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The experiment consisted of implementing and evaluating an application encoded in a parallel

programming extension of Lisp and executing on a simulated multiprocessor system.

The choosen application for the experiment was a knowledge-based system for interpreting
pre-processed, passively acquired radar emissions from aircraft. The application was

implemented in an experimental concurrent, asynchronous object-oriented framework. This

framework, in turn, relied on the services provided by the underlying hardware system. The

hardware system for the experiment was a simulation of various sized grids of processors with

inter-processor communication via message-passing. !

The experiment investigated the effects of various high-level control strategies on the quality

of the problem solution, the speedup of the overall system performance as a function of the

number of processors in the grid, and some of the issues in implementing and debugging a

knowledge-based system on a message-passing multiprocessor system.

In this report we describe the software and (simulated) hardware components of the experiment I

and present the qualitative and quantitative experimental results.
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Abstract
* *J. *.J

This report documents an experiment investigating the potential of a parallel computing

architecture to enhance the performance of a knowledge-based signal understandn2 system.

The experiment consisted of implementing and evaluating an application encoded in F Faralle,

programming extension of Lisp and executing on a simulated multiprocessor s~stem:

The chooset application for the experiment was a knowledge-based system r

. pre-processed, passively acquired radar emissions from aircraft. The app. icat',

•inplemented in an experimental concurrent, asynchronous object-orienten frave', ...

framework, in turn, relied on the services provided by the underlying hardU!rc sv'sten,. ,!

hardware system for the experiment was a simulation of various sized grids of processors ,Ai.

inter-processor communication via message-passing.

The experiment investigated the effects of various high-level control strategies on the quality

of the problem solution, the speedup of the overall system performance as a function of the

number of processors in the grid, and some of the issues in implementing ar.d debuggmn a

knowledge-based system on a message-passing multiprocessor system.

In this report we describe:,the software and (simulated) hardware components of the experimert"

and present the qualitative and quantitative experimental results.
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1. Introduction
This report documents an experiment investigating the potential of a parallel computing

architecture to enhance the performance of a knowledge-based signal understanding system.

This experiment was done within the Expert Systems on Multiprocessor Architectures Project

of Stanford University's Knowledge Systems Labozatory.

- The computational characteristics of complex knowledge-based systems are poorly understood,

!specially in parallel computational environments. Our Architectures Project is performing a !W

number of experiments to try to gain some understanding of these characteristics and, in

particular, of the potential for concurrent execution of such systems. A primary goal of he

project is to develop software and hardware system architectures which exploit this concurrency

to increase the performance of knowledge-based signal understanding and information fusion

systems.

The Architectures Project is organized according to a hierarchy of computational abstraction

levels as shown in Table 1-1. Each experiment represents a narrow, veitical slice through these

levels and consists of a specific system choice for each le'.'el.

For the reported experiment, the choosen application is a knowledge-based ELINT (ELectronics

INTelligence) system for interpreting processed, passively acquired radar emissions from

aircraft. The ELINT application is implemented in CAOS, an experimental concurrent,

asynchronous object-oriented framework built on Zetalisp [1]. The CAOS framework, in turn,

relies on the services provided by the underlying hardware system environment. For this

experiment, the hardware system environment is a simulation of a parallel architecture, called

CARE [2]. CARE simulates a communications grid of processing sites where each site

contains a Lisp evaluator, private memory, and a communications and process scheduling

subsystem. Message-passing is the only means of inter-site communication. CARE is

* simulated using a general, event-based simulator, SIMPLE [3]. SIMPLE is written in Zetalisp

and executes on a Symbolics 3600 or a Texas Instruments Explorer Lisp machine. 1 Figure

1-1 illustrates the relationship between the various software components of the experiment.

The ELINT-CAOS-CARE experiment investigated both qualitative and quantitative aspects of

the performance of the overall system. The CARE architecture uses dynamic, cut-through (as

IA version of the SIMPLF simulator wlich runs on a local area network of ,ultuple T,isr machines has also been

implemented [4].

%,A -A - -
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Table 1-1: Computational levels.

Level Research questions

Application Where is the potential concurrency in knowledge-based
signal understanding tasks? -

How does the problem solver recognize and express
application dependent concurrency?

'V Problem-solving What are suitable framework constructs for organizing
framework and encoding concurrent signal understanding tasks?

What ame appropriate granularities for knowledge,
knowledge application and data to maximize concurrency?

-' What types of strategies for control of knowledge application
are needed to assur acceptable solution quality without
introducing excessive execution serialization?

Knowledge What idnds of knowledge representation mechanisms are
representation suitable for exploiting concurrency in inference and search?

4 "and management

System How can general-purpose symbolic programming languages
programming be extended to support concurrency and help manage the
language resource allocation and reclamation tasks on a distributed.:.: memory multiprocessor?

Hardware What multiprocessor architectures best support the
system organization and concurrency in knowledge-based
architecture signal understanding applications?

opposed to store and forward) routing through the communication grid for interprocessor

message transmission. Message transmission time is indeterminate. As a consequence, without

the imposition of significant message sequencing protocols (and the corresponding serialization

of execution), operations are intrinsicilly non-deterministic in the sense that two executions of

the same program on the same input data can result in different problem solutions depending

g. on different message arrival orders. For many knowledge-based systems, in particular, the

ELINT system, there is no such thing as the correct problem solution but only satisficing (i.e.,

acceptable) problem solutions. One primary objective of the experiment was to investigate the

trade-offs between the imposition of various synchronizations (and the resulting loss of

concurrency) and the quality of the problem solution. A second primary objective was the

more usual investigation of the speedup of the overall system performance as a function of the

number of processing sites in the CARE grid. A third objective was to gain some

understanding of the difficulties in implementing and debugging a reasonably complex

knowledge-based system on a multiple address space, message-passing multiprocessor system

such as that represented by CARE.

.4... :
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ELINT Interpretation of radar
emissions from aircraft

CAOS Concurrent, asynchronous

object system

%. .•

Zetalisp+ Zetalisp plus locality and

communication constructs

CARE Grid-based, message-passing
multiprocessor specification

SIMPLE Hardware specification system .'

and event-driven simulator I..

Zetallsp

Figure 1-1: The software component hierarchy of the experiment.

In the following sections we describe, in decreasing hierarchical order, each component of ,he

experiment- Section 2 describes the ELINT application. Section 3 gives an overview t,*e . -

CAOS programming framework and its approach to concurrency. ELINT's rmplementaticn in

CAOS is described in Section 4, and Section 5 describes ,ne salient features of tte CARE

architecture and its simulation environment. In Section 6 we present tne resulks of a'--

ELINT-CAOS-CARE experiment.

2. The ELINT Application
The driving application for our vertical slice experiment is a prototype, knowledge-based

ELINT system for interpreting processed, passively acquired, real-time r.dar emissions

aircraft. This ELINT system is one component of a multi-sensor information fusion ss: .--

TRICERO [5] developed several years ago. ELINT was originally implemented in AC ,':

an expert system development tool based on the blackboard paradigm [7, 8]. ELINT is

relatively simple, but non-trivial, knowledge-based s~s:cm. M ,.; , ,-.,cUr .-.

implemented procedurally. However, if ELiNT had heen aspleed .. -.

.7
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system, we estimate that its knowledge base would consist of about one thousand rules. 2

ELINT's basic analysis technique is to correlate a large number of passively observed radar

emissions into the smaller number of individual radar emitters producing those emissions. It

then correlates the emitters into the yet smaller number of clusters of co-located emitters.

ELINT maintains the track and activity histories of the clusters

2.1. ELINT's Inputs

The inputs to the ELINT system are multiple, time-ordered streams of processed observations

from multiple collection sites. Each observation is presented in a record format. The fields

of an input observation record are shown in Table 2-1.

Table 2-1: Elint observation record.

Field Contents

Observation-Time An integer time-tag indicatng when
the radar ermission was sampled

Observation-Site The symbolic name of the collection
site acquiring the observation

Site-Location The positional coordinates of the
collection site at the ume of observation

Emitter-Identifier An integer identifing the radar emitter
producing the emussion

Line-of-Bearing The line of bearing from the collection
site to the observed emrtter

Emitter-Type A symbolic radar emitter type designator

Emitter-Mode The operationa] mode of the emitter at r

the time of observation %

Signal-Quality A symbolic indicator of the signal
quality of the observed erussion

The Site-Location field is necessary since the collection sites can be mobile. The

Emitter-Identifier is a unique integer identifier assigned by the collection sites to each distinct

observed emitter. This identifier is used by the collection sites to indicate multiple

observations of the same emitter both over time and from different collection sites. In

particular, two concurrent observations of the same emitter from different collection sites

2 In general, there are currently no adequate metics for measuring the complexity of knowledge-based systems. Ore

crude measure used for rule-based systems is the number of rules. Although the number of rules does some'.'at

indicate the amount of knowledge. it dots not give much indicar in of the complex:t of the reasoning. .-

71I%



* .should have the same identifier. Both the intra-site and inter-site determination of whether

two observed emissions are from the same emitter are based on the electronic characteristics of

the emissions and on signature analysis. This determination may be in error, and the ELINF

system must cope with such identifier errors. The Emitter-Type of a radar emitter indicates

the functional class of the emitter, for example, Air-intercept (Al), Navigation (NAV) or

Identification -Friend-Or- Foe (1FF), and, if known, the equipment type class of the emitter.

Certain classes of emitter types can have m ultiple operational modes. The Emitter-Mode. if

applicable, is emitter-type specific. For example, an Al radar can be either in Search Mode -r

Lc-on Mode depending oil whether it is scanning for a target or whether it is automatiait.

tracking a specific target. The Signal-Quality of an observation !s a subjective, qualitativ~e

measure of the strength of !he observed emissicni, for example, strong, normal, or fading.

Alt of the input information required for the ELINT system is obtc,:nable from the raw Tadarl

signal data using current, passive radar signal collection and processing techniques. These

techniques are largely automated and employ sp'ecial-pu-pose hardware.

2. ELINss Outputs

'The primary outputs of the FLINT system are periodlic status reports about the 1.7acks anm.

ac tivities of clusters of emitters in the area under surv.eillance. A cl kster is definC1 ~.

-ollect!on of emitters which are co-locazed over time. That is, two emitters are in the sa2;,e

c!uster ~f for some given minimum number of consecutive time units (three in the cur:1,i

EIINT system) their corrcsp ndin,1 tirme-.agged lucationat :ixes are within a Jis*,,:1i.e

determined by the line-of-bearing -resolution of the observation site equipment (one dcqr,,c

*resoiution in the current FLINT system). C,)rilptually, t~o emitters are in the same cluster

if they are on the same aircraft or ar- on two tactically associ ited and co-located (over Ztr.

-' aircraft, for example, a lead aircrcft and his wingman?3

The periodic output reports contain, for each cluster, information about the cluster's current

An 1''i an )c)e rcn 4 l '!"' . ' le !or all) '-r.jr f. '.c ~ 's~n Q ~ i

he~weer. :xa'ple. w 'WO W'.,", adar n_ w)e wiih .1 \AV ., n*.I

*wth both, is Al ti ',AV Iar- -n ,-r FT 1%1 -1 does ts ist'me 7' ~e' '

han iircraft.

647
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heading, position and track; an estimate of the number and types of aircraft in the cluster;4 an

indication of the cluster's current activity; and an indication if the cluster represents an

immediate threat, for example, if it is within a certain proximity of a friendly aircraft, if its

Al radar is in Lock-on Mode, or if its missile guidance radar is on.

2.3. ELINTs Processing Flow

The basic reasoning strategy used by the ELINT application is data-driven accumulation of

evidence for the existence, the tracks, and the activities of emitters and clusters based on input

observations and infered information. The primary processing flow is a kind of pipeline

where the pipeline stages are observations, emitters and clusters. .

Upon receipt of a new observation, the system first determines if the observed emission k

.r. matches (i.e., has as a source) a known emitter (i.e., an emitter on ELINT's "situation board").

This match is based on the Emitter-identifier assigner by the collection site to the observation,

and it is verified using the emitter's characteristics and its track and heading histories.

Depending on the outcome of the match, one of the following actions is taken:

1. If the observation does not match a known emitter, then a new emitter which is the

source of the observed emission is hypothesized on the situation board and

initialized from the information contained in the observation.

2. If the observation does match an emitter on the situation board and the match is

verified, then the information contained in the observation is used to update the

attributes of the matched emitter, including increasing the confidence level of the

hypothesis that the emitter represents. Moreover, if the new observation is the

second (or greater) observation of the emitter for the current time and it is from a.-,,' , ....

different collection site than the previous observation(s) at that time, then a

locational fix for the emitter is computed using the observed lines of bearing. If,

.- in addition, the Emitter-Type and/or Emitter-Mode indicate a near-term threat to a

friendly aircraft, then a threat report is output.

4Knowledge relating an aircraft type, for example F-i5 or MIG-3, with the number and types of radars it carries is

available. Using this knowledge and the identified emitter types in a cluster, it is possible to roughly estimate bounds

on the number and types of aircraft in the cluster.

"'-'p''7
FI.
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3. If the observation matches a known emitter but fails the match verification test,

then an error in the Emitter-Identifier is indicated and the situation board is

modified so as to undo any incorrect inferences based on the error. Also, an

ide ifier error report is output to the collection sites.

On a periodic basis, the status of each emitter on the situation board is evaluated and various

actions are taken:

1. If there have been no recent observations of the emitter, then the confidence le-el

of the emitter is reduced. If, as a consequence of this reduction, that level falls

below a given no-confidence threshold, then the emitter and all of the consequences

infered from it (including cluster association) are deleted from the situation board.

2. If the confidence level is above a given full-confidence threshold and the emitt._r' s

not currently associated with a known cluster, then an attempt is made rl rtarc , (h-

emitter with a cluster on the situation board. This match is based on :he trac:k -'

heading histories and the type attributes of the emitter and the cluster. If a match

is made, then the emitter is associated with the matched cluster and ,he emitter's

current attributes are used to update the attributes of the cluster. If the match fails,

then a new cluster is hypothesized on the situation board and the emitter is

associated with it.

3. In the remaining case of a recently observed em|zzer with an asscciated ,luster, the

current attributes of the emitter are used to update the attri,;tes 'af associateM
cluster,..'.

Also on a periodic basis, the state of each hypothesized cluster ,,n tbe =c.,r , .~c"

examined. If all of the emitters associated with the cluster have ber'. .

is deleted from the situation board. Otherwise:

1. The cluster is checked to see if it should be split into two (or more) clusters bsed ..

on the currrent locations of its associated emitters. If so, new clusters with the

appropriate associated emitters are hypothesized on the situation board.

2. The track history, heading history, speed history and activity _i. 1 , "-.

are updated; and, if any new emitters hae been recently associated *i!ni .-.

an estimate of the types :ind numbers @r ircraf comp'!ising the- cluster i;e'

.



3. A current status report for the cluster is output.

The ELINT processing flow lends itself naturally to concurrent execution. The parallel

implementation of ELINT using CAOS is described in Section 4. The CAOS system itself is

described in the following section.

3. The CAOS Programming Framework
CAOS is a framework which supports the encoding and the execution of multiprocessor expert V

systems. It represents an early attempt to bridge the gap between the application specification

and the multiprocessor system programming primitives. The design of CAOS is predicated on

the belief that many highly parallel architectures (e.g., hundreds of processors) will emphasize

limited communication between processor-memory pairs rather than uniformly shared memory.

We expect that such an architecture will favor relatively coarse-grained problem decomposition

with little synchronization between processors. CAOS is intended for use in real-time, data

interpretation appl.cations such as continuous speech recognition and radar and sonar signal

interpretation (see, for example. [9, 10]). CAOS is based on an object-oriented programming

paradigm, and it draws many of its ideas from the Flavors system [1] and the Actors paradigm

A CAOS application consists of a collection of communicating, active agents, each responding

to a number of application-dependent, predeclared messages. An agent retains long-term local

state. Each agent is a multi-process entity, that is, an arbitrary number of processes may be

active at any one time in a single agent.5 Conceptually, an agent can be thought of as virtual,

multiprocess processor and memory pair. It responds to externally sent messages, and these

message responses can alter the state of its local memory and can include the sending of

messages to other agents.

CAOS is designed to express parallelism at a relati,/ely coarse grain-size. For example, in the

ELINT experiment, the message handlers (i.e., the methods) which implement the message

' responses are written as Lisp procedures, each averaging about one hundred lines of primitive

Lisp code. CAOS supports no mechanism for finer-grained concurrency such as within the

execution of agent processes, but neither does it rule it out. We could easily imagine message

5The active processes in an agent arc not scheduled preemptively. Instead, an executing agent process either runs to

completion or until it is "blocked' awaiting some remote service (see Section 5).

..
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methods being written, for example, in QLisp [12], a concurrent dialect of CommonLisp which

supports finer-grained concurrency.

3.1. CAOS' Approach to Concurrency

A CAOS application is structured to achieve high degrees of concurrency in the application

execution in two principal manners: pipelining and replication. Pipelining is most appropriate

for representing the flow of information between levels of abstraction in an interpretation

system. Replication provides means by which the interpretation system can cope ,ith

*" arbitrarily high data rates.

. 3.1.1. Pipelining

Pipelining is a common means of parallelizing tasks through a decomposition into a linear

. sequence of concurrently operating stages. Each stage is assigned to a separate processing unit

which receives the output from the previous stage and provides input to the next stage.

Optimally, when the pipeline reaches a steady-s:ate, each of the processors is busy performing

its assigned stage of the overall task.

CAOS promotes the use of pipelines to partition an interpretation task into a sequence of

interpretation stages where each stage of the interpretation is performed by a separate agent.

As data enters one agent in the pipeline, it is processed, and the results are sent to t!.e next

agent. The data input to each successive stage represents a higher level o" abstraction.

Sequential decomposition of a large task is frequently very natural. Structures as disparate as

manufacturing assembly lines and the arithmetic processors of high-speed computing systems p
are frequently based on this paradigm.

Pipelining provides a mechanism whereby concurrency is obtained without duplication of ,..-

mechanism (i.e., machinery, processing hardware, knowledge, etc.). In an optimal pipeline of n

processing elements, the throughput of the pipeline is n times the throughput of a single

processing element in the pipeline.

Unfortunately, it is often the case that a task cannot be decomposed into a simple linear

sequence of subtasks. Some stage of the sequence may depend not only on the results of its
immediate predecessor, but also on the results of more distant predecessors, or worse, s "le

distant successor (e.g., in feedback loops). An equally disadvanageous decomposition is one in
which some of the processing stages take substantially more t.ne than others. The effect of

either of these conditions is to clise the pipeline to be used less effici i Both these

"*"

. * .
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conditions may cause some processing stages to be busier than others. In the worst case, some

stages may be so busy that other stages receive almost no work at all. As a result, the

n-element pipeline achieves less than an n-times increase in throughput. We discuss a partial

remedy for this situation below.

3.1.2. Replication

Concurrency gained through replication is ideally orthogonal to concurrency gained through

pipelining. Any size processing structure, from an individual processing element to an entire

pipeline, is a candidate for replication. Consider a task which must be performed on the

average in time t, and a processing structure which is able to perform the task in time T,

where T > t. If this task were actually a single stage in a larger pipeline, this stage would then

be a bottleneck in the throughput of the pipeline. However, if the single processing structure

which performed the task were replaced by Tit copies of the same processing structure, the

effective time to perform the task would approach t, as required. Replication is more costly

than pipelining, but it does avoid some of the problems associated with developing a pipelined

decomposition of a task.

Our work leads us to believe that such replicated computing structures are feasible, but not

without drawbacks. Just as performance gains in pipelines are impacted by inter-stage

dependencies, performance gains in replicated structures are impacted by inter-structure

'- dependencies.

Consider a system composed of a number of copies of a single pipeline. Further, assume the

actions of a particular stage in the pipeline affects each copy of itself in the other pipelines.

In an expert system, for example, a number of independent pieces of evidence may cause the

system to draw the same conclusion. The system designer may require that when a conclusion

is arrived at independently by different means, some measure of confidence in the conclusion

is increased accordingly. If the inference mechanism which produces these conclusions is

realized as concurrently operating copies of a single inference engine, the individual inference

engines will have to communicate between themselves to avoid producing multiple copies of

the same conclusion rather than a composite conclusion. Any consistency requirement between
"'' copies of a processing structure decreases the throughput of the entire system, since a portion

of the system's work is dedicated to inter-system communication. Examples of this situation

are shown in Section 4 where we describe the CAOS agent types for the ELINT application.

".,_ I
_ _ -',' " I
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3.2. Programming in CAOS

CAOS is basically a package of operators on top of Lisp. These operators are partitioned into

three major classes -- those which declare agent classes, those which initialize agents, and those

which support communication between agents. We now describe briefly the CAOS operators

for each of these classes. A more complete description of these operators is given in [13].

3.2.1. Declaration of Agents

Agents classes, like most object-oriented classes, are declared within an inher.tarl., 2'L G .

Each agent class inherits the attributes of its (multiple) parents. The root CAOS aget.

'anilla-agent, contains the minimal attributes required of a functional CAOS e .en.

CAOS agents have the vanilla-agent as a parent, either directly or indirect!,.

CAOS-declared agent class, process-agenda-agent, is a specialization of vanila-agert -d

includes a priority mechanism for scheduling the execution of messages. The vanilla-A Tent

schedules its messages in a FIFO manner only.

Application agent classes are declared by augmenting the following primary attributes -

CAOS-declared or other ancestral agent classes:

Local-Variables: An instance agent's local variables store its private state. The agent's r-n.!sage

handlers may refer freely to only those variables declared locally within the agenit. Each oca

variable may be declared with an initial value.

Messages-Methods: The only messages to which an agent may respond are those declared [t

agent's class declaration. Associated with each declared message name is the r,ame c.A ,e

message's iethod (i.e., the message's message handler). In CAOS, a method ilame must refer c,.

a defined Lisp procedure. This declaration simplifies the task of resourze allcat,,or -.i'-

must load application code onto each CARE site.

Clocks-Methods: An agent may periodically invoke actions based .n .;ttef.,! cluck 'tk..

example, the periodic update of emitter agents and the periodic ou:pj: .f .u-.:- s::>sT ., " '.-,-

are invoked by clock ticks. A clock is defined by its tick inter,.al. Whe!,:ter ...

agent clock ticks, the set of methods associated with that clock are :,h, .: ' Z

Critical-Methods: This attribute declares certain sets of methods as being mutually "critical

.'.' '
? I:.
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regions" for their owning agents.6 Each such set of critical methods has an associated lock.

%; Before an owning agent agent executes a critical method, this lock is checked. If it is

unlocked, the agent locks it and executes the method. Upon completion of the method, the

agent unlocks the lock. If the lock is locked, the method is queued in a FIFO queue awaiting

the unlocking of the lock.

There are a number of additional basic agent attributes. However, most of these are used only

internally by CAOS.

3.2.2. Initialization of agents

An initial CAOS configuration is specified by a two-component initialization form. The first

component of the form creates the static agent instances. Some agent instances are created

during system initialization and exist throughout a CAOS run. Such agent instances are called

static agents as opposed to dynamic agents which are created (and possibly deleted) during

program execution. For programmer convenience, we allow code in agent message handlers and

default values of local-variables to reference such static agents by name. Before an agent

instance begins running, each symbolic reference to the declared static agents is resolved by the

CAOS runtimes.

The second component of the form is a list of expressions to be evaluated sequentially when

CAOS's static agent instantiation phase is complete. Each expression is intended to send a

message to one of the static agents declared in the first part of the form. These messages serve

to initialize the application. For example, in the ELINT application the initialization messages

open log files and start the processing of ELINT observations.

Agent instances may also be created dynamically during execution. The creation operator

accepts an agent class name and a location specification.7 The remote-address of the

newly-created agent instance is returned. The remote-address of an agent includes the CARE

site coordinates where the agent resides and a pointer to the agent in the address space of that

design goal for ELINT in CAOS was to avoid the use of critical methods, and our FLIN-T implementation does

not use any. The CAOS initialization routines, however, do use such methods.

'Currently. agents may be created only "at" or n specified CARF- sties. CAOS makes no attempt at d~nam',.

load balancing.

'44

V.
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site. A dynamically created agent may not be referenced symbolically, however, its

remote-address may be exchanged freely.

3.2.3. Communications Between Agents

Agents communicate with each other by exchanging messages. CAOS does not guarantee %hen

messages reach their destinations. Due to excessive message traffic or processing element

failure, messages may be delayed indefinitely during routing. It is the responsibility of the

application program to detect and recover from such delayed messages. I_

Two classes of messages are defined: those which return values, called value-desired messages,

and those which do not, called side-effect messages. The value-desired messages are made to

return their values to a special cell called a future which represents a "promise" for an v
eventual value. 8 Processes attempting to access the value of a future are blocked until that

future has had its value seL Futures are first-class data types, and they may be manipulated by

non-strict Lisp operators (e.g.. list) even if they have not yet received a value. It is possible

for the value of a CAOS future to be set more than once, and it is possible for there to be ___

multiple processes awaiting a future's value to be set.

The CARE primitive post-packet, which sends a packet from one process to another, is

employed in CAOS to produce three basic kinds of message sending operations:

post: The post operator sends a side-effect message to an agent. Thi sending process supplies ?.

remote-address to the target agent (or its name in the case of a static agent), the message's

routing priority, and the message's name and arguments. The sender continues executing while I
the message is delivered to the target agent.

post-future: The post-future operator sends a value-desired message to the target agent. The

sending process supplies the same parameters as for post, and it is immediately returned a local

pointer to the future which will eventually receive a value from the target agent. As for post,

the sender continues executing while the message is being delivered and executed remotely. A

process may later check the state of the future with the future-satisfied? operator or a~cess the

future's value with the value-future operator. This latter operator will block the process (i.e..

- suspend itS execution and "swap it out") if the future has not yet eceived a value. When the

8 Futures are also used in Multilisp f14]. The HEP Supercomputer [15] implemented a simple version of '"1,ures as

a process synchronization mechamsm.

%-, ,.

'. *- - - , -. -.. . . .
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future finally receives a value, the blocked process is rescheduled for resumed execution.

post-value: The post-value operator is similar to the post-future operator except that the

sending process is immediately blocked until the target agent has returned a value. This
:." operator is defined in terms of post-future and value-future, and it is provided for

* programming convenience.

It is possible to detect delay of value-desired messages by attaching a timeout to the associated I
future. The operators post-clocked-future and post-clocked-value are similar to their untimed

. counterparts but allow the caller to specify a timeout-period and timeout-action to be

performed if the future is not set within the timeout-period. Typical timeout-actions include

setting the future's value to a default value or resending the original message using the repost

operator.

There also exist versions of the basic posting operators which allow the same message to be

sent to mnltiple agents simultaneously. These versions exploit the multicast facilities of CARE

(see Section 5).9

Multipost sends a side-effect message to a list of agents while muultipost-future and

multipost-value send vale-desired messages to lists of agents. In the latter two cases, the

associated future is actually a list of futures, and the future is not considered satisfied until all

the target agents have responded. The value of such a message is an association-list where each

entry in the list is composed of an agent's remote-address or name and the returned message

value from that agent. There exist clocked versions of these operators (called, naturally,

multipost-clocked-future and multipost-clocked-value) to aid in detecting delayed multicast

messages.

3.3. The Runtime Structure of CAOS

CAOS is structured around three principal levels: site, agent, and process. Two of these levels,

site and process, reflect the organization of CARE. The remaining agent level is an artifact of

CAOS. We describe here only briefly the runtime structure of CAOS. This structure is

described in greater detail in [131.

9Neither CAOS nor CARE currently support a "predicated muticast" mode wherein messages would be sent to all

agents satisfyirg a particular predicate. Messages can only be multicast to a fully-specified list of agents. Receiving

agents can. of course. apply arbitrary predicates to the message in order to determine their consequent action-

I"

~ ~ K.--
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The implementation of CAOS described in this report is written in Zetalisp [1] and the

primitive CARE operators using Zetalisp's object-oriented programming tool, Flavors[l].

Each CARE site contains a CAOS Site-Manager. A Site-Manager is realized as a Flavors

instance. Its instance variables store site-global information needed by all agents !ocated on

the site. In addition, each Site-Manager includes CARE-level processes which perform the

e functions of creating new agents on its site and translating static agent symbolic names into

agent addresses.
'4..

Each CAOS agent is also realized as a Flavors instance. A CAOS agent is a multipr,,-"es

entity. Most of the processes are created in the course of problem-solving activity. Tbhse

processes are refered to as user processes. At runtime, however, there are always two s.recia.

processes associated with each CAOS agent -- the agent input monitor process and the a C!, !'

scheduler process. The agent input monitor process watches the CARE stream by which Ot•

agent is known to other agents. It handles request messages and responses from value-desire.

4 messages from these agents. CAOS user processes are created in response to request messages

from other agents or clocked methods. The agent scheduler process collaborates with the

CARE site's operator processor in the scheduling of these user processes (see Section 5).

4. ELINT's Implementation in CAOS
We describe now the agent types and their organization for the ELINT application s

implemented in the CAOS framework. This implementation illustrates some of the benefits

and some of the drawbacks of the framework. As discussed in Section 2, FLINT is an expert

system whose domain is the interpretation of passively-observed radar emissions. ELINT is,

meant to operate in real time. Emitters appear and disappear during the lifetime of an FLINT

run. The primary flow of information in ELINT as implemented in CAOS is throUgh a

pipeline with replicated stages. Each stage in the pipeline is an agent. The basic ELINTrn'

pipeline is illustrated in Figure 4-1

Observation Observation Emitter°._ _ _ _ _ _-__ _ _ _ _ _

_ Figure 4-1: The basic ELINT a nt processing pipeline.

°J
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4.1. ELINT Agent Types

The ELINT agent types described here are those used by the CT control strategy version of

ELINT in CAOS (see Section 6).

Observation-Reader Agent

Observation-reader agents are an artifact of the simulated environment in which our ELINT

implementation runs. Their purpose is to feed radar observations into the system.

Observation-readers are driven off system clocks. At each clock "tick" (one ELINT time unit),

they supply all observations for the associated time interval to the proper observation-handler

agents. This behavior is similar to that of radar collection sites in an actual ELINT setting.

Observation-Handler Agent

The observation-handler agents accept radar observatiors from associated radar collection sites. ,-

Of course, in the simulated environment the observations actually come from

observation-reader agents. There may be several observation-handlers associated with each

collection site. The collection site chooses to which of its observation-handlers to pass an

observation based on some scheduling criteria, for example, round-robin.

The contents of an ELINT observation was described in Section 2. In particular, each

observation contains an identifier number assigned by the collection site to distinguish the

source of the observation from other known sources. This source identifier is usually, but not

always, correct. When an observation-handler receives an observation, it checks the

observation's identifier to see if it already knows about the emitter which is the observation's

source. If it does, it passes the observation to the appropriate emitter agent which represents

the observation's source. If the observation-handler does not know about the emitter, it asks

an emitter-manager agent to create a new emitter agent and then passes the observation to that

new agent.

Emitter-Manager Agent

There may be many emitter-manager agents in the system. An emitter-manager's task is to

respond to requests from observation-handlers to create new emitter agents with associated

source identifier numbers. If there is no such emitter agent in existence when the request is

received, the manager will create one and return its remote-address to the requesting

6P4 AL"6: .A-
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observation-handler agent. If there is such an emitter agent in existence when the request is

received, the manager will simply return its remote-address to the requestor. This situation

arises when one observation-handler requests an emitter that another observation-handler had

previously requested. Emitter-managers must also handle the case of "almost concurrent"

requests for the same emitter. This case occurs when a request is received for an emitter agent

which is currently being created by another process on another CARE site in response to a

slightly earlier request.

The reason for the emitter-manager's existence is to reduce the amount of inter-pipeline

dependency with respect to the creation of emitters. When ELINT creates an emitter it is

similar to a typical expert system drawing a conclusion based on some evidence. ELINT must

create its emitters in such a way that the individual observation-handlers do not each end up-

creating copies of the "same" emitter, that is. creating multiple emitter agents with the same

associated source identifier (see Section 3.1.2). Consider the following strategies that the

observation-handler agents could use to create new emitter agents:

1. The handlers could create the emitter agents themselves immediately as needed.

Since the collection sites tnlay pass observations with the same source identifier to•

any observation-handler, it is possible for multiple observation-handlers to each

create its own copy of the same emitter. This strategy is not acceptable.

2. The handlers could create the emitter agents themselves, but inform the other

handlers that they have done this. This scheme breaks down when two handlers try

simultaneously (or almost simultaneously) to create the same emitter.

3. The handlers could rely on a single emitter-manager agent to create all emitters.

While this approach is safe from a consistency standpoint, it is likely to be -

impractical as the single emitter-manager could become a processing bottleneck.

4. The handlers could send requests to one of many emitter-managers chosen by some

arbitrary method. This idea is nearly correct, but does not rule out the possibility

of two emitter-managers each receiving creation requests for the same emitter.

5. The handlers could send requests to one of many emitter-managers chosen through

some algorithm which is invariant with respect to the source identifiers-

Vp
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This last strategy is the one used used in our implementation of ELINT. The algorithm for

choosing which emitter-manager to use is based on a many-to-one mapping of source

identifiers to emitter-managers. 10

Emitter Agent

Emitter agents hold the state and history of the observation sources they represent. As each

new observation is received by an emitter agent, it is added to a list of new observations. On

a periodic basis, this list of new observations is scanned for interesting information. In

particular, after enough observations are received, the emitter may be able to determine the
heading, speed, and location of the source it represents. The first time it is able to determine

this information, it asks a ciuster-manager agent to either match the emitter to an existing

cluster agent (as described in section 2.3) or create a new cluster agent to hold the single

emitter. Subsequently, it sends an update message to the cluster agent to which it is associated

indicating its current heading, speed, and location.

0 Emitters maintain a qualitative confidence level of their own existence (possible, probable, V

positive and was-positive). If new observations are received often enough, the emitter will

increase its confidence level until it reaches positive. If an observation is not received by an

emitter in the expected time interval, the emitter lowers its confidence by one step. If the

-.. confidence falls below possible, the emitter deletes itself, informing its manager and any

cluster to which it is associated of its deletion.
-7-

Cluster-Manager Agent

The cluster-manager agents play much the same role in the creation of cluster agents as the

emitter-manager agents play in the creation of emitter agents. However, it is not possible to

compute an invariant to be used for a many-to-one mapping between emitters and cluster

managers. If ELINT were to employ multiple cluster-managers, any strategy for which of the

._ many managers an emitter agent chooses to request a cluster match could still result in the

creation of multiple instances of the "same" cluster 'i.e., multiple cluster agents representing

the same physical cluster of emitters). Thus, we have chosen to implement ELINT using only

a single cluster-manager. Fortunately, new cluster creation is a relatively rare event, and the

-_ 10The algorithm i-iplv compute- the sodrce identifier modulo the numher of emitter-,Tianagers ard r~aps hat

namher to a particu,:r marager

.. A..



single cluster-manager has never been observed to be a processing bottleneck.

As described above, requests from emitters to associate themselves with clusters are specified as

match requests over the extant clusters. Emitters are matched to clusters on the basis of their

location, speed, and heading histories. However, the cluster-manager does not itself perform

this matching operation. Although it knows about the existence of each cluster it ias created,

it does not know about the current state of those clusters. Thus, the cluster-manager asks all

of its clusters to (concurrently) perform a match.

If none of the clusters responds with a positive match, the cluster-manager creates a r, ew

cluster for the emitter. If one cluster responds positively, the emitter is added to the ,:. er

aid it is so informed of this fact. If more than one cluster responds positively, this asuaJIF

indicates that there is not yet sufficient resolution of the emitter's history to uniquely assoc-at, :

it with a cluster. In this case the emitter to cluster matching operation is tried again after

more observations of the emitter have been processed.

* Cluster Agent

The radar emissions from a cluster of emitters often indicate the activities of the aircraft

represented by that cluster. For example, emissions from a missile guidance radar indicate that

an air-to-air attack is imminent. Each cluster agent periodically applies heuristics about types

of radar signals to try to determine the current activities of its represented aircraft, and, in

particular, if these activities represent a threat to friendly aircraft. This activity information,

the aircraft type information, and the merged track parameters of the emitters associated v,th

each cluster are the primary outputs of the ELINT system. Also, each cluster periodically

checKs to see if all constituent emitters have been deleted. If so, it deletes itself.

Time-Manager Agent

Many of the knowledge-based actions taken by an ELINT agent make use of the agent's

last-observed time, that is, the time stamp of the most recent observation associated directly 'r

indirectly with the agent. For example, if an emitter agent determines that it has recei'ed no

new associated observations for several data time intervals (i.e., that it is 'out-cf-date"), it ,;

consider itself as no longer exisiting and it will delete itself and all of ius relational iinks from

ELINT's situation board. 11

.This action reflects the expectation knowledge that -f -in emrittei -ithin he area of ,bservat1,o1 1 Ohse ,-., t tir-e

t. then it is expected that it will be observed at tirne

.. . . . . .. ..... ,, ..... ..
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N: In an asynchronous message passing system such as CARE, it is difficult for an agent to

determine whether it is out-of-date because it has not been observed recently or because

messages to it which would result in an update of its last-observed time are delayed due to
p-

overall system load or local load imbalances. One solution to this problem would be for each

observation-handler agent to send an "end-of-observation-time-interval" message to each of its

known emitter agents whenever it observes the crossing of an observation time interval

boundary.
12

This solution was rejected for the reported implementation of gLINT because of a perceived

excessive message overhead. 13 Instead, our gLINT experiment uses a time-manager agent.

Whenever an observation-handler agent observes a new input observation time stamp, it reports

this new time to the time-manager via a message. The time-manager maintains a conservative,

global current observation time which is the minimum of the the reported time stamps.

Whenever any agent considers taking a drastic, non-reversible action which is based on its

being out-of-date (e.g., deleting itself), it requests a confirmation from the time-manager that

its (the requesting agent's) last-observed time is sufficiently older than the time-manager's

global current observation time. The requesting agent does not perform its considered action

until it receives the confirmation. If in the interim, the requesting agent receives any messages

which result in an update of its last-observed time, the confirmation is ignored.

Reporter Agent

Instances of the reporter agent class are used to asynchronously output various gLINT reports

to displays and/or files, for example, threat reports and periodic situation board reports. In

addition, instances of a specialization of the reporter class, debug-trace-reporter, are used

during application program debugging to asynchronously output debugging traces in a manner

that minimally impacts system timing dependencies.

%b

12Since each input observation stream is in observation-time sequential order, each observation-handler eventually

knows when such a time boundary is crossed.

13This overhead may be more perceived than actual. A more recent implementation of ELINT uses such

"end-of-observation-time-interval" messages. Initial results seem to indicate that the associated cost is not excessive

(swe (16])

P?
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4.2. ELINT Agent Organization
49.

The ELINT agents are basically organized as a pipeline with replicated stages where each stage

is an agent. Inter-pipeline dependencies and dependencies between replicated stages are

managed by emitter-manager and cluster-manager agents. The amount of replication (i.e.. the
number of agents) at each pipeline stage is a function of that stage. For some stages, the

number of replicated agents at that stage is fixed during system initialization. For example,

the numbers of observation-handler agents, emitter-manager agents, and cluster-manager agents J

are pre-determined based on the number of collection sites and their output data rates. The

numbers of emitter stages and cluster stages vary during the course of execution since the

corresponding emitter agents and cluster agents are created and deleted as the radar emitters

and collections of radar emitters which they represent appear and disappear over time.

The overall organization of the ELINT agents is illustrated in Figure 4-2

Folige4o:neovrl EiT ent comuniatin riain

5AnOerview OseCaREo

Time T_.,.,.lus~o

The CARE architectural specification and its simulation environment provide a parameterized

and instrumented multiprocessor simulation testbed designed to aid research in alternati

parallel architectures. The testbed executes within SIMPLE, a hierarchical. event-driven

simulator [3].

A CARE architecture is a grid of tens to hundreds of processing sites interconnected via a

.1...-
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dedicated communications network. The network uses dynamic, buffered, cut-through routing,

and it supports multicast inter-site message transmission. The ELINT experiment, for example,

was performed on various square CARE grids of hexagonally connected sites, that is, each site,

excluding those at the edges of the grid, is connected to six of its eight nearest neighbors.

As shown in Figure 5-1, each CARE site consists of an evaluator. a general-purpose

processor-memory pair; an operator, a dedicated communications and process scheduling

processor which shares memory with the evaluator; and network interfaces -- net-inputs and

net-outputs -- that accomplish pipelined message transmission, flow control, deadlock

avoidance, and routing. Each net-input at a site may establish a connection with a net-output

at any site, and all such connections at a site may be simultaneously active.

.:.,,

OPERuATOR

II

Figure 5-1: A hexagonally connected CARE grid.

Application-level computations take place in the evaluator. The operator performs two duties. WI

As a communications processor, it is responsible for initiating and receiving messages. As a

scheduling processor, it queues application-level processes for execution in the evaluator.
Message routing is performed by the net-input and net-output network interfaces.

In our simulation of CARE, the evaluator is treated as a "black box" Lisp processor. None of

its internal operation is simulated. The Lisp machine hosting the simulation serves as the
evaluator in each processing site. The operator, however, is functionally simulated, and the

network interfaces are simulated and instrumented in great detail.
-7.
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CARE allows a number of parameters of the processor grid to be adjusted. Among these

parameters are: the speed of the evaluator, the speed of the communications network, the

network routing algorithm, and the speeds of the process creating and switching mechanisms.

By altering these parameters, a single processor grid specification can be made to simulate a

wide variety of actual multiprocessor architectures. For example, we can experiment with the

optimal level-of-granularity of problem decomposition by varying the speed of both p. *

process-switching and communications. Alternative network topologies can be studied by using

SIMPLE's graphic interfaces and composition operators to configure CARE components into

any topology that can be wired.

The CARE simulation environment provides detailed displays of such information as evaluator,

operator, and communication network utilization, and process scheduling latencies. Tnis

instrumentation package informs developers of CARE applications of how efficiently their

systems make use of the simulated hardware.

A more detailed description of CARE is given in [16], and the technology considerations

* underlying the CARE architecture are discussed in Appendix I.
.4'.

6. Results and Conclusions
The CARE architectural simulation testbed and the CAOS system we have described have been

fully implemented, and they are in use by several groups withir our Architectures Project. ..

CAOS-CARE executes on the Symbolics 3600 family of machines as well as on the Texas

Instruments Explorer Lisp machine. ELINT, as described in Sections 2 and 4, has also been p
fully implemented, and we have analyzed its performance on various size CARE grids.

6.1. Evaluating CAOS

CAOS is a rather special-purpose environment, and it should be evaluated with respect to the

programming of concurrent, real-time signal interpretation systems. In this section, we explore
CAOS's suitability along the dimensions of expressiveness, efficiency, and scalability.

* 6.1.1. Expressiveness

When we ask that a language be suitably expressive, we ask that its primitives be a good match

' to the concepts the programmer is trying to encode. The programmer should not need to

resort to low-level "hackery" to implement operations which ought to be part cf the language.

We believe we have succeeding in meeting this goal f r CAOS (although to date, only CAOS's 7

' designers have written CAOS applications). Programming in CAOS is essentially programming

7. !'.r.
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in Lisp using objects but with added features for declaring, initializing, and controlling

concurrent, real-time signal interpretation applications.

6.1.2. Efficiency

CAOS has a very complicated architecture. The lifetime of a message involves numerous

processing states and scheduler interventions. Much of this complexity derives from the desire

to support alternate scheduling policies within an agent. The cost of this complexity is
approximately one order of magnitude in processing latency. For the common settings of

simulation parameters, CARE messages are exchanged in about 2 to 3 milliseconds. while

CAOS messages require about 30 milliseconds. It is this cost which forces us to decompose

applications coarsely, since more fine-grained decompositions would inevitably require more Jr
message traffic.

We conclude that CAOS does not make efficient use of the underlying CARE architecture.

This conclusion has lead to an evolution of both CAOS and CARE which is described briefly

in Section 6.3 and in detail in [16].

6.1.3. Scalability

A system which scales well is one whose performance increases commensurately with its size.

Scalabilicy is a common metric by which multiprocessor hardware architectures are judged. For

example, does a 100-processor realization of a particular architecture perform ten times better

than a 10-processor realization of the same architecture? Does it perform only five times

better, only just as well, or does it perform even worse? In hardware systems, scalability is

typically limited by various forms of contention in memories, busses, etc. The 100-processor

system might be no faster than the 10-processor system because all interprocessor

communications are routed through an element which is only fast enough to support ten

processors.

We ask the same question of a CAOS application. Does the throughput of ELINT, for

example, increase as we make more processors available to it? This question is critical for

CAOS-based, real-time interpretation systems. Our only means of coping with arbitrarily high

data rates is by increasing the number of processors.

We believe CAOS scales well with respect to the number of available processors. The potential

limiting factors to its scaling are increased software contention, such as the inter-pipeline

bottlenecks described in Section 3, and increased hardware contention, such as overloaded

processors and/or communication channels. Software contention can be minimized by the
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design of the application. Communications contention can be minimized by executing CAOS

on top of an appropriate hardware architecture such as that afforded by CARE. CAOS

applications tend to be coarsely decomposed. They are bounded by computation, rather than

communication, and communications loading was not a problem in our ELINT-CAOS-CARE

experiment.

Unfortunately, processor loading remains an issue. A configuration with poor load balancing

in which some CARE sites are busy while others are idle does not scale well. Increased

throughput is limited by contention for processing resources on overloaded sites while resources

on unloaded sites go unused. The problem of automatic load balancing is not addressed by

CAOS as agents are simply assigned to processing sites on a round-robin basis with no attempt

to keep potentially busy agents apart. We currently have no solution to the problem of I.-

processor load balancing beyond that of careful!y "hand crafting" a site allocation strategy for

each application and then "tuning" that strategy via succesive refinement.

6.2. Evaluating ELINT Under CAOS

The input data set used for most of our ELINT-CAOS runs was based on a scenario involving

16 aircraft mounting a total of 88 radar emitters with between 4 and 45 emitters active and

observed during any one data time interval. The scenario takes place in a 60 by 80 mile area

over 36 time units, and it involves 1040 separate emitter observations.

Our experience with ELINT indicates that the primary determiner of throughput and solution

*. quality is the strategy used in making individual agents cooperate in producing the desired

interpretation. Of secondary importance is the degree to which processing load is evenly

. balanced over the processor grid. We now discuss the impact of these factors on ELINT's

performance.

The following three "control" strategies were used in our experiment:

1. NC: This "no control" strategy represents limited inter-agent control. Agents

initiate actions independently. Whenever an agent wants to perform an action, it

does so as soon as processing resources are available. For example, whenever an

observation-handler agent needs a new emitter agent, it simply creates it with no

attempt to coordinate this creation with other observation-handlers. As a result,

multiple, non-communicating copies of an emitter may be created, and each copy

receives a only portion of the input data it requires. The NC strategy was expected

to produce qualitatively poor results, and it was primarilly intended only as a

%.
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baseline against which to compare more realistic control strategies. What was

surprising was that the strategy also produced quantitatively poor results (see below).

2. CC: In this strategy, agents cooperate in the creation of new agents via manager

agents as described in. Section 4. The manager agents assure that only one copy of

an agent is created, irrespective of the number of simultaneous creation requests.

All requestors are returned a reference to the single new agent Originally, we

believed the CC (for "creation control") strategy would be sufficient for ELINT to

produce satisficing high-level interpretations. Our experiment results showed that

s. was not always the case (see below).

3. CT: The CT ("creation and time control") strategy was designed to additonally

manage the skewed views of real-world time which develop in agent pipelines. For

*example, this strategy prevents an emitter agent from deleting itself when it has not

received a new observation in a while even though some observation-handler agent

has sent the emitter an observation which it has yet to receive. The agents

corresponding to the CT strategy are those described in Section 4.

Table 6-1 illustrates the qualitative effects of the various control strategies and grid sizes. The

table presents the six major performance attributes by which the quality of an ELINT run is

measured. Since the input data for the ELINT experiment were generated from known

scenarios, it was possible to compare the results of an ELINT run with "ground truth."

.0 Table 6-1: ELINT Solution Quality Versus Control Strategies and Grid Sizes.
pu''4

Qualitative Control str2tegy/grid size
performance
attribute

- .'. NC/16 CC16 CC136 CTI4 CT/16 CT/36

False alarms 1% 0 0 0 0 0

Reincarnation 49% 42 2 0 0 0

Confidences 19% 20 90 89 93 95

Fixes 48% 42 99 100 100 100

Threats 65% 63 81 87 87 90

Fusion 0% 0 77 85 88 89

%4

The major qualitative performance attributes are:

False Alarms: This attribute is the percentage of emitter agents that ELINT should not have .-,

. ..



NJ.. hpothesized as existing with respect to the total number of emitter agents hypothesized.
d,.

ELINT was not severely impacted by false alarms in any of the control configurations iniwhich it was run as the knowledge used for hypothesizing new emitters was quite conservat|% e.

That is, the knowlege was such that it prefered missing a true, but low confidence, emitter :-

creating a false alarm emitter.

Reincarnation: This attribute is the percentage of recreated emitter agents, that is, emrriteii

which had previously existed but had erroneously deleted themselves due to jack ot r.Cef-..

observations, with respect to the total number of emitters created. Large number"

-ei-icarnated emitters indicate some portion of ELINT is unable to keep up with che data

This can be caused by the data rate being too high globally so that all emitters are 4 ..c : -, 1.

or by the data rate being too high locally due to poor load balancing so that some sutsc',_""22.,
the emitters are overloaded.

The CT control strategy was designed to prevent reincarnations. Hence, none occuried when

CT was employed on any size grid. When the CC strategy was used, only the 36 site grid was

large enough for ELINT to sufficently keep up with the input data rate so that emitters were

not erroneously deleted due to overload.

Confidence Level: This attribute is the percentage of correctly deduced confidence levels for the

existence of an emitter with respect to the total number of times such :onfidence levels were

determined.

For each hypothesized emitter, ELINT maintains a dynamic confidence level for the existence

of the emitter based on accumulating evidence (see Section 4.1). The correct calculation of

confidence levels depends heavily on the system being able to cope with the incoming ,.ata

rate. One way to improve confidence levels was to use a large processor grid. The other w,

to employ the CT control strategy.

Fixes: This attribute is the percentage of correctly-calculated positional fixes of emitters '.

respect to the total number of times fixes could have been determined from the ground :".ih-
-" ".data. ,

A fix can be computed whenever an emitter has seen at least two observations from differ'""

- collection sites in the same data time interval. If, for example, an emitter is undergoing

reincarnation, it will not accumulate enough data to regularly compute fixes. Thus, the

approaches which minimized reincarnation tended to rnaxim;-e the correct caclior of fix

S-..
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information.

Threats: As described in Sections 2 and 4, certain emitter and cluster events represent

immediate threats. This attribute is the percentage of recognized threats with respect to the

total number of threat events based on the ground truth data.

Fusion: This attribute is the percentage of correct clustering of emitter agents to cluster agents.

The correct computation of fusion appeared to be related, in part, to the correct computation -;

of confidence levels. The fusion process is also the most knowledge-intensive computation in

ELINT, and our imperfect results indicate the extent to which ELINT's knowledge is

incomplete.

The overall goal of the control strategy experiments was to see if it was possible to determine

strategies where the quality of the output results were relatively insensitive to grid size and load

balance but still achived significant concurrency.

We interpret from Table 6-1 that the control strategy has the greatest impact on the quality of

results. The CT strategy produced high-quality results irrespective of the number of processors

used. The CC strategy, which is much more sensitive to processing delays, performed nearly as "

well only on the 36 site grid. We believe the added complexity of the CT strategy, while never

detrimental, is primarily beneficial when the interpretation system might be overloaded by high

data rates or poor load balancing.

Table 6-2 gives the simulated execution times for the ELINT runs used to derive the data in

Table 6-1. and Table 6-3 gives the total CAOS message counts for these runs.

Table 6-2: Simulated ELINT execution times for various control strategies
and grid sizes.

Grid size
Control __•
strategy

4 16 36

NC >11.19 sec.

CC 10.87 5 12

CT 11.80 8.10 417

Tables 6-2 and 6-3 clearly show that the processing cost of added control is far outweighed by

the benefits in its use. Far less message traffic is generated, and the overall simulated time is

reduced. Note that for the runs whose executioa times are shown in Table 6-2, the input data

S%
. .. .. . I&
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Table 6-3: CAOS message counts for ELINT executions with various control
strategies and grid sizes.

Grid size
Control
strategy 16 36

NC >16118 msg.

CC 7375 4823

CT 4516 4703 4616 ..

rate was .1 seconds per ELINT time unit. Since the input data set used for these runs spanned

36 time units, the last observation was fed into the system at 3.6 (simulated) seconds. Hence,

this is the minimum possible simulated execution time for these runs.

Table 6-4 and Figure 6-1 show the quantitative effect of processor grid size when the CT

control strategy is employed. These results were produced with the input data rate set ten

times higher (.01 seconds per ELINT time unit) than that used to produce Table 6-2. The

minimum possible simulated execution time for the runs used to produce Table 6-4 is 0.36

seconds.

Table 6-4: Simulated ELINT execution time versus grid size for production
runs using CT control strategy.

Grid size Execution time

1 9.476 sec.

4 3.237

9 1.517

16 .761

25 .541
36 .557

As shown in Figure 6-1, the speedup achieved by increasing the processor grid size is nearly

linear in the 1 to 25 processor site range. However, the 36 site grid was slightly slower than

-
.4,
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Number of CARE processing sites

Figure 6-1: The relative speedup of ELINT executions on various size CARE grids.

the 25 site grid.14

In this last case, there was not sufficient data per ELINT time interval to warrant the

additional processors. That is, there was not enough concurrency to exploit 36 processors.

This can be seen from Table 6-5 which gives timing results for larger data sets with more

emitters and observations during each time interval and, hence, more potential for concurrency.

Table 6-5: Simulated ELINT execution times and speedup for larger data sets.

Number of 1-site grid 36-site grid Speedup of
Observations execution time execution time 36 over I

1040 9.476 sec. .557 sec. 17.0

2080 25.10 .948 26.5
4160 55.87 2.259 24.7

As shown in this table, for an input data set representing twice as many emitters and

m _ __

14Because of the intrinsic non-determinism of a CARE architecture, we observed variations in the solution qualities

and the run times between different runs of the same input data set on the same size CARE grids. For such runs, the

variations in solution qualities never exceeded a fraction of a percent. However, the varitions in run times where as

much as five percent. This accounts for the slightly longer execution time on 36 versus 25 processors.
1.? '0
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observations than the basic data set, the 36 site grid achived a speedup factor of 26.5 (as

opposed to a speedup of 17.0 for the basic data set) over a single processor. However, for a

data set four times larger than the basic data set, the speedup factor was only 24.8. This was

because this larger, and hence more concurrent, data set saturated the 36 site grid. That is, the

2080 observation data set already provided enough concurrency to fully exploit the 36 site grid.

6.3. Son..: Open Questions
CAOS has been a suitable framework in which to construct concurrent signal interpreta o-.

systems, and we expect many of its concepts to be useful in our future computing architec'

Of principal concern to us now is increasing the efficiency with which the underlyinj C ,

architecture is used. In addition, our experience suggests a number of questions to be e'-,,red 

in future research:

What is the appropriate level of granularity at which to decompose problems for

CARE-like architectures?

* What is the most efficient means to synchronize the actions of concurrent problem

solvers when necessary?

* How can flexible scheduling policies be implemented without significant loss of

efficiency? What is the impact on problem solving if alternate scheduling policies

are not provided?I S1

Are there efficient mechanisms for dynamically balancing processor !oads?

We have started to investigate these questions in the context of a new CARE envircr-ie"-

One of the primary difference between the original environment and the new environ,e -  ,

that the process is no longer the basic unit of computation. While the new CARE system st,

supports the use of processes, it emphasizes the use of contexts which are computations .. '..

less state than those of processes.

When a context is forced to suspend to await a value from a remote service, it is aborted *-d

restarted from scratch later when the value is available. This toehavior encourages more

fine-grained decomposition of problems written in a functional style where individual methods

are small and consist of a binding phase followed by an evaluation phase.

In addition, CARE now supports arbitrary prioritization of i.essage, delivered to streams. As

.~, "p, 21



a result, it is no longer necessary to include in CAOS a complex and expensive scheduling

strategy. Early indications are that the new CARE environment with a slightly modified CAOS

environment performs around two orders of magnitude faster than the configuration described

n this paper. The evolution of CARE and CAOS based on the results of our ELINT-CAOS

-.' ' -CARE experiment is described in greater detail in [16].
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I. Technology Considerations Underlying the CARE Architecture
The CARE simulation testbed can be used to simulate shared memory as well as message

passing multiprocessor architectures. For example, it has been configured to simulate a single

address space, shared global memory architecture where the processors (and their local cache

memories) are connected to the shared memory's controllers via a switching network. llowever.

the intended focus of the CARE testbed is on message passing, multiprocessor architectures

where each processor has significant local memory. This focus is based on technoiog.

considerations -- primarily communication versu. processing costs.

The base for development of general purpose multiprocessor systems, as for computer systems

generally, is given by the design constraints and opportunities established by evck! n2

semiconductor design and manufacturing processes. The VLSI design medium brings a new

perspective on cost -- switches are cheap while wires are expensive. Communication costs

dominate those associated with logic. Communication is currentl'. the resource in shortest

supply, and it will become more of a constraint rather than less as semiconductor lithographies

decrease.

The consequence of relatively expensive communication is that performance is enhanced if tdc

design establishes that whenever a lot of information has to move in a short time, it dues not

have to move far. Significant locality of high bandwidth links is a design goal. Am.ong the

highest bandwidth links in a computer system are those connecting the processor and r-,em('r\.

Thus, close coupling of processors with local memory is preferred.

To reduce demand on the communications resource to supportable levels, local memory sizes

for multiprocessors can be expected to increase to the 100K byte level and beyond, and block

transfers between backing store and such several hundred kilobyte local memories will be usea

to make the most efficient use of both memory structures and communications facilities.

Moreover, the functionallity of memory controlers will expand to include, for exampie,

management of request queues, the dispatching of results, and execution of synchroniza:lon

primitives; and thus, the distinctions between a memory controller and a small, simple

processor will become blurred.

The proportion of area for a simple, high performance processor to the total area of a

with, f)r example, 256K bytes of local storage can be re:.o. .ably estimated at around 15%.

From (i) this estimate of the incremental cost of adding a processor to a block of memory. (ii)

the significant size of the total local storage in the system, (iii) the blurrivz of distinctions

'4~,°'
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between fast, simple processors and memory controllers of increasing complexity, and (iv) the

tendency towards block tranfers between local memory and backing store, it follows that the
level of the storage hierarchy now labeled as "random access memory" is likely to be subsumed

by a combination of large local memories and fast, block access backing stores in

multiprocessor systems.

The performance of the available communication resource merits special attention in the

design of multiprocessor systems. For example, dynamic routing which selects available

inter-site links as needed is useful in balancing load, and thus it allows more of the

communication resource of the system to be exploited throughout a computation. Cut-though

routing which makes a routing derision on the fly as a packet is received reduces buffer

requirements in the system and minimizes latency experienced in network transit. Flow control

via signalling transmission delays back to the source based on local blockage information

together with single "word" buffering and transmission validation at each network input and

output port allows the source to complete a transmission in a time that does not depend on the

size of the network. Point to point multicast which sends (approximately) the same packet to

multiple targets using common resources to the largest degree possible can significantly enhance

overall communication performance. A communication resource with these features provides a

multiprocessor system with "virtual busses" that are established precisely as and when they are

needed.

These technology considerations have led us to focus our attention on the class of

multiprocessor hardware system architectures exemplified by CARE.

'S
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