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WIDEBAND PARALLEL-PLATE WAVEGUIDE,
PHASED-ARRAY ANTENNA Dist Special

INTRODUCTION A.-/

- ———

Availability Codes ,
Aveil and/or |-

P B %

Phased-array antennas have been studied for well over two decades. Many authors . ve
reported on analytical as well as experimental phased-array work. References 1 through S provide a
goed overview of this subject through 1970, Microstrip and microwave integrated ciicuit (MIC) weh-
nology have provided a renewed impetus to the phased-array studies [6]. Numerous papers have been
published in the last few years on the subject of phased arrays using microsirip clements. It is quite
cvident from the published literature that the primary concern of the rescarchers in this field remains
with the understanding of mutual coupling effects between array elements, and its impact on the per-
formance of the array, over the scan range and the frequency band.

An aspect of phased-array antennas that still remains of significant importance is the impedance
matching of an array over a fairly large frequency band (40% or more) and with a wide angle (coni-
cal) scan (coverage of +60° or more). Several analytical studies and some experimental work on
this particular aspect have been reported (see bibliography on WAIM-Phased Arrays).* However,
only limited data are available on broadband, wide angle scanned arrays. Thus, it is of considerable
interest to mvestigate both theoretically and experimentally, the design and development of a broad-
band, wide angle scanned phased array. Some theorctical studies were reported [7] for a simpler con-
figuration. This report discusses the experimental work conducted at NRL. The next secticn
discusses the general design specification of the phased array followed by the development of specifi-
cations of various waveguide simulators. Experimental results are then presented for three H-piane
simulators.  The results show that good aperture match, with voltage standing wave ratio (VSWR) of
=<2.1 over a 40% bandwidth is achievable for H-plane scanning. Finally, a brief discussion is
included on an 11 X 11 element array that was built to verify the scanning performance for E- as
well as H-plane scanning by measuring aclive element patterns. The measured results show that the
aperturc match is equally good, over £60° scanning and over 40% bandwidth, for scanning in both
planes. An extensive bibliography of the phased array literature is also included.

PRELIMINARY ARRAY DESIGN

Based on the general specifications of the phased array, the following specifics were settled on
al an carly stage.
Operating frequency band: S-band (2 to 4 GHz)
Square array grid of clements
Bandwidth = 40%
Maximum scan angle 6,,,, = 60°.

A squarc grid was chosen because it is the simplest and for waveguide simulation it may be
more convenient.

Manuscript approved October 31, 1986.
*Wide-Angle Impedance Matching (WAIM).
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Lz’:l
;i From the bandwidth and 6,,, specifications, the element spacing d can be readily determined _
s(}._; fromn
» d =< v ] ) .
3 A 1+ |sin 8, !
Q Equation (1), where \ is the wavelength, ensures that no grating lobe maxima appear. If £, is the
~ .- center frequency, the operating frequency band for a 40% tandwidth is 0.8 to 1.2 f,. Then, using
. Eq. (1), one can readily determine that d /A, must be less than 0.45. Thus, an element spacing of .
d/x = 0.4 was picked. Note that ), is the wavelength at frequency f. W
. Xy
The choice of f, within the S-band is quite arbitrary. It was picked as 3.5 GHz to facilitate the o
waveguide simulator design as discussed in the following section. ;(
O
The preliminary array design specifications, in addition to those delineated above, now includc: :\:
Operating frequency band : 2.8 to 4.2 GHz B
Center frequency fo. 3.5 GHz ¥ .
e Element spacing 4: 0.4 \,. e
2
\:’ DESIGN OF WAVEGUIDE SIMULATORS r,
e s
A The performance of a phased array is strongly influenced by the mutual coupling between its
o? elcments. This effect manifests itself as variations in the impedance of the array as a function o1 scan
i) direction. It is conveniently represenied as a variation of active impedance or as an element gain pat-
:'\‘ tern. However, measurement of either of these quantities requires the construction ¢f the entire
.'.',;: array. An alternative to this expensive proposition is the use of waveguide simulators that can effec-

tively simulate an infinite array to determine the impedance match of the elements in the actual (infi-
nite) array environment.

g >

LA,
R

The design principles of waveguide simulators have been treated in detail by Hannan and Bal- ‘_;". -

four [8] and Wheeler [9]. Following thesc references, a set of simulators for H-plane scan, E-plane
K scan, and intercardinal (IZ) plane scan can be designed. Each of the simulators will simulate a
specific scan angle at a given frequency. Thus. limited scan coverage can be obtained from each
simulator by varying the operating frequency. A proper choice of the simulators could then provide .
almost complete scan-range simulation with a limited number of simutators; this is particularly true N
for the wideband elements required in this project.

-

R

I

Far ey

ad] Figure | shows a square grid array with elements represented by circles. Also shown are :;":::!
several H-plane simulator geometries. That each one of these simulators will simulate an infinite ¥ 1

- array 1s obvious from simple image prirciples. These siimulators must operate in TE,, mode to simu- —

o~ late H-plane scan. This can be readily veritied by decomposing the TE,, mode in a waveguide in RS

:;3 terms of two plane waves at an angle 0, with respect te the axis of the simulator. The relationship A

L:_, between the simulator dimensions and the scan angle 0, is: i

Wi d )

! For H-plane scan: N sinf, =1 (2a) 9

2 ™

N For IC —plane scan: p(—; sin§, = 1/°2 (2b)

s'.::' where p is an infeger and d is the element spacing in the square grid. The corresponding simulator ;

ns

dimensions are:

H--plane:  pd/2 x d

]

IC - plane: pd/\Z_Z xd/N2.

-
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Fig. 1 — H-planc simulators in a square grid array; p = 3, 5, and 10
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O O O

Thne number of array elements needed for the simulator depends also on the scan angle. In
Table 1., the scan angles and the number of elements are tabulated for different values of p for H-
plane simulators. A value of 4 /), = 0.4 is assumed at the center frequency f,. In practice, it should
be noted that cften fractional elements may be omitted with negligible error in the results of simula-

tion.

Table 1 — Scan Angle and No. of Elements for
H-Plane Simulators for d /N = 0.4.

(o)
Waveguide Dimension L%x dJ

P Scan((‘:;rgle % | No. of Elements
3 56 1-1/2

4 39 2

5 30 ! 7172

6 25 I 3

7 21 3-12

8 18 4

9 16 4-1/2
10 15 5 ]

Figure 1 shows the threec H-plane simulators proposed for this task. They correspond to

p =35 and 10.

A range of scan angles can be simulated by variation of the frequency in cach of the simulaters.
Figure 2 shows the plot of the scan angle vs frequency for the three simulators. Note that Simulator
#1 (p =3) should not be operated beluw 3.0 GHz, since it has the TE,, mode cutoff frequency of
2.94 GHz. Alsc, the three simulators together over the 2.8 to 4.2 GHz band provide almost continu-
ous scan coverage from 12° to 78°. Simulation below 12¢ would require an increasingly larger size
simutator and a corresponding increase in the number of elements. Fortunately, the element gain pat-
terns are usually broad and thus, only a small change in the pauitern occurs over 0° to 12°. Thus, it
is not necessary to simulate the array at broadside (the 0° scan angle).
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An important aspect of the development of a phased-array system is the selection of an element. R
Many radiating elements are suitable for a phased array; however, the most frequently used elements

are dipoles, slots, and waveguides because of their simplicity. Another advantage of using one of -
these elements is that the mutual coupling effect has been extensively investigated by many workers. J\;._,ﬁ
Slot and dipole elements are quite suitable for microstrip and MIC technology. N

AN
. ) . . . . ISy

The present project, because of its wideband requirement, places a constraint on the selection of ot

an elemient. Waveguidcs, whether rectangular, circular, or square in cross section, are suitable for
wideband operauion.  But, since the element spacing 1s less than one-half wavelength, in a square grid
arrangement, the waveguides must be dielectric filled in order to reduce their physical size to meet

P

e
the array spacing. Fortunately, a parallel-plate wavcguide may be used as a radiator for the phased- ,::}:-5
array. Such an element is simple, has wide bandwidth, and does not require dielectric loading to o
meet the 0.4)\ element spacing in square grid. Also, as reported by Davis et al. [10] and Hrycak Y
[11]. a parallel-plate waveguide element fed by a stripline performs satisfactorily in a phased-array “P“f
environment. Thus, it was decided to use a parallel-plate waveguide radiator element. b

~
Parallel-Plate Waveguide Element L)

%
=,

The clement spacing at the center frequency (3.5 GHz) is 1.34 in. (0.4)). Thus, the parallel
plates must have a separation of almost 1.34 in. Since the standard $-oand waveguide E-plane dimen-
sion is also 1.34 in.. size of the parallel-platc waveguide was chosen to be the same. This waveguide

OO A Y S RO NS T s R S S e

must be fed at an interval of 1.34 in. Since, in the planar array, the parallel-plate clements will be e

stacked. the feed cannot be located at the top or the bottom. It must be fed from the back wall of the o

- guide. If it is fed in the center of this wall by using a strip line, because of the low impedance of the et
- feed. a wideband impedance transformer would be necessary. To circumvent this, the chosen feed is foa s
N a probe antenna that is fed by a coaxial cable that is located near the bottom of the back wall. This °"‘°“
[ ] end-feed arrangement in a rectangular waveguide would excite TE,, mode. Figure 3 shows the ,‘..::.
E detailed geometry of the parallel-plate waveguide element. ':.;.:-:
. _(,,(

N

b The dimensions shown for the probe in an S-band waveguide were arnved at cxperimentally. _‘::::
D The probe dimensions were optimized to give a low VSWR (less than 1.4) over the 2.8 to 4.2 GHz WY

band. Although a better match could be obtained, it was not deemed necessary since the probe will
be spaced closer in the parallel-platc waveguide than the equivalent spacing in the S-band guide
obtained through the image principlc. .

GIAESF Sl o B e« 2 toe, &l
e 7
BT ;
€x alc

PR ey S e, N e R Y L T A e T T A e, e E T T T T T e A
. Wy . e e T ’ rd AU AR LS NS SR AT N I - . .
e e O R e e I e e e Ly e T L e



WA e  AELRFAF W - oFLlhls gile w8 R e A e

LAWNRS \

a
x,

a W
'y "»

it

r.v

W

'
a = L

i

A

<

-
]
"
P

<

|_ano

x{

a
.'-

2.

NRL REPORT 9030

- FLANGE
e

S e

o 0 871

AAAARARTANRARIRRINNRRY

&

‘L/ouno:o | ( T
B I A
S B
PROBE ! R I
141 COAX - : ) & 3
! -
i i A
IR H E L1

Fig. 3 — Detailed geometry of the end-on, bottom-fed probe

The end-on, bottom fed probe for the parallel-plate waveguide element has several advantages.
First, it is simple to build and thus readily reproduced in a laboratory. Also, by adjusting its parame-
ters, it is possible, in principle, to avoid an impedance transformer.

EXPERIMENTAL RESULTS

As stated in the previous sections, probe-fed, parallel-plate waveguides are used as the radiating
clements of a phased array. The probe diniensions are optimized to give a low VSWR in a
waveguide over a 2.8 to 4.2 GHz range. The optimized dimensions were shown in Fig. 3. Figure 4
shows the input VSWR of that probe in S-band waveguide. It is clear that this VSWR is less than 1.4
over a broad frequency range
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Fig. 4 — Input VSWR of a coaxial probe in a S-band waveguide v+ frequency -
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:_'.‘-: As a starting point, the above optimized probed dimensions are used in waveguide-simulator
Y experiments. The probe dimensions are then optimized to reduce VSWR to the lowest level over the
N frequency range of interest for all three H-plane simulators.
Ay A

H-Plane Waveguide Simulators

A simulator is made up of a waveguide (here called a simulator waveguide) terminated in a scc-
tion of the array containing a small number of elements.  As stated earlier, the number of array ele-
ments for Simulator #1 is onc and onc-half. In practice, fractional clements can often be omitted
with negligible error in the simulator. Figure 5 shows the schematic diagram of Simulator #1. The
left-hand side shows Simulator #1 without an excitation waveguidec. The prebe is made up of a very
thin rectangular metal filament (of length /) supported by a rectangular piece of duroid (a diclectric
material). The right-hand side shows the simulator waveguide. Since the simulator waveguide is a
nonstandard waveguide, a standard S-band waveguide is used for excitation. To match the S-band
waveguide to the simulator waveguide, a tapered section is used. as shown in Fig. 5. The center of
that figure shows a rectangular diclectric piece of thickness /. This diclectric picce will simulate
Munk’s proposed dielectric sheet that is in front of the array face for aperture matching [12).

.
ok
!’xﬁ\
A, ;’:‘.’"\ g
\?qy Py
H 7 S
—r ) o A
- )
201 |! 2|34 .'; "
! | |' NS
4 w 1 :\“\ |‘
i | 4 Y
! ! A
}*—3.5——| b }'
ALL DIMENSIONS ARE IN INCHES s
Fig. 5 ~ Schematic dragram of Simulator 4 1 ° -
ta® o
Wi
.:.
Figures 6 and 7 show the schematic diagrams of two other H-vlane simulators. The simulator in LA
Fig. 6 contains two and one-half elements, and the simulator in Fig. 7 contains five elements. The 3 _'
scan angles represented by those simulators as a function of frequency were shown in Fig. 2. Figure ‘.’.

& shows these three H-plane simulators. Since Simulator # 1 contains only one full element, it is pos-
sible not only to measure input VSWR, but also the active input impedance. With the other two
simulators, only the input VSWR was measured.

S

7

T
. l}!,!{ ns
vt S

®
5

TTTTT __——'—‘_r'_"/_-_’K
~, 1] -

50 ————-f D

ALL DIMENSIONS ARE IN INCHES DAy

Fig. 6 — Schemantie diagram of Simulator #2
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N Figure 9 shows the VSWR vs frequency for Simulator #1. The results have peaks and valleys.
PR The reason for these variations was found to be due to the reflections from the ends of the tapered
o section of Simulator #1 because of its fimite length. Instead of building another simulator with a
o fonger tapered section, the reflections at each frequency of interest were tuned out by ustng metallic
T screws before the VSWR and active input impedance measurements were made. Figures 10 and 11
S show the results, The variations of VSWR and input impedance are much smaller, indicating the

A absence of reflections from the wpered waveguide section. These measurements were for a thin

metallic probe supported in the hack by a rectangular piece of duroid. Figure 12 shows VSWR vy
frequency for all three H-plane simulators. To compare the results, measurements were also made by
using a thick (10 mils) metallic probe with no dielectric backing, and the results are shown in Fig.
13. The results from Figs. 12 and 13 indicate that the thin probe with dielectric backing gave better
results,. The maximum VSWR over the whole frequency range of interest is 2.35 with dielectric
backing and 3.1 without dielectric backing of the probes. Since the dielectric backing for the probes
gave better results, it was decided to increase the dielectric backing to occupy the full cross section of
the waveguide sunuiator. It was reasoned that if this contiguration were to be successful, it will be
:’:ﬁ much ecasier to build an array because the probe elements can be built by using metallic deposition on
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? diclectric sheet (as will be discussed later). Figure 14 shows the rerults of VSWR @s a function of AOAS
, frequeney tor three H-plane simulators when the dielectric backing oaccupied the full cross section of TN
< the waveguide simulators. The VSWR curve for Simulator # 1 has improved, especially at the high- AR
4 . . - - . .
v frequency end compared to the results shown in Fig. 12, Simulator #3 results have also improved, N
“ but at the low frequency end. There is no noticeable change for Simulator #2. However, the max- N
' imum VSWR over the full frequency range is still 2.35 and did not degrade. Therefore, for conve- —vr—
N nience of design. the remaining experiments with the waveguide simulators were done with the probes :‘
. supported by a full dielectric sheet.
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Fig. 14 — VSWR vs frequency for three H-plane simulators with thin metallic strip probes
supported in the back by a thin dielectric sheet

Munk [12] proposed the use of a low dielectric constant slab in front of, and adjacent to, a
rhased array, as a technique to improve aperture matching over a large scan angle. According to
Munk {12], the slab dielectric constant ¢, and th> slab thickness 4 are given by

¢, = 1+c¢os b, 3)
and
A )
" 4 cos 6,
where 6, is the chosen optimum scan angle (<90°), for which the aperture is perfectly matched,
N\ is the wavelength in the dielectric slab,
and sin 6, = sin 8y/¢, .

For ¢, = 1.3 and center frequency of 3.5 GHz, the slab thickness d is calculated to be 1.09 in.
Munk, however, did not address the problem of broader bandwidths in his analysis. In the experi-
mental work presented here. different slab thicknesses were evaluated for improving bandwidth per-
formance.

The placement of the dielectric slab in front of the probes was varied. The best results were
obtained, however, when the slab is against the probes. The results presented here correspond to this
configuration only.

Figures 15 and 16 show results with slab thickne: »f 1 and 0.5 in., respectively. The best
results were obtained with a thickness of 0.5 in. with an increase in probe length to 0.7 in. Figure 17
shows these results.  Increasing the probe iength decreased the VSWR on the low-frequency side for
Simulators #2 and #3. It increased the VSWR for Simulator #1. The maximum VSWR for all the
simulators over the complete frequency range is 2.1. This is very close to our original goal of 2 over
a 40% bandwidth.
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Experimental Array

The results of the three simulators indicated the performance of the infinite array at only three
discrete scan angles over the frequency range of interest. To obtain additional information on scan
performance, a small array was built to measure the central element pattern, with all the other ele-
ments terminated in inatched load. If the aperture matching is perfect, the measured element pattern
will have a cosine variation with scan angle 8 (13). If the aperture matching is not perfect, the nor-
malized element power pattern is given by [13]

DD, 3
FO.9) = —5=cos§ (1= |T@.6)% )
where D, and D, are interelement spacings in rectangular coordinates x and y, 8 and ¢ are polar
coordinates, and " (8, ¢) is the element active-reflection coefficient.

From Eq. (5) and knowing the element pattern, the magnitude of the active-reflection coefficient
can be determined at any scan angle of interest. By repeating the experiment at different frequencies,
the array-aperture matching (active-reflection coefficient) can be found over the required freguency
and scan ranges. This is the motivation in building and making measurements ori an 11 X 11 array.
The optimized array parameters, as determined from simulator experimentai results were used in
building the 11 x 11 eiement array. Figure 18 shows the sketch of the array. The probe length is
(.7 in. The probes are etched (or deposited) on a thin duroid sheet. The individual probes are fed by
50 @ coaxial lines. The paralicl plates are extended beyond the probe location. Dielectric siabs,
inserted in front of the probes (and in between parallel plates), have also been used to improve aper-
ture matching. Parallel plate septa were first built to extend one inch beyond the probe locations.
Figure 19 shows the picture of the experimental array (with no diclectric loading). Additional exten-
sions of perallel plates to 1-1/2 and 2 in. were achicved by attaching additional meta! plates.

The active clement pattern of the central element was measured after terminating the rest of the
input coaxial lines with 50 Q loads. Preliminary results indicated that the finiteness of the array,
especially the abrupt ending of the parallel piates on the sides, caused ripples in the measured
clement-radiation pattern. The use of absorbing material around the array improved the situation.
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Figures 20 and 21 show the active clement patterns (patierns of the central element when all the e
other elements are terminated in matched loads), in the H- and E-plane, respectively, when the
parallel plates are extended to 1 in. beyond the position where the probes are located (but with no
dielectric loading). These are the measured patterns for each of several frequencics evenly spaced Y
over the frequency band of interest (2.8 to 4.2 GHz). The paiterns are shown for an angular range ——
slightly greater than £60°. However, our interest is mainly up to +60°. If the aperture matching is y
perfect, the pattern will be down to -3 dB at +60°, because as stated before, the active element pat-
tern should be a cosine function (as noted from Eq. (5) with ' = 0). For a mismatch with VSWR =
2. the reflection cocfficient ' = 1/3. Substituting the value for T' = 1/3 in Eq. (5). one shows that
the element pattern should be down to only -3.5 dB. The patterns in Figs. 20 and 21. however, are
down to -5 dB at 4.2 GHz for H-plane scanning and at 3.6 GHz for E-plane scanning. There are at

least two reasons for this. The first reason is the contribution owing to aperture mismatch, and the itG!!
other is the pattern ripples contributed by the finiteness of the array (14] and the location of the v !
absorbing material around the antenna array. The pattern ripples depended on the location of the e
absorbing material whenever the antenna-array setup was changed to make pattern measurements in et
different planes. Our mecasurements revealed that it was impossible to repeat patterns in any plane 2 '
with an accuracy better than +£0.5 dB. Therefore, even if the element pattern is down to -4 dB at -
+60°, the aperture could be well matched with VSWR < 2. The element patterns shown in Figs. AT
}_”.’: 20 and 21, however, are down to -5 dB at some frequencies, indicating a mismatch with VSWR = 2. ':»:: N
NN To improve the aperture match, a dielectric slab, initially 1 in. thick and with ¢, = 1.3, was inserted :f_-x:;x
s between the parallel plates. Figures 22 and 23 show the H- and E-plane active element parterns with ks
8& dielectric slab loading. The H-plane patterns are down to only 4 dB at all frequencies except 4.2 ,s'; "' |
q GHz. In the E-plane also, the patterns improved except at 4.2 GHz where the pattern became very e
;: poor. Results improved when the dielectric slab thickness is reduced to 0.5 in. The patterns so 7
A obtained are shown in Figs. 24 and 25. The H-plane patterns are down to about -4 dB at some fre- ‘;-_,
e quencies when scanned to £60°. At many other frequencies, the patterns are down to only 3 dB, iy
Yo which indicate good aperture match. As noted betore, the waveguide-simulator results showed that A
;J'.; the aperture is well maiched, with VSWR of about 2:1 for H-plane scanning. The E-plane patterns “5\; ‘
shown in Fig. 25 are no worse than H-plane patterns shown in Fig. 24, indicating a good aperture At
ry match even for E-plane scanning. N
> } "
:r,-f.: To determine the effect of the parallel-plate septa, the active element radiation patterns were e
;.: taken by extending the parallel plates to 1.5 in. and then to 2.0 in. in front of the probes, instead of A
i the original 1.0 in. Patterns were taken with and without dielectric loading. The results revealed that :

the 1 in. length for the paraliel-plate septa is about the best value. Therefore, no additional results
are presented.
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;-.
", DISCLUSSION AND CONCLUSIONS
"‘5.: This report covers the experimental work conducted on the design and development of a broad-
Ay band, wide angle scanned phased array. A parallel-plate waveguide element was used as the radiating
n element. Threc H-plane waveguide simulators were built and -1sed to optimize the array parameters
,}i to improve frequency and scanning performance. The experimen .| results obtained by using the S
& waveguide simulator showed that the aperture VSWR of less than 2.1 was achieved over a 40% fre- ?md
<0 quency bandwidth and for scan range of £60°. Experimentally optimized array parameters are then ’.%-
n used to build an 11 X 11 element array. The scanning performance of this array in H- and E plancs -
I was studied by measuring active element patterns. The measured results showed that the aperture Y
"o match is equally good with estimated VSWR of about 2 over +60° scan range and over 40% ;:-*.:
' bandwidth for H- and E-plane scanning. fss
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