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Preface

I began this research with the goal in mind of creating a computer
program that could be used tactically to find the best evasive maneuver for
a satellite In geosynchronous orbit under a given attack through the use of
continuous thrust. I wanted this computer program to be able to track the
distance between the attacking satellite and the satellite being attacked
throughout the maneuver. My intention was to use a very low thrust such
as that available for use in satellite attitude control and station keeping. I
was able to make substantial progress through the use of an IMSL routine
known as DVCPR.

The biggest problem was in de—sensitizing the subroutine, DVCPR.
The extreme sensitivity of this subroutine to co—state inputs proved to be
very time consuming. Hopefully, my study will save future students some of
this painstaking drudgery.

I owe a great deal of thanks to my faculty advisor, Lt Col Joseph W.

Widhalm, for his expertise, confidence, and patience given to me throughout

this project. However, my greatest thanks goes to my wife, Carolyn, for all
of her invaluable encouragement and understanding.

Robert D. Preissinger

LOGITEC M-1601A-PC (IBM Clone); Fancyword; Star-Micronics SG-10
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o .7{ Hamiltonian K
K, Gradient of the Hamiltonian ——— 8H/%u ]
:.' J Cost Function :_
- m mass "
'.‘ m’ constant mass flow rate
"; B Geocentric gravitational constant
. g, universal gravitational constant
t:,' Th Thrust magnitude
. TPBVP Two point boundary value problem
- DU Geocentric distance unit
TU Geocentric time unit
N t Time
> - § Final time
/ u Steering angle measured from x axis
‘ (scalar control variable)
o P vector measured from geocenter to satellite )
; (for the two satellite problem, p is the vector j
s between the two satellites) .'J
P maguitude of p vector Pﬂ
P, x component of p vector . i
P, y component of p vector 1
,,_"’:; I vector (from geocenter) to satellite 1 (attackee) —1
\ r, magnitude of p, vector -:
o ‘ I vector (from geocenter) to satellite 2 (attacker) :
.'E i r, magnitude of p, vector ‘.r:.'
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Abstract

A satellite under attack by another orbiting body relying on an
explosive device to effect a kill has the problem of avoiding s volume of
space in which its destruction ie highly likely. To avoid this volume, the

attackee could use continuous low thrust, such as that provided by the

electric propulsion in attitude control thrusters, if its warning time and
orbital parameters were appropriate. A model is developed using optimal
control theory and is solved numerically for the thrust direction using various
magnitudes of thrust. The model progresses from a one satellite solution
(where the threat s a fixed sphere in space) to a two satellite solution in
which the distance between the threat and the target satellite is constantly
updated (to avoid this same threat sphere). The results are given for several
values of thrust, several time- of —flights (time of thrusting for the
maneuvered satellite), the optimized time of flight, and for circular and non-

circular end orbits.
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OPTIMAL CONTINUOUS THRUST ORBITAL EVASIVE
MANEUVERS FROM GEOSYNCHRONOUS ORBIT

I. Introductjon

Much research has been done on the astrodynamics of orbital transfer
and rendezvous, but very little of the current literature addresses the
problem of avoiding an interception in space. With more and more military
capabilities being placed into satellites (see Brandt (6)), the means of
intercepting them are improving. It stands to reason that the problem of
avoiding or defeating an interception also needs attention. Evasive
maneuvering is one technique of protecting space assets.

Most of the current literature on orbital evasive maneuvers is
concerned with impulsive thrust (8, 9, 10, 17, 19, 21, 26). The purpose of
this thesis is to examine the optimal orbital maneuver that would be
required by a satellite orbiting at geosynchronous altitude using a constant
magnitude continuous low thrust propulsion system.

Even the simplest orbital maneuver may use up the satellite’s limited
supply of propellant, perhape shortening its useful life or leaving it vulnerable
to a second attack. [t becomes obvious then, that an optimal solution is to
minimize the time of propellant burn. This problem becomes synonymous
with a minimum time optimization problem.

The problem is to determine the optimal thrust direction to transfer a
vehicle from some point on an initial orbit, to some desired terminal orbit in

minimum time, using & constant magnitude low thrust propulsion system.
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T problem is approsched using optimal control theory (See Bryson (7)). S
The thrust direction becomes the control variable and, through the equations
of motioa, 8 Two Point Boundary Value Problem (TPBVP) is formulated.
For the desired result, the problem is first developed as a problem in which
ume » fixed and the problem is limited to two dimensions. An algorithm is p;i
developed to move a satellite from geosynchronous altitude to a maximum
redive circular orbit in a specific time. There are two constraints used on
the problem at this point; first a tangency constraint which requires the (A
maneuvering satellite to be tangent to a threat sphere at {, and second a
ronstrmunt which requires the final orbit to be circular. Then, since some
fuel m this burn is being used to circularize the final orbit, the final circular
orbit constraint is removed from the algorithm. This circular orbit at ¢
"vastrant w omitted from all remaining runs. This results in a greater
radius change in the same amount of time. The final part of the algorithm
acorporstes two satellites being monitored at the same time; one of these

bewng the attacker, and the other being our maneuvered satellite (the target

>r sttackee) The problem is then expanded to optimize time; thus '
s~omplihing the iotended task of this problem. 3

The coordinate system selected for this study differs from those -\.
sejected by Smith (23) or Starr (25). Where they chose a polar coordinate li’ni

system the coordinate system chosen for this thesis is an Earth—Centered

lnertial - Cartesian System similar to Bowman (4). The main reason for this
eetection 9 that an X-Y system is much easier to visualize than a polar
nstem and s system in which it would be easy to "see" what is going on
with the thrust direction was desired for this project. For ease in
~mputing, the initial satellite position is chosen to lie on the X axis, and
the problem » kept two dimensional. Simply stated, the initial problem as

......................................
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stated in Bryson (7:66—68) is: given a constant—thrust engine, Th = thrust,
operating for a given length of time, {, we wish to find the thrust—direction
l;istory, u(f), to transfer a satellite from geosynchronous orbit to the largest
possible circular orbit. (See figure 1)

This problem is accomplished with good results for a quarter orbit
time—of—flight, and for a four hour time—of—flight. Problems encountered
will be discussed in the following sections.

The problem is then expanded by removing the constraint of going to
the largest possible circular orbit, i.e. the orbit is now just being changed to
the largest possible orbit away from the threat, not to a circular orbit;
however, the tangency constraint remains. This is where this problem ceases
to be similar to Smith (23) or Starr (25). Results are obtained using the
same thrust magnitudes and thrust durations (time—of—flight) as above.

Now comes the real objective; that oi' actually tracking the threat
during the entire burn time, with respect to the maneuvered satellite, and
optimizing the time—of—flight for the maneuver. This means beginning again
" with a new set of equations (derived from the initial equations of motion) for
two satellites within the same problem. Time minimization is accomplished
by parameterizing time in the equations of motion and applying optimization
techniques to come up with the minimum time—of—flight for the total
maneuver to increase satellite orbit by a specific distance. Results are also
obtained for the same thrusts magnitudes and thrust durations as before.

This thesis contains all the mathematical analysis in Section II, a
description of the specific computer implementation of the algorithm and the
problems encountered in Section I, a discussion of the results in Section IV,

and conclusion and recommendations in Section V.



In Section I, the problem equations of motion are listed for a fixed
time, maximum radius increase algorithm. As stated above, one of the
initial constraints is then removed and the problem is reworked to get an
~ even greater radius increase. Therefore, it becomes possible to get a greater
threat avoidance distance with this second method. The problem is then
reformulated and expanded to a two satellite problem in which the distance
.bétween the two satellites can be monitored throughout the maneuver. (see
figure 2) The problem of keeping track of the threat satellite throughout the
burn time is also discussed. Section III discusses, in detail, the problems
encountered in all aspects and versions of the algorithm, and how success is
finally achieved for all specified thrust magnitudes and burn times. In
Section IV, the results are discussed for various thrust magnitudes and thrust
durations with the relationship between the two. The results of the time
minimization problem are also discussed in this section. Finally, the
conclusions of this thesis are discussed along with some of the tactics of

orbital evasion and some suggestions for further work in this area.
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0. PROBLEM FORMULATION

The equations of motion are developed from two-body motion utilizing
the given coordinate systems. (see figs. 1 and 2) In order to keep things as
simple as possible, perturbations are neglected and only two—body orbital
dynamics are considered. The basic equations come from Bate (3) and :
Baker (1). The only forces acting on the satellite become thrust and gravity. g
The angle between the thrust vector and the X axis becomes the control. ;

le Satelli b ‘;
For the single satellite problem p is the radius of the satellite
measured from the center of the earth. In the following equations p,
becomes x,, p, becomes x;, and so on. The resulting state equations are:
X', = Xq (1
X', = X, (2)
X’y = —px,/p* + Th/(m,—m"t)COS(u) (3) e
X', = —px,/p* + Th/(m,—m't)SIN(u) (4)
with initial conditions of: 5
R
x,(0) = 6.622791181 DU (5) _
x,(0) = 0.0 DU ()
x4(0) = 0.0 DU/TU (7)

x,(0) = 0.3885792278 DU/TU (8)




The cost function for this problem then becomes

J = p(t) (9)

The Hamiltonian of the system is, therefore

H = Mxg + 0x, + M(—mx,/p* + Th/(m,~m')COS(w)) + A,(—px,/p?
+ Th/(m,—m't)SIN(u)) (10)

Minimiging the Hamiltonian with respect to u results in:
H, = —2(Th/(m,~m’)SIN(u) + A(Th/(m,~m’))COS(s) (11)
Therefore, the resulting control is:
TAN(w) = A\ /N (12)

The resulting co—state equations will now be given with the following

representations:

X = A Xe=N X=X =) (13)
COS(w) = x,/(14x4%/x,%)'/? (14)
SIN(w) = xo/(1+x3/x,%)'/? (15)
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-
5' N giving the co—state equations as: -
: Xy = B/t - Sxx,M/p ~ Sxxx, /e (1) 3
- X' = wixg/p — SX/P — Bxx, /P (a7 bs
X'y = —Xg (18)
; X'y = % (19) "'
The remaining boundary conditions come from the two constraints on
', the problem at ¢ and from the necessary conditions as found from the @ J_
2 equation. The first constraint forces a tangency of the maneuvering satellite
\ to an imaginary threat sphere at the final time; whereas, the second
: implements a circular orbit at &
- ‘17 “ = X,Xg + XX, = 0 (20) _..-_
- ¥ = (/o) — V() = 0 (1) i
o where:
:'; v = (xg + x )2 (22) o
._. ® = IP' + v,(¥) + v,(8) (23) =
= (Note:  A(t) = 8®/8x (i = 1-4) ) Therefore the necessary conditions -
e become =
M) = xg(4) = x,/p + vixy — vxp!lt/pl (24) 0

- M) = Xg() = x,/p + VX, — vxp!/gP (25)




. ._,_.- —“
. AR '.'t'."" .
ettt -
. s .
.. PLPLL S DR e

1 L I T B
B AL
N A
. . N AL

v v v .-
-

<

m’n
l. ﬁ
F SN

-

SAAR)
el d
[ W RN

AR
LA

T W
o

< .

LR "o o o T ma -

. gt oLttt e e e -
- . b e, -t

‘\ AM(l) = () = vx; — vx/v (20)
M) = xy(t) = vix, — vx /v (37)

and the necessary conditions yield two more boundary conditions (at t):

XgX; + XXy — P — XpXg — XX = 0 (28)
XX, ¥ XX, — P — RA(xxgxgx,)/(vp!/?) = 0 (29)

These last two boundary conditions come from algebraic manipulation
of the A(t) equations when one eliminates the »’s.

Two Satellite Problem (eee figure 2)
The two satellite problem equations are very similar to the single
(; satellite problem excep’ that they utilise the vector between the two satellites

as the position state vector instead of a single satellite’s position vector.
This is done in order to observe what effect the dynamics of the attacking
satellite has on the maneuvering problem. The following representations are

used:

e=1r - I =y, -V, (30)

X, " Py X TP Xm0, X, =P, (31)

The resulting state equations are:

X', = x, (32)

| X', = X, (33)
i X', = —pry/t} + ur,/r,} - Th/(m,~m'H)COS(u) (34)
R A ur,/r' — Th/(m,~m't)SIN(u) (35)

..........
-----------------------

......................
.........................
.......
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where r, was found through the use of a Kepler orbit determiner and
[, was then found by subtracting the state variables from the appropriate
components of the r, vector. i.e.
L= (rzg - x])i + (ru - xg)i (36)
The following become the final problem’s initial conditions:
x,(0) = -7.552551 DU (37)
x,(0) = —.T744873 DU (38)
xs(0) = 1.0241614 DU/TU (39)
. x,(0) = —.9642712 DU/TU (40)
(o
(Note: These are the result of satellite 1 being in a geosynchronous orbit
and satellite 3 being in an eccentric orbit with its perigee altitude “100 nm
and its apogee altitude being geosynchronous.)
The cost function of this system remains:
J = p(t) (9)
and the Hamiltonian of this system is, therefore,
H = x, + Ax, (~pry/r} + ur,/t® —Th/(m,-m’'t)COS(u))
+ A (—ury/r} + ur,/r,* —Th/(m,~m't)SIN(u)) (41)
#x

... .
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Minimising this Hamiltonian with respect to u results in the same
' expression as before:

J’(. = A(Th/(m,—m't))SIN(w) — A, (Th/(m,—m't))COS(u) (11)
Therefore, the control remains:
' TAN(a) = A, /A, (12)

The co—state equations will remain given with the following

representations:

3= X =h X=N X =) (13)
\e COS(u) = x,/(1+x/xA)3 (14)
o SIN(W) = xg/ (14x,/%,7)/% (15)

'y

giving the co—state equations as: ~

X'y = Bixa/ed = Sxae e — Sxgrry /Y (42)
X'¢ = mixy/r* — 3xgr),2/r® — 3xyrr, /1t (43) H

Xy = —Xg (44)

VIR A

X'y = —Xg (45)

The remaining boundary conditions come from the constraint on the

problem at & and from the necessary conditions. Once aguin, the constraint
forces a tangency to the threat sphere at t.
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¢ mxx txx, =0 (20)

where:

®=p+w¥) (46)

the necessary conditions become

M) = xg(t) = x,/p + vxq (47)
Mt) = xg(t) = x;/p + vx, (48)
A(t) = x,(8) = vx, (49)
A(t) = xg(t) = »v,x, (50)

and the necessary conditions yield the remaining three boundary

conditions (at ¢):

XXy — XX, = 0 (81)
XXy + XXy = 0 (62)
XX, * Xg%; — p= 0 (53)

Once again, these last three boundary conditions come from algebraic

manipulation of the A({) equations when one eliminates v,




Il PROBLEM SOLUTION

To add validity to the results of this thesis, this section begins with a

description of bow the algorithm actually works and how it was verified.
Then the specific problem areas encountered in the running of all the

different algorithm versions using the different constraints are discussed.

Algorithm apgd Verificatiop

The algorithm i written (all versions) in FORTRAN 77. It utilizes
the IMSL routine DVCPR to solve the problems in question. It was run on
the VAX 11/785 Scientific Support Computer (SSC) under the Unix
operating system at the School of Engineering of the Air Force Institute of
Technology The algornthm requires the first derivatives of the equations of
motion as well as the first derivatives of the co—state vanable equations.

The first derivatives of the equations of motion are multiplied by Lagrange

multipliers to form the Hamiltonian of the system. The first derivatives of
the co -state vanables (the Lagrange multipliers) come directly from this
Hamiltonian equation as stated in Bryson (7). Since there are four equations
of motion involved in the first part of the problem and four co—state N
variables that come from the Hamiltonian of the system, the algorithm _«?

utilizes eight equations as input to the IMSL routine. These equations are

found in the subroutine FCNI. This results in an 8 x 8 Jacobian matrix
(x,/¥x, i=1,8  )=1,8) This Jacobian matrix is found in the subroutine
FCNJ The system boundary conditions are utilized in the subroutine
FCNB
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LS
The basic discretization used is the trapezoidal rule over a possibly -
non—uniform mesh. This mesh is chosen adaptively, in order to make the i:j

e

local error of approximately the same size everywhere. Higher order

o el

discretizations are obtained by deferred corrections. Global error estimates

>
L

are produced in order to control the computation. The resulting nonlinear T
algebraic system is solved by Newton's method, with step control, while the j'-Z’j-I:‘
linearized sparse system is solved by a special form of Gaussian elimination :&

b

that preserves the sparseness.

The algorithm was verified by inputting the required data for running
a simple two body problem with the boundary conditions split between the I
- initial and final time. This problem was run without thrust for six hours E\
\ duration from geosynchronous altitudes and velocities and the output resulted
: _ in exactly a two body Keplerian orbit. The final stage of this thesis
% incorporates a Kepler orbit determiner to find the position of the attacking g
satellite during the entire thrust duration. After verification of this orbit 0
determiner, (through the use of various examples from Bate (1:195-210)) it
was also used to verify the two body results obtained through this algorithm. a'—-r;
Single Precision Version
Equations (1) through (4) and (16) through (19) were used as the .":j
XPRIME equations for the subroutine FCNI. This resulted in an 8 X 8 —.—'
Jacobian matrix that was used in the subroutine FCNJ. Equations (5)
through (8), (20), (21), (28), and (29) were used in the subroutine F CNB as .d
the boundary conditions. —'—'
Several problems arose in obtaining numerical results using a single
precision version of DVCPR. First, the initial definition of the control was E
giving divergent solutions. The computer was not giving the correct values \

.........
''''''''''''



because the state equations needed COS(u) and SIN(u) inputs. The initial
definitions were:

COS(u) = x,/(x? + x,2)!/? (14)
SIN(u) = xg/(x,* + x,2)1/2 (16)

While mathematically correct, this gave some problems in the computer
algorithm as they caused the algorithm solution to diverge when first
attempted. This was rectified in two ways. First, u was redefined as

follows:

u = ATAN2(x,,x,) (54)

This utilized the intrinsic ATAN2 function of FORTRAN 77. The
other way was to painstakingly take care in choosing the input grid values of
the co—state variables. It is interesting to note that these two methods
resﬁlted in exactly the same results; however, the first solution was far less
time consuming.

The second and biggest problem in using DVCPR for this problem
was that | had to "initialize the grid" or give the Newton algorithm a good
starting point. Picking good approximations for the initial state equations
was not hard, but getting a good guess for the co—state values proved very
.time consuming, a8 DVCPR proved to be very sensitive to these initial
guesses, - (This was the most time consuming part of this entire thesis.)
This problem was finally rectified by utilizing many computer runs with
various co—state variable "guesses” for the initial grid variables. This was

repeated until the output began "looking" close to the desired results, as

16



predicted from analysis of output from Smith (23) and Bowman(4). It was
then possible to develop better "guesses® based on the previous output and
sort of slowly "walk" toward a guess from which the algorithm would

'converge. Once there was a successful (i.e. converged) solution, it would be

used as the initial guess for subsequent runs.

The third problem was that of convergence. DVCPR also proved to
be very sensitive to the TOL (tolerance) parameter. Small values of
tolerance in DVCPR caused an error message indicating that the Newton
algorithm diverged, even though the solution appeared completely reasonable.
Playing around with this parameter, i.e. raising TOL from 10~¢ to 10
satisfied this convergence problem without affecting the actual output
tolerances too much. No explanation can be given for this unusual behavior,
as DVCPR does not document the tolerance algorithm in sufficient detail;
however, this became one of the primary reasons for developing the double
precision algorithms.

Another problem was a lack of convergence for any maneuver (time—
of—flight) that was over approximately six and one—half hours in length.
Utilization of only one quarter (1/4) of an orbit for the runs avoided this
problem. Justification for this thinking is that in an actual ASAT type of
defense (in the future), probable warning time will be between four and six

hours (see Bowman (4), Brandt (6), Wagner (27), or Zazworsky (30)) One

quarter of a geosynchronous orbit is six hours, therefore six hours was taken

as the maximum amount of time to maneuver in this problem.

The final problem encountered was one of checking the results. In
order to do this, results were compared with those obtained by Bowmau (4).
Their results utilized thrust only in the tangential direction and their
coordinate system was slightly different; however, the results obtained here

17



compare favorably with their study. Results also compare very well with
those obtained by Smith (28) and Starr (25).

It became obvious very quickly that single precision results were

| inconsistent and Incomplete. (see figures 3—6) Therefore a double precision
version of the algorithm was developed for all remaining work. This seemed
to rectify most of the above mentioned problems and orbit radius was
established to a 10~* meter tolerance. The biggest problem remained
however; "initializing the input grid" for the co—state values still proved very
time consuming. Once again, guessing until the resulis were close and then
using very small variations of the co—state variables soon produced
convergenf solutions. The results proved to be consistent with those
obtained by Bowman (4) and Smith (23). The algorithm was initially run
with the tangency constraint and the circular final orbit constraint. (See
equations 20 and 21) The circular orbit constraint was then dropped to
allow for a larger (greater radius) orbit in the same amount of burn time.
(i.e. more distance with no more fuel than before) Results for both circular
and non—circular final orbits are discussed. Boundary conditions are given in
the subroutine FCNB and are included in the appendix.

Two_Satellite Problem
Up until now, this thesis has dealt with increasing a single satellite’s

radius to the maximum attainable in a given time subject to the constraints
of equations 20 and 21 and later dropping the constraint of equation 21.
However, what this thesis was intended to do is to increase or maximize a
distance away from a given threat satellite in an optimum time. This means
that we must introduce this threat satellite into the problem, and somehow

18



begin determining just how far away from It our own satellite is. At any
given time, as we maneuver our satellite to avoid the threat, it would be
nice to observe the effects on the problem presented by the attacking

- satellite’s orbital dynamics. This section deals with two satellites, a threat
or attacking satellite and a maneuvering or target satellite.

First a Keplerian orbit determining algorithm had to be developed.
This orbit determiner was derived from Bate (1:195—205) and incorporated
into the main algorithm in every instance where the state variable was to be
found. This orbit determiner found r, at each time step, and p, was then
found by subtracting the appropriate state variable from the proper
component of r,. (See equation 36) This allows us to treat r, as non—time
varying in the equations of motion.

Problems encountered in this version of the problem at first seemed to
be insurmountable. The algorithm was initialized with previous output, in
the hopes of a quick convergence. The state variable initialization was
simply a matter of subtracting the previous state variable from the output of
the Keplerian orbit determiner subroutine. (see equation 25) However, the
co—state variable values follow no logical pattern. Once again, guess after
guess finally brought a converged solution which could then be used in
subsequent runs.

This problem was first run with the threat satellite in the exact same
orbit as the maneuvering satellite. In other words, the threat and the target
‘begin at the same point in space in the same orbit. The target satellite
then maneuvers with its constant low thrust system, thereby changing its
orbit. This orbit changes with time, and the radius is constantly increasing;
or the distance from the threat is constantly increasing.
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g These results were then used to initialise further rans in which the 2
a threat satellite’s orbit is changed to various attack runs. The final run has Fq
: the threat in a high eccentricity orbit with a perigee altitude of 100 nautical %
miles and an apogee altitude equal to geosynchronous. j
S: The real problem statement was to find the optimum time to transfer ,:
evasively away from a threat. This was accomplished by parameterizing ;'1
- time in the original algorithm and using optimal control theory on the

equations of motion. The cost function now changes from that of equation 9
. to become
.: o
- J=opt) + J dt (65)
7 °
y ‘r‘ where we fix p(4) to a specific magnitude.
\ This results in an additional state equation:
3
v
x'y = 0 (66)
. This comes sbout by allowing orbit transfer time to vary between sero f:
and one, letting: 5
> t=xy0n (67) .
& Because p(t) is fixed, the effective J becomes, o
’ 1 ot
» Jg = [ dr (65a) e
°
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In order to implement this extra state equation, each of the previous
state equations must now be multiplied by the new state variable (x,) and
equation (56) becomes the ninth equation needed in the subroutine FCNL

This also brings an additional boundary condition into the problem, the
Hamiltonian of this new system (now different from equation 9) is now equal

to szero.

H = dxg + Ax, + M(—ix,/p* + Th/(m,~m')COS(x)) + A (—we,/p*
+ Th/(m,—m'$)SIN(u))) * x; + x, = O (58)

Equation 58 is included as one of the boundary conditions in the
subroutine FCNB. These boundary conditions can be seen in the appendix.
Since there is an additional state equation, the Jacobian is now a 9 X 9
matrix, and is used by the DVCPR subroutine FCNJ. The problem of grid
initialization was still present, but by utilizing previous data as initial guesees
for the initial grid, much time was saved in this parameterized time problem
algorithm.
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IV. RESULTS

This section discusses all of the separate computer runs that were
accomplished for this problem. The first part discusses the single precision
version of the algorithm. Double precision versions follow with both end
time constraints discussed separately. Then the two satellite problem and
the different attacker orbits that were utilised is discussed, and the final
portion is devoted to the time parameterisation part of this thesis.

Single Precision version.
The initial version of the algorithm was written in single precision.
Four different runs were accomplished, .001g, thrust and .0005g, thrust, each
utilising » four hour and a six hour burn time. Each of these runs were
subject to the constraints of equations 20 and 21. The boundary conditions
for these runs are those found in equations 5 through 8, 20, 21, 28, and 29.
The results are shown in figures 3, 4, 5 and 6 showing plots of u (Thrust
direction) vs time. As stated previously, comparison of these results with
those obtained by Bowman (4) is very favorable and shows that for thrust
magnitudes in the range of .0006g, up to .001g,, significant orbit changes are
possible. This algorithm produced orbit radius changes greater than those

obtained by Bowman (4) which was expected since Bowman dealt with
thrust only in the tangential direction. Thrust levels less than this have
little or no effect on orbit radius. (NOTE: g, is the gravitational constant
for the earth—1DU/TU?—-0r-32.1466m/s?)
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.’. Orbit radius was increased by “462 kilometers in the .0005g, case with
. s 6 hour time—of-flight. (1/4 orbit period) In the 001g, case, ¢ hour
time —of —flight, orbit radius increased by ~608 kilometers This proved to be
o the Jargest amount achievable with the algorithm as written in single
‘ precision. For the .0005g, case orbit radius increased only “386 kilometers
g This was the least amount of the algorithm. In the .001g,, 4 hour case, the
s increase was 494 kilometers.
‘ From the graphical results, one sees a lack of consistency in the thrust
. direction vs the thrust time. The four bhour graphs show a rapid change in
thrust direction; however, the change from a positive thrust angle to a

:Q__. negative thrust angle seems to follow no set pattern. In the six hour graphs
. this transition seems to be almost liear Although the radius increases

, obtained with this version seem to be valid the thrust direction angle results
y lo proved to be unacceptable. This coupled with the before mentioned problem
" with the TOL parameter prompted a double precision version of the
= algorithm to be incorporated for all additional runs and all further results are
g from the double precision versions.
o Double Precision versions
!: The double precision versions of the algorithm alleviated the above
g-_':; mentioned problems with thrust direction angle irregularities. Two versions
of the algorithm are included because the first has the constraint on the ]
. problem of the final orbit being circular (see equation 21); whereas the L
second version does not require a circular orbit at the end of the burn 1
Both versions require the maneuvering satellite to be tangent to the threat
! . sphere at t. (see equation 20) Boundary conditions for these runs are found w*
- in equations 5 through 8, 20, 21, 28, and 29 for the circular orbit constraint
1
.
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runs and equations 5 through 8, 20, and 51 through 53 for the remaining

runs. (circular constraint removed)

bit traipt at
The first double precision version of the algorithm was run with the

same constraints as the single precision version,

4 = X%t xx, =0 (20)
% = (I/p(t))'7? - v(t) = 0 (31

The boundary conditions are as stated above. The problem was run
with the same thrust magnitudes and durations as before. Accuracies were
increased through the TOL parameter to 10~* meters. (the final TOL value
was 107'7) The results can be seen graphically in figures 7, 8, 9, and 10.

It was interesting that for the same parameters as in the single

precision version, the radius increase values were different. For the .00lg,

thrust, six hour burmn, the radius was increased ~793 kilometers in this

» T ...
PR SR

version ( 184 km more than the single precision version). However for the
000bg, thrust, six hour burn, the radius increase was only “393 kilometers

in this version (“70 km less than the single precision version). The other

two cases had similar results; the .001g, thrust, four hour burm, radius
increase was 472 kilometers ("12 km less that the single precision version),
and the 0005g, thrust, four hour burn had s radius increase of only "240

kilometers (115 km less that ihe sing. prec. version). While these values
proved to be much more accurate than the single precision version, they
were not significant changes. The good news about this version, as can be
seen on the graphs, s that the thrust direction now seemed to be consistent.
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It appears that the rapid thrust direction change that occurs in all cases is
dependent upon the total time of maneuvering. In the six hour maneuver
times, this rapid thrust direction change goes through 180°; whereas in the
four hour maneuver times, it goes through 0°. It becomes obvious that
thrust direction history becomes dependent upon total thrust duration.

It became obvious by going through numerous output files, that much
of the fuel being used to make the final orbit circular was in fact stealing
from orbit radius increase. Since the objective was to maximize p (orbit
radius), this constraint (equation 31) was removed in order to get a greater
radius increase; therefore, increase the distance the target satellite was able
to get away from the attacking satellite. In other words, this version utilizes
the same amount of fuel to get significantly greater distances away from the
threat. The boundary conditions that changed for this run were due to
remcing equation 20, 28, and 29; while including equations 51 — 53.

These results can be observed graphically in figures 11, 12, 13, and 14.
| From these figures, one observes that the thrust direction change now always
goes through 0°. Also, there is no longer a rapid change from positive
thrust direction angles to negative thrust direction angles. The four hour
burns begin at approximately 27° of thrust direction angle and begin a
moderately smooth transition (still highly non—linear) to their maximum
negative values of about —120°. The six hour burns both begin at
approximately 45° and transition to a maximum negative value of about
—90°. Thrust direction angle is still seen as highly dependent upon the total
burn time; the greater the total burn time, the greater the initial values of
thrust direction angle.
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The significant part of this version is the distance increase. Orbit
radius was increased “1707 kilometers in the .001g, six hour burn. This is
9158 kilometers more than the previous version! The .0005g, six hour burn
increased radius by “862 kilometers, almost 500 km more than that
previously obtained. The four hour burns were equally impressive. The
.001g, four hour burn increased radius by 665 kilometers; while the .0005g,
four hour burn increased the radius by ~335 kilometers.

wo i it

The results from the two satellite portion of this algorithm are shown
in figures 15, and 16. Once again, the only constraint on the two satellite
problem is the tangency requirement of equation 20. Figure 15 shows both
satellites beginning at the same point in space. The terminal boundary
conditions are those of equations 20 and 51 — 53. One quarter of a
geosynchronous orbit is shown as that of the attacking satellite. The target
satellite is the one that has the ever increasing radius. It is interesting to
note that not only is the radius increasing, but the period of its orbit is also
changing ever so slightly. This ever 80 slight period increase has a
tremendous effect on this problem.

The threat satellite’s orbit was then gradually changed and the
algorithm continually updated with previous output to keep a good
"initialization grid® until the attacking satellite was in a very high
eccentricity orbit with a radius of perigee of approximately 100 nautical miles
and an apogee altitude equal to geosynchronous. The initial conditions
eventually become those of equations 37 — 40. The algorithm was then
repeated for both of the previous thrust magnitudes with both of the thrust

burn times with the same terminal conditions as before.
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The results from this were nothing short of great! The biggest
increase in distance came not only from the increase in the maneuvered
satellite’s radius, as was first assumed, but also from the fact that as the
radius was increasing, the satellite was also slowing down 1p its orbit just
enough to cause it to arrive at the intercept point area after the threat
satellite had already left this area. The combined effect of increased period
and increased radius greatly increased the total miss distance. (the distance
between the attacker satellite and the target satellite) For the .001g, thrust,
six hour burn time, total distance between the two satellites at intercept
time is npow “2800 kilometers. The .0006g, thrust, six hour burn time,
resulted in an “1413 kilometers distance between the satellites The 00ig,
thrust, four hour burn time, gave an approximate 1000 kilometers and the
.0005g, thrust, four hour burn time, increased the distance just over 500
kilometers.

It is important to note that the thrust direction histories for the two
satellite runs matched, exactly, the runs made previously with the fixed
threat sphere and a single maneuvering satellite. Therefore, figures 11 - 14
are also valid representations of the two satellite versions of this algorithm

An example of the final two satellite transfer can be seen in figure 16
This figure shows that for s six hour burn time, the attacker is just before
perigee in its orbit at the beginning of the burn. The two satellites continue
in their respective orbits, with the target satellite continually changing its
orbit. At the intercept time (six hours in this depiction), when the threat
satellite is programmed to explode (or whatever), the target satellite »
approximately 2800 kilometers further cut and behind the threat, hopefully

and apparently out of danger.
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Now that the important part of the problem has been worked, it
leaves only the problem of doing this problem in the optimum time. Section
11 tells bow this algorithm was accomplished. A fixed orbit radius increase
was selected, and the minimum time to get to that orbit radius was found.
This problem was accomplished with both the .001g, thrust magnitude and
the 0005g, thrust magnitude. The problem was first programmed for a
single satellite and then attempted for the two satellite problem. A working
model of the minimum time algorithm for the two satellite problem could
not be achieved. Results achieved are for a single satellite with a fixed
threat sphere. The tangency constraint remains the only constraint on this
problem and the boundary conditions are included in the appendix for this
algorithm. Figure 17 shows the thrust direction angle vs the parameterized
time for the .001g, thrust magnitude case in which target radius was
increased by 500 kilometers. Five hundred kilometers was used by Burk (8),
but i not known to be sufficient for all possible attacks in space. The
minimum time for a 500 km threat sphere was found to be 12.0085 TU or 2
hours, 41 minutes, 28.6 seconds. Target thrust direction angle begins at
about 21° and transitions fairly smoothly toward a maximum negative value

of about -128°.

Figure 18 shows the thrust direction angle vs the parameterized time
for the 0005g, thrust magnitude case in which target radius was also
increased by 500 kilometers. (500 km threat sphere) The minimum time in =

Lokale ala‘ata’

N

this case was found to be 16.7495 TU or 3 hours, 45 minutes, 13.7 seconds.
Here the target thrust direction angle begins just above 37° and proceeds to

s maximum negative value of —107°.
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A run was also made with .001go thrust magnitude in which target

radius was increased by 1000 km. The minimum time for this case was __

16.7532 TU or 3 hours, 45 minutes, 16.7 seconds. In other words, with !E
’E twice the thrust magnitude, it was possible to increase the radius twice as
far in almost the same time. This proved to be merely coincidental ot
however, as other runs did not prove this linear relationship out. For a E‘

1500 km orbit radius increase with .001go thrust magnitude, the time was :

25.3598 TU or 5 hours, 41 minutes, 0.6 seconds. a

The minimisation of the two satellite problem was attempted to f_

incorporate all aspects of the original problem statement; that being to get

the target satellite as far away from the attacking satellite in the minimum :

amount of time. The attacking satellite’s orbital dynamics coupled with the !'

complex dynamics of the minization problem proved to be too much for the

DVCPR routine. Figure 19, however, shows how this procedure would most ,

likely appear. In this figure, The attacking satellite is actually just above !

the X axis, on its way to its apogee altitude which will be coincident with :

the target satellite at geosynchronous altitude. The target satellite; however, M.

begins its thrust maneuver, and a few short Aowrs later is presumedly safely ”

away from the threat instead of coincident with it. *
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Y. Conclusions, Tactics, and Sugwestions

Conclusions

The problem of optimal time transfer to some desired terminal radius
increase using a constant magnitude, low thrust propulsion system has been
investigated.

Numerical solutions to this highly non—linear TPBVP were attainable
through the IMSL routine DVCPR. Although this routine must be initialized
(rather accurately) in order to find a converged solution, it seems that it
would be applicable to a wide class of orbital transfer problems.

For geosynchronous orbits, it is now determinable that the radius
increase has a non-linear relationship that is proportional to the burn time.
It is obvious to say that the longer the burn time, the greater the orbit
radius will be; however, it becomes significant that this happens very rapidly
between the four and six hour points. Over one thousand kilometers is
added to the orbit radius between these times in the .001g, thrust magnitude
case. In the .0006g, thrust magnitude case, over five hundred kilometers is
mdded to the radius between the four and six hour points.

Initial thrust direction angle also is greatly dependent upon the total
time in question. The greater the total burn time, the greater the starting
value of the thrust direction. For the minimum time cases, this does not
appear tc be true however. It appears that the smaller the thrust, the

greater the beginning value for thrust direction.
| The key conclusion however is that a constant, low thrust propulsion
system does seem to be a valid alternative to the large impulsive propulsion
system studies in the current literature in accomplishing evasive orbital
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maneuvers. In view of the accuracy of these results, this approach forms the
basis of an effective numerical technique for completely general optimal low
thrust orbital transfer.

Tactics

Many practical aspects of the attack avoldance problem have not been
dealt with in this thesis. In a real attack on a satellite, the threat would
have to be detected and then tracked for a while to determine its orbit.
From this information the defender could deduce the intended target and the
time of intercept. The defender would have to come to some conclusion
regarding the lethal radius of the threat, either from intelligence information
or from *lucky® guessing. He might decide to defeat the threat by evasive
maneuvering (as this thesis discusees), by attacking the attacker, by attacking
the enemy’s control system or communications, by using chaff or decoys, or
by relying on his satellite’s hardening. He could also decide to do nothing at
all and just bear the loss of a satellite.

As was stated earlier, the earlier the maneuver begins, the more
distance away from the attacker the satellite can achieve. The attacker may
detect this maneuver, and re—establish the intercept by a countermaneuver
on its part. This would then have to be detected and another evasive
maneuver performed by the target. Depending upoa available fuel oaboard,
this could be a losing effort. This all becomes a type of cat and mouse
game, with each player attempting to out guess his opponent. Undecr these
circumstances, the orbital evasion problem becomes the classical military
game of trying to outfox the enemy.
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Suggestions for Further Work

There are many other areas of the orbital evasion problem that could
be addressed, but four more areas of the problem as addressed in this thesis
will be mentioned. They are as follows: the performance of the algorithm,
the effects of uncertainty, the accuracy of the model, and the development of
a three dimensional model.

This algorithm proved to give good results, but only after much
frustration and time was spent in finding good initial values in which to
begin the problem. A method should be found to make the algorithm
reliable without having to initialise the grid for the Newton algorithm. One
alternative approach to this may be to have a library of example data, for
various types of orbits and maneuvers. It was found, that once a fairly good
set of data was available as a starting guess, the algorithm achieved superd
results.

The algorithm in this thesis does not account for uncertainties in the
input data. How is it determined that a specific satellite is under attack?
With the increasing density of satellites in geosynchronous orbits, it will
remain very hard to establish which satellite (or satellites) needs to be
maneuvered. Once this is determined, can the required thrust magnitude or
more importantly the required thrust direction angle be programmed into the
satellite accurately? Since the thrust direction angle is constantly changing,
some means of communicating with the satellite must be maintained
throughout the maneuver or pre—programmed into the satellite guidance
system.

This algorithm does not take into account any perturbation effects that
effect all orditing bodies, nor does it account for a maneuvering threat or a
aon -epherical threat volume. Perturbation algorithms are available but some

...........................
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are classified and others can not be implemented with available resources. It
has, however, been obeerved in the open literature that a maneuvering threat
is currently beyond the scope of what our current enemies capabilities are.
Also, any other shaped threat volume, would have to be addressed in a
sepanate algorithm.

The last topic for further work is obviously a three dimensional model.
This thesis dealt only with geosynchronous orbits and co—planer attacking
satellites. In order to expand this algorithm to attacking satellites in inclined
orbits, a three dimensional model must be developed. This model may also
address the problem of returning the satellite to its mission orbit in an
optimal or minimum fuel type of bum.
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SUBROUTINE FCNI(N,T,X,XP)

DOUBLE PRECISION T,X(N),XP(N),MU,RO,B,D,TH,MO,MD,U
INTEGER N

COMMON /A/ MU /B/ THMOMD
RO=DSQRT(X(1)**3+X(3)**3)

[F (RO .EQ. 0) RO=1.0

B=TH/(M0-MD*T)

U=DATAN3(X(8),X(7))

D=X(7)*X(1) + X(8)*X(32)

XP(1)=X(3)

XP(3)=X(4)

XP(3)=-MU*X(1)/RO**3 + B*DCOS(U)
XP(4)=-MU*X(32)/RO**3 + B*DSIN(U)
XP(5)=MU*(X(7)/RO**3 - 3.0d+00*X(1)*D/RO**5)
XP(6)=MU*(X(8)/RO**3 — 3.0d+00*X(2)*D/RO**5)
XP(7)=-X(5)

XP(8)=-X(6)

RETURN

END
.

SP0B00SSBS00RS0SRLPBRSEUSEER0S80000800888000308BR0NS0000000S
L]

SUBROUTINE PCNJ(N,T,X,PD)
DOUBLE PRECISION T X(N),PD(N,N),MU,RO,B,C,D,TH,Mo,
$ MDEFGHU

INTEGER N

COMMON /A/ MU /B/ TH,MOMD
RO=DSQRT(X(1)**2+X(3)**2)

IF (RO .EQ. 0) RO=1.0
B=TH/(M0O—MD*T)
U=DATAN3(X(8),X(7))
F=X(8)/X(7)

C=(1.0d+00 + F**3)

D=X(7)*X(1) + X(8)*X(3)
E=X(8)*X(1) + X(7)*X(3)
Gm3.0d+00°X(7)*X(1) + X(8)*X(3)
H=3.0d+00*X(2)*X(8) + X(1)*X(7)
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) o
NN PD(1,1)=0.0 2
Pl PD(1,2)=0.0
. PD(1,3)=1.0d+00 =
- PD(1,4)=0.0
A PD(1,5)=0.0 -
PD(1,6)=0.0 ‘-ji-:
; PD(1,7)=0.0 i
PD(1,8)=0.0
) PD(3,1)=0.0 5
- PD(3,2)=0.0 <
- PD(3,3)=0.0 3,
- PD(3,4)=1.0d+-00 1
PD(3,5)=0.0
PD(3,6)=0.0 -
PD(3,7)=0.0 S
PD(3,8)=0.0 )
- PD(3,1)=MU*(—1.0d+00/RO**3 4+ 3.0d+00*X(1)**3/RO**5) 2]
> PD(3,2)=3.0d+00*MU*X(1)*X(3)/RO**S A
N PD(3,3)=0.0
\ PD(3,4)=0.0 7Y
: PD(3,5)=0.0 7
PD(3,6)=0.0 o
o PD(3,7)=B*DSIN(U)*X(8)/(C*X(7)**2) o,
. “ PD(3,8)=-B*DSIN(U)/(C*X(7)) N
v PD(4,1)=PD(3,3)
- PD(4,3)=MU*(—1.0d+00/RO**3 + 3.0d+00°X(2)**3/RO**5) i
PD(4,3)=0.0 :
- PD(4,4)=0.0 2o
Y PD(‘,S)’O-O -_'; -
PD(4,6)=0.0
” PD(4,7)=—B*DCOS(U)*X(8)/(C*X(7)**3) '
-_;- PD(4,8)=B*DCOS(U)/(C*X(7)) A
b PD(5,1)=MU*(~-3.0d+00*G/RO**5 + 15.0d+00°X(1)**3*D N
e $ JRO**T) N
PD(5,3)=MU®(—3.0d+00*E/RO**S + 15.0d+00°X(1)*X(2)*D w
g s JRO®*7)
- PD(5,3)=0.0
o PD(5,4)=0.0
" PD(5,5)=0.0 -
pla PD(3,6)=0.0 PR
_ PD(8,7)=MU*(1.0d+00/RO**3 — 3.0d+00*X(1)**3/RO**5) »
x PD(5,8)=—3.0d+00*°MU*X(1)*X(3)/RO**S 7
:: s N

\ -
9 53 -
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!- “- .l' ‘l'
WA

- .
N Al PD(6,1)=PD(5,3)
N PD(6,2)=MU*(-3.0d+00*H/RO**5 + 15.0d+00*X(3)**3*D
$ JRO**7)
PD(6,3)=0.0
- PD(6,4)=0.0
o PD(6,5)=0.0
Moo PD(6,6)=0.0
NS PD(6,7)=PD(5,8) ]
. PD(6,8)=MU*(1.0d+00/RO**3 — 3.0d+00*X(3)**3/RO**5) =
& PD(7,1)=0.0 e
¥ PD(7,3)=0.0 %
2 PD(7,3)=0.0 3
s PD(7,4)=0.0 -]
PD(7,5)=—1.0d+00 e
P“DCL6)=410 iy
PD(7,7)=0.0 f'_ ]
5 PD(7,8)=0.0 o
A e
o PD(8,1)=0.0 o
% PD(8,2)=0.0
z-‘ PD(8.3)=0.0
o PD(8,4)=0.0 :
s PD(8,5)=0.0
"y PD(8,6)=-1.0d+00 Y
IR PD(8,7)=0.0
ﬁ L v 3 PD(8,8)=0.0
L RETURN
v END

n-"'.
Hi: G009 00980800880080030 BRSNS R RSBS00S0 0S0RRSdNSR00S .
L ]

: SUBROUTINE PCNB(N,XA,XB,F) 3
A7 DOUBLE PRECISION XA(N),XB(N),F(N),KS,KM,RB 3
o5 INTEGER N <
20 COMMON /CONV/ KM,KS N
W RB=DSQRT(XB(1)**2+XB(2)**3) R

F(1)=XA(1) - KM
e F(2)=XA(3) Ny
'~ F(3)=XA(3) &
) F(4)=XA(4) - KS A
o F(5)=XB(1)*XB(3)+XB(3)*XB(4) "
N F(6)=XB(7)*XB(3)+ XB(8)*XB(4)
F(7)=XB(5)*XB(1)+XB(6)*XB(3) - RB )
F(8)=XB(8)- XB(7)*XB(32)/XB(1) ~
RETURN
END

]
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Two Satellite Version
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SUBROUTINE PCNI(N,T,X,XP)

DOUBLE PRECISION T X(N), XP(N) MU,B,D,TH,M0,MD,R1(4),

: %’é‘% 'R31,R33,R23,R34,V31,V23,V23,V324,R20(4), V20(4),

INTEGER N

COMMON /A/ MU /B/ TH,M0,MD

COMMON /RS/ R31,R23,R33,R24,V31,V33,V13,V324

R20(1)=R31

R20(2)=R33

R20(3)=R33

R30(4)=R34

V30(1)=V31

V30(2)=V33

V20(3)=V33

V20(4)=V4

CALL KEPLER(T,MU,R320,V30,R3,V3)

R1(1)=R3(1)-X(1)

R1(3)=R3(2)-X(3)

R1(3)=0.0

B=TH/(MO-MD*T)

C=X(7)*R1(1) + X(8)*R1(3)

D=DSQRT(R1(1)**3+R1(3)**3+R1(3)**3)

E=DSQRT(R3(1)**3+R3(3)**3+R3(3)**3)

F=DSQRT(X(7)**2+X(8)**3)

XP(1)=X(3)

XP(3)=X(4)

XP(3)=-MU*R3(1)/E**3 + MU*RI(1)/D**3 - B*X(7)/F

XP(4)=-MU*R3(3)/E**3 + MU*R1(3)/D**3 - B*X(8)/F

XP(8)=MU*(X(7)/D**3 - 3.0d+00*R1(1)*C/D**5)

XP(6)=MU*(X(8)/D**3 — 3.0d+00*R1(3)*C/D**5)

XP(7)=-X(5) _

XP(8)=-X(6) *]

RETURN
. END i
$0090000000800000000003000000000000080¢0080008000000000000008088 ;1

SUBROUTINE PCNJ(N,T.X,PD) *

DOUBLE PRECISION T,X(N),PD(N.N),MU,B.C,D,TH.MO.MD.E. ;

$ F,G,R3(4),R31,R32,R33.R34,V31,V22,V23.V34, R20(4).

$ V20(4),R1(4)

INTEGER N

COMMON /A/ MU /B/ TH,MO,MD

COMMON /RS/ R21.R272.RIRM. VI VIIVII V4

R20(1)=R31

R20{(3)=R33

R20(3)=R33

R20(4)=R34

V20(1)=V31

V0(2)=V13

VI(3)=V3
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V20(4)=V24

CALL KEPLER(T MU R20,V20.R2.V3)
R1(1)=R3(1)- X(1)

R1(3)=R3(3)- X(3)

R1(3)=0.0

B=TH/(MO- MD*T)

C=X(7)*R1(1) + X(8)*R1(2)
D=DSQRT(R1(1)**3+R1(2)**3+R1(3)**2)
E=DSQRT(R3(1)**3+R3(2)**3+ R3(3)**2)
F=DSQRT(X(T)**3+ X(8)**3)
G=X{(7)*R1(2) + X{(3)*RI(])

PD(1.1)=0.0
PD{(1,2)=00
PD{(1,3)=1.0d + 00
PD(1,4)=0.0
PD(1,5)=0.0
PD(1.6)=0.0
PD(1,7)=0.0
PD(1,8)=00

PD(2,1)=00
PD{2.23)=00
PD{3.3)=00
PD{(3.,4)=1 0d + 00
PD(2.5)=00
PD{(2.6)=00
PD(3.7Yy=00
PD(2.8)=00

PD(3,1)=MU*{ 10d+00/D**3 + 30d-00*Ri(1)°%2,D**%)
PD(3.2)=30d - 00*MURI1(1)*R1(2)/D**S

PD{3,3)=00

PD(3.4)=00

PD(3.5)=00

PD(3.6)=00

PD(AT)= B/F - B\ (T)1**}/F°**}

PD(3 S =B*X(M*(8),/F**3

PD(4.)=PI3.D)

PD(4.2)=MU* 1 0d.-00 D%y . 30d-00*Ki(d1*%3: [**%)
PD(4.3)=00

PD(4.4)=00

PD(4.9)=00

PD{(4,8)=0 0

PD{4. )= P[X3.8)

PD(48)= B'F . Re\(8)°°]. F**}
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PD(5.1)=MU*((6 04+00°X(7)*R1(1) + 3.04+00°C)/D**5

s 15 0d + 00°R1(1)**3°C/D**7)

'PD(5,2)=!\IA)U‘(;50d+00‘G/D“5 + 15.0d+00°R1(1)*R1(2)*C
/ ‘.7

PD(5.3)=00

PD{5.4)=00

PD(5.5)=0u

PD(5.6)=00

PD(3.7)=MU*(1 0d+00/D**3 - 3.0d+00*R1(1)**23/D*"*%)

PD(5.8)= - 30d+00°MU*RI1(1)*R1(2)/D**5

s L1l
v

PD(6.1)=PD(5.2) -
PD(6.2)=MU*((6 0d+00*X(8)*R1(2) + 3.0d+00°C)/D**5
s - 150d+00°R1(2)**2*C/D**7) D
PD(6,3)=00 -

PD(6.4)=00

PD(8.5)=00

PD(6.6)=0.0

PD(6.7)=PD(5,8)

PD(6.8)=MU*(1 0d+00/D**3 — 3.0d+00°R1(2)**2/D**5)

Y -: .' \. I.‘

PD(7.1)=00
PD(7.2)=00
PD(7.3)=00
PD{(7.4)=00
PD(7.5)= -1 0d +00
(o PD(7.6)=00
PD(7.7)=00
PIX(7.8)=00

PD(8.1)=00
- PD(8.2)=00
i PD(8,3)=00
PD{(8,4)=00 T
PD(8.5)=00 .
PD(8.6)= 10d+00
PD(8,7)=00
A PD(8.8)=00

RETURN
END

el .
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A SUBROUTINE FCNB(N,XA,XB,F)
DOUBLE PRECISION XA(N),XB(N),F(N),KS,KM,RB
INTEGER N
N COMMON /CONV/ KM KS
0 RB=DSQRT(XB(1)**3+XB(3)**3) =
> F(1)=XA(1) + 7.552551d+00
o F(3)=XA(32) + .7744873d+00 &)
i F(3)=XA(3) — 1.0241614d+00 &
e F(4)=XA(4) + .9642712d+00
X F(5)=XB(1)*XB(3)+XB(3)*XB(4) -
- F(6)=XB(8)—XB(7)*XB(3)/XB(1) .
e F(7)=XB(3)*XB(7)+XB(4)*XB(8) -
[ F(8)=XB(5)*XB(1)+XB(6)*XB(3)-RB %
RETURN "
" END 4
,,-:_ ITTITEIESYEEIEERR RV RS R AR 22 2SR R E R R S22 0 22 R 2 2 R L)
' Time Minimization Version t
-‘r\
2R SUBROUTINE FCNI(N,T,X,XP) Y
i DOUBLE PRECISION T,X(N),XP(N),MU,RO,B,D,TH,M0,MD,U ,f
S INTEGER N =
L ) COMMON /A/ MU /B/ TH,MOMD B
" RO=DSQRT(X(1)**2+X(32)**3)
- IF (RO .EQ. 0) RO=1.0 .
a B=TH/(MO—MD*T)
~ U=DATAN2(X(8),X(7)) i
% D=X(7)*X(1) + X(8)*X(3) 5
D) XP(1)=X(3)*X(9) ]
XP(2)=X(4)*X(9) o
. XP(3)=(—-MU*X(1)/RO**3 + B*DCOS(U))*X(9) -
e XP(4)=(~MU*X(3)/RO**3 + B*DSIN(U))*X(9) ~
e XP(5)=MU*(X(7)/RO**3 — 3.0d+00*X(1)*D/RO**5)*X(9)
e XP(6)=MU*(X(8)/RO**3 — 3.0d+00*X(2)*D/RO**5)*X(9)
L XP(7)=-X(5)*X(9) .
- XP(8)=-X(6)*X(8) 7
e XP(9)=0.0 =
" RETURN .,:
o END 2
v ] :
b >
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SUBROUTINE FCNJ(N,T,X,PD) -
DOUBLE PRECISIO T, X(N),PD{N,N),MU,RO,B,C,D,TH,M0, 6
* MDE FGCGHU ¢
INTEGER N Ly
OMMON /A/ MU /B/ THMoMD v
RO=DBQRT(X(1)**3+X(3)**3) vy
(RO EQ. 0) RO=1.0 o
b= TH/ uo-uoﬂ)? o
"wDATANI(X(8),X(7)) w
P=X(8)/X(N
‘=(l 0d+00 + F**3) w2
De=X(T)*X(1) + X(8)*X(2) N
L= X(8)°X(1) + X(7)*X(3) o
=304 +00°X(7)*X(1) + X(8)*X(3) i
He130d4 -00*X(2)*X(8) + X(1)*X(7) w5
PD(I 1)=0.0 o
PD(1.2)=00 7
PD(1 . 3)=X(9) o
PD(] 4)=00 =
PD(1 5)=00
PD{1 6)=0 0 o
PDil T)=00 5,:'_.:
PD(1 8)=0 0 o)
PIMI 9)= X(3) Lnd
®e
PIN31)=00
PIN1.2)=00
PI3.3)=00
PD(3 4)=X(9) N
P1¢3.5)=0 0 da
PIX3.8)=00 :
PI¥3.T)=00 o
PIN3.8)=00
P32 9)=X(4) Vo)
%
2Ty 1 )=MU®*(-10d+00/RO**3 4+ 3.0d+00*X(1)**2 wnd
s "RO**3)*X(9)
143 2)=1 0d + 00°MU*X(1)*X(3)/RO**5*X(9) L
P[4 3)=0 0 e
PIMY 4)=0 0 oy
1%Y.3)=0 0 i
1% 8)=00 "
PINY .')-B'Dsm&urxm/(c'xn *23)*X(9) LS
PNy 8)= BeDSIN(U)/(C*X(7))*X(9) -
Iy e MU*X(1)/RO**3 + B*DCOS(V) 3
x
3
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AN PD(4,1)=PD(3,3)

VR PD{(4,2)=MU*(-1.04+00/RO**3 + 3.04+00*X(3)**3
: 8 /RO**5)*X(9)

» PD(4,3)=0.0

N PD(4,4)=0.0

PD(4,5)=0.0

-?j PD(‘;O)’0.0

N PD(4,7)=—B*DCOS(U)*X(8)/(C*X(7)**2)*X(8)

PD(4,8)=B*DCOS(U)/(C*X(7))*X(9)
PD(4,9)=-MU*X(32)/RO**3 + B*DSIN(U)

s PD(5,1)=MU*(—3.0d+00°G/RO**5+15.0d+00*X(1)**3°D

N $  /RO**7)*X(9)

> PD(5,2)=MU*(—3.0d+00°E/RO**5+15.04+00*X(1)*X(3)*D
$  /RO**7)*X(9)

s PD(5,3)=0.0

PD(5,4)=0.0

PD(5,5)=0.0

PD(5,6)=0.0

PD(5,7)=MU*(1.0d+00/RO**3 — 3.0d+00°X(1)**3

- -
.

'd $  /RO**5)*X(9)
2 PD(5,8)=—3.0d+00*MU*X(1)*X(3)/RO**5 * X(9)
z PD(5,9)=MU*(X(7)/RO**3 — 3.0d+00*X(1)*D/RO**$S)
- PD(6,1)=PD(5,2)
L - PD(6,2)=MU*(—3.0d+00*H/RO**5+15.0d4+00*X(3)**3*D
L ¥ $  /RO**7)*X(9)
> PD(6,3)=0.0
. PD(6,4)=0.0
o PD(6,5)=0.0
- PD(6,6)=0.0
b PD(6,7)=PD(5,8)
i PD(6,8)=MU*(1.0d+00/RO**3 — 3.0d+00*X(3)**3
b $  /RO**5)*X(9)
- PD(6,9)=MU*(X(8)/RO**3 — 3.04+00°X(3)*D/RO**5)
- PD(7,1)=0.0
PD(7,3)=0.0
PD(7,3)=0.0
PD(7,4)=0.0
’ PD(7,5)=—X(9)
- PD(7,6)=0.0
' PD(7,7)=0.0
Rl PD(7,8)=0.0
= PD(7,9)=-X(5)
’
' 59
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PD(8,1)=0.0
PD(8,2)=0.0
PD(8,3)=0.0
PD(8,4)=0.0

PD(8, 0)- -X(9)
PD(8,7)=0.0
PD(8,8)=0.0
PD(8,9)=-X(0)

PD{9,1)=0.0
PD(9,3)=0.0
PD(9,3)=0.0
PD(9,4)=0.0
PD{9,5)=0.0
PD(9,6)=0.0
PD{9,7)=0.0
PD{9,8)=0.0
PDX{9,9)=0.0

RETURN
. END

0600800000000 50909909000000880300000009038583080090090938008008
L]

SUBROUTINE PCNB(N,XA,XB,F)
DOUBLE PRECISION XA(N) XB(N) F(N),KS,KM,RB,U,B,XP3,
$ XP4,THMOMD MU
INTEGER N
COMMON /A/ MU /CONV/ KM, KS /B/ THMOMD
RB=DSQRT(XB(1)**3+XB(3)**3)
U=DATAN3(XB(8),XB(7))
B=TH/(M0-MD*XB(9))
XP3=XB(9)*XB(7)*(-MU*XB(1)/RB**3+B*DCOS(U))
XP4=XB(9 ‘XB(S)‘( -MU*XB(3)/RB**3+B*DSIN(U))
F(1)=XA(1
F(2)=XA(2)
F(3)=XA(3)
F(4)=XA(4) - KS
F(8)=XB(1)*XB(3)+XB(3)*XB(4)
F(O)-XB(?)‘XB(3)+XB(8)‘XB(4)

F(7)=RB - 6.70118388d+00
F(8)=XB(5)*XB(1)+XB(6)*XB(3) - RB
F(9)=XB(9)+XB(9)*(XB(5)*XB(3)+XB(0)*XB(4)) + XP3+XP4

END
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ompuler listing of Ke i Delerminer

oy SUBROUTINE KEPLER(T,MU,R0,VO,R,V)

DOUBLE PRECISION T R0(4),V0(4) R(i) V(4),E.MU,
$ SMU,A X0,XN,Z2,52,CS,TN,DT, DOT,TOL,F,G,FD,GD
S f (T .eq. 0) then
R(1)=R0(1)

R(2)=R0(3)
R(3)=R0(3)
P V(1)=Vo(1)
4 V(2)=V0(3)
N V(3)=V0(3)
b R(4)=DSQRT(R(1)**3+R(2)**2+R(3)**2)
RETURN

endif
Dor-nou)-v0(1)+Ro(2)'vo(z)+no(3)‘vo(a)
E=V0(4)**3/3.0D+00 — MU/R0(4)
A=—1.0D+00/(3.0D+00°E)
SMU=DSQRT(MUV)
TOL=1.0D-16
X0=SMU * T/A
10 Z=X0*2/A
, SZ=DSQRT(Z)
. C=(1.d+00 — DCOS(S2))/Z
S S=(SZ — DSIN(SZ))/SZ**3
@&" TN=DOT/SMU*X0%*2°C + (1.d4+00—R0(4)/A)*X0**3*S
s + RO(4)*X0
N DT=X0**2*C + DOT/SMU*X0*(1.d+00-2*S) + RO(4)
"l $ * (1.d+00-2°C)

...
CIONN

T
o

S \ RN vy,
K P L]
B v AR A

S XN=X0 + (T-TN)/DT

IF ((XN-X0) .GT. TOL) THEN
) X0=XN

AN GO TO 10

A ENDIF

F=1.d4+00 — XN**3/R0(4) * C
G=XN**3 * DOT/MU * C + RO(4)*XN * (1.d+00-2*S)/SMU

AP
LT

N DO 20 I=1,3
£ 20 R(D)=F * RO(I) + G * VO(I)
A R(4)=DSQRT(R(1)**2+R(2)**24R(3)**3)
a0 GD=1.d+00 — XN**3/R(4) * C
j:: FD=SMU/(RO(4)*R(4)) * XN * (Z*S-1.d44+00)
w.:;\ DO 30 I-l.3
Yot 30 V()=FD * R(I) + GD * Vo(I)
on RETURN
R END
:,:- 0095553300893 08030884380488088938888988000030008080880880088088
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