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§ Abstract '
]
. U
This report covers the last year of a contract which studied low :
)
L)
E voltage degradation, the TSPC/DC spectra of Ba‘l‘103. and the dielectric and i
8
. electrical properties of Ba’I‘iO3 composites (polymer and air) and the first ":',
P ™
) .
‘ one and one half years of a project which focussed on 1) measurements on K
+
'.
! commercially available relaxor type dielectrics, and 2) organometallic .
¥ )
processed relaxor dielectrics synthesis, fabrication and measurement. The ;
2
§: measurements to be made are electrical conductivity, dielectric properties, "_,'.
e
ﬂ' and current-time voltage behavior as a function of chemical composition, \
ol o
" temperature, and humidity. 8
:
o\: 4
2
Recent Results and Achievements \
»
EE Our program has progressed to the point where a number of our initial E
y goals have been achieved. The most significant accomplishments are '.:
‘ descibed below. o
d‘
. N
High Voltage Degradation of High Purity BaTiO3 ;
! 1. The stoichiometric composition exhibits the lowest current levels in %
' :..
i all fields and at all firing temperatures. This leads one to suspect that ;
.- R
R the second phase, present from the excess barium titanate, contributes to :
'% the degradation. X
()
2. Compositions with barium/titanium ratios of greater than one exhibit '!,
)
ﬁ higher current levels and enhanced degradation compared to the excess ‘:":
o titanium compositions. This is contrary to some of our previous results o
2, N,
K but is probably due to the hydration of the BaZTiou phase, which is :
0
;? present, because barjum is essentially insoluble in BaTiO3. N,
A [
" »
o <,
o,
¥ :
-,
n »
_L‘_
L T s 0 ASRS qf'i‘ - V’.'\"':'\'.'\J\ -\J‘. I-'\I ", J J‘.“_V'\f e -'\. .'\ \q \.r;- ;.r IS .- Sl ".“_'. .‘ ¢ '-' N N W DN J' :"




' 3. Compositions with barium/titanium ratios less than one exhibit higher ,{Ea
current levels and enhanced degradation compared to the stoichiometric ?.§
composition. i}ﬂ
y, Decreasing the density or increasing the porosity results in lower fkﬁ

; current levels and improved degradation resistance. The specimens with the Sg
highest porosities are the best. Theée do not degrade even with fields as 1&*

¥ high as 20 kV/cm at which breakdown occurs. From these results, we tﬁt1

oo

; conclude that surface conduction with the presence of water leads to higher Ezzi
leakage current in porous capacitors, and if water is excluded, no .

. increases in leakage current are observed. E%i

5 5. Increasing the applied field increases the initial degradation rate. E' ?-

. In many instances, a shift from ohmic to nonlinear voltage dependence is e

ok

: observed as the field is increased. E:{

24

' i\
High Voltage Degradation Studies

3 1. The current-voltage behavior ranges from ohmic to voltage dependences i;:

< greater than that predicted by the space charge limited current. There sksg
does not appear to be any distinctive power law that depicts v

) o

. current-voltage behavior. The only trend that we have observed is that the g&i

} capacitors, which are most reliable, are those closest to ohmic behavior. E;:t
2. The temperature dependence of stable capacitors yields an activation l v

¥ energy greater than 1 eV, whereas capacitors which degrade, have an iﬁt

$ activation energy less than 1 eV. In general, as the field increases, the ?€§

| activation energy decreases as the degradation rate increases. ‘j’

F 3. In order to obtain reproducible results, capacitors need to be &Jti
reequilibrated between I-time runs, particularly those that degrade. We g’~

]

- found that equilibration at 1000°C for eight hours is required to achieve ~z
~ LN

reproducibility. If this is not done, when the voltage is increased, the 53’
LGN

. - B
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current starts at about the same level that it finished with the previous
measurement. The implication that we get from this result is that
life-testing our parts at high voltages to qualify them may start them on
the road to failure. Perhaps, we should try to make the MLC's good enough
so that the "burn-in" step can be eliminatedf This in turn would eliminate

the suspected premature accelerated failure resulting from testing.

Low-Voltage Degradation Studies

1. None of the 1400 encapsulated and 600 chip commercial capacitors
tested failed the methanol test. We detected failures in some chip
capacitors, which we knew had gross flaws that were in the form of delams
and thermally created cracks. We conclude that the methanol test is only
sensitive to physical flaws, which allow the methanol to penetrate to an
active region of the capacitor. We suspect that this test is not very
sensitive and should be used with caution. Perhaps soaking in a salt
solution would be a better screening method.

2. None of the 1100 capacitors tested with an 85/85/1.5 VDC developed the
classic low voltage shorts, and 3.6% of the capacitors decreased in
resistance by two orders of magnitude or greater during the life tests. It
was evident that gradual degradation of the dielectrics was occuring during
the tests. These capacitors, when subjected to the thermally stimulated
current test, behaved as conductors rather than capacitors.

3. MLC's exhibit non-ohmic I-V behavior. The current levels for all of
the MLC's were non-ohmic. It appears that this may be related to their
high voltage degradation.

4. a) The methanol test is only sensitive to physical flaws which

penetrate from the surface to an active region of a capacitor.
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b) Low voltage failure was induced into multilayer ceramic capacitors
by the introduction of micro-cracks reaching from the surface through the
electrode layers by means of thermal shock and then exposing the capacitors
to a low voltage bias and a humid atmosphere. Results indicated a simple
electrolytic solution mechanism may be the conduction mechanism, and that
the proposed dendritic growth mechanisms may be more complex than
necessary.

One of the most significant observations was that in the presence of
moisture the leakage current followed a "saw tooth" pattern very similar to
that observed for porous BaTiO3 suggesting that continuous surfaces between
anode and cathode are necessary for the appearance of the low voltage
failure mechanism.

The cracked capacitors in this study showed the "classical" low
voltage failure characteristics, i.e. the presence of structural defects
and the tendency to clear under high bias.

In several notable instances, a "sawtooth" pattern of failure was seen
to occur. This "sawtooth" pattern is unique to this study, and has a
period of approximately 30 minutes.

No evcess electrode material was found anywhere in any of the cracks
examined.

Any time the moisture was removed from the capacitor, either by
manipulation of the atmosphere or by heating the capacitor, failure
immediately ceased.

The electrode material, Pd, is practically insoluble in water.

Low voltage did not occur at 0.5 VDC bias, but did occur at 1.0 VDC
bias, establishing a failure threshold between these two voltages.

The results indicate that dendritic growth is not the cause of

low-voltage failure. The period of the "sawtooth" is 30 minutes, too short
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,E a time for Pd dendrites to grow. Dendritic growth also requires a .'&
! [ "ltv
supersaturation of electrode material in solution and low temperatures, ;gﬁ
§ et
both of which were unavailable conditions. Furthermore, failure ceased to -
(38
a
¥ occur immediately after the moisture was removed from the atmosphere. If ﬁ\é
\ 3 '1
y dendrites were providing conduction paths, removing their growth mechanism 451
e
. shouldn't remove already existing dendrites. 3$‘
. 9 4 .
" 'y
It is much more likely that failure occured due to an electrolytic 5&
( >
[} -
conduction mechanism. Any soluble iapurity ions present could conceivably 5;1
L3
. contribute to breakdown. Also, water electrolysis at 0.87 VDC, which -
W
agrees with our threshold location between 0.5 and 1.0 VDC. At higher ﬁ&
s
" NEN -
. voltages the increased currents could generate enough localized heat to i}v
[) h
evaporate the aqueous conducting medium. This also explains the "sawtooth"
i vy
effect observed. et
hot
o2
TSPC/TSDC Measurements >
-\
1. TSPC/DC can distinguish between "good" and "failed" units. :ﬁ:
D N
LY
2. TSPC/DC can detect tendencies towards failure and if the unit {is ;%\
4 already degrading. e
&
5 3. TSPC/DC can detect variations in chemical composition which lead to ﬁ;”
w "_J"
k) i1 d (
nonuniform Curie temperatures. This technique is also sensitive to phase ~
" transformations. 'm'
Y Qiﬁ\
y, This technique is an excellent indicator of stoichiometry of BaT103. P
| J
"
? This is because the microstructure is very Ba:Ti ratio sensitive, and the )
" TSPC/DC technique is sensitive to lattice strain and domain clamping. ﬂ\‘
vy o~
5. Thermally stimulated current measurements by themselves cannot ﬁ:
AN
) PO
" consistently predict failure. This technique does offer information on §~
. failure but would not serve as a primary screen. FvQ
-
: 5
n:‘.l ¢
» .J 1
"~
-8~ )
&
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6. Thermally stimulated current measurements cannot detect internal
flaws, such as cracks, delams, and pores. It appears that the polarization
mechanisms in the high K materials are so large that the charge absorption
and desorption from them masks any charging or discharging activity that a
physical flaw might exhibit.

T. Thermally-stimulated polarization/depolarization current (TSPC/DC)

measurements were made on high-purity doped and undoped BaTiO, as a

3
function of applied field, heating rate, dopant level, and Ba:Ti ratio.
The form of the TSPC/DC curves is dependent upon both the resistive and

ferroelectric properties of BaTiOB. For TSPC spectra, current peaks are

Py
.'.;‘..J~ 4

N % e VY ¥ )1

exhibited due to the spontaneous polarization with changing crystal

<.,
v r

+

structure. In particular, whether the phase transition is first or second
order influences the existence and magnitude of the current peaks.

TSDC measurements are essentially dynamic pyroelectric measurements
and as such are useful in determining the pyroelectric coefficient and the
magnitude of the spontaneous polarization. The TSDC current did not

approach zero in the paraelectric region for some of the specimens,

5
N3y
R
3

<
LY

indicative of an anomalous polarization present due to the migration of

lr.A'ﬂ‘

charged oxygen vacancies. This information is useful for analyzing DC

oy’

- ;..’ .

CN

electrical degradation.

v
Ay
’

Variation in the Ba:Ti ratio affects the grain size distribution, and
hence, the ease of domain switching. This directly affects the presence
and magnitude of current peaks. The Ba:Ti ratio also affects the
activation energy of conduction, resistivity, and degradation behavior, all
of which are reflected by the magnitude of the TSPC/DC current in the

paraelectric region.
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BaTiO, Composites

3

In this investigation composites of unconsolidated BaTiO., powder

3
(>99.9% purity, <0.1um crystalline size) or partially-sintered BaTiO, with

3
either air or polymer were studied. The purpose of this study was to
measure the dielectric and electrical properties of the composites, and to
determine how well these properties fit existing theories concerning
fine-grained permittivity and dielectric mixing rules.

The microstructures of the composites were characterized by scanning
electron microscopy and density measurement. A stress-structure model with
both the Niesel-Bruggeman and Bottcher mixing rules is proposed to explain
the observed dielectric behavior of the composites in terms of the

microstructure. Tne results showed the enhanced dielectric constants of

the composites were obtained by the stress enhancement.

Relaxor Behavior of La-Doped Lead Zirconate Titanate

An extension of the electrical and mechanical phase diagram of
La-doped PbZr‘OB/PbTiO3 (PLZT) has been made using samples of 8 at.% La
(PLZT-8), 10 at.% La (PLZT-10), and 12 at.$ La (PLZT-12). Magnetically
driven mechanical resonance curves for thin reed samples were recorded as a
function of temperature and La concentration. The resonance curves were
analyzed using an empirical expansion to the third order spring constant to
accomodate the strongly nonlinear response. The results indicated that the
elastic softening anomaly in PLZT-8 fell significantly below the maximum in
the dielectric constant, but coincident in temperature with an observed
"bump" in the dissipation factor. The elastic anomaly in PLZT-10 and

PLZT-12 fell near the maximum in the 100 KHz dielectric constant, and no

"bump" was observed in the dissipation factor. The results of thermally
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stimulated current measurements showed that under an electric field of 500
V/cm depolarization occured almost linearly from the poled ferroelectric
state to the paraelectric state. The polarization goes abruptly to zero
near 410°K for all compositions with the field applied. The field free
depolarization curves for all compositions extended beyond 410°K. The

endpoint was not observed. (Appendix E)

Preparation of Relaxor Dielectrics

1) Polymeric Synthesis of Pb Mng209

3

The results show that single phase powders of about 50 nm crystallite
size can be prepared at temperatures as low as 500°C. This preparation
technique is based upon having the individual cations complexed in separate
weak organic acid solutions. The individual solutions are gravimetrically
analyzed for the respective cation concentration to a precision of 10-100
ppm. In this way it is possible to precisely control all of the cation
concentrations, and to mix the ions on an atomic scale in the liquid state.
There is no precipitation in the mixed solution as it is evaporated to the
rigid polymeric states in the form of a uniformly colored transparent
glass. This glass is calcined to yield powders which are both homogeneous
and single phase with well controlled cation stoichiometry. The synthesis
process is described in Appendix F and some resulting electrical,
microstructural and crystallographic characteristics were obtained for
sintered capacitors made with powders derived from this synthesis.

2) Solid State Synthesis of Pb_MgNb

3M18ND504
The sintering behavior and microstructural development of dielectric

cergmics based on Pb(M81/2"”5’2/3)03-Pb'I‘103 solid solutions are greatly

affected by the formation of a liquid phase at =1290°C. Prolonged

sintering at and above this temperature gives rise to an excessive PbO loss
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and the resultant variation in composition leads to an inhomogeneous
microstructure. The inhomogeneity is characterized by the formation of a
dense, localized region containing a PbO-rich liquid near the surface with
a porous interior region in the bulk of the sample.

The synthesis of perovskite Pb(Mg1/3Nb2/3)03 from an equimolar mixture
of Pb3Nb208 and Mg0 was studied by solid-state reaction techniques. An
addition of 1 wt.% excess Mg0 to the stoichiometric composition enhances
the formation of the cubic perovskite phase. The absence of free Pb0 in
the initial starting materials minimizes the volatilization loss during
firing, thereby reducing the possibility of any compositional change and

resulting in a substantial improvement cf the perovskite phase purity over

the conventional mixed-oxide processing.

Pl

A

L2d o~

5

Status of Individual Projects

4

5

¥

TSPC/DC Measurements

L3

"r e i
I. L}

»
e

These measurements were originally undertaken to see if this technique

KA

AP

A -
v

could yield information on the degradation process in ceramic capacitors.

7

,,
o

The results have shown that the polarization mechanisms in the high K

PRA

materials are so large that any contribution that degradation can make is

not detectable. Therefore, these measurements have been suspended.

(Appendices A and B) g

Dielectric Composite Studies PN

These studies were undertaken in order to evaluate the relationship of o)

porosity to dielectric properties. These studies were completed in early

5N

2l

1986 so no further work is being done. (Appendix C)
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i; Low Voltage Degradation Studies gks

E This work was completed in late 1986 when we were able to show that *:':::'
A

‘ low voltage failure was related to physical defects such as cracks and 'ﬁﬁ

porosity and the presence of water. No further work is planned in this ;ﬁt

area. (Appendix D) :fﬁ

e

Relaxor Degradation Studies Egﬁ

These studies are in progress using commercial materials from TAM :;%

Ceramics on DuPont and laboratory prepared materials. ’§>

The long term stability of ceramic capacitors is of a great importance :‘g

to the electronics industry. Presently, two mechanisms of degradation ;#;

failure have been identified. One is aséociated with an intrinsic d§i

4 mechanism and the other an extrinsic mechanism. This research program is ig%

’ directed at developing an understanding of the two failure mechanisms in \ﬁg
~

{ both BaTiO3 and relaxor based dielectrics. To facilitate this research we L

have been making extensive electrical measurements and microstructural

. ’

N 2%
N evaluations on both commercial and laboratory-prepared specimens. The th
0y

measurements being performed include: ﬁy.
1) Current as a function of time, temperature, and applied field to r \
L] " t
evaluate both low and high voltage degradation. Y
) g{}
2) Destructive microstructural evaluations. #_
Tt

. 3) Thermally stimulated polarization/depolarization current (TSPC/DC) 2*;
v

measurements. Ty
Vo't
Q ,'o.,
) Relaxor Preparation ;»K
: 253
These studies are in progress and involve both polymeric precursor and {}\
QM
mix oxide preparation techniques. The most important results are contained A
‘. o

.l
{ in Appendices F through K. ::f-
! e
e
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The polymeric precursor preparation technique is very promising since
it offers the opportunity of making capacitors at temperature below 950°C

and allows the preparation of film capacitors from organic films obtained

by spinning the polymer precursor onto substrates such as silicon. This
work is therefore being expanded with the intent of gaining an

understanding of the polymer precursor process.
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ABSTRACT

A new method of studying ferroelectric materials has been characterized
through measurements on BaTiO3: Thermally-Stimulated Polarization/
Depolarization Current (TSPC/DC) measurements. TSPC/DC spectra yield
information concerning the temperature and order of phase transitions, the
degree of domain reorientation during heating and poling, the pyroelectric
coefficient, DC electrical degradation, resistivity, and the activation energy of
conduction, as well as the influence of nonstoichiometry and impurities on
these properties. Measurements were performed on nonstoichiometric,
Sr-shifted, Zr-shifted, donor-doped, and acceptor-doped BaTiO3, as well
several commercial capacitors.

The form of TSPC/DC spectra in terms of current magnitude, the presence
of peaks, and current reversal is dependent upon the resistivity, and change in
the polarization during heating. Current peaks are observed at the phase
transitions, the magnitude and sign of which are dependent on the difference in
the spontaneous polarization of the two phases, and the order of the phase
transition.

TSC results showed the ferroelectric-paraelectric phase transition in
Ba, TiO5 is first order only for x < 1.000, if grain sizes are greater than several
microns. Increasing the field increases the rhombohedral-orthorhombic phase
transition temperature by 3.4 x 10-3 K-cm/V, decreases the orthorhombic-
tetragonal phase transition temperature by 4.8 x 10"3 K-cm/V, and increases
the tetragonal-cubic phase transition temperature by 1.3 x 10-3 K-cm/V. Phase

transition temperatures are also affected by the grain size; fine-grained




materials shift the phase transition temperatures an amount predicted from the

magnitude of the internal stress and Devonshire theory.

Diffuse phase transitions observed in Zr-shifted and Nb-doped BaTiOg,
and the temperature-independent dielectric constant of commercial capacitors

are due to compositional inhomogeneities, as evidenced by the small

fluctuations in current during depolarization.

TSPC-1 and TSPC-2 spectra showed nonstoichiometry and larger grain
sizes increases the conductivity, decreases the activation energy of conduction,
and results in enhanced degradation. Those specimens which degrade exhibit
greater current levels in the TSPC-2 spectra, and a non-zero pyroelectric signal
in the paraelectric state, indicative of an anomalous polarization due to the
migration of V.

Ba4.,Sry TiO5 compositions for x = 0.25, 0.30, and 0.35 exhibit
anomalously high dielectric constants at the Curie point, the maximum being

29,000 for the x = 0.25 specimen. This behavior is attributed to a "pure” second

order transition for which the permittivity approaches infinity on a theoretical

basis. Slight nonstoichiometry drastically reduced the K to "normal” levels.
Donor and acceptor doping had a marked effect on the ferroelectric

behavior in terms of altering the phase transition temperatures and the

resistivity, both of which are clearly resolved by the TSC spectra.
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TSPCIDC MEASUREMENTS ON BARIUM TITANATE

Wayne Huebner

Materials Research Laboratory
Pennsylvania State University
University Park, PA 16802

Abstract

Thermally-stimlated polarization/depolar-
ization current (TSPC/DC) measurements vere made
on high-purity doped and undoped BaTiO4 as a
function of applied field, heating rate, do
level, and Ba:Ti ratio. The form of the TS
curves is dependent upon both the resistive md
ferroelectric properties of BaTi0y. For TSPC

spectra, current peaks are exhibited due to the
change in in magnitude and direction of the
spontaneous golu'ization vith changing crystal
structure. [n particular, vhether the phase
transition is first or second order influences
the existence and magnitude of the curremt
peaks.

TSOC measurements are essentially dynamic
pyroelectric measurements and as such are useful
in determining the pyroelectric coefficient and
the magnitude of the spontaneous polarizatioen.
The TSDC curreat did not approach zero in the
pazaslectric regioca for some of the specimens,
indicative of an anomalous polarization present
due to the migration of charged oxygen
vacancies. This information is useful for
analyzing DC electrical degradation.

Variation in the Ba:Ti ratio affects the
grain size distribution, and hence, the sase of
domain svitching. This dizectly affects the
gnonco and magnitude of current peaks. The

:Ti ratio also affects the activation enwrgy
of conduction, resistivity, and degradation
bebavior, all of vhich are reflected by the
magnitude of the TSPC/DC current in the
pazaelectric region.

Intreduction

In thermally-stimulated processes, a
particular property of a material is measured as
a function of temperature, usually from a "lov"
temperature vhich freezes in processes of
interest The system of interst usually exists

in a non-equlibzium state (ie. poled), vhich is
achieved by excitation at the lov temperature or
during cooling. Specifically, TSC measurements
involve monitoring the current passing through a
material subjected to a DOC stress during
heating.

o oy
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Harlan U Anderson

Ceramic Engineering Department
Unaversity of Missouri-Rolla
Rolla, MO 65401

TSPC/DC messurements have been extensively
used for ctudxmq charge transport in in
insulators ! Alkali louon and dipolar
relaxation times in glugu vacancy dipole
feorientation in baljdes®, point defect energy
levels in insulators”, and energy levels of
trapping and roco-bmuon centers in
semiconductors have all been chnnotoraz
TSPC/DC techniques. Chen® and Braunlich ptovxdo
complete revievs of past uses of TSC
seasurements. The purpose of this study was to
determine if TSPC/DC measurements vould be
useful in the study of ferrcelectric materials

Experimental Procedixe

The BaTiO4 povders utilized in this study

vere prepared by an organometallic tochniquo’
Disc specimens vere pressed and subsequently
sintered in air at various temperatures and
times in order to precisely control the
microstructure. All discs vere electroded using
an unfritted platinum paste.

The apparatus used for the TSPC/DC aad
dielectric measurements is shown in Figure 1.
It consists of an atmosphere-controlled,
stainless steel chamber vhioh houses a removable
inpner core assembly. Heating tape vrapped
around the bottom of the tube and connected to a
Eurotherm 211 controller allovs precise control
of the heating rate. A computer-controlled HP
4140 picoammeter/DC voltage source vas used for
current monitoring. Current senmsitivity for the
systen vas 10°** smps. Capacitance and
dissipation factor data vere collected at 1 kiz
using a General Radio 1689 RLC digibridge.

Figure 2 illustrates the sequence used for
the TSC measurements, and is described as
follovws:

1.1as Polarization: After a vacuum bake-out
at 165°C and cooling to -1009C, a voltage
vas applied to the specimen, and the
current monitored during heating at a
constant rate Monitored temperature
range vas from -100 to 165°C. This
current spectra is denoted TSPC-1

2.2nd Polarazation: After the first polari-

zation, the specimen vas immediately
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quenched to -100°C with the field applied. Results and Discussion .
the Gurciut sonrrored e 1a pc 1 ot X
ufceat spectra vas dencted TSPC-2 currene domeiey Cepavior is plotied 4y /- 109 3

) . current corresponds to resistive currreat, ie:
3.Repolazization: Following TSPC-2, the electron flov tovards the anode. Negative
:m;.::p I::dq“::h:g;:‘,p;i:go(t:h::;?oi:.vu current corresponds to electron flow in the
. od, and the current monitored durisg opposite direction, indicative of the charging

X : or displacement current vhich flows during
heating as before. This currest spectra polarization of the ferroelectric. In a TSPC
vas denoted TSDC.

experiment then, the total current floving at
any time is:

"‘b.rs"-:.' N

-
-

Heating rates varind from 2.0 to
8.09K/minute, and applied fields ranged fros

250-2000 V/ea. Jp(T) = JIp(T) + Ip(T) (1) R
vhere Jp(T), Jp(T), and Jp(T) are the total, N,
displacement, and resistive current densities f:
respectively. During a TSDC experiment, 2o ¢
tield is applied and the current density o
becomes:
dPg  dPg dT B3
Jp=s == =& - - (2) :".‘t
s
dt dT dt e
.::,‘.
vhere dPg/dT is the change in spoataneous L
polarization vith temperature (the pyroelectric ~F
coefficient), and dT/dt is the heating rate. ~
From a TSDC measursment the spoataneocus \ﬁ
polarization is determined from: :.
ar e
S
Pg -[’D‘T) - d7 (3 A
. L dt
L] k
S 3 G:
. Vesuum Supoty L Stainiess Sleet Chember Figures 3 and 4 contain the dielectric and e
palbenhagiie " apeen Frame TSPC/DC bebavior for a stoichiometrioc BaTiO, b
o Onng o Soring-Loaded Screw specimen vith a grain size of 10 microns and 96% A
. Helom iniet theoretical density. The dielectric comstant E.,
exhibits typical behavior, with mexims at the ‘
three phase transitions. TSPC-1 initially
Eiguce L. TSPC/DC ) exhibits positive curreat in the rhoemhohedral WO
Bessucement apparatus region; the dipoles are "frozem-in" and unable NS
to align vith the field. As the specimen oY
undergoes a phase transition to orthorhombic *o o
a I sSymwetry a peak is observed, the magnitude of D,
o | vhich is proportional to the change in oy
* | spontanecus polarization and the degree of
° : poling whch occurs for a poling field of 1000 :
: V/em. A transition to positive curreamt occurs e
. as the resisitive component of the current again e
w | | eee s Tarc. 3 reca ; ta0¢ dominates, vith a similiar current reversal and e
H peak at the orthorhombic-tetragonal phase :'2
s ’ transition. ROy
S /'_ X
H i I \‘l/ The behavior of the TSPC curve is of -
00e ; particular interest at the Curie temperature. ~
| Specimens with first order ferrcelectrie- e
: paraelectric transitions exhibit a large g
i negative peak as the spontanecus polarization .:-.
N —e changes discontinucusly to zero A specimen %
undergoing a second order transition does not v‘
- exhibit a peak, as the Ba:Timl 005 speecimen in a
Ligute 2. TSPL/OC measurement sequence Figure 5. the spoatanecus polarization changes
A
o
i\-
e
e
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contanuously to zero. Figure 6 summarizes this
behavior.

The magnitude of TSPC-1 1n the paraelectric
region is proportiopal to the resistivity of the
material, p(T), vhich is found by dividing the
applied field by the current density. The
change in curzeat density with temperature is
exponentially proportional to the activation
energy of conduction, vhich can be calculated
assuming Arrhenius behavior. The activation
energy for the BaTiO4 specimen of Figure 4 is

1.0 oV, vhich agrees vell vith published data.
This activation energy is composed of Loth the
carrier conceantration and mobility terms.

The TSPC-2 of Figure 4 is similiar to that
of TSPC-1, but reflects the fact that the
specimen is already in a poled state prior to
heating.

The TSDC spectra contained in Figures 4,7
and 9 simply reflect the pyroelectric nature of
BaTiQ4. Dividing the current density by the

heating rate yields the pyroelectric
coefficient. These results agree well vith
those published earlier by Perls et.al? for
polyorystalline BaTiOy. Figure 8 exhibits the

degree of poling achieved for fields from
250-2000 V/em. Increasing the poling field not
only increases the discharge current during
depolarization, but also decreases the
temperature at vhich the orthorhombic-
tetragonal phase transition occurs (Figure 9).

Figure 10 contains the TSDC spectra of
excess barium compositions vhich exhibit DC
electrical degradation at 500 Viea8. Increasing
the amount of excess barium increases the
degradation rate, vhich is believed to be due to
charged oxygen vacancy migration. The
accumulation of oxygen vacancies at the cathode
results in a quasi- space charge accumulation
referred to as an anomalous polarization. This
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i etfect is clearly illustrated in Figure 10, the s
i pyroelectric current does not approach zero as -
- Y expected in the paraelectric region. Instead -
’ g the current continues to increase, the effect CE
i » being larger in those specimens more prone to Ly
3 g- degradation.
"
o Conclusions oy
“ o i‘: ,
s TSPC/OC measurements are useful in o
' characterizing the properties of ferroelectric s
1" materials. Pyroelactric coefficients and the DR
. spontanecus polarization are easily obtained vl
trom the TSOC spectra, vhile the TSPC spectra -
78 W8 8 W8 1% 28 158 w8 ae are useful in the analysis of phase transitions e
. and domin switching. The purpose of this paper o
- TEMPERATURE (°K) was to present the characteristic results one e
obtains in TSPC/DC measurements, and is by no R
faguce 8 TSOC behavior of BaTiO, as a function means complete in terms of quantitative _ RN
of applied poling field analysis. A full treatment of the mathematical R
poiing field. agpeots and background may be found elsevhere -
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University of Missouri - Rolla
Rolla, MO 65401

ABSTRACT

In this investigation composites of unconsolidated BaTiO, powder
( 2 99.9% purity, < 0.1 um crystallite size ) or partially-sintered BaTiO
with either air or polymer were studied. The purpose of this study was to
measure the dielectric and electrical properties of the composites, and to
determine how well these properties fit existing theories concerning fine-
grained permittivity and dielectric mixing rules.

INTRODUCTION

Recent investigationsl’z on high-purity BaTiO, have shown that partially-
sintered specimens with sub-micron grain size and aigh porosity showed good
resistance to dry atmosphere electrical degradation. However, porous spec-
imens exhibit low dielectric constants, low breakdown strengths, and high
water permeability. It is expected that filling the porosity with a polymer
would improve the breakdown strength and water impermeability. The purpose
of this investigation was to measure the dielectric and electrical properties
of composites made from BaTiO, and either polymer or air, and to determine
how well these properties fit existing theories concerning fine-grained
permittivity and dielectric mixing rules.

Numerous rules appear in the literature which predict the dielectric
constant of mixtures depending upon the relative volumes and permittivities
of the constituentg, as well as their shape and continuity. Articles by
Reynolds and Hough”, Meredith and Tobiaa“, and Van Beek” review the applica-
tion and validity of most of these rules.

Niesel-nruggemln6 found composites to obey:

- ' oo 2 ]
K, =% ((2Ep - B) + ((E] - 2E.)° + BK;R,)™) (1)
where: K, = composite dielectric constant !P - lel + VZKZ
Kl = dielectric constant of phase 1
K, = dielectric constant of phase 2 E'= V1K, + VoK
Vl = volume fraction of phase 1 P
Vz ® volume fraction of phase 2




s PE O EmR )

lottcher'|7¢qu¢tion has been found to apply to non-dilute systems and
is given by,

KC-Kl-vfz_;i (2)
K, 2 7%, - K,

These particular mixing rules are of interest due to their applicability
to the current experimental data. '

Partially-sintered BaTi0, and unsintered BaTiO; powder exhibit unusual
dielectric properties believeg to be due to a surface layer effect. Anliker
et al.8, vhile studying depolarization effects in very fine particle siz
BaTiO3, observed a broad Curie transition which they attributed to a 100
thick tetragonsl surfuc; layer which persisted well above the Curie tempera-
ture. Both C¥6noveth's observation of assymetric pyroelectric effects and
Triebwvasser's observation of birefringence of BaTiQ, single crycitllgurf-
aces have been explained by space charge layers. Numérous studies®’” of
the switching time and dielectric constant of single crystals as tsfunction
of thickness indicate a nonferroelectric surface exists. English™™, using
electroYanirror microscopy, found the surface of BaTiO, to be ferroelectric.
Goswami explained the absence of ferroelectric behavior in unsintered
BaTiO3 by a nonferroelectric surface layer. Thus there appears to be agree-
ment concerning the existence of a surface layer, but its exact nature is not
clearly understood.

Based solely on the existence of a low dielectric constant surface layer
one wvould expect decreasing the grain size of polycrystalline BaTiO; would
decrease the overall dielectric constant. However it is well known that a
high dielectric constant can be obtained 50: sintered, dense, approximately
luym grain size BaTiO3. Numerous stud;enz 23 pave shown room temperature
permittivities can range from approximately 3500 - 600G0. For single crystal
BaTiO4 the room temperature permitﬁivitiel are 4000 and 170 aslong the a and ¢
axeg respectively. Buessem et al. have proposed that the high permittivity
in fine-grained BaTi0, arises from the absence of 90° twinning which gives
rise to high internal stresses. This pertains only to sintered, polycrystal-
line spicimens in which grains are constrained by the surrounding matrix.
Goswami 3 has shown that unsintered powder of comparable density to gingered
specimens does not show the anomalously high permittivity. Goswamil?+2 also
observed that progressive heat treatment of BaTiO. results in a gradual in-
crease in permittivity and appearance of ferroelectrcity. He ascribed this
to the annealing out of lattice defects which removed the influence of a low
dielectric constant, nonferroelectric surface.

It is not clear from the literature if sub-micron grain size BaTiO, can
exhibit a similiar high permittivity at room temperature. Graham et al’
observed hot-pressed, sub-micron grain size BaT103 exhibited a dielectric
constant of 3000, but were unsuccessful in sintering specimens with sub-mi-
cron grain sizes. One of the goals of the present work is to partially-sin-
ter high purity ( > 99.9% ), fine-grained ( < 0.lum ) BaTiO, to study the
dielectric properties of sub-micron BaTi0,4.

EXPERIMENTAL PROCEDURE

BaTi10, powders utilized in this_satudy were prepared by an organometallic
technique 2£rlt described by Pech1n127. Resulting powders are chemically
homogeneous, uniformly-sized, and spproximately 0.lum in diameter. X-ray
povder diffraction patterns showed line-broadening effects but revealed the

powder to have tetragonal symmetry.

Specimens for measurement on unsintered 551103 compacts were pressed in
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a8 ¥ inch diameter stainless steel die at various pressures up to 75000 psi
without the addition of a binder. Those specimens used for the sintering
study were pressed at 50000 psi with the addition of 8 weight % binder.

- Green densities were approximately 62% theoreticsl.

Porous specimens were prepared by partial-sintering at temperatures from
500 - 1000°C, for times of 1 - 4 houre in a SiC muffle tube furnace. Typical
density and shrinkage curves are contained in Figures 1 and 2. Figures 3a-b
contain the corresponding SEM micrographs. The process of preparing polymer
composites from these specimens is as follows: 1) Disks are initially dried
for 24 hours under vacuum at 200°C to minimize water vapor. 2) After cooling,
disks are then immersed in a styrene monomer-initiator ( 0.1 weight % AIBN )
solution under vacuum. 3) Initial polymerization is then accomplished by
slowly raising the temperature from 30-60°C over a period of 1zg hours.
4) The polymerization is completed by annealing the disks at 60 C for 48
hours under atmospheric pressure.
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Fig. 1. Theoretical density of specimens sintered
at various temperatures and times..
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Fig. 2. Shrinkage of specimens sintered at various
temperatures and times.
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FRACTURE SURFACES

PARTIALLY -~ SINTERED

Fig. 3a. Scanning electron micrographs of BaTiO3 specimens partially-sinter-
ed at 500, 800, and 900°¢.

Fig. 3b. Scanning electron micrographs of BaTiOy specimens partially-sinter-
ed at 900 and 1000°c.
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The filling efficiency of the polymer into the open porosity was deter-
mined by scanning electron microecopy and density measurements using:

Pe "0,V * 2% (3)

vhere: P " composite density
Pgr Pp " BaTLOs, polymer density

V.. Vb = BaTioa. polymer volume fraction

For all of the specimens studied the polymer filled greater than 95 per-
cent of the total open porosity.

Thin films of polywmer with up to 32 volume percent BaTiO, filler were
prepared by dispersing unsintered BaTiO3 powder into a liquid formed by dis-
solving polystyrene in dioxane. The mixXture was cast onto a glass plate, the
solvent allowed to partially evaporate from 20 - 60 C, and then the film was
heat-cured at 60 C under vacuum. Films from this simple process are approx-
imately 0.010 inches thick.

Air-drying silver paint was used as the electrode material for all the

?& specimens. Capacitance and dissipation factor were measured up to 100 kHz as

.3 a function of temperature using a computer-controlled General Radio 1689 RLC
bridge. Resistivity measurements were made using a Hewlett Packard 4140

. PA/DC voltage source. These measurments were made in a dry atmosphere. DC

,: breakdown strengths were measured in silicon o0il at room temperature.

RESULTS AND DISCUSSION

The 1 kHz dielectric constant of a 170°C, vacuum-annealed, unsintered
BaTiO, compact ( = 60% dense ) is shown in Figure 4 as a function of temper-
ature. The dissipation factor is not shown but is less than 2% over t
temperature range measured. These results agree with those of Goswami as
far as the magnitude of the dielectric constant and nonferroelectric behavior
are concerned. The low dielectric constant can be explained by the existence
of a nonferroelctric surface layer 1-17, . Chynoweth’ categorized the pro-
posed surface layers into two main groups: 1) Space charge or exhaustion
layers in the range of 0.1 um thick, which are generally ferroelectric, and
2) Chemically or mechanically disturbed layers composed of a lossy, low
dielectric constant, nonferroelectric material in the range of 10 2 thick.

— v v — — -y v — -

e}

us 1 (BaTi0, ] 1

210 } {

Ung (ntered Povder J
Iittx

156 4

100 r

DIELECTRIC CONSTANT

790 35 3 335 358 %5 34 3% iis
i TEMPERRTURE ( K)

Fig. 4. Dielectric constant vs. temperature for
an unsintered BaTLO3 specimen.
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The effect of increasing heat treatment on the dielectric constant
ie shown i{n Figures 5-7. The increasc in diclectric constant is related to
the degree of grain growth and sintering. GCrain size vs. sintering temper-
aturc is shown in Figure 8; little grain growth occurs for temperatures less
than 900°C. These results show that 0.1 um grains do display broad trensi-
tions at the Curie point of 120°C and as the grain size approaches 1 um the
peak becomes sharper. Ag can be seen in Figure 9, in the region of constant
grain size the dielectric constant increases with the percent shrinkage.
Thus it appears that fine-grained behavior 1s strictly a function of the
sintering conditions and the degree of shrinkage.

In a previous report of Buessem et 11.2“ it was proposed that the high
dielectric constant of 1-3 um BaTiO, is due to the absence of 90° twinning
which gives rise to internal stress below the Curie temperature. Figure 9
is nearly jidentical in form to the permittivity vs. stress curve derived for
fine-grained BaTiO, by Buessem. Due to the striking similarity this sug-
gests that internal stress in a compact is proportional to the shrinkage
( ie: the degree of intergranulsr contact ), and that the enhancement of
the dielectric constant with increasing shrinkage may be understood in these
terms. It appears that internal stress increases as shrinkage increases
from 1 ~ 1.7%.

When applyiﬁg mixing rule theories to BaTiO, composites with either air
or polymer it is important to distinguish between unsintered and sintered
results, Figure 10 is a plot of log K vs. volume fraction air/polymer for
the BaTi03 specimens studied. Application of either the Niesel-Bruggeman
or Bottcher mixing rules, both of which fit the data, results in zero poro-
sity dielectric constants of 500 and 5000 for unsintered and sintered
BaTiO3 respectively. These results indicate that microstructures with
less than 1 ym grains can produce enhanced dielectric constants.
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As can be seen in Figure 11, addition of & polymer to porous BaTiO, -
enhances the dielectric constant and further develops the peak at the Curie S Y
point. It appears the polymer phase increases the internal stress by inter- :'
granular coupling. The restoration of ferroelectricity due to the polymer NI
phase implies the previously-proposed nonferroelectric surface layer is not :gﬂ
due to a high concentration of lattice defects. ol
Breakdown -treggth measurements were made on specimens which were ;
vacuum-dried at 125°C. DC breakdown strengths for BaTiQ.-air composites < t
averaged approximately 90 kV/cm, and BAT103-polymer cowmposites averaged }?-
175 kV/cm. This effect can be explained by the high resistivity of the {(2
polymer phase, and the elimination of BaTi0, - air interfaces. In low :ﬁk
density BaTiO, the "weak spots” are intergranular pores, which are sssumed
to be the origin of the dielectric breakdown. These potential breakdown -
sources are eliminated by the polymer phase, resulting in an improved -;}:
breakdown strength. The high-resistivity polymer phase also inhibite fﬂ\
Y

electron avalanche. X

The resistivity measurements made on the composite specimens showved 4
the addition of a polymer did not e{ie t the recictiYity. Room temperasture ~—

r T X
" L}

resistivities vere approximately 10°" ohm-cm, and 10"~ ohm-cm at 85°. :(:\

. . %Y.

Not shown figuratively, but the present study has also found the eddi- ﬁh

tion of a polymer to porous BlTiO3 elininates the detrimental effect of {h

water vapor on the dielectric properties. Porous specimens exhibit a pr)
non-linear dielectric constant and dissipation factor i{n the presence of & .

E humid stmosphere, while polymer-impregnated specimens do not. N
{t-
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SUMMARY oS

K 0
" ) 1) BaTiO, with grain size less than 1.0 um cen produce enhanced dielectric :~:
constants. a2

. X
' 2) The increase in dielectric onstant with increasing shrinkage is due to -4,
the increase in internal stress associsted with increasing intergranular .

contact. p'g

: 5

Ry

¥

3) Composite dielectric constants of compacts made from unsintered powder
agree well with either the Niesel-Bruggeman or Bottcher mixing rules;
the zero-porosity dielectric constant extrapolates to approximately 500.

: 4) Composite dielectric constants of partially-sintered ( shrinkage < 5%, ~
no grain growth ) compacts also agree with the Niesel-Bruggeman and Bott~ f:»

A cher mixing rules; the zero-porosity dielectric constant extrapolates to s

5 approximately 5000. ?:

5) Polymer-BaTiO, composites exhibit higher dielectric onstants, lower dissi-
X pation factors, higher breakdown strengths, and impermeability to water

o

as compared to porous BaTiO,. -
'(? .
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APPENDIX D

An Investigation of the Low Voltage Failure Mechanism

in Multilayer Ceramic Capacitors

C.J. Brannon and H.U. Anderson
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AN INVESTIGATION OF THE LOW VOLTAGE FAILURE MECHANISM
IN MULTILAYER CERAMIC CAPACITORS

C. John Brannon and H. U. Anderson

Abstract

Enhanced 1eakage current was induced into multilayer
ceramic capacitors by the introduction of micro-cracks
reaching from the surface through the electrode layers by
means of thermal shock and then exposing the capacitors to a
low voltage bias and a humid atmosphere. Results indicated
that a simple electrolytic solution mechanism may be
responsible for the increased conduction and that the
proposed dendritic growth mechanisms may be more complex than

necessary.
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Introduction ::;-C-

ﬁ In recent years a problem has been identified which

. concerns the insulation resistance failure of ceramic :
::E capacitors which are biased well below their rated voltages. EE
! This is a significant problem, and a research effort has 4
focused on determining the cause of low voltage failures as ::'

»;'- well as developing a testing procedure to effectively detect \.:
’ those capacitors that might be prone to low voltage failures. Y
fw.: It is a generally recognized among observers of low voltage :‘.
i faflure that failure tends to occur only in the presence of E
& moisture and most often in capacitors having such structural o
w defects as voids, delaminations, or cracks extending from the ,-
- surface through the electrode layers. Low voltage failure :.,
does not seem to occur as often in capacitors that are well :5

. encapsulated. Another typical characteristic of capacitors ::f'_?_:
: exhibiting low voltage failure is the tendency for them to
recover, or regain their former high insulatior resistance, ::2:

- when the bias is increased to the rated operating level. f_:f
z The dominant theory of low voltage failure in ceramic :
’ capacitors involves the growth of a dendrite of electrode :,:;-'_
N material that connects two electrode layers and thus produces N
a conduction path creating a short in the capacitor.
According to this theory, the electrode material is dissolved ».‘;
. in the water that condenses in the present defects which ::
g allows the dendrite to grow along the defect connecting two ';SI
. electrode layers.1-6 tpe conducting dendrite grows either by ;.‘E".r '
. electroconduction or by precipitation. This kind of low D
5, voltage failure may be cleared by the application of a i&;
o

oL

[k




voltage high enough to vaporize the dendrite. The dendrite
may also be destroyed by sufficient mechanical vibrations or
thermal energies.

Another proposed mechanism of low voltage failure has to
do with the aggravated -aging' of a portion of the dielectric
separating the electrodes. Here, crystal-phase
transformations occur in the dielectric, causing it to

degrade and increase in conductivity.7

Again, the application
of a high voltage can clear the capacitor. In this case the
high voltage produces a heating effect allowing the crystal-
phases to retransform to their original states. This 'deaging'
effect can also be accomplished by heating the sample.

Other studies®-12 have cited a degraded portion of the
dielectric as the culprit in failure, with the degradation
having possibly been caused by the absorption of water into
the dielectric as protons or hydroxyl ions, or possibly by
the migration of oxygen vacancies. These failures, however,
cannot be cleared by the application of a high voltage,
nor are they exclusively low voltage failures. Failures
associated with degraded dielectric layers also tend to fail
gradually, whereas l1ow-voltage failures typically exhibit an
abrupt faflure. Also, dielelctric layer deterioration can be
reversed by either simply removing the applied field or by

raising the temperature of the capacitor a few hundred

degrees. This suggests a different mechanism at work in low-

voltage failure than in dielectric layer degradation.
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Screening Tests g

R Assuming that low voltage failures tend to be related to e
. the presence of water and structural defects, several tests -}:
have been developed to detect capacitors that might be prone }:

to low voltage failure. Some methodsl‘?'16 developed to :

Z detect the presence of structural imperfections include f
v ultrasonic scann'ing,17 accoustic em'ission,la'?'o vapor ;:
d condensation,8 and methanol testing.s'6 The methanol test is 2
f especially useful since it detects cracks that extend from ;
? the surface through the electrode layers. -"E
{ The other method of screening commonly used involves hey
B extended 1ife testing. The most commonly used 1ife test is f'_:-_,
g the MIL-C-123 test, also known as the 85°C/85% RH/1.5 VDC 3
test, or 85/85 test for shor-t.?"7"9'12 This test has seen E
. extensive usage, and appears capable of detecting lots with EE::
. failure prone capacitors. There is no real convention, E:::
. however, on the length of this test. F:
s E:
’ Experimental Procedure ;'.‘E)
’ (1) Initial Examination of Capacitors c"‘
N The capacitors used in this study were produced by ~
Presidio Components, Inc., San Diego, California. All "

capacitors were composed of a BaTio3 X7R formulation, with r g

electrodes of 1002 palladium and end terminations of ::-?

' gold/frit. The electrode layers were buried approximately 3 '«E
d mils beneath the surface and were separated by a dielectric :‘tf-
Tayers 1.125 mils thick. A cross-sectional view of the .-_\

: capacitor structure is shown as Figure 1. ,_
B2
o
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(2) Initial Examination of Capacitors

To insure their integrity, the entire lot, 128 units,
was subjected to the methanol test. The methanol test was
performed as follows:

1. 10 VDC was applied to the capacitor and after 15

Sl YT W = Tﬂ

seconds the leakage current (I,) was measured.

WL,
N

The capacitor was then immersed in methanol for 30

minutes allowing the methanol to penetrate into

cracks and open porosity.

- .

3. The capacitor was removed from the methanol and
allowed to dry on a tissue to minimize the residual

methanol left on the surface.

[ &

4, Step 1 was repeated immediately after drying and
(12) was measured.
A capacitor was considered to fail the methanol test if 12
‘j was an order of magnitude greater than Il‘ Only 1 capacitor
failed the methanol test at this time, and was excluded from

the rest of the study.

(3) Introduction of Structural Defects
e Structural defects in the form of cracks were introduced
. into the capacitors. After some unsucessful attempts using
an indentation method, thermal shocking was used for of crack
introduction. Trial and error experimentation revealed that
a temperature gradient of approximately 770 K would introduce
4 cracks extending from the surface of the capacitor through

the electrode layers without otherwise damaging the

. properties of the capacitor. This gradient was achieved by
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allowing the capacitors to equilibrate at 850 K (575%C) and
then {mmediately quenching them in 1iquid nitrogen at 77 K
(-196°C). This process produced surface effects, such as
crazing, in addition to several deep cracks per capacitor, as
illustrated in Figure 2.

A total of 42 specimens were prepared in this way. In
order to insure that cracks were indeed introduced into the
specimen by the thermal shocking treatment, each specimin was

once again subjected to the methanol test.

(4) variation of Bias Voltage

The capacitors were subjected to a variation of the
standard 85/85 test in which the atmosphere was allowed to be
either dry or to contain 85% RH, usually in a 4 hours dry,4
hours wet, and 4 hours dry pattern. Several tests were made
with voltages set at 0.5, 1.0, 1.5, 2.0, 5.0, 10.0, 20.0, and
70.0 VDC, producing fields ranging from 0.5 to 70.0
volts/cm.

The purpose of this series of tests was to examine the
influence of voltage on failure. In order to produce a data
base which could be used for comparison with previous work, a
number of trials were made using the standard bias of 1.5
vDC.

Figure 3 shows a schematic circuit diagram for the
low voltage capacitor measurement system. The test apparatus
used 1n this portion of the experiment consisted of a

Keithley 246 High Voltage Power Supply, a Keithley 619

Electrometer/Voltmeter, a Hewlett Packard 85 computer, and a
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furnace in which the atmosphere contained either dry air or
air with 85% RH. The electrometer could accomodate 2
specimens at a time, which allowed a test sample to be
compared to a standard uncracked specimen for each trial.

The entire furnace apparatus was covered by a Faraday cage as

a "noise" screen.

(5) variation in Temperature

The capacitors were once again subjected to a variation
of the standard 85/85 test. This series of tests was made
using the standard 85/85 test parameters, with the only
exception being that the temperature was varied from 85%C to
115°C. The tests were made with the initial atmosphere being
dry for the first 4 hours, and then the atmosphere was
adjusted to the 85% RH level, which remained for the rest of
the test. After 4 hours with the atmosphere at 85% RH, the
temperature was raised to 115°. During this test the

voltage level was held constant at 1.5 VDC.

(6) Extended Life Testing

The standard 85/85 test, with 1.5 VYDC bias, was applied
to 20 capacitors over a period of 20 days. Of these, 15 were
thermally cracked samples and 5 were controls. The
atmosphere was dry on the first and last days of the run, and
was maintained at 85% RH for the remainder of the test.

The apparatus used for the extended 1ife test consisted
of a system of 9 seperate furnaces,in each of which the

temperature, atmosphere, or voltage could be controlled. A
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schematic of this system is given as Figure 4. The system
was monitored by a Hewlett Packard HP3054 Data Logger, which
is essentially a 100 channel autoranging voltmeter with
temperature measuring capabilities. The capacitors were
mounted on circuit boards which plugged into connectors which

were sealed into the faces of the furnaces.

(7) Sectioning Studies

Capacitors found to exhibit l1ow voltage failure were
used in this part of the study. These capacitors were
mounted in plastic and were abraided with 500 grit abrasive
paper until the cracks were exposed. The mounted capacitors
were then polished with 1 micrometer particle size diamond
paste. The sectioned capacitors were then examined and
photographed using optical and scanning electron microscopy.
The energy dispersive X-ray spectrometer of the SEM was used
to make both a qualitative and semi-quantitative examination
of the crack area in an attempt to detect electrode material

and/or other contaminants.

Results
(1) Pattern of Low Voltage Failure

In almost all cases in which 1ow voltage failure
occurred, a "sawtooth" pattern of failure was observed. With

a dry atmosphere, current density would typically hold steady
at approximately 10711 amps/cm.2 when 85% RH atmosphere was

fntroduced, the leakage current would typically smoothly rise

about 2 orders of magnitude and begin to level off at a
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current "plateau” . The leakage current would then abruptly
Jjump anywhere from 1 to 6 orders of magnitude and then
smoothly decrease to the “plateau” level. The current level
would then abruptly jump again, thus repeating the cycle
until the moisture was removed from the atmosphere. The
period of this cycle was usually seen to be between 20 and 45
minutes. Figure 5 shows the leakage current in both a shocked
and an unshocked specimen with a 1.5 VDC applied bias in a
dry atmosphere. As can be seen, the current in the cracked
specimen was only slightly higher than that in the uncracked
specimen. Figures 6, 7, 8, and 9 show the effects of
humidity on the specimens. The effects of the moisture can be
observed in Figure 6, in which the current level in the
cracked specimen abruptly increases 3 orders of magnitude
when moisture was introduced into the atmosphere with the
"sawtooth" pattern being initiated, while the current level
in the uncracked specimen remained essentially unchanged.
Figure 7 11lustrates the “"sawtooth" behavior of a cracked
specimen, with the current level rising over 6 orders of

magnitude at the peak. Figures 8 and 9 illustrate the extent

of the effect of the humid atmosphere on low voltage

breakdown. In both of these figures periodic breakdown was
seen to begin to occur immediately after moisture was
introduced fnto the furnace atmosphere. When the moisture
was removed from the atmosphere, perfodic breakdown was
discontinued and the leakage current quickly returned to its

original level.
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(2) variations in Voltage Bias

Low voltage failure was found to be dependent upon the

voltage level on the capacitor. Figure 10 i1lustrates the
behavior of the specimen when a bias of 0.5 volts was
introduced. No difference was observed between the 1eakage
current of the cracked and the reference, uncracked specimen
with changes in moisture. However, as can be seen in figure
11, at a bias of 1.0 volts, when moisture was introduced the
same specimen exhibited failure with the same “sawtooth"
behavior as previously observed. This low voltage failure

pattern was also seen at biases of 1.5 and 2.0 volts in
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figures 12 and 13, respectively. Figures 14, 15, and 16 show
that at biases of 5.0, 10.0, and 20.0 volts the "sawtooth"

L e 21}

5

failure pattern also occurred , but here it can be seen that

"f'("’
v

as the voltage level was increased, the period of the pattern

: 4
Ly
h}

lengthens and the difference in current magnitude between the

7
;

&

reference and cracked capacitors decreased. When a bias of

:’l’

5
Y Yy

70 volts was applied across the capacitors, a single spike

A

]
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was seen to occur when the moisture was first introduced

[ s
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after which the leakage current steadily decreased until it
almost matched that of the reference capacitor. This effect

is seen in figure 17.

(3) Extended Life Testing

Of the 15 cracked samples tested, 10 showed the
characteristic "sawtooth" pattern in the presence of a humid
atmosphere. The remaining 5 showed marked increases in the

leakage current, but showed no discernable pattern to their

T ™ R A R RIS A
AN R n : Ly’



Lgw
i

RN |

L

ULy

ST

a
-1'

-

' P
!

)

11

low voltage failures. The 5 reference units showed no change
in the presence of a humid atmosphere. When the humidity was
removed from the atmosphere, all 15 failing samples showed a
slow decrease of the leakage currents until they matched the
reference capacitors. Graphs typical of the life tests can
be seen in figures 18-21. Figure 18 and 19 show the abrupt
jump in leakage current when 85% RH was suddenly added to the
atmosphere. The resulting leakage currents were cyclic,
exhibiting the characteristic "sawtooth" pattern. Figures 20
and 21 show the leakage current over a 14 hour period during
the 10th day of the life test. The specimens had been
exposed to the humid atmosphere for 9 days and continued to
exhibit the "sawtooth" leakage pattern. The pattern shown in
figure 21 shows a breakdown pattern that is more regular and
defined than the usual "sawtooth" associated with the
low-voltage failures seen in this study. This suggests that
low-voltage failure actually becomes more pronounced with

time, instead of eventually "clearing" itself.

(4) Thermal Studies

The results of the thermal variation studies are seen in
figure 22. In this series of tests the temperature was
manipulated as the independent variable, achieving almost
identical results. The leakage current was low in the dry
85°¢ atmosphere, and increased dramatically when the humidity
was raised. When, with the humidity still at 85%, the

temperature was raised to 115°C. the leakage current returned

to 1t original, lower level and the “sawtooth" pattern could
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-~ no longer be observed. This supports the idea that water E
i which condenses into the cracks in the capacitor plays the
A dominant role in low-voltage breakdown. ::-E
r?:‘f
! (5) Sectioning Studies i
i Optical microscopy showed visible cracks extending ;'E
g\ from the surface of the capacitors through the electrode fé
) layers. Sections were made parallel and perpendicular to the £'
?‘ electrodes to give views of the cracks from several different
R prespectives. Figures 23 and 24 show photomicrographs of L":'
aa exposed cracks in two specimens. Figure 23 shows a section :
= taken parallel to the electrode layers with the crack ?“ '
” penetrating both partially exposed electrode layers. Figure ‘;\
§ 24 shows two cracks penetrating the electrode layers in a o
section taken perpendicular to the electrode layers. Cracks ;‘;
%.': located optically were then examined with the SEM energy ﬁ

| Ay

dispersion X-ray spectrometer for detailed study. Figure 25

. .
.-

was taken with the SEM and shows a close-up view of one of j::.‘_

.j:: the cracks seen in Figure 24. No difference was found l';
i between the composition of the crack walls and the base ";*
!;' dielectric material In only one sample was an excess of the :{:.
. Pd electrode material found in the region of the crack, but :::l':
:; the Pd was also found to be present at the same high levels 3~
:::, throughout the rest of the dielectric. No traces of "\
w dendrites were found efther optically, with the SEM, or with "
5’5 the energy dispersion X-ray spectrometer. .;"
Energy dispersion X-ray spectrometry was also used in an N

: attempt to find any possibly contaminants in the region of E?.
-
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the crack. The only contaminants found were traces of Nb in
one sample. Of course, 1t is 1ikely that any water soluble
contaminants were removed during polishing by the diamond

paste, which 1s itself water-based.

Discussion and Conclusions

The leakage current induced in the capacitors of this
study exhibits the “"classical" low voltage failure
characteristics, i.e. the presence of structural defects in
the capacitors and the ability of high voltages to “clear”
shorts in the capacitors. The “"sawtooth" pattern of failure
is peculiar to this study, although this behavior has been
seen in porous disc capacitors exposed to similar biases and
humid atmospheres.21

The "sawtooth" behavior and the absence of excess
electrode material being found anywhere in the cracks
suggests that the growth of dendrites between the electrodes
was not the failure mechanism at work in this case. If
dendrites did form, due to the low solubility of Pd in water
it 1s 1ikely that they would be composed of a salt of Pd such
as PdClz. No evidence of Pd(:'l2 or any other salt was found.
The fact that breakdown ceased to occur almost immediately
after the moisture was removed from the atmosphere also
suggests that dendrites could not be responsible. Even if
dendrites require water to grow in the defects, once grown

they should continue to exist after the removal of the

moisture and continue to facillitate breakdown. But this {s
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not the case, since in all instances breakdown rapidly ceases
when water is removed from the system.

The data of this study can be understood if electrolytic
fonic conduction is assumed to cause the enhanced leakage
current. If electrolytic impurities such as chlorine or
bromine salts were present in the sample, conduction between
the electrode layers could have occurred by means of ionic
transport. Any soluble impurity ifons could conceivably take
part in such conduction. Water undergoes dissociation to H*
and OH™ at 0.87 volts, so that above this voltage H' and OH
ions could contribute to the leakage current. The fact that
the onset of the “sawtooth" pattern and enhanced leakage was
located between 0.5 and 1.0 VDC tends to support this
mechanism. At higher voltages the increased currents could
generate enough localized heat to facillitate the evaporation
of the aqueous conductor. This could also account for the
"sawtooth effect” with the rapid rise in current producing
enough heat to effectively halt itself.

Electrolytic conduction is a much simpler breakdown
mechanism than dendritic growth, and does not require as
narrow a range of conditions in order to take place.
Furthermore, conditions postulated to be necessary for
dendritic growth, such as the presence of moisture in
existing defects and the presence of C1 ions, are ideally

suited for the facilitation of an electrolytic solution as

the conduction mechanism.
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List of Figures

Figure

1. Cross-section of a typical capacitor as supplied by
Presidio, Inc.

2. Sketched cross-section of a typical capacitor after
having undergone thermal shocking.

3. Schematic of the 2-unit testing apparatus.

4. Schematic of the 1ife-testing apparatus.

5. Plot of the logarithm of the leakage current density vs.

time in seconds for both a cracked and an uncracked capacitor

at 85%C and 1.5 VDC in a dry atmosphere.

6. Plot of the logarithm of the leakage current density vs.
time in seconds for both a cracked and an uncracked capacitor
undergoing the 85/85 2.0 VDC test with varying atmosphere.
7. Plot of the logarithm of the l1eakage current density vs.
time 1n seconds for a cracked capacitor undergoing the 85/85
2.0 YDC test with varying atmosphere.

8. Plot of the logarithm of the leakage current density vs.
time in seconds for a cracked capacitor undergoing the 85/85
1.5 VOC test with varying atmosphere.

9. Plot of the logarithm of the leakage current density vs.
time in seconds for a cracked capacitor undergoing the 85/85
1.5 VDC test with varying atmosphere.

10. Plot of the logarithm of the leakage current density vs.
time in seconds for a cracked capacitor undergoing the 85/85

0.5 YDC test with varying atmosphere.
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11. Plot of the logarithm of the leakage current density vs.
time in seconds for a cracked capacitor undergoing the 85/85
1.0 VDC test with varying atmosphere.
12. Plot of the logarithm of the leakage current density vs.
time in seconds for a cracked capacitor undergoing the 85/85
1.5 VDC test with varying atmosphere.
13. Plot of the logarithm of the leakage current density vs.
time in seconds for a cracked capacitor undergoing the 85/85
2.0 VDC test with varying atmosphere.
14. Plot of the logarithm of the leakage current density vs.
time in seconds for a cracked capacitor undergoing the 85/85
5.0 VDC test with varying atmosphere.
15. Plot of the logarithm of the leakage current density vs.
time in seconds for a cracked capacitor undergoing the 85/85
10.0 VOC test with varying atmosphere.
16. Plot of the logarithm of the leakage current density vs.

time in seconds for a cracked capacitor undergoing the 85/85

20.0 VDC test with varying atmosphere.

17. Plot of the logarithm of the leakage current density vs.
time in seconds for a cracked capacitor undergoing the 85/85
70.0 VDOC test with varying atmosphere.

18. Plot of the logarithm of the leakage current density vs.
time 1n seconds for a cracked capacitor undergoing the 85/85
1.5 VDC test with varying atmosphere (exerpt from the life
tests).
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. 19. Plot of the logarithm of the leakage current density vs. . 3
* time in seconds for a cracked capacitor undergoing the 85/85 “'
' 1.5 VDC test with varying atmosphere (exerpt from the 1ife ‘
o tests). }',‘fa?r'
20. Plot of the logarithm of the leakage current density vs. '”.1*
time in seconds for a cracked capacitor undergoing the 85/85 ';:
1.5 VDC test with humid atmosphere (exerpt from the life 'tt
g tests). o
21. Plot of the logarithm of the leakage current density vs. \;:
; time in seconds for a cracked capacitor undergoing the 85/85 ?\
G 1.5 VDC test with humid atmosphere (exerpt from the life ‘7
tests). o
> 22. Plot of the logarithm of the leakeag current density vs. ‘
,» time in seconds for a cracked capacitor subjected to a 1.5 ':‘:',a"
VDC bias with varying atmosphere and temperature.
,, 23. Photomicrograph of 2 cracks penetrating the surface and ;;
" electrode layers of a thermally shocked capacitor that E_
exhibited 1ow-voltage breakdown. L

24. Photomicrograph of 2 cracks penetrating the surface and E:
: electrode layers of a thermally shocked capacitor that .§~$
: exhibited 1ow-voltage breakdown. s
25. Photomicrograph of a crack taken using the SEM. _
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Photomicroqraph of a crack parallel to the electrode layers o
penetrating the surface and electrode layers of a thermally
shockea capacitor that exhibited Tow-voltage breakdown.
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to the Fiectrical and Mechanical Phase Diagram
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Coentridbutions to the Blectrical and NMechanmieal
Phase Disgram of La-Doped Lead Zirconate - Titanate

D. Viehland

Iatroduction

The purpose of this work was to investigate the
mechanical and electrical phase diagram of La doped
PbZrOS(GSQ) -PbTi03(3S$) (PLZT 65/35)) in the range from 8
to 12 ath,

The temperature and field dependent polarizstion/
depolarization behavior of PLZT near 8 at.% Las has been
studied by a number of workers (1-8), Cross (1,2)
proposed a model of electrical field ordering of polar
microdomains imsmersed in a cubic paraelecrtric matrix.
This model was put forward to account for the observed
electric field dependence of the polarizstion vs,
temperature in the penferroelectric phase,

Induced phase transformations, rather than
orientation of microdomains have been proposed for PLZT
based on dielectric and optical effects cauvnsed by electric
fields (3-7), end by uniaxial stress (8),

The goals of this investigation were: 1) to determine
the elastic softening temperature in PLZT above 8 st.% La,

2) to study the relative dielectric comstant (K) and the
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dissipation factor (dF) as & function of temperature and
frequency, and 3) to study the polarization/
depolarization bohavior of PLZT using thermally stimulated

current.

Neassuremeat Techaiques

Elasticic Softeaning

In order to measure the elastic softening temperature
independent of the plezoelectric constant, & long thin
vibrating reed was externally driven by a magnetic
gradient acting on a small permanent magnated attached to
the reed. The elastic properties were studied over the
temperature range from 260 to 360°K. with resonance
frequencies less than 100 Hy, The resonant frequency was
adjusted by using different magnet masses, The resulting
asymmetric resonance curves were analyzed using the Wuttig
and Suzuki theory of non-linear anelasticity (9-11) to
determine the resonance frequency, the third order spring
constant, and the linear damping. The apparatus used has
been described previously (9-11), A schematic of the

measurement system is shown im figure 1.

Dielectric Neasuremeats
The capacitance and dissipation factor were measured

as a8 function of frequency and temperature. The
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frequencies unsed were 0.01 KHz, 1KHz and 100 KHxz, The ;$
messurements were made over the tempersture range 180 to o
420°K, the heating rate was approximately 4°C/min. The id

’
electrode used vas InGa, The test chamber and equipment fﬁﬁ
vsed have been described in previous reports. The test E
chamber is shown in figure 2. g.
Thermally Stimulated Curresnt :}

e

The cspacitors were electroded with In-Ga and placed 23
in the chamber. The sealed chamber was heated to adbout f}
420°l. evacuated and then filled with He, The temperature ;f»

B
was cooled to about 180°K with liquid mitrogen and a field E?
was applied (500v/cm). The current was messured as the 8&
temperature was increased at a rate of approximately 3ﬁ

S
4°C/min to 420°K (first polarization run), The system was E}
then quenched to near 180°K and the process was repeated i{
(2nd polarization run), The system was then quenched again E&
to 180°l. the field was removed, and the measurement was EZ\:

)
repeated (3rd polarization run)., The test chamber and ;
equipment used have been descridbed in previous reports, ag
The test chamber is shown in figure 2. Egi

N

i

Discussion of Results a&
A susmary of the results of this study is showa as '6§
'

additions to the phase diagram of Meitzler and O'Bryesn (3)

W« s,
ey
)

in figure 3, Data obtasined by a common techmique for the
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£ Figure 3. Modified phase diagram for PLZT (65/35) as »

function of temperature and La content. New boundaries
vere determined by a maxims in the polarization ('!,’P). -
elastic constants (C), zero polarization (PO), . bump
in the dissipation factor (DB), dielectric maxima for

oo 0.01 XH:x (K1), dielectric maxima for 1 KBz (K2), snd
i dielectric maxima at 100 KBz (X3).
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three compositions are connected by lines to guide the
eye. The major contributions are 1) the extension of the
lattice softening boundsry beyound 8 at% La, 2) the
confirmation of the penferroelectric boundaries, and 3)
the identification of the nearly linear depolarization as

the sample temperature approaches the upper boundary of

the penferroelectric region,

Elastic Softeaing

Representative data from this study are shown in
figures 4-7. The third order spring comstant and the
resonance frequency showed a mipimum near 350°x, 345°K and
320°K for PLZT-8 (PLZT with 8 at% La, same notation for
other compositions), PLZT-10, and PLZT-12 (illustrated in
figures 4 and 5). Near the same temperature for each
composition, a sharp drop in the dissipation factor
occurred (illustrated in figures 6 and 7).,

The temperatures of the observed elastic softening
are shown on the phase diagram in figure 3 as line C, The
elastic softening occurred near the ferro/
penferroelectric phase boundary for PLZT-8, and correlated
with a bump in the dissipation factor, For PLZT-10 and
PLZT-12, the effect was near the reported penferro/
paralectric phase boundary (3), and correlated with the
maximom in the dielectric constsnt, A correlation which

may edd some insight is that the relaxor behavior does not

vy vV " [ T TR UL

S D Y S @ L




§

&

2z A

25 P

24 +

18 +

12 {

=12 F

3RD ORDER SPRING CONSTANT X 10

re A A A A

A A A A.

A

i7e 200 238 268 298

32 358 88 419

TEMPERARTURE (°K)

Figere & 4004 order spring covstan

t, » v(C__/C _)K, with o 938

coaftdence 1imit sy » fenction of le-plrglur:‘ 52

for“PLZT-8.

24 T

18

6
12 b
-18 |

“ }

3RD ORDER SPRING CONSTANT X 198

- e e A

t1 1 1

N

i A e i

—

170 200 230 260 290
TEMPERATURE

Pigere 5. Third order sprisg comstast,
confidonce 1limit as s functios of tempe

OGN TN VIR D s T s D Lt L

320 350 38«18
(°K)

e x(C_ _/ YK, with o 988

[
rl'nro"or';LZT-II.

<&

&

[
.
"
]




)

LINERR DAMPING X 10

LINEAR OAMPING X 10@*

24

2}

15

12

24

21

t III xx {
} <

A, A A,

1’8 208 230 ;;; 7;; 320 se 3ee 48
TEMPERATURE (°K)

Figsre 6. Linesr Damping, -ov(t.:/C - 1), with s 9358 confidesce
1imit oe o functios of temperstere '%t PLZT-¢.

A e A -

r 4
b 1
b 4
b X J
} X 33 J,
l

r 13-4 1
s { y
e e

178 280 238 28 28 e 36 38 a1
TEMPERRTURE (°K)

Figere 7. Linear dom
. pleg, s t(C_,/C - 1), with s
l1ioit o5 o funotios of a..,.?...?! ls; PL2T-12. ) sonfidence



-
L

occur for a La content less than 8 at%, and as the La
content is increased (shown in the dielectric portion of
this study) the frequency dependence of the maxims
increases,

The source for the elastic softening near the ferro/
penferroelectric phase boundary in PLZT-8 and near the
penferro/ paraelectric phase boundary in PLZT-10 and
PLZT-12 is not certain at this time, A possibility is that
the lattice softening is associated with a macro to
microdomain transition in PLZT-8, and associated with a

polar to monpolar transformation in PLZT-10 and PLZT-12.

Dielectric NMeasurements

Representative data from this study are shown in
figures 8-11, With increasing La content the frequency
dependence of the maximom in the dielectric constant
increased, the maximum became more dispersive, and the
temperature of the maximum was shifted down. The maximum
in the dielectric constant at 100KHz correlated with the
observed elastic softening. The dielectric constant maxima
are shown on the phase diagram in figure 3. The maxima for
0.01KHz, 1KHz, and 100KHz are shown as lines K1, K2, and
K3 respectively, The maxims lie below the penferro/
paraleectric phase boundary, and approsch this boundary as
the frequency is increased,

The dissipation factor for PLZT-8 had a bump which
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correlated with the elastic softening. As the La contest

i was increased the maximum in the dissipation factor became

more dispersive and frequency dependent., The bump ia the f{
if dissipation factor for PLZT-8 occured at the ferro/ :
penferroelectric boundary, and is showvn on the phase ;;
] diagram in figure 3 as point DP. ;:
e
B Thermally Stimulated Curreat :
h Representative data from this study are skown in k
La; figures 12 and 13, asnd representative graphs of the E:
polarization, calculated from the thermally stimulated ;;J
P&? current (TSC), are shown in figures 14-16. Qs.
\ The temperature at which the poslrizetion maxims ;f
- occurred during the first polarization rum was obtained ‘:
i? from the maximum slope in the TSC spectra at 295°c, 270°r, gg'
| and 245°K for PLZT-8, PLZT-10, and PLZT-12 respectively. '5
Above the maximum, depolarizationm occurred linearly with "
b temperature as evidence from the constant negative current £§E
; of the TSC spectra and the polarizastion curves. The E?
temperature at which the depolarization was complete was 9

' ’
obtained from the maximum slope in the TSC sptra ot 4a15°x, g%
0 v
b 410°k, and 380°K for PLZT-8, PLZT-10, and PLZT-12 s"‘
= respectively, i,
Cd “o’
v During the second polarizatioa, depolarizstios k&
) occuorred linearly throughout the temperature region Ef
investigated as evidence from the nearly constant asgative S
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current of the TSC spectra snd the polarizationm curves.

The third polarization curves did not show & return
to a completely depoled state. From the polarization
curves, it can be seen that a significant change in the
rate of depolarization occured near 290°K, 270°K and 245°k
for PLZT-8, PLZT-10, and PLZT-12 respectively. The
depolariztion in both regions was linear with temperature,

The maximum in the polarization durimg the first
polarization run was near the ferro/ penferroelectric
boundary for all compositions investigated. This maximum
correlated with a decrease in the rate of depolarization
in the third polarization curves. These data are plotted
on the phase diagram in figure 3 as line PP, for Peak
Polarization, The temperature of the peak polarijzation
behavior in PLZT-8 is near the temperature for which Cross
(1) has proposed a 1imit macrodomain stability,

The first polarization and second polarization runs
support 8 model in which a poled material linearly dpoles
over a large temperature interval into a paraelectric
state, The temperatures taken to represent zero
polarization are shown on the phase diagram in Figure 4 as
line PO, for zero polarization. According to Cross (1),
the temperature where the polarization is zero is the

l1imit of microdomain stability with an applied field,
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E Abstract

This paper describes the polymeric synthesis of Pb3HqNb209 based

..\

ﬁ: dielectric powders. The results show that single phase powders of about

50 nm crystallite size can be prepared at temperatures as low as 500°C.

This preparation technique is based upon having the individual cations

S complexed in separate weak organic acid solutions. The individual
solutions are gravimetrically analyzed for the respective cation
concentration to a precision of 10-100 ppm. In this way it is possible
to precisely control all of the cation concentrations, and to mix the
ions on an atomic scale in the liquid state. There is no precipitation
in the mixed solution as it is evaporated to the rigid polymeric states
in the form of a uniformly colored transparent glass. This glass is
calcined to yield powders which are both homogeneous and single phase
with well controlled cation stoichiometry. The synthesis process is

] described and some resulting electrical, microstructural and
crystallographic characteristics were obtained for sintered capacitors

made with powders derived from this synthesis.
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Introduction

The electrical and dielectric properties and the processing
characteristics of perovskite (A803) type oxides are closely related to
the cation stoichiometry or A/B ratio. Therefore, for reliability and
reproducibility, precise control of the cation content is of utmost
importance. When one or both of the cations, A or B, are volatile under

the conditions of either powder synthesis or subsequent sintering,

control of cation stoichiometry becomes nearly impossible. This is

particularly true for Pb containing perovskites. Most of these oxides

b2 |

need to be made and sintered at temperatures greater than 900°C. This

ii temperature of 900°C is sufficiently high that substantial Pb0 loss

‘F‘ occurs. At 900°C, PbsMgNb,Oy loses about 0.5 wi/hr or 2 x 1073 moles

< Pb0/hr. This is high enough that the lead content becomes rather i1l

ii defined and property reproducibility becomes a problem.

» One method of minimizing Pb0 loss is to lower the processing

ES temperature both for powder synthesis and device fabrication to below

!' 900°C so that Pb0 loss through volatilization is minimized. This
requires the starting perovskite oxide to be both homogeneous and fine

;g crystallite-sized (< 0.1 um). About the only methods available to

obtain perovskite powders of such characteristics involve some form of
organo-metallic synthesis. It is the intent of this paper to describe
the preparation of Pb3Hng209 powders by one of these organo-metallic

processes and to report some of the properties of the resulting dense

polycrystalline capacitors.
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Results and Discussion

e TR

Synthesis Process !

The process described is one which was originally developed by
Pechini [1] in the 1960's to prepare capacitor oxides such as titanates
and niobates.

Thisvprocess involves the ability of certain weak acids (alpha-
pyroxycarboxylic acids) to form polybasic acid chelates with various
cations from elements such as Ti, Ir, Cr, Mn, Ba, La, Pb, etc. These
chelates can undergo polyesterification when heated in polyhydroxyl
alcohol to form a polymeric glass which has the cations uniformly
distributed throughout. Thus the glass retains homogeneity on the
atomic scale and may be calcined at low temperatures to yield fine
particulate oxides whose chemistry has been precisely controlled.

A typic;I flowsheet for the peparations from this process is shown
in figure 1. The cationic sources which have been successfully used
are carbonates, hydroxides, isopropoxides, and nitrates.

The general reaction sequence that occurs during the polymerization
process is as follows. The metals chelate to the citrate and form a

polybasic acid chelate. Addition of ethylene glycol to the mixture leads
to the formation of an ester. Upon heating, polymerization takes place,
thereby forming an organic matrix throughout the solution. Finally, the
organics are removed by calcining the mixture at 400-500°C.

Certain hydroxycarboxylic acids, such as citric; lactic, tartaric, and
glycolic acids, form polybasic acid chelates with metal ions. When
compared to the majority of the acids, citric acid is more widely used in

the processing of ceramic materials through the use of organic precursors.

The typical citrate fon metal complexes tend to be fairly stable due to the
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strong coordination of the citrate ion to a metal ion involving two

carboxyl and one hydroxyl group as shown:

TR
nogcnz\\}\u l
%\c>
0

The desired metal ions are provided through various inorganic and organic
constituents,

The presence of a polyhydroxy alcohol, such as ethylene glycol, allows
for the formation of an organic ester with the acid chelate. A
condensation reaction occurs with the formation of a water molecule. The

hydroxyl group in the water formed arises from the carboxylic acid; the

proton comes from the alcohol as shown in the following:

HOCHZCH OgCH \(.‘/0\M

2 2\“ \o
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Upon heating, polyesterification occurs throughout the liquid medium,

resulting in a homogeneous solution of metal fons attached to an organic

matrix. The solution is gradually heated to remove excess solvent leaving

a solid resin intermediate. The resin is then calcined to remove the
organic material while the remaining inorganic metals are chemically
combined to form the desired stoichiometrically controlled compound.

For the preparation of Pb3Hng209 the amounts of lead carbonate,
magnesium carbonate and niobium efhoxide were calculated and then weighed
out and mixed with a solution containing a ratio of 1 gm of anhydrous
citric acid to 1.5 ml ethylene glycol.

The solution was heated to 90°C until the lead carbonate, magnesium
carbonate and niobium ethoxide had gone into solution. This is the most
important step of the process, as complete dissolution of the cations is
necessary te insure homogeneity and composition. The resulting clear
solution was evaporated until an amorphous, organic polymer formed. This
solid was heated to 400°C to eliminate as much of the organics as
possible. The solid turned into a black brittle mass which was then
ground, screened, and transferred to a crucible, and calcined in the
temperature range 500 to 800°C for 3 hours.

The relative weight loss and differential thermal analysis of the
polymeric precursor are shown in figure 2. As can be seen, heat begins
to evolve at about 400°C which corresponds to the region of maximum

weight loss. Essentially all of the weight loss occurs at temperatures

below 600°C. Above this temperature, no further exotherms were observed.

This suggests that Pb3Mng209 can be synthesized at temperatures as low
as 400 to 600°C.
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In agreement with the DTA/TG results, figure 3 shows that the
initially amorphous X-ray diffraction pattern changes to patterns which
are typical of the crystalline perovskite and pyrochlore phases.

However, from figure 4 it appears that lower calcination temperatures
favor the pyrochlore phase. Also, it appears that it is difficult to
obtain 100% perovskite Pb3Hng209. however, as has been reported by other
1’nvest‘.'iga1:or's,2'4 the additions of excess Mg0 favor formation of the
perovskite structure. Thus, it appears that 100% perovskite can be
obtained at temperatures as low as 700 to 800°C if excess Mg0 is present.

The influence of calcination temperature on crystallite size is
shown in figure 5. It is evident that powders with the average
crystallite size of less than 500nm can be formed in the 500 to 800°C
temperature range.

Properties of Resulting Oxides

Formulations of the composition 0.63 Pb3Hng209 - 0.2 PbTiO3 - 0.17
Mg0 were prepared to evaluate sintering and dielectric properties. The
resulting powders were pressed into discs and placed into closed crucibles
to minimize Pb0 loss and sintered in the temperature range 1000 to 1250°C.
Best densification occurred in the 1200 to 1250°C temperature range. Table
I lists some of the properties that have been obtained. The results are
very preliminary and do not represent optimization. Typical
microstructures of fractured surfaces are shown in figure 6.

These properties and microstructures are essentially the same as
those obtained from formulations of mixed oxides. However, improvements
of properties and reduction in sintering temperature are expected to

occur as the processing and formulations become optimized. For example,
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some recent results show that densification temperatures can be decreased
to about 900°C without any appreciable loss of electrical and dielectrical
properties by introducing excess Pb0. Alterations of composition and
processing parameters are the subject of our current studies.
Conclusion |

It is evident that Pb3Hng209 can be synthesized by the polymeric
precursor process of Pechini's. Results show that the perovskite phase

can be obtained if excess Mg0 is present in the formulation at

temperatures as low as 700°C. Densification of compositions that are X

¥ p:‘_n
either stoichiometric Pb3Hng209 or contain excess Mg0 cannot be ;:i

4 e
: sintered at temperatures below 1200°C. Compositions containing excess E{
Pb0 can be sintered at about 900°C. N
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Captions for Figures

Figure 1. Flowsheet for Preparation of Oxides

Figure 2. Differential Thermal Analysis (DTA) and Relative Weight Loss
of Polymeric Precursor for Pb3"°"b2°9 Preparation Which Had
Been Heated to 150°C to Polymerize.

Figure 3. X-ray Diffraction Pattern of Pb3Hng209 + 4m% Mg0
Preparation:

A) Calcined 500°C, 3 hours

B) Calcined 700°C, 3 hours

Fd
WSy

A X
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C) Calcined 900°C, 3 hours

Figure 4. Percent Perovskite Formed in Pb3Hng209 and Pb3H9Nb209 + 4m2 ’

Mg0 Preparation as a Function of Calcination Temperature. R
(Time = 3 hours) ;Ef
.: .‘-’
Figure 5. Scanning Electron Micrographs of Pb3nng209 from Polymer >

Process §-~

A) Calcined 500°C, 3 hours

B) Calcined 800°C, 3 hours be

Figure 6. Scanning Electron Micrographs of 0.63 Pb3Hng209 - 0.2 PbTiO3 -
0.17 Mg0 Sintered at 1250°C.

A) Polished Surface .

e
/

B) Fracture Surface
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TABLE |
INITIAL RESULTS ON Pa3MGNa,Og SYNTHESIS

!! COMPOSITION
% 0.63 Pl}ﬂGNBzog - 0.2 PIT!03 - 0.17 Ms0
=
2 SINTERING CONDITIONS
- Disks: 1200 - 12509C 1-3 wours
DENSITY
. 7.4 -7.6 6/cc (95 -972 T.D.)
#
= ELECTRICAL PROPERTIES
) Kmax: 15,000 - 20,000 (@ 32 - 35°C)
¢ DF300: 3 - 5%
R320: 1 - 5x 1012 OHMS
RC320: 10,000 - 15,000 OMM-FARAD
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Reactions in the System Pbo-MgO-Nb205
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APPENDIX H

Preparation of Perovskite Pb(M31/3Nb2/3)

Using Pb Nb208 and MgO
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Preparation of Perovskite Pb(Mg,;Nb,,3)O3
Using Pb;Nb,Oy and MgO

J.P. GUHA™ AND H. U. ANDERSON®

Department of Ceramic Engincering. Umiversity of Missouri-Rolla, Rolla, Missouri - 65401

The svnthesis of perovskite PbiMg, Nb. )O . from an equimolar mixture of
Fb Nb,O, and MgO was studied by solid-state reaction techniques. An addition
of | wi% excess MgO to the stoichiometric composition enhances the formation of
the cubic perovskite phase. The absence of free PO in the initial sturting materials
minimizes the volatilization loss during firing. thereby reducing the possibility of
any compositional change and resulting in u substuntial improvement of the per-
ovskite phase purity over the conventional mixed-oxide processing.

HE perovskite compound Pb(Mg,.\Nb; 1)-

O, has recently received considerable
attention in the area of clectronic ceramics
because of its excellent diclectric and ferro-
electric propertics.'"* Although the exis-
tence of PH(Mg.\Nb,1)O; and its stability
at elevated temperaturcs have been cstab-
lished beyond doubt, the synthesis of the
compound from the precursor oxides re-
mains difficult. This is due mainly to the in-
evitable formation of an unwanted pyro-
chlore phase during the initial stages of

Contrme nine Eotror - G Liwis

Receved May 19, 1986, revised copy received
July 10, 1986. approved July 10, 1986
“Member, the Amenican Ceramic Society

'*I*

the reaction between the precursor oxides.
The kinctics for the conversion of the pyro-
chlore phasc to perovskite are very slow
and nccessitate repeated firing for pro-
longed periods at clevated tcmperatures.
Since the presence of the pyrochlore phase
cven in small quantitics in the final product
i detrimental to the diclectric properties of
Pb(Mg, Nbh, 1O, its formation during
the reaction process must be climinated.
Furukawa et al. * were first to recognize the
beneticial effect of excess MgO on the for-
mation of the pyrochlore-free perovskite
Pb(Mg\Nb,)O. and obscrved a signifi-
cant improvement of the dielectric proper-
tics of Pb(Mg, (Nb,,)O:-PbTiO. ceramics
with the addition of =1 wt% excess MgO.
Swartz et al.* have proposed an alternative

var MRS NPT
| -

Comnnoncations of the American Ceramic Society C-287

method in which prefabricated MgNb:O,
and PbO were reacted at 800°C to form Pb
(Mg, .\Nb; )O,. These workers have con-
firmed that the pyrochlore phase was elimi-
nated by the addition of an excess MgO.
The present communication is intended to
show that the compound Pb(Mg, \Nb; ;)O;
can be prepared by the solid-state reaction
between Pb;Nb,Ou and MgO at 900°C.
Since there is no free PbO involved in this
synthesis, the volatilization joss that occurs
during the synthesis of the compound from
the precursor oxides can be completely
eliminated.
EXPERIMENTAL PROCEDURE

Lead niobate (Pb.Nb.Oy) used in this
study was prepared by the solid-state reac-
tion of appropriate proportions of high-
purity rcagent-grade PbO and Nb,O..
Since Pb.Nb,O, and PbO form a cutectic at
830°C in the system PbO-NbO..’ the reac-
tion temperature for the preparation of
Pb.Nb,O, used was 820°C. Pb.Nb,Ox thus
prepared was mixed with an equimolar
amount of MgO, pressed into a pellet, and
then fired in two calcination steps at 800°C
for a combined period of 6 h with intermu-
tent cooling, crushing. and mixing which
were followed by a final heat trcatment at
900°C for 4 h. Compositions containing an
excess of MgO (1 to 2 wt%) were subjected
to identical firing conditions. At the end of
the firing peniod, the products were ana-
lyzed by X-ray powder diffraction (XRD)
using Ni-filtcred CuKa radiation and scan-
ning clectron microscopy (SEM) cquipped
with EDX attachments.
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Fig 1 Xeray powder diffraction pattern of an equimolar mixture of
Ph.Nb O, and MgO (A ) calcined at 800°C for 6 h and (B ) fired with | wi%
cxcess MpO st 900°C for 4 b (PMN=cubic PbiMg, .\Nb, 0O,

PN Ph NP .OL and M =MgD )

RESULTS AND DISCUSSION

X-ray diffraction analyses performed
on the fired mixtures indicated that, in the
temperaturc range used. Pb.Nb,Ox reacts
with MgO to form the cubic perovskite
Pb(Mg, .Nb, ,)O. phasc.” Figure 1(A)
shows the XRD pattern of an equimolar
mixture after repeated calcination at 800°C
indicating the presence of mainly the cubic
PbiMg, \Nb, )0, with some unrcacted
Pb.Nb.O, and MgO. As can be seen, the
presence of the pyrochiore phase could not
be detected accurately because of over-
lapping of the major reflections of this
phase and Pb \Nb,O,. As the temperature
was increased to 900°C, the amount of the
cubic perovskite phase increased with cor-
responding decrease in both Pb.Nb:O. and
MgQO. However. a complete conversion to
the cubic Pb{Mg, \Nb,1)O, was made with
an addition of | wt% excess MgO to the
stowchiometric mixture. Figure 1(B) shows
the XR[) pattern of a mixture contain-
ing excess MgO that had been subjected
to identical heat-treatment conditions
indicating the formation of the cubic
PbiMg, {Nb; )0, with very little pyro-

chlore present. It is evident. therefore, that
an addition of excess MgO enhances the
rcaction ratc and allows the formation of
the cubic perovskite phase. Thus, the over-
all reaction sequence observed by the XRD
analysis can be represented by the follow-
Mg equations:

IPbO+Nb, O ——Pb Nbh.O. th
Pb.Nb.O, + MgO—
3PhiMg, Nb. 00, (N

It can be seen fram kg, (2) that no free
PbO is involved in the preparation of
Pb(Mg, Nb. O and hence a finng tem-
perature in excess of the melting point of
PhO) (889°C) can be used in the synthesis of
the compound. Likewise, the loss due to
volatilization of PbO 1s completely climi-
nated in this process and, consequcently, the
composition of the compound can be cffec-
tively controlled during the finng process.

The scanning clectron micrograph of a
fracture surface of the compact obtained on

CACIC s

g

PbiMg, \Nb. 1O\ sample fired at 900

N N T

G I AN I ST Ay VAT IO D TR Y Tt g

Fig. 2 Scanning electron mlcmgraph of the fracture surtace of

C for 4 h tbar=1 unn

firing at 900°C is shown in Fig. 2. As can
be seen the morphology of the powder
compact essentially reveals cubic grains
with grain size varying within the range 0.5
to 2.0 um. The EDX anulysis of the grains
indicated the presence of lead. magnesium.
and nioblum in the sample.

The reaction sequence described
herein provides yet another method of pre-
paring PbtMg, Nb; 9O and appcars to be
a substantial improvement over the conven-
tional mixed-oxide process. The case with
which the pyrochlore-free perovskite
Pb(Mg, :Nb:1)O, phase is formed largely
depends on the amount of excess MgO
added to the starting stoichiometnic mixture
and also on the firing temperature vscd for
the svnthesis of the compound.
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Microstructural Inhomogeneity in Sintered
¢ Pb(Mg,,3Nb,;3)05-PbTi0; Based Dielectrics

J.P. Guna® anv H. U. ANDERSON®
Department of Ceraimics Engincering, University of Missouri-Rolla, Rolla, Missouri 65401

The simering behavior and microstructural development of dielectric ceramics
based on Pb(Mg,;Nb,;)0;-PbTiQ, solid solutions are greaily affected by the

BEACON GRAPHICS CORP.
MASTYP PROQF

DEC & i+ 1986

3 b The cafcmed pellets were crushed o :
oly(vin
powdcs, nnxcd with a 4% W o P .V(V yl

: formation of a liquid phase at =1290°C. Prolonged sintering at and above this
temperature gives rise 10 an excessive PHO loss and the resultant variation in
composition leads to an inhomogeneous microstructure. The inhomogeneity is
characterized by the formation of a dense, localized region containing a PbO-rich
liguid near the surface with a porous interior region in the bulk of the sample.

. TH£ sintering charactenstics and di- EXPLRIMENTAL PROCEDURE
electric properties of ceramics based on Solid solutions of the general com-
the sold solutions of Pb(Mg,3Nb,,;)O,- position Pb(Mg, \Nby,y), . Ti,0, (where
PbTiO, have been reported by several x=0.09 10 0,04) were prepared from
workers." In these studies, it has been appropriate amounts of prefabricated
. shown that the presence of excess MgO in MgNb,O... and reagent-grade PbO and

: the stoichionietric composition and in- T, powders An excesy of MgO
creased sintening temperatures resulted (S mol%) was added to all compositions
N anancrease 1o pran size with a corse- 10 tacilitate the formation of a pyrochiore-

N sponding ncrease in diclectnic constant ot lree perovskite phase. The nuxtures were
the ceranucs. It has been further reported’ pressed anto pellets and calemed in i for
mnat profonged sinrcnng at 1300°C eads o
a compositiunal vanation that affects the

'\ diclectne properties solution, and pressed_inty

- Although the dielectne properties of

" the solid solutions have been reported cx-
tensively an the hterature, very hde s
known about the sintering charactenstics
and microstructural development at cle-

- vated temperatures. The present commu-

mication 1s itended 1o show that prolonged

sintering ol PbiMg, \Nb, 1)O,-PbT10,
solid solutions gives rise (o excessive

) PbO loss, causiug a change in the compos-
tion. The resultant inhomogencity ot
mucrostructure and the sintering condiions
under which such inhumogenesty occurs
are discussed

MEENGY L R ORR T 5 G S

dishs 14 gnp diameter and 2 mm thick. The .« — alcohol)-

disks were supported on presintered Z
PhiMg, [Nb, )O. setiers and stacked n- S mmoan #

side a covered aluminag crucible to
nuninize PO foss during sintering. The
disks were then sintered in air at tem-
peratutes between 1250° and 1300°C for
peniods ranging from 2 10 10 b at s heating
tate of 30'C/h At the end ot the finng
penod, the crucible was cooled innide the
furnace and the phases presenc i the sam-
ples were identified by powder X-ray dif-
traction (XRD) using Cuka radisnhon. The
weight Josses at various sintening tem-
peratures were ascertined by the change in
weight of the samiples before and afier the
Tng. The fracture surfaces were exannned
by scanning electron mictuscopy (SEM).
and clemental analyses of the phases
present an the sitered samples was con-
ducted by an X ray cucipy dispersive
specttometer (EDS) attached o the SEM

Risulls AND DiscUSSION

The XRD analysis of the simered sam-
ples revealed a single-phase cubic perov-
skite pattern that exsentially corresponded
o the PbiMy, WNb. 0O PHTIO, sohd so-
lution. It was observed that ancreasing
additions of PbTiO i the sohd solutions
did not cause any appreciable shift in the
characterntic reflecthons of the perosvsiite
pattern This result was probably due to the
sitndanty of the tado of NB™ (0 697 and
Tt (0 68y gans
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The sintering characleristics of vari-
ous compositions indicated similar trends
in density variations and weight losses at
different firing temperatures immespective of
the PbT10., content in the solid solutions. In
gencral, the densitics increased with in-
creasing sintering temperature. However. a
rapid ncresse of density values was ob
served for the sintered samples at 1290°C
followed by a small decrease at 1300°C tor
the same sinfering ime. A maximun den-
sity of 96% of the theoretical was achieved
by sintering at 1290°C for 3 h. Further
increase in the sintering time at this
temperature did not show any significant
increase in the density values. The corre-
sponding weight loss data indicated that the
rate of loss was considerably higher at tem-
peratures at and above 1290°C. Most of
the losses occurning at this temperatuie
appeured to take place during the il
period of the sintenng: thereafter, the rate
became hncar with ime.

The sequence of microstructural
changes observed duning the sintering of
the solid-solution compaositions clearly
demonstrated that a liquid phase was
formed at ~ 1290°C. With increasing sin-
cnng time and temperature, the rapid n
crease n the densification rate appeared to
be consistent with sintenng in the presence
of a hquid phasc. The microstructures of
the sintered samples showed o significant
increase in the grain size with a comespond-
ing decrease in porosity. However, the
slight decrease in density at 1300°C can be
accounted for by the loss of PbO from the
samples as observed by the weight-loss ex-
periments. Seemingly, the PbO loss, which
increases rapidly at the onset of the hiquid
formation at 1290°C, appeared to have
caused some variations in the composition
and led to an inhomogeneous micro-
structure. This behavior was evident from
the morphology of the fracture surfaces
which revealed the presence of a highly
dense Jucalized region near the surface with
a porous yet rigid intenor forming the bulk
of the sumple. The SEM mucrograph of the
localized region show ing the distribution of
vanous phases is exhibited in Fig. 1(A).
This distnbution 1s typical of the micro-
structures resulting from profonged sin-
tening at clevited emperatures which
revealed the presence of many fectangular
solid particles eventy distnibuted in a liguid
matrixn. The EDS analysis indicated that the
solid phase contained My™” and Nb™* with
very hide 1", and no Pb*" was pre-
sent. The surrounding hiquid fayer. the mor-
phology of which is shown in Fig. 1(8).
was found to be mostly homogencous and
contained. predoninantly. Pb’™ "By con-
trast. the doss-dense aptenior region, as
shown n Fig 20 was tound 10 be ey
seatially unchanged and consisted of
coarsencd grans of the sohd solution with
sonw residual porosity evenly distnibuted n
the bulk.

The concentration of a PbO-nich hiquid
phasc ncar the surtace during sintering 1s
belicved to be the result of the simultancous
volatilization of PbO from the surface and
liquid migration within the samples. As s
cvident from this stwdy, a sigmfican
woight loss occurs mainly because of the
volatilization of PhO at the hgqud tormation
temperature (1290°C) Scenungly. pro-
longed sintenng at and above this tem
perature gives fise to extensive PbO loss
from the surtace and leads to a com-
positional vaniation With the progressive
loss ol PbO from the surface. the PbO con-
tent of the liguid phase must have de-
creased to a sufficient extent to allow the
tormation of MgNb,O,. solid particles in
the PbO-nich hiquid matnix. It seems hikely
that hquid migration wathen the bulk of the
sample dUnng SIRICTING 1y & RCCENAry Lo
dition tor atlowing the change 1n the com
pasttion near the surtace. leaving angid yet
purous structure i the antenor 1t is appar-
ent that turther study s required o under
stand the nature of the hiquid phase and it
behavior inside the samples throughout the
MOICTINE Process
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APPENDIX J

Effects of Additions on the Physical and Dielectric o

Properties of Lead Magnesium Niobate

D. Beck, M.S. Thesis, 1986 ’
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The effect of additives on
ferroelectric lead magnesium niobate based disc capacitors
was studied. The basic capacitor composition was 55.4 m%

Pb Mng20 15.5 m¢ PbTiO and 29.1 m%& MgO. The

3 9’ 3’
additives used were PbBiszzog, 2 6’

concentrations of 0.5, 1.0, and 2.0 m%. The compositions

Pb ., MgWO and PbO in
were formed by solid state reaction and the capacitors
sintered at 1225, 1250, and 1260°C.

The effect of composition on the capacitor properties
was determined by measurement of density, porosity, weight
loss during sintering, dielectric constant, dissipation
factor and room temperature resistivities. Microstructure
was examined by x-ray diffraction and scanning electrrn
microscopy.

The additives either 1lowered the density of the
capacitors or left it unaffected. Porosity was unaffected
by PbBiszZO9 and szMgwo6 additions but it was increased
by PbO addition. Weight 1loss during firing was also
higher with the addition of PbO. The dielectric constant
was either lowered or unaffected by the addition, but the
dissipation factor was generally lowered at temperatures
above the phase transition. The electrical resistivities
were generally greater than 1011 ohm-cm. According to

x-ray diffraction and microstructure, the additivies were

found not to form second phases.




APPENDIX K

The Effect of Excess Lead Oxide on the Sintering Characteristics

and Dielectric Properties of Lead Magnesium Niobate Ceramics

D. Hong, M.S. Thesis, 1987
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In this investigation the effect of lead oxide additions
on sintering characteristics and dielectric properties of
ferroelectric Pb

MgNb 09 based capacitors was studied. The

3 2
basic dielectric compositions were formed by solid state
reaction. Densification was studied as a function of PbO
content over the temperature range 900°c to 1000°C for
sintering times one to six hours depending on the amount of
additive and sintering temperature.

The weight loss, density and shrinkage measurements of
each composition were made in order to relate the effects of
the excess PbO additions on the densification. The dielectric
and electrical properties were then correlated to the
microstructure and density.

The compositions sintered at low temperatures were
densified by the formation of liquid phase during sintering,
however, an increase of the amount of liquid phase does not
necessarily yield optimum dielectric properties. A proper
control of the sintering temperature, time and the amount of

excess PbO is required for optimization of the dielectric

properties.
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The results show: :
w
X N« UNIN
. 1) The reaction between Mngzo6 and PbO at 750°C yielded S ¥ ;,'::v
¢ ] S . V c'f:‘:
nearly pure P MN phase. * .‘.}'_'j
e ‘1‘.'_-\ )
2) The addition of excess PbO to P3MN - PT based ;?‘I;
Al A T
. composition resulted in densities greater than 96 ) of A 'vg“:
theoretical density at temperatures as low as 900°c. e ,x;‘
& ~ =L 3
R i:’;.
!
‘ . o
N 3) The densities of the specimens with excess PbO ! o
N sintered in the 900 to 1000°C temperature range depends upon B
> ‘. _,l '!
v the loss of PbO. Excessive PbO losses deteriorate the .o:
1 R
" densification at 1000°C for sintering times greater than 1 Tig ’:}g
hour. 3 K
) : :,,:
¥ g u
» {ﬁ
_ R
4) The solid solution P3MN - PT with 3.3 m% excess PbO .f,f”

which was sintered at 1000°C for 1 hour vyielded capacitors

b with maximum dielectric constant of 17,000 at 1 Khz.
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