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= This report documents an experiment investigating the potential of a parallel computing

architecture to enhance the performance of a knowledge-based signal understanding system.

fvA The experiment consisted of implementing and evaluating an application encoded in a parallel

‘.\ . I3 - .

:.; programming extension of Lisp and executing on a simulated multiprocessor system.

<A

I . . . . .

4‘-. The choosen application for the experiment was a knowledge-based system for interpreting

_._{ pre-processed, passively acquired radar emissions from aircraftt  The application was

::",:: implemented in an experimental concurrent, asynchronous object-oriented framework. This

' framework, in turn, relied on the services provided by the underlying hardware system. The

hardware system for the experiment was a simulation of various sized grids of processors with

» inter-processor communication via message-passing.

4 The experiment investigated the effects of various high-level control strategies on the quality

) of the problem solution, the speedup of the overall system performance as a function of the

“' ' - . . . -

J number of processors in the grid, and some of the issues in implementing and debugging a

" _f knowledge-based system on a message-passing multiprocessor system.

- In this report we describe the software and (simulated) hardware components of the experiment
‘o )
s and present the qualitative and quantitative experimental results.
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Abstract

This report documents an experiment investigating the potential of a parallel computing
architecture to enhance the performance of a knowledge-based signal understand:ing system.
The experiment consisted of implementing and evaluating an application enccded in z paralle!

programming extension of Lisp and executing on a simulated multiprocessor svsiem

The choosen application for the experiment was a knowledge-based system or »niravorel o
rre-processed, passively acquired radar emissions from aircraft. The appiicat = S
implemented 1n an experimental concurrent, asynchroncus object-orienten [ramiewe «.

framework, 1n turn, relied on the services provided by the underlying hardwure sysien. 2
hardware system for the experiment was a simulation of various sized grids of Processcrs wit

Intler-processor communication via message-passing.

The experiment investigated the effects of various high-level control strategies on the guality
of the problem solution, the speedup of the overall system performance as a function of the
number of processors in the grid, and some of the issues in implementing ard debuzging 2

knowledge-based system on a message-passing multiprocessor system.

In this report -we describe-the software and (simulated) hardware components of the experiment

and present the qualitative and quantitative experimental results.
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1. Introduction o
This report documents an experiment investigating the potential of a parallel computing '~
architecture to enhance the performance of a knowledge-based signal understanding system. -C
This experiment was done within the Expert Systems on Multiprocessor Architectures Project ‘-
of Stanford University’'s Knowledge Systems Laboratory.
The computational characteristics of complex knowledge-based systems are poorly understood, :::E:
aspecially in parallel computational environments. Our Architectures Project is performing a ;;;-
number of 2xperiments to try to ga:n some understanding of these characteristics and, in :fé:f‘
particular, of the potential for concurrent executicn of such systems. A primary goal of the
project is to develop software and hardware system architectures which exploit this concurrency ::E::
to increase the performance of knowledge-based signal understanding and information fusion _,
systems. ,1'.:;

>
The Architectures Project is organized according to a hierarchy of cumputational abstraction ‘,z
levels as shown in Table 1-1. Each experiment represents a narrow, vertical slice through these i
levels and consists of a specific system choice for each level. :':.-

Y,
For the reported experiment, the choosen application is a knowledge-based ELINT (ELectronics _‘_ )
INTell@gence) system for interpreting processed, passively acquired radar emissions from :,L
aircraft. The ELINT application is implemented in CAQOS, an experimental concurrent, ..
asynchronous object-oriented framework built on Zetalisp [1]. The CAOS framework, in turn, ‘:::j
relies on the services provided by the underlying hardware system environment. For this \
experiment, the hardware system environment is a simulation of a parallel architecture, called b
CARE [2]. CARE simulates a communications grid of processing sites where each site ?\_
contains a Lisp evaluator, private memory, and a communications and process scheduling E'.':-
subsystem.  Message-passing 15 the only means of inter-site communication. CARE is "%
simulated using a general, event-based simulator, SIMPLE {3]. SIMPLE is written in Zetalisp ‘“

and executes on a Symbolics 3600 or a Texas Instruments Explorer Lisp machine.! Figure - -

1-1 iltustrates the relationship between the various software components of the experiment. e

The ELINT-CAOS-CARE experiment investigated both qualitative and quantitative aspects of
- the performance of the overall system. The CARE architecture uses dynamic, cut-through (as
o 1A version of the SIMPLE simulator which runs on a local area network of ~ulupie Lisp machines has also been
"

M~ implemented [4].
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Table 1-1: Computational levels.

Level

Research questions

Application

Problem-solving
framework

Knowledge
representation
and management

architecture

Where is the potential concurrency in knowledge-based
signal understanding tasks?

How does the problem solver recognize and express
application dependent concurrency?

What are suitable framework constructs for organizing
and encoding concurrent signal understanding tasks?

‘What are appropriate granularities for knowledge,
kmowledge application and data to maximize concurrency?

What types of strategies for control of knowledge application
are needed to assure acceptable solution quality without
introducing excessive execution serialization?

‘What kinds of knowledge representation mechanisms are
suitable for exploiting concurmrency in inference and search?

W
\;-.‘ System How can general-purpose symbolic programming languages
. programming be extended to support concurrency and help manage the
language resource allocation and reclamation tasks on a distnbuted
memory multiprocessor?
Hardware What multiprocessor architectures best support the
system organization and concurrency in knowledge-based

signal understanding applications?

opposed to store and forward) routing through the communication grid for interprocessor
message transmission. Message transmission time is indeterminate. As a consequence, without
the imposition of significant message sequencing protocols (and the corresponding serialization
of execution), operations are intrinﬁié'ally non-deterministic in the sense that two executions of
the same program on the same inbut data can result in different problem solutions depending

on different message arrival orders. For many knowledge-based systems, in particular, the

ELINT system, there is no such thing as the correct problem solution but only satisficing (i.e.,

:::::::: acceptable) problem solutions. One primary objective of the experiment was to investigate the
F" trade-offs between the imposition of various synchronizations (and the resulting loss of
E:A concurrency) and the quality of the problem solution. A second primary objective was the
E';” more usual investigation of the speedup of the overall system performance as a function of the

number of processing sites in the CARE grid. A third objective was to gain some
understanding of the difficulties in implementing and debugging a reasonably complex
knowledge-based system on a multiple address space, message-passing multiprocessor system
such as that represented by CARE.
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ELINT Interpretation of radar
emissions from aircraft

CAQOS Concurrent, asynchronous
object system

Zetalisp+ Zetalisp plus locality and
communication constructs

CARE Grid-based, message-passing
multiprocessor specification

SIMPLE Hardware specification system
and event-driven simulator

Zetalisp

Figure 1-1: The software component hierarchy of the experiment,

In the following sections we describe, in decreasing hierarchical order, each component of the
experiment. Section 2 describes the ELINT application. Sectinn 3 gives an overview the
CAOS programming framework and its approach to ccncurrency. ELINT's implementaticn 1n
CAOS is described in Section 4, and Section 5 describes tne salient features of (e CARE
architecture and its simulation environment. In Section 6 we present the rssulis of ithr
ELINT-CAOS-CARE experiment.

2. The ELINT Application

The driving application for our vertical slice experiment is a prototype, knowledge-based
ELINT system for interpreting processed, passively acquired, real-time radar emissions ‘. "

aircraft. This ELINT system is one component of a muilti-sensor information fusion sysier

TRICERO [5] developed several years ago. ELINT was originally impiemented in ACc 7 . _;:_;
an expert system development tool based on the blackboard paradigm [7, 8]. ELINT is = :j'.:jf
relatively simple, but non-trivial, knowledge-based sysicin, Moot Ui o miiuwledgs .,
implemented procedurally. However, if ELINT had been implemented o5 ¢ 00 oo o :':.‘.-':
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system, we estimate that its knowledge base would consist of about one thousand rules.?

ELINT's basic analysis technique is to correlate a large number of passively observed radar
emissions into the smaller number of individual radar emitters producing those emissions. It
then correlates the emitters into the yet smaller number of clusters of co-located emitters.

ELINT maintains the track and activity histories of the clusters

2.1. ELINT's Inputs
The inputs to the ELINT system are multiple, time-ordered streams of processed observations
from multiple collection sites. Each observation is presented in a record format. The fields

of an input observation record are shown in Table 2-1.

Table 2-1: Elint observation record.

Field Contents
Observation-Time An integer time-tag indicating when
the radar emission was sampled
Observation-Site The symbolic name of the collection
site acquiring the observation
Site-Location The positional coordinates of the
collection site at the ume of observation
Emitter-Identifier An integer identifing the radar emitter
producing the ermssion
Line-of-Bearing The line of bearing from the collection
site to the observed erutter
Emitter-Type A symbolic radar emitter type designator
Emitter-Mode The operational mode of the emitter at

the time of observanon

Signa!-Quality A symbolic indicator of the signal
quality of the observed emussion

The Site-Location field is necessary since the collection sites can be mobile. The
Emitter-Identifier 1s a unique integer identifier assigned by the collection sites tc each distinct
observed emitter.  This identifier is used by the collection sites to indicate multiple
observations of the same emitter both over time and from different collection sites. In

particular, two concurrent observations of the same emitter from different collection sites

2In general, there are currenily no adequate metnics for measuring the complexity of knowledge-based sysiems. Ore
crude measure used for rule-based systems 1s the number of rules. Although the number of rules does scmewhat

indicate the amount of kncwledge, 1t does not grve much indication of the complexity of the reasoning.

k) A




should have the same identifier. Both the intra-site and inter-site determination of whether
two observed emissions are from the same emitter are based on the electronic characteristics of
the emissions and on signature analysis. This determination may be in error, and the ELINT -
system must cope with such identifier errors. The Fmitter-Type of a radar emitter indicates -
the functional class of the emitter, for example, Air-Intercept (Al), Navigation (NAV) or
Identification-Friend-Or-Foe (IFF), and. if known, the equipment type class of the emitter.

Certain classes of emitter types can have multiple operational modes. The Emitter-Mode. if

cqen

applicable, is emitter-type specific. For example, an Al radar can be either in Search Mode or
Lock-on Mode depending cn whether it 13 scanning for a target or whether 1t is automatically
tracking a specific target. The Signai-Quality of an observation s a subjective, qualitaiive

measure of the strength of the observed emissicn, for example, strong, normal, or fading.

All of the input information required for the ELINT system is obtzinable from the raw radar
1

signal data using current, passive radar signal collection and processing techniques. These

techniques are largely automated and employ special-purpose hardware.

[ A gt AEUE

2.2. ELINT's Outputs 5
The primary outputs of the ELINT system are pericdic status reports about the iracks and

activities of clusters of emitters in the area under surveillance. A clusier is definet v o

collection of emitters which are co-loczied over time. That is, two emitters are in the same

cluster .f for some given minimum number ot consecutive time units (three in the curr=at l.
ELINT system) their corresponding time-wagged locationai ixes are within a  disiznee
determined by the line-of-bearing resciutionn of the observation site equipment {one decgree -
resolution in the current ELINT system). Conceptually, two emitters aie in the same cluster

1f they are on the same aircraft nr ar= on two tactically associited and co-located (over vme!

arrcraft, for example, a lead aircraft and his wingman.? .

a-

The periodic output reports contain, for each cluster, information about the cluster’s current

An It ocan e aperaning wath e tor ally 75 cacars -7 ooLrersl ot s ampasedle o At ob
netween, £ 0 ozxample, two co-located vroret L e welt ono v tadar oo ore waith 3 NAV race o0, wad e n T

with both *ts Al 1rna NAV r2dars an Teoe or FUINT sovter does 8 assessmenis hased on - wen clusies coher

‘han aircraft.
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heading, position and track; an estimate of the number and types of aircraft in the cluster:® an

indication of the cluster's current activity; and an indication if the cluster represents an

immediate threat, for example, if it is within a certain proximity of a friendly aircraft, if its

Al radar is in Lock-on Mode, or if its missile guidance radar is on.

2.3. ELINT's Processing Flow

The basic reasoning strategy used by the ELINT application is data-driven accumulation of

evidence for the existence, the tracks, and the activities of emitters and clusters based on input

observations and infered information. The primary processing flow is a kind of pipeline -

where the pipeline stages are observations, emitters and clusters.

Upon receipt of a new observation, the system first determines if the observed emission

matches (i.e., has as a source) a known emitter (i.e., an emitter on ELINT's “situation board").

This maich is based on the Emitter-Identifier assigner by the collection site to the observation,

and it is verified using the emitter's characteristics and its track and heading histories.

Depending on the outcome of the match, one of the following actions is taken:

1. If the observation does not match a known emitter, then a new emitter which is the

source of the observed emission is hypothesized on the situation board and

initialized from the information contained in the observation.

2. If the observation does match an emitter on the situation board and the match is

verified, then the information contained in the observation is used to update the

attributes of the matched emitter, including increasing the confidence level of the

hypothesis that the emitter represents. Moreover, if the new observation is the

second (or greater) observation of the emitter for the current time and it is from a

different collection site than the previous observation(s) at that time, then a

locational fix for the emitter is computed using the observed lines of bearing. If,

in addition, the Emitter-Type and/or Emitter-Mode indicate a near-term threat to a

friendly aircraft, then a threat report is output.

4l(r\owlcdge: relating an aircraft type, for example F-15 or MIG-3, with the number and types of radars it carries is

avatlable. Using this knowledge and the identified emitter types in a cluster, it 1s possible to roughly estimate bounds

on Lthe number and types of aircraft in the cluster.
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3. If the observation matches a known emitter but fails the match verification test,
: then an error in the Emitter-Identifier 1s indicated and the situation board 1s
modified so as to undo any incorrect inferences based on the error. Also, an
ide -ifier error report is output to the collection sites.
- On a periodic basis, the status of each emitter on the situation board is evaluated and various
N acuons are taken:
1. If there have been no recent observations of the emitter, then the confidence le.el

of the emitter is reduced. If, as a consequence of this reduction, that level falls

- o o -

below a given no-confidence threshold, then the emitter and all of the consequences

infered from it (including cluster association) are deleted from the situation board.

,

2. If the confidence level is above a given full-confidence threshold and the emitter

P

not currently associated with a known cluster, then an attempt i made o mgich the
' emitter with a cluster on the situation board. This match is based on the track a1~
heading histories and the type attributes of the emitter and the cluster. If a match
is made, then the emitter is associated with the matched cluster and i‘he emitter's
current attributes are used to update the attributes of the cluster. If the match fails,

then a new cluster is hypothesized on the situation board and the emitter 1s

. associated with it.

r 3. In the remaining case of a recently observed emiiier with an asscaiated cluster, the
current attributes of the emitter are used to update the attritutes of (s associalea

\ cluster.

f Also on a periodic basis, the state of each hypothesized :luster ¢n the situwatior ™ ouid
examined. I[f all of the emitters associated with the cluster have been :isi2l, tien

wia el .
L D

, is deleted from the situation board. Otherwise:

1. The cluster is checked to see if it should be split into two (or more) clusters based
\ on the currrent locations of its associated emitters. If so, new clusters with the

appropriate associated emitters are hypothesized on the situation board.

2. The track history, heading history, speed history and activity 7ustols ol e ciuslil

are updated; and, if any new emitters have been recently associated wiin ite lusion,

an estimate of the types and numbers of aircraf compnising the cluster i3 ter o
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3. A current status report for the cluster is output.

The ELINT processing flow lends itself naturally to concurrent execution. The parallel
implementation of ELINT using CAOS is described in Section 4. The CAOS system itself is

described in the following section.

3. The CAOS Programming Framework

CAOS is a framework which supports the encoding and the execution of multiprocessor expert
systems. It represents an early attempt to bridge the gap between the application specification
and the multiprocessor system programming primitives. The design of CAOS is predicated on
the belief that many highly parallel architectures (e.g., hundreds of processors) will emphasize
limited communication between processor-memory pairs rather than uniformly shared memory.
We expect that such an architecture will favor relatively coarse-grained problem decomposition
with little synchronization between processors. CAOS is intended for use in real-time, data
interpretation applications such as continuous speech recognition and radar and sonar signal
interpretation (see, for example, [9, 10]). CAOS is based on an object-oriented programming

paradigm, and it draws many of its ideas from the Flavors system [1] and the Actors paradigm

(11].

A CAOS application consists of a collection of communicating, active agents, each responding
to a number of application-dependent, predeclared messages. An agent retains long-term local
state. Each agent is a multi-process entity, that is, an arbitrary number of processes may be
active at any one time in a single agent.’ Conceptually, an agent can be thought of as virtual,
multiprocess processor and memory pair. It responds to externally sent messages, and these
message responses can alter the state of its local memory and can include the sending of

messages to other agents.

CAOS is designed to express parallelism at a relatively coarse grain-size. For example, in the
ELINT experiment, the message handlers (i.e., the methods) which implement the message
responses are written as Lisp procedures, each averaging about one hundred lines of primitive
Lisp code. CAOS supports no mechanism for finer-grained concurrency such as within the

execution of agent processes, but neither does it rule it out. We could easily imagine message

< . . .
“The active processes in an agent are not scheduled preemptively. Instead, an executing agent process either runs to

completion or until (t1s "blocked’ awaiting some remote service (see Section $).
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methods being written, for example, in QLisp [12], a concurrent dialect of CommonLisp which

supports finer-grained concurrency.

3.1. CAQOS' Approach to Concurrency

A CAOS application is structured to achieve high degrees of concurrency in the application
execution in two principal manners: pipelining and replication. Pipelining is most appropriate
for representing the flow of information between levels of abstraction in an interpretation
system.  Replication provides means by which the interpretation system can cope with

arbitrarily high data rates.

3.1.1. Pipelining

Pipelining is a common means of parallelizing tasks through a decomposition into a linear
sequence of concurrently operating stages. Each stage is assigned to a separate processing unit
which receives the output from the previous stage and provides input !0 the next siage.
Optimally, when the pipeline reaches a steady-s:ite, each of the processors is busy performing

1ts assigned stage of the overall task.

CAOS promotes the use of pipelines to partition an interpretation task into a sequence of
interpretation stages where each stage of the interpretaticn is performed by a separate agent.
As data enters one agent in the pipeline, it is processed, and the results are sent o t“e next

agent. The data input to each successive stage represents a higher level o7 abstracticn.

Sequential decomposition of a large task is frequently very natural. Structures as disparate as
manufacturing assembly lines and the arithmetic processors of high-speed computing systems

are frequently based on this paradigm.

Pipelining provides a mechanism whereby concurrency is obtained without duplication of
mechanism (i.e.,, machinery, processing hardware, knowledge, etc.). In an optimal pipeline of n
processing elements, the throughput of the pipeline is n times the throughput of a single

processing element in the pipeline.

Unfortunately, it is often the case that a task cannot be decomposed into a simple linear
sequence of subtasks. Some stage of the sequence may depend not only on the results of its
immediate predecessor, but also on the results of more distant predecessors, or worse, sc e
distant successor (e.g., in feedback loops). An equally disadvan.agecus decomposition is one in

which some of the processing stages take substantially more t.me than others. The effect of

either of these conditions 1s to cause the pipeline to be used less effici- iy Both these
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conditions may cause some processing stages to be busier than others. I[n the worst case, some
stages may be so busy that other stages recetve almost no work at all. As a result, the
n-element pipeline achieves less than an n-times increase in throughput. We discuss a partial

remedy for this situation below.

3.1.2. Replication

Concurrency gained through replication is ideally orthogonal to concurrency gained through
pipelining. Any size processing structure, from an individual processing element to an entire
pipeline, is a candidate for replication. Consider a task which must be performed on the
average 1n time ¢, and a processing structure which is able to perform the task in time T,
where 7 > . If this task were actually a single stage in a larger pipeline, this stage would then
be a bottleneck in the throughput of the pipeline. However, if the single processing structure
which performed the task were replaced by 7/t copies of the same processing structure, the
effective time to perform the task would approach ¢, as required. Replication is more costly
than pipelining, but it does avoid some of the problems associated with developing a pipelined

decomposition of a task.

Our work leads us to believe that such replicated computing structures are feasible, but not
without drawbacks. Just as performance gains in pipelines are impacted by inter-stage
dependencies, performance gains in replicated structures are impacted by inter-structure

dependencies.

Consider a system composed of a number of copies of a single pipeline. Further, assume the
actions of a particular stage in the pipeline affects each copy of itself in the other pipelines.
In an expert system, for exampie, a number of independent pieces of evidence may cause the
system to draw the same conclusion. The system designer may require that when a conclusion
is arrived at independently by different means, some measure of confidence in the conclusion
is increased accordingly. If the inference mechanism which produces these conclusions is
realized as concurrently operating copies of a single inference engine, the individual inference
engines will have to communicate between themselves to avoid producing multiple copies of
the same conclusion rather than a composite conclusion. Any consistency requirement between
copies of a processing structure decreases the throughput of the entire system, since a portion
of the system's work is dedicated to inter-system communication. Examples of this situation

are shown in Section 4 where we describe the CAOS agent types for the ELINT application.
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3.2. Programming in CAOS

CAOS is basically a package of operators on top of Lisp. These operators are partitioned into
three major classes -- those which declare agent classes, those which initialize agents, and those
which support communication between agents. We now describe briefly the CAOS operators

for each of these classes. A more complete description of these operators is given in [13].

3.2.1. Declaration of Agents

Agents classes, like most object-oriented classes, are declared within an inheritance z2lwcrn
Each agent class inherits the attributes of its (multiple) parents. The root CAOS agent
vanilla-agent, contains the minimal attributes required of a functionai CAOS ngent =
CAOS agents have the vanilla-agent as a parent, either directly or indiractly. S nes
CAQOS-declared agent class, process-agenda-agent, is a specialization of vanilla-agent - -d
includes a priority mechanism for scheduling the execution of messages. The vanilla-ugert

schedules its messages in 2 FIFO manner only.

Application agent classes are declared by augmenting the following primary attrnibutes of

CAOS-declared or other ancestral agent classes:

Local-Variables: An instance agent's local variables store its private state. The agent's message
handlers may refer freely to only those variables declared locally within the ageni. Each iocal

variable may be declared with an initial value.

Messages-Methods: The only messages to which an agent may respond are those declared in the
agent's class declaration. Associated with each declared message name is the name ot the
message's method (i.e., the message's message handler). In CAQS, a method name must refer tc
a defined Lisp procedure. This declaration simplifies the task of . resource allecator wiich

must load application code onto each CARE site.

Clocks-Methods: An agent may periodically invoke actions based on .atern.! clock "licas
example, the periodic update of emitter agents and the periodic ouipuc of ciuster states 7., 7.
are invoked by clock ticks. A clock is defined by its tick intervazl. Whensaver .

agent clock ticks, the set of methods associated with that clock are schedut-* e ¢

Critical-Methods: This attribute declares certain sets of methods as being mutually “crniucal
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regions” for their owning agents.® Each such set of critical methods has an associated lock.
Before an owning agent agent executes a critical method, this lock is checked. If it is
unlocked, the agent locks it and executes the method. Upon completion of the method, the

agent unlocks the lock. If the lock is locked, the method is queued in a FIFO queue awaiting
the unlocking of the lock.

There are a number of additional basic agent attributes. However, most of these are used only
internally by CAOS.

3.2.2. Initialization of agents

An initial CAOS configuration is specified by a two-component initialization form. The first
component of the form creates the static agent instances. Some agent instances are created
during system initialization and exist throughout a CAOS run. Such agent instances are called
static agents as opposed to dynamic agents which are created (and possibly deleted) during
program execution. For programmer convenience, we allow code in agent message handlers and
default values of local-variables to reference such static agents by name. Before an agent
instance begins running, each symbolic reference to the declared static agents is resolved by the
CAOS runtimes.

The second component of the form is a list of expressions to be evaluated sequentially when
CAOS's static agent instantiation phase is complete. Each expression is intended to send a
message 10 one of the static agents declared in the first part of the form. These messages serve
to iniualize the application. For example, in the ELINT application the initialization messages

open log files and start the processing of ELINT observations.

Agent instances may also be created dynamically during execution. The creation operator

7 The remote-address of the

accepls an agent class name and a location specification.
newly-created agent instance is returned. The remote-address of an agent includes the CARE

site coordinates where the agent resides and a pointer to the agent in the address space of that

6A design goal for ELINT in CAOS was to avoid the use of critical methods, and our ELINT implementation does

not use any. The CAOS inttialization routines, however, do use such methods.

"Curremly. agents may be created only “al” or “near” specified CARE sites. CAOS makes no attempt at dynam:c

load balancing.
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:j site. A dynamically created agent may not be referenced symbolically, however, its

) remote-address may be exchanged freely.
N 3.2.3. Communications Between Agents

2 Agents communicate with each other by exchanging messages. CAQOS does not guarantee when

\ messages reach their destinations. Due to excessive message traffic or processing element

\ failure, messages may be delayed indefinitely during routing. It is the responsibility of the

b application program to detect and recover from such delayed messages.

f Two classes of messages are defined: those which return values, called value~desired messages,

h and those which do not, called side-effect messages. The value-desired messages are made (o

o return their values to a special cell called a future which represents a “promise” for an

£ eventual valued Processes attempting to access the value of a future are blocked until that

. future has had its value set. Futures are first-class data types, and they may be manipulated by

non-strict Lisp operators (e.g., list) even if they have not yet received a value. Tt is possible

4 for the value of a CAOS future to be set more than once, and it is possible for there o be

. multiple processes awaiting a future's value to be set.

The CARE primitive post-packet, which sends a packet from one process to another, is

N employed in CAOS to produce three basic kinds of message sending operations:

5 post: The post operator sends a side-effect message to an agent. Th~ sending process supplies 2
remote-address to the target agent (or its name in the case of a static agent), the message's

" routing priority, and the message's name and arguments. The sender continues executing whiie

the message is delivered to the target agent.
- post-future: The post-future operator sends a value-desired message to the target agent. The
sending process supplies the same parameters as for post, and it is immediately returned a {ocal
pointer to the future which will eventually receive a value from the target agent. As for post,

—'_I the sender continues executing while the message is being delivered and executed remotely. A

. process may later check the state of the future with the future-satisfied? operator or a.cess the

o future's value with the value-future operator. This latter operator will block the process (i.e.,

- suspend 1ts execution and “"swap it out”) if the future has not yet eceived a value. When the

:

‘_ 8Futures are also used in Multihsp [14]. The HEP Supercomputer [15] implemented a simple version of “uiures as .
:: a process synchronization mechan:sm. :: g
A 2
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future finally receives a value, the blocked process is rescheduled for resumed execution.

post-value: The post-value operator is similar to the post-future operator except that the
sending process is immediately blocked until the target agent has returned a value. This
operator is defined in terms of post-future and value-future, and it is provided for

programming convenience.

It 1s possible to detect delay of value-desired messages by atiaching a timeout to the associated

future. The operators post-clocked-future and post-clocked-value are similar to their untimed
counterparts but allow the caller to specify a timeout-period and timeout-action to be
performed if the future is not set within the timeout-period. Typical timeout-actions include
setting the future’s value to a default value or resending the original message using the repost

operator.

There also exist versions of the basic posting operators which allow the same message to be

sent 1o multiple agents simultaneously. These versions exploit the multicast facilities of CARE

(see Section 5).9

Multipost sends a side-effect message to a list of agents while multipost-future and

N RIAG
o

multipost-value send valve-desired messages to lists of agents. In the latter two cases, the

associated future is actually a list of futures, and the future is not considered satisfied until all

the target agents have responded. The value of such a message is an association-list where each

I e

entry in the list is composed of an agent's remote-address or name and the returned message

- ¥

’

value from that agent. There exist clocked versions of these operators (called, naturally,

multipost-clocked-future and multipost-clocked-value) to aid in detecting delayed multicast

messages.

3.3. The Runtime Structure of CAOS

CAOS is structured around three principal levels: site, agent, and process. Two of these levels,

R b TP T T
LA PR T e )
"“ ¢
RN [N R

site and process, reflect the organization of CARE. The remaining agent level is an artifact of

CAOS. We describe here only briefly the runtime structure of CAOS. This structure is
9 described in greater detail in [13].

9N'euher CAOS nor CARE currently support a “predicated multicast”™ mode wherein messages would be sent to all

-

! agents satisfyirg a parucular predicate. Messages can only be multicast to a fully-specified list of agents. Receiving

o

“r agents can, of course, apply arhitrary predicates (o the message in order to determine their consequent action.
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The implementation of CAOS described in this report is written in Zetalisp [1] and the

primitive CARE operators using Zetalisp's object-oriented programming tool, Flavors[1].

Each CARE site contains a CAOS Site-Manager. A Site-Manager is realized as a Flavors
instance. Its instance variables store site-global information needed by ali agents located on
the site. In addition, each Site-Manager includes CARE-level processes which perform the
functions of creating new agents on its site and translating static agent symbolic names into

agent addresses.

Each CAOS agent is also realized as a Flavors instance, A CAOQS agent is a multiprocess
entity. Most of the processes are created in the course of problem-solving activity, These
processes are refered to as user processes. At runtime, however, there are always two srecial
processes associated with each CAOS agent -- the agent input monitor process and the oo nt
scheduler process. The agent input monitor process watches the CARE stream by which the
agent is known to other agents. It handles request messages and responses {rom value-desire.
messages from these agents. CAOS user processes are created in response to request messages
from other agents or clocked methods. The agent scheduler process collaborates with the

CARE site's operator processor in the scheduling of these user processes (see Section 5).

4. ELINT's Implementation in CAOS

We describe now the agent types and their organization for the ELINT application s
implemented in the CAOS framework. This implementation illustrates some of the benefits
and some of the drawbacks of the framework. As discussed in Section 2, ELINT is an expert
system whose domain is the interpretation of passively-observed radar emissions. ELINT is
meant to operate in real time. Emitters appear and disappear during the lifetime of an FLINT
run. The primary flow of information in ELINT as implemented in CAOS is through 3
pipeline with replicated stages. Each stage in the pipeline ié an agent. The basic ELINT zeent

pipeline is illustrated in Figure 4-1

_’J Observation QObservation Emitter ‘

Reader Handler Cluster l

Figure 4-1: The basic ELINT a .nt processing pipeline.v
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4.1. ELINT Agent Types

The ELINT agent types described here are those used by the CT control strategy version of
ELINT in CAOS (see Section 6).

Observation-Reader Agent

Observation-reader agents are an artifact of the simulated environment in which cur ELINT
implementation runs. Their purpose is to feed radar observations into the system.
Observation-readers are driven off system clocks. At each clock "tick” (one ELINT time unit),
they supply all observations for the associated time interval to the proper observation-handler

agents. This behavior is similar to that of radar collection sites in an actual ELINT setting.
Observation-Handler Agent

The observation-handler agents accept radar observations from associated radar collection sites.
Of course, in the simulated environment the observations actually come from
observation-reader agents. There may be several observation-handlers associated with each
collection site. The collection site chooses to which of its observation-handlers to pass an

observation based on some scheduling criteria, for example, round-robin.

The contents of an ELINT observation was described in Section 2. In particular, each
observation contains an identifier number assigned by the collection site to distinguish the
source of the observation from other known sources. This source identifier is usually, but not
always, correct When an observation-handler receives an observation, it checks the
observation’s identifier to see if it already knows about the emitter which is the observation's
source. If it does, it passes the observation to the appropriate emitter agent which represents
the observation’s source. If the observation-handler does not know about the emitter, it asks
an emitter-manager agent o create a new emitter agent and then passes the observation to that

new agent.
Emitier-Manager Agent

There may be many emitter-manager agents in the system. An emitter-manager's task is to
respond to requests from observation-handlers to create new emitter agents with associated
source identifier numbers. If there is no such emitter agent in existence when the request is

received, the manager will create one and return its remote-address to the requesting
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observation-handler agent. If there is such an emitter agent in existence when the request is
received, the manager will simply return its remote-address to the requestor. This situation
arises when one observation-handler requests an emitter that another observation-handler had
previously requested. Emitter-managers must also handle the case of “almost concurrent”
requests for the same emitter. This case occurs when a request is received for an emitter agent

which is currently being created by another process on another CARE site in response to a

slightly earlier request.

The reason for the emitter-manager's existence is to reduce the amount of inter-pipeline
dependency with respect to the creation of emitters. When ELINT creates an emitter it is
similar to a typical expert system drawing a conclusion based on some evidence. ELINT must
create its emitters in such a way that the individual observation-handlers do not each end up
creating copies of the "same” emitter, that is. creating multipie emitter agents with the same
associated source identifier (see Section 3.1.2). Consider the foliowing strategies that the
observation-handler agents could use to create new emitter agents:
1. The handlers could create the emitter agents themselves immediately as needed.
Since the collection sites 11ay pass observations with the same source identifier to
any observation-handler, it is possible for multiple observation-handlers to each

create its own copy of the same emitter. This strategy is not acceptable.

2. The handlers could create the emitter agents themselves, but inform the other
handlers that they have done this. This scheme breaks down when two handlers try

simultaneously (or almost simultaneously) to create the same emitter.

3. The handlers could rely on z single emitter-manager agent to create ail emitters.
While this approach is safe from a consistency standpoint, it is likely to be

impractical as the single emitter-manager could become a processing bottleneck.

4. The handlers could send requests to one of many emitter-managers chosen by some
arbitrary method. This idea is nearly correct, but does not rule out the possibility

of two emitter-managers each receiving creation requests for the same emitter.

5. The handlers could send requests to one of many emitter-managers chosen through

some algorithm which is invariant with respect to the source 1dentifiers.
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This last strategy is the one used used in our implementation of ELINT. The algorithm for

‘:". ‘o e

choosing which emitter-manager to use is based on a many-to-one mapping of source

e
e

identifiers to emitter-managers.10
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}“_. Emitter agents hold the state and history of the observation sources they represent. As each ::
: new observation is received by an emitter agent, it is added to a list of new observations. On :.]
a periodic basis, this list of new observations is scanned for interesting information. In ui
: particular, after enough observations are received, the emitter may be able to determine the ;-;1
_:E heading, speed, and location of the source it represents. The first time it is able to determine "3
this information, it asks a ciuster-manager agent to either match the emitter to an existing "*

cluster agent (as described in section 2.3) or create a new cluster agent to hold the single
'.j::ij emitter. Subsequently, it sends an update message to the cluster agent to which it is associated

:-;:; indicating its current heading, speed, and location.

(¥ : o . . . : .

O Emitters maintain a qualitative confidence level of their own existence (possible, probable,

.';:'j_~ positive and was-positive). If new observations are received often enough, the emitter will
:. p increase its confidence level until it reaches positive. If an observation is not received by an
J emitter in the expected time interval, the emitter lowers its confidence by one step. If the
-_.;j'_ confidence falls below possible, the emitter deletes itself, informing its manager and any

cluster to which it is associated of its deletion.
Cluster-Manager Agent

The cluster-manager agents play much the same role in the creation of cluster agents as the

emitter-manager agents play in the creation of emitter agents. However, it is not possible to

compute an invariant to be used for a many-to-one mapping between emitters and cluster

managers. If ELINT were to employ multiple cluster-managers, any strategy for which of the

IR many managers an emitter agent chooses to request a cluster match could still result in the L
j'.:.-' creation of multiple instances of the “same" cluster ‘i.e., multiple cluster agents representing .f:
. the same physical cluster of emitters). Thus, we have chosen to implement ELINT using only -
; 4 A . . _
T a single cluster-manager. Fortunately, new cluster creation is a relatively rare event, and the j
o g
" ]
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As described above, requests from emitters to associate themselves with clusters are specified as

match requests over the extant clusters. Emitters are matched to clusters on the basis of their
location, speed, and heading histories. However, the cluster-manager does not itself perform
F.-Z this matching operation. Although it knows about the existence of each cluster it nas created,
L.-':Z it does not know about the current state of those clusters. Thus, the cluster-manager asks all

of its clusters to (concurrently) perform a match.

, If none of the clusters responds with a positive match, the cluster-manager creates a new
cluster for the emitter. If one cluster responds positively, the emitter is added to the clu -wer
and it is so informed of this fact. If more than one cluster responds positively, this usuaity
indicates that there is not yet sufficient resolution of the emitter's history to uniquely associaiz
it with a cluster. In this case the emitter to cluster matching operation is iried again afier

:4', more observations of the emitter have been processed.
Cluster Agent

The radar emissions from a cluster of emitters often indicate the activities of the aircraft

represented by that cluster. For example, emissions from a missile guidance radar indicate that

an air-to-air attack is imminent. Each cluster agent periodically applies heuristics about types
of radar signals to try to determine the current activities of its represented aircraft, and, in
: particular, if these activities represent a threat to friendly aircraft. This activity information. ﬁjj{:
- the aircraft type information, and the merged track parameters of the emitters associated wr'th
each cluster are the primary outputs of the ELINT system. Also, each cluster periodically

checks to see if all constituent emitters have been deleted. If so, it deletes itself.

e
.::j Time-Manager Agent
o [
Many of the knowledge-based actions taken by an ELINT agent make use of the ageni's L&
last-observed time, that is, the time stamp of the most recent observation associated directly or
"Z:' indirectly with the agent. For example, if an emitter agent determines that it has received no
- new associated observations for several data time intervals (i.e., that it 1s ‘out-cf-date”), it w1 ,":
consider itself as no longer exisiting and it will delete itself and all of its relational iinks from ——
ELINT's situation board.!!
z
~ o
11Th|s action reflects the expectation knowledge that :f an emitter ~ithin the area of bservation ¢ phserves st tice "t'
1, then 1t 18 expected that it will be observed at timne :«. '..E:‘_
- N
: 3
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In an asynchronous message passing system such as CARE, it is difficult for an agent to

i

determine whether it is out-of-date because it has not been observed recently or because

messages to it which would result in an update of its last-observed time are delayed due to

4

overall system load or local load imbalances. One solution to this problem would be for each

’,

observation-handler agent to send an "end-of-observation-time-interval” message to each of its

Dt RN

known emitter agents whenever it observes the crossing of an observation time interval

boundary.12

. This solution was rejected for the reported implementation of ELINT because of a perceived
\ excessive message overhead.!’ Instead, our ELINT experiment uses a time-manager agent.
N Whenever an observation-handler agent observes a new input observation time stamp, it reports
- this new time to the time-manager via a message. The time-manager maintains a conservative,
global current observation time which is the minimum of the the reported time stamps.
; Whenever any agent considers taking a drastic, non-reversible action which is based on its

being out-of-date (e.g., deleting itseif), it requests a confirmation from the time-manager that

- its (the requesting agent's) last-observed time is sufficiently older than the time-manager's

global current observation time. The requesting agent does not perform its considered action

LI v
B A

until it receives the confirmation. If in the interim, the requesting agent receives any messages

which result in an update of its last-observed time, the confirmation is ignored.

Reporter Agent

y 5_!

l'l

Instances of the reporter agent class are used to asynchronously output various ELINT reports

]

to displays and/or files, for example, threat reports and periodic situation board reports. In
addition, instances of a specialization of the reporter class, debug-trace-reporter, are used

during application program debugging to asynchronously output debugging traces in a manner

MR Wy

that minimally impacts system timing dependencies.

N )ZSince each input observatiorn stream is in observation-time sequential order, each observation-handler eventually

knows when such a time boundary is crossed.

Yy

W a8 Fyf s

13This overhcad may be more perceived than actual. A more recent implementation of ELINT uses such
"end-of -observation-time-interval” messages. Initial results seem to indicate that the associated cost is not excessive

(see [16]).
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4.2. ELINT Agent Organization

The ELINT agents are basically organized as a pipeline with replicated stages where each stage
is an agent. Inter-pipeline dependencies and dependencies between replicated stages are
managed by emitter-manager and cluster-manager agents. The amount of replication (i.e., the
number of agents) at each pipeline stage is a function of that stage. For some stages, the
number of replicated agents at that stage is fixed during system initialization. For example,
the numbers of observation-handler agents, emitter-manager agents, and cluster-manager agents
are pre-determined based on the number of collection sites and their output data rates. The
numbers of emitter stages and cluster stages vary during the course of execution since the
corresponding emitter agents and cluster agents are created and deleted as the radar emitters

and collections of radar emitters which they represent appear and disappear over time.

The overall organization of the ELINT agents is illustrated in Figure 4-2

Collgctian Emitter Cluster L
““——1 Reporter - Managers | Manager -
.

1 ¥y
pf Observation > Observation ce,s

Resders Handlers lus ! )
Time Threat Situation
Manager Aeporter Reporter

v v

Figure 4-2: 'The overall ELINT agent communication organization.

5. An Overview of CARE

The CARE architectural specification and its simulation environment provide a parameterized
and instrumented multiprocessor simulation testbed designed to aid research in alternati =
parallel architectures. The testbed executes within SIMPLE, a hierarchical, event-driven

simulator [3].

A CARE architecture is a grid of tens to hundreds of processing sites interconnected via a
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dedicated communications network. The network uses dynamic, buffered, cut-through routing,
and it supports multicast inter-site message transmission. The ELINT experiment, for example,
was performed on various square CARE grids of hexagonally connected sites, that is, each site,

excluding those at the edges of the grid, is connected to six of its eight nearest neighbors.

As shown in Figure 5-1, each CARE site consists of an evaluator, a general-purpose
processor-memory pair; an operator, a2 dedicated communications and process scheduling
processor which shares memory with the evaluator; and network interfaces -- net-inputs and
net-outputs -- that accomplish pipelined message transmission, flow control, deadlock
avoidance, and routing. Each net-input at a site may establish a connection with a net-output

at any site, and all such connections at a site may be simultaneously active.

ol
P our

1 OPERATOR

L AN
P
i
N

EVALUATOR

Figure 5-1: A hexagonally connected CARE grid.

Application-level computations take place in the evaluator. The operator performs two duties.
As a communications processor, it is responsible for initiating and receiving messages. As a
scheduling processor, it queues application-level processes for execution in the evaluator.

Message routing is performed by the net-input and net-output network interfaces.

In our simulation of CARE, the evaluator is treated as a "black box" Lisp processor. None of
its internal operation is simulated. The Lisp machine hosting the simulation serves as the

evaluator in each processing site. The operator, however, is functionally simulated, and the

network interfaces are simulated and instrumented in great detail.
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CARE allows a number of parameters of the processor grid to be adjusted. Among these
parameters are: the speed of the evaluator, the speed of the communications network, the
network routing algorithm, and the speeds of the process creating and switching mechanisms.
By altering these parameters, a single processor grid specification can be made to simulate a
wide variety of actual multiprocessor architectures. For example, we can experiment with the
optimal level-of-granularity of problem decomposition by varying the speed of both
process-switching and communications. Alternative network topologies can be studied by using
SIMPLE's graphic interfaces and composition operators to configure CARE components intc

any topology that can be wired.

The CARE simulation environment provides detailed displays of such information as evalualor,
operator, and communication network utilization, and process scheduling latencies. Tnis
instrumentation package informs developers of CARE applications of how efficiently their

systems make use of the simulated hardware.

A more detailed description of CARE is given in [16], and the technology considerations
underlying the CARE architecture are discussed in Appendix I.

6. Results and Conclusions

The CARE architectural simulation testbed and the CAQOS system we have described have been
fully implemented, and they are in use by several groups withir our Architectures Project.
CAOQOS-CARE executes on the Symbolics 3600 family of machines as well as on the Texas
Instruments Explorer Lisp machine. ELINT, as described in Sections 2 and 4, has also been

fully implemented, and we have analyzed its performance on various size CARE grids.

6.1. Evaluating CAOS
CAOS is a rather special-purpose environment, and it should be evaluated with respect to the
programming of concurrent, real-time signal interpretation systems. In this section, we explore

CAOS's suitability along the dimensions of expressiveness, efficiency, and scalability.

6.1.1. Expressiveness

When we ask that a language be suitably expressive, we ask that its primitives be a good match
to the concepts the programmer is trying to encode. The programmer should not need to
resort to low-level "hackery” to implement operations which ought to be part of the language.
We believe we have succeeding in meeting this goal fr CAOS (although to date, only CAOS's

designers have written CAOS applications). Programming in CAOS is essentially programming
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in Lisp using objects but with added features for declaring, initializing, and controlling

concurrent, real-time signal interpretation applications.

6.1.2. Efficiency

CAOS has a very complicated architecture. The lifetime of a message involves numerous
processing states and scheduler interventions. Much of this complexity derives from the desire
to support alternate scheduling policies within an agent. The cost of this complexity is
approximately one order of magnitude in processing latency. For the common settings of
simulation parameters, CARE messages are exchanged in about 2 to 3 milliseconds, while
CAOS messages require about 30 milliseconds, [t is this cost which forces us to decompose
appiications coarsely, since more fine-grained decompositions would inevitably require more

message traffic.

We conclude that CAOS does not make efficient use of the underlying CARE architecture.
This conclusion has lead to an evolution of both CAOS and CARE which is described briefly
in Section 6.3 and in detail in [16].

6.1.3. Scalability

A system which scales well is one whose performance increases commensurately with its size.
Scalability is a common metric by which multiprocessor hardware architectures are judged. For
example, does a 100-processor realization of a particular architecture perform ten times better
than a 10-processor realization of the same architecture? Does it perform only five times
better, only just as well, or does it perform even worse? In hardware systems, scalability is
typically limited by various forms of contention in memories, busses, etc. The 100-processor
system might be no faster than the 10-processor system because all interprocessor
communications are routed through an element which is only fast enough to support ten

Processors.

We ask the same question of a CAOS application. Does the throughput of ELINT, for
example, increase as we make more processors available to it? This question is critical for
CAOS-based, real-time interpretation systems. Our only means of coping with arbitrarily high

data rates is by increasing the number of processors.

We believe CAOS scales well with respect to the number of available processors. The potential
limiting factors to its scaling are increased software contention, such as the inter-pipeline
bottlenecks described in Section 3, and increased hardware contention, such as overloaded

processors and/or communication channels. Software contention can be minimized by the
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_' design of the application. Communications contention can be minimized by executing CAOS :’_:f:j:
. on top of an appropriate hardware architecture such as that afforded by CARE. CAOS
:,. applications tend to be coarsely decomposed. They are bounded by computation, rather than :':.j::f
N communication, and communications loading was not a problem in our ELINT-CAOS-CARE
E - experiment. ::;: X
N
Unfortunately, processor loading remains an issue. A configuration with poor load balancing o
' in which some CARE sites are busy while others are idle does not scale well. Increased .—"4}‘
: throughput is limited by contention for processing resources on overloaded sites while resources -~~
:: on unloaded sites go unused. The problem of automatic load balancing is not addressed by
‘ CAOS as agents are simply assigned to processing sites on a round-robin basis with no attempt ::;;:;:
to keep potentially busy agents apart. We currently have no solution to the problem of iﬂ
_:; processor load balancing beyond that of carefully "hand crafting” a site allocation strategy for ‘i; -_:
:: each application and then "tuning” that strategy via succesive refinement. R
. A
C 6.2. Evaluating ELINT Under CAOS .
The input data set used for most of our ELINT-CAOS runs was based on a scenario involving *\-
! 16 aircraft mounting a total of 88 radar emitters with between 4 and 45 emitters active and
observed during any one data time interval. The scenario takes place in a 60 by 80 mile area
:_- over 36 time units, and it involves 1040 separate emitter observations.
Our experience with ELINT indicates that the primary determiner of throughput and solution
S quality is the strategy used in making individual agents cooperate in producing the desired
- interpretation. Of secondary importance is the degree to which processing load is evenly
.. balanced over the processor grid. We now discuss the impact of these factors on ELINT's
ﬂ performance.
. The following three “control” strategies were used in our experiment:
1. NC: This "no control” strategy represents limited inter-agent control. Agents
initiate actions independently. Whenever an agent wants to perform an action, it
4? does so as soon as processing resources are available. For example, whenever an
o observation-handler agent needs a new emitter agent, it simply creates it with no
attempt to coordinate this creation with other observation-handlers. As a result,
: multiple, non-communicating copies of an emitter may be created, and each copy
receives a only portion of the input data it requires. The NC strategy was expected
) to produce qualitatively poor results, and it was primarilly intended only as a f'_'.-'__'
Lo
" ol
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baseline against which to compare more realistic control strategies. What was

surprising was that the strategy also produced quantitatively poor results (see below).

2. CC: In this strategy, agents cooperate in the creation of new agents via manager
agents as described in_Section 4. The manager agents assure that only one copy of
an agent is created, irrespective of the number of simultaneous creation requests.
All requestors are returned a reference to the single new agent. Originally, we
believed the CC (for "creation control™) strategy would be sufficient for ELINT to
produce satisficing high-level interpretations. Our experiment results showed that

.$ was not always the case (see below).

3. CT: The CT ("creation and time control”) strategy was designed to additonally
manage the skewed views of real-world time which develop in agent pipelines. For
example, this strategy prevents an emtter agent from deleting itself when it has not
received a new observation in a while even though some observation-handler agent
has sent the emitter an observation which it has yet to receive. The agents
corresponding to the CT strategy are those described in Section 4.

Table 6-1 illustrates the qualitative effects of the various control strategies and grid sizes. The
table presents the six major performance attributes by which the quality of an ELINT run is
measured. Since the input data for the ELINT experiment were generated from known

scenarios, it was possible to compare the results of an ELINT run with "ground truth.”

Table 6-1: ELINT Solution Quality Versus Control Strategies and Grid Sizes.

Qualitative Control strategy/grid size
performance
attribute

NC/16 CCneé CCA36 CT/4 CT/16 CT/36

False alarms 1% 0 o] 0 0 0

Reincarnation 49% 42 2 0 0 0

Confidences 19% 20 90 89 93 95

Fixes 48% 42 99 100 100 100

Threats 65% 63 81 87 87 90 : .
Fusion 0% 0 ™ 85 88 89 E

4,

$s

w*

The major qualitative performance attributes are:

.

False Alarms: This attribute is the percentage of emitter agents that ELINT should not have

.
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hypothesized as existing with respect to the total number of emitter agents hypothesized.

ELINT was not severely impacted by false alarms in any of the control configurations in
which 1t was run as the knowledge used for hypothesizing new emitters was quite conservative.
That 1s, the knowlege was such that it prefered missing a true, but low confidence, emitter

creating a false alarm emitter.

Reincarnation: This attribute is the percentage of recreated emitter agents, that is, emiilers
which had previously existed but had erroneously deleted themselves due to iack ot r=cen:
observations, with respect to the total number of emitters created. Large numbers<
reincarnated emitters indicate some portion of ELINT is unable to keep up with the data - -
This can be caused by the data rate being too high globally so that all emitters are ov-rio-4rd
or by the data rate being too high locally due to poor load balancing so that some subsct

the emitters are overloaded.

The CT control strategy was designed to prevent reincarnations. Hence, none occurred when
CT was employed on any size grid. When the CC strategy was used, only the 36 site grid was
large enough for ELINT to sufficently keep up with the input data rate so that emitters were

not erroneously deleted due to overload.

Confidence Level: This attribute is the percentage of correctly deduced confidence levels for the
existence of an emitter with respect to the total number of times such ~onfidence levels were

determined.

For each hypothesized emitter, ELINT maintains a dynamic confidence level for the existence
of the emitter based on accumulating evidence (see Section 4.1). The correct calculation of
confidence levels depends heavily on the system being able to cope with the incoming laua
rate. One way to improve confidence levels was to use a large processor grid. The other w..

to employ the CT control strategy.

Fixes: This attribute is the percentage of correctly-calculated positional fixes of emitters v
respect to the total number of times fixes could have been determined from the ground iruih

data.

A fix can be computed whenever an emitter has seen at least two observations from different
collection sites in the same data time interval. If, for example, an emitter is undergcing
reincarnation, it will not accumulate enough data to regularly compute fixes. Thus, the

approaches which minimized reincarnation tended to maxim:-e the correct calcuvlation of fix
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information.

Threats: As described in Sections 2 and 4, certain emitter and cluster events represent
immediate threats. This attribute is the percentage of recognized threats with respect to the

totai number of threat events based on the ground truth data.

Fusion: This attribute is the percentage of correct clustering of emitter agents to cluster agents.
The correct computation of fusion appeared to be related, in part, to the correct computation
of confidence levels. The fusion process is also the most knowledge-intensive computation in
ELINT, and our imperfect results indicate the extent to which ELINT's knowledge is

incomplete.

The overall goal of the control strategy experiments was to see if it was possible to determine
strategies where the quality of the output results were relatively insensitive to grid size and load

balance but still achived significant concurrency.

We interpret from Table 6-1 that the control strategy has the greatest impact on the quality of
results. The CT strategy produced high-quality results irrespective of the number of processors
used. The CC strategy, which is much more sensitive to processing delays, performed nearly as
well only on the 36 site grid. We believe the added complexity of the CT strategy, while never
detrimental, is primarily beneficial when the interpretation system might be overloaded by high

data rates or poor load balancing.

Table 6-2 gives the simulated execution times for the ELINT runs used to derive the data in

Table 6-1, and Table 6-3 gives the total CAOS message counts for these runs.

Table 6-2: Simulated ELINT execution times for various control strategies
and grid sizes.

Grid size
Control
strategy
4 16 36
NC >11.19 sec.
CC 10.87 512
CT 11.80 8.10 417

Tables 6-2 and 6-3 clearly show that the processing cost of added controt is far outweighed by
the benefits in its use. Far less message traffic is generated, and the overall simulated time is

reduced. Note that for the runs whose execution times are shown in Table 6-2, the input data
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; Table 6-3: CAOS message counts for ELINT executions with various control
' strategies and grid sizes.

Grid size S

Control P
strategy -
X 4 16 36 e
NC >16118 msg. T
: cc 7375 4823 - o
' CcTr 4516 4703 4616

rate was .1 seconds per ELINT time unit. Since the input data set used for these runs spanned
36 time units, the last observation was fed into the system at 3.6 (simulated) seconds. Hence,

this is the minimum possible simulated execution time for these runs.

Table 6-4 and Figure 6-1 show the quantitative effect of processor grid size when the CT
control strategy is employed. These results were produced with the input data rate set ten
times higher (.01 seconds per ELINT time unit) than that used to produce Table 6-2. The

t Wl S & 7 T VS PP T T

minimum possible simulated execution time for the runs used to produce Table 6-4 is 0.36

. seconds. L
. ~ '. \g 1
- Table 6-4: Simulated ELINT execution time versus grid size for production :';'_-';’
I runs using CT control strategy. P
, S
:: Grid size Execution time
A 1 9.476 sec. .
- %

i 4 3237
»
- 9 1517
- 16 .761
- 25 s41

36 557

As shown in Figure 6-1, the speedup achieved by increasing the processor grid size is nearly

linear in the 1 to 25 processor site range. However, the 36 site grid was slightly slower than

g P
]
i *
- Cy
] -
L] -
» L
- -
! .
L) K
' .
;4 o
- «*
i ‘
4 L
W Sl
’ S
¢ s
y N
] RTRRS
d -
1 LR
-
~ S.e
N I
2 R
, - . e e < -“_;.‘ RO

L PP S PILIN N S S G . o I N . 2 RGN Lo . o _.._l'.' "
.‘.:."':':‘.F. e 4‘.\ .{._’-._\. 5 “ _: ;“\ Y 'J s'» -. \.:..’ ‘,'-'\'_\., ) T



5 Y
or'd

il

30

2
"N
]

$ /

20 Theoretical limit

¥y

J.’) >

=z

17.50

PR TN

16.98

 ar'}
»

X 4 3
IR

12

¥ v 3w v >

P

12.44

R

@’4
- .

py

6.24

3
.

Speedup over 1 processor
EAVER A

2o

S
-

2.89
>
4 9 16 25 36

Pl
=g

e

Number of CARE processing sites

i
.ﬂ“l’&}

v
L/
(N}

”~
2

Figure 6-1: The relative speedup of ELINT executions on various size CARE grids.
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In this last case, there was not sufficient data per‘ ELINT time interval to warrant the
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additional processors. That is, there was not enough concurrency to exploit 36 processors.
This can be seen from Table 6-5 which gives timing results for larger data sets with more

emitters and observations during each time interval and, hence, more potential for concurrency.

Table 6-5: Simulated ELINT execution times and speedup for larger data sets.

A Number of 1-site grid 36-site grid Speedup of
A Observations execution time execution time 36overl
l.‘ -

A

) 1040 9.476 sec. 557 sec. 17.0

[

() 2080 25.10 948 26.5

4160 55.87 2.259 24.7

As shown in this table, for an input data set representing twice as many emitters and
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l‘Bet:ause of the intrinsic non-determinism of a CARE architecture, we observed variations in the solution qualities
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and the run times between different runs of the same input data set on the same size CARE grids. For such runs, the

vanations in solution qualities never exceeded a fraction of a percent. However, the varitions in run times where as

w
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much as five percent. This accounts for the slightly longer execution time on 36 versus 25 processors.
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observations than the basic data set, the 36 site grid achived a speedup factor of 26.5 (as
opposed to a speedup of 17.0 for the basic data set) over a single processor. However, for a
data set four times larger than the basic data set, the speedup factor was only 24.8. This was
because this larger, and hence more concurrent, data set saturated the 36 site grid. That is, the

2080 observation data set already provided enough concurrency to fully exploit the 36 site grid.

6.3. Son.. Open Questions

CAOS has been a suitable framework in which to construct concurrent signazl interpretatio-
systems, and we expect many of its concepts to be useful in our future computing architect « .»
Of principal concern to us now is increasing the efficiency with which the underlying C -7t
architecture is used. In addition, our experience suggests a number of questions to be evpi.red
in future research:

« What is the appropriate level of granularity at which to decompose problems for
CARE-like architectures?

« What is the most efficient means to synchronize the actions of concurrent problem

solvers when necessary?

« How can flexible scheduling policies be impiemented without significant loss of
efficiency? What is the impact on problem solving if alternate scheduling policies

are not provided?

« Are there efficient mechanisms for dynamically balancing processor loads?
We have started to investigate these questions in the context of a new TARE envircnmen:
One of the primary difference between the original environment and the new environme-: .
that the process is no fonger the basic unit of computation. While the new CARE system siiu
supports the use of processes, it emphasizes the use of contexts which are computaticns with

less state than those of processes.

When a context is forced to suspend to await a value from a remote service, it is aborted .=d
restarted from scratch later when the value is available. This behavior encourages more
fine-grained decomposition of problems written in a functional style where individual methads

are small and consist of a binding phase followed by an evaluation phase.

In addition, CARE now supports arbitrary prioritization of i..essages delivered (o streams. As
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a result, it is no longer necessary to include in CAOS a complex and expensive scheduling
strategy. Early indications are that the new CARE environment with a slightly modified CAOS
environment performs around two orders of magnitude faster than the configuration described
.n this paper. The evoiution of CARE and CAOS based on the results of our ELINT-CAOS
-CARE experiment is described in greater detail in [16].
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- I. Technology Considerations Underlying the CARE Architecture

The CARE simulation testbed can be used to simulate shared memory as well as message

passing multiprocessor architectures. For example, it has been configured to simulate a single

address space, shared global memory architecture where the processors (and their local cache

memories) are connected to the shared memory's controllers via a switching network. ‘{owever.
the intended focus of the CARE testbed is on message passing, multiprocessor architectures
where each processer has significant local memory. This focus s based on technology

considerations -- primarily communication versus processing costs. -

The base for development of general purpose multiprocessor systems, as for computer systems
. generally, 1s given by the design constraints and opportunities established by evelving
e semiconductor design and manufacturing processes. The VLSI design medium brings a new

-_jf perspective on cost -- switches are cheap while wires are expensive. Communication c<osts

Yo s'A."I .

1

; dominate those associated with logic. Communication is currently the resource in shortest

am AA__d_ i

o

- supply, and it will become more of a constraint rather than less as semiconductor lithographies

decrease.

L 1
A

The consequence of relatively expensive communication is that performance is enhanced if thc
design establishes that whenever a lot of information has to move in a short time, it does not K
_ have to move far. Significant locality of high bandwidth links is a design goal. Amcng the
4 highest bandwidth links in a computer system are those connecting the processor and r.emoery.

Thus, close coupling of processors with local memory is preferred.

s

J To reduce demand on the communications resouice to supportable levels, local memory sizes .
for multiprocessors can be expected to increase to the 100K byte level and beyond, and block f-l-j

transfers between backing store and such several hundred kilobyte local memories will be used

e .
y et

to make the most efficient use of both memory structures and communications facilities. T

£ W
1%
4

Moreover, the functionallity of memory controlers will expand to include, for exampie,

management of request queues, the dispatching of results, and execution of synchronization

LA

primitives; and thus, the distinctions between a memory controlier and a small, simple

”

= processor will become blurred.

The propertion of area for a simple, high performance processor to the total area of a ..'e
with, for example, 256K bytes of local storage can be re.;o.ably estimated at around 13%.
From (i) this estimate of the incremental cost of adding a processor to a block of memory, (i1)

the significant size of the total local storage in the system, (ii1) the blurriny of distinctions
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between fast, simple processors and memory controllers of increasing complexity, and (iv) the
tendency towards block tranfers between local memory and backing store, it follows that the
level of the storage hierarchy now labeled as "random access memory” is likely to be subsumed
by a combination of large local memories and fast, block access backing stores in

multiprocessor systems.

The performance of the available communication resource merits special attention in the
design of multiprocessor systems. For example, dynamic routing which selects available
inter-site links as needed is useful in balancing load, and thus it allows more of the
communication resource of the system to be exploited throughout a computation. Cut-though
routing which makes a routing derision on the fly as a packet is received reduces buffer
requirements in the system and minimizes latency experienced in network transit. Flow control
via signalling transmission delays back to the source based on local blockage information
together with single "word” buffering and transmission validation at each network input and
output port allows the source to complete a transmission in a time that does not depend on the
size of the network. Point to point multicast which sends (approximately) the same packet to
multiple targets using common resources to the largest degree possible can significantly enhance
overall communication performance. A communication resource with these features provides a
multiprocessor system with "virtual busses” that are established precisely as and when they are
needed.

These technology considerations have led us to focus our attention on the class of

multiprocessor hardware system architectures exemplified by CARE.
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