e, MO BB

A

—— —— ——— e — — — —— e— R —
— —
.
-
. .

l= = 2
.

L

- E L e

-l

S

AD-A179 392

St{mulus Structures and Mental Representations
in Expert Comprehensfon of Computer Programs

Nancy Pennington
Center for Decision Research
Graduate School of Business

University of Chicago

September 1986

In Press, Cognitive Psvchology

Running Head- REFPRESENTATIONS IN COMFREHENSION

This research was sponsored by the Personnel and Training Research Programs,
Peychologlical Sciences Division, Office of Naval Research, under Contract No
KBONN14-82-K-0759, Contract Authority Identification Number, NR667-503.
Approved for public release; distribution unlimited.

part {s permitted for any purpose of the United States Government.

g7 4 /6 [23

Reproduction in whole or

Representations in Comprehension

ABSTRACT
Comprehension of computer programs {nvolves detecting or inferring different
kinds of relations between program parts. Different kinds of programming
knowledge facilitate detection and representation of the different textual
relations. The present research investigates the role of programming
knowledge in program comprehension and the nature of mental representations of
programs; specifically, whether procedural (control flow) or functional (goal
hierarchy) relations dominate programmers’ mental representations of progranms.
In the first study efghty professional programmers were tested on
comprehension and recognition of short computer program texts. The results
suggest that procedural rather than functional units form the basis of expert
programmers’ mental representations, supporting work in other areas of text
comprehension showing the importance of text structure knowledge in
understanding. In a second study forty professional programmers studied and
modified programs of moderate length. Results support conclusfons from the
first study that programs are first understood in terms of thelr procedural
episodes. However, results also suggest that a programmer’s task goals may
influence the relations that dominate mental representations later {in
comprehension.
" ' INTRODUCTION

Computer programming is a complex cognitive task composed of a variety of
subtasks and involving several kinds of specialized knowledge (Pennington &
Grabowski, 1986). A skilled computer programmer must understand the problenm
to be solved, design a solution, code the solution into a programming
language, test the program’s correctness, and be able to comprehend written
programs. These different aspects of programming require knowledge of the
real world problem domain, such as statistics, banking, or physics; knowledge
of design strategies and useful design components; knowledge of programming
language syntax, text structure rules, and programming conventions; knowledge
of cooputer features that {mpact program implenentation; and knowledge of the
user of the program. Central questions in the study of cognitive skills in
general and of programming In particular concern the nature of expert
knowledge and how various types of knowledge influence skilled performances
(Bisanz & Voss, 1981; Chi, Glaser, & Rees, 1982; Kieras, 1985; Miller, 1985).

The present research focuses on the subtask of computer program
comprehension, an important part of computer programming skill from both
practical and theoretical perspectives. It is estimated that more than 50% of
all professional programmer time is spent on "program maintenance™ tasks that
involve modifications and updates of previously written programs. Because the
programs are most often written by other programmers, comprehension plays a
central role in this endeavor. From a theoretical perspective, comprehension
involves the assignment of meaning to a particular program, an accomplishment
that requires the extensive application of specialized knowledge. Thus the
study of program comprehension provides an effective means for studying the
role of particular kinds of knowledge In cognitive skill domains.

The general approach employed in the present research is to regard a
computer program as a text. Because programs are instructions to a computer,
the closest analogs among natural language texts are {nstructions about how to
perform a particular task, often referred to as procedural {nstructions.
Procedural instructions and programs also share the feature that the text can
be "executed® to accomplish s goal.

—_7

SECUNTY CLASSFCATION (% 'siy FAGE

For vecf
REPORT DOCUMENTATION PAGE # W o e 0o0e 0158
Ta REPORT SECURITY (LASSIFICATION tb RESTRICTIVE MARKINGS

7a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAHABILITY OF REPORT
Approved for public release; distribution

2b DECLASSIFICATION (DOWNGRADING SCHEDULE unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

Technical Report No. 3-ONR

68 NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL Te. NAME OF MONITORING ORGANIZATION
Graduate School of Business (If applicabie) Personnel and Training Research Programs
University of Chicago Office of Naval Research (Code 1142pT)
6¢. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZiP Code)
1101 E. 58th Street 800 North Quincy Street
Chicago, IL 60637 Arlington, VA 22217-5000
Ba NAME OF FUNDING s SPONSORING 8b OFFICE SYMBOL | 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
N00014-82-K-0759
8¢ ADORESS (City. State, and 2iP Code) 10 SQURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO
61153N RR04206 kRO4206—OA NR667-503

Y1 TITLE (incluge Security Classification)
Stimulus Structures and Mental Representations in Expert Comprehension of Computer
Programs

12 PERSONAL AUTHOR(S)
Penningtcn, Napcy

132 TYPE OF REPORT 13b TIME COVERED 18 DATE OF REPORT (Year, Month, Oay) |15 PAGE COUNT
Technical Report | FROM _2/85 _7to_8/85 September 1, 1986 50

16 SUPPLEMENTARY NOTATION
in press, Cognitive Psychology

17 COSAT) CODES 18 SUBJECT TERMS (Contrnue on reverse if necessary and sdentify by biock number)
FIELD GROUP SUB-GROUP . .
05 0a computer programming, expertise, text comprehension
< cognitive skill, problem solving, software psychology

'9 ABSTRACT (Continue on reverse if necessary and «dentfy by biock number)

This report is a complete revision and extension of a previous technical report
(Technical Report No. 2-ONR, January, 1985) with the same title; additional data are
reported in this version.

Comprehension of computer programs involves detecting or inferring different kinds of
relations between program parts. Different kinds of programming knowledge facilitate
detection and representation of the different textual relations. The present research
investigates the role of pyogramming knowledge in program comprehension and the nature
of mental representations of programs; specifically whether procedural (control flow) or
functional (goal hierarchy) relations dominate programmers' mental representations of .
programs. In the first study eighty professional programmers were tested on . o
comprehension and recognition of short computer program texts. The results suggest

20 DISTRIBUTION/ AVAHLABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
O uNCLASSIFIED/UNLIMITED B SAME AS RPY J oric USERS unclassified
228 NAME OF RESPONSIBLE INDIVIDUAL I 22b TELEPHONE (include Ares Code) | 22c OFFICE SYMBOL
Dr. Michael Shafto 202-696-4596 ONR 11420T

0D form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

19.

(cont.)

that procedural rather than functional units form the basis of expert programmers®
mental representations, supporting work in other areas of text comprehension
showing the importance of text structure knowledge in understanding. In a second
study forty professional programmers studied and modified programs of moderate
length. Results support conclusions from the first gtudy that programs are first
understood in terms of their procedural episodes. However, results alsc suggest

that a programmer's task goals may influence the relations that dominate mental
representations later in comprehension.

-

One advantage to viewing programs as texts {s that theories and methods
{n the study of text comprehension are relatively well developed so that
widely accepted characterizations of text comprehension can serve as a
starting point for thinking about the comprehension of programs. According 'o
the dominant view, various knowledge structures (often referred to as schemas
or frames) relevant to the text are activated In the course of comprehension
of the text (e.g., Adams & Collins, 1979; Rumelhart, 1980). For example, {f 4
person is reading a story about a trip to France, knowledge about how stories
tyvplcally proceed (a story schema) as well as more specific content knowledge
about vacation trips, the parts of France, etc., would be activated. Schema«
that are verified (or persist) provide the perspective from which the text is
understood, allow the reader to account for and Interpret information
explicitly mentioned in the text, and enable inferences to be made about
information not mentioned. For example, the reader may determine after awhile
that the story involves a business trip rather than a vacation trip so that
information initially interpreted in the context of a vacation may be
reinterpreted in terms of knowledge about business trips. This process
results {n a mental representation of the text that is influenced by
information and structure in the stimulus text as well as information and
structure provided by activated knowledge. The memory representation of the
text 1s assumed to have levels. One of the most widely cited theories
distinguishes between a microstructure level consisting of propositions and
their interrelations that correspond closely to the text and a macrostructure
level consisting of a smaller number of propositions that characterize the
text at a more abstract level (Kintsch & van Dijk, 1978). The theory implies
that a key process in text comprehension involves chunking the text {nto
segments that correspond to schema categories so that labels for segments will
constitute the macrostructure for the text (Kintsch, 1977). 1In other words,
the structure of activated knowledge is an organizing framework for the ment!
representation of the text at the macrostructure level. Thus mental
representations of text and the related knowledge structures are linked in the
comprehension process.

The purpose of the present research is to explore the role of two kinds
of programming knowledge -- text structure knowledge (Basil{ & Mills, 1982;
Curtls, Forman, Brooks, Soloway, & Ehrlich, 1984) and plan knowledge (Solowav
& Ehrlich, 1984) -- that might describe macrostructures {n the construction of
mental representations of program texts. These kinds of knowledge have
analogs In other text comprehension domains (see Mandler, 1984 as well as
Britton & Black, 1985 for many examples); they play a special role in
understanding procedural Instructions and programs because complete
comprehension of programs (and other texts) requires understanding multiple
relations between parts of the text that are difficult to view simultaneously
Thus, the nature of the macrostructure will determine which aspects of the
text will be relatively easier or more difficult to understand.

In the sections that follow, our analysis of program comprehension begins
with analyses of the computer program stimulus structures. These analyses are
abstractions of the text and they are intended to illustrate features of the
text (not mental entities) that may or may not be detected during
comprehensfon. We then describe two kinds of programming knowledge structures
that are involved In computer program comprehension and propose two
alternative hypotheses concerning the kind of knowledge that plays an
orpanizing role Iin the mental representation of the text. Because there are
correspondences between certain abstractions of the text and particular types
of knowledge, the kind of knowledge that provides organizing structure in the

2

resulting mental representation of the text will have Implications for which
text features are explicitly Included in the mental representation. These
hypotheses and their implications are tested I{n two empirical studies.

MULTIPLE ABSTRACTIONS OF COMPUTER PROGRAM TEXT

For computer programs, as for other types of texts, there are different
kinds of information i{mplicit "in the text™ that must be detected In order to
fully understand the program (Creen, 1980; Creen, Sime, & Fitter, 19R0;
Pennington, 1982). For example the sequence of statements in the program and
certain keywords provide information about the sequence in which program
statements will be executed. This kind of information {s called the control
flow of the program and understanding a program requires understanding {ts
control flow. Another kind of information contained in programs, called the
data flow of the program, concerns the changes or constancies In the meaning
or value associated with the names of program objects throughout the course of
the program.

In the {llustration that follows, a sample program text i{s analyzed In
terms of four different kinds of {nformation implicit in the text. Each of
these analyses results in an abstractlion of the text that highlights one set
of relations between program parts but obscures others. The analyses are not
intended to be claims about mental representations, rather these abstractions
are based on formal analyses of programs developed by computer scientists.
Analyses of natural language text In terms of underlving causal, referential,
or logical relations are similar abstractions of text based on different kinds
of information in the text that are relevant to {ts comprehension (Kintsch,
1974; Mever, 1975, Trabasso, Secco, & van den Broeck, 1982).

The program text to be analyzed {s written in COBOL, a programming
language noted for {t resemblance to English (see Figure 1.A). Thls program
solves a toy problem in which a list of clients and their product orders for a
month are processed and average order sizes for two subsets of clients are
computed (see Figure 1.B).

Sk AR R ok ok o ok ok o

Insert Figure 1 about here
L R S e e S e

The firsc abstraction of the program text i{s structured in terms of the
goals of the program, that i1s, what the program is supposed to accomplish or
produce (see Figure 2). 1t is labeled a goal hierarchy but could also he
described as a decomposition according to the major program functions or
outputs (cf., Adelson, 1984). The higher level decompositions show that the
program will produce three things: two averages and some printed output. At
the lower levels, subgoals are speci{fied for each higher level goal. For
example, computing the average for the subset of "ordering” clients involves
summing over orders, counting the relevant subset of clients and dividing.
Notice that i{n this abstraction there is l{ttle explicit information as to how
these goals will be Accomplished. For example, the total list of clients
could be searched once to count up the active clients and once again to add up
the order quantities. Alternatively, a single pass through the list could
classify the client as active or not and perform the appropriate count and sum
operations when an active client {s encountered. Of course, the
implementation details are in the text but are lost in the abstraction
focusing on functional relations between parts. Some {nferences ahout the
ordering of events can be made from this representation on the basls of

3

A. COBOL PROGRAM SEGMENT

STATEMENT NUMBER

l MOVE ZERO TO COUNT-CLIENTS.

2 MOVE ZERQ TO TOTAL-ORDERS.

3 MOVE ZERO TQ INACTIVE-CLIENTS.

4 READ ORDER-FILE INTO ORDER-REC.

5 PERFORM SUM-CRDERS UNTIL ORDER-REC-ID = 999999,

b COMPUTE ACTIVE-CLIENTS = COUNT-CLIENTS - INACTIVE-CLIE
7 COMPUTE CLIENT-AVG = TOTAL-ORDERS/COUNT-CLIENTS,

8 COMPUTE ACTIVE-AVG = TOTAL-ORDERS/ACTIVE-CLIENTS.

9 DISPLAY MSG-1, ACTIVE-AVG UPCN PRINTER,
10 GO TO ORDER-EXIT.
L SUM-CRDERS.
12 ADD | TO COUNT-CLIENTS,
13 ADD ORDER-REC-QUANT TO TOTAL-ORDERS.
L4 [F ORDER-REC-QUANT = ZERQ ADD | TO INACTIVE-CLIENTS.
15 READ CRDER-FILE INTO ORDER-REC.

B. PRCOBLEM: GIVEN A LIST OF CLIENTS AND THEIR PRODUCT ORDERS
FOR THIS MONTH, CALCULATE THE AVERAGE QUANTITY
ORDERED FOR ALL CLIENTS AND THE AVERAGE FOR CLIENTS
WHO ORDERED DURING THE MONTH. PRINT QUT THE
AVERAGE ORDER SIZE FOR ORDERING CLIENTS.

\—rll7ur e/

i
.

everyday knowledge; for example, the orders must be summed before division can
take place.
B T2 2 22222

Insert Figure 2 about here
e vk e A ko ko sk ke Ak

A second abstraction of the program text i{s structured In terms of
program processes that transform the initial data objects into the outputs of
the program (see Figure 3). For example, Figure 3 shows that the data object
"file of client orders"” is used by the process "count” to calculate the numher
of clients without orders this month. Because the flow of each data object
can be traced through the series of transformations in which it particlipates,
this is called a data flow abstraction. This abstraction is closely related
to the goal hierarchy shown in Figure 2. For example the first level
decomposition of goals in the goal hierarchy is to compute averages and print
an average. These correspond to the final data objects at the bottom of the
data flow abstraction shown in Figure 3, which are a printed average and a
computed average. The goal hierarchy can be at least partly recovered from
the data flow abstraction by working up from the bottom although it requires
the application of knowledge to infer the grouping of subgoals with their
goals. However, in the data flow abstraction, everything that happens to a
particular data object is readily avatlable in a way that is not apparent frnm
the goal hierarchy. In addition, the data flow abstraction allows more
inferences to be made about the order in which certain operations will occur
than does the goal hierarchy. If an action (marked by a box, e.g.., "compute~”
has two data objects as inputs (marked by an oval, e.g., "sum of orders",
"number of clients”™) then the action cannot take place until the data objects
are both available; thus the process that produces a data object (e.g., "sum
orders”™) must execute prior to the process that consumes it ("compute
average").

L e T R L T S e SO 2

Insert Figure 3 about here
WhAddkhh A kdkhdkkdkthhkdtddd

A third abstraction of the program text, called a con ow
representation or flowchart, is structured in terms of the sequence in which
program actions will occur (see Figure 4). The links between program actions
{n this structure represent the passage of execution control instead of the
passage of data as in the data flow abstraction. This form highlights
sequencing information but conclusions about data flow must be inferred by
looking for repeated data object names. For example, to find out {n what
events the "counter for clients” participates (easily determined {n the data
flow abstraction, Figure 3) it is necessary to track its use In the sequence
of operations in the control flow abstraction (Figure 4). It {s also
difficult to detect goal/subgoal relations quickly. For example, the higher
order goal of computing an average over ordering clients is specified {n the
last procedural block of the control flow abstraction but the subgoal
operations of summing and counting are not explicitly linked to the higher
order goal.

At eI e SRR IS

Insert Filgure 4 about here
Ao e ok T o ok ok e e o e o b vk o e e kb o

A fourth abstraction is structured in terms of the program actions that

4

GOAL HIERARCHY: THE PROGRAM ACCOMPLISHES CERTAIN GOALS BY
PRODUCING OUTPUTS. EACH LEVEL INDICATES A
HIGHER ORDER GOAL [S DECOMPOSED [NTQO SUBGOALS.

CALCULATE AVERAGE ORDER, AVERAGE ACTIVE
ORDER, AND PRINT AVERAGE ACTIVE ORDER

CNMPUTE AVERAGES PRINT AVERAGE
ORDER FOR
ORDERING CLIS

| |

COMPTE AVERAGE COMPUTE AVERAGE

FOR QRDERING CLIENTS FOR ALL CLIENTS
COUNT SUM DIVIDE COUNT SUM Div
ACTIVE ORDERS SUM BRY CLIENTS ORDERS Sum
CLIENTS COUNT M ccu:
- []

' INITIALIZE UPDATE COUNTER
[* *“] COUNTER FOR EACH CLIENT

IN FILE
INITTA- GET ADD
LIZE ORDER ORDER
SUM FROM T0
LIST SUM

"—'hﬂ ore

DATA FLOW: PROGRAM ACTIONS TRANSFORM INITIAL DATA QBJUECTS

w10 FinaL 0aTA 08JECTS. () INDICATE DATA
DBJECTS. INDICATE PROGRAM ACTIONS.

FILE OF CLIENT
ORDERS

Yy

COUNT COUNT SUM

NUMRER NUMBER SUM
NO ORDERS OF CLIENTS OF ORDERS

COMPUTE COMPUTE

NUMRER OF AVERAGE
ORDERING CLIENTS ORDER

COMPYUTE

AVERAGE
ACTIVE ORDE

PRINT

MESSAGE WITH AVERAGE
ACTIVE ORDER

“%jurc 3

CONTROL FLOW: PROGRAM ACTIONS OCCUR IN A SPECIAL SEQUENCE.

INITIALIZE COUNTER FOR CLIENTS
[NITIALIZE SUM FOR ORDERS
INITIALIZE COUNTER FOR NO ORDERS
INITIAL READ CLIENT RECORD

r;) TEST FOR FILE TRAJLER: EXIT

[NCREMENT COUNTER FOR CLIENTS
ADD CLIENT ORDER TO SuM

TEST FOR NO ORDER:
[NCREMENT COUNTER FOR NO ORDER

READ CLIENT RECORD

]][

_COMPUTE COUNT OF CLIENTS WITH ORDERS
COMPUTE AVERAGE NVER ALL CLIENTS

COMPUTE AVERAGE OVER ORDERING CLIENTS
PRINT AVERAGE OVER ORDERING CLIENTS

i gure o

)

will el wnen oA parcicalar ser of condltions {s triue (see Fipure
ahsmraccion (s ke a decision tabiie In which each possible srate of the we: !
te acsoctated with {ts consequences; {t alsn resembles the production svsren
condttion-acston pairs that are used to represent human procedural knowledge

{ (e g . Anderson, 1981, Newell % Simon, 1972). In this abstraction, the

{ proctam {s viewed as being {n a particular state at each moment in time. The
state trigpgers An actinn, execution of the action results Iin a new state,
new state 'riggers another actic ., and so on. It 1s therefore easv o find
aur owhar resuits 1f a glven set of conditions occurs, and also relatively &a.
to find nut what set(s! of conditions can lead to a given action. This kird

nf stare i{nfarmation !s much harder to deduce from the other abstractions
Howewer, Informarinon about the sequence In which actions occur and informa+i-
ahout higher level gnals are ditficult to extract In the ¢onditinnallized

ar-i-n ahstraction
dhdhk okt hh ok kkok ok ko kkk k&
Insert Flgure S5 about here
| LA AS AR LSSl sseRssdd st Sl
This ara.vsis of the multiple abstractions that characterize a computer
provram text also appiles to English language Instructions, such as trainirs
matviais, recipes knivsdrg {nstructions, and assembly Instructions. In thees
texts ceoo, infarmatinn is craveved about what should be accomplished (gnal
hierarcryi, how to dn {t (sejuentlal proredure), the sets of conditions under
whicrh parcicuiar acticrs should be zaven (conditionallzed actlion', and rhe <o
of travetarmations rhat a particular oblect should go through (data flnrw T
be concrete, cnnsider a hvpotherical set of detailed instructions on how t»

conk spapherci cartonara An abstracticon of the {nstructions In terms of
~tions tells "what is to bhe accomplished.” For example, the top level gra
mirht be specified as "make spaghett{ carhonara", with {mmediate subgrals ¢
"make spaghetti. make sauce, mix together." A procedural (control flow)
abstraction specifles the order of executicn and tells "how to do {t. " Fr:
example, "assemble the {ngredients, heat the water, start the noodles, gra'e
the cheese, check the noodles™ might constitute a partial description of thre
sequence of steps. "What happens to particular objects” {s portraved hv a
data flow abstraction that traces the series of transfarmations applied to
each nhject. For example the cheese comes out of the refrigerator, is graze:
separated in half, with one-half going to the table and one-half going int. 4
erg mixture. A condltion-action abstraction specifies the condi~ions thar
should trigpger certaln actions such as when it {s time to heat the howl

f un

Cormprehension requires the detection and representation of these multicin
relations between parts of the text. From our {llustrations {t {s clear :ia-
these relarinons are diff{cult to express simultanenusly The {mporrance of
this {s that part of the diff{culty of writing clear {nstructions,

. understanding instructions, or understandirg programs {a due to the trader?:
that lnewitably occur in hew much of each kind of information can bea
highlighred simultaneonsly. Uncertainty about the best wav to wrire

instructlons or programs may be largelv due to uncertainty about which
i stricture should serve as the organizing principle for the Instructiors.

it {s possihble that one of the alternate. text abstractisns corresponds
more closely than do the others to the structure of the programmer’s menta.
representation of the program, due to features of the cognitive processirg
svstem and the organizaticn of knowledge used in the comprehension process
For example, Adelson (19284) suggpests that a mental representation in terms of
prorram frals, refleccing text relations specified in Flgure 2. characterizes

A SET OF CONDITIONS RESULTS [N THE

EXECUTION OF SOME ACTION(S).

CONDITIONALIZED ACTION:

THE

EXECUTION OF AN ACTION RESULTS IN A NEW

SET OF CONDITIONS.

d01s

INTYd

SIN3ITD 3JAILOV H3IAO 3OVH3IAV 3ILNdWOD
SINIITD 17V Y3A0 3IVVY3IAV 31NdWOD
SY3QY0 HLIM S1IN3ITD 3LINdWOD
Y¥3qU0 ON HOd4 YILINNOD LINIWIHONI
Y3q¥0 ON ¥0d4 1S31

SY3QY¥0 40 WNS OL 4av

SLN3IT1D ¥0d4 ¥ILNNOD LIN3W3YONI
¥4371vy1 3714 Yod 1S3l

3714 IN3ITD av3y

WNS 3ZIVILINI

SY3INNOD 3IZIVILINI

CONDITIONS

ACT[ONS

(STATE OF THE WORLD)

>
>
>
>
>
>
>
>
>
>
> >x] >
>
>
o
[SWN = 4
(=] — | W] x
(= —— —J tJ
o T —]
(o [o T a o
L — o (el RV E}
— o — jon)
(o 4) [o] o
(=% x > — = o
— (%} <X o
vy = X - o od

\'?IjU_VC

_— - A

the natural cognitive representation of experlenced programmers while a
procedural representation, reflecting text relations specified {n Flgure 4, {s
most ratural for novice programmers. It s also possible that the actual
mental representation used by the programmer will reflect task and programming
language Influences {n addition to the influences of cognitive capacities and
knowledge structures. For example, different programming languages highlight
different relations outlined in Figures 2-5 (Green, 1980; Green, et al.,
1980). We assume that one mediating factor in correspondences between text
structure and the structure of mental representations is the structure of
programming knowledge activated during comprehension. We now examine how the
structure of human programming. knowledge 1s related to these text abstractions
and to potential forms of mental representations of programs.

PROGRAMMING KNOWLEDGE

Various types of knowledge about programming wi{ll enable the programmer
to detect and mentally represent the variety of relations that are implicit {n
the text. Some kinds of knowledge more important than others in constructing
the macrostructure of the mental representation. In the present research we
explore the role of two types of programming knowledge in progranm
comprehension: knowledge of text structure and knowledge of program plans.
These two kinds of knowledge do not exhaust the potential range of programming
knowledge but they provide a useful starting point and they have been most
frequently promoted as the cognitively natural bases for program design.

Xt Structy owledge

Program text can be described in terms of a limited number of control
flow constructs. Although there are differences about the exact number and
description of these control flow constructs, three basic building blocks are
typically included: gequenge in which control passes from one action to the
next; jfteratiop im which an action is repeated unti{l a specified condition
exists (commonly referred to as looping); and gonditional in which control
passes to different actions depending on which of two or more conditions is
met (sometimes referred to as if-then-elsge). These units could be called
structured programming units because of an emphasis on disciplined control
structuring according to these constructs by early structured programming
advocates (e.g. Dahl, Dijkstra, & Hoare, 1972). These fundamental units have
also been called prime programs referring to the {dea that a program text can
be decomposed into sequence, {teration, and conditional units {n the wav that
a number can be decomposed {nto prime number factors. Prime programs at the
lowest level of decomposition, represented as a single node, can be aggregated
{nto higher level sequence, {teratfon, and cond{t{onal unfets (Linger, M{lls, &
Witt, 1979; Basili & Mills, 1982) so that the entire program text can be
represented as a hierarchy of prime units. An analysis of the sample program
text (Figure 1.A) In terms of these prime program text structure (TS) units is
shown {n Figure 6.A (cf., Curtis, et al., 1984). For example statements
numbered 1 through 4 in Figure 1.A form a sequence unit as shown in Figure
6.A; statements 5, 11, and the embedded sequence 12 through 15 form an
iteration unit (loop); and statements numbered & through 10 form another
sequence unit. A concatenation of the sequence, loop and sequence units
ylelds a higher level sequence unit that {s the entire program text. Thus the
text {s structured as a hierarchy of prime program units.

[2228 322222222 Rdst iRl sl

Insert Figure 6 ahout here
o e o e e o g o vk e ok e o ok ok e ok kb ok b o

The decomposition of a program into control primes and the diagramming of
control flow according to structured programming units are analytic techniques
that can be applied to programs. We refer to programmers’ knowledge about
these structured programming units as text structure knowledge (TS knowledge).
Professional programmers could not easily escape exposure to this knowledge in
the course of their programming education. One role that text structure
knowledge could play in comprehension is that of organizing the memory
representation macrostructure and some researchers have claimed that knowledge
of these structural components plays a central psychological role in program
comprehension. For example, advocates of structured programming have
hypothesized that programs organized according to a strict control construct
discipline are easier to understand and modify because they correspond to the
programmer’s mental organization (Dahl, et al., 1972); that the process of
comprehending undocumented programs {s similar to decomposing a program into
prime programs (Linger, et al., 1979).

One presentation of such a comprehension scheme proposes that the mental
representation of a program has a macrostructure organized by control primes,
that is, the sequence, iteration, and conditional text structure units (Atwood
& Ramsey, 1978; Curtis, et al., 1984; Basili & Mills, 1982). 1In this view,
program comprehension proceeds by identifying sequence, iteration, and
conditional units in the surface structure of the program and deriving their
local purposes. These units then act as items that combine into higher order
sequence, {teration, and conditional units, with higher level functions
attached to units at this level. This process continues until the highest
level is a single unit with an identifiable function. For example, the text
structure (TS) decomposition of the sample program segment shown in Figure 6.A
shows "initialization sequence”, "read loop", and "computation sequence" as
the first level macrostructure control primes and higher levels of
macrostructure are created by their combination (see also Atwood & Jeffries,
1980; Davis, 1984; Mayer, 1977; Shneiderman, 1980). Thus, the text structure
analvsis represents a hypothesis about relations between program parts that
organize the semantic representation of text in memory.

The decomposition of program text into text structure (TS) units (Figure
6.A) is most closely related to our earlier analysis of program text in terms
of control flow relations (Figure 4). However, such a decomposition will not
necessarily correspond to the surface ordering of events in the program text
as shown by the sequence of program text statement numbers in Figure 6.A.

There {s some empirical support for the idea that program text structure
knowledge plays an important role in comprehension and possibly an organizing
role in memory. One line of support is provided by evidence that prograams
have a psychological "phrase structure” {n which the phrases are syntactically
marked by keywords of the programming language: WHILE...DO is a marker that
iritiates loops! BEGIN goes with END to mark a sequence, and so forth
(McKeithen, Reitman, Reuter, & Hirtle, 1981; Norcio & Kerst, 1983). In one
study testing free recall memory for program texts (McKeithen, et al., 1981),
statements recalled most frequently by experts but not by novices corresponded
to statements marking the phrase structure. In another study (Norcio & Kerst,
1983) higher proportions of correct to incorrect recall transitions (and vice
versa) occurred at the boundaries of the hypothesized text structure units,
analogous to findings in sentence comprehension research that recall errors

7

s
Wl
KEV:B
89 711
b JOVYIAY NYd §1-71
JUTET I J§ ETGELR Y3INND) JININ0IS][]
N T minjain ninlaln
INYIAY N4 WNS S BRI
oy} Luantia] [voiveanao
\Z o X
JONINDIS 9
sy Mid 4001 LLyLNdHG) w
I1R4WO0D NOLVIMAD DY \¥34/$53008d -
/\\ S1-1 W
JIN3N0IS
1S3 SIVYINY
INI¥d 31NdH0)
I 1

SISATYNY 3903TAONY WY1d 8 SISATYNY JuNIOMILS 131 Y

are greater over phrase structure boundary transitions (Fodor, Bever, &
Garrett, 1974, Mitchell & Green, 1978; Tejirian, 1968).

Additional support is provided in a study of program comprehension in
which programmers studied short programs composed of meaningful code,
structured but meaningless code, or randomly arranged lines of code (Schmidt,
1983) . More lines of both meaningful and structured but meaningless code were
recalled compared to randomly arranged code. Further, longer study times
occurred at control construct borders, in the same way that reading times are
elevated at episode boundaries in story comprehension (Haberlandt, 1980;
Mandler & Goodman, 1982).

Additional indirect support was obtained in a study (Adelson, 1981) of
subjective organization in programmers’' (multitrial) free recall of randomly
presented lines of program code. The randomly presented lines contained
statements that could be viewed as three routines (5 lines each) or as five
syntactic groupings (3 lines each). Experts used program membership as an
organizing principle and routines were grouped at a second level by procedural
similarity, and not by the function of the routine.

In summary, the ldea that text structure units play an organizing role in
memory suggests three main features of program comprehension: (1)
Comprehension proceeds by segmenting statements at the detail level into
phrase-like groupings that then combine Into higher order groupings. (2)
Svyntactic markings provide surface clues to the boundaries of these segments.
(3) The segmentation reflects the control structure of the program. Thus In
terms of the multiple abstractions of programs (Figures 2-5), sequence
" Information should be readi{ly available; data flow connections that occur
across unit boundaries should be relatively more difficult to infer; and
function information should be least accessible since it is most closely
related to data flow and requires coordination across units.

Plan Knowledge
A second kind of knowledge, called program plan knowledge (PK knowledge),

emphasizes programmers’ understanding that patterns of program instructions
"go together™ to accomplish certain functions (Rich, 1981; Soloway, Ehrlich &
Black, 1983; Soloway, Ehrlich, & Black, 1983; Soloway, Ehrlich & Bonar, 1982)
Plans correspond to a vocabulary of intermediate level programming concepts
such as searching, summing, hashing, counting, etc., and there are hundreds
(mavbe thousands) of these plans. Like other forms of engineering and design,
"there is a craft discipline among programmers consisting of a repertoire of
standard methods of achieving certain types of goals™ (Rich, 1980).

A plan is a structure with roles for data objects, operations, tests, or
other plans, and with constraints on what can fill the roles in a given
{nstantiation as well as specifications as to data flow and control flow
connecting segments within plans. Plans accomplish things and are
hierarchically linked on the basis of function and role relations; one plan
may be used to accomplish the goals of a higher order plan (Soloway et al.,
1983). For example a very simple plan is a counter plan that consists of an
friitialization part plus an update-by-one part. A plan to compute an average
will include a counter plan as one of its parts. Higher level plans include
such things as a find-first-value-search plan, a merge-two-files plan, or a
bubble-sort plan.

The specification of plan knowledge in programming has been elaborated by
Rich, Shrobe, and Waters (Rich, 1980, 1981; Rich & Shrobe, 1979; Rich &
Waters, 1981; Shrobe, 1979: Waters, 1979), who have developed a large set of
plans based on their intuitions about programming, and by Soloway and Ehrlich

8

-

(Soloway & Ehrlich, 1984; Soloway, et al., 1983; Solowav, et al., 1982) who
have developed a more psychologically motivated theory of plan knowledge A
plan knowledge (PK) decomposition of the COBOL program segment (Flgure 1 A) in
terms of underlying program plans {s shown in Flgure 6 B (thi{s particular
decomposition is based on work by the MIT Programmer’s Apprentice project;
Rich & Shrobe, 1979; see Soloway, et al., 1983 for a similar analysis). As
before, numbers in Figure 6.B refer to program statement numbers specified in
Figure 1.A and che hierarchical structure of the dlagram in Flgure 6.B shows
that plans combine together to form higher order plans. For example,
statements 2 and 13 implement a counter plan; the segment as a whole consists
of plans for reading through the {nputs, counting, summing, and computing an
average.

Plan knowledge units could also form the comprehension macrostructure,
implying that understanding a program i{s finding a set of underlying plans
such that parts of the program match the roles in the hypothesized plans.
Comprehension of a program, under this view, would proceed by partial pattern
matches activating candidate plans, causing programmers to search for further
evidence to instantiate a plan. According to this concept of comprehension
the program is mentally represented as a set of linked descriptions, like
blueprints, rather than as a set of Iinstructions to be executed. Thus, the
plan knowledge analysis also represents a psychologlcal hypothesis about
relations between program parts that might organize the semantic
representation of text in memory as deplicted in Figure 6.B.

Plan representations of a program are primarily based on data flow
relations. This is because much of the control structure in a program that {s
not mandated by ‘data flow requirements is arbitrary. Thus the plan knowledge
(PK) analysis (Figure 6.B) is most closely related to our earlier analvsis of
program text in terms of data flow relations (Figure 3) and function (Flgure
2). Such a decomposition also does not necessarily correspond to the text
surface structure as shown by program text statement numbers in Figure 6 B.

There is also empirical evidence concerning the importance of plan
knowledge in program comprehension. PK representations have been invoked to
explain how expert programmers chunk program text in recall tasks (Creeno &
Simon, 1984) by arguing that plan knowledge is used to code the functions of
the presented program. Details of the program need not be encoded because the
programmer has only to expand a plan into one of its implementations to
reconstruct the detail. This claim corresponds to claims made in research on
natural language processing that encoding efficlency is achieved by activating
scripts (Schank & Abelson, 1977) -or other kinds of content schemas such acs
goal/plan knowledge about human actions (Schank & Abelson, 1977: Wilensky,
1983).

There is evidence that data flow relations are important in algorithm
design (Kant & Newell, 1984) and program modification (Weiser, 1982), and
evidence that experienced programmers are better than novices at inferring
program function in a comprehension task (Adelson, 1984). These studies do
not address questions about how function and data flow relations are inferred
({.e., by recognizfng plans or In some other way) but they do indicate the
central role of program function {n experts’ understanding.

Evidence more directly related to plans as critical elements in program
comprehension {s provided by Soloway and his colleagues (Soloway & Ehrlich,
1984; Soloway, et al., 1982) using a cloze procedure to show that programmers
will fill {n a missing line of a program with a predicted plan element; that
programmers have more difficulty comprehending a program In which the plan
structure has been disrupted; and that experts but not novices can resolve

9

.. D

di{lemmas when conflicting cues about which plan to {nstantlate are provided
In addition, Brooks (1975) has simulated program composition by specifying a
large set of program plans and processes that operate on them.

In summary, the {dea that plan knowledge plays an organizing role Iin
memory suggests the following features of program comprehension: (1)
Comprehension proceeds by the recognition of patterns that implement known
programming plans. (2) Plans are activated by par.ial pattern matches and
conflrming details are elther sought or assumed. (3) The resulting
segmentation reflects the data flow structure of the program {ndexed by
program function. Thus {n terms of the multiple abstractions of programs
(Figures 2-5), data flow and function information should be readi{ly availahle.
sequence and detall operatlons should be less accessible.

RESEARCH OVERVIEW

A summaryv of the correspondences we have proposed between textual
relations (abstractions of program text), knowledge structures, and
hvpothesized mental representations Is shown in Table 1. Features of the text
activate different kinds of knowledge, some of which will provide an
organizing structure for the mental representaticn of the text. The rows of
Table 1 represent alternative hypotheses concerning the dominant form of the
mental representation of programs. The structures {llustrated in Figures 6. A
and 6.B show in detail the potential alternative meaning structures in memory
corresponding to the TS and PK analyses of one text segment and we have
outlined a view of comprehension that might lead to each.

LT e e S S T S

Insert Table 1 about here
1 e R i I TS e

There are several reasons to be interested {n which of these views better
characterizes computer program comprehension. F{rst, well known empirical
results across a wide range of problem solving domains, such as chess (e.g. ,
Chase & Simon, 1973a, 1973b), GO (Reitman, 1976), bridge (Engle & Bukstel,
1978), music composition (Halpern & Bower, 1982; Sloboda, 1976) and computer
programming (McKelithen, et al., 1981; Shneiderman, 1976), show that experts
quickly identify meaningful patterns In a problem array that are stored in
memory as chunks of Iinformation. These results suggest that for experts an
abstract representation of a problem array is available quite quickly upon
fnspection. Much less 1s known about exactly which principles underlie
experts’ superlor organization of problem information. The nature of mental
representations of programs and the units that underlie their organization
(e.g. Adelson, 1984; Curtis, et al., 1984; Davis, 1984) are important for
resolving arguments over how programs ought to be structured, understanding
the psychologlical complexity of programs, and extending insight into skilled
performance to an {mportant complex task. Second, the two modes of
comprehension have different consequences in terms of the kinds of i{nformaticn
that are relatiVely easy or difficult to abstract from program text (Green.
1980). This in turn {s {mportant i{n determining standards for computer
programming practices, tools, languages, and education.

More broadly, these two views of program comprehension mirror debates In
other areas of text comprehension and composition concerning the wavs in which
different kinds of knowledge contribute to text understanding. One kind of
knowledge that has been proposed to {nfluence comprehension is abstract
knowledge of text structure. For example, content free abstract knowledge

10

about the type and form of components usuallv {ncluded {n a <stirv rsereirgy,
episodes consisting of identifiable parts such as init{ating events,K gnals,
attempts, and consequences) is often hypothesized to provide organizing memor~
structures in story comprehension (e.g., Mandler, 1984; Rumelhart, 1979). A
second kind of knowledge that has been proposed to influence comprehension i<
schematic content knowledge. For example, work on "scripts, goals, and plars-
provides evidence that content specific knowledge about typical human actinn
sequences in specific contexts and knowledge of typical plans that achieve
certain goals provide organizing memory structures in story comprehension
(Black & Bower, 1980; Bruce, 1980; Schank & Abelson, 1977; Thorndvke &
Yekovich, 1980). Arguments about the priority of one or the other type of
knowledge in story comprehension are difficult to resoclve since both storv
texts and the plans involved {n human action sequences tend to have the same
or similar structures (Black & Wilensky, 1979; van Dijk & Kintsch, 1983). In
programming using more traditional languages, texu structure knowledge
corresponds to structured programming or prime program units; the units are
few in number and abstract, a kind of "episode” for programs. Plan knowledgen
corresponds to schematic content knowledge and there are potentiallv thousani-
of such patterns.

The empirical evidence cited in the previous section concerning each view
of computer program comprehension, in terms of text structure units (TS) or
plan knowledge units (PK) is not definitive with respect to the role of the
two kinds of knowledge in forming memory macrostructures. For example
superfor recall of program statements introducing loops could reflect the
priority of iteration control flow uni{ts or attention to key statements that
activate plan knowledge (McKeithen, et al., 1981). Similarly, evidence that
experienced programmers have tacit knowledge regarding awkward program
constructions does not necessarily {mply that this knowledge leads to plan
based mental representations (Soloway, et al., 1983). The research reported
i{n the next sections was designed to operationally i{dentify the form of mental
representations of program texts, providing Information about the kinds of
relational {nformation in programs that are most accessible and about the
roles of text structure knowledge and plan knowledge in program comprehension

In the first study progrmmers studied very short program texts and
responded to comprehension and memory questions. Short texts were used to
obtain a high degree of experimental control. Although programming studies
have typically used texts of this length, it {s desirable to examine
experimental results in more realistic settings. In the second study
programmers engaged In a more natural task in which they studied a program of
moderate length, made a modification to i{t, and responded to comprehension
questions. Thus the first study provides relatively direct information
concerning the form of mental representatlions of program text. In the second
study, comprehension data provide indirect evidence concerning the same
questions for a different, more natural task,

STUDY ONE
One effect{ve technique for empirically investigating structures in

memory {s to index the relative distance between elements in a hypothesized
structure by measuring priming effects in item recognition (McKoon & Ratcliff,
1980; 1984; Ratcliff & McKoon, 1978). 1In this method, subjects study one or
more texts and are subsequently presented with a recognition test in which
they must dec{de whether or not each {tem in the list was {n the text they had
Just studied. A target item in the test list is preceded in one condition by

11

o TEa—

another ltem hypothesized to be In the same cognitive unit as tne target ar.,
thus close In the memory structure. In a second condition the target i{tem {s
preceded bv an i{tem hypothesized to be in a different cognitive unit and thus
farther away in the memory structure. Under the assumption that activation of
an {tem {n the memory structure activates {tems close to {t, especially those
in the same cognitive unit, response time to the target preceded by an ftem ir
the same cognitive unit should be faster than response time to the same target
preceded by an {tem not in the same cognitive unit {(Anderson, 1983; McKoon &
Ratcliff, 1980),; that is, a priming effect should occur.

In the first experiment the priming technique was used to examine
distances between program statements {n program texts like the one shown Iin
Figire 1.A. If the representations in memory of the meanings of the program
segment correspond to the structures built by the TS (text structure) or PK
(plan knowledge) decompositions, then the relative amounts of priming between
the items should be predicted by the relative distances between the concepts
in the diagrammed structures. For example, in Figure 6.A, the TS structure,
statement 2 (MOVE O TO TOTAL-ORDERS.) should prime statement 4 (READ ORDER-
FILE INTO ORDER-REC.) because they are in the same TS cognitive unit. However
statement 2 (MOVE 0 TO TOTAL-ORDERS.) should not prime statement 13 (ADD
ORDER-REC-QUANT TO TOTAL-ORDERS.) as much because they are not in the same TS
cognitive unit. The PK structure (Figure 6.B) makes the opposite prediction:
statement 2 (MOVE O TO TOTAL-ORDERS.) should prime statement 13 (ADD ORDER-
REC-QUANT TO TOTAL-ORDERS.) because they are in the same PK cognitive unit and
statement 2 (MOVE N TO TOTAL-ORDERS.) should not prime statement 4 (READ
ORDER-FILE INTO ORDER-REC.) as much because they are not in the same PK
cognitive unit. Other co-varying features such as argument repetition and
surface distance will need to be controlled by balancing these attributes
across the set of items used (McKoon & Ratcliff, 1984).

It is possible that neither of the theoretical decompositions shown in
Flgure 6 precisely describes the programmer’'s decomposition. 1In this case
priming effects will not be obtained. However, failure to find priming
effects {s not informative as to what is wrong with the theoretical proposals
and addi{tional measures of program comprehension are needed. One additional
measure 1s to ask programmers questions about thelr understanding of the
program text In order to ascertain what aspects of meaning can be attalned in
limited time and to provide an assessment of learning relevant to
interpretation of recognition memory test results. Earllier we suggested that
there are at least four kinds of relations between program statements that
contribute to a complete understanding of the program: majJor functional
relation specifying the goal structure of the program (Fligure 2); data flow
relations specifying the sets of events in the program in which particular
variables participate (Figure 3); control flow relations specifying the
execution sequence of statements (Figure 4); and state relations specifying
the sets of conditions and resulting actions in the program (Figure 5). A
fifth kind of information in the program consists of the detalled operations
themselves, the actions corresponding to a single statement or less.

The two gemeral approaches to program comprehension (TS, PK) differ in
terms of the kinds of relations between program elements that are hypothesized
to be central in mental representations. Therefore, the two approaches lead
to differing predictions about the kind of information that will be directly
available to the programmer from the representation, or easier to infer from
the mental representation. The TS view suggests that when a programmer
studies a program, the meaning is built up from the bottom in terms of the
operations binding together into the control flow units that are assigned

12

local purpose Major functlon and goal information {s available onlv after
these relations have been built. Thus the TS view stresses detafled
operations, control flow, and then function in the representational hierarchy,
suggesting that questions about detailed operations and execution sequence
will be answered more easily (faster and with fewer errors) than will
questions about major function and data flow. The PK view suggests that when
a programmer studies a program, function i{s i{nferred immediately when a
programmer i{dentifies a famillar stereotypic unit and the operations and data
objects will be bound to the role slots in the hypothesized plan. The PK view
stresses data flow and functional dependencies as central {n the
representations, suggesting that function, data flow, and detailed operation
information should be available in that order. Neither view predicts that
state information will be easy to extract from program text although some
languages and applications (Al programming in LISP) emphasize these relations.
Comprehension questions can be designed for a program text that ask
specifically about these different kinds of relations in the program.

Methods
Subjects. Professional programmers with a minimum of three vears of

professional programming experience served as subjects in the research.
Subjects were sc¢lected from a pool of over 400 programmers who volunteered to
participate in response to mail solicitations to Data Manager Association
members, radio and television announcements, Chicago newspaper stories, and
approaches to several Chicago-area businesses and research institutions. Our
choice of programming languages was constralned by the availabil{ity of
experlenced professionals for each language. Since 85% of the volunteers
programmed primarily in COBOL, FORTRAN, and ASSEMBLER, subjects were drawn
from the COBOL and FORTRAN programmers. This provides a bas{s for examining
the generality of findings across the two languages most widely in use.

A total of 80 professional programmers participated in this study, 40
COBOL programmers and 40 FORTRAN prog,rammers.3 Differences between FORTRAN
and COBOL programmers in educational level, college major, number of
programming languages known, and number of years programming (but not number
of years as a professional programmer) were statistically reliable (p < .0l
level). The average FORTRAN programmer was 37 years old at the time of the
study, male (95% of the sample), had majored Ln computer sclence or other
science/engineering field, had completed some graduate level work beyond a
bachelor’s degree, knew 6 other programming languages, had taken 4 programming
courses, had programmed for 14.5 years, had been a professional programmer for
10.8 years, and had spent an estimated 12,306 professional programming hours
on program coding, debugging, and modification tasks. Forty-three percent had
taught at least one programming course. The average COBOL programmer was 35
years old, male (77.5% of the sample), had a college degree, majored in social
science or humanities, knew 4 other programming languages, had taken &4
programming courses, had programmed for 10.5 years, had been a professional
programmer for 9.5 years and had spent an estimated 11,196 professional
programming hours on program coding, debugging, and modification tasks.
Forty-five percent had taught at least one programming course.

Subjects were run over a period of eight months from July, 1983 to
February, 1984. Each programmer was paid $10.00 to cover transportation and
parking costs.

Materials. The program segments developed for the research were drawn
from four full length programs currently in use in Chicago-area computer
installations. The four programs spanned a range of program types: a batch

13

file update propram, an englneering appllcarion, an {nteracrive program, ar
computational program. Two of these programs were originally written {n Cra
and two in FORTRAN. FElght program segments were taken from the programs and
modified slightly so that they met the following criteria: 1) Each comprised
exactly 15 lines; 2) each accomplished something sensible In i{solation ({.e.
was comprehensible as a fragment that did something concrete); 3) each
contained TS and PK units that differed in content.

One of the program segments used In the experiment {s shown in Figure
1.A. This particular segment {s unusual because it is extremely simple. Tt
was {ncluded in the research and {s offered here as an example because it has
been used {n many other studles of program comprehension and is frequently
used as an example In published articles (e.g., Curtis, et al., 1984; Solowav,
et al., 1982). Thus analyses in the present study can be compared directly to
previous research. Figures 6 A and 6.B show the TS and PK theoretical
analyses of the example program segment.

For each of the 8 program segments, 6 comprehension questions were
composed that varied according to the category of information about program
relations to which each pertained. Examples of each kind of question for the
program segment shown in Flgure 1.A are: Will an average be computed?
(function); Is the last record in ORDER-FILE counted in COUNT-CLIENTS?
(sequence); Will the value of COUNT-CLIENTS affect the value of ACTIVE-AVG?
(data flow),; When ORDER-EXIT {s reached, will ORDER-REC-ID have a particular
known value? (state); Is TOTAL-ORDERS {nitialized to zero? (detailed
operation).

Also for each of the 8 segments, a recognition test list was constructed
to examine priming effects between items. A critical target {tem was
designated along with two primes (a TS prime and a PK prime) to form s triple
to be used In test list construction. The essential feature of each triple
was that the TS prime and the target were In the same cognitive unit according
to the TS analysis of the segment but {n different PK units and that the PK
prime and the target were in the same cognitive unit according to the PK
analysis of the segment but different TS units. For example, statements 4,
13, and 2 (Figure 1.A) form a triple. Statement 4 is the TS prime because
statements 4 and 2 are in the same TS cognitive unit (Figure 6.A) but In
different PK units (Flgure 6.B). Statement 13 {s the Pk prime because
statements 13 and 2 are in the same PK cognitive unit (Figure 6.B) but are {(n
different TS units (Figure 6.A). Statement 2 i{s the target item since {t
appears In both palrs. For each program segment, 4 target ltems were
identified along with their TS and PK primes and the remaining 3 lines of code
were designated as filler {tems. The targets were arbitrarily divided into
two sets designated as A Materials and B Materials.

There are other bases besides roles In the TS and PK representations on
which program statements might be associated in memory. For example, the
surface distances between the prime and target statements differ for the
example just given. In addition, some program statements have repeated
arguments, others are very similar syntactically, and the direction (forward
or backward) between the prime and target might differ within a triple. It
was not possible to hold all of these other factors constant within any one
triple or within any one program segment. However, the four potential
{nfluences -- surface distance, argument repetition, syntactic similarfty, and
direction 'etween prime and target were balanced over all 32 (8 segments, four
targets per segment) TS-target and PK-target pairs.

Prime and target items were embedded in a recognition test list
consisting of 22 {tems, 7 false ltems and 15 true items. The 15 true {tems

14

consisted of 3 "filler” true items and 6 prime-target pairs. The 6 tarpe:s
consisted 4 targets presented for the first time and 2 targets presented a
second time. For the first-time targets, primes were palred with targets so
that one group of subjects (within each language) saw PK primes i{mmediatelv
preceding A-targets in the recognition test list and TS primes {immediately
preceding B-targets. A second group of subjects (within each language) saw T5
primes immediately preceding A-targets and PK primes irmediately preceding R-
targets. For the repeated targets, the prime not seen before was palred with
the target. False i{tems used varf{able names that had occurred {n the segmen-
but were connected with an operation that had not connected them in the
segment. False {tems did not consist of tricky misspellings or paraphrases ¢
the program statements since they were not intended to be lures. One of the
false items was a repeated item. Test lists were arranged in four different
orders so that each prime-target palr appeared once in each quarter of the
list, subject to the restrictions that a target item could not be placed {n
the first or second position of the test list and that primes had to
{mmediately precede their targets. All program segments and test list {tems
were prepared in two programming languages, FORTRAN and COBOL. COBOL subjecr:s
saw only COBOL segments and test items; FORTRAN subjects saw only FCRTRAN
segments and test ltems.

Procedure. Subjects participated in a single experimental session
lasting approximately 2.5 hours at the University of Chicago, Northwestern
University, or their place of business. To begin the session an experimenter
showed subjects the IBM Personal Computer to be used during the sessi{on and
pointed out distinctive features of the keyboard. Thereafter, all
instructions to the subjects were presented via the computer screen. The
first part of the session consisted of general task instructions, detalled
instructions concerning the use of editing features required during the task,
and a practice trial.

Subjects were told that they would study a 15-line segment of code for a
total of 4.5 minutes, divided into three 1.5 minute intervals; that between
the study intervals they would be asked to respond to comprehension questions
and would be given a memory task. They were instructed that their primary
task was to come to a complete understanding of the code so they could answer
the comprehension questions accurately. We emphasized that thelr responses tn
the memory tasks should follow from their attempt to understand the code; that
attempts should not be made to memorize the text or use special strategies fonr
memorization. The exact task sequence was described and then demonstrated in
the practice session.

The following task sequence was repeated three times for each program
Subjects studled a 15-1ine segment of code that appeared on the screen for
exactly 1.5 minutes. Following instructlons to prepare for comprehension
questions, subjects responded to each question by pressing "yes” or "no."
Response latencies and actual responses were recorded by the controlling
program. The next screen announced the free recall section and subjects typed
in as much of the 15-line segment as they could recall, in any order that f{t
occurred to them.® The third study-comprehension trial ended with a
recognition memory test {n place of the recall task. Recognition started with
a screen reminding subjects to position their fingers correctly, to respond
"yes" or "no" as qulckly and accurately as possible, and not to pause during
the list presentation. Subjects initiated the test with a keypress, with
subsequent lines triggered by the previous response. The response and the
response latency for each ltem were recorded.

The three study-test trials occurred for each of the eight program

15

serments with a break between the fourth and fifth segments. At the
concluston of the session, subjects filled out a detalled background
questionnaire and responded to questions posed by the experimenters abour
thelr reactions to the experiment and their own programming work.

These procedures were established by extensive pilot testing. For
example, the total study time of 4.5 minutes was chosen to insure high levels
of recognition accuracy and moderately high level of segment comprehension.
The comprehension questions were inserted before the recall and recognition
tasks to focus subjects on the comprehension aspects of the task rather than
on the memory requirements and to discourage Inclinations to rehearse or
retain a visual image of the text.

Pesign. The program segment and test list materials were used to form
the basic research des{gn: 2 (languages) x 4 (orders) x 2 (subject groups
within language) x 2 (TS, PK prime types) x 2 (A, B sets of target {items).
Language, order, and subject group were between subjects factors, and subjec:
groups, prime type, and materials set formed a 2x2x2 repeated measures latin
square. In this design, comparisons between target response times for
different prime types will be a within subjects comparison but for different
materlals sets. A rearrangement of this design using first and second
presentations of only those target items that were repeated in the test lists
allows a within subject comparison between identical target response times fnr
different prime tvpes. This comparison {s of secondary interest because
repetitions of true items {n the test list are potentially confusing and mav
add variabilitv to response times for these {tems.

This design provides tests of whether programmers’ mental representatinnus
of program text reflect structural distances hypothesized by the TS analvsis,
the PK analvsls, or neither analvsis. Specifically, support for a TS
macrostructure is obtained If response times to targets preceded by a TS pri-e
are reliably faster than the same targets preceded by a PK prime. 1If this s
the case, we can infer that the items specified by the TS analysis as forming
a cognitive unit are in fact "closer” in memory than are the items specified
by the FK analysis. Alternatively, support for a PK macrostructure {s
obtained {f response times to targets preceded by a PK prime are reliably
faster than the same targets preceded by a TS prime. Filnally, if some
response times to PK-primed targets are faster and other response times to TS-
primed targets are faster, then no inferences may be drawn regarding which of
the formulations more accurately portrays the nature of mental
representations.

Response times and error rates for different kinds of comprehension
questions provide an additional measure regarding relations that dominate in
mental representations. Specifically, {f support for a PK macrostructure {s
obtained with the recognition response times, then we expect to see fewer
errors and faster response times for function and data flow comprehension
questions. Alternatively, if support for a TS macrostructure i{s obtained with
the recognition response times, then we expect to see fewer errors and faster
response times for detalled operations and control flow comprehension
questions. ,

Results

Recognition Memory Data. The question of primary interest is whether
target response times are faster (1) when the target is immediately preceded
by an item from an hypothesized TS cognitive unit, or (2) when the target is
fmmediately preceded by an item from an hypothesized PK cognitive unit, or (3!
there would be no difference between priming conditions. After removing

16

excreme reaponse times and response times of [ncorrecs lrems and {tems tor
wihlch a rrime error was made a mean was computed for each subject for each of
the *twn target sets (A, B). These means were analvzed {n a 2xIxixl repeated
measures analvsis of variance with language (FORTRAN, CCBOL), subject group
(1, 2), and test li{st order (4 orders) as between subjects factors and type of
prime (PK, TS) as a within subject repeated measure. A second 2x2x2 analvsis
of wariance was performed on this data, treating materials as a random factor,
with languape (FORTRAN, COBaL), and materi{als set (A, B) as between ltems
factors. and prime tvpe (PX, TS) as a within {tem repeated measure.
Examinarion of the cell means reveals that there are multiple influences on
rarget respanse times (see Table 2).

Y L L 2202220t eassdy

Insert Table 2 about here

P L L Ll s aa e e

As prediczed bv a text structure (TS) analysis of program comprehension,
responses to TS-primed targets are on average 105 milliseconds faster than
respenses to FK primed targets, F(1,64) = 4.51, p < .04 (subjects analysis,
see Tahle 2, Part A, Fi1 60) = 3 72, p < .06 (items analysis). Considering
only sublects whose comprehension scores were in the top quartile (since these
sublects had a more complete underszanding of the program segments), we see
(Tanle 2, Part B) that the TS-primed speedup 1s larger, 237 mi{lliseconds,
Fol,ln) = 8,25, p < 02 isuvlects analwsis), F(1,59) = 3.60, p < .06 ({tems
aralvsis) Comparisons using *he repeated target data show the game advantacge
for TS-primed rtargets although the effect for repeated targets is
sratisticailv unrelliable due to increased variance {n repeat target times.

Target response times also d{ffered for the (arbltrar.ly composed) A and
B materials setrs, for the two language, and for the subject groups within each
langhage. Responses to B materials took an average of 2 milliseconds longer
than responses to A materials, F(1,64) = 28,18, p < .001 (subjects analysis),
Fil. 61y =« 2 32 p < 0.14 ({tems analvsis), and this dlfference was larger for
CORML ttems than for FORTRAN items, F(1,64) = 6.03, p < .02 (subjects
analvsis, not significant for items analvsis). COBOL subjects took longer to
respond {n general, F¢1,64) = 4.91, p < .04 (subjects analysis), fF(1,60) =
4 R%, p < .04 (items analysis) and there was a subject group within language
differonce, F(1,64) = 5,29, p < .03 (subjects analysis), F(1,60) = 34.54,

g < .00l (ltems analysls). Sublect group differences may not be attributed to
experimental manipulations since response times for the 24 filler true items
ot involved in any exrerimental manipulation reveal {dentical difterences
hetween language and subject groups.

The arrav of effects can be seen more easily graphically (see Flgure 7)
In Flgure 7.A, response times are adjusted for the effect of subject groups
within lanuage, showing the TS priming effect for both languages, the effect
for materials set and the slight {nteraction between materials and language
In Figure 7. B, means are adjusted for the effect of materfals sets, agaln
showing the TS priming effect for both languages and the effect for subjecrs
group within language.

LS a L e e e
Insert Figure 7 about here
ek ok ok ok sk sk e ko ook ok ok ot ok ok

Overall recognition accuracy, messured b' percr t correct, averaged
92 1%, FORTRAN subjects made fewer recognition errors (6%) compared to COBCL
subjects (9.8%), F(l,64) = 7.36, p < .01 but recogniclon accuracy did not

17

$13S SIVI¥ILVW 40 S123443
¥04 g3Llsncay SIWIL 3IsNods3y d

dNoyo 12308nS 40 S133443
404 0IL1SACOY S3IWIL 3ISNOdSIY 'Y

S123rdns S123r4nsS SIVIY3IVW SWIY3ILW
¢ dnoyo T dnoy9 4) ‘
NVHLH04 3IYd-Sly . 4 0°¢
» r~
NVIL¥04 Q1Y) @, . 422 m By
" v SN
\ m wﬂ
- NV31404 OMIY¥d-SL ¥ .. 4 nz m
NVULHO CITUd-Nd ® =~ v =
] (o) 492 =
o
&
70800 QMI¥d-S1 V Jgz e
70800 AIY¥d-Nd 0" i
0800 aMI¥d-S1L w7 e
L 0800 MI¥d-%d O 4 0°¢
P . o . - —

differ for subjects assigned ro the two expetimental condirions, nor were
there any differences {(n recognition accuracy due to order of presentation of
the prog}am segments (Fs less than 1). Accuracy for target recognition {tems
across subjects and {tems averaped 92.6% correct. Error rates differed by
language (FORTRAN 5.8%, COBOL 9.1s; F(1,64) = 4.19, p < .09) but did not
differ by experimental cond{tion or by materials set (A-targets, B-targets)
(Fs less than 1). Correct responses averaged 2.670 seconds compared to
incorrect responses, which averaged 3.667 seconds, [(1,76) = 63.60, p < .001,
suggesting a difficulty relationship between speed and accuracy rather than a
speed/accuracy tradeoff. Thus, interpretation of the above results is not
affected by error rates and a constant error rate of 8-10% may be assumed

It is not surprising that materials and subject differences account for a
major portion of variabllity in time to recognize program statements.

However, on top of these differences, program statements are cons’stently
recognized faster when immediately preceded by a program statement in the same
control flow unit (TS analysi{s). This result strongly supports the mental
organization of program text proposed by a text structure analysis. On the
basis of this result, we expect certain converging results in the programmers"
responses to comprehension questions about these same program segments.

Comprehension Data. Our main interest in comprehension accuracy is in
differences that might occur between ftems in different {nformation
categories, that is, between questions asking about different kinds of
information in program text. Referring to the earlier text analyses (Figures
2-5), the 48 comprehension questions comprised 10 questions about detailed
program operations (operations questions), 9 questions about program execution
sequence (control flow questions), 9 questions about program data flow (data
flow questions), 10 questions about program cendition-action relations (state
questions), and 10 questions about major program functions (function
questions). We assume that higher error rates for questions in a particular
information category lmply that the i{nformation in that category is less
easily accessed or computed from the memory representation. Under this
assumption the text structure (TS) analysis (Figure 6.A) predicts that
operations and control flow questions will be more eas{ly answered and that
data flow and major functions will be more difficult to i{nfer. The plan
knowledge (PK) analysis (Figure 6.B) predicts that data flow and major
function information will be most accessible with operations and control flow
less accessible.’ State information is not predicted to be accessible under
either formulation. The recognition memory results discussed above lead us to
expect further support for the TS formulation: operations and control flow
questions will be most easily answered.

Error rates were computed for each subject for {tems Iin each i{nformation
category (percent of items missed in the category) and for each item (percent
of subjects missing an item). The five scores per subject were submitted to a
language (FORTRAN, COBOL) by information category (operations, control flow,
data flow, state, function) repeated measures analysis of variance (with
subjects as random, factor) and the {tem scores were submitted to a language by
informat{on category analysis of variance (with items as random factor).

Information category of the comprehension question affected error rates,
F(4,312) = 26.75, p < .001 (subjects analysis), F(4,86) = 2.87, p < .03 ({items
analysis). The ordering of difffculty of the {nformation category questions
was predicted by the text structure analysis: Questions about detailed
operations and control flow relations were answered most accurately (15%, 21w
errors respectively) while more errors were made on data flow, state, and
function items (28%, 30%, 34% errors respectively).

18

-

Overall comprehenslon levels for FORTRAN and COBOL programmers differed
reliably when subjects were the unit of analysis, F(1,78) - 6.01, p < .02,
although with ftems as the unit of analysis, variability among f{tems swamped
this difference, F(1,86) = 1.10. 1In addition the pattern of error rates for
Information categories differed for the two languages, F(4,312) = 8.72,

p < .001 (subjects snalysis), F(4,86) = .827 (not significant, items
analysis). The comprehension pattern across information categories for
FORTRAN subjects (see Figure 8) was: Questions about operations and control
flow were answered most accurately, questions concerning major function next
most accurately, followed by data flow and state questions. This yielded an
fnverted U shaped pattern with operation, sequence and function depressed,
showing lower error rates (Figure 8). The most noticeable difference between
the FORTRAN and COBOL patterns was the elevated error rate on function
questions for COBOL subjects, creating an increasing pattern across
information categories. In addition to the elevation of major function
question errors, COBOL data flow questions showed slightly higher accuracy.
v sk sk o ok ok ok AT ek o s ook ok Ak ok ko

Insert Figure 8 about here
ek ok Ak Aok kA ke ok sk ke ek

The difference in patterns could be due to one or more of three factors.
First, subjects from the two language groups were not equivalent in background
characteristics. Second, the languages themselves could yield differences in
ease of comprehension such that control flow and function information are
easier to extract from FORTRAN than from COBOL text, and data flow {information
1s easier to extract from COBOL than from FORTRAN. Third, the pattern of
differences might be due to lower comprehension levels for the COBOL subjects
and thus the COBOL pattern could reflect an earlier stage in the comprehension
process and the FORTRAN pattern a later stage. Under the third
interpretation, FORTRAN subjects, having understood more of the operation and
control flow information, may have progressed further and could therefore
either compute or retrieve function information from memory. COBOL subjects
would not yet have reached thls stage in the comprehension process after the
allotted study time.

The first explanation, programmer background, is not supported because
these varifables are unrelated to comprehension performance on our task. For
example, comprehension accuracy levels were equivalent for males and females,
F(1,78) = 1.32; for different educational levels, F(3,76) = .64; and for
different college majors, F(3,71) = 1.16. This is important because {t
suggests that any differences in performance between language groups will not
be accounted for by sample differences in sex, education, and college major.
There were also no differences in comprehension accuracy between programmers
who had taught programming and those who had not, F(1,78) = .96.

In order to examine the other two explanations, subjects were divided
into quartiles (within language) on the basis of their overall comprehension
accuracy scores. If the overall FORTRAN pattern represents a later stage of
comprehension, ‘then the upper quartile COBOL subjects should show s pattern
more like the FORTRAN aggregate and the lower quartile FORTRAN subjects should
show a pattern more like the aggregate COBOL subjects. Alternatively, if the
differences In aggregate patterns reflect fundamental features of the
language, then those differences will appear the same in the patterns for top
and bottom quartile comprehension subjects. The comprehension question means
across {nformation categories for top and bottom quartile subjects are
displayed graphically in Figure 9.

19

NOI1LINNd

Mo1dviva

MOT4 TOYLINOD

SNO11VH3d0

INFORMATION CATEGORIES

NO113NNd

31VY1S

MO1dviva

MOT4 10¥1NOD

SNO11VH3d0

L

S0 P

i
o (=)
r

SYO¥Y3 INIDYId

20p
10
0

INFORMATION CATEGORIES

COBOL

FORTRAN

717dr6 vt

L e —— - .

. o

— i e em o

—

- A - ——

Fhok kb khh kA hhdkhkdhhhkddh

Insert Figure 9 about here
s 2k ok vk v ok o ok A ok vk gk ok ke vk ok b b ok ek ko

Consistent with the stage of comprehension explanation, bottom quartile
subjects showed the COBOL aggregate pattern with elevated error rates for
major function questions and top quartile subjects showed the inverted U
pattern of the FORTRAN aggregate. A quartile by information category
interaction, the statistical manifestation of this pattern, is only marginally
reliable, F(4,64) = 2.43, p < .06 (subjects analysis), F(4,86) = 2.02, p < .10
(items analysis).

Some language specific features are also retained by the information
category patterns, namely lower error rates for control flow questions for
FORTRAN subjects (both quartile groups) and lower error rates for data flow
questions for COBOL subjects (both quartile groups). This i{s consistent with
an explanation attributing differences to language specific features that
affect the ease of extracting information from the text. However, as in the
analysis of the complete subject sample, this interaction between language and
information category shows statistical reliability only in the subjects
analysis, F(4,64) = 3.99, p < .006, not In the items analysis, F(4,86) = .619.

In summary, after limited study time, experienced programmers’
comprehension errors were strongly related to the kinds of inferences required
to respond to the question, and to the language in which the programs were
written (Figure 8). Questions about program operations and control flow

"relations in the programs were answered correctly more often than questions

about data flow relations and program states. Errors were made most
frequently when inferences about program function were required. This general
pattern supports the TS theoretical formulation (Figure 6.A). Differences
between FORTRAN and COBOL programmers and between top and bottom quartile
comprehenders suggest that inferences about program function (what {t does)
are the most difficult and appear late in the comprehension process, and that
there are probably language specific features that affect the ease of certain
kinds of inferences (Figure 9). FORTRAN programmers were consistently better
on inferences about control flow while COBOL programmers were more accurate in
responding to questions about program data flow relations.

In addition to data on comprehension errors, summarized above, we
analyzed response times to comprehension questions, providing additional
{nformation about the relative difficulties of different kinds of inferences
{n comprehension. After correcting for reading time, we assume that a
relatively faster response time to a question implies less processing has gone
into constructing a response to the question. Faster responses could be due
to direct retrieval of the information, to assessment of plausibility given
retrieval of higher level information, or to fast computation of the response
glven retrieval of related {nformation. Slower responses imply extensive
search or burdensome computation from retrieved information (Reder, 1982;
Glucksberg & McCloskey, 1981). For example, if major function Information is
stored directly and provides the macrostructure (Kintsch & van Dijk, 1978) of
the text representation (Adelson, 1984; Atwood & Ramsey, 1978; Brooks, 1983;
Shneiderman, 1980), then the fastest response times should occur for major
function questions, with slower responses for more detailed comprehension
questions like those in the operations category. However, 1f frequent errors
correspond to the need to assemble responses at the time of questioning then
the error rate data above imply that responses to operations questions will be
faster than responses to questions about program function.

20

h (v [} UPPER QUARTILE

[:] LOWER QUARTILE

50 | B
40 1 M
B B
F
v 10k
s (] B
&
- i
=z
S
Js= 20[’
u
a-
- x
d o
% _ % N
= W Fs ret
3 = =] A = =z
0t =0El E 5 =1 El E S
o2 4 <} (= [+ 4 - < — o
uf] — e wi z - < z
al = o] = al o < — =
A = = re) o = % o
INFORMATION CATEGORIES INFORMATION CATEGORIES
FORTRAN COBOL

“7‘1{9 vre 9

B D IR

Response times for comprehension guestions ahout different
infarmation categories, standardized and adjusted for question lengrh, ®
correspond to the pattern of comprehension errors for upper quartile sublects
(Flgure 9). Overall correct responses to true starements about the operatiors
and control flow of the program were answered more quickly (mean residuals

were - .33 and -.16 respectivelyv) than questions :hout data flow and function
“ (-.05, -.11) which were answered more quickly than questions about program
states (+.06), F(4,304) = 8.05, p < .00l (subjects analysis), F(4.86) = 2 8%,
p < .03 (items analysis). Analyses of raw response times did not differ frem
analyses of residual response times due to relatively low correlations betwee:
question length and response time.
The response time data and the error data for the comprehension questior-

support the following conclusions: (1) Detailed operation information is
stored directly, organized by control flow units (lowest percent errors,
fastest response times). (2) Control flow inferences are thus easv to
retrieve or compute (low percent errors, low moderate response times). (3)

Some data flow and major function {nformation is readily available (moderare
response times) although when not stored, {t is not easily computed (high
percent errors). (4) Program state inferences are difficult to compute (lorg
response times, high percent errors).

The present results provide evidence that the dominant memory
representatlon, formed during comprehens{on of short program texts in this
experimental context, {s organized by a small set of abstract program units
related to the control structure of the program. More specifically, of the
four program abstractions presented earlier (Flgures 2 through 5), relations
captured by the procedural, control flow abstraction (Figure 2) appear to be
central in comprehension in our experimental task. Furthermore, the nature of
the mental unitization of these relations corresponds to the basic progranm
buflding blocks of sequence, iteration, and conditional identified by early
advocates of structured programming.

Both recognrition memory results and comprehension question results
converge to support this conclusion. In the recognition memory test,
recognition occurred faster when a statement was immed{ately preceded by a
statement In the same text structure unit than when it was {mmediately
preceded by a statement that was not in the same text structure unit. This
{mplies that statements i{n the same TS unit were closer together in
programmers’ memotry structures. This priming effect cannot be accounted for
the text surface distance between the statements, by syntactic simi{larity
between statements, or by argument repetition since these features were
controlled by counter-balancing test items. Furthermore, responses to
4} comprehension questions about control flow relations and program operations

were answered faster and with fewer errors than were questions about data fi-w
and function relations, supporting the idea that control flow and operation
fnformation {s easler to access in memory.

Examination of the performance of programmers with the highest
comprehension scores strengthens these conclusions and leads to a further
speculation that segmentation on the basis of control flow relatirns occurs
prior to comprehension of major program functions and data flow relations
! First, the priming effect for TS cognitive units was strongest for top
comprehenders. Second, top comprehenders’ fast and error free responses to
detail and control flow comprehension questions were accompanied bv a

disproportionate decrease in response errors to function questinns. While cre

21

-IlIIIIlllllIllIl--------n__ﬁ

might argie on the basi{s of the error data alone thar rthere [q a prioriry ¢
fancelon information {n top comprehenders’ memory representationg, *he primi:,
results and response time data undercut such a conclusion

These empirical results fit a view of program comprehension tn which *he

meaning of program text is developed largely from the bottom up. The text {s
first segmented according to simple control patterns segregating sequences,
loops, and conditional patterns. At this level some specific inferences are
made concerning the procedural roles of the segments. For example, a sequerce
at the beginning In which zeros are assigned to variables may be designated
“initialization of variables” (see Figure 6 .A), without regard for the role nt
those variables in later computation. Another sequence may be designated as
"scemething {s calculated.” A loop repeats whatever sequence {s contained
within ft. A conditional pattern directs control to alternate sequences

Data flow and function connections often require {ntegration of
operations across separate segments., For example, calculation of an average
involves an init{alization, a running sum, and final calculation. As in
Figure 6.A, these occur in three separate procedural units. The results
suggest that these connections are made later Iin comprehensfon, and for
programmers with the lowest comprehension scores they are not made correct.v
or at all within the time limits imposed by this study.

Several alternative views of program comprehension are not supported b
the research results. For example, views based on strong analogies to chess
plavers’ perceptual pattern recognition processes are not supported (cf.,
Greeno & Simon, 1984). Patterns {n program text that are recogni{zed quickly
appear to be general, few {n number, and are discernible through synractic
markers of the language (programming keywords). Proposals that programs are
understood initially through recognition of program plans, from an expert's
mental library of hundreds or thousands of plans, that assign roles to
configurations of program statements are not supported by this research (Rich
& Shrobe, 1979; Soloway, et al., 1983). While plan knowledge may well be
implicated in some phases of understanding and answveri{ng questions about
programs, the relations embodied in the proposed plans do not appear to form
the organizing principles for memory structures. Claims that data flow
relat{ons (Atwood & Ramsey, 1978; Kant & Newell, 1984; Weliser, 1982) or
function hierarchies (Adelson, 1984) underlie the preferred or natural
representation of programs are also not supported. Our results suggest that
the natural representation of programs {s procedural, at least for programs
written in traditional programming languages. The best comprehenders {n the
present study were better at [nferring function relations than were poarer
comprehenders, but they also showed stronger effects for text structure memor-
organization.

A final result concerns the influence of programming language on
comprehension (Green, 1980; Green, et al., 1980). There 1s an indlcation in
the data that programming language may affect the relations represented in
initial phases of comprehension and the difficulty of extracting different
kinds of information from the program. COBOL programmers were consistently
better at responding to comprehension questions about data flow than were
FORTRAN programmers. Furthermore, control flow relations were less easily
inferred by COBOL programmers. This may be due to features of COBOL and
FORTRAN that allow FORTRAN to be programmed in an order corresponding more
closely to actual flow of control from statement to statement (at least in
these short segments). In COBOL it is more usual to perform loops that are
listed elsewhere in the code. Thus the surface structure of the test in CCBOL
corresponds less well to execution sequence than in FORTRAN. This can be seen

22

by comparing Figure 1.A (program text) and Flgure » A «T7 analvsias dn wii:
the loop that sums a l{st of numbers {s executed {n statement ° bur fs
specified in statements 11 through 15 In the FORTPAN version of this
segment, the loop occurs In statements 5 through 9 of the code and s executed
when encountered there. Thus, there is some evidence that disruption of
procedural units in the program text may affect comprehension patterns.
Although the data are consistent with a hvpothesis that greater difficulty in
extracting procedural text units is related to great-r difficulty {n
extracting program function, we must label this conclusion tentative because
COROL and FORTRAN languages and programmers differ in other ways as well.

It 1s i{mportant to question the extent to which the particular task used
fn the present research limits generalization of these results. For example,
the conclusion that comprehensifon has a more bottom-up character and is
organized in memory by procedural control constructs may be specific to
understanding small program texts that do not have a larger context. Even |
this were the case, it would not sharply dilute the importance of the present
experiment. F{rst, most research on programming skill has used similar short
texts. Thus findings {n this skill domain nmust be reconciled with the current
results. For example developers of the plan knowledge theorles have suggested
that expert programmers’ recall of texts like these is due to recognition of
program plans (Greeno & Simon, 1984; Soloway, et al., 1983). Of course, the
present results suggest that this {s not the case; that chunking in recall f{s
explained by the grouping of statements into the sequence, loop and
condirional text units suggested by structured programming advocates. Second,
the program segments used in the present research were all texts that were
originally embedded within larger programs. To the extent that the larger
context does not {lluminate all program segments equally, the kind of
processing reported in this experiment will certainly occur in actual
programming tasks. However, we are also Iinterested {n an empirical analysls
of the extent to which the first study’s results are general across different
prorramming tasks and for longer programming texts. This question is
addressed {n the second study.

STUDY TWO

In the first study, programmers’ comprehension strategies may have been
{nfiuenced by several aspects of the experimental task: short undocumented
program segments, the series of short study trlals, and the demands of memory
questions. In Study Two, a more natural programming environment was created
tn which programmers studied a program of moderate length (200 lines) and then
made a modification to ft. At two different points in time they were asked t~
summarize the program and respond to comprehension questions. Half of the
programmers were asked to think aloud while they worked and the other half
worked silently.

As {n the previous study, comprehension questions were designed to ask
about particular relations between program parts: control flow, data flow,
function, and condition-action relations. If the results of the previous
study generalire to this task environment, then we expect to see good
comprehension of control flow relations early in the comprehension process
with comprehension of data flow and function catching up later in the process
Alternatively, data flow and function inferences may be made more readily at
the outset due to the larger context in the Study Two program text.

23

Merhonds

Subjects. Forty of the 80 professional programmers who partic{pated {n
the previous study were invited to return for the second study. These 40O
subjects fncluded 20 COBOL and 20 FORTRAN programmers and were those
programmers who had scored in the top and bottem quartiles {n the
comprehension task in the previous study. Subjects were run over a period of
six months from September 1984 to February 1985. Each programmer was paid a
$50.00 fee for participation.

Materials. The stimulus program used for this research {s & 200-1line
program currently {n production use at a Chicago firm. The program was one of
a series of programs that keeps track of and computes specifications for
industrial plant designs. Originally written in COBOL, the program {ncludes
both file man{pulation and computation. The text was easily translated into a
believable FORTRAN program. The program contained a minimal amount of
documentation as in the original productlon version of the program. The
documentation included an introductory set of comments describing the program
as one that keeps track of the space allocated for wiring (called cables
below) and the wiring assigned to that space during the design of a building.
No documentation was included within the COBOL text but the FORTRAN version
contained one-line comments corresponding to COBOL paragraph headers. Thus
the level of documentation {n the two versions was judged to be equivalent
with the naturally-occurring exception that variable names were shorter in
FORTRAN.

A modification task was devised that required altering the progranm to
produce an additional output file and an exception list. As with most non-
trivial modifications, this task required a relat{vely complete understanding
of the goals of the original program (function), how different varfables
entered into computations and outputs (data flow), and where in the execution
sequence certain transformations occurred (control flow).

A 1list of 40 comprehension questions was constructed that included 10
questions about control flow (e.g., Is a point number grouping processed
normally when a type code for a cable {s not found?), 10 questions about data
flow (e.g., Does the value of TPR-WIDTH {nfluence the value of DESIGN- INDEX
for a particular point number?), 10 questions about functf{on (e.g., 1s a
report created with point numbers that exceed a DESIGN-INDEX?), and 10
questions about program states (e.g., When the end of the POINT-INDEX file is
reached, can there be records in the TEMP-EXCEED file that have not yet been
read?). Half of the questions were correctly answered with a "yes™ response
and half with a "no" response. The forty questions were divided into two
matching lists of twenty questions. For a question on the first list, a
similar question was included on the second li{st so that the two lists
contafined comparable questions. The lists were arranged In a single random
order.

Procedure. Subjects participated in one experimental session lasting
approximately 2.5 hours at the University of Chicago, Northwestern University,
or thelr place of business. Subjects were famlliar with the IBM personal
computer used during the sesslion since all subjects had participated i{n the
previous study. All instructions were presented on the display monitor. The
first part of the session consisted of general task instructions and detailed
instructions concerning the method of displaylng and alteri{ng the program
text, Including practice manipulating a program listing using these features.

Programmers were {nstructed that they were to make 8 modification to a
program normally maintained by another programmer. However the "other
programmer” was going on vacation and the modification was urgent. The

24

subjects’ task then was to become famillar with the program and to make the
chanpes to {t. Furthermore, the hypothetical other programmer had left the
program with the subject to study and would return in 45 minutes to explain
the modification task. Subjects accepted this scenario as realistic and
meaningful. Thus {n the study phase programmers studied the 200-1line program
for 45 minutes. Half of the subjects were Instructed to think aloud (Talk
Condition) while they studied and the remaining half were allowed to study
stlently (Notalk Condition).

The program text was presented on the computer di{splay and subjects could
scroll forward or backward, jump to another place in the program, split the
screen {nto halves and scroll either half. Subjects were also allowed to take
notes or draw dlagrams while studying the program. Most of the programmers
wvere familiar with studying programs on a term{nal but for those who were not,
the split screen feature served the purpose of keeping a finger i{n a listing
and jumping ahead in the listing. The program controlling the experiment kept
track of the programmer’s study sequence by recording which program line was
{n the center of the display screen.

After the 45 minute study period, programmers were asked to type in a
summary of the program and then to respond to the first list of 20
comprehension questions. In responding to the comprehension questions,
programmers positioned their fingers on "yes"™ and "no" response keys. Thev
had heen instructed to respond ves or no as quickly and accurately as
possible. On presentation of a question, subjects responded and then were
given an opportunity to explain their responses. They then positioned their
finners to receive the next comprehension question.

After the 20 comprehension questions and a short break, the modification
task was explained to the programmer and a time limit of 30 minutes was
specified. Subjects were told that they should begin actual modifications a*
anv peint when they felt readv. If necessary the full 30 minutes could be
spent continuing to learn about the program. However, all programmers had ac
least hegun to make modifications by the end of the period and many had
compieted their changes. During the 30 minute modification phase, the Talk
Conditlon subjects were again asked to think aloud while they worked and the
Notalk subjects were permitted to work silently.

The session concluded with a second request to summarize the program and
then to respond to the second list of 20 comprehension questions. The
procedure for these tasks was the same as before. The controlling program
recorded all responses, explanati{ons, and times to respond.

[eaign. Comprehension question responses form the focus of the analyses
frr the current report in the following research design: 2 (COBOL, FORTRAXN
Tangages)y x 2 (D1, Q4 comprehenstion quartiles) x 2 (Talk, Notalk Conditions)
x) (comprehension test lists after studv, after modification) x 4 (control
flow, data flow, state, and function information category of comprehension
questions). language, comprehension quartile and the Talk/Notalk Condition
were hetween subjects factors; time of test and information category of the
carprehension questions were repeated measures within subjects.

Analvses of the proportion of errors in response to comprehension
questions about different kinds of program relations reveal a pattern of
errors that varies across i{nformation category according to time of
comprehension test and talk-aloud condition of the programmer. Conditions at
the first time of test, after the 43 minute study phase, are most directly
camparable to the conditions of comprehension testing in Study One. For this

25

reason, results are presented separately below for comprehension afrer rte
studyv phase and afrer the modlfication phase. In addition, analvees of
program summaries are available for summaries collected after the srudy phase
Summaries collected after modification could not be analvzed in the same rer~-
because programmers tended to refer to thelr earlier summaries and then tn
concentrate on describing their modifications rather than giving complete
program summaries as instructed.

Comprehension after study phase. After 45 minutes of studv, the
comprehension pattern for comprehension questions about control flow, data
flow, program state, and function relations resembles the comprehension
pattern observed for Study One, with questions about control flow answered
most accurately, followed closely by data flow. Errors on function questians
and program state questions are relatively more frequent, F(3,96) =~ 11 .64,

B < .001 (see Figure 10). This pattern across information categories did not
differ reliably by language, quartile or talk-aloud condition (Fs less than
2). Upper and lower quartiles differed in overall level of comprehension,
F(1,32) = 15.75, p < .001, with upper quartile subjects making approximarely
40% errors and lower quartile subjects making 60% errors. These error rates
are high Iin part because they have been corrected for guessing by using the
explanations provided by the programmer to determine comprehension.
Uncorrected error rates averaged 25% for upper quartile subjects and 33y for
lower quartile subjects. Analyses performed on uncorrected error rates
yielded the same results as those performed on error rates corrected for
guessing.

FAI R AR Ak AR r Rk Ak kkkhhkhdkrd

Insert Figure 10 about here
kA AR AR AR Ak bk ok ok kAt hkk

Program summaries were analyzed by classifying each summary statement
according to the kind of program relation to which it referred and according
to the level of detail specified in the statement. The first classi{ficaricrn
is referred to as the type of summary statement in terms of information
categorles; types included procedural, data flow, and functlon statements.
These distinctions are best {llustrated by the following excerpts from
summaries. Procedural statements include statements of process, orderinrg. ar .
conditional program actfons. The summary of $109 consisted of mostlv
procedural statements,

"...after this, the program will read in the cable file, comparing

against the previous point of cable file, then on equal conditirn
compares agalnst the internal table. .. {f found, will read the tra--
area-point file for matching point-area. In this read 1f found,

will create a type-point-index record. 1f not found, will read
another cable record.. . "

Data flow statements also {nclude statements about data structures. S.1%
wrote a summary that contalns references to manv data flow relations,

."The tray-point file and the trav-area file are combi{ned to create a
tray-area-point file i{n phase one of the program. Fhase two tables
information frnm the tvpe-code file in working storage. The
parameter file, cables file, and the trav-area-poaint file are then
used to create a temporary-exceed-index file and a point-inrdex
file. .~

S0S7 wrote a summarv that contalns many function statements,

"...the program i{s computing area for cable accesses throughout a

bulldi{ng. The amount of area per hole is first determined and then

6

~
N
) N
A
©2
w a/
K
NO11JKNNJ
31vV1S
MOT4 Vivd

MOTd 0¥ LINOD

d

INFORMATION CATEGORIE
AFTER STUDY

50
40

O
M

SY0¥Y3 1NIDY

& 20F
10 F
0

a tatle for cables and diameters {s icade! Next oA cabtle Fila o ig

read to accumulate the sum of the cables’ dlamerars goling throuph
each hole. "
The examples above also differ In the level of detail contained (n the

summaries, the seconrnd dimension on which we classified summary statements
Four levels of detall were specified for coding: (a) detajled statements
contained references to specific program operations and variables: (b) I AT
level statements referred to a program’s procedural blocks such as a search
routine or to files as a whole; (c) domai{n level statements talked abanut real
world cbjects such as cables and buildings: and (d) vague statements did nc:
have specific referents. The excerpts presented above were also chosen
because they differ in the predominant level of detafl. S10%'s procedural
summary is most detalled; S415's data flow statements are at & program (file.
level;, and S057's function statements are at a domain level. An example of a
vague statement {s, "this program reads and writes a lot of filles.*

The foregoing examples were chosen for {llustrative purposes bhecause the-
contalned a concentration of particular types of statements at a particular
level of detail. Most summaries contained a mixture of statement tvpes and
levels but can be summarized in terms of general trends across subjects and
comparisons can be made between languages, comprehensfon quartiles. and ta.v
aloud conditions.

In terms of statement tvpe, the majority (57%) of programzers’ summarw
statements were classified as procedural, 30% were data flow/data structure
statements, and 138 were functlon statements, F/2 64) = 29.31, p < .001. 7This
pattern did not differ by quartile, by language, or by talk-aloud conditicn
In terms of the vel of derall., classifying the same 100% of the summarv
statements In a second way, the predominant level was the program/file level
accounting for 38% of the statements, 18% of the statements were detailed. 221
were specified at the domain level, and 21% were vague, F(3.96) = 10.47,

p < .001. This pattern across level of detail differed for upper ard lower
quartile subjects, F(3,96) = 4.65, p < .01, with lower guartile comprehenders
summaries contalning relatively more statements at a detailed level (20% Cu
versus 16% Ql) and more statements at a vague level (30% Q4 versus l4s Q1) A
final observation concerns a relation observed between summary statement tvpe
and level. A majority of program summary statements about program functicn
were expressed in the language of real-world objects (cables, space. crowdiny
etc.) rather than {n the language of programs. The majority of procediral
summary statements were expressed in terms of program objects (flles,
computations, searching, etc.) rather than in the domain language

Comprehension after medlfication phase. Looking again at comprehensine
errors for different information categories, the comprehension pattern sihi¢-
on the second comprehension test after the modification task, F(3 96" ~ % °°
p < .COl (comprehension trial by information category I{nteraction {n an AN 3
treating comprehension trial as a repeated measure). The pattern of errors
for this trial (see Figure 11) shows the fewest errors for data flow ard
function questions with more errors un control flow questions,

F(3.96) = 14.85, p < .00l. Furthermore, this pattern i{s more exaggera’ed { :
the programmers who talked aloud while working, F(3,96) = 5.93, p < 001 (<ee
Flgure 11). Although second trial patterns are exaggerated for Talk subte.:.
overall comprehension accuracy for Talk and Noralk subjects was roughiv
equivalent, F(1,32) = 1.01. Patterns of errors across Informatisn categnrv
dtd not differ bv comprehension quartile or by langiage.

 ————-

| S

W e % e ke e de o ok ek o ke ok ok ok ok ko ke

Insert Figure 11 about here
e ook o ok ok &k ok ok ok sk ke sk ek ok ek ke

Discussicon

Comprehension results from Study Two (Flgure 10) reinforce and extend the
conclustons from Study One that the understanding of program control flow and
procedures precedes understanding of program functions. This pattern of
comprehension results appeared even in the context of a longer, partially
documented program after a lengthy study period. Analyses of program
summaries also support this conclusion by showing a preponderance of
procedural summary statements over data flow and function statements.

It i{s important to note that the story of program comprehension does not
end with the establishment of a procedural representation. In Study Two a
different comprehension pactern emerged after a second exposure to the program
during which programmers completed a program modification (Figure 11). After
the modification task, there was a marked shift toward increased comprehension
of program function and data flow at the apparent expense of control flow
information and this shi{ft was more extreme for programmers who 1ere asked to
think aloud while working. This suggests that elther the additional time or
the goal of modlifying the program resulted in a ghange in the dominant memory
representation. The fact that talking aloud while working enhanced this shift
sugrests that task effects, rather than the extra time alone, are responsible.

One way to understand this shift in comprehension patterns is to go back

to theories of text comprehension and speculate about a construct, introduced

by van Dijk and Kintsch (1983), that they call a situation model. 1In this
(1783) work, van Dijk and Kintsch suggest that two distinct but cross-
referenced representations of a text are constructed during comprehension.

The first representation, the textbase, Includes the hierarchy of
representations, described in the introduction to the present paper,
consisting of a surface memory of the text, a microstructure of interrelations
between text propositions, and a macrostructure that organizes the text
representation. The second representation, the sltuation mode] i{s a mental
model (e.g., Johnson-Laird, 1983) of what the text {s about referentially. 1In
our context, the program text in Study Two is conceptually about searches,
merges, computations, and so forth; referentially, it {s about cables that
take up space, finding out how bilg a particular cable is, computing the total
size of the cables allocated to a particular space, comparing the cable
allocation to the size of the space, etc. It is plausible that the functional
relations between program procedures are more comprehensible in the terms of
the real world objects. Thus, the textbase macrostructure may be dominated bv
procedural relations that largely reflect how programs in traditional
languages are structured. The functional hierarchy can be developed with
reference to a situation model expressed in terms of the real world objects.
Data from our analysis of program summarles are consistent with this idea.
Frocedural summary statements were most often expressed in terms of program
concepts and functional summary statements were most often expressed in terms
of the real world object domain.

Van Dijk and Kintsch (1983) also suggest that the construction of the
situation model depends on construction of the textbase Iin the sense that the
textbase defines the actions and events that need explaining. This {s
consistent with our findings in both studies that procedural representations
precede functional representations. In fact our results suggest that both
time and incentive (talking aloud to an experimenter and having to do a

28

60 [‘
50
W r
n
x
2
= 30
P~
=
ul
o
a
a
227
Xx x
[} (o]
= -
10 P “1 3 z “1 3 z
) - o J | o
(o] . — < w —
o3 w - @ w -
[< [Q b= < - Q
z —~ < 2z z - < =
S13| 5} =2 o1 8} 5] =2
t 0 N
INFORMATION CATEGORIES INFORMATION CATEGCRIES
AFTER MODIFICATION AFTER MODIFICATION
NOTALK SUBJECTS TALK SUBJECTS
1
%jdro /1

— n e a —p— et . ot il et

modificatlion) are involved In the successful construction of a functionally
based s{tuation model. 1If this analysis |s correct, we could imagine
conditions that might assist and speed-up the extraction of program funct{on
and the construction of a functional representation. For example,
documentation concerning the real world domain and the relation of program
procedures to the doma{n might promote a simultaneous construction of both
kinds of understanding.

One final aspect of the results of Study Two deserves comment.
Comprehens{on quartile as determined by comprehension scores in the
experimental setting of Study One predicted the comprehension scores in the
more natural task of Study Two. However, the error rates on comprehension
questlions for both upper and lower quartile comprehenders were quite high in
Study Two, even after 1.25 hours of study and modification. 1Is this cause for
practical concern, considering the fact that we are studying professional
programmers with an average of 10 years of experience -- people who are
responsible for the programs that help design buildings, monitor space
programs, keep track of bank balances, control defense systems and so on? Th~
high error rates are not by themselves cause for concern because programmers
were answering questions without reference to the program listing. It does
not necessarily follow that the same errors would be made 1f subjects could
have "looked up" the answers in the program. Greater concern would be
warranted we found that the high error rates were accompanied by great
confidence in level of understanding, a measure we did not collect. But, our
casual observations of subjects who talked while working suggest that this may
have been the case for some of the programmers.

GENERAL DISCUSSION

At the outset we presented an analysis of computer program texts in terms
of multiple abstractions of the text to {llustrate different relations between
parts of programs. Speclfic abstractions expressing important relations in
the design of computer programs include a goal hilerarchy highlighting major
functional achievements of a program (Figure 2), a data flow abstraction
highlighting the transformations that are applied to data objects (Figure 3),
a control flow abstraction highlighting the temporal sequence of execution of
program actions (Figure 4), and a conditionalized actlon representation
specifying states of the program and the actions invoked (Figure 5). Although
this specific analysis 1s specific to computer programming, analogies can be
developed for closely related tasks that involve other kinds of texts such as
instructional texts, and more distant analogies for design task in which other
kinds of relations are more central.

The views of computer program comprehension contrasted throughout this
report, based on analyses of plan knowledge (PK) and text structure knowledge
(TS), represent claims about which kinds of relations outlined in the multiple
abstractions analysis play a central organizing role in program comprehension.
P¥ theory suggests that data flow and function relations will be dominant and
TS theory suggests that control flow or procedural relations will be central.
More generally, these two views represent positions about the role of
different kinds of knowledge in comprehension. TS theory emphasizes the role
of abstract knowledge of program text structures while PK theory emphasizes
the role of a large collection of content-dependent knowledge that links
specific program functions to plans that achieve them.

The present research results strongly support a view of program
comprehension in which abstract knowledge of program text structures plays the

29

fnitial organizing role In memory for programs, and that control flow or
procedural relations dominate in the macrostructure memory representation.
These results are consistent with conclusions reached by researchers in other
text comprehension domains who suggest that knowledge of narrative and
expository text structures guides comprehension processing and plays an
important role above and beyond other content schematlc factors (e.g,,
Carpenter & Just, 1981; Ciri{lo & Foss, 1980; Haberlandt, Berian, & Sandson,
1980; van Dijk & Kintsch, 1983; Johnson & Mandler, 1980; Kieras, 1985;
Mandler, 1978, 1984; Mandler & Johnson, 1977; Rumelhart, 1975, 1980: Stein &
Glenn, 1979; Thorndyke, 1977). These results are not consistent with
conclusions suggesting such knowledge i{s not involved in comprehension in
domains where extensive content knowledge may be available (e.g., Black &
Bower, 1980; Black & Wilensky, 1979; Bruce, 1980; Schank & Abelson, 1977;
Thorndyke & Yekovich, 1980). Thus as there is good evidence that "episodes”
function as psychological units {n story comprehension, there is also good
evidence that structured programming building blocks function as psychological
units in program comprehension.

In terms of the multiple abstractions analysis, programmers' mental
representations in this research were closest to the procedural representation
(Figure 4) based on control flow relationships. Should we then conclude that
a procedural form is the "natural” mental representation? In the current
research, we originally expected that mental representations would show
function and data flow relations to be primary. If that had occurred, then
there would be ample ground to claim that these relations reflected a
"natural” or preferred cognitive organization because text and language
structure as well as the programmers’ training combine to highlight procedural
relations. However, gliven the current results, we are not sure whether the
mental organization reflects language/text structure and training, or
cognitive "naturalness," or both. There 1s some evidence from research on the
comprehension of procedural instructions that the memory structure reflects
procedural relations rather than functional relations whether or not the text
from which the procedure is learned has a procedural form (Smith & Spoehr,
1984). On the other hand, the language differences found in the present
research suggest that language structure will matter, that the form in which
it is convenient to mentally represent a design will be a form that i{s closely
related to the structure of the stimulus. This is consistent with an emphasis
that was popular in earlier problem solving research: stimulus structures are
a major influence on the form of mental representations, even for logically
1somorphic problems (Hayes & Simon, 1977).

We also found evidence that in later stages of program comprehension,
under appropriate task conditions, a second representation is available that
reflects the functional structure of the program and is expressed i{n the
language of the real world domain to which the program is applied. Our
explanations for this later, task-related shift in comprehension are
speculative and draw on the concept of a gituation mode]l representation of the
program that is distinct from the macrostructure organization of the textbase
(van DLjk & Kintsch, 1983). What is clear from our research i{s that this
second, functional representation is not constructed quickly or automatically
Programmers required extensive involvement with the program before being able
to use this structure to respond to questions about the program. Further
research {s needed to explore the viability of the situation model explanation
and the extent to which changes in stimulus structures will alter the time
course of {ts emergence.

30

REFERENCES

Adams, M. & Collins, A. (1979). A schema-theoretic view of reading In R

Freedle (Ed.), New directions {n discourse processing (Vol 2). Norwood,
NJ: Ablex.

Adelson, B. (1981). Problem solving and the development of abstract
categories in programming language. Memory and Cognition. @, 422-433.

Adelson, B. (1984). When novices surpass experts: The difficulty of a task
may increase with expertise. Journal of Experimental Psychnlogy:
Learning, Memory, and_Cognition, 1@, 484-495.

Anderson, J. R. (1983). The_architecture of cognitjon. Cambridge MA:
Harvard University Press.

Atwood, M. E. & Jeffries, R. (1980). udies a onstructio :
Analysis of an extended protocol (Tech. Rep. No. SAI-80-028-DEN).
Englewood, CO: Sclence Applications, Inc.

Atwood, M. E. & Ramsey, H. R. (1978). ognitive uctuge the
comprehension and memory of computer programs;: An fnvestigation of
computer program debugping (Tech. Rep. No. SAI-78-054-DEN). Englewood,
CO: Scilence Applications, Inc.

Basili, V. R. & Mills, H. D. (1982). Understanding and documenting programs
IEEE Tvansactions on Software Engineering, SE-8, 270-283.

Black, J. B. & Bower, G. H. (1980). Story understanding as problem-solving.
Poetics, 9, 223-250.

Black, J. B. & Wilensky, R. (1979). An evaluation of story grammars.
Cognitive Science, 3, 213-230.

Bisanz, G. L. & Voss, J. F. (1981). Sources of knowledge in reading
comprehension: Cognitive development and expertise In a content Aomain.
In A. M. Lesgold & C. A. Perfettl (Eds.), Interactive processes in
reading. Hillsdale, NJ: Erlbaum.

Britton, B. K. & Black, J. B. (Eds.) (1985). nderstand expository tex
Hillsdale, NJ: Erlbaum.

Brooks, R. E. (1975). mode]l of human cegnitive behavio w code
for computer programs. Unpublished doctoral dissertation, Carnegie-
Mellon University, Pittsburgh.

Brooks, R. E. (1983). Towards a theory of the comprehension of computer

programs. ternational Jourpal of Man-Mac e Studieg, 18, 543-554.
Bruce, B. (1980). Analysis of Interacting plans as a guide to the
understanding of memory structure. pPoetics, 3, 295-312.

Carpenter, P. A. & Just, M. A. (1981). Cognitive processes in reading:
Models based on readers’' eye fixations. In A. M. Lesgold and C. A.

Perfetti (Eds.), era ve ocesses ea . Hillsdale, NJ:
Erlbaum.

Chase, W. G. & Simon, H. A. (1973a). The mind's eye in chess. In W. G.
Chase (Ed.), Visual {nformation processing. New York: Academic Press.

Chase, W. G. & Simon, H. A, (1973b). Perception In chess. Cognitive
. Psychology, 4, 55-81.

Chi, M. T. H., Glaser, R., & Rees, E. (1982). Expertise in problem solving.
In R. J. “"ternberg (Ed.), Advances {n the psvcholo o) te ence .
Hillsdale, NJ: Erlbaum.

Cirilo, R. K. & Foss, D. J. (1980). Text structure and reading time for
sentences. Journal of Verbal lLearning and Verbal Behavior, 19, 96-109.

Curtis, B., Forman, 1., Brooks, R. E., Soloway, E., & Ehrlich, K. (1984).
Psvchological perspectives for software sclence. nformatio essin
and_Management, 20, 81-96.

31

Dahl, ©. J., Dijkstra, E., & Hoare, C. A. R. (1972). Structured programmipg
London: Academic Press.

Davis, J. S§. (1984). Chunks: A basis for complexity measurement.
Information Processing and Managemept, 20, 119-127.

van Dijk, T. A. & Kintsch, W. (1983). 3Strategles of discourse comprehension.
New York: Academfc Press.

Engle, R. W. & Bukstel, L. (1978). Memory processes among bridge players of
differing expertise. American Journal of Psychology, 91, 673-689.

Fodor, J. A., Bever, T. G., & Garret, M. F. (1974). e ps ogyY o
language. New York: McGraw-Hill.

Glucksberg, S. & McCloskey, M. (1981). Decisions about ignorance: Knowing
that you don't know. ournal o xperimenta cho R uma earnin

and Memory, 7, 311-325. .
Green, T. R. G. (1980). Programming as a cognitive activity. In H. T. Smith

and T. R. G. Green (Eds.), Human interaction with computers. New York:
Academic Press.

Green, T. R. G., Sime, M. E., & Fitter, M. J. (1980). The problems the
programmer faces. Ergonomics, 23, 893-907.

Greeno, J. G. & Simon, H. A. (1984). Problem solving and regsoning (Tech.
Rep. No. UPITT/LRDC/ONR/APS-14). Plttsburgh: University of Pittsburgh.

Haberlandt, K. (1980). Story grammar and reading time of story constituents.
Poetics, 9, 99-118.

Haberlandt, K., Berian, C., & Sandson, J. (1980). The episode schema in
story processing. Journal of Verbal learping and Verbal Behavior, 19,
635-650.

Halpern, A. R. & Bower, G. H. (1982). Musical expertise and melodic
structure in memory for musical notation. American Journal of

Psychology, 95, 31-50.
Hayes, J. R. & Simon, H. A. (1977). Psychological differences among problem

isomorphs. 1In N. J. Castellan, D. B. Pisoni, and G. R. Potts (Eds.),
Cognitive theory, (Vol. 2). Hillsdale, NJ: Erlbaum.

Johnson, N. §. & Mandler, J. M. (1980). A tale of two structures:
Underlying and surface forms in stories. Poetics, 9, 51-86.

Johnson-Laird, P. N. (1980). Mental models. Cambridge, MA: Harvard
University Press.

Kant, E. & Newell, A. (1984). Problem solving techniques for the design of
algorithms. JInformation Processing and Management, 20, 97-118.

Kieras, D. (1985). Thematic processes in the comprehension of technical

prose. In B. K. Britton and J. B. Black (Eds.). Understanding expos{torwy
text. Hillsdale, NJ: Erlbaum,

Kintsch, W. (1974). The representation of meaning in memory. Hillsdale, NJ:
Erlbaum.

Kintsch, W. (1977). On comprehending storles. In M. A. Just & P. A.
Carpenter (Eds.), Cognitive ocesses e on. Hillsdale, NJ:
Erlbaum.

Kintsch, W. & van Dijk, T. A. (1978). Toward a model of text comprehension
and production. Psychological Review, 835, 363-394.

Linger, R. C., Mills, H. D., & Witt, B. 1. (1979). ucty ogramm

Theory and practice. Reading, MA: Addison-Wesley.
Mandler, J. M. (1378). A code In the node: The use of a story schema in

retrieval. Discourse Processes, 1, 14-35.
Mandler, J. M. (1984). o) t d scenes; e schema
theory. Hillsdale, NJ: Erlbaum.

Mandler, J. M. & Goodman, M. S. (1982). On the psychological validity of

32

story structure. Journal of Verbal Learning and “erhal Bebavior, 21,
507-523.

Mandler, J. M. & Johnson, N. §S. (1977). Remembrance of things parsed. Stor.
structure and recall. Cognit{ e Psychology, 9, 111-151.

Maver, R. E. (1977). A psychology of learning BASIC. ommunic on the
ACM, 22, 589-593.

McFeithen, K. B., Reltman, J. S., Reuter, H. H., & Hirtle, S. C. (1981).
Knowledge organization and skill differences in computer programmers.
Cognitive Psychology, 13, 307-325.

McKoon, G. & Ratcliff, R. (1980). Priming in item recognition: The
organization of propositions {n memory for text. Journal of Verbal
Learning and Verbal Behavior, 19, 369-386.

McKoon, G. & Ratcliff, R. (1984). Priming and on-line text comprehension.

In D. E. Kieras & M. A. Just (Eds.), New methods i{n reading comprehension
research. Hillsdale, NJ: Erlbaum.

Mever, B. J. F. (1975). e organiza 0 e t e \
memory. Amsterdam: North-Holland.

Miller, J. R. (1985). A knowledge-based model of prose comprehension:
Applications to expository texts. In B. K. Britton & J. B. Black (Eds),
Understanding exposjtory text. Hillsdale, NJ: Erlbaum,

Mitchell, D. C., & Green, D. W, (1978). The effects of context and content

on immediate processing in reading. uarte o erime]
Psvchology, 30, 609-636.
Newell, A. & Simon, H. A. (1972). Huma oble olving. New York:

Prentice-Hall.

Norcio, A. F., & Kerst, S. M. (1983). Human memory organization for computer
programs. Journal of the American Society for Information Scilence. 24.
109-114.

Fennington, N. (1982). Cognitive components of expertise in computer
programming: A review of the literature. Psychological Documents. Ms.
No. 4170,

Pennington, N. & Grabowski, B. (1986). o v ompone expe se {in
cemputer programming: A conceptual framework. Unpublished manuscript,
University of Chlcago, Chicago, IL.

Ratcliff, R., & McKoon, G. (1978). Priming in {tem recognition: Evidence
for the propositional structure of sentences. ou Ve arning
and Verbal Behaviog, 17, 403-417.

Reder, L. M. (1982). Plausibility judgments versus fact retrieval:
Alternative strategles for sentence verification. Psychological Review.

89, 250-280.
Reitman, J. S. (1976). Skilled perception in GO: Deducing memory structures
from inter-response times. ognitive Psychology, 8, 336-356.

Rich, C. (1980). Inspection methods in programming (Tech. Rep. No. 604).
Cambridge, MA: MIT Artificlial Intelligence Laboratory.

Rich, C. (1981). A formal representation for plans in the programmer's
apprentice. ocee o) rna a [+) nference
Artificial Intelligence, Vancouver, Canada.

Rich, C. & shrobe, H. E. (1979). Design of a programmer's apprentice. In
Artificial intelligence; An MIT perspective. Cambridge, MA: The MIT

Press.

Rich, C. & Waters, R. C. (1981). bstractio nspe on ebu n
programming (Memo No. 634). Cambridge, MA: MIT Artificial Intelligence
Laboratory.

Rumelhart, D. E. (1975). Notes on a schema for stories. In D. G. Bobrow and

3

A, Lollins (ras.), PRepresentation and understanding: Studies {n
copnitive sclence New York: Academic Press.
Rumelhatt, D. E. (1980) A reply to Black and Wilensky. Cognitive Science,

4, 313-316.

Schank, R. C. & Abelson, R. B. (1977). Scripts, plang, goals, and
understandipng. Hillsdale, NJ: Erlbaum.

Schmidt, A. L. (1983). Comprehension of computer programs by expert and

povice programmers. Unpublished doctoral dissertation, Southern Illinois
University, Carbondale, IL.

Shneiderman, B. (1976). Exploratory experiments in programmer behavior.
International Jourpal of Computer and Information Science, 5, 123-143.

Shneiderman, B. (1980). Software psychology. Cambridge, MA: Winthrop
Publishers, Inc.

Shrobe, H. E. (1979). ependency directe eason [o) mple ogram
understanding (Tech. Rep. No. 503). Cambridge, MA: MIT Artificlial
Intelligence Laboratory.

Sloboda, J. A. (1976). Visual perception of musical notation: Registering

pitch symbols {n memory. uagte o erime sychology,

28, 1-16.
Smith, E. E. & Spoehr, K. (1984, June). Comprehension of instructiops for
ating devices. Paper presented at ONR Conference, Tucson, Arizona.

Soloway, E. & Ehrlich, K. (1984). Empirical studies of programming
knowledge. IEEE Transactions on Software Engineering. SE-10, 595-509

Soloway, E., Ehrlich, K., & Black, J. B. (1983). Beyond numbers: Don’'t ask
"how many"...ask "why". Proceedings of the Conference on Human Facsors
in Computer Systems, Boston, MA.

Soloway, E., Ehrlich, K., & Bonar, J. (1982). Tapping into tacit programming
knowledge. Proceedings of the Conference on Human Factors in Computer
Systems, Galthersburg, Maryland.

Stein, N. L. & Clenn, C. G. (1979). An analysis of story comprehension in
elementary school children. In R. Freedle (Ed.), w e n
discourse processing, (Vol. 2). Norwood, NJ: Ablex.

Tejirian, E. (1968). Syntactic and semantic structure in the recall of
orders of approximation to English. a v a ng and
Verbal Behavior, 7, 1010-1015.

Thorndyke, P. W. (1977). Cognitive structures in comprehension and memory of
narrative discourse. ogn ve chology, 9, 77-110.

Thorndyke, P. W. & Yekovich, F. R. (1980). A critique of schemata as a
theory of human story memory. Pgetics, 9, 23-50.

Trabasso, T., Secco, T., & van den Broeck, P. (1982). Causal cohesion and
story coherence. In H. Mandl, N, L. Stein, & T. Trabasso (Eds.),.
Learning and comprehensiop of text. Hillsdale, NJ: Erlbaum.

Waters, R. C. (1979). A method for analyzing loop programs.]EEE
Iransactions o oftware Enginee , SE-5, 237-247.

Welser, M. (1982). Programmers use slices when debugging. Communications cf
the ACYM, 25, 446-452.

Wilensky, R. (1983). ann and unde apd . Reading, MA: Addison-

- Wesley. '

34

Author Hotes

This research was sponsored by the Personnel and Training Research Programs,
Psyrhological Sciences Dfivision, Office of Naval Research, under Contract
NOOD14.82-K-075%, Contract Authority Identification Number 667-503. Approved
for public release; distribution unlimited. Reproduction (n whole or in part
i{s permitted for any purpose of the United States Government.

Beatrice Grabowsk!, Paul Harvell, Lor!{ Hunsaker, John Keating and Helen Szepe
worked on the project as research assistants. Thanks are due to Sargent and
Lundy, and Argonne Laboratories for encouraging their programmers to
participate in the research, and to many other professional programmers who
came to our lab to participate. Thanks are also due to Reld Hastie, Beatrice
Grabowski, and Lance Rips for helpful comments on the manuscript.
Correspondence should be directed to Nancy Pennington, Center for Decision
Research, Graduate School of Business, University of Chicago, 1101 E. S8th
Street, Chicago, IL 60637,

Footnotes

Icontention over the number of conceptual units concerns whether
variations on looping structures should be recognized as separate constructs.
These controversies do not affect the discussion.

21t can be less since the programmer may know that a single command in
the programming language executes one or more actions.

: Data from 6 additional subjects were discarded due to programmer
difficulty with English (1), mechanical problems during the course of the
experiment resulting in {ncomplete data (3), and motivational problems in
completing the experiment (2).

A response time for a given subject and item was labeled extreme 1f it
was more than 2.5 standard deviations from the subject's mean response time
over correct responses, and {f it was simultaneously greater than 2.5 standard
deviations from the mean response time for that particular {tem computed over
subjects in the same subject group. In additlon, all response times greater
than 10.0 seconds were considered extreme. About 1.9% of the response times
were {dentified as extreme and their removal lowered the average response time
bv about 150 milliseconds and reduced variability. For example the "cleaned"
averape response time for correct "yes" {tems was 2.512 seconds compared to a
2.670 uncleaned mean. All analyses were performed on cleaned and uncleaned
data and In no case was the direction of differences between means altered by
the removal of extreme response times.

>To some extent these predictions are dependent on the time course of
comprehension so that more errors would be made earlier about less accessible
information. Analyses of comprehension questions by presentation position
were not Iinformative due to the small number of ltems per cell at this level
of analysis.

Lengths of the comprehension questions varied (from 8 to 19 syvllables,
mearr = 13.2 syllables) so response times were adjusted for reading time {n
order to compare response times between di{fferent {nformation category
question sets as follows: Response times were standardized for each subject;
the response time predicted by a subject’s syllables/response time correlaticn
was subtracted out; the remainder 1s a standardized residual "due to
thinking." No differences {n results occur using other common methods of
adjustment.

35

f—

‘This does not preclude priming due to some other unknown form of
relatedness that coincidently was confounded with TS unit membership.
However, this "other™ basls would also have to account for converging
comprehension question results and for results obtained in the second study.

List of Flgures

Figure 1. A sample program text (A) and the problem it solves (B).
Figure 2. Abstraction of function.

Fligure 3. Abstraction of data flow.

Figure 4. Abstraction of control flow.

Figure 5. Abstraction of conditionalized action.

Figure 6. Example analyses of the program segment shown in Figure 1.A.

(Numbers refer to statement numbers in Figure 1.A.)

Figure 7. Study One response times for recognition memory items comparing PK-
primed {tem times to TS-primed item times for each set of materials
within language adjusted for the effects of subject group (Panel A)
and for each subject group within language asdjusted for the effects
of mater{als set (Panel B).

Figure 8. Study One comprehension question error rates by {nformation
category for each language.

Figure 9. Study One comprehension question error rates by information
category for top and bottom quartile subjects withi{n each language.

Figure 10. Study Two comprehension question error rates by information
category, after Study task.

Figure 11. Study Two comprehension question error rates by information
category, after Modification task, for Talk and Notalk subjects.

Table 1

Correspondences Between Text Abstractions,
Knowledge Structures, and Mental Representaiions

TEXT
RELATIONS

KNOWLEDGE
STRUCTURES

MENTAL
REPRESENTATICN

Control Flow

Function
Data Flow

Condition-Action

Text Structure

Plan Knowledge

Unknown

Procedural Episodes

Functional Representation

Unknown

37

Table 2
Mean Response Times for Target Recognition Test Items
as a Function of Prime Type

A. All subjects, response time Iin seconds

FORTRAN COBOL
SUBJECTS AND MATERIALS SUBJECTS AND MATERIALS

Subject Group
Within language PX _Prime IS Prime PK Prime IS Prime
Subjects Group 1 2.691 2.695 2.526 2.834

(A Materials) (B Materials) (A Materlals) (B Materials)
Subjects Group 2 2.248 1.972 3.048 2.59%

(B Materials) (A Materials) (B Materials) (A Materials)
All Subjects 2.470 2.333 2.787 2.714

B. Upper quartile (Ql) comprehension subjects, response time In seconds

FORTRAN COBOL
SUBJE"TS AND MATERIALS SUBJECTS AND MATERIALS

Sublect Group
wie uage PR Prime IS Prime PK Prime IS Prize
Ql Subjects Group 1 2.560 2.463 2.667 2.948

(A Materials) (B Materials) (A Materials) (B Materials}
Ql Subjects Group 2 2.220 1.807 2.780 2.062

(B Materials) (A Materials) (B Materials) (A Materials)
All Ql Subjects 2.391 2.135 2.724 2.505

38

.
.t

v

epartment of Jomputer Loience
Urnlversity
X

e
MA T2

S Laporatory
ng Systems lerter
PO
1052
T SIoAlKer
VN Fersrnrnel FRD Terter
LlmEl R
Terevtrars o ILILTEN
roolriuersiey
K
2ge
.

oot

Mz . Hugn Burns
FHRL/ZIDE
~owry AFB, CO 80230-5000

r. John M, Carroll

Watson Research Center

» Interface Institute

.C. Box 218

Yorktown Heights, KY 10498

I I]
(I3 &
(Y .

LAY

Or. Fred Chang
Navy Personnel R&D Center
Code 51

Sar. Diego, CA 32152-6800

14}

Mr. wWallace Feuyrzelg
toutational TeontIlOogf
Ho .t berane
N M

g

. Michael Friencly
cnology Department
York University
Toronto ONT
CANADA M3J 1Fz2

Dr. Sherrie Gott
AFHRL/MODJ
Brooks AFEB, TX 78225

Dr. James G. Greeno
University of California
Berkeley, CA Qu720

Dr. Henry M, Halff
Halff Resources, Inc.
UGS 33rd Road, Norh
Ariington, V& 22207

L b}
a4 .
0 ' . .
‘ Dree PO (&
iy VRN oy
12 vt [s I i
. N AR v RV \p)
] - wh ° { [[[[Py QT
I . " ! TLo m o — [.
R Q@ a: 1 \ [N bl v £ an 9]
L 4 e . e L. [V V2 T G ST 4 —
A [G I . I voug o QO o~ [SE)
L. 4 1 0 N A B SO = L 2 O
i b P R B ' qQ [EE R R [%7]
PR o PV P E TR I . @ V1M e by — e
. PO AN S B . qr) oo 4l <L 250NN TS GERN S o O
¥R > @ T2 r 7 ¢ (RSN Q.
i - o b - a0 20 4 &l [T RS e
sl %] qQ I - oo . (ORI GE | 3 S 4 30 K [Sl
. a 3] [T P VIR FRS RN O §T 4 O U et
. o [GA N SR XY 400 R SRR ™ 4 DO P
T 4\l LIPS S o . LR R CR | e [
[> PN b £ i ~Los o O D = Jo Uk}
‘. oo - N NG B O =
P) ‘ P2 Vo PO LI S U G N L oal o et
[ORRGR R I PO PR R [TR 5 .00 [S
1 IS YRS 4 I O A Y et FOr S I 2t s R RIS 8 Pestee!
w
fu
i
s
. Qs
(9] 1S (@)
. - Vi A} el 1 LY 1 [
} 4+ (Y [N 1 r t) I (8} NS
RN . . N oy [Iz Ix] el
. vio% £1. (o} i 13 [S <o (D]]
T LG N | 3 1 ' t o N AR S9! 4 @ v o=
S NSRS [} (") o o ", I8 [SRr] FOIS
v L @ i1 S s} [s} s | - Q i
3 P [[4 v by T o QL. -3 AY]
s IS ‘% 1 . 1 [EX T 42 O fos -
I A Uy r) 12 ') 0y 2. P f S § o [GRN f3ed w @ O
B [[‘o t . PN [[OR e <o W O —~ 3w
i 123 Y 2 o7 1 T Py)] e - L2 I = o -0 0N 1 ~ O
i Ctl o 4 [‘e ; il LF IR s Uy e O Q EESIE ST I = [N)
. < s vy 9] ¢y oy r L 5 Y] 4 a z a -1 z2 > o [P IR A 1 (S
i RN) [. [M . e [[IS @ Q [} N O ¢ <t O
(SOt I8 et . Y ol t) 3 L [v e Ly oy o r e -
m ., o . IS [N 1 R P | LY VIR PR PN 20 OO0 a2) 00K e e I GAE
T o [PV o B NSERE -4 g a b [[} U (] U o) © @
N N s . - vy W F e [- PR DR O Qg ai o LoO e L
. b 1 - o I - N . o e Ty a0 [ER B £ 40 AT Q) o4 +3 - O k1l o ©
.l ' o Iovs . " oy e Tyt PR) e @) - G e N (o]
ol oty . A RN f . v . . s 1 .) . 40 LS R = 5. Lo vy @ o4 Ot
1 4 ' P \ ' Gt . RS SR 1 SSI s I S R 7SI) 11T SO G 3@ Y
WL PR Y L s « oo < PP w1 [SRIEETCREY AR Y b S TR PR SR 0
t . PO . P . N - . .l - o EREN LB S 1Y T [RERYRErS!
S e LI S .. oy , CES ‘ . i . 5 § X . oLy 3 P S R A S
B vooae [N i " PN . ' - i DA i ‘ . [N ¢ [S R [N (N ¢ R bl
R B e ! s Dol AR .. tor <1 o RN o R ' NI SO <y

1986/11/20

Distribution List [Chicago/Pennington] NR 667-503

Dr. Mary S. Riley

Program in Cognitive Science

Center for Human Information
Processing

University of California

La Jolla, CA 92093

Dr. Marc Sebrechts
Department of Psychology
Wesleyan University
Middletown, CT 06475

Dr. Sylvia A. S. Shafto
Department of

Computer Science
Towson State University
Towson, MD 21204

Dr. Elliot Soloway

Yale University

Computer Science Department
P.O. Box 2158

New Haven, CT 06520

Chair, Department of
Computer Science

University of Maryland,
College Park

Coliege Park, MD 20742

Dr. Ralph Wachter
JHU=-APL

Johns Hopkins Road
Laurel, MD 20707

Dr. Keith T. Wescourt

FMC Corporation

Central Engineering Labs
1185 Coleman Ave., Box 580
Santa Clara, CA 95052

Dr. Barbara White

Bolt Beranek & Newman, Inc.
10 Moulton Street
Cambridge, MA 02238

Dr. Wallace Wulfeck, III
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Joe Yasatuke
AFHRL/LRT
Lowry AFB, CO 80230

Dr. Joseph L. Young

Memory & Cognitive
Processes

National Science Foundation

Washington, DC 20550

