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Abstract

A method is presented for the recovery of the three-dimensional translation
of a rigidly moving textured object/The novelty of the method consists of the
fact that four cameras are used in order to avoid the solution of the
correspondence problem. The method seems to be immune to small noise
percentages and to have good behavior when the noise increases. 2 .

This work was supported by a research contract from the U.S. Army Engineer
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1. Introduction

An important problem in computer vision is to recover the three-dimensional

motion of a moving object from its images. Up to now, there have been three

approaches towards the solution of this problem:

1) The first assumes the dynamic image to be a three-dimensional function

of two spatial arguments and a temporal argument. Then, if this

function is locally well-behaved and its spatiotemporal gradients are

computable, the image velocity or optical flow may be computed [1, 2, 3,
5,8].

2) The second method for measuring image motion considers the cases

where the motion is "large" and the previous technique is not applicable.

In these instances the measurement technique relies upon isolating and

tracking highlights or feature points in the image through time. In

other words, operators are applied on both dynamic frames which output

a set of points in both images, and then the correspondence problem

between these two sets of points has to be solved (i.e., finding which

points on both dynamic frames are due to the projection of the same
world point) [9, 39, 40,4].

In both the above approaches, after the optical flow field or the discrete

displacements field (which can be sparse) are computed, then algorithms are

constructed for the determination of the three-dimensional motion, based on the

optic flow or discrete displacement values [6, 10, 11, 12, 13, 15, 16, 20, 21, 22, 23, I
24, 25, 26, 28, 30, 31, 32, 33, 34, 35, 41, 42].

3) The three-dimensional motion parameters are computed directly from

the spatial and temporal derivatives of the image intensity function. In .. i

other words, if f is the intensity function and (u, v) the optical flow at a

point, then the equation fxu + fyv + ft = 0 holds approximately. All the

methods in this category are based on substitution of the optical flow

values in terms of the three-dimensional motion parameters in the above . .

equation, and there is very good work in this direction [36, 37, 17].
*.u;
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As the problem has been formulated over the years, one camera is used, and

so the three-dimensional motion parameters that have to be computed, and can
be computed, are five (two for the direction of translation and three for the

rotation). In our approach, four cameras are used to recover the three

translation parameters, instead of the direction only of the translation, and

despite the fact that our theory assumes that the object in view is only
translating, our results (i.e., the three-dimensional translation) are affected
very little even if the object is moving with a small rotation, in addition to a

translation.

2. Motivation and Previous Work

The basic motivation for this research is the fact that optical flow (or discrete

-.'. displacement) fields produced from real images by existing techniques are

corrupted by noise and are partially incorrect [7]. Most of the algorithms in the

literature that use the retinal motion field to recover three-dimensional motion

fail when the input (retinal motion) is noisy. Some algorithms work reasonably

for images in a specific domain.

Some researchers [23, 31, 32, 41, 13, 331 developed sets of nonlinear

equations with the three-dimensional motion parameters as unknowns, which
are solved by iterations and initial guessing. These methods are very sensitive

to noise, as it is reported in [23, 31, 13, 33]. On the other hand, other researchers

[26, 42] developed methods that do not require the solution of nonlinear systems,

but the solution of linear ones. Despite that, under the presence of noise, the

results are not satisfactory [26, 42].

r.'-. Bruss and Horn [121 presented a least-squares formalism that tried to

compute the motion parameters by minimizing a measure of the difference
between the input optic flow and the predicted one from the motion parameters.

The method, in the general case, results in solving a system of nonlinear

equations with all the inherent difficulties in such a task, and it seems to have

" good behavior with respect to noise only when the noise in the optical flow field

has a particular distribution. Prazdny, Rieger, and Lawton presented methods

based on the separation of the optical flow field in its translational and
* rotational components. under different assumptions [21, 22]. But difficulties are

2
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reported with the approach of Prazdny in the present of noise [341, while the
methods of Rieger and Lawton require the presence of occluding boundaries in

the scene, something which cannot be guaranteed. Finally, Ullman in his
pioneering work [6] presented a local analysis, but his approach seems to be

sensitive to noise, because of its local nature.

Several other authors [20, 30] use the optical flow field and its first and
second spatial derivatives at corresponding points to obtain the motion

parameters. But these derivatives seem to be unreliable with noise, and there is

no known algorithm which can determine them reasonably in real images.

Others [101 follow an approach based partially on local interpretation of the flow
field, but it can be proved [27] that any local interpretation of the flow field is

unstable.

At this point it is worth noting that all the aforementioned methods assume

an unrestricted motion (translation and rotation). In the case of restricted
motion (only translation), a robust algorithm has been reported by Lawton [35],

which was successfully applied to some real images. His method is based on a
global sampling of an error measure that corresponds to the potential position of

the focus of expansion (FOE); finally, a local search is required to determine the
exact location of the minimum value. However, the method is time-consuming,

and is likely to be very sensitive to small rotations. Also the inherent problems
of correspondence, in the sense that there may be drop-ins or drop-outs in the

two dynamic frames, is not taken into account. All in all, most of the methods

presented up to now for the computation of three-dimensional motion depend on

-, the value of flow or retinal displacements. Probably there is no algorithm until

now that can compute retinal motion reasonably (for example, 10% accuracy) in

real images.

Even if we had some way, however, to compute retinal motion in a V.

reasonable (acceptable) fashion, i.e., with at most an error of 10%, for example,

all the algorithms proposed to date that use retinal motion as input would still
produce non-robust results. It seems that the reason for this is the fact that the
motion constraint (i.e., the relation between three-dimensional motion and
retinal displacements) is very sensitive to small perturbations. Table 1 shows

. , how the error of motion parameters grows as the error in image point

correspondence increases when 8-point correspondence is used, and Table 2

-. 3



shows the same relationship when 20-point correspondence is used with 2.5%
error on point correspondences based on a recent algorithm of great

mathematical elegance. (Tables 1 and 2 are from [261.)

Table 1: Error of motion parameters for 8-point correspondence
for 2.5% error in point correspondence.

Error of E (essential parameters) 73.91%

Error of rotation parameters 38.70%

Error of translations 103.60%

Table 2: Error of motion parameters for 20-point correspondence

for 2.5% error in point correspondence.

Error of E (essential parameters) 19.49%

Error of rotation parameters 2.40%

Error of translations 29.66%

It is clear from the above tables that the sensitivity of the algorithm in [26] to

small errors is very high. It is worth noting at this point that the algorithm in

[26] is solving linear equations, but the sensitivity to error in point

correspondences is not improved with respect to algorithms that solve non-

linear equations. Finally, the third approach, which computes directly the

motion parameters from the spatiotemporal derivatives of the image intensity

function, gets rid of the correspondence problem and seems very promising. In
[17, 36, 15], the behavior with respect to noise is not discussed. But extensive h*
experiments [38] implementing the algorithms presented in [37] show that noise

in the intensity function affects the computed three-dimensional motion

parameters a great deal. We should also mention that the constraint

fiu + fyv + ft = 0 is a very gross approximation of the actual constraint under .

perspective projection [43]. So, despite the fact that no correspondences are used

in this approach, the resulting algorithms seem to have the same sensitivity to

small errors in the input as in the previous cases. This fact should not be

surprising, because even if we avoid correspondences, the constraint between

three-dimensional motion and retinal motion (regardless of whether the retinal

7
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motion is expressed as optic flow or the spatiotemporal variation of the image

intensity function) will be essentially the same when one camera is used
(monocular observer, traditional approach). This constraint cannot change, M"O

since it relates three-dimensional motion to two-dimensional motion through

projective geometry.

So, as the problem has been formulated (monocular observer), it seems to
have a great deal of difficulty. This is again not surprising, and the same
problem is encountered in many other problems in computer vision (shape from

shading, structure from motion, stereo, etc.). There has recently been an
approach to combine information from different sources in order to achieve

uniqueness and robustness of low-level visual computations [44]. With regard to
the three-dimensional motion parameters determination problem, why not
combine motion information with some other kind of information? It is clear
that in this case the constraints won't be the same, and there is some hope for
robustness in the computed parameters. As this other kind of information that %

should be combined with motion, we choose stereo.

The need for combining stereo with motion has recently been appreciated by
a number of researchers [14, 29, 45, 46]. Jenkin and Tsotsos [14] used stereo
information for the computation of retinal motion, and they presented good
results for natural images. Waxman et al. [29] presented a promising method

for dynamic stereo, which is based on the comparison of image flow fields

obtained from cameras in known relative motion, with passive ranging as goal.
Whitman Richards [46] is combining stereo disparity with motion in order to
recover correct three-dimensional configurations from two-dimensional images

(othography-vergence). Finally, Huang and Blostein [45] presented a method
for three-dimensional motion estimation that is based on stereo information. In J,
their work, the static stereo problem as well as the three-dimensional matching
problem have to be solved before the motion estimation problem. The emphasis -,.-

is placed on the error analysis, since the amount of noise (in typical image

resolutions) in the input of the motion estimation algorithm is very large.

So a natural question arises: is it possible to recover three-dimensional
motion from images without having to go through the very difficult

correspondence problem? And if such a thing is possible, how immune to noise
will the algorithm be? In this paper, we prove that if we combine stereo and
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motion in some sense and we avoid any static or dynamic correspondence by
using four cameras, then we can compute the three-dimensional translation of a

moving object. At this point, it is worth noting recent results by Kanatani [18, L
19] that deal with finding the three-dimensional motion of planar contours in

small motion, without point correspondences. These methods seem to suffer from
numerical errors a great deal, but they have a great mathematical elegance.

Our experiments show that the computation is very reliable even in the
presence of noise, or even when the object in view is not only translating but also

rotating with a small rotation. Table 3 shows the av-rage error in the computed

translational parameters as the noise in the images increases, using the method
developed in this paper, where the noise was randomly generated.

Table 3: Error of Translation Parameters
vs. Noise in Images

Average Error Approximate Average Error
in Images in Translation Parameters

1% negligible

5% negligible

10% 5%

20% 5%

30% 6% 

50% 8%

67% 15%

75% 20%

90% unreliable

Later in the paper we will formally define the meaning of noise and measure of

the error in the computed parameters.

The organization of this paper is as follows. The next section introduces the '-.

reader to some technical prerequisites. Section 4 describes the geometric model

and the developed constraints. Section 5 describes the algorithms, and Section 6

q 6



presents experiments and the effect of noise in the computation of three-

dimensional translation. Finally, Section 7 concludes the work and discusses

future research.

3. Technical Prerequisites

Consider a coordinate system OXYZ fixed with respect to the camera, where
0 is the nodal point of the eye and the image plane is perpendicular to the Z-
axis, that is, pointing along the optical axis. Let us represent points on the

image plane with small letters (x, y) and points in the world with capital leters

(X, Y, Z). Let a point P - (X, Y, Z) in the world have perspective image (x, yi),

where xj = fX 1/Z1 and yj = fY1/Z 1 . If the point P moves to P' = (X 2 , Y 2 , Z 2)

with

X2=X1 +AX

Y2 = Y1 + AY

Z2 = Z1 + AZ

and P' has the perspective image (x2, Y2), then it can be easily shown that

fAX - XyAZ

2 - z + AZ

_. fAY - y1AZ

Y2-Yl=  Z 1 +AZ

The above equations relate the retinal motion of an image point with the

three-dimensional motion of the corresponding world point. We now proceed

with the description of the imaging system.

4. The Model

Let OXYZ be a cartesian coordinate system, fixed with the Z-axis pointing

along the optical axis, and consider the image plane Imi perpendicular to the Z-

axis at a point (0, 0, f) (focal length = t). This is obviously the model of a camera.

The geometry of the system induces a natural cartesian coordinate system on

the image plane with the center at the intersection of the Z-axis with the image

plane, and the x- and y-axes parallel to the X and Y ones. Furthermore, consider
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three more cameras with image planes Irn2, Im3, and Im4 with nodal points (dx,

0, 0), (dx, dy, 0), and (0, dy, 0), respectively, such that any world point has the

same depth with respect to any of the cameras (see Figure 1).

~(0, dy, 0)

(dx, dy, O)

'"'" (0U, Ou,

. / f / ml

:":' (d, 0, 0)
" x f " Ij m 2

Figure 1: The Imaging (Four-Eye) System

On each one of the image planes a coordinate system is defined exactly as it

was done for Iml. From now on, coordinates of three-dimensional points will be

denoted with X, Y, Z, while coordinates of points in each of the images will be

denoted by (xl, yl), (x2, y2), (x3, y3), (x4, y4), respectively. Coordinates of image

points in the second dynamic frame (i.e., projections of three-dimensional points

after the motion) will be denoted by the same symbols as before the motion, but

primed (i.e., (xi', yl'), etc.). Consider a set A = {(Xi, Yi, Zi): i = 1, ..., n} of points

in the world, which translates rigidly along the vector (AX, AY, AZ) to form a

new set A' = {(Xi', Yi', Zi'): i = 1, ... , n}, where Xi' = Xi + AX, Yi' = Yi + AY,

Zi' = Zi + AZ, i = 1,..., n. From the projections ofthe sets A and A' on the four
cameras we wish to recover the quantities AX, AY, AZ without using any static

or dynamic correspondence.

8



Let the projections of the set A on the four image planes be {(xla, ylj), i

,..,n}, {(x~i, Y2i), I = 1, -. , n}, {(X3j, Y3i), i 1..,n}, and {(X4i, Y~), i ni, ..

* ~respectively, and the projections of the set A' be {(xlj', yli'), i =,.. n}, fGr2i',

* ~Y20', i =1, .. ,n}, {(x3j', Y30', i = ,..,n}, and {Gr4i', Y40', i =nil.

respectively. To simplify things for the reader, consider the imaging system as
shown in Figure 2.

dy

dx

Figure 2: Orthographic Projection of the System on the Plane YZ

We proceed with the following propositions.

4.1 Proposition 1: Using the aforementioned nomenclature the quantity

is directly computable from the projection of the points of the set A on Imi and

1m2.

Proof: Consider a point (Xi, Yi, Zi) E A and its projections A1 I (xlj, yli), A 2 =

* (x2i, Y2i) on lm I and 1m2 respectively (i.e., A1I and A2 are corresponding). Then

X . (4.1.1)

and

f(XI - dx) (4.1.2)
21 z

U9



From 4.1.1 and 4.1.2, we get

dx
x1. -x 2. = f-

or

*1 i - x2iX (4.1.3)
z fdx

.Therefore,

n n 1i n (4.1.4)
=1 Zi  fdx i=1 £=1

Equation (4.1.4) proves proposition 1.

4.2 Corollary: The quantity

is also directly computable, from the projections of the set A' on Iml and Im2.

4.3 Proposition 2: Using the aforementioned nomenclature, the quantity
.P2 3'

i=
1 

Z

is directly computable from the projections of A on Iml and IM2.

Proof: We have

!it Y 1
-- (x -x [from (4.1.3)

.=1 =1i [dx I 2

or

n V n n~ P

t1 z dx 1212.

But corresponding points in Iml and Im2 have the same y coordinates, so

n. =1 (--n (4.3.1)
Z,1 fd!x Y11 It/

-. -. 10
.4



The equation 4.3.1 proves proposition 2.

4.4 Proposition 3: Using the aforementioned nomenclature, the quantity

n X

I.'.

is directly computable, from the projections of the set A on Im1 and IM4.

Proof: Similar to (4.1.3), we can derives h1

1 1 (4.4.1)
zi fdy (Yli Y4) ...

Using (4.4.1), we get

Z. 1Idy li(Yl Y'i) 'n (4.4.2)
- i-(Y1,Y 4 ) = I - IYX4i '"i _= ==1

(since corresponding points in Imi and Im4 have the same x coordinates).
Equation (4.4.2) proves proposition 3.

"'.

5. Recovering Three-Dimensional Translation Without Correspondence

Consider the projections of the sets A and A' on Im. Furthermore, consider a
point (Xli, yli) and its dynamic corresponding one (xli', yli'). (Note that we do not

consider point correspondence, i.e., we do not worry for the moment where the
position of(xli',yli') is.) From Section 3 we have:

l ,1= fa~y yAZ (5.1)
Xl. Xl1 -

these.equatinfAX - x At --~ (5.3)

hzz

. .. " Yl -Yh' Z.

suIf we write Equation (5.1) for all the pairs of corresponding points and we sum up
~these equations, we get

11 1
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(5.3) can be approximated by:

X. ii '&71Z(545 ,, -V_. , = 5 z-£ '

Similarly, with Equation (5.2) we obtain

1 \ (5.5)
'S7' V Y'

If we apply the same procedure for the projections of the sets A and A' on IM2 we
.,.-.get two more equations. One of them is the same as (5.5), and the other is:

X -'. X , k''(~~ (5.6)

"' Y ~~~~~2,'- -'2,=&X (fl'----7 ) Z Z z-2). 56

S S

Equations (5.4) through (5.6) constitute a linear system in the unknowns AX,
AY, AZ, which always has a unique solution, given by:

- 2,' = 1' 2, 1 (5.7)
Xh1 X2.

- -
-Z

=X

and

- + AZ(5.9)-

Y Z

(5.9)

Note that the denominators in the expressions (5.7) through (5.9) are always

different from zero (for dx, dy non-zero).

We now proceed with the experimentations.

1 2..-
4~- '71



6. Experiments, the Effect of Noise and Practical Considerations

First of all we must admit that we were expecting a small error in the

computed parameters due to the approximations done in the development of
Equations (5.4) through (5.6) (i.e., E(x1i/Zi') Z(xjl/Zi), E(yl/Zi') = E(Yli/Zi),

and E(x 2i/Zi') == E(x 2 i/Zi)), but experiments showed that when the motion in

depth is small with respect to the depth, this error is negligible.

In our experiments we considered a set of three-dimensional points, we
projected them on each of the four frames, and then we gave the three-

dimensional points a rigid translation and we projected them again on the four
frames. Discretization effects, when the three-dimensional translation is not

small, hardly affect the results. Our experiments with noise indicate that the
method seems to be immune to small percentages. When we say that a frame

has a% noise, we mean that if the frame contains n points then an/100 of the

points are randomly generated using a random number generator. Note that in
all we have eight frames, four before the motion and four after the motion. And

the noise we added was not necessarily of the same amount in all these different
frames; so when we talk about a noise of a% we mean that the average noise

present in all the frames is a%, and on the other hand when we say that we have

an error of 3% in the translation, we mean that

1 IIAX-AXI lAY - AYI IAZ - ADI'
3=100 x -x + +3 ALX AY AZ

NN
whf-re (AX, AY, AZ) the actual translation (with AX.AY.AZ 0 0) and (AX,
AY, AZ) the computed ones.

Furthermore, if the set of three-dimensional points is not only translating

but is also experiencing small rotations (less than 200), around an axis passing

through the center of gravity of the points, then the computed three-dimensional

translation is hardly affected (error less than 5%).

In a practical situation (real images), operators have first to be applied on all

eight frames (four before the motion and four after the motion) that will produce

points of interest [47, 48, 1, 4, 9] in all images, and then the theory developed in

this paper is applied to these points. But any method that will produce points of
interest from the intensity images is bound to have errors due to the noise in the

13
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images and the unpredictability of the natural scenes. So, the number of points
will not be the same in the four frames, neither before nor after the motion. But

despite the fact that our theory is built on the assumption that the number of

points is the same in all frames, our experiments show that even if the number

of points in the different frames is not the same (at most a difference of 5%), the
results are hardly affected.

At this point, we should mention that the equations used in the experiments

are modified so that they can capture the difficulties from the different number

of points in the various frames. In particular, we do the following. Equations

(5.4), (5.5), and (5.6) are not affected if both sides are divided by the number of

points (which is supposed to be the same number). For example, Equation (5.4)

becomes:

n n n Z' n Z

If the number of points in the first frame before the motion is nl and after the

motion n1', then the above equation is written as:

'X 1., jX1 i 1Z 1 L.. .. - -
n, n Z' n Zi

The same procedure is applied to the rest of Equations (5.5) and (5.6), as well as

for the computation of the quantities E(1/Zi), E(1/Zi'), E(xii/Zi), and (.yli/Zi).

Clearly, this is an approximation, which seems very robust from extensive

experimentations.

The table presented in Section 2, showing the error in the translation vs.

noise in the images, has been produced by running 100 simulations for each

noise case and then averaging and taking the ceiling of the computed errors.

Finally, it is worth mentioning that our experiments indicate that discretization

effects hardly affect the result, provided that the retinal motion is large enough

(at least five pixels).

Finally, the appendix contains pictures from our experiments. Every picture I
shows four frames before the motion and the same four frames after the motion.

The object that is imaged consists of connected points. The noise points are

randomly generated and are not connected. The pictures in the first dynamic

14
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frame (before the motion) are with green color, and the ones after the motion are

with yellow. The noise sources are three: (1) the randomly put points; (2)

discretization; and (3) rotation. The noise percentage written captures only the

randomly generated points. (When we write that the noise level is, for example,

10%, we only mean that 10% of all the number of points in a frame is randomly

generated; this noise percentage does not include rotation and discretization.

Furthermore, when we write that the noise percentage is 10%, we mean that the

average noise in all eight frames is 10%, since the noise in every frame is not the

same, the maximum difference between any two frames being 5%.) The actual

parameters and the computed ones (as well as the error in the computed

parameters as it is defined previously) are shown in the pictures.

7. Conclusion and Future Directions

We have proposed a method for recovering the three-dimensional translation

of a rigidly moving object. The method seems to be very robust against noise as

well as small perturbations of the retinal points due to small rotations of the

object. We have showed that combination of stereo and motion is a promising

way of approaching the motion determination problem, as it has already been

appreciated by Huang and Blostein. But we have also showed that at least for

the case of translation, we can face the problem without having to go through .. :

the intermediate stage of the computation of point correspondences, neither

static nor dynamic. Due to the special arrangement of cameras, we are not able \. .. ,

at this point to recover the rotation parameter in the case where the object is

translating and rotating, but as we have already stated, the method is immune

to small rotations. We are currently working on addressing the general problem

(translation and rotation) without correspondence, as well as making a

theoretical analysis of the error of the translation parameters that are computed

from our algorithm.
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