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Preface

I began this research with the goal in mind of creating a computer

program that could be used tactically to find the best evasive maneuver for

a satellite In geosynchronous orbit under a given attack through the use of

continuous thrust. I wanted this computer program to be able to track the

distance between the attacking satellite and the satellite being attacked

throughout the maneuver. My intention was to use a very low thrust such

as that available for use in satellite attitude control and station keeping. I

was able to make substantial progress through the use of an IMSL routine

known as DVCPR.

The biggest problem was in de-sensitizing the subroutine, DVCPR.

The extreme sensitivity of this subroutine to co-state inputs proved to be

very time consuming. Hopefully, my study will save future students some of

this painstaking drudgery.

I owe a great deal of thanks to my faculty advisor, Lt Col Joseph W.

Widhalm, for his expertise, confidence, and patience given to me throughout

this project. However, my greatest thanks goes to my wife, Carolyn, for all

of her invaluable encouragement and understanding.

h.-'-

Robert D. Preisinger

LOGITEC M-16OIA-PC (IBM Clone); Fancyword; Star-Micronics SG-10
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AFIT/GA/A,.!SGD-12

Abstract

A satellite under attack by another orbiting body relying on an

explosive device to effect a kill has the problem of avoiding a volume of

space in which its destruction is highly likely. To avoid this volume, the

attackee could use continuous low thrust, such as that provided by the

electric propulsion in attitude control thrusters, if its warning time and

orbital parameters were appropriate. A model is developed using optimal

control theory and is solved numericaly for the thrust direction using various

magnitudes of thrust. The model progresses from a one satellite solution

(where the threat in a fixed sphere in space) to a two satellite solution in

which the distance between the threat and the target satellite is constantly

updated (to avoid this same threat sphere). The results are given for several

values of thrust, several time- of-flights (time of thrusting for the

maneuvered satellite), the optimized time of flight, and for circular and non-

circular end orbits.
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OPTIMAL CONTINUOUS THRUST ORBITAL EVASIVE
MANEUVERS FROM GEOSYNCHRONOUS ORBIT

I. Introduction

Much research has been done on the astrodynamics of orbital transfer

and rendezvous, but very little of the current literature addresses the

problem of avoiding an interception in space. With more and more military

*capabilities being placed into satellites (see Brandt (6)), the means of

intercepting them are improving. It stands to reason that the problem of

avoiding or defeating an interception also needs attention. Evasive

maneuvering is one technique of protecting space assets.

Most of the current literature on orbital evasive maneuvers is

concerned with impulsive thrust (8, 9, 10, 17, 19, 21, 26). The purpose of

this thesis is to examine the optimal orbital maneuver that would be

required by a satellite orbiting at geosynchronous altitude using a constant

magnitude continvw low thret propulsion system.

Even the simplest orbital maneuver may use up the satellite's limited

supply of propellant, perhaps shortening its useful life or leaving it vulnerable

to a second attack. It becomes obvious then, that an optimal solution is to

minimize the time of propellant burn. This problem becomes synonymous

with a minimum time optimization problem.

The problem is to determine the optimal thrust direction to transfer a

vehicle from some point on an initial orbit, to some desired terminal orbit in

minimum time, using a constant magnitude low thrust propulsion system.



Thu problem is approached using optimal control theory (See Bryson (7)).

T'he thri direction becomes the control variable and, through the equations

of motion, a Two Point Boundary Value Problem (TPBVP) is formulated.

For the desired result, the problem is first developed as a problem in which

ume m fixed and the problem is limited to two dimensions. An algorithm is .-

developed to move a satellite from geosynchronous altitude to a maximum

radiw circular orbit in a specific time. There are two constraints used on

the problem at this point; first a tangency constraint which requires the o r

man e'vering satellite to be tangent to a threat sphere at t, and second a

ontraiat which requires the final orbit to be circular. Then, since some

hfui in thi burn is being used to circularize the final orbit, the final circular

,rbt constraint is removed from the algorithm. This circular orbit at .-

-.)nstrait i omitted from all remaining runs. This results in a greater

radius change in the same amount of time. The final part of the algorithm

acrporates two satellites being monitored at the same time; one of these

btemg the attacker, and the other being our maneuvered satellite (the target

)r attackee) The problem is then expanded to optimize time; thus

r.-omphskag the intended task of this problem.

The coordinate system selected for this study differs from those

wie,-ted by Smith (23) or Starr (25). Where they chose a polar coordinate

"",em the coordinate system chosen for this thesis is an Earth-Centered

Inertial Cartesian System similar to Bowman (4). The main reason for this

sm.,-etos is that an X-Y system is much easier to visualize than a polar

,'som and a system in which it would be easy to "see" what is going on

wtk the thrust direction was desired for this project. For ease in

.,mputia, the initial satellite position is chosen to lie on the X axis, and

the problem i kept two dimensional. Simply stated, the initial problem as

2
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stated In Bryson (7:6-68) Is: given a constant-thrust engine, Th - thrust,

operating for a given length of time, t1, we wish to find the thrust-direction

history, u(o, to transfer a satellite from geosynchronous orbit to the largest

possible circular orbit. (See figure 1)

This problem is accomplished with good results for a quarter orbit

time-of-flight, and for a four hour time-of-flight. Problems encountered

will be discussed in the following sections.

The problem is then expanded by removing the constraint of going to

the largest possible circular orbit, i.e. the orbit is now just being changed to

the largest possible orbit away from the threat, not to a circular orbit;

however, the tangency constraint remains. This is where this problem ceases

to be similar to Smith (23) or Starr (25). Results are obtained using the

same thrust magnitudes and thrust durations (time-of-flight) as above.

Now comes the real objective; that ol' actually tracking the threat

during the entire burn time, with respect to the maneuvered satellite, and

optimizing the time-of-flight for the maneuver. This means beginning again

with a new set of equations (derived from the initial equations of motion) for

two satellites within the same problem. Time minimization is accomplished

by parameterizing time in the equations of motion and applying optimization

techniques to come up with the minimum time-of-flight for the total

maneuver to increase satellite orbit by a specific distance. Results are also

obtained for the same thlusts magnitudes and thrust durations as before.

This thesis contains all the mathematical analysis in Section H, a

description of the specific computer implementation of the algorithm and the

problems encountered in Section m, a discussion of the results in Section IV,

and conclusion and recommendations in Section V.

4



In Section II, the problem equations of motion are listed for a fixed

time, maximum radius increase algorithm. As stated above, one of the

initial constraints is then removed and the problem in reworked to get an

even greater radius Increase. Therefore, it becomes possible to get a greater

threat avoidance distance with this second method. The problem is then

reformulated and expanded to a two satellite problem in which the distance

between the two satellites can be monitored throughout the maneuver. (see

figure 2) The problem of keeping track of the threat satellite throughout the

burn time is also discussed. Section M discusses, in detail, the problems

encountered in all aspects and versions of the algorithm, and how success is

finally achieved for all specified thrust magnitudes and burn times. In

Section IV, the results are discussed for various thrust magnitudes and thrust

durations with the relationship between the two. The results of the time

minimization problem are also discussed in this section. Finally, the

conclusions of this thesis are discussed along with some of the tactics of

orbital evasion and some suggestions for further work in this area.

5
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II. PROBLEM FORMULATION

- -, The equations of motion are developed frem two-body motion utilizing

the given coordinate systems. (see figs. 1 and 2) In order to keep things as

simple as possible, perturbations ame neglected and only two-body orbital

dynamics are considered. The basic equations come from Bate (3) and

Baker (1). The only forces acting on the satelite become thrut and gravity.

The angle between the thrust vector and the X axis becomes the control.

Sigle Satelte Problem

For the single satellite problem p is the radius of the satellite

measured from the center of the earth. In the following equations p.

* becomes x,, p. becomes x2, and so on. The resulting state equations are:

x X (1)

x X (2)

, jx/A+ Th/(m*-m't)COS(v) (3)

x -_&x2/p' + Th/(m.-M'OSIN(G) (4)

with initial conditions of:

XI(0) 6 .822791181 DU()

x2(0) -0.0 DU()

x,(0) =0.0 DU/TU (7)

X4(0) =0.3885792278 DU/TU (8)

7
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The cost function for this problem then becomes

J - ~t,)(9)

The Hamiltonian of the system is, therefore

Oy ),,x, + h24+ ,-X/A+ Th/(m*-I't)COSMu) +%(W P

+ Th/(m,-m't)SIN(a)) (10)

Minimizing the Hamiltonian with respect to u results in:

Xe -X,(Th/(m.-m'tO)SIN(u) + k,(Th/(m.-m'O)COS(v) (1

Therefore, the resulting control is:

TAN(s) -(12)

The resulting co-state equations will now be given with the following

representations:

*COSMs X7/(14XI2/X 7 )IPJ (14)

5114(u) -X*}(1+X82/X7)1I2 (15)

* S



*~ .~.Kgiving the co-state equations aU:

-9 -;s (19)

The remaining boundary conditions come from the two constraint, on

the problem at tand from the necessary conditions as found from the 0

equation. The first constraint forces a tangency of the maneuvering satelite

to an imaginary threat sphere at the final time; whereas, the second

implements a circular orbit at %

* 1  xINX,xxm (20)

#2 (j/PWt))"' -VWs 0 (21)

where:

V (x + X4
2) 1/ (22)

* Pi + vl(*,) + V2(*2) (23)

(Note: 00(t) /8N (i -1-4) )Therefore the necessary conditions

become

)')- X6(fW - XI/P + VIX$ -2 ILI2/pg/2  (24)

)6()- X(IW - X2/P + VIX 4 - y~'x /'f (25)

9



X,) - x,(t1) - ,, - .x/V (28)

-(tf) - x )- - VJX4/V (27)

and the necessary conditions yield two more boundary conditions (at t):

xGx, + P - -x x-x~4 =0 (28)

xIx 1 xX2 - p - (2'9lx)+x,x4)l(vp') - 0 (2)

These last two boundary conditions come from algebraic manipulation

of the k(t) equations when one eliminates the Y's.

Two SateUite Problem (see figure 2)

The two satellite problem equations are very similar to the single

satellite problem except that they utilize the vector between the two satellites

as the position state vector instead of a single satellite's position vector.

This is done in order to observe what effect the dynamics of the attacking

satellite has on the maneuvering problem. The following representations are

used:

t -t2 I!' P - Y, (30)

x 1  Pi, x 2  Py, x6 = P', x 4 p' (31)

The resulting state equations are:

x'I = x( (32)

x = x4  (33)
x -+ pr,./rl - Th/(m,-m't)COS(v) (34)

I -Prr

.x4 -rIr2' + Pr1,/r 1 ' - Th/(m.-m'1lS1N(u) (35)

%- ,-

10
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where K2 was found through the use of a Kepler orbit determiner and

was then found by subtracting the state variables from the appropriate

components of the r2 vector. i.e.:

The following become the final problem's initial conditions:

x1 (0) - -7.bb2551 DU (37)

x2 (0) - - .7744873 DU (38)

x,(0) - 1.0241614 DU/TU (39)

XJ0) - -. 9642712 DU/TU (40)

(Note: These wze the result of satellite 1 being in a geosynchronous orbit

and satellite 2 being in an eccentric orbit with its perigee altitude -100 nm

and its apogee altitude being geosynchronous.)

The cost function of this system rem ains:

J -pWt1  (9)

and the Hamiltonian of this system is, therefore,

X - + LX24 +k,(-jar/r I + pzt./rjI -Th/(m.-m't)COS(u))

+ .4-Pr,/r 2 l + i~r,/r18 -Th(m.-W'fSINWm) (41)

VS,



Minilmiz ing this Hamiltonian with respect to u results in the some

expression as before:

Xe- ,(Th/(m.-m't))SIN(s) - k(Th/(m.-m't))COS(u) (1

Therefore, the control remains:

TAN(s) -(12) k

The co-state equations will remain given with the following

representations:

X6 X, X 2  X A X 4  (13)

'9COS(U) - x7?/(1+x/xM)/2 (14)

SIN(s) -xj(1+x,
2/x,,) 1/2 (15)

giving the co-state equations as: 1

& Wax./rjI 3x7r Ix2/r,6 - 3x~rl/rij (42)

=I p4x,/rll 3x,2,/r 1 ' 3x7r13rr1 /r 6  (43)

X& -;S (45)

The remaining boundary conditions come from the constraint on the

problem at k~ and from the necessary conditions. Once again, the constraint

forces a tangency to the threat sphere at t

12



*1 X 1 ; + X2X 4  0 (20)

where:

* p + v~(~ (48)

the necessary conditions become

k1(t) - X,(tW - xI/p + VIX8 (47)

Z)k2 1 t1 - XG(t) - X2/P + VIN4 (48)

As XAt) - IX, (49)

X4f NW - WX2 (50)

and the necessary conditions yield the remaining three boundary

* conditions (at 4t):

XIX$ 7X2 0(61)

X~7+ x4 x mo (62)

x.,X+ XX -PO (53)

Once again, these Laet three boundary conditions come from algebraic

manipulation of the X(4) equations when one eliminates v,

13



1.1. PROBLEM SOLUTION

To add valiity to the results of this thesis, this section begins with a

description of how the algorithm actually works and how it was verified.

Then the specific problem areas encountered in the running of all the

different algorithm versions using the different constraints are discussed.

Ag nthm, Md Verticatiou

The algorithm m written (all versions) in FORTRAN 77. It utilizes

the IMSL routine DVCPR to solve the problems in question. It was run on

the VAX 11/785 Scientific Support Computer (SSC) under the Unix

operating system at the School of Engineering of the Air Force Institute of

0, Technoog" The algorithm requires the first derivatives of the equations of

motion as well as the first derivatives of the co-state variable equations.

The first derivatives of the equations of motion are multiplied by Lagrange

multipliers to form the Hamiltonian of the system The first derivatives of

the co state variables (the Lagrange multipliers) come directly from this

Hamiltonian equation as stated in Bryson (7). Since there are four equations

of motion involved in the first part of the problem and four co-state
4k

variables that come from the Hamiltonian of the system, the algorithm

utilizes eight equations s input to the IMSL routine. These equations are

found in the subroutine FCNI This results in an 8 x 8 Jacobian matrix

(fr/#x. i-1,8 J1,S) This Jacobian matrix is found in the subroutine

FCNJ The system boundary conditions are utilized in the subroutine

FCNB

14



The basic discretization used in the trapesoidal rule over a possibly

non-uniform mesh. This mesh is chosen adaptively, in order to make the -

loal error of approximately the same size everywhere. Higher order

discretizations are obtained by deferred corrections. Global error estimates

are produced in order to control the computation. The resulting nonlinear

algebraic system is solved by Newton's method, with step control, while the

linearized sparse system is solved by a special form of Gaussian elimination

that preserves the sparseness.

The algorithm was verified by inputting the required data for running

a simple two body problem with the boundary conditions split between the

initial and final time. This problem was run without thrust for six hours

duration from geosynchronous altitudes and velocities and the output resulted

in exactly a two body Keplerian orbit. The final stage of this thesis

incorporates a Kepler orbit determiner to find the position of the attacking

satellite during the entire thrust duration. After verification of this orbit

determiner, (through the use of various examples from Bate (1:195-210)) it

was also used to verify the two body results obtained through this algorithm.

Single Precision Version

Equations (1) through (4) and (16) through (19) were used as the

XPRIME equations for the subroutine FCNI. This resulted in an 8 X 8

Jacobian matrix that was used in the subroutine FCNJ. Equations (5)

through (8), (20), (21), (28), and (29) were used in the subroutine F2JNB as

the boundary conditions.

Several problems arose in obtaining numerical results using a single -.-

precision version of DVCPR. First, the initial definition of the control was

giving divergent solutions. The computer was not giving the correct values

15
-, -I r. --A
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because the state equations needed COS(u) and SIN(u) Inputs. The initial

definitions were:

COS(u) =,(X 2 + x72)1f2  (14)

SIN(u) -X/(X,2 + x7
2)'12  (15)

While mathematically correct, this gave some problems in the computer

algorithm as they caused the algorithm solution to diverge when first

attempted. This was rectified in two ways. First, a was redefined as

follows:

u ATAN2("x 7 ) (54)

This utilized the intrinsic ATAN2 function of FORTRAN 77. The

other way was to painstakingly take care in choosing the input grid values of

the co-state variables. It is interesting to note that these two methods

resulted in exactly the same results; however, the first solution was far less

time consuming.

The second and biggest problem in using DVCPR for this problem

was that I had to "initialize the grid" or give the Newton algorithm a good

starting point. Picking good approximations for the Initial state equations

was not hard, but getting a good guess for the co-state values proved very

time consuming, as DVCPR proved to be very sensitive to these initial

gueoses. (This was the most time consuming part of this entire thesis.)

This problem was finally rectified by utilizing many computer runs with

various co-state variable "guesses" for the initial grid variables. This was

repeated until the output began "looking" close to the desired results, as

18



predicted from analysis of output from Smith (23) and Bowman(4). It was

then possible to develop better 'guesses' based on the previous output and

sort of slowly "walk" toward a guess from which the algorithm would

converge. Once there was a successful (i.e. converged) solution, it would be

used as the initial guess for subsequent runs.

The third problem was that of convergence. DVCPR also proved to

be very sensitive to the TOL (tolerance) parameter. Small values of

tolerance in DVCPR caused an error message indicating that the Newton

algorithm diverged, even though the solution appeared completely reasonable.

Playing around with this parameter, i.e. raising TOL from 10-6 to 10

satisfied this convergence problem without affecting the actual output

tolerances too much. No explanation can be given for this unusual behavior,

as DVCPR does not document the tolerance algorithm in sufficient detail;

however, this became one of the primary reasons for developing the double

precision algorithms.

Another problem was a lack of convergence for any maneuver (time-

of-flight) that was over approximately six and one-half hours in length.

Utilization of only one quarter (1/4) of an orbit for the runs avoided this

problem. Justification for this thinking is that in an actual ASAT type of

defense (in the future), probable warning time will be between four and six

hours (see Bowman (4), Brandt (6), Wagner (27), or Zazworsky (30)) One

quarter of a geosynchronous orbit is six hours, therefore six hours was taken

as the maximum amount of time to maneuver in this problem.

The final problem encountered was one of checking the results. In

order to do this, results were compared with those obtained by Bowmau (4).

Their results utilized thrust only in the tangential direction and their

coordinate system was slightly different; however, the results obtained here
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compare favorably with their study. Results also compare very well with

those obtained by Smith (23) and Starr (25).

Double Precision Version

It became obvious very quickly that single precision results were

Inconsistent and Incomplete. (see figures 3-e) Therefore a double precision

version of the algorithm was developed for all remaining work. This seemed

to rectify most of the above mentioned problems and orbit radius was

established to a 10- 4 meter tolerance. The biggest problem remained

however;, initializing the input grid' for the co-state values still proved very

time consuming. Once again, guessing until the results were close and then

using very small variations of the co-state variables soon produced

convergent solutions. The results proved to be consistent with those

obtained by Bowman (4) and Smith (23). The algorithm was initially run

with the tangency constraint and the circular final orbit constraint. (See

equations 20 and 21) The circular orbit constraint was then dropped to

allow for a larger (greater radius) orbit in the same amount of burn time.

(i.e. more distance with no more fuel than before) Results for both circular

and non-circular final orbits are discussed. Boundary conditions are given in

the subroutine FCNB and are included in the appendix.

Two Satellite Problem

Up until now, this thesis has dealt with increasing a single satellite's

radius to the maximum attainable in a given time subject to the constraints

of equations 20 and 21 and later dropping the constraint of equation 21.

However, what this thesis was intended to do is to increase or maximize a

distance away from a given threat satellite in an optimum time. This means

that we must introduce this threat satellite into the problem, and somehow
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begin determining just how far away from It our own satellite Is. At any

given time, as we maneuver our satellite to avoid the threat, it would be

nice to observe the effects on the problem presented by the attacking

satellite's orbital dynamics. This section deals with two satellites, a threat

or attacking satellite and a maneuvering or target satellite.

First a Keplerian orbit determining algorithm had to be developed.

This orbit determiner was derived from Bate (1:195-205) and incorporated

into the main algorithm in every instance where the state variable was to be

found. This orbit determiner found h at each time step, and i, was then

found by subtracting the appropriate state variable from the proper

component of i4. (See equation 38) This allows us to treat r2 as non-time

varying in the equations of motion.

Problems encountered in this version of the problem at first seemed to

be insurmountable. The algorithm was initialized with previous output, in

the hopes of a quick convergence. The state variable initialization was

simply a matter of subtracting the previous state variable from the output of

the Keplerian orbit determiner subroutine. (see equation 25) However, the

co-state variable values follow no logical pattern. Once again, guess after

guess finally brought a converged solution which could then be used in

subsequent runs.

This problem was first run with the threat satellite in the exact same

orbit as the maneuvering satellite. In other words, the threat and the target

begin at the same point in space in the same orbit. The target satellite

then maneuvers with its constant low thrust system, thereby changing its

orbit. This orbit changes with time, and the radius is constantly increasing

or the distance from the threat is constantly increasing.
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"?"- These results were then used to initialize further runs in which the

threat satellite's orbit is changed to various attack runs. The final run has

the threat in a high eccentricity orbit with a perigee altitude of 100 nautical

miles and an apogee altitude equal to geosynchronous.

Time Minimization Version

The real problem statement was to find the optimum time to transfer

evasively away from a threat. This was accomplished by parameterizing

time in the original algorithm and using optimal control theory on the

equations of motion. The cost function now changes from that of equation 9
to become

J -p) + dt (55)
0

where we fix p() to a specific magnitude.

This results in an additional state equation:

isx', -0 (56)02
This comes about by allowing orbit transfer time to vary between sero

and one, letting.

t Sxt (57)

Because p(tk) is fixed, the effective J becomes,

Jff " I' dr (55S)
0
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In order to implement this extra state equation, each of the previous

state equations must now be multiplied by the new state variable Cx,) and

equation (58) becomes the ninth equation needed in the subroutine FCNL

This also brings an additional boundary condition into the problem, the -

* - Hamiltonian of this new system (now different from equation 9) is now equal

to sero.

X [Ikx, + Lx 4 + ) 3(-gax,/p$ + Th/(m,-m')COS(.)) k,+ x2p

+ Th/(m,-m'f)SlN(v))I x. + x.- 0 (8

Equation 58 is included as one of the boundary conditions in the

subroutine FONB. These boundary conditions can be sen in the appendix.

Since there is an additional state equation, the Jacobian is now a 9 x 9

matrix, and is used by the DVCPR subroutine FCNJ. The problem of grid

initialization was still present, but by utilizing previous data as initial guesses

for the initial grid, much time was saved in this parameterized time problem

algorithm.
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This section discusses all of the separate computer runs that were

accomplished for this problem. The first pan discues the sigle precision

version of the algorithm. Double precision versions follow with both end

time constraints discussed separately. Then the two satellite problem and

the different attacker orbits that were utilized is discussed, and the final

portion is devoted to the time parameterisation part of this thesis.

SinDe Precision version.

The initial version of the algorithm was written in single precision.

Four different runs were accomplished, .001g. thrust and .0005, thrust, each

utilizing a four hour and a six hour burn time. Each of these runs were

subject to the constraints of equations 20 and 21. The boundary conditions

for these runs are those found in equations 5 through 8, 20, 21, 28, and 29.

The results are shown in figures 3, 4, 5 and 6 showing plots of a (Thrust

direction) vs time. As stated previously, comparison of theme results with

those obtained by Bowman (4) is very favorable and shows that for thrust

magnitudes in the range of .0008g up to .001., significant orbit changes are

possible. This algorithm produced orbit radius changes greater than those

obtained by Bowman (4) which was expected since Bowman dealt with

thrust only in the tangential direction. Thrust levels less than this have

little or no effect on orbit radius. (NOTE: g. is the gravitational constant

for the earth-IDU/TU"-or-2.14 1m/,2)

-
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Orbit radius was increased by '462 kilometers in the .0006S case with

a 6 hour time-of-flight (1/4 orbit period) In the .001g, cae, 6 hour

time-of-flight, orbit radius increased by -0N kilometers ThIs proved to be

the largest amount achievable with the algorithm as written in single

precision. For the .000g. case orbit radius increased only -35 kilometers

This was the least amount of the algorithm. In the .001g., 4 hour cae, the

increase was -494 kilometers.

From the graphical results, one sees a lack of consistency in the thrust

direction ve the thrust time. The four hour graphs show a rapid change in

thrust direction; however, the change from a positive thrust angle to a

negative thrust angle seems to follow no set pattern. In the six hour graphs

this transition eems to be almost linear. Although the radius increases

obtained with this version seem to be valid the thrust direction angle results

proved to be unacceptable. This coupled with the before mentioned problem

with the TOL parameter prompted a double precision version of the

algorithm to be incorporated for all additional runs and all further results are

from the double precision versions.

Double Precision vrsios

The double precision versions of the algorithm alleviated the above

mentioned problems with thrust direction angle irregularities. Two versions

of the algorithm are included because the first has the constraint on the

problem of the final orbit being circular (see equation 21); whereas the

second version does not require a circular orbit at the end of the burn

Both versions require the maneuvering satellite to be tangent to the threat

sphere at I . (see equation 20) Boundary conditions for these runs are found

in equations 5 through 8, 20, 21, 28, and 29 for the circular orbit constraint

.- - " . ".- ---.. -. . - * - ** - #- * -



runs and equations 5 through 8, 20, and 51 through 53 for the remaining

runs. (circular constraint removed)

Circular Orbit Custrntt t,

The first double precision version of the algorithm was run with the

same constraints as the single precision version,

*1 -x1% + x2X4 - 0 (20)
=  - VW M 0 (21)

The boundary conditions are as stated above. The problem was run

with the same thrust magnitudes and durations as before. Accuracies were

increased through the TOL parameter to 10- 4 meters. (the final TOL value

was l0- 11) The results can be seen graphically in figures 7, 8, 9, and 10.

jo It was interesting that for the same parameters as in the single

precision version, the radius increse values were different. For the .001g

thrust, six hour burn, the radius was increased 792 kilometers in this

version ( 184 km more than the single precision version). However for the

0005g. thrust, six hour burn, the radius increase was only 392 kilometers

in this version (70 km ie" than the single precision version). The other

two cases bad similar results, the .001ig. thrust, four hour burn, radius

micrese was "472 kilometers (-12 km less that the single precision version),

and the 000S thrust, four hour burn had radius increase of only -240

kilometers (115 km less that ihe sing. prec. version). While these values

proved to be much more accurate than the single precision version, they

were not significant changes. The good news about this version, as can be

own ou the graphs, is that the thrust direction now seemed to be consistent.
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It appears that the rapid thrust direction change that occurs in all cases is

dependent upon the total time of maneuvering. In the six hour maneuver

times, this rapid thrust direction change goes through 180; whereas in the

four hour maneuver times, it goes through 00. It becomes obvious that

thrust direction history becomes dependent upon total thrust duration.

Circular Orbit Constraint at & renogd

It became obvious by going through numerous output files, that much

of the fuel being used to make the final orbit circular was in fact stealing

from orbit radius increase. Since the objective was to maximize p (orbit

radius), this constraint (equation 21) was removed in order to get a greater

radius increase; therefore, increase the distance the target satellite was able

to get away from the attacking satellite. In other words, this version utilizes

the sarne amount of fuel to get significantly greater distances away from the

threat. The boundary conditions that changed for this run were due to

rem'ing equation 20, 28, and 29; while including equations 51 - 53.

These results can be observed graphically in figures 11, 12, 13, and 14.

From these figures, one observes that the thrust direction change now always

goes through 00. Also, there is no longer a rapid change from positive

thrust direction angles to negative thrust direction angles. The four hour

burns begin at approximately 270 of thrust direction angle and begin a

moderately smooth transition (still highly non-linear) to their maximum

negative values of about -1200. The six hour burns both begin at

approximately 450 and transition to a maximum negative value of about

-90. Thrust direction angle is still seen as highly dependent upon the total

burn time; the greater the total burn time, the greater the initial values of

thrust direction angle.
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The significant part of this version is the distance increase. Orbit

radius was increased "1707 kilometers in the .001g, six hour burn. This is

915 kilometers more than the previous versionl The .0005g. six hour burn

increased radius by -862 kilometers, almost 500 km more than that

previously obtained. The four hour burns were equally impressive. The

.001g. four hour burn increased radius by '865 kilometers; while the .O005g.-

four hour burn increased the radius by '335 kilometers.

Two Satellite Alzorithm Results

The results from the two satellite portion of this algorithm are shown

in figures 15, and 16. Once again, the only constraint on the two satellite

problem is the tangency requirement of equation 20. Figure 15 shows both 5

satellites beginning at the same point in space. The terminal boundary

conditions are those of equations 20 and 51 - 53. One quarter of a

gecsynchronous orbit is shown as that of the attacking satellite. The target

satellite is the one that has the ever increasing radius. It is interesting to

note that not only is the radius increasing, but the period of its orbit is also

changing ever so slightly. This ever so slight period increase has a

tremendous effect on this problem.

The threat satellite's orbit was then gradually changed and the

algorithm continually updated with previous output to keep a good

'initialization grid' until the attacking satellite was In a very high

eccentricity orbit with a radius of perigee of approximately 100 nautical miles

and an apogee altitude equal to geosynchronous. The initial conditions

eventually become those of equations 37 - 40. The algorithm was then

repeated for both of the previous thrust magnitudes with both of the thrust

c- burn times with the same terminal conditions as before.
. : .:
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The results from this were nothing short of great! The biggest

increase in distance came not only from the increase in the maneuvered

satellite's radius, as was first assumed, but also from the fact that as the

radius was increasing, the satellite was also slowing down in its orbit just

enough to cause it to arrive at the intercept point area after the threat

satellite had already left this area. The combined effect of increased perod

and increased rdius greatly increased the total mim distance (the distance

between the attacker satellite and the target satellite) For the .001 thrust,

six hour burm time, total distance between the two satellites at intercept

time is now -2800 kilometers. The .0006,. thrust, six hour burn time,

resulted in an 1413 kilometers distance between the satellites The -00lg. 5
thrust, four hour burn time, gave an approximate 1000 kilometers mad the

.0005k thrust, four hour burn time, increased the distance just over 0

kilometers.

It is important to note that the thrust direction histories for the two

satellite runs matched, exactly, the runs made previously with the fixed

threat sphere and a single maneuvering satellite. T"herefore, figures 11 - 14

are also valid representations of the two satellite versions of this algorithm

An example of the final two satellite tranufer can be een in figure 16

This figure shows that for a six hour burn time, the attacker is just before
9

perigee in its orbit at the beginning of the burn. The two satellites continue

in their respective orbits, with the target satellite continually changing its

orbit. At the intercept time (six hours in this depiction), when the threat

satellite is programmed to explode (or whatever), the target satellite a

approximately 2800 kilometers "nrher out and behind the threat, hopefully

and apparently out of danger.

41
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Minumum Time Problem

Now that the important part of the problem has been worked, it

leaves only the problem of doing this problem in the optimum time. Section

[ tels how this algorithm was accomplished. A fixed orbit radius increase

was selected, and the minimum time to get to that orbit radlus was found.
frs

Thi problem was accomplished with both the .001g, thrust magnitude and

the 00bg, thrust magnitude. The problem was first programmed for a

sinle satellite and then attempted for the two satellite problem. A working

model of the minimum time algorithm for the two satellite problem could

not be achieved. Reults achieved are for a single satellite with a fixed

threat sphere. The tangency constrLint remains the only constraint on this

problem and the boundu conditions are included in the appendix for this

a4gorithm. Figure 17 shows the thrust direction angle vs the parameterized

time for the .001g. thrust magnitude case in which target radius was

increased oy 500 kilometers. Five hundred kilometers was used by Burk (8),

but is not known to be sufficient for all possible attacks in space. The

minimum time for a 500 km threat sphere was found to be 12.0085 TU or 2

hours, 41 minutes, 28.6 seconds. Target thrust direction angle begins at

about 210 and traitions fairly smoothly toward a maximum negative value

of about

Figure 18 shows the thrust direction angle vs the parameterized time

for the .00OSg, thrust magnitude case in which target radius was also

increased by 500 kilometers. (500 km threat sphere) The minimum time in

this caw was found to be 16.7495 TU or 3 hours, 45 minutes, 13.7 seconds.

Here the target thrust direction angle begins just above 27' and proceeds to

a maximum negative value of -107'.
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A run was also made with .001go thrust magnitude in which target

radius was increased by 1000 km. The minimum time for this case was

16.7532 TU or 3 hours, 45 minutes, 16.7 seconds. In other words, with

twice the thrust magnitude, it was possible to increase the radius twice as

far in almost the same time. This proved to be merely coincidental

* - * however, as other runs did not prove this linear relationship out. For a

1500 km orbit radius increase with .001go thrust magnitude, the time was

25.3598 TU or 5 hours, 41 minutes, 0.6 seconds.

The minimization of the two satellite problem was attempted to

incorporate all aspects of the original problem statement; that being to get

the target satellite as far away from the attacking satellite in the minimum

amount of time. The attacking satellite's orbital dynamics coupled with the

complex dynamics of the minization problem proved to be too much for the

DVCPR routine. Figure 19, however, shows how this procedure would most

. likely appear. In this figure, The attacking satellite is actually just above

'" the X axis, on its way to its apogee altitude which will be coincident with

the target satellite at geosynchronous altitude. The target satellite; however,

begins its thrust maneuver, and a fev short hours later is presumedly safely

away from the threat instead of coincident with it.
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Minimum Time Problem
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Proposed Minimum Time Problem
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V, Conclusions. Tacticg. and Sun tions

The problem of optimal time transfer to some desired terminal radius

increase using a constant magnitude, low thrust propulsion system has been

Investigated.

Numerical solutions to this highly non-linear TPBVP were attainable

through the IMSL routine DVCPR. Although this routine must be initialized

(rather accurately) in order to find a converged solution, it seems that it

would be applicable to a wide class of orbital transfer problems.

For geosynchronous orbits, it is now determinable that the radius

increase has a non-linear relationship that is proportional to the burn time.

It is obvious to say that the longer the burn time, the greater the orbit

radius will be; however, it becomes significant that this happens very rapldly

between the four and six hour points. Over one thousand kilometers is

added to the orbit radius between these times in the .001g o thrust magnitude

case. In the .0005go thrust magnitude case, over five hundred kilometers is

added to the radius between the four and six hour points.

Initial thrust direction angle also is greatly dependent upon the total

time in question. The greater the total burn time, the greater the starting

value of the thrust direction. For the minimum time cases, this does not

appear to be true however. It appears that the smaller the thrust, the

greater the beginning value for thrust direction.

The key conclusion however is that a constant, low thrust propulsion

system does seem to be a valid alternative to the large impulsive propulsion

system studies in the current literature in accomplishing evasive orbital
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maneuvers. In view of the accuracy of these results, this approach forms the

basis of an effective numerical technique for completely general optimal low

thrust orbital transfer.

Many practical aspects of the attack avoidance problem have not been

dealt with in this thesis. In a real attack on a satellite, the threat would

have to be detected and then tracked for a while to determine its orbit.

From this information the defender could deduce the intended target and the

time of intercept. The defender would have to come to some conclusion

regarding the lethal radius of the threat, either from intelligence information

or from 'lucky' guessing. He might decide to defeat the threat by evasive

maneuvering (as this thesis discusses), by attacking the attacker, by attacking

the enemy's control system or communications, by using chaff or decoys, or

by relying on his saelite's hardening. He could also decide to do nothing at

all and just bear the k= of a satellite.

As was stated earlier, the earlier the maneuver begins, the mom

distance away from the attacker the satellite can achieve. The attacker may

detect this maneuver, and re-establish the intercept by a countermaneuver

on its part. This would then have to be detected and another evasive

maneuver performed by the target. Depending upon availabl fuel osboewd,

this could be a losing effort. This all becomes a type of cat and mouse

game, with each player attempting to out sums his opponent. Undcr thes

circumstances, the orbital evasion problem becomes the classical military

game of trying to outfox the enemy.
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Sunmtions for Further Work ha

J " There are many other areas of the orbital evasion problem that could

be addressed, but four more areas of the problem as addremed in this thesis

wil be mentioned. They are as follows: the performance of the algorithm,

the effects of uncertainty, the accuracy of the model, and the development of

a three dimensional modeL.

This algorithm proved to give good results, but only after much

frustration and time was spent in finding good initial values in which to

begin the problem. A method should be found to make the algorithm

reliable without having to initialise the grid for the Newton algorithm. One

alternative approach to this may be to have a library of example data, for

various types of orbits and maneuvers. It was found, that once a fairly good

set of data was available as a starting guem, the algorithm achieved superb

resuls

The algorithm in this thesis does not account for uncertainties in the

input data. How is it determined that a specific satellite is under attack?
* With the increasing density of satellites in geosynchronous orbits, it will

remain very hard to establish which satellite (or satellites) needs to be

maneuvered. Once this is determined, can the required thrust magnitude or r.

more importantly the required thrust direction angle be programmed into the

satelte accurately? Since the thrust direction angle is constantly changing,

some means of communicating with the satellite must be maintained

throughout the maneuver or pre-progammed into the satellite guidance

,,,..,,.system.

This algorithm does not take into account any perturbation efects that

effect all orbiting bodies, nor does It account for a maneuvering threat or a

mo-spherical threat volume. Perturbation algorithms are available but some
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ane classified and others can not be implemented with availabli resources. It

has, however, been observed in the open literature that a maneuvering threat

is currently beyond the scope of what our current enemies capabilities arm.

Also, any other shaped threat volume, would have to be addressed in a

separate algorithm.

The last topic for further work in obviously a three dimensional model.

This thesis dealt only with geosynchronous orbits and co-planer attacking

satellites. In order to expand this algorithm to attacking satellites in inclined

orbits, a three dimensional model must be developed. This model may also

addres the problem of returning the satellite to its mission orbit in an

optimal or minimnum fuel type of burn.P
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Cqmputer lIsti of DVCPR ubrgutineg FCNL VCONJ. and ]rCNB

2Lsde Sole~s ic Vcr~sem

SUBROUTINE ?CNI(N,T,X,XP)
DOUBLE PRECISION T,X(N),XP(N),MU,RO,B,D,TH,MO,MD,U
INTEGER N
COMMON /A/ MU /B/ TH,MO,MD
RO-DSQRT(X()*2+X(2)**2)
IF (RO -EQ. 0) RO-l.0
B-TH/(MO-MDOT)
U-DATAN2(X(S),X(7))
D-X(7)*X(1) + X(S)OX(2)
XP(l)-X(3)
XP(2)-X(4)
XP(3)--MUOX(l)/ROO*3 + B*DCOS(U)
XP(4)--MU*X(2)/RO*43 + B*DSIN(U )

*XP(5)-MUO(X(7)/RO**3 - 3.0d+00*X()D/RO**5)
XP(6)-MUO(X(B)/RO*43 - 3.0d+00X(2)D/R0*5)
XP(7)--X(5)
XP(S)- -X(6)
RETURN
END

SUBROUTINZ VrCNJ(N,TX,PD)
DOUBLE PRECISION T,X(N),PD(N,N),MU,RO,B,C,D,TH,MO,

S MD,E,F,G,HU
INTEGER N
COMMON /A/ MU /B/ TH,MO,MD
RO-wDSQRT(X( 1)*02+X(2)**2)
IF (RO -EQ. 0) RO-1.0
B-TH/(MO- MD*T)
U-DATAN2(X(S),X(7))
F-X(S)/X(7)
C-(.Od+O0 + F*02)
D-X(7)OX(l) + X(8)*X(2)
E-X(S)OX(1) + X(7)*X(2)
G-3.Od+00*X(7)*X(l) + X(S)*X(2)

H-3-Od+00*X(2)*X(8) +X(l)*X(7)



PD(1,2)-0.0
PD(1 ,3)- 1.Od+00
PD(1,4)=0.O
PD( 1,5)-0O.0
PD(1 ,8)=0.0
PD(1 ,7)=0.0
PD(1,8)-0.0

PD(2,1)-0.0
PD(2,2)-O.0
PD(2,3)-0.0
PD(2,4)- 1.Od+00
PD(2,5)-O.O
PD(2,6) -0.0W
PD(2,7)-0.0
PD(2,8)-0.0

PD(3,1)mMU*(- 1.0d+O0/RO**3 + 3.Od+OO*X( )**2/RO**5)
PD(3,2)=3.Od+O0.MU*X()X(2)/RO**5
PD(3,3)-0.0
PD(3,4)-0.0
PD(3,5)-0.0
PD(3,6)-O.0
PD(3,7)-B*DSIN(U)*X(8)/(C$X(7)**2)
PD(3,8)--B*DSIN(U)/(0*X(7))

PD(4,1)-PD(3,2)
PD(4,2)-MU(- 1.0d+o/ROO*3 + 3.od+00*X(2)**2/RO**5)
PD(4,3)-0.0
PD(4,4)-0.0
PD(4,5)-0.0
PD(4,8)-0.O
PD(4,7)- -B*DCOS(U)*X(8)/(C*X(7)**2)
PD(4,8).iBODCOS(U)/(C*X(7)) 4
PD(5,1)-MU*(-3.0d+0G/RO'*5 + 15.0d+O0OX()02D 4

I /RO*07)
PD(5,2)-MUO(-3.Od+O0OE/RO*'5 + 15.0d+00OX(1)*X(2)*D

I /RO**7)
PD(5.3)-0.0
PD(5.4)-0.0
PD(5,5)-0.0
PD(5,O) -0.0 .

PD(5,7)-MU*(1.0d+00/RO*03 - 3.0d+0OX()2/RO**5)
PD(5,8)- -3.od+OOMUOX( 1)X(2)/RO0
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PD(6, 1 )PD(5,2)
PD(e,2)=MU*(-3.0d+00 4 H/RO**5 + 15.od+oo*X(2)**2*D

U /RO**7)
PD(6,3)=O.Op PD(6,4)=O.O
PD(6,5):O

PD(8,7)=PD(5,8)
PD(6,8)=MU*(1 .od+o/RO**3 3.0dd±OOX(2)*2/RO'*5) F
PD(7,1)=O.O
PD(7,2)=-O.O
PD(7,3)=O.O
PD(7,4)=O.O
PD(7,5)-1.od+oo
PD(7,8)=O.O
PD(7,7)=O.O
PD(7,8)=O.O

PD(8,1)=O.O
PD(8,2)=O.O
PD(8,3)=O.O
PD(8,4)=-O.O
PD(8,5)=O.O
PD(8,6)=-1 .Od+OO
PD(8,7)=O.O
PD(8,8)=O.O

RETURN
END

SUBROUTINE FCNB(N,XA,XB,F)

DOUBLE PRECISION XA(N)IXB(N),F(N),KS,KM,RB
INTEGER N
COMMON /CONV/ KMKS
RBmDSQRT(XB(1 )*2+XB(2)2)
F(l)-XA(1) - KM
F(2)-XA(2)
F(3)-XA(3) -K

F(5)-XB( 1)*XB(3)+XB(2)*XB(4)
F(6)-XB(7)*XB(3) +XB(8)*XB(4)
F(7)-XB(5)*XB(1)+XB(6)*XB(2) - RB
F(S)-XB(S) -XB(7)*XB(2)/XB( 1)
RETURN
END
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Two SoleiuleVereios 4)

I R2(4),R2l,R22,R23,R24,V21,V22,V23,V24,R20(4),V20(4),
I CXEF

INTEGER N
COMMON /A/ MU /B/ TH,MO,MD
COMMON /RS/ R21,R22,R23,R24,V21,V22,V23,V24
R20l)-R21
R20(2)- R22
R20(3)- R23
R20(4)-R24
V20(l)-V21
V20(2)- V22
V20(3)-V23
V20(4)-V24
CALL KIPLU(T,MU,R20,V20,R2,V2)
RI (1)- R2( 1)- X(1)
Rl(2)-R2(2)-X(2)
RI (3)-O.O
B-TH/(MO- MDOT)
C-X(7)*Rl(l) + X(B)*R1(2)
D-DSQRT(R1 (1 )*2+ RI(2)0*2+R1 (3)-"2)
E-DSQRT(R2(1I)**2+ R2(2)**2+ R2(3)0*2)
F-DSQRT(X(7)**2+ X(8)0*2)
XP(l)-X(3)
XP(2)-X(4)
XP(3)--MU*R2(1)/E$*3 + MU*R1(l)/D**3 - B*X(7)/F
XP(4)--MUOR2(2)/E'003 + MUORl(2)/D*03 - B*X(8)/F
XP(5)-MUO(X(7)/D)03 - 3-0d+00*R1 (I)C/D**5)
XP(6)-MU*(X(S)/D**3 - 3.d+00*R(2)C/D**5)
XP(7)- -X(5)

RpeTURNX(6
RETURN- (6
END

* SUINOUTINZI VCNJ(N,T,X,PD)
DOUBLE PRECISION T,X(N),PD(N, N), MIT,B,C, D,TH,MOMD.L

I F,G,R2(4),R21,R22,R23R24,VlV22,V23,V4R2(4),
8 VM04),Rl(4)

IN rvE N
* COMMON /A/ MU /B/ TH,MO,MD

COMMON /RS/ R21,R22,R23,R34,V21,V22,V213,V24
R20(l)-R21
R20(2)- P22
R20(3) - R3
R20(4)- P34

V30(2)-V21
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V20(4)-V24
CALL WULUTMUR20,V30,R2,V21
RI(l)mR2(l)-X(l)
R1(2)-R2(2)- X(2)
RI(3fr0.O
B-TH/(MO- MD*T)
C-X(7)*R1(l) + X(R)OR112)
D-DSQRT(R1 (I )*0 Ra (2)*2+ RiI(3)002)
E-DSQRT(R2(lI)*3+ R2(2)*02+ R2(3)002)
r- D5QRT(X(7)*2+ X(S)*'*)
G-X(7)"R1(2) + X(S)"R1l)

PD(lI)m.O
PD41,2)-0 0

PD(I,4)-O 0
PD(1,5)-O 0
PD(1,6)u.O 0
PD(1,7)-O.O
PD(1,8)-O 0

PD4 2, 1) -00
PD(2,2)-O 0 rb
PD(2,3)mO 0
PD(2,4)um -1 d00
PD(2,5)u'O 0

PD(2,6)-O 0

PD(2,8)-O 0

PD43,1)-MLU*( I d-4O/UPO3 *

PD(3,3)-O 0
PEI3A)-0 0
PD(3,5)-0 0
PD(3,6j-O 0
P[437)- B/F - RQ\(7)*Gj' F*

PDL 4. 1) ?-P"j12)
P[44,4-41 1 I... 1)" - I * Y IJJ %

PD(4,3)-O 0
PD44,4)-O 0
PD(4,5)-O 0
PE4,S)-o 0
PEN 4. 7)- PV .1s



PD(5,1 )'MU*((60d~+OOX(7)*Rl(l) + 3.d+OO*C)/D'5
8 15 Od.O'R()2*C/D*07)

PD(5,2)=rMU*(30dOO'G/D**5 + 15.0d+OO'R()R1(2)*C

P D(5,3) =0 0
PD(54fr0 0
PD(5,5)=Os
PD(5,6f1rO 0
PD(5.7)-kfU*(1 O*OOfD*S - S.Od±00R1(I)**2fD*5)
PD(5,8)= - 3 Od +00MU*Rl(1)*R1(2)/DO*5

PD(6,1 )= PD(5,2)
PD46.3)= MU*((8 cdi±OrX(8)OR1(2) + 3.0d+OOC)/D**5

I - 15 Od+Oo*R1(2)**2*C/D 0 7)
PD(6,3)-O 0
PD(6,4)-O 0
P D16,5) -00
PD(6,6)=O 0
PD%6,-7)%-PD(5,8)
PD(6,8)-MtU*(l ckI-.O/D*03 - 3.od+ooOR(2)002/DO*5)

PD(7,) 00
P D(7, 2) -0 0
P D(7,3) -0 0
P D(7,4) -0 0
PD(7,5)- - I Od+00
PD(7,6OrO
PD(7,7)-0 0
P"l7,8)-O 0

PD(S.I1) -00
PD(8.2)=O 0
PD(8,3)=O 0
PD(8,4)-O 0
PUN S.5frO 0
PDIS,O)- I Od,00
PUNS,)'-OO0

w.. PL)B.@)-O0

RETV1RN
END



F(2)=XATX(2) + .7744873d+O

F(3)=XA(3) - 1.0241614d1-00
F(4)=XA(4) + .9642712d+00
F(5)=XB(1 )*XB(3)+XB(2) *XB(4)
F(6)=XB(8) -XB(7) *XB(2)/XB( 1)

* F(7)=XB(3)*XB(7)+XB(4)*XB(8)
F(8)=XB(5) *XB( 1)+XB(6) *XB(2) -RB

RETURN
END

Time Minimizaion Verui on

SUBROUTIN ]rCNI(N,T,X,XP)
DOUBLE PRECISION T,X(N),XP(N),MU,R,B,DTHM0,MD,U
INTEGER N
COMMON /A/ MU /B/ TH,MO,MD
RO=DSQRT(X(1)**2+X(2)**2)
EF (RO EQ. 0) RO-1.0
B--TH/(MO-MDOT)
U=DATAN2(X(8),X(7))
D-X(7)*X(1) + X(8)*X(2)
XP(l)-X(3)*X(9)
XP(2)=X(4)*X(9)
XP(3)=(-MU*X(1)/RO**3 + B*DOOS(U))*X(9)
XP(4)=(-MU*X(2)/ROO*3 + B*DSIN(U))*X(9)
XP(5)=MU*(X(7)/RO**3 - 3.od+o*X(1)*D/RO*5)*X(9)

-~XP(O)=MU(X(8)/RO**3 - 3.od+oo*X(2)D/RO**5)*X(9)
XP(7)=-X(5)*X(9)
XP(8)= -X(8)*X(9)
XP(q)-0.0
RETURN
END
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St'MOUTNR VCr4 (N,T,X,PD)
DOVUBLI PRECISION T,X( N),PD(N,N),MU,RO,B,C,D,TH,MO

I MD& IF,G,H.U
NIDTER N
-0MMOM /A/ MU /B/ TH,MO,MD

R0-D8QRT(X(l 02+X(2)042)
W? iRO EQ. 0) 0-1.0

"-AN2(X(S, (7))
rnYS)/X()

-- j od00 F0,2)

DmX(7)oX(1) + X(S)OX(2)
L-'VdS)oX(1) + X(7)*X(2)
,'u10d*0**X(7)0X(l) + X(S)OX(2)
q430.O0X(2)oX(S) + X(1)*X(7)

PD41 1)-0
PD4 1 2) -00
P12)q1. 3) X (9)
P1)41,4)-CO0
P1)f 1 51-00
PDI I6)-Co0
PD)41 -,)-0 0
P1)4 1)-CO
PT)4I 9)-X(3)

p142. 3) -0 0
P1)42.4)-CO9

p9 3. 5) -C0

PD426)1-CO0
PTA T$m) 0 0

'Ro4s)-g

V143.)- iMU(-1Od+00/R0)3 + 3.0d+0X()2

P1)41 V)-0 0
PTA 1 4) -00

p1)41 5)41
1tI6) -0 0A

PtA3 - BiDSIN(U)*X(S)/(COX(7)002)OX(9)

,'V4'io0- Wt'XI1)/R03 + BODCQS(U
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PD(4,1)-PD(3,2)
'-' ~-'PD(4,2)-MU(- 1.Od+0/RO*03 + 3.Od+OOX(2)*02

I /RO05)*X(9)
PD(4,3)-O.O
PD(4,4)-O.O
PD(4,5)-O.O
PD(4,6)-O.O
PD(4,7)- - BDCOS(U)X(S)/(CX(7)*2)*X(9)
PD(4,8)-BDCOS(U)/(0*X(7))*X(9)
PD(49)--MU*X(2)/RO*03 + B*DSIN(U)

PD(, )-M*(3.0+O*GIO*S+15.0d+OOX(1)*2*D
I /RO*07)*X(9)

PD(5,2)-MU*(-3.Od+00OE/ROO*5+ 15.0d+00X(I1)OX(2) D
I /R0*7)X(g)

PD(5,3)=O.O
PD(5,4)=O.O
PD(5,5) -0.0
PD(5,8)-0.0
PD(5,7)-MU*(1.Od+00/RO**3 - 3.od+O0OX(1)002

I /RO'05)*X(g)
PD(5,8)--3.0d+oO*MUX(I)OX(2)/ROO*5 * X(9)
PD(5,9)-MU(X(7)/ROO*3 - 3.0d+O0*X()D/RO'*5)

PD(6, 1 )PD(5,2)
PD(6,2)-MU(-3.0d+O0OH/RO*45+ 15.0d+O0OX(2)*2*D

8 /RO*07)*X(9)
PD(6,3)=0.O
PD(6,4)=O.0
PD(6,5)=0.O Z
PD(6,6)-0.0
PD(6,7)=PD(5,S)
PD(6,8)-MU'0(1.0d+00/RO**3 - 3.od+0X(2)002

I. /RO*5)*X(g)
PD(6,9)uMU(X(8)/ROO*3 -3.0d+0X(2)D/RO*05)

* PD(7,1)=0.O
PD(7,2)-0.0
PD(7,3)-O.O
PD(7,4)-0.0
PD(7,5)--X(9)

d PD(7,6)-0.O
PD(7,7)-0.0
PD(7,8)-0.O
PD(7,9)--X(5)
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PD(8,1)-O.O
PD(S,2)-O.O
PD(8,3)-O.O
PD(8,4)-0.o
DU5O .

''-'-I,- X9

PD(6,7)-O.O

PD89--X(O)

PD(9,1)J..
PD(9,2)-O.O -

PD(9,3)-O.0
PD(9,3)-O.OWk
PD(9,4)-O.0
PD(9,5)-O.O
PD(9,7)--0.0
PD(9,S)--O.O
PD(9,9)--O.0
RETURN
END

SUBROUTINI UCNDB(N,XA,XB,7)
DOUBLZ PRECISION XA(N),XB(N),F(N)1 KS,KM,RB,UB,XP3,

I XP4,TH,MO,MD,MU
INTEER N

* COMMON / A/ MU /CONV/ KMKS /B/ TH,MO,MD
RB-DSQRT(XB(1)0*2+XB(2)*42)
U-DATAN2(XB(S),XB(7))
B1-TH/(MOMD*XB(9))
XP-B9)*XB(7)*(-MU*XB(1)/RB**3+B*DCOs(U))
XP4-XB(9j XB(8)*(-MUXB(2)/RB**3+B*DSIN(U))
F(l)-XA(1) - KM
F(2)-XA(2)
F(3) -XA(3)
F(4)-XA(4) - KS
F(5)-XB(1)OXB(3)+XB(2)*XB(4)
F(6)-XB(7)*XB(3)+XB(S)OXB(4)
F(7)-RB - 6.7011&IM6+oo
F(S)-XB(5)*XB(1)+XB(6)*XB(2) - RB

(9)-XB(9)+XB(9)*(XB(5)*XB(3)+XB(6)*XB(4)) +XP3+XP4

END
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Com,,sv lietin. of Karlor OrMi Deermner

SUBROUTINE KIPLER(T,MU,R,VO,R,V)
DOUBLE PRECISION T,RD(4),VO(4),R(4),V(4),E,MU,
ISMU,A,XO,XN,Z,SZ,C,S,TN,DT,DOT,TOL,F,G,FD,GD

df (T eq. 0) then
R(1 )-RO(l)
R(250(RD2)

R(3 R03)
V(l )-VO(1)
V(2)-VO(2)
V(3)-VO(3)

R(4)u'DSQRT(R(1 )*2+ R(2)*2+R(3) *2)
RETURN

endif
DOT-R0(I )VO(1)+RD(2)*VO(2)+RD(3)*V0(3)
E-VO(4)*02/2.OD+O0 - MU/RO(4)
A-- I.OD+O0/(2.OD+OO*E)
SMU-DSQRT(MU)
TOL- 1 OD- 16

10XO-SMU * T/A
10 Z-X02/A

SZ-DSQRT(Z)
C-(l.d+00 - DCOS(SZ))/Z
S-(SZ - DSIN(SZ))/SZ**3
TN-DOT/SMUOXO**2*C + (1 .d+00-R0(4)/A)X0*3*S

* + RD(4)*X0
DT-X02*C + DOT/SMU*XO*(1.d+O0-Z*S) + RO(4)

I (1.d+O0-Z*C)
XN-Xo + (T-TN)/DT
IF ((XN-XO) .GT. TOL) THEN

XO-XN
GO TO 10

END!?
F-1.d+00 - XNO*2/RO(4) * C
G-XN*02 *0 DOT/MU *C + RO(4)*XN 0 (1.d+00-Z*S)/SMU
DO 20 1- 1,3

20 R(I)F 4RD(I)+ GVO(I)
R(4)-DSQRT(R( 1)$2+R(2)4*2+R(3)2)
GD-1.d+O0 - XN*02/R(4) * C
FD-SMU/(RO(4)*R(4)) * XN 0 (Z*S-l.d+00)
DO 30 1-1,3
ENDI)u.FD *ROMI + GD *VO(I)

EEND
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