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on the following two facts:

1) no point-to-point correspondences are used, and
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Determining the 3-D motion of a rigid surface patch-
without correspondence, under perspective pr6jection.

I. Planar Surfaces: Theory and Experiments
II. Curved surfaces: Theory

John (Yiannis) Aloimonos and Isidore Rigoutsos
Department of Computer Science
The University of Rochester,
Rochester, New York 14627.

Abstract
A method is presented for the recovery of the 3D motion parameters of a rigidly

moving textured surface. The novelty of the method is based on the following two
facts:
1) no point-to-point correspondences are used, and
2) "stereo" and "motion" are combined in such a way that no correspondence between

the left and the right stereo pairs is required.

1. Introduction

An important problem in Computer Vision is to recover the 3-D motion ofa mo-
ving object from its successive images. Dynamic visual information can be produced
by a sensor moving through the environment and/or by independently moving objec-
ts in the observer's visual field.The interpretation of such dynamic imagery informa-
tion consists of dynamic segmentation, recovery of the 3-D motion ( of the sensor and
the objects in the environment )as well as determination of the structure of the Q
environmental world. The results of such an interpretation can be used to control
behavior as for example in robotics, tracking, and autonomous navigation. Up to
now there have been, basically, three aproaches towards the solution of this
problem: 1F

1) The first assumes the dynamic image to be a three-dimensional function of two
spatial arguments and a temporal argument. Then if this function is locally well -_ -'
behaved and its spatiotemporal derivatives are computable, the image velocity or U
optical flow may be computed [7, 9, 10, 17, 23, 35, 39].

2) The second method for measuring image motion considers the cases where the
motion is "large" and the previous technique is not applicable. In these instances the
measurement technique relies upon isolating and tracking highlights or feature
points in the image through time. In other words operators are applied on both ,

''or
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dynamic frames which output a set of points in both images, and then the
correspondence problem between these two sets of points has to be solved (i.e. finding
which points on both dynamic frames are due to the projection of the same world
point)[3,21a,21b, 6,32,33].

In both the above approaches, after the optical flow field or the discrete
displacements field (which can be sparse) are computed, then algorithms are
constructed for the determination of the three-dimensional motion , based on the
optical flow or discrete displacements values [1, 4, 5, 8, 18, 19, 24, 25,26, 27, 28, 29,
30, 32,33, 34, 36, 38].

3) The three-dimensional motion parameters are computed directly from the spatial
and temporal derivatives of the image intensity function. In other words, if f is the
intensity function and (u.v) the optical flow at a point, then the equation
&u +f v+ft =0 holds approximately. All the methods in the category are based on
the sutstitution of the optical flow values in terms of the three dimensional motion
parameters in the above equation, and there is very good work in this direction [22,
11,2].

As the problem has been formulated over the years, one camera is used and so
the three dimensional motion parameters that have to be computed and can be
compute, are five (two for the direction of translation and three for the rotation). In
our approach, we consider a binocular observer, and so all six parameters of the
motion can be recovered.

2. Motivation and Previous Work
The basic motivation for this research is the fact that optical flow (or discrete

displacement) fields produced from real images by existing techniques are corrupted
by noise and are partially incorrect [33]. Most of the algorithms in the litterature
that use the retinal motion field to recover three-dimensional motion fail when the
input (retinal motion) is noisy. Some algorithms work reasonably for images in a
specific domain.

Some researchers [26, 40, 41, 42, 8, 43] developed sets of nonlinear equations
with the three-dimensional motion parameters as unknowns, which are solved by
iterations and initial guessing. These methods are very sensitive to noise, as it is
reported in [26, 40, 8, 43]. On the other hand, other researchers [30, 18] developed
methods that do not require the solution of nonlinear systems, but the solution of
linear ones. Despite that, under the presence of noise, the results are not satisfactory
[30,18].

Bruss and Horn [5] presented a least-squares formalism that tried to compute
the motion parameters by minimizing a measure of the difference between the input
optic flow and the predicted one from the motion parameters. The method, in the
general case, results in solving a system of nonlinear equations with all the inherent
difficulties in such a task, and it seems to have good behavior with respect to noise
only when the noise in the optical flow field has a particular distribution. Prazdny.
Rieger, and Lawton presented methods based on the separation of the optical flow
field in its translational and rotational components, under different assumptions [24,
25]. But difficulties are reported with the approach of Prazdny in the present of noise
[44], while the methods of Rieger and Lawton require the presence of occluding
boundaries in the scene, something which cannot be guaranteed. Finally, Ullman in
his pioneering work [32] presented a local analysis, but his approach seems to be
sensitive to noise, because of its local nature.

Several other authors [19, 38] use the optical flow field and its first and second
spatial derivatives at corresponding points to obtain the motion parameters. But



these derivatives seem to be unreliable with noise, and there is no known algorithm
which can determine them reasonably in real images. Others [1] follow an approach

f.. based partially on local interpretation of the flow field, but it can be proved [34] that 1,
any local interpretation of the flow field is unstable.

At this point it is worth noting that all the aforementioned methods assume an I:
A unrestricted motion (translation and rotation). In the case of restricted motion (only

translation), a robust algorithm has been reported by Lawton [45], which was
successfully applied to some real images. His method is based on a global sampling I
of an error measure that corresponds to the potential position of the focus of
expansion (FOE); finally, a local search is required to determine the exact location of
the minimum value. However, the method is time-consuming, and is likely to be
very sensitive to small rotations. Also the inherent problems of correspondence, in
the sense that there may be drop-ins or drop-outs in the two dynamic frames, is not
taken into account. All in all, most of the methods presented up to now for the
computation of three-dimensional motion depend on the value offlow or retinal
displacements. Probably there is no algorithm until now that can compute retinal
motion reasonably (for example. 10% accuracy) in real images.

Even if we had some way, however, to compute retinal motion in a reasonable
(acceptable) fashion, i.e.. with at most an error of 10%, for example, all the
algorithms proposed to date that use retinal motion as input, would still produce
non-robust results. The reason for this is the fact that the motion constraint (i.e., the
relation between three-dimensional motion and retinal displacements) is very
sensitive to small perturbations ([47]). Table 1 shows how the error of motion
parameters grows as the error in image point correspondence increases when 8-point

~,' correspondence is used, and Table 2 shows the same relationship when 20-point
correspondence is used with 2.5% error on point correspondences based on a recent

.V. algorithm of great mathematical elegance.
(Tables 1 and 2 are from [30].)

Table 1: Error of motion parameters for 8-point correspondence
for 2.5% error in point correspondence.

Error of E (essential parameters) 73.91%
Error of rotation parameters 38.70%
Error of translations 103.60%

Table 2: Error of motion parameters for 20-point correspondence
for 2.5% error in point correspondence.

Error of E (essential parameters) 19.49%
Error of rotation parameters 2.40%
Error of translations 29.66%

It is clear from the above tables that the sensitivity of the algorithm in [301 to
small errors is very high. It is worth noting at this point that the algorithm in [30] is
solving linear equations, but the sensitivity to error in point correspondences is not
improved with respect to algorithms that solve non-linear equations. Also, it is
worth mentioning at this point that the same behaviour is present in the algotithms
that compute 3-D motion in the case of planar surfaces [301.

Finally, the third approach, which computes directly the motion parameters
from the spatiotemp oral derivatives of the image intensity function, gets rid of the
correspondence problem and seems very promising. In [11, 22, 14], the behavior 71
with respect to noise is not discussed. But extensive experiments [31] implementing
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the algorithms presented in [21 show that noise in the intensity function affects the
computed three-dimensional motion parameters a great deal. We should also
mention that the constraint fiu + fiv + ft = 0 is a very gross approximation of the
actual constraint under perspective projection [46].So, despite the fact that no
correspondences are used in this approach, the resulting algorithms seem to have the
same sensitivity to small errors in the input as in the previous cases. This fact should
not be surprising, because even if we avoid correspondences, the constraint between
three-dimensional motion and retinal motion (regardless of whether the retinal
motion is expressed as optic flow or the spatiotemporal variation of the image
intensity function) will be essentially the same when one camera is used (monocular
observer, traditional approach). This constraint cannot change, since it relates three-
dimensional motion to two-dimensional motion through projective geometry.

So, as the problem has been formulated (monocular observer), it seems to have a
great deal of difficulty. This is again not surprising, and the same problem is
encountered in many other problems in computer vision (shape from shading,
structure from motion, stereo, etc.). There has recently been an approach to combine
information from different sources in order to achieve uniqueness and robustness of
low-level visual computations [47]. With regard to the three-dimensional motion
parameters determination problem, why not combine motion information with some
other kind of information? It is clear that in this case the constraints won't be the
same, and there is some hope for robustness in the computed parameters. As this
other kind of information that should be combined with motion, we choose stereo.

The need for combining stereo with motion has recently been appreciated by a
number of researchers [13, 37, 12, 47]. Jenkin and Tsotsos, [13], used stereo
information for the computation of retinal motion, and they presented good results
for their images. Waxman et al. [37] presented a promising method for dynamic
stereo, which is based on the comparison of image flow fields obtained from cameras
in known relative motion, with passive ranging as goal. Whitman Richards [48] is
combining stereo disparity with motion in order to recover correct three-dimensional
configurations from two-dimensional images (othography-vergence). Finally,
Huang and Blostein [12] presented a method for three-dimensional motion
estimation that is based on stereo information. In their work, the static stereo
problem as well as the three-dimensional matching problem have to be solved before
the motion estimation problem. The emphasis is placed on the error analysis, since
the amount of noise (in typical image resolutions) in the input of the motion
estimation algorithm is very large.

So a natural question arises: is it possible to recover three-dimensional motion
from images without having to go through the very difficult correspondence'-,-:- roblem? And if such a thing is possible, how immune to noise will the algorithm be?"

n this paper, we prove that if we combine stereo and motion in some sense and we
avoid any static or dynamic correspondence, then we can compute the three-
dimensional motion of a moving object. At this point, it is worth noting recent
results by Kanatani [15, 16] that deal with finding the three-dimensional motion of
planar contours in small motion, without point correspondences. These methods
seem to suffer from numerical errors a great deal, but they have a great
mathematical elegance.
andAs the problem has been formulated over the years, usually one camera is used
and so the 3-D motion parameters that can be computed are five : 2 for the direction
of translation and 3 for the rotation. In our approach, we assume a binocular
observer and so we recover 6 motion parameters : 3 for the translation and 3 for the

apj[rotation.
With the traditional one camera approach for the estimation of the 3-D motion~~parameters of a rigid planar patch, it was just mentioned [26],that one should use

the image point correspondences for object points not on a single planar patch when
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estimating 3-D motions of rigid objects. But it was not known, how many
solutions there were, what was the minimum number of points and views
needed to assure uniqueness and how could those solutions be computed without
using any iterative search ( i.e. without having to solve non-linear systems ). Itwas proved [27,28,30] that there are exactly two solutions for the 3-D motion -
parameters and plane orientations, given at least 4 image point correspondences

in two perspective views, unless the 3x3 matrix containing the canonical
coordinates of the second kind [20] for the Lie transformation group that "-
characterizes the retinal motion field of a moving planar patch, has multiple
singular values. However, the solutions are unique if three views of the planar
patch are given or two views with at least two planar patches. In our approach,
the duality problem does not exist for two views, since two cameras are used ( and
so the analysis is done in 3-D).

In this paper, we present a method for the recovery of the 3-D motion of a rigidly
moving surface patch, by a binocular observer without using correspondence
neither for the stereo nor for the motion. We first analyze the case of planar surfaces P

and then we develop the theory for any surface.

The organization of the paper is as follows: the next Section 3 describes how to
recover the structure and depth of a set of 3-D planar points from their images in the
left and right flat retinae, without using any point correspondences. We also discuss
the effect of noise in the procedure and we describe a method for the improvement of
the two camera model using three cameras ( trinocular observer).

J1', Section 4 gives a method for the recovery of the 3-D direction of translation of a
translating set of planar points from their images without using any correspon-
dence; it furthermore introduces the reader to Section 5 which deals with the
solution of the general problem ( the case where the set of 3-D planar points is mo-
ving rigidly -- i.e. translating and rotating).
Section 6 describes the theory for the determination of 3-D motion for any kind of
surface that moves with an unrestricted motion.
Finally Section 7 describes experiments as well as the effect of noise in the methods
developed for the case of planar surfaces. Experiments for the case of nonplanar -.

surfaces are under development.

3. Stereo without correspondence

* . In this section we present a method for the recovery of the 3-D parameters for

the set of 3-D planar points from their left and right images without using any point-

to-point correspondence; instead we consider all point correspondences at once and so
there is no need to solve the difficult correspondence problem in the case of the static
stereo.

Let an orthogonal cartesian coordinate system OXYZ be fixed with respect to
the left camera, with O at the origin (0 being also the nodal point of the left eye) and
the Z-axis pointing along the optical axis.

Let the image plane of the left camera be perpendicular to the Z-axis at the point
(0,0,f), (focal length = f).

Let the nodal point of the right camera be at the point (d,0,0) and its image
plane be identical to the left one; the optical axis of the right camera (eye) points also
along the Z-axis and passes through point (d,0,0) (see Figure 1.).

Consider a set of 3-D points A { (Xi,Yi,Zi)/ i 1,2,3 ... n } lying on the same
plane(see Figure 1.), the latter being described by the equation:

'p k

'6-



Z=p*X+q*Y+c
Let 01,0, be the origins of the two-dimensional orthogonal coordinate systems

on each image plane; these origins are located on the left and right optical axes while
the corresponding coordinate systems have their y-axes parallel to the axis OY, and F
their x-axes parallel to OX.

Finally let { (xli,yli) / i = 1,2,3 ... n } and { (Xri,Yri) / i = 1,2,3 ... n } be the
projections of the points of set A on the left and right retinae, respectively, i.e.

xl Z *X ,f) Y ' (2) / i= 1,2,3 ... n
z z

f*(XI - d) f*Y,
r(4) 1,2,3.. n

z yl

Let (xli,yli) and (Xri,Yri) be corresponding points in the two frames. Then we
have that.

f*d
Xh -X - (5)

Ih YrL (6)

where Zi, the depth of the 3-D point having those projections.

In the sequel, we prove that the quantity

rl yl
-z

is directly computable without using any point correspondence between the left and
right frames. We proceed with the following propositions:

3.1 Proposition . Using the aforementioned nomenclature the quantity

Z'
where

M

k>_0 A k e , m,n (Z- JO),
2*n

is directly computable.

< Proof> We have that

....



,- Y ( x -x )

=(from equation(5))= 
-  I -

= z - f*d .".",

n k n x):

- , It N7 ri Y , (from equation (6))

- f*d - f*d

- f*d -- f* d

Thus, • ...,

qV Y ht IV "t h 1- ,X r r i
-- = (7) t .

, - I f*d 7 f*d
.l t1 tA

From equation (7) the claim is obvious. .

3.2 Proposition : Using the aforementioned nomenclature, the parameters p. q and
c of the plane in view are directly computable without using any point-to-point
correspondence between the two frames.

< Proof> The equation of the world plane when expressed in terms of the
Z' coordinates of the left frame, becomes:

1 1 - -

= - P*xl- q*Yl (8'
qzx.c*f

So, from equation (8) it follows that:

i

- (f - * *v )*- - / i=1,2,3 .n (9)
Z it Ut cf

.1 f

Now, we have: i,

nlk k

I y =*n -(q*j * I
Z=

1 
IZ 1 

.C*for

Yh. * , " - -1 ,[ -' p,~ , k + " Nz""
- - " c*f " P x y + _V q*Yh*Y (10)

The left-hand side of equation (10) has been shown to be computable without
using any point-to-point correspondence (see Proposition 3.1).

rd 
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If we write equation (10) for three different values of k, we obtain the following
linear system in the unknowns p,q,c which in general has a unique solution (except
for the case where the projection of all points of set A, have the same y-coordinate in
both frames):

' , ki n V , k1 n n n
' I " -- - Y q* Y

'""" fd - f*d c -- t + 1

n k2 n k2 *+
.1 f 11 fX-rt r 1 k2 1.. -. ,,k2 - ik

2

rz kJ3 * X * ,kd
\11 U ~ 1 1 _ , ,k3 1 ""

f*d f *d c c*f -
p xh Y .' " -: ;I

where we used equation ( 7 ) to the left hand sides.

The solution of the above system recovers the structure and the depth of the
points of set A without any correspondence and this is the conclusion of Proposition
3.2.

3.3 Practical Considerations

We have implemented the above method for different values ofkl,k2 ,k3 and
especially for the cases:

a) k1 =0 k2 = 1/3 k3 =2/3
b) ki =0 k2 = 1,13 k3 = 1/5

' " 1
The noiseless cases give extremely accurate results.
Before we proceed, we must explain what we mean by noise introduced in the =

images. When we say that one frame (left or right) has noise of a%, we mean that if
the plane contains N projection points we added [(N*a)/100] randomly distributed
points. (Note: [] denotes the integer part of its argument).

When the noise in both frarmes is kept below 2% then the results are still very
satisfactory. When the noise exceeds 5% then only the value of p gets corrupted, but
the values of q and c remain very satisfactory. To correct this and get satisfactory
results for high noise percentages, we devised the following method that uses three
cameras:

We consider the three camera configuration system as in Figure 2., where the
top camera has only vertical displacement with respect to the left one. If all three
images are corrupted by noise ( ranging from 5% to 20% ) then application of the
algorithm ( Proposition 3.2 ) to the left and top frames will give very reasonable va-
lues for p and c and corrupt q, which q, as well as c, are accurately computed from
the application of the same algorithm to the right and left frames ".

So, by applying our stereo ( without correspondence ) algorithm to the
3-camera configuration vision system, we obtain accurate results for the parameters
describing the 3-D planar patch, even for noise percentages of 20% or slightly more,

-,. ,..-. ..- ,,*-...,........................-
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and for different amountsofnoise in the different frames. Section 7 describes
relevant experiments.

4.Recovering the direction of translation.

Here we treat the case where the points of set A just rigidly translate, and we
wish to recover the direction of the translation. In this case, the depth is not needed
but the orientation of the plane is required. The general case is treated in the next
Section 5.

4.1 Technical prerequisites.

Consider a coordinate system OXYZ fixed with respect to the camera; 0
coincides with the nodal point of the eye, while the image plane is perpendicular to ]
the Z-axis ( focal length =f), that is pointing along the optical axis (see Figure 3.).

Let us represent points on the image plane with small letters (e.g (x,y)) and
points in the world with capital ones (e.g. (X,Y,Z)).

Let us consider a point P = (X 1,Y i,Z 1) in the world, with perspective image
(xl,l), where x1 =(f*X ) 'Z and yl f*Y )'Z.

If the point P moves to the position P'= (X2 ,Y2.Z 2 ) with

X2=X1 +AX (14)
Y2 =Y 1 +AY (15)
Z2 = ZI +AZ (16)

then we desire to find the direction of the translation (AX/AZ,AY/AZ).
If the perspective image of P' is ( x2,Y2), then the observed motion of the world point
in the image plane is given by the displacement vector:( x2-xl, Y2-Yi (which in the
case of very small motion is also known as "optical flow").

We can easily prove that

f* AX - x *AZ

Y -Y 17
2 - xi Z - AZ .1

-i-i

-" ) Z - AZ (1 81

Under the assumption that the motion in depth is small with respect to the I
depth, the equations above become:

f* AX - *AZ.7-1

r, "t1  s1 (19p

a-.
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f* AY - 7

-. (20)

The above equations relate the retinal motion (left-hand sides) to the world

motion AX, AY, AZ.

4.2 Detecting 3-1) direction of translation without correspondence.

Consider again a coordinate system OXYZ fixed with respect to the camera as
in Figure 4.. and let A {(Xi.YZi)/ i = 1,2,3 ... n },such that

Zi= p*X 1+q*Yi+c / i=1,2,3 ... n

that is the points are planar. Let the points translate rigidly with translation
. . (AXAYAZ,. andlet {(xi,yi) / i=1,2,3...n} and {(xi',y'i i=1,2,3, ... n } be the

projections of the set A before and after the translation, respectively.
Consider a point (xiyi) in the first frame which has a corresponding one (xi',yi'

in the second (dynamic) frame.

e 'For the moment we do not worry about where the point (x i', yi' ) is, but we
do know that the following relations hold between these two points

f**\ - x * AZ
x -x (211

(22f*AY - v

v - 22
-"l "' Z

where Zi is the depth of the 3-D point whose projection (on the first dynamic frame)
is the point (xi,yi). Taking now into account that

1 f- P)x, q
(2:31""Z c*/

the above equations become

S- x -q *

X- rfA\- "AZ - (241

1' X- q v
"- / ' - 'AA * (251

If we now write equation (24) for all the points in the two dynamic frames
and sum the re. ulting equations up. we take

A- A

Ig'. ,1,Lt 'L:Z.2 
".
.; ,. -,,_ ,: " '_ ,- '.,_.: '_. . ". . . : '= ' . . .. .... .... a, ,_ , ... ,_ & ,'.: , .,-., : .,. . X 1,2.
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f-p*x, -q -,

(x"-x )= A [(f*-x *AZ)* I ._

or

n ,Z f*(f-p*x -q*v )* Xx * (f-p*x q*y )*AZ

\ (x -x ) = - (26[ I-)

Similarly, if we do the same for equation (25), we take:

f -I f~*x -q *y

-y _ lf*AY-Y *AZ)*
c f

or

Sy f -Y(f -.p*x q y AY :- [,(ff*.-p,*x - q *AZ

At this point it has to be understood that equations (26) and (27) do not
require our finding of any correspondence.

By dividing equation (26) by equation (27), we get:

4-..::

X,- . I AX r * f (- q *X y, L Y -,* (f- P*x1 - q *y } A
__ I-*f*(h~x f

L~~i ~ AZ f.px..q~*,

V. - IV [.I * f * (f...p*X1 1 q*yL I f...p*x...-q*yx Y*

4" Equation (28) is a linear equation in the unknowns X/aZ aY/AZ and the
coefficients consist of expressions involving summations of point coordinates in
both dynamic frames; for the computation of the latter no establishment of any point
correspondences is required.

So, if we consider a binocular observer, applying the above procedure in bothleft and right "eyes", we get two linear equations (of the form of equation (28) ) in
the two unknowns AXiAZ , AYIAZ, which constitute a linear system that in general
has a unique solution.

4 .2 What the previous method is not about

If one is not carefull when analyzing the previous method, then he might think%
that all the method does, is to correspond the center of mass of the image points
before the motion with the center of mass of the image points after the motion, and
then based on that retinal motion to recover three dimensional motion. But this is
wrong, because perspective projection does not preserve simple ratios, and so the

*6 , IZ Z



center of mass of the image points before the motion does not correspond to the center
of mass of the image points after the motion. All the above method does, is
aggregation of of the motion constraints; it does not correspond centers of mass.

4.3 Practica! considerations.

We have implemented the above method with a variety of planes as well as
displacements; noiseless cases give exremely accurate results, while cases with noise
percentages up to 20% (even with different amounts of noise in all four frames ( first
left and right - second left and right ) ) give very satisfactory results ( an error of at
most 5% ). Section 7 describes relevant experiments. We now proceed considering
the general case.

5. Determining unrestricted 3-D motion of a rigid planar patch without
point correspondences.

Consider again the imaging system (binocular) of Figure 4., as well as the set
A= {(Xi,Yi,Zi )/i 1,2,3 ...n }such that

Zi=p*Xi+q*Yi+c / i=1,2,3...n

i.e. the points are planar; let B be the plane on which they lie. Suppose that the
points of the set A move rigidly in space (translation plus rotation ) and they become
members of a set A' = {(Xi',Yi',Zi' ) i =1,2,3 ... n }. Since all of the points of set A
move rigidly, it follows that the points of set A' are also planar; let B' be the (new)
plane on which these points lie.

wish In other words the set A becomes A' after the rigid motion transformation. We
wish to recover the parameters of this transformation . From the projection of sets A
and A'on the left and right image planes and using the method described in Section
3 the sets A and A' can be computed. In other words, we know exactly the positions
in 3-D of all the points of the sets A and A'( and this has been found without using
any point correspondences- Section 3).

So, the problem of recovering the 3-D motion has been transformed to the
following

"Given the set A of planar points in 3D and the set A' of new
planar points, which has been produced by applying to the points
of set A a rigid motion transformation, recover that transformation."

Any rigid body motion can be analyzed to a rotation plus a translation; the
rotation axis can be considered as passing through any point in the space, but after

01 this point is chosen, everything else is fixed.

'V Ifwe consider the rotation axis as passing through the center of mass (CM) of
the points ofset A, then the vector which has as its two endpoints the centers of mass
CMA and CMA' of sets A and A' respectively, represents the exact 3-D translation.

-" So, for the translation we can write

%u.
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translation T (X,Y,Z) = CMA' - CMA

It remains to recover the rotation matrix.
Let, therefore, ni and n2 be the surface normals of the planes B and B'. Then, the
angle 0 between nI and n2 where

n n

cosreprese with i othe inner- product operator

represents the rotation around an axis 0102 perpendicular to the plane
defined by ni and n2, where

n I X n2
1 2 3

OiO 2  n2 11 with' X 'the cross-product operator

From the axis 0102 and the angle 0 we develop a rotation matrix R1 . The
matrix R1 does not represent the final rotation matrix since we are still missing the
rotation around the surface normal. Indeed, if we apply the rotation matrix RI and
the translation T to the set A, we will get a set A" of points, which is different than
A', because the rotation matrix RI does not include the rotation around the surface
normal n2.

So we now have a matching problem: on the plane B' we have two sets of
• :.points A' and A" respectively, and we want to recover the angle 4) by which we must

rotate the points of set A" (with respect to the surface normal n2 ) in order to coincide I
with those of set A'.

Suppose that we can find angle 4). From (D and n2 we construct a new rotation
matrix R2 . The final rotation matrix R can be expressed in terms of RI ,R 2 as 4
follows: R R= R1 R2

It therefore remains to explain how we can compute the angle 4).For this we
need the statistical definition of the mean direction.

'p-. Definition I.
Consider a set A = { (Xi,Yi) / i = 1,2,3 ... n } of points all of which lie on the same

plane. Consider the center of mass, CM, of these points to have coordinates
(Xcm,Ycm). Let also circle ( CM,1 ) be the circle having its center at ( Xcm,Ycm) and
radius of length equal to 1.Let Pi be the interse-ctions of the vectors CMAi with the
circumference of the circle (CM,1), i = 1,2,3 ... n. Then the "mean direction" of the po-
ints of the set A, is defined to be the vector SID, where
.%1

MD- CMP.

It is clear that the vector of the mean direction is intrinsically connected N10
with the set of points considered each time, and if the set of points is rotated around
an axis perpendicular to the plane and passing through CM, by an angle (a, the new
mean direction vector is the previous one rotated by the same angle cW.
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So, returning to the analysis of our approach, the angle (P is the angle betwe-

en the vectors of mean directions of the sets A' and A"( which have obviously, com-
mon CM's).

Moreover, it is obvious that the angle 4, and therefore the rotation matrix
R 2 , cannot be computed in the case the mean direction is 0 (i.e. in the case the set of
points is characterized by a point symmetry).

6. Determining unrestricted 3-D motion of a rigid surface without point
correspondences

In this section we consider the problem of the recovery of unrestricted 3-D
-~ motion of non-planar surfaces. Again, we consider a set of rigidly moving points, and

we assume that the depth information is available. In another work [49], we describe
how to recover the depth of a set of non-planar points from their stereo images
without having to go through the correspondence problem. So consider the imaging
system ( binocular) of Fig. 5, and a set A= { Pi = (Xi, Yi, Zi )/i = 1,2,3 ... n } of 3-D
non-planar points . The coordinates are with respect to a fixed coordinate system
that will be used throughout the paper (we can consider as this system either the
system of the left or right camera, or the head frame coordinate system). Applying
the method described in [49] , from the left and right images of the points of set A, we
can recover the members of A themselves, i.e. their 3-D coordinates. Suppose now
that the points of the set A move rigidly in space ( translation plus rotation ) and that
they become members of the set A' = { P'i = (X'i, Y'i, Z'i ) / i = 1,2,3 ... n }. It is
evident that the set A' can be recovered exactly as the set A with the method
described in [491 . In other words, the set A becomes A' after the rigid motion
transformation. We wish to recover the parameters of this transformation. We have
already stated that from the projection of the sets A and A' on the left and right
image planes and using the method described in [49] , the sets A and A' can be
computed. Hence we know exactly the positions of the points of the sets A and A' (
and we came up with this result whithout relying to any point-to-point
correspondence ). So, for the purposes of this section we will assume that the depth
information is available. , wm

From the above discussion we see that the problem of recovering the 3-D
motion has been transformed to the following:

Given the set A of nonplanar points and the set A' corresponding to the new positions
of the initial points after they have experienced a rigid motion transformation, recover
that transformation, without any point-to-point correspondences!

Any rigid motion can be analyzed to a rotation plus a translation; the rotation
axis can be considered as passing through the any point in space, but after this point
is chosen, everything else is fixed.

If we consider the rotation axis as passing through the origin of the coordinate
*-.-.-." system, then if the point ( Xi, Yi, Zi ) E A moves to a new position (X'i, Y'i, Z'i ) E A',

the following relation holds:

(X'i,Y'iZ'i) t  RXi, Yi, Zi)t + T /i1,2,3...n (29)

-.:

..p.,. . .. -... ., . . . .- . , .. - . .*" , - ... - -", - , - . , . . . . . . - . - . . , -:. . , . . . , , . .

' " % " " . ° . , . % % "-° . . ' . 5 -% % ' % ' ." ., %,% % * ° ." •. . .*% -



V...

where R is the 3x3 rotation matrix and T-(AX, AX, AZ) t is the translation vector.
We wish to recover the parameters R and T, without using any point-to-point
correspondences.

Let, -

(X, Y, Zi)t Pi and ( X'i, Y'i, Z'i)t P'i /i =1,2,3 ... n
Then, equation ( 29 ) becomes:""Pi R RP'i + T /i = 1,2,3 ... "

Summing up the above n equations and dividing by the total number of points, n, we
get:

n n-.

R + T (30)
n n

From equation ( 30 ) it is clear that if the rotation matrix R is known, then the
translation vector T can be computed. So, in the sequel, we will describe how to
recover the rotation matrix R. In order to get rid of the translational part of the
motion we shall transform the 3-D points to" free "vectors by subtracting the center-
of-mass vector.

Let, therefore, CMA and CMA' be the center-of-mass vectors of the sets of
points A and A' respectively; i.e. CMA = (Pi n) and CMA' = X (P'In). We
furthermore define:

v'i = P'i - CNIA i = 1,2,3 ... n

With these definitions, the motion equation 29 ), becomes:

"i = R vi / i = 1,2,3 ... n

where R is the ( orthogonal ) rotation matrix.
If we know the correspondences of some points ( at least three ) then the matrix R can
in principle be recovered, and such efforts have been published [12] . But we would
like to recover matrix R without using any point correspondences.

Let,
vi (Vx ) / i=1,2,3 ... n

S' VV, vy,,Vz,) / i = 1,2,3 ... n

Note that vi and v'i are the position vectors of the members of sets A and A'
respectively with respect to their center-of-mass coordinate systems.
We wish to find a quantity that will uniquely characterize the whole sets A and A' in
terms of their "relationship ( rigid motion transformation ). We have found that
the matrix consisting of the second order moments of the vectors vi and v'i has these
properties. In particular, let

*oN,
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n nv- V ,vx Vy i  VxLVz,

S=I 1 =1 i =1

n n

I V"x E-"y -V,Vz

n n n
VxVz' VVz 1

i =1 i=1 i =1

n n ,

= ' vvX v N I v

n n nE v v X Ev' E- V'%.V z

EV" V*" V'z, ZV yV' E V'"z

i =1 =1 :=

From these relations, we have that:•
:=,1

nn

So, V= R VR' (31

At this point it should be mentioned that equation (31 )represents an invariance
between the two sets of 3-D points A and A', since the matrices V and V' are similar.In other words we ha ve red that matrix V remains invariant under rigid

motion transformation. The reason that the quantity (matrix) V remains invariant
is much deeper and very intuitive, and it comes from the principles of ClassicalMechanics. Unfortunately, due to lack of space, we are not able to explain at thiS

point how we were led to the discovery of matrix V. The interested reader can consult
the Appendix where it is shown how matrix V can be formed from the matrix

"".,
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-\Y corresponding the the second rank moment of inertia tensor. From now on, the
recovery of the rotation matrix R is simple and comes from basic Linear Algebra.
Furthermore equation ( 3 ) implies that the matrices V and V' have the same set of
eigenvalues [ 50 ].
But sinceV and V are symmetric matrices, they can be expanded in their eigenvalue
decomposition, i.e. there exist matrices S, T, such that:

V SDSt (32)
V TDT t (33)

where S, T are orthogonal matrices having as columns the eigenvectors of the
matrices V and V' respectively ( e.g. i-th column corresponding to the i-th
eigenvalue) and D diagonal matrix consisting of the eigenvalues of the matrices V

*and V. We have to mention at this point that in order to make the decomposition
unique we require that the eigenvectors in the columns of matrices S and T be
orthonormal.

From equations (31) (32) (33) we derive that matrices 'I'and R S both co)nsist
of the orthonormal eigenvectors of matrix V'. In other words, the column- f
matrices R S and T must be the same, with a possible change of sign. So). the matrix
RS is equal to one of eight possible matrices, Ti . i =1,..,8. Thus. R=TS i 1'...8
But the rotation matrix is orthogonal and it has determinant equal to one.
Furthermore, if we apply matrix R to the set of vectors vi then we should get the set
of vectors vi'. So, given the above three conditions and Chasles theorem, the matrix
R can be computed uniquely.

There is something to be said about the uniqueness properties of the algorithm.
When all the eigenvalues of the matrix V have multiplicity one then the problem
has a unique solution. When there are eigenvalues with multiplicity more than one.
then there is some inherent symmetry in the problem that exhibits some degeneracy
properties. For example. if the surface in view (i.e. the surface on which the points
lie) is a solid of revolution, then there is an eigenvalue (of the matrix V) with
multiplicity 2, and only the eigenvector corresponding to the axis of revolution can
be found. The other two eigenvectors define a plane vertical to the axis of revolution.
So, in this case there is an inherent degeneracy. WNe are currently working towards- t
complete mathematical characterization of the degenerate case" of the probtern. %,

are also developing experiments to test the robustness of the methid as well az-
setting up the equipment for experimentation in natural images.

7. Experiments.

We will describe experiments for both the detection of structure and depth

without correspondence and the detection of3-D motion without correspondence for
the case of planar surfaces. Experiments for the case of curved (general) surfaces are
under development.

In our experiments, we considered a set of three dimensional planar points.
which we projected perspectively in both the left and right frames. From the
projections we recover the structure and depth of the 3-) plane using the alogrithm
described in Section 3 , or using the projections in three frames . It is clear, that tht
equations that are used to develop the linear system described in Section 3. art.
based on the assumption that the number of points on I left and right frames ), is the
same. But in noisy situations, this- i- not the case. In particular, in real imagr(
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operators have first to be applied on all four frames (two before the motion and two
after the motion ) that will produce points of interest, ([3,6,17,21 )and then the
theory developed in this paper is applied to these points.
But any method that will produce points of interest from intensity images is bound

to have errors due to the noise in the images and the unpredictable behavior of the
intensity function in natural scenes. When we say that the methods that find intere-
sting points in intensity images are bound to errors, we mean that there will be
points in the left frame whose corresponding ones have not been found in the right
stereo frame, and also there will be points in the first dynamic frame whose cor-
responding ones have not been found in the second dynamic frame, and vice-versa.
So, the number of points will not be the same in the different images. Because of
that, our method is bound to have an error, since it is based on the assumption that
the number of points is everywhere the same. To reduce this error we do the follow-
ing: Equations (11), (12), (13) are not affected if both sides are divided by the number of
points in all the frames (under the assumption that the number of points is the same
in all frames ). If now the numbers of points in the left and right fram e are different,
say nleft and n,,t, in the static stereo case, then we divide the summations resulting
from each of the frames, by the number of points of the corresponding frame, and
the resulting equations are (for the static stereo case ):

k l

* *' l* * 1 : * , 2.
Xrl 'N -i k1___ ,k 1 ___- -- -- P X : , -

q  
"h 

)  
'".=ht left 1= 1 1 It 1:

k2 k2

" h . - cz " : n * \ Vf2  1 - - )1

* ,

f*d-n,,,. " f*d*n cS * -* nft

W k3 r t I 3I'

:7 - *dr,.- '7 --d -- rz r nh "h - q 'l:)l 3
:lf~ ~nit 1 d rtgh t  I~lt ft l nl, It 1 '7l

where nlft and nri ht represent the numbers of points in the left and right frames
respectively. It is clear that the resulting equations are approximate, but our experi-
ments show that the introduced error is very small. It has to be mentioned , however,
that the intrinsic difficulty, appearing in the traditional methods (i.e. stereo, optical
flow ), of not being able to find corresponding points, exists even in our algorithm but
under the form of different numbers of points in the different frames, because of the
globality of our approach. However, even considerable differences in the numbers of
points among the different frames hardly affects the results. Furthermore, the same
technique is applied to the case of motion as well.

Picture 1. shows the projections of a set of planar points on both the left and

right frames. The frame on top is the superposition of the left and right frames. The
actual parameters of the plane were :
p = O.0,q = O.0,c = 10000, while the number of points was equal to 1000.
We did not include any noise to our pictures.
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The computed ones were P =-o.0, Q = -0.0, C = 10000.0

Picture 1.

Picture 2. shows the projections of a set of planar points on both the left and right
frames. The frame on top is the superposition of the left and right frames. The actual
parameters of the plane were :
p = 1.0 , q = 1.0 , c = 10000. while the number of points was equal to 1000.
We did not include any noise to our pictures.
The computed ones were: P = 0.98. Q = 1.00, C = 9809.8

Picture 3. shows the projections of a set of planar points on both the left and right
frames. The frame on top is the superposition of the left and right frames. The actual
parameters of the plane were
p = 1.0 , q = 1.0 . c = 10000. while the number of points was equal to 1000.
We included 5%C noise to the left frame and 7% to the right one. -.
The computed ones were: P 1.7 , Q = 1.2, C 10266.7

Picture 2. Picture 3.
Pictures 4 a., 41b. show the results from the 3 -eye method. Here the projections of

-. a set of 3-D planar points on all the three frames are considered. The actual
parameters were:
p = 0.0 ,q = 0.0 ,c = 10000 (Picture 4a.) and p = 1.50 ,q = 2.30 ,c = 10000
( Picture 4b.) respectively. The number of points was equal to 1000. in both pictures.
Picture 4b. did not have Iany noie, whereas Picture 4a. had 9. noise in the left
frame and 7p-c noise in the right and top frames.
The computed ones were: P = 0.1), Q = 0.05 . C = 10197.0 and
P = 1.51 Q = 2.22 C 10000.0 respectively.
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Picture 4 a. Picture 4b.

- :" Pictures 5.-6..7.-8.-9., show the 3-D motion determination results. In Picture 5..
the two frames at the bottom represent the projections of a set of 3-D planar points

." on the left and right eyes respectively. The two frames at the top, represent the
projections of the same set of points. after it has been translated. The actual direc-
tion of translation was equal to ( -2.0. 2.0 ). and the computed one was (-1.9. 2.0).
The noise percentage was equal to 10%c in all four frames while the number of points
was equal to 1000. At this point it has to be mentioned that the parameters p.q
were also computed computed.since the latter are used in the determination of the
direction of translation (see also Section 4 ). Pictures 6.,7.. represent similar expe-
riments.

Picture 5.

9"6
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Picture 6. Picture 7.

Pictures 8. and 9. show experiments determining the general motion . The
results were computed according to the method presented in Section 5.. and the re-
suits were recalcilated with respect to the left-camera coordinate system. or-, I

NJo~.

Picture Picture 9.

NOTE: All the parameter.s inuolved in the abovye experiments that have a dimrension of
length "L1 M T, a re calculated in pixel's . where 1 pixel 100pm.

I.%.

7. Conclusion and future work.

We have presented a method on how a binocular ( or trinocular I observer can
recover the structure. depth. and 3-D motion of rigidly moving surface patch without "
using any static or dynamic point correspondences. We are currently setting up the
the experiment for the application of the method in natural images. We are als.
working towards the development of experiments that will test the robustness of the 14
method presented in section 6 for the recovery of 3-D motion, without point
correspondences, in the case of non-planar surfaces.
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APPENDIX

In order to find this invariant quantity, let us first consider the following:
We know that the quotient of two quantities is often not a member of the same class
as the dividing factor, but it may belong to a more complicated class. To support this
statement we need only recall that the quotient of two integers is in general a
rational number. Similarly the quotient of two vectors cannot be defined
consistently whithin the calss of vectors; we need a class that is a superset of that of
vectors, namely the class of tensors. The quantity that is known as moment of
inertia of a rigid body with respect to its axis of rotation is defined as:

(A)

where 1, L, and co are the moment of inertia of the considered body, the ( total
angular momentum of the body and its angular velocity with respect to its axis (,f
rotation, say 00'. respectively. It is not therefore surprising to find that I is a now
quantity. namely a tensor of the second rank.

-} In a Cartesian space of three dimensions, a tensor T of the k-th rank may be
- defined for our purposes as a quantity having 3k components Tji-i i that

transform under an orthogonal transformation of coordinates, A , according to the
following relation ( see [ 51] )"

3

T'. . a (x'. . a, T 'xI
1 2' 3 k - I 'I ' '2 k 2k Tl13. "'

'1 2 k

By this definition, the 32 = 9 components of a tensor of the second rank
transform according to the equation:

3

T a~ a TTij k j I k

If one wants to be rigorous, one must distinguish between a second order tensor 'I
and the square matrix formed from its components. A tensor is only defined in term-,
of its transformation properties under orthogonal coordinate transformations.
However, in the case of matrices there is no restriction in the kind of transformations
it may experience. But considering the restricted domain of orthogonal
transformations, there is a practical as well as important identity. The tensir
components and the matrix elements are manipulated in exactly the same fashion-
as a matter of fact for every tensor equation there will be a corresponding
matrix equation, and vice versa. Consider now an orthogonal transformation (f

coordinates defined by a matrix A. Then the components of a square matrix V will
now be:

N" AVA 

%° %

, p%

f" A



3
or equivalently: Vij = aikUklajI

If we now denote by Ili the 3x3 matrix that corresponds to the inertia tensor of
the second rank, I , we are able to write the following equation:

F = AlIA'
where, In the above matrix, mi is the mass of the i-th" particle "(point )and (x,

Em 1(yj 2 +z i2) -EmiXjyj -Em x1 z1

'XX IX.N 'A: ~ jy -~mi(y, 2 + z 2 -:Miyiz

'%X 1%, 'V II

'ZX b 'ZZ-mzixi -Em~yizi -Em 1(yj 2 + z 2)

yi, z, ri is its position vector with respect to the considered coordinate system.

Restricting ourselves in the center-of-mass coordinate system, with respect to
which the rigid motion is viewed as consisting only of a rotational part ( see previous
discussion and ['521 ). and recalling that the rotation matrix R defines an orthogonal
transformation of the coordinates, we can write:

XX 'X' N, A'Z 'xx fix 'AZ

'ZX r' V 'Z 'X In, 'ZZ

94
.r4
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where the primed and the unprimed factors refer to quantities measured with
respect to the center-of-mass coordinate system after and before the transformation

rigid motion ) respectively.

Consider now the diagonal matrix:

.S.

Q 0 0
0 Q 0

D0 0 Q. where Q is an arbitrary scalar.0 0 Q F,

L

-- S

From basic Linear Algebra. it follows that:

D=RDR (2)
The above relation ( 2 ) will clearly hold for the case ofQ E mi( x, 2 + yj2 + zj2 )
Smi ( ri • ri ), where ri is the position vector of the i-th particle "( point ) with mass
mi with respect to the center-of-mass coordinate system. At this point recall that the
orthogonal transformations preserve inner products. Hence, if ri' is the new position
vector with respect to the same coordinate system ( center-of-mass), of the
i-th "particle"( point ), the following equation will obviously hold:

r'i' r'i = ri' ri /i= 1,2,3 ... n

Therefore:
Q mi( x'i 2 + y'j 2 + z'%2 ) mi( xi2 + yi2 + zi2 ) Q

and the equation ( 2 ) can now be written as follows:

D' = RD R' (3)
Note: Recall that the primed quantities refer to the center-of-mass coordinate system-
after the the rigid motion.

Finally, subtracting equation ( 3 ) from equation (1) and recalling from Linear
Algebra that: AAA ARAI R - RA2R = R(AI -A2)R' [-

for any two matrices Al, and A2 of appropriate order, we conclude that:
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Emix'i 2  Emix'iY'i Fmix'iz'i <"', Emix j2  EmixLi -mixizi '"

YmiY'iX'i -miy'i 2 Emiy'iz'i '7
= R Y-miyixi YmiYi 2 Fm.iyizi R'

SI I

-miz'ix'i Fmiy'iz'i Ymiz'i 2  m'-.zE-mizixi EmiYiZi Emiz j2 "'-

- .-

in other words the quantity

Emix j2 Emixiyi -mixizi

Vmjyjxi FmiYi 2 Imjyjzj

7mizixi EmiYiZi Fmiz i2  .'-

is an invariant under orthogonal transformations, and such a transformation is the
rigid motion as viewed from the center-of mass coordinate system. Certainly the
moment of inertia matrix I can be used instead of the matrix V (recall section 6), but
the matrix V is of a simpler form and so it is better to be used for calculations. The
moment of inertia matrix !. facilitates a uniqueness analysis of the problem.
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