-
tions involving that concept, but o not allocate storage for other relations. But this set
of relations with pre-allocated storage is also the set of relations that is used in matching
one instance with another. This means that a representation issue is mixed up with an
implementation issue. A similar confusion occurs in the FRL language [100]. In
KODIAK, all relations can come into play for matching purposes, regardless of how they
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are iriplemented.

The next criterion is inferential adequacy, what McDermott called power. For
most RL's, inference takes the form of logical proof: if the assertions P and Q are in the
knowledge base, and if it is given that P & Q — R, then the system had better be able to
deduce R, and not deduce “R. In other words, completeness and consistency are the
guidelines against which inferential adequacy is judged. Unfortunately, this is a very
harsh judge; if there are more than a few dozen facts in the system, then it is strongly
believed that tiiere cannot be any algorithm chat can solve this problem in the general
case, without taking years of computing time. Technically, we say that the satisfiability
problemn for predicate caiculus is NP-complete, and therefore it is in practice impossible
to guarantee completeness and vonsistency for any RS with more than a handful of asser-
tions. We must accept scme degradation in either the epistemological or inferential ade-
quacy of any RS. For humansz, the balance is tipped heavily towards epistzmological
adequacy; we rarely have trouble finding some way to think about a concept, but there
are many, many valid logical deductions that we are not able to deduce. Humans also
seem to have an ability to handle contradictory assertions without much irouble. This is
in marked contrast te propositicnal logic, where ‘‘contamination’’ by an inconsistent
belief is a constant problem. If P and "P are both believed true, then any proposition can
be proved true.

In the domain of text understanding, logical deductions are not as imporiant as
plausible inferences. Also, I am not interested in procfs of general properties, but rather
in specific inferences involving individual concepts. Thus, if I were to adopt the
definition of animal that asserts an even number of legs, and defined prime-pose as
above, I would only be interested in questions like could Clyde, an elephant with four
legs. adopt the prime-pose? Qbviously, it is easier to answer a question like this than to
prove Goldbach's conjecture. Since may plausible irferencing algorithm looks only at
paths of length less than n, where n is small, it does not matter il the computations are
expected to grow exponantially for large n.

1 have chosen not to explicitly define a logic which could, for example, dedice R
from P & Q and (P & Q — R). Instead, I have defined an inferencing mechanism for
making plausible inferences triggered by connecticns along short paihs, aiia now need to
define plausible and short. The idea cf conceptual istcnce makes sense for RL’s that
are based on, or can be interpreied as, semantic nets. KCDIAK 15 such an RL. The con-
ceptual distance petween two concepss is defined as the shortest path be:ween tiie nodes
representing those concents, waere the length of a path is computed by summing a cost
function over the links in the path. Conceptual distance is asymmetric; to reuse an old
example, the distance from island to body-of-water is less than the distance from
body-of-water to island. This is because part of the definition of island states that
every island is strrounded by a body-of-water, but not every body-of-water need
surround an island. The distance from A to C is always greater than or equal to the sum
of the distances from A to B and B to C, if we assume B was in the network throughout.
However, introducing a new concept B’ to the network can <onceivably produce a shorter
path between A and C. Thus, conceptual distance is non-monotonic; it can change over
time. The distarce rom A to A is always zero. Note that conceptual distance is distinct
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from similarity. The concepis island and body-of-water may be close, but that does
not imply any .imilarity between the two. On e other hand, similar objects will nor-
mally be conceptually close.

Consider the task of the domain modeler. She or he must represent the concepts
of interest using whatever primitives ace in the language, along with new concepts she
defines. In doing this she has certain intuitions about how to represent each concept.
However, she also has intuitions on the conceptual distance between pairs of concepts.
When there is a grave Jiscrepancy between her intuitive judgement of distance and the
distance computcd by the system, she has three choices: change the function for comput-
ing the distance between concepts, change the representation of one or both concepts, or
ignore the discrepancy and hepe that her inwitions were wrong, and that the system is
siill able to make the right plausible inferences involving these concepts. In modeling
concepts for FAUSTUS, I found the first choice was quickly ruled out after a hrief chake-
agwn period, because changing the cost function would effect the distance between every
other pair of concepts in unpredictable ways. In many cases I was able to detect model-
ing errors when a path between two concepts was too short and triggered an erroneous
inference, or was too long and missed an important plausible inference. In other cases
there seemed to be no good way to change the distance between two concepts without
perverting their meanings in some way.

Wilensky [141] re-iterates the principle of epistemological adequacy, extends the
notion cf heuristic adequacy, and introduces the criteria of interpretability and unifor-
mity. Interpretability is the inverse of epistemological adequacy. The idea is that any-
thing that can be <tated in the language must have a ‘‘meaning’’ or interpretation
although that meaning may be false or nonsensical in the real world. The principle of
uniformity states that a single language that can express anything is better than a collec-
tion of ad hoc languages.

Wilensky also introduces the principle of cognitive correspondence: ‘‘a particular
representation for a particular itern must be supposted by its correspondence to how that
item ir cognized.”’ In previous systems, there was always the assumption that, for exam-
ple. “‘Johr. ate lunch” would be represented in precicate form as eat (John, lunch)
rather than lunch(eat,John). The cugnitive coriespondence principle recognizes that
both choices ase possiole, that the choice between them is not arbitrary, and that the rea-
son for preferring to associate verbs with predicates is an underlying cognitive reality of
such an association.

The KODIAK. Representation Language

Now that we have an understanding of the criteria for evaluation RL's, we can
investigate the RL used in the FAUSTUS system, KODIAK, and discuss the design deci-
sions that went into KODIAK. The KODIAK language was developed jointly by Robert
Wilensky and several members of the BAIR group at Berkeley. The version described
here differs in some details from the version discussed by Wilensky in [141].
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Representations in the KODIAK language are composed ot instances of three types
of primitive objects, and eight primitive associations between those objects. When seen
as a semantic network, the objects are called nodes and the associations links. Represen-
tations are formed by inserting links between nodes. When seen as a programming sys-
tem, the primitive types are operators of no arguments that return new objects, and the
associations are operators of two arguments that assert relations between the objects.
Objects have names as a convenience for the system modeler, but the names dre not used
for purposes other than identification. The primitive object and link types are shown in
Figure 1 along with a brief description of each one.

The Three Primitive Object Types

An absolute is any concept that can be modeled in its own right. that is. any con-
cept that it makes sense to speak of as an individual entity. Absolutes need not represent
physical objects; they can be actions, events, situations, or abstract ideas. Examples
include person, island, action, walking, and talking. Attached to the concept
person Will be primitive associations to describe assertions that are true of all instances
of person, but also information that is true for most instances but not all, or is true for
only a few instances. In NETL {40] the concept that I call person would be called
typical-person. The intent in KODIAK is to model the general idea of person, but to
be able to distinguish typical instances from non-typical instances and from non-
instances. There is no attemnpt to define a set of necessary and sufficient corditions for
defining person; instead we describe person as best we can, and rely on the inferencing
algorithm to classify any instances s a person or non-person. In general classifi_ation
will depend not only on the properties of person, but on the properties of similar

Absolutes - concepts, €.g. person, action, purple, government
Relations - relations between concepts, €.g. actor-of-action
Aspectuals - formal parameters for the relations, e.g. actor

Dominate - a concept is a subclass of another class
Instance - a concept is an instance of some class

View - a concept can be seen as another class
Constrain - fillers of an aspectual must be of some class
Argument - associates aspectuals with a relation

Fill - an aspectual refers to some absolute

Equate - two concepts are co-referential

Differ - two concepts are not co-referential

Figure 1: Pimitives in KODIAK
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concepts as well. For exampie, if the only types of animal defined in the model were
person, mouse, and fisn, then when confronted with a descripion of a gerbil, .1e sys-
tem would probably classify itis a mouse.

A relction is a concept that holds between two instances of absolutes. For exam-
ple, given the absolutes talking and person, we could define the talker-of-talking
relation to hold between instances of talking and instances of person. Each relation
can be tho.igh of as a function of two parameters; the formal parameters are called
aspectucis. In this case, the asp~ctuals mignt be called talke: and talkers-action.
The definition would say that every talking action musc have exactly vue talker, who
rust be a person. However, not every person need be related to a talkers-action,
and some may be related to more than one.

The Eight Primitive Associations

The Dominate Association

‘fhe primitive association dominate is used to define hierarchica! reiationships
between concepts. For example, the assertion (dominate animal elephant) means
that elephant inherits all relations and aspectuals from animal, although further asser-
tions may be made to differentiate elephants from other animals. If we had defined a
sact~of relation to hold between animal and animal-head, !H . elephant would
also have to participate in @ part-of relation with an animal-head, but we could
further differentiate rhe relation to require an olephant-headc.

The description above defines individua! dominate links, but there is more that we
can say about groups of dominate links. For example, not only can we can assert that the
concepts male-person and female-perscn are dominated by person, but furthermere
we can assert cvery person must be one or the other, but not both. Tegether male-
person and female-person form an exhaustive pariition of the concept person. Itisa
rartition because no instance of person can beloug to both categories, and it is exhaus-
tive because there are no other possible cat goiies; every person must be one or the
other. This information is used by the matcher: if person.l is @ male-person, and
person.2 i5 2 female~person, then the matcher can conclude that they cannot rerer to
““e same person. Partitions are implemented with an optional third argument to the dom-
inate relation, as described beiow.

Anctner example of an exhaustive partition is old-person and young-person,
for sorae suitzble definition of old. Note that there is nothing to be said about matching
cverlapping concepts; concepts that appear in distinct partitions. Given that perscn.1is
a male~person, and person.2 is a2 old-person we cannot decide if person.1 and
person.2 are the same ¢ .«ferent. An exampie of a non-exhaustive partition would be
the various species of a...mal: dog, cat, elephant, mouse, etc. Here there is
always a chance that ihere 1s another kind of animal that we have not heard of yet, and so
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knowing that a given animal is not a dog, cat, or elephant is not enrough to prove that it
must be a mouse. On the other hand, if we know that animal x is a dog, then we waut to
be able to conclude that it is not a cat, and make no conclusion about it being, say, a
male-animal Or female-animal.

We are now in a position to see just how partitions are represented in KODIAK.
Two differeit implementations were iested. In the first implementation, we would have
assertions such as these:

(dominate person male-person p)
(dominate person female-person p)
(dominate person ~ld-person Qq)
(dominate person young-person q)
(dominate animal elephant r)

(exhaustive-partition p)
(exhaustive-partition q)
(non-exhaustive-partition r)

Here, p, g, and r are partition indicators. Partition indicators support two operations.
First, they can be tested for equality. The syster ~an determine that male-person and
female-person are in the same partition with respect to person, but that old-person
is in a different partition. The other operator is partition type: p and q can be declared
to be exhaustive partitions, while r is non-exhaustive. The current implementation of
KODIAK provides two user interfaces (one textual, the other graphical) to make such
declarations easy. As an implementation detail, partition indicators were implemented as
integers, rather than symbols, since all that is important is that they be atomic.

While this implementation was reasonable and worked adequately, the introduc-
tio~ »f a new data type, partition indicators, tended to complicate code that woula other-
wise be more straightforward. Therefore, a second implementation was tried which
made use of differs links raiher than partitior: indicators. To duplicate the information
given above in this implementation, the following assertions would be used:

(deminate person male-person)
(dominate person female-person)
(dominate person old-person)
(dominate person young-person)
(dominate animal elephant)

(differs male-person female-person)
(differs old-person vsung-person)
(dominate animal other-species-cf-animal)
(differs elephant other-species-of-animal)

Partiticns are indicated by enumerating each pair of ditfering members. Non-
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exhaustive partitions are indicated by inventing a new absolute, in this case other-
spec:Les-of-animal as a catch-all. The disadvantage of this approach is that it requires
on the order of ° differs links for a partition of n objects, while the previous approach
requires only n assertions. In practice, partitions are small, and the second approach
seemed to perform just as well, although no formal benchmarks were taken.

For relations and aspectuals, the hierarchical relationships are even more compli-
cated than they are for absolutes. Suppose we would like to represent the fact there is a
concept called event that can have any number of participants. Furthermore, an
action is a kind of event, where the actoxis one of the participants,anda talk-
ing is a kind of action where thz talker is the actor. There may be other partici-
pants in an action besides the actor, but there can be no other actorsina talking
besides the talker. Participant dominates actor, which in turn dominates
talker, but we say that talker specializes actor, while actor does not specialize
participant. [n other words, the talker is the actor, but the actor is only a participant.
This is diagrammed below in Figure 2. The (s) attached to a D link indicates specializa-
tion, while the lack of an (s) indicates a non-specializing link. Specialization is imple-
mented with the exhaustive/non-exhaustive partiioning mecnanism described abcve.
The ability to represent this differeiice turns out to be important for handling prepositions
and other case-relation reiated problems, as we shail see in chapter 5.

participant

-

D

/

actor D

4

/

talker talkee

Figure 2: Specializing and Non-Specializing Dominate Links
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The Instanice Association

The other primitive hierarchical association is instance. The assertion
(instance elephant Clyde) means that Clyde inherits all relations and aspectuals
from elephant, and furthermore all the constraints on the aspectuals of elephant must
hold for any of the fillers of the inherited aspectuals of CIyde.

Inheritance through the dominate/instance hierarchy is transitive; every concept
that is dominated by elephant is also dominated by animal, and every concept that
dominates animal dominates elephant. If Clyde is an instance of elephant, then
Clyde is also an instance of every concept that dominates elephant. However, it is not
the case th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>