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Representations in Comprehension

ABSTRACT

Comprehension of computer programs involves detecting or inferring different
kinds of relations between program parts. Different kinds of programming
knowledge facilitate detection and representation of the different textual

relations. The present research investigates the role of programming
knowledge in program comprehension and the nature of mental representations of

programs; specifically, whether procedural (control flow) or functional (goal
hierarchy) relations dominate programmers' mental representations of programs.
In the first study eighty professional programmers were tested on
comprehension and recognition of short computer program texts. The results
suggest that procedural rather than functional units form the basis of expert
programmers' mental representations, supporting work in other areas of text
comprehension showing the importance of text structure knowledge in
understanding. In a second study forty professional programmers studied and
modified programs of moderate length. Results support conclusions from the
first study that programs are first understood in terms of their procedural
episodes. However, results also suggest that a programmer's task goals may
influence the reations that dominate mental representations later in
comprehension.

INTRODUCTION

Computer programing is a complex cognitive task composed of a variety of
subtasks and involving several kinds of specialized knowledge (Pennington &
Grabowski. 1986). A skilled computer programmer must understand the problem
to be solved, design a solution, code the solution into a programing
language, test the program's correctness, and be able to comprehend written
programs. These different aspects of programming require knowledge of the
real world problem domain, such as statistics, banking, or physics; knowledge
of design strategies and useful design components; knowledge of programming
language syntax, text structure rules, and programming conventions; knowledge
of computer features that impact program implementation; and knowledge of the
user of the program. Central questions in the study of cognitive skills in
general and of programming in particular concern the nature of expert
knowledge and how various types of knowledge influence skilled performances
(Bisanz & Voss, 1981: Chi, Glaser, & Rees, 1982; Kieras, 1985; Miller, 1985).

The present research focuses on the subtask of computer program
comprehension, an important part of computer programming skill from both
practical and theoretical perspectives. It is estimated that more than 501 of
all professional programmer time is spent on "program maintenance" tasks that
involve modifications and updates of previously written programs. Because the
programs are most often written by other programmers, comprehension plays a
central role in this endeavor. From a theoretical perspective, comprehension
involves the assignuent of meaning to a particular program, an accomplishment
that requires the extensive application of specialized knowledge. Thus the
study of program comprehension provides an effective means for studying the
role of particular kinds of knowledge in cognitive skill domains.

The general approach employed in the present research is to regard a
computer program as a text. Because programs are instructions to a computer,
the closest analogs among natural language texts are instructions about how to
perform a particular task, often referred to as procedural instructions.
Procedural instructions and programs also share the feature that the text can
be 'executed" to accomplish a goal.

II



AA. ~ IForm Aprovied'
REPORT DOCUMENTATION PAGE oe o07 0,88

la REPORT SECURITY CLASSIFICATION Tb RESTBiCVE MARKINGS r

.a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION IAVAILABILITY OF REPORT
Approved for public release; distribution

2b DECLASSIFICATION 'DOWNGRADING SCHEDULE unlimi ted.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

Technical Report No. 3-ONR

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Graduate School of Business (16 aplicable) Personnel and Training Research Programs
University of Chicago Office of Naval Research (Code 1142PT)

6( ADDRESS (City, State. and ZIPCode) 7b ADDRESS(City, State, and ZIPCode)

1101 E. 58th Street 800 North Quincy Street
Chicago, IL 60637 Arlington, VA 22217-5000

RA NAME OF ;UNDING,SPONSORNG Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (i applicable) N00014-82-K-0759

BC ADDRESS (City. State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM 0 PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

61153N RR04206 R04206-0A NR667-503

1 1 TITLE (Irtludoe Security Classification)

Stimulus Structures and Mental Representations in Expert Comprehension of Computer
Proorams

12 PERSONAL AUTHOR(S)

-. Pennington. Nancy
13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Technical Report FROM 2/85 TO 8/85 September 1, 1986 50
16 SUPPLEMENTARY NOTATION

in press, Cognitive Psychology

17 CCSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIrELD GROUP SUB-GROUP05 0 computer programming, expertise, text comprehension

cognitive skill, problem solving, software psychology

19 ABSTRACT (Continue on reverse of necessary and identify by block number)

This report is a comee revision and extension of a previous technical report
(Technical Report No. 2-ONR, January, 198-5) with the same title; additional data are
reported in this version.

Comprehension of computer programs involves detecting or inferring different kinds of
relations between program parts. Different kinds of programming knowledge facilitate
detection and representation of the different textual relations. The present research
investigates the role of piogranming knowledge in program comprehension and the nature
of mental representations of programs; specifically whether procedural (control flow) or
functional (goal hierarchy) relations dominate programners' mental representations of
programs. In the first study eighty professional programners were tested on
comprehension and recognition of short computer program texts. The results suggest

20 DISTRIBUTION /AVAILABtLITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
OUNCLASSIFIEDUNLIMITED 91 SAME AS RPT C oTIC USERS unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include AreaCode) 22c OFFICE SYMBOL
Dr. Michael Shafto 2 ONR I42PT

D0 Formn 1473, JUN 86 Prev,ous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE



19. (cant.

that procedural rather than functional units form the basis of expert programmers'
mental representations, supporting work in other areas of text comprehension
showing the importance of text structure knowledge in understanding. In a second
study forty professional program~ners studied and modified programs of moderate
length. Results support conclusions from the first study that programs are first
understood in terms of their procedural episodes. However, results alsc suggest

that a programmer's task goals may influence the relations that dominate mental
representations later in comprehension.

r/



9!

One advantage to viewing programs as texts is thst thenries and meth,,dj
in the study of text comprehension are relatively well developed so that
widely accepted characterizations of text comprehension can serve as a
starting point for thinking about the comprehension of programs. According ,o
the dominant view, various knowledge structures (often referred to as schemas
or frames) relevant to the text are activated in the course of comprehension
of the text (e.g.. Adams & Collins, 1979; Rumelhart, 1980). For example, if .

person is reading a story about a trip to France, knowledge about how stories
typically proceed (a story schema) as well as more specific content knowledge
about vacation trips, the parts of France. etc., would be activated. Schem-,.
that are verified (or persist) provide the perspective from which the text i,;
understood, allow the reader to account for and interpret information
explicitly mentioned in the text, and enable inferences to be made about
information not mentioned. For example, the reader may determine after awhile
that the story involves a business trip rather than a vacation trip so that
information initially interpreted in the context of a vacation may be
reinterpreted in terms of knowledge about business trips. This process
results in a mental representation of the text that is influenced by
information and structure in the stimulus text as well as information and
structure provided by activated knowledge. The memory representation of thr,
text is assumed to have levels. One of the most widely cited theories
distinguishes between a microstructure level consisting of propositions and
their interrelations that correspond closely to the text and a macrostruct'2r"
level consisting of a smaller number of propositions that characterize the
text at a more abstract level (Kintsch & van Dijk, 1978). The theory implies
that a key process in text comprehension involves chunking the text into
segments that correspond to schema categories so that labels for segments will
constitute the macrostructure for the text (Kintsch, 1977). In other words,
the structure of activated knowledge is an organizing framework for the mentil
representation of the text at the macrostructure level. Thus mental
representations of text and the related knowledge structures are linked in tIb'
comprehension process.

The purpose of the present research is to explore the role of two kinds
of programming knowledge -- text structure knowledge (Basili & Mills, 1982:
Curtis. Forman, Brooks, Soloway, & Ehrlich, 1984) and plan knowledge (Solowav,
& Ehrlich, 1984) -- that might describe macrostructures in the construction of
mental representations of program texts. These kinds of knowledge have
analogs in other text comprehension domains (see Mandler, 1984 as well as
Britton & Black, 1985 for many examples); they play a special role in
understanding procedural instructions and programs because complete
comprehension of programs (and other texts) requires understanding multiple
relations between parts of the text that are difficult to view simultaneously
Thus, the nature of the macrostructure will determine which aspects of the
text will be relatively easier or more difficult to understand.

In the sections that follow, our analysis of program comprehension begins
with analyses of the computer program stimulus structures. These analyses are
abstractions of tte test and they are intended to illustrate features of the
text (not mental entities) that may or may not be detected during
comprehension. We then describe two kinds of programming knowledge structurp
that are involved in computer program comprehension and propose two
alternative hypotheses concerning the kind of knowledge that plays an
organizing role in the mental representation of the text. Because there are
correspondences between certain abstractions of the text and particular types
of knowledge, the kind of knowledge that provides organizing structure in the
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resulting mental representation of the text will have implications for whit-h
text features are explicitly included in the mental representation. These

hypotheses and their implications are tested in two empirical studies.

MULTIPLE ABSTRACTIONS OF COMPUTER PROGRAM TEXT

For computer programs, as for other types of texts, there are different
kinds of information implicit "in the text" that must be detected in order to
fully understand the program (Green, 1980; Green, Sime, & Fitter, 19RO;

Pennington, 1982). For example the sequence of statements in the program and
certain keywords provide information about the sequence in which program
statements will be executed. This kind of information is called the control
flow of the program and understanding a program requires understanding its

control flow. Another kind of information contained in programs, called the

data flow of the program, concerns the changes or constancies in the meaning
or value associated with the names of program objects throughout the course of

the program.

In the illustration that follows, a sample program text is analyzed In
terms of four different kinds of information implicit in the text. Each of

these analyses results in an abstraction of the text that highlights one set
of relations between program parts but obscures others. The analyses are not

intended to be claims about mental representations, rather these abstractions

are based on formal analyses of programs developed by computer scientists.
Analyses of natural language text in terms of underlying causal, referential,

or logical relations are similar abstractions of text based on different kinds
of information in the text that are relevant to its comprehension (Kintsch.
1974; Meyer, 1975; Trabasso, Secco, & van den Broeck, 1982).

The program text to be analyzed is written in COBOL, a programming
language noted for it resemblance to English (see Figure I.A). This program
solves a toy problem in which a list of clients and their product orders for a
month are processed and average order sizes for two subsets of clients are

computed (see Figure I.B).

Insert Figure 1 about here

The first abstraction of the program text is structured in terms of the
goals of the program, that is, what the program is supposed to accomplish or
produce (see Figure 2). It Is labeled a goal hierarchy but could also he
described as a decomposition according to the major program functions or
outputs (cf.. Adelson, 1984). The higher level decompositions show that the
program will produce three things: two averages and some printed output. At
the lower levels, subgoals are specified for each higher level goal. For
example, computing the average for the subset of "ordering" clients Involves

summing over orders, counting the relevant subset of clients and dividing.
Notice that in this abstraction there is little explicit information as to how
these goals will be Accomplished. For example, the total list of clients

could be searched once to count up the active clients and once again to add uT
the order quantities. Alternatively, a single pass through the list could

classify the client as active or not and perform the appropriate count and s-,n

operations when an active client is encountered. Of course, the
implementation details are in the text but are lost in the abstraction
focusing on functional relations between parts. Some inferences ahout the

ordering of events can be made from this representation on the basis of

3



A. COBOL PROGRAM SEGMENT

STATEMENT NUMBER

I MOVE ZERO TO COUNT-CLIENTS.
2 MOVE ZERO TO TOTAL-ORDERS.
3 MOVE ZERO TO INACTIVE-CLIENTS.
4 READ ORDER-FILE INTO ORDER-REC.
5 PERFORM SUM-ORDERS UNTIL ORDER-REC-ID - 999999.
6 COMPUTE ACTIVE-CLIENTS - COUNT-CLIENTS - INACTIVE-CLIE
7 COMPUTE CLIENT-AVG = TOTAL-ORDERS/COUNT-CLIENTS.
9 COMPUTE ACTIVE-AVG - TOTAL-ORDERS/ACTIVE-CLIENTS.
9 DISPLAY MSG-[. ACTIVE-AVG UPON PRINTER.

10 GO TO ORDER-EXIT.
11 SUM-ORDERS,
12 ADD I TO COUNT-CLIENTS.
13 ADD ORDER-REC-QUANT TO TOTAL-ORDERS.
14 IF ORDER-REC-QUANT = ZERO ADD I TO INACTIVE-CLIENTS.
15 READ ORDER-FILE INTO ORDER-REC.

B. PROBLEM: GIVEN A LIST OF CLIENTS AND THEIR PRODUCT ORDERS

FOR THIS MONTH, CALCULATE THE AVERAGE QUANTITY

ORDERED FOR ALL CLIENTS AND THE AVERAGE FOR CLIENTS

WHO ORDERED DURING THE MONTH. PRINT OUT THE

AVERAGE ORDER SIZE FOR ORDERING CLIENTS.

. I



everyday knowledge; for example, the orders must be summed h1efore di-.'isinl) rm

take place.

Insert Figure 2 about here

A second abstraction of the program text is structured in terms of

program processes that transform the initial data objects into the outputs of

the program (see Figure 3), For example. Figure 3 shows that the data object

"file of client orders" is used by the process "count" to calculate the number

of clients without orders this month. Because the flow of each data object

can be traced through the series of transformations in which it participates,

this Is called a data flow abstraction. This abstraction is closely related

to the goal hierarchy shown in Figure 2. For example the first level
decomposition of goals in the goal hierarch is to compute averages and print

an average. These correspond to the final data objects at the bottom of the
data flow abstraction shown in Figure 3, which are a printed average and a

computed average. The goal hierarchy can be at least partly recovered from
the data flow abstraction by working up from the bottom although it requires
the application of knowledge to infer the grouping of subgoals with their
goals. However, in the data flow abstraction, everything that happens to a

particular data object is readily available in a way that is not apparent fr,-
the goal hierarchy. In addition, the data flow abstra-tion allows more

inferences to be made about the order in which certain operations will occur
than does the goal hierarchy. If an action (marked by a box, e.g., "compute"

has two data objects as inputs (marked by an oval, e.g., "sum of orders",
"number of clients") then the action cannot take place until the data objects

are both available; thus the process that produces a data object (e.g., "sum
orders") must execute prior to the process that consumes it ("compute
average").

Insert Figure 3 about here

A third abstraction of the program text, called a control flow
representation or flowchart, is structured in terms of the sequence in which
program actions will occur (see Figure 4). The links between prograr actions
in this structure represent the passage of execution control instead of the
passage of data as in the data flow abstraction. This form highlights
sequencing information but conclusions about data flow must be inferred by

looking for repeated data object names. For example, to find out in what
events the "counter for clients" participates (easily determined in the data

flow abstraction, Figure 3) it is necessary to track its use in the sequence
of operations in the control flow abstraction (Figure 4). It is also

difficult to detect goal/subgoal relations quickly. For example, the higher

order goal of computing an average over ordering clients is specified in the
last procedural block of the control flow abstraction but the subgoal
operations of summing and counting are not explicitly linked to the hiber

order goal.

Insert Figure 4 about here
** **** * **** *** ** ** *** ** ** *

A fourth abstraction is structured in terms of the program actions that
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GOAL HIERARCHY: THE PROGRAM ACCOMPLISHES CERTAIN GOALS BY

PRODUCING OUTPUTS. EACH LEVEL INDICATES A

HIGHER ORDER GOAL IS DECOMPOSED INTO SUBGOALS.

CALCULATE AVERAGE ORDER, AVERTGE ACTIVE

ORDER, AND PRINT AVERAGE ACTIVE ORDER

-I'I
CPMPUTE AVERAGES PRINT AVERArU

ORDER FOR
ORDERING CLI!',

I I
COMPIJTE AVERAGE COMPUTE AVERAGE
FOR ORDERING CLIENTS FOR ALL CLIENTSI II I I

COU 4T SUM DIVIDE COUNT SUM D I

ACTIVE ORDERS SUM BY CLIENTS ORDERS SUU
CLIENTS COUNT I CCU,

INITIALIZE UPDATE COUNTER
COUNTER FOR EACH CLIENT

IN FILE
INITIA- GET ADD

LIZE ORDER ORDER
SUM FROM TO

LIST SUM
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DATA FLOW: PROGRAM ACTIONS TRANSFORM INITIAL DATA OBJECTS

INTO FINAL DATA OBJECTS. I INDICATE DATA

OBJECTS. INDICATE PROGRAM ACTIONS.

FILE OF CLIENT
ORDERS

COUNT COUNT SUM

NUMSER NUMBER sum
NO ORDERS OF CLIENTS OF ORDERS

coMPUTE COMPUTE

NUMRER OF AVE RAGE
ORDERING CLIENTS ORDER

COMPUTE

AVERAGE

CTIVE ORDE

P R I N3
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CONTROL FLOW: PROGRAM ACTIONS OCCUR IN A SPECIAL SEQUENCE.

INITIALIZE COUNTER FOR CLIENTS

INITIALIZE SUM FOR ORDERS

INITIALIZE COUNTER FOR NO ORDERS

INITIAL READ CLIENT RECORD

,I
TEST FOR FILE TRAILER: EXIT

INCREMENT COUNTER FOR CLIENTS

ADD CLIENT ORDER TO SUM

TEST FOR NO ORDER:

INCREMENT COUNTER FOR NO ORDER

READ CLIENT RECORD

COMPUTE COUNT OF CLIENTS WITH ORDE;S

COMPUTE AVERAGE OVER ALL CLIENTS

COMPUTE AVERAGE OVER ORDERING CLIENTS

PRINT AVERAGE OVER ORDERING CLIENTS
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the natural cognitive representation of experienced programmers while a
procedural representation, reflecting text relations specified in Figure 4. is
most natural for novice programmers. It is also possible that the actual
mental representation used by the programmer will reflect task and programming
language influences in addition to the influences of cognitive capacities and
knowledge structures. For example, different programming languages highlight
different relations outlined in Figures 2-5 (Green, 1980; Green, et al..
1980). We assume that one mediating factor in correspondences between text
structure and the structure of mental representations is the structure of
programming knowledge activated during comprehension. We now examine how the
structure of human programmingknowledge is related to these text abstractions
and to potential forms of mental representations of programs.

PROGRAMMING KNOWLEDGE

Various types of knowledge about programming will enable the programmer
to detect and mentally represent the variety of relations that are implicit in
the text. Some kinds of knowledge more important than others in constructing
the macrostructure of the mental representation. In the present research we

explore the role of two types of programming knowledge in program
comprehension: knowledge of text structure and knowledge of program plans.
These two kinds of knowledge do not exhaust the potential range of programming
knowledge but they provide a useful starting point and they have been most
frequently promoted as the cognitively natural bases for program design.

Text Structure Knowledze

Program text can be described in terms of a limited number of control
flow constructs. Although there are differences about the exact number and
description of these control flow constructs, three basic building blocks are
typically included: seauence in which control passes from one action to the
next; iteration in which an action is repeated until a specified condition
exists (commonly referred to as looping); and conditional in which control
passes to different actions depending on which of two or more conditions is
met (sometimes referred to as if-then-else).I These units could be called
structured programming units because of an emphasis on disciplined control
structuring according to these constructs by early structured programming
advocates (e.g. Dahl, Dijkstra, & Hoare, 1972). These fundamental units have
also been called prime programs referring to the idea that a program text can
be decomposed into sequence, iteration, and conditional units in the way that

a number can be decomposed into prime number factors. Prime programs at the
lowest level of decomposition, represented as a single node, can be aggregated

into higher level sequence, iteration, and conditional units (Linger, Mills, &
Witt, 1979; Basili & Mills, 1982) so that the entire program text can be
represented as a hierarchy of prime units. An analysis of the sample program
text (Figure l.A) in terms of these prime program text structure (TS) units is
shown in Figure 6.A (cf., Curtis, et al., 1984). For example statements
numbered 1 through 4 in Figure l.A form a sequence unit as shown in Figure
6.A; statements 5, 11, and the embedded sequence 12 through 15 form an
iteration unit (loop); and statements numbered 6 through 10 form another
sequence unit. A concatenation of the sequence, loop and sequence units
yields a higher level sequence unit that is the entire program text Thus the
text is structured as a hierarchy of prime program units.

6



Insert Figure 6 about here
******************* *******

The decomposition of a program into control primes and the diagramming of
control flow according to structured programming units are analytic techniques
that can be applied to programs. We refer to programmers' knowledge about
these structured programming units as text structure knowledge (TS knowledge).

Professional programmers could not easily escape exposure to this knowledge in
the course of their programming education. One role that text structure
knowledge could play in comprehension is that of organizing the memory

representation macrostructure and some researchers have claimed that knowledge
of these structural components plays a central psychological role in program
comprehension. For example, advocates of structured programming have

hypothesized that programs organized according to a strict control construct
discipline are easier to understand and modify because they correspond to the

programmer's mental organization (Dahl. et al., 1972); that the process of
comprehending undocumented programs is similar to decomposing a program into

prime programs (Linger, et al., 1979).

One presentation of such a comprehension scheme proposes that the mental
representation of a program has a macrostructure organized by control primes,

that Is, the sequence, iteration, and conditional text structure units (Atwood
& Ramsey, 1978; Curtis, et al., 1984; Basili & Mills, 1982). In this view,
program comprehension proceeds by identifying sequence, iteration, and
conditional units in the surface structure of the program and deriving their
local purposes. These units then act as items that combine into higher order
sequence, iteration, and conditional units, with higher level functions

attached to units at this level. This process continues until the highest

level is a single unit with an identifiable function. For example, the text
structure (TS) decomposition of the sample program segment shown in Figure 6.A

shows "initialization sequence", "read loop", and "computation sequence" as
the first level macrostructure control primes and higher levels of
macrostructure are created by their combination (see also Atwood & Jeffries,

1980; Davis, 1984; Mayer, 1977; Shneiderman, 1980). Thus, the text structure
analysis represents a hypothesis about relations between program parts that
organize the semantic representation of text in memory.

The decomposition of program text into text structure (TS) units (Figure
6.A) is most closely related to our earlier analysis of program text in terms
of control flow relations (Figure 4). However, such a decomposition will not
necessarily correspond to the surface ordering of events in the program text

as shown by the sequence of program text statement numbers in Figure 6.A.

There is some empirical support for the idea that program text structure
knowledge plays an important role in comprehension and possibly an organizing

role in memory. One line of support is provided by evidence that programs
have a psychological "phrase structure" in which the phrases are syntactically

marked by keywords of the programming language: WHILE.. DO is a marker that

iritiates loops' BEGIN goes with END to mark a sequence, and so forth
(McKeithen, Reitman, Reuter, & Hirtle, 1981; Norcio & Kerst, 1983). In one
study testing free recall memory for program texts (McKeithen, et al., 1981),
statements recalled most frequently by experts but not by novices corresponded

to statements marking the phrase structure. In another study (Norcio & Kerst,

1983) higher proportions of correct to incorrect recall transitions (and vice
versa) occurred at the boundaries of the hypothesized text structure units,

analogous to findings in sentence comprehension research that recall errors

7
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are greater over phrase structure boundary transitions (Fodor, Bever, &
Garrett, 1974; Mitchell & Green, 1978; Tejirian, 1968).

Additional support is provided in a study of program comprehension in
which programmers studied short programs composed of meaningful code,

structured but meaningless code, or randomly arranged lines of code (Schmidt,
1983) More lines of both meaningful and structured but meaningless code were

recalled compared to randomly arranged code. Further, longer study times
occurred at control construct borders, in the same way that reading times are
elevated at episode boundaries in story comprehension (Haberlandt, 1980;

Mandler & Goodman, 1982).
Additional indirect support was obtained in a study (Adelson, 1981) of

subjective organization in programmers' (multitrial) free recall of randomly

presented lines of program code. The randomly presented lines contained
statements that could be viewed as three routines (5 lines each) or as five

syntactic groupings (3 lines each). Experts used program membership as an
organizing principle and routines were grouped at a second level by procedural

similarity, and not by the function of the routine.

In summary, the idea that text structure units play an organizing role in
memory suggests three main features of program comprehension: (i)

Comprehension proceeds by segmenting statements at the detail level into

phrase-like groupings that then combine into higher order groupings. (2)

Syntactic markings provide surface clues to the boundaries of these segments.

(3) The segmentation reflects the control structure of the program. Thus in
terms of the multiple abstractions of programs (Figures 2-5), sequence

information should be readily available; data flow connections that occur
across unit boundaries should be relatively more difficult to infer; and

function information should be least accessible since it is most closely

related to data flow and requires coordination across units.

Plan Knowledge

A second kind of knowledge, called program plan knowledge (PK knowledge),
emphasizes programmers' understanding that patterns of program instructions
.go together" to accomplish certain functions (Rich, 1981; Soloway, Ehrlich &

Black, 1983; Soloway, Ehrlich, & Black, 1983; Soloway, Ehrlich & Bonar, 1982).
Plans correspond to a vocabulary of intermediate level programming concepts

such as searching, summing, hashing, counting, etc., and there are hundreds
(maybe thousands) of these plans. Like other forms of engineering and design,

"there is a craft discipline among programmers consisting of a repertoire of

standard methods of achieving certain types of goals" (Rich, 1980).
A plan is a structure with roles for data objects, operations, tests, or

other plans, and with constraints on what can fill the roles in a given
instantiation as well as specifications as to data flow and control flow

connecting segments within plans. Plans accomplish things and are

hierarchically linked on the basis of function and role relations; one plan
may be used to accomplish the goals of a higher order plan (Soloway et al.,

1983). For example a very simple plan is a counter plan that consists of an

initialization art plus an update-by-one part. A plan to compute an average

will include a counter plan as one of its parts. Higher level plans include

such things as a find-first-value-search plan, a merge-two-files plan, or a

bubble-sort plan.

The specification of plan knowledge in programming has been elaborated by
Rich, Shrobe, and Waters (Rich, 1980, 1981; Rich & Shrobe, 1979; Rich &
Waters, 1981; Shrobe, 1979; Waters, 1979), who have developed a large set of
plans based on their intuitions about programming, and by Soloway and Ehrlich
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(Soloway & Ehrlich, 1984: Soloway, et al., 1983; Soloway, et al. 1982) who
have developed a more psychologically motivated theory of plan knowledge A
plan knowledge (PK) decomposition of the COBOL program segment (Figure I A) in
terms of underlying program plans is shown in Figure 6.B (this particular

decomposition is based on work by the MIT Programmer's Apprentice project;

Rich & Shrobe, 1979; see Soloway, et al., 1983 for a similar analysis). As
before, numbers in Figure 6.B refer to program statement numbers specified in
Figure l.A and the hierarchical structure of the diagram in Figure 6.B shows
that plans combine together to form higher order plans. For example,

statements 2 and 13 implement a counter plan: the segment as a whole consists
of plans for reading through the inputs, counting, summing, and computing an

average.

Plan knowledge units could also form the comprehension macrostructure,
implying that understanding a program is finding a set of underlying plans
such that parts of the program match the roles in the hypothesized plans.
Comprehension of a program, under this view, would proceed by partial pattern
matches activating candidate plans, causing programmers to search for further
evidence to instantiate a plan. According to this concept of comprehension
the program is mentally represented as a set of linked descriptions, like
blueprints, rather than as a set of instructions to be executed. Thus, the
plan knowledge analysis also represents a psychological hypothesis about
relations between program parts that might organize the semantic

representation of text in memory as depicted in Figure 6.B.
Plan representations of a program are primarily based on data flow

relations. This is because much of the control structure in a program that is
not mandated by'data flow requirements is arbitrary. Thus the plan knowledge
(PK) analysis (Figure 6.B) is most closely related to our earlier analysis of
program text in terms of data flow relations (Figure 3) and function (Figure
2). Such a decomposition also does not necessarily correspond to the text
surface structure as shown by program text statement numbers in Figure 6.B.

There is also empirical evidence concerning the importance of plan
knowledge in program comprehension. PK representations have been invoked to
explain how expert programmers chunk program text in recall tasks (Creeno &
Simon, 1984) by arguing that plan knowledge is used to code the functions of
the presented program. Details of the program need not be encoded because the
programmer has only to expand a plan into one of its implementations to
reconstruct the detail. This claim corresponds to claims made in research on
natural language processing that encoding efficiency is achieved by activatinz
scripts (Schank & Abelson, 1977) or other kinds of content schemas such aF
goal/plan knowledge about human actions (Schank & Abelson, 1977; Wilensky,

1983).
There is evidence that data flow relations are important in algorithm

design (Kant & Newell. 1984) and program modification (Weiser, 1982), and
evidence that experienced programmers are better than novices at inferring
program function in a comprehension task (Adelson, 1984). These studies do
not address questions about how function and data flow relations are inferred
(i.e., by recognizing plans or in some other way) but they do indicate the
central role of program function in experts' understanding.

Evidence more directly related to plans as critical elements in program
comprehension is provided by Soloway and his colleagues (Soloway & Ehrlich.
1984; Soloway, et al., 1982) using a cloze procedure to show that programmers
will fill in a missing line of a program with a predicted plan element; that
programmers have more difficulty comprehending a program in which the plan
structure has been disrupted; and that experts but not novices can resolve
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dilemmas when conflicting cues about which plan to instantiate are provided
In addition, Brooks (175) has simulated program composition by specifying a
large set of program plans and processes that operate on them.

In summary, the idea that plan knowledge plays an organizing role in
memory suggests the following features of program comprehension: (1)
Comprehension proceeds by the recognition of patterns that implement known
programming plans. (2) Plans are activated by par.ial pattern matches and
confirming details are either sought or assumed. (3) The resulting
segmentation reflects the data flow structure of the program indexed by
program function. Thus in terms of the multiple abstractions of programs
(Figures 2-5). data flow and function information should be readily available
sequence and detail operations should be less accessible.

RESEARCH OVERVIEW

A summary of the correspondences we have proposed between textual
relations (abstractions of program text), knowledge structures, and
hypothesized mental representations is shown in Table 1. Features of the text
activate different kinds of knowledge, some of which will provide an
organizing structure for the mental representaticn of the text. The rows of
Table I represent alternative hypotheses concerning the dominant form of the
mental representation of programs. The structures illustrated In Figures 6.A
and 6.B show in detail the potential alternative meaning structures in memory
corresponding to the TS and PK analyses of one text segment and we have
outlined a view of comprehension that might lead to each.

Insert Table I about here

There are several reasons to be interested in which of these views better
characterizes computer program comprehension. First, well known empirical
results across a wide range of problem solving domains, such as chess (e.g.,
Chase & Simon, 1973a, 1973b), GO (Reitman, 1976), bridge (Engle & Bukstel,
1978), music composition (Halpern & Bower, 1982; Sloboda, 1976) and computer
programming (McKeithen, et al., 1981; Shneiderman, 1976), show that experts
quickly identify meaningful patterns in a problem array that are stored in
memory as chunks of information. These results suggest that for experts an
abstract representation of a problem array is available quite quickly upon
inspection. Much less is known about exactly which principles underlie
experts' superior organization of problem information. The nature of mental
representations of programs and the units that underlie their organization
(e.g. Adelson, 1984; Curtis, et al., 1984; Davis, 1984) are important for
resolving arguments ovec how programs ought to be structured, understanding
the psychological complexity of programs, and extending insight Into skilled
performance to an important complex task. Second, the two modes of
comprehension have different consequences in terms of the kinds of informarlc Tr
that are relatiBely easy or difficult to abstract from program text (Green.
I1O). This in turn is important In determining standards for computer
programming practices, tools, languages, and education.

More broadly, these two views of program comprehension mirror debates in
other areas of text comprehension and composition concerning the ways in whlc',
different kinds of knowledge contribute to text understanding. One kind of
knowledge that has been proposed to influence comprehension is abstract
knowledge of text structure. For example, content free abstract knowledge
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about the type and form of components usually included in a st ,, , ISPeIT .

episodes consisting of identifiable parts such as initiat!ng events, goals
attempts, and consequences) is often hypothesized to provide organizing memorv

structures in story comprehension (e.g., Mandler, 1984; Rumelhart, 197 5) A
second kind of knowledge that has been proposed to influence comprehension 1,

schematic content knowledge. For example, work on "scripts, goals, and plans-

provides evidence that content specific knowledge about typical human action

sequences in specific contexts and knowledge of typical plans that achieve

certain goals provide organizing memory structures in story comprehension

(Black & Bower, 1980; Bruce, 1980; Schank & Abelson, 1977; Thorndyke &

Yekovich, 1980). Arguments about the priority of one or the other type of

knowledge in story comprehension are difficult to resolve since both story
texts and the plans involved in human action sequences tend to have the same

or similar structures (Black & Wilensky, 1979: van Dijk & Kintsch, 1983). In
programming using more traditional languages, text structure knowledge
corresponds to structured programming or prime program units; the units are
few in number and abstract, a kind of "episode" for programs. Plan knowledte
corresponds to schematic content knowledge and there are potentially thousar P

of such patterns.
The empirical evidence cited in the previous section concerning each v.

of computer program comprehension, in terms of text structure units (TS) or

plan knowledge units (PK) is not definitive with respect to the role of the
two kinds of knowledge in forming memory macrostructures. For example
superior recall of program statements introducing loops could reflect the

priority of iteration control flow units or attention to key statements that

activate plan knowledge (McKeithen, Pt al.. 1981). Similarly, evidence that
experienced programmers have tacit knowledge regarding awkward program

constructions does not necessarily imply that this knowledge leads to plan
based mental representations (Soloway, et al., 1983). The research reported

in the next sections was designed to operationally identify the form of mental
representations of program texts, providing information about the kinds of
relational information in programs that are most accessible and about the
roles of text structure knowledge and plan knowledge in program comprehension

In the first study progr,,mers studied very short program texts and
responded to comprehension and memory questions. Short texts were used to
obtain a high degree of experimental control. Although programming studies
have typically used texts of this length, it is desirable to examine
experimental results in more realistic settings. In the second study

programmers engaged in a more natural task in which they studied a program of
moderate length, made a modification to it, and responded to comprehension
questions. Thus the first study provides relatively direct information

concerning the form of mental representations of program text. In the second
study, comprehension data provide indirect evidence concerning the same
questions for a different, more natural task.

STUDY ONE

One effective technique for empirically investigating structures in
memory is to index the relative distance between elements in a hypothesized

structure by measuring priming effects in item recognition (McKoon & Ratcliff.

1980; 1984; Ratcliff & McKoon, 1978). In this method, subjects study one or
more texts and are subsequently presented with a recognition test in which

they must decide whether or not each item in the list was in the text they had

just studied. A target item in the test list is preceded in one condition by
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another Item hypothesized to be in the same cognitive unit- as trie tart ,
thus close in the memory structure. in a second condition the target item is
preceded by an item hypothesized to be in a different cognitive unit and thus
faither away in the memory structure. Under the assumption that activation of
an item in the memory structure activates items close to it, especially those
in the same cognitive unit, response time to the target preceded by an item in
the same cognitive unit should be faster than response time to the same target
preceded by an item not in the same cognitive unit (Anderson, 1983; McKoon &
Ratcliff, 1980); that is, a priming effect should occur.

In the first experiment the priming technique was used to examine
distances between program statements in program texts like the one shown in
Figire I.A. If the representations in memory of the meanings of the program
segment correspond to the structures built by the TS (text structure) or PK
(plan knowledge) decompositions, then the relative amounts of priming between
the items should be predicted by the relative distances between the concepts
in the diagrammed structures. For example, in Figure 6.A, the TS structure.
statement 2 (MOVE 0 TO TOTAL-ORDERS.) should prime statement 4 (READ ORDER-
FILE INTO ORDER-REC.) because they are in the same TS cognitive unit. However
statement 2 (MOVE 0 TO TOTAL-ORDERS.) should not prime statement 13 (ADD
ORDER-REC-QUANT TO TOTAL-ORDERS.) as much because they are not in the same TS
cognitive unit. The PK structure (Figure 6.B) makes the opposite prediction:
statement 2 (MOVE 0 TO TOTAL-ORDERS.) should prime statement 13 (ADD ORDER-
REC-QUANT TO TOTAL-ORDERS.) because they are in the same PK cognitive unit and
statement 2 (MOVE n TO TOTAL-ORDERS.) should not prime statement 4 (READ
ORDER-FILE INTO ORDER-REC.) as much because they are not in the same PK
cognitive unit. Other co-varying features such as argument repetition and
surface distance will need to be controlled by balancing these attributes
across the set of items used (McKoon & Ratcliff, 1984).

It is possible that neither of the theoretical decompositions shown in
Figure 6 precisely describes the programmer's decomposition. In this case
priming effects will not be obtained. However, failure to find priming
effects is not informative as to what is wrong with the theoretical proposals
and additional measures of program comprehension are needed. One additional
measure is to ask programmers questions about their understanding of the
program text in order to ascertain what aspects of meaning can be attained in
limited time and to provide an assessment of learning relevant to
interpretation of recognition memory test results. Earlier we suggested that
there are at least four kinds of relations between program statements that
contribute to a complete understanding of the program: major functional
relation specifying the goal structure of the program (Figure 2); data flow
relations specifying the sets of events in the program in which particular
variables participate (Figure 3); control flow relations specifying the
execution sequence of statements (Figure 4); and state relations specifying
the sets of conditions and resulting actions in the program (Figure 5). A
fifth kind of information in the program consists of the detailed operations
themselves, the actions corresponding to a single statement or less.

2

The two general approaches to program comprehension (TS, PK) differ in
terms of the kinds of relations between program elements that are hypothesized
to be central in mental representations. Therefore, the two approaches lead
to differing predictions about the kind of information that will be directly
available to the programmer from the representation, or easier to infer from
the mental representation. The TS view suggests that when a programmer
studies a program, the meaning is built up from the bottom in terms of the
operations binding together into the control flow units that are assigned
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local purpose Major function and goal information is available only after
these relations have been built. Thus the TS view stresses detailed
operations, control flow, and then function in the representational hierarchy,
suggesting that questions about detailed operations and execution sequence
will be answered more easily (faster and with fewer errors) than will
questions about major function and data flow. The PK view suggests that when
a programmer studies a program, function is inferred immediately when a
programmer identifies a familiar stereotypic unit and the operations and data

objects will be bound to the role slots in the hypothesized plan. The PK view
stresses data flow and functional dependencies as central in the
representations, suggesting that function, data flow, and detailed operation
information should be available in that order. Neither view predicts that
state information will be easy to extract from program text although some
languages and applications (Al programming in LISP) emphasize these relations.
Comprehension questions can be designed for a program text that ask
specifically about these different kinds of relations in the program.

Methods
Subjects. Professional programmers with a minimum of three years of

professional programming experience served as subjects in the research.
Subjects were selected from a pool of over 400 programmers who volunteered to
participate in response to mail solicitations to Data Manager Association
members, radio and television announcements, Chicago newspaper stories, and
approaches to several Chicago-area businesses and research institutions. Our
choice of programming languages was constrained by the availability of
experienced professionals for each language. Since 85% of the volunteers
programmed primarily in COBOL, FORTRAN, and ASSEMBLER, subjects were drawn
from the COBOL and FORTRAN programmers. This provides a basis for examining
the generality of findings across the two languages most widely in use.

A total of 80 professional programmers participated in this study, 40

COBOL programmers and 40 FORTRAN programmers.
3 

Differences between FORTRAN
and COBOL programmers in educational level, college major, number of
programming languages known, and number of years programming (but not number
of years as a professional programmer) were statistically reliable (P < .01
level). The average FORTRAN programmer was 37 years old at the time of the
study, male (95% of the sample), had majored in computer science or other
science/engineering field, had completed some graduate level work beyond a
bachelor's degree, knew 6 other programming languages, had taken 4 programming
courses, had programmed for 14.5 years, had been a professional programmer for
10.8 years, and had spent an estimated 12,306 professional programming hours
on program coding, debugging, and modification tasks. Forty-three percent had
taught at least one programming course. The average COBOL programmer was 35
years old, male (77.5% of the sample), had a college degree, majored in social
science or humanities, knew 4 other programming languages, had taken 4
programming courses, had programmed for 10.5 years, had been a professional
programmer for 9.5,years and had spent an estimated 11,196 professional
programming hours on program coding, debugging, and modification tasks.
Forty-five percent had taught at least one programming course.

Subjects were run over a period of eight months from July, 1983 to
February, 1984. Each programmer was paid $10.00 to cover transportation and
parking costs.

Materia. The program segments developed for the research were drawn
from four full length programs currently in use in Chicago-area computer
installations. The four programs spanned a range of program types: a batch
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cnirpiatIonal program. Two of these programs were or g.rTalI,1 written in cr- ,
an, two in FORTRAN Eight program segments were taken from the programs and

modified slightly so that they met the following criteria: 1) Each comprised
exactly 15 lines; 2) each accomplished something sensible in isolation (i.e.
was comprehensible as a fragment that did something concrete); 3) each

contained TS and PK units that differed in content.
One of the program segments used in the experiment is shown in Figure

l.A. This particular segment is unusual because it Is extremely simple. It
was included in the research and is offered here as an example because it has
been used in many other studies of program comprehension and is frequently

used as an example in published articles (e.g., Curtis, et al., 1984; Soloway.
et al.. 1983). Thus analyses in the present study can be compared directly to

previous research. Figures 6.A and 6.B show the TS and PK theoretical
analyses of the example program segment.

For each of the 8 program segments, 6 comprehension questions were

composed that varied according to the category of information about program
relations to which each pertained. Examples of each kind of question for the

program segment shown in Figure I.A are: Will an average be computed?
(function); Is the last record in ORDER-FILE counted in COUNT-CLIENTS?

(sequence); Will the value of COUNT-CLIENTS affect the value of ACTIVE-AVG?

(data flow); When ORDER-EXIT is reached, will ORDER-REC-ID have a particular

known value? (state); Is TOTAL-ORDERS initialized to zero? (detailed
operation).

Also for each of the 8 segments, a recognition test list was constructed
to examine priming effects between items. A critical target item was
designated along with two primes (a TS prime and a PK prime) to form a triple

to be used in test list construction. The essential feature of each triple
was that the TS prime and the target were in the same cognitive unit according

to the TS analysis of the segment but in different PK units and that the PK

prime and the target were in the same cognitive unit according to the PK

analysis of the segment but different TS units. For example, statements 4,
13, and 2 (Figure l.A) form a triple. Statement 4 is the TS prime because

statements 4 and 2 are in the same TS cognitive unit (Figure 6.A) but in
different PK units (Figure 6.B). Statement 13 is the Pk prime because

statements 13 and 2 are in the same PK cognitive unit (Figure 6.B) but are in

different TS units (Figure 6.A). Statement 2 is the target item since it
appears in both pairs. For each program segment, 4 target items were

identified along with their TS and PK primes and the remaining 3 lines of code
were designated as filler items. The targets were arbitrarily divided into

two sets designated as A Materials and B Materials.

There are other bases besides roles in the TS and PK representations on
which program statements might be associated in memory. For example, the

surface distances between the prime and target statements differ for the
example just given. In addition, some program statements have repeated

arguments, others are very similar syntactically, and the direction (for-ward
or backward) between the prime and target might differ within a triple. It

w~s not possible to hold all of these other factors constant within any one

triple or within any one program segment. However, the four potential

influences -- surface distance, argument repetition, syntactic similarity, and

direction 'etween prime and target were balanced over all 32 (8 segments, four

targets per segment) TS-target and PK-target pairs.

Prime and target items were embedded in a recognition test list

consisting of 22 items, 7 false items and 15 true items. The 15 true items
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consisted of 3 "filler" true items and 6 prime-target pairs The 6 targrps
consisted 4 targets presented for the first time and 2 targets presented a
second time. For the first-time targets, primes were paired with targets so
that one group of subjects (within each language) saw PK primes immediately
preceding A-targets in the recognition test list and TS primes Immediately

preceding B-targets. A second group of subjects (within each language) saw
primes immediately preceding A-targets and PK primes ir-nediately preceding B-
targets. For the repeated targets, the prime not seen before was paired with
the target. False items used variable names that had occurred in the segmer
but were connected with an operation that had not connected them in the
segment. False items did not consist of tricky misspellings or paraphrases i:

the program statements since they were not intended to be lures. One of the
false items was a repeated item. Test lists were arranged in four different
orders so that each prime-target pair appeared once in each quarter of the

list, subject to the restrictions that a target item could not be placed in
the first or second position of the test list and that primes had to
immediately precede their targets. All program segments and test list items
were prepared in two programming languages, FORTRAN and COBOL. COBOL subler'-

saw only COBOL segments and test items; FORTRAN subjects saw only FORTRAN
segments and test items.

Procedure. Subjects participated in a single experimental session
lasting approximately 2.5 hours at the University of Chicago, Northwestern
University, or their place of business. To begin the session an experimenter
showed subjects the IBM Personal Computer to be used during the session and
pointed out distinctive features of the keyboard. Thereafter, all
instructions to the subjects were presented via the computer screen. The
first part of the session consisted of general task instructions, detailed
instructions concerning the use of editing features required during the task.

and a practice trial.
Subjects were told that they would study a 15-line segment of code for a

total of 4.5 minutes, divided into three 1.5 minute intervals; that between

the study intervals they would be asked to respond to comprehension questions
and would be given a memory task. They were instructed that their primary
task was to come to a complete understanding of the code so they could answer
the comprehension questions accurately. We emphasized that their responses tc
the memory tasks should follow from their attempt to understand the code; that
attempts should not be made to memorize the text or use special strategies for
memorization. The exact task sequence was described and then demonstrated in
the practice session.

The following task sequence was repeated three times for each program
Subjects studied a 15-line segment of code that appeared on the screen for
exactly 1.5 minutes. Following instructions to prepare for comprehpnsion

questions, subjects responded to each question by pressing "yes" or "no."
Response latencies and actual responses were recorded by the controlling
program. The next screen announced the free recall section and subjects typed

in as much of the 15-line segment as they could recall, in any order that It
occnrred to them., The third study-comprehension trial ended with a
recognition memory test in place of the recall task. Recognition started wlh
a screen reminding subjects to position their fingers correctly, to respond
"yes" or "no" as quickly and accurately as possible, and not to pause during

the list presentation. Subjects initiated the test with a keypress with

subsequent lines triggered by the previous response. The response and the
response latency for each item were recorded.

The three study-test trials occurred for each of the eight program
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segFrents with a break between the fourth and fifth segments. At the
conclusion of the session, subjects filled out a detailed background
questionnaire and responded to questions posed by the experimenters abo,it
their reactions to the experiment and their own programming work.

These procedures were established by extensive pilot testing. For
example, the total study time of 4.5 minutes was chosen to insure high levels
of recognition accuracy and moderately high level of segment comprehension.
The comprehension questions were inserted before the recall and recognition
tasks to focus subjects on the comprehension aspects of the task rather than
on the memory requirements and to discourage inclinations to rehearse or
retain a visual image of the text.

tes !'n. The program segment and test list materials were used to form
the basic research design: 2 (languages) x 4 (orders) x 2 (subject groups
within language) x 2 (TS, PK prime types) x 2 (A, B sets of target items).
Language, order, and subject group were between subjects factors, and subject
groups, prime type, and materials set formed a 2x2x2 repeated measures latin
square. In this design, comparisons between target response times for
different prime types will be a within subjects comparison but for different
materials sets. A rearrangement of this design using first and second
presentations of only those target items that were repeated in the test lists
allows a within subject comparison between identical target response times 1-n
different prime types. This comparison is of secondary interest because
repetitions of true items in the test list are potentially confusing and ma.
add variabilitv to response times for these items.

This design provides tests of whether programmers' mental representati ml'
of program text reflect structural distances hypothesized by the TS analysis.
the PK analysis, or neither analysis. Specifically. support for a TS
macrostructure is obtained if response times to targets preceded by a TS pril-e
are reliably faster than the same targets preceded by a PK prime. If this is
the case. we can infer that the items specified by the TS analysis as for-ainz
a cognitive unit are in fact "closer" in memory than are the items specified
by the FK analysis. Alternatively, support for a PK macrostructure is
obtained if response times to targets preceded by a PK prime are reliably
faster than the same targets preceded by a TS prime. Finally, if some
response times to PK-primed targets are faster and other response times to TS-
primed targets are faster, then no inferences may be drawn regarding which of
the formulations more accurately portrays the nature of mental

representations.
Response times and error rates for different kinds of comprehension

questions provide an additional measure regarding relations that dominate in
mental representations. Specifically, if support for a PK macrostructure is
obtained with the recognition response times, then we expect to see fewer
errors and faster response times for function and data flow comprehension
questions. Alternatively, if support for a TS macrostructure is obtained with
the recognition response times, then we expect to see fewer errors and faster
response times for detailed operations and control flow comprehension
questions.

Reslilts
Recognition Memory Data. The question of primary interest is whether

target response times are faster (1) when the target is immediately preceded
by an item from an hypothesized TS cognitive unit, or (2) when the target is
immediately preceded by an item from an hypothesized PK cognitive unit, or 3,
there would be no difference between priming conditions. After removing
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wih a 'rime PIr"r was malp a mean was computed for each s ibje-t fo e Ih of

the -wo target qers A, 3). These means were analyzed in a 2x2x4x2 repeated

measures analysis of vartance with language (FORTPAN, COBOL), subject grotp

(I, 2), and test list order (Z4 orders) as between subjects factors and type of

prime (PK. T5) as a within subject repeated measure. A second 2x2x2 analysis

of 'arianice was performed on this data, treating materials as a random fact'or.
with languare (FORTPAN, COBOAL) , and materials set (A, B) as between items

factors. and prime t'pe (PK, TS) as a within item repeated measure.

Fxami-ation of the cell means reveals that there are multiple influernces on

rarget response times (see Table 2).

Insert Table 2 about here

As predicted by a text structure (TS) analysis of program comprehension,

responses to TS-pr~med targets are on average 105 milliseconds faster than
respenses to PK primed tariets, f(1,64) - 4.51, 2 < .04 (subjects analysis,

see Tahie 2. Part A', 1(1,6O
) 

- 3 72. p < .06 (items analysis). Considering

n'. su hecs whose cnmprehension scores were in the top quartile (since these
sih -cts had a more complete understanding of the program segments), we see

(TabKe 2, Fart B) that the TS-primed speedup is larger, 237 milliseconds,
[ , 35 - 9 3 ,£ < (),' isuJ1ects analysis), f(1,5 9

) - 3.60, 2 < .06 (items

a avsts Co)mparisons 'ising the repeated target data show the same advantar-
f:or T7-prfmed tarrets although the effect for repeated targets is

s-atfst callv unrelable due to increased variance in repeat target times.

Target response times also differed for the (arbitra'-ly composed) A and

B materials sets, for the two langu are, and for the subject groups within each
langage. Responses to B materials took an average of 2( milliseconds longer

than responses to A materials, f(1,64) - 28.18, p < .001 (subjects analysis),

[ l A-) - 2 32. 2 < 0.14 (items analysis), and this difference was larger for
CQ9,l. items than for FOR7PAN items, f(1,64) - 6.03, 2 < .02 (subjects
analx ls, not significant for items analysis). COBOL subjects took longer to
respond in general, f,1,64) - 4.91, 2 < .04 (subjects analysis), f(1, 6 0) -

4 g. 2 < .04 (items analysis) and there was a subject group within language
differonce, f(l,64) - 5,29. 2 .03 (subjects analysis), f(1,60) - 34.54,

2 C0l (Items analysis). Subject group differences may not be attributed to
exPerimental manipulations since response times for the 24 filler true items

not involved in any exterimental manipulation reveal identical difterences
hetween language and subject groups.

The ariay of effects can be seen more easily graphically (see Figure 7)
In Fgure 7.A, response times are adjusted for the effect of subject groups

within lanuagp, showing the TS priming effect for both languages, the effect
for materials set and the slight interaction between materials and language

In Figure 7 B, means are adjusted for the effect of materials sets, again
showing the TS priming effect for both languages and the effect for subect

g-oup within language.

Insert Figure 7 about here

Overall recognition accuracy, measured b- percr t correct, averaged
q2.1%. FORTRAN subjects made fewer recognition eriors (6%) compared to COBOL

s,ijects (9.f), f(l,64) - 7.36, 2 < .01 but recognition accuracy did not
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differ for subjects assigned to the two expetimental cordirlonq, nor were

there any differences in recognition accurAci due to order of presentation of

the program segments (fs less than 1). Accuracy for target recognition items

across subjects and items averaged 92.6% correct. Error rates differed by

language (FORTRAN 5.81. COBOL 9.1%; f(l64) - 4.19, 2 < .05) but did not
differ by experimental condition or by materials set (A-targets, B-targets)

(Fs less than 1). Correct responses averaged 2.670 second's compared to

incorrect responses, which averaged 3.667 seconds, E(1.76) - 63.60. 2 < 001.
suggesting a difficulty relationship between speed and accuracy rather than a
speed/accuracy tradeoff. Thus, interpretation of the above results is not
affected by error rates and a constant error rate of 8-10% may be assimsed

It is not surprising that materials and subject differences account for a
major portion of variability in time to recognize program statements.

However, on top of these differences, program statements are cons'stently
recognized faster when immediately preceded by a program statement in the samP
control flow unit (TS analysis). This result strongly supports the mental

organization of program text proposed by a text structure analysis. On the
basis of this result, we expect certain converging results in the programmers,
responses to comprehension questions about these same program segments.

Comprehension Data. Our main interest in comprehension accuracy is in
differences that might occur between items in different information

categories, that is, between questions asking about different kinds of
information in program text. Referring to the earlier text analyses (Figures
2-5). the 48 comprehension questions comprised 10 questions about detailed
program operations (operations questions), 9 questions about program execution
sequence (control flow questions), 9 questions about program data flow (data
flow questions), 10 questions about program condition-action relations (state
questions), and 10 questions about major program functions (function
questions). We assume that higher error rates for questions in a particular

information category imply that the information in that category is less
easily accessed or computed from the memory representation. Under this

assumption the text structure (TS) analysis (Figure 6.A) predicts that
operations and control flow questions will be more easily answered and that
data flow and major functions will be more difficult to infer. The plan

knowledge (PK) analysis (Figure 6.B) predicts that data flow and major
function information will be most accessible with operations and control flow

less accessible.
5  

State information is not predicted to be accessible under
either formulation. The recognition memory results discussed above lead us to
expect further support for the TS formulation: operations and control flow
questions will be most easily answered.

Error rates were computed for each subject for items in each information
category (percent of items missed in the category) and for each item (percent
of subjects missing an item). The five scores per subject were submitted to a

language (FORTRAN, COBOL) by information category (operations, control flow,
data flow, state, function) repeated measures analysis of variance (with
subjects as random, factor) and the item scores were submitted to a language by
information category analysis of variance (with items as random factor).

Information category of the comprehension question affected error rates,
f(4,312) - 26.75, 2 < .001 (subjects analysis), f(4,86) - 2.87, 2 < .03 (items
analysis). The ordering of difficulty of the information category questions

was predicted by the text structure analysis: Questions about detailed
operations and control flow relations were answered most accurately (15. 21%
errors respectively) while more errors were made on data flow, state, and
function items (28%, 301, 34% errors respectively).
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Overall comprehension levels for FORTRAN and COBOL programmers differed
reliably when subjects were the unit of analysis, f(i.78) - 6.01, 2 < .02,
although with items as the unit of analysis, variability among items swamped
this difference, f(1,86) - 1.10. In addition the pattern of error rates for
information categories differed for the two languages, f(4,312) - 8.72,
2 < .001 (subjects analysis), f(4,8 6 ) - .827 (not 3ignificant, items
analysis). The comprehension pattern across information categories for
FORTRAN subjects (see Figure 8) was: Questions about operations and control
flow were answered most accurately, questions concerning major function next
most accurately, followed by data flow and state questions. This yielded an
inverted U shaped pattern with operation, sequence and function depressed.
showing lower error rates (Figure 8). The most noticeable difference between
the FORTRAN and COBOL patterns was the elevated error rate on function
questions for COBOL subjects, creating an increasing pattern across
information categories. In addition to the elevation of major function
question errors, COBOL data flow questions showed slightly higher accuracy.

Insert Figure 8 about here

The difference in patterns could be due to one or more of three factors.
First, subjects from the two language groups were not equivalent in background
characteristics. Second, the languages themselves could yield differences in
ease of comprehension such that control flow and function information are
easier to extract from FORTRAN than from COBOL text, and data flow information
is easier to extract from COBOL than from FORTRAN. Third, the pattern of
differences might be due to lower comprehension levels for the COBOL subjects
and thus the COBOL pattern could reflect an earlier stage in the comprehension
process and the FORTRAN pattern a later stage. Under the third
interpretation, FORTRAN subjects, having understood more of the operation and
control flow information, may have progressed further and could therefore
either compute or retrieve function information from memory. COBOL subjects
would not yet have reached this stage in the comprehension process after the
allotted study time.

The first explanation, programmer background, is not supported because
these variables are unrelated to comprehension performance on our task. For
example. comprehension accuracy levels were equivalent for males and females,
f(1,78) - 1.32; for different educational levels, E(3,76) - .64; and for
different college majors, f(3,71) - 1.16. This is important because it
suggests that any differences in performance between language groups will not
be accounted for by sample differences in sex, education, and college major.
There were also no differences in comprehension accuracy between programmers
who had taught programming and those who had not, f(1,78) - .96.

In order to examine the other two explanations, subjects were divided
into quartiles (within language) on the basis of their overall comprehension
accuracy scores. If the overall FORTRAN pattern represents a later stage of
comprehension, 'then the upper quartile COBOL subjects should show a pattern
more like the FORTRAN aggregate and the lower quartile FORTRAN subjects should
show a pattern more like the aggregate COBOL subjects. Alternatively, if the
differences in aggregate patterns reflect fundamental features of the
language, then those differences will appear the same in the patterns for top
and bottom quartile comprehension subjects. The comprehension question means
across information categories for top and bottom quartile subjects are
displayed graphically in Figure 9.
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Insert Figure 9 about here

Consistent with the stage of comprehension explanation, bottom quartile
subjects showed the COBOL aggregate pattern with elevated error rates for
major function questions and top quartile subjects showed the inverted U
pattern of the FORTRAN aggregate. A quartile by information category
interaction, the statistical manifestation of this pattern, is only marginally
reliable, F(4,64) - 2.43, 2 < .06 (subjects analysis). f(4,86) - 2.02, 2 < .10
(items analysis).

Some language specific features are also retained by the information
category patterns, namely lower error rates for control flow questions for
FORTRAN subjects (both quartile groups) and lower error rates for data flow
questions for COBOL subjects (both quartile groups). This is consistent with
an explanation attributing differences to language specific features that
affect the ease of extracting information from the text. However, as in the
analysis of the complete subject sample, this interaction between language and
information category shows statistical reliability only in the subjects
analysis, f(4,64) - 3.99, 2 < .006, not in the items analysis, 1(4,86) - .619

In summary, after limited study time, experienced programmers'
comprehension errors were strongly related to the kinds of inferences required
to respond to the question, and to the language in which the programs were
written (Figure 8). Questions about program operations and control flow
relations in the programs were answered correctly more often than questions
about data flow relations and program states. Errors were made most
frequently when inferences about program function were required. This general
pattern supports the TS theoretical formulation (Figure 6.A). Differences
between FORTRAN and COBOL programmers and between top and bottom quartile
comprehenders suggest that inferences about program function (what it does)
are the most difficult and appear late in the comprehension process, and that
there are probably language specific features that affect the ease of certain
kinds of inferences (Figure 9). FORTRAN programmers were consistently better
on inferences about control flow while COBOL programmers were more accurate in
responding to questions about program data flow relations.

In addition to data on comprehension errors, summarized above, we
analyzed response times to comprehension questions, providing additional
information about the relative difficulties of different kinds of inferences
in comprehension. After correcting for reading time, we assume that a
relatively faster response time to a question implies less processing has gone
into constructing a response to the question. Faster responses could be due
to direct retrieval of the information, to assessment of plausibility given
retrieval of higher level information, or to fast computation of the response
given retrieval of related information. Slower responses imply extensive
search or burdensome computation from retrieved information (Reder, 1982;
Glucksberg & McCloskey, 1981). For example, if major function information is
stored directly'and provides the macrostructure (Kintsch & van Dijk, 1978) of
the text representation (Adelson, 1.984: Atwood & Ramsey, 1978: Brooks, 1983;
Shneiderman, 1980), then the fastest response times should occur for major
function questions, with slower responses for more detailed comprehension
questions like those in the operations category. However, if frequent errors
correspond to the need to assemble responses at the time of questioning then
the error rate data above imply that responses to operations questions will be
faster than responses to questions about program function.
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Response times for comprehensilon q'Iest il o Ashut di f ferent

infoimation categories, standardi7ed and adjusted for qeipstion length ,
correspond to the pattern of comprehension errors for upper quartile subjects

(Figure q). Overall correct responses to true statements about the operatroTs
and control flow of the program were answered more quickly (mean residuals
were -. 33 and -.16 respectively) than questions :bout data flow and function

(-.05. -.11) which were answered more quickly than questions about program
states (+06), f(4,304) - 8.05. 2 ,< .001 (subjects analysis). E(4.86) - 2 85.
1 < .03 (items analysis). Analyses of raw response times did not differ from
analyses of residual response times due to relatively low correlations betwp!
question length and response time.

The response time data and the error data for the comprehension questior,
support the following conclusions: (1) Detailed operation information is

stored directly, organized by control flow units (lowest percent errors,

fastest response times). (2) Control flow inferences are thus easy to
retrieve or compute (low percent errors, low moderate response times). (3)
Some data flow and major function information is readily available (moderate
response times) although when not stored, it is not easily computed (high
percent errors). (4) Program state inferences are difficult to compute (Inr,7
response times, high percent errors).

D isr uss

The present results provide evidence that the dominant memory

representation, formed during comprehension of short program texts in this
experimental context, is organized by a small set of abstract program units
related to the control structure of the program. More specifically, of the
four program abstractions presented earlier (Figures 2 through 5), relations

captured by the procedural, control flow abstraction (Figure 2) appear to be
central in comprehension in our experimental task. Furthermore, the nature of
the mental unitization of these relations corresponds to the basic program
building blocks of sequence, iteration, and conditional identified by early
advocates of structured programming.

Both recognition memory results and comprehension question results
converge to support this conclusion. In the recognition memory test,
recognition occurred faster when a statement was immediately preceded by a
statement in the same text structure unit than when It was immediately

preceded by a statement that was not in the same text structure unit. This

implies that statements in the same TS unit were closer together in
programmers' memory structures. This priming effect cannot be accounted for

the text surface distance between the statements, by syntactic similarity
between statements, or by argument repetition since these features were

controlled by counter-balancing test items.
7 

Furthermore, responses to
comprehension questions about control flow relations and program operations
were answered faster and with fewer errors than were questions about data fl,-.

and function relations, supporting the idea that control flow and operAtion
information is easier to access in memory.

Examination of the performance of programmers with the highest
comprehension scores strengthens these conclusions and leads to a further

speculation that segmentation on the basis of control flow relations ocrrs

prior to comprehension of major program functions and data flow relations
First, the priming effect for TS cognitive units was strongest for top
comprehenders. Second, top comprehenders' fast and error free responses to
detail and control flow comprehension questions were accompanied by a
disproportionate decrease in response errors to function questions. ;hIle IT'
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might a "n , the bacii 1 Ot the error data Al0nP A :'r ier 1 ;rA,, r 1 '. f
f,ircrion infoi mation in top comprehetiders' memory represenrat- n. tie m
results and response time data undercut such a conclusion

These empirical results fit a view of program comprehension in which "
meaning of program text is developed largely from the bottom up. The text iq
first segmented according to simple control patterns segregating sequences,
loops, and conditional patterns. At this level some specific inferences are

made concerning the procedural roles of the segments- For example. a seqie,
at the beginning In which zeros are assigned to variables may be designated
"initialization of variables" (see Figure 6.A), without regard for the role ,f
those variables in later computation. Another sequence may be designated a,
"something is calculated." A loop repeats whatever sequence is contained
within it. A conditional pattern directs control to alternate sequences

Data flow and function connections often require integration of
operations across separate segments. For example, calculation of an averace
involves an initialization, a running sum, and final calculation. As In
Figure 6.A, these occur in three separate procedural units. The result-
suggest that these connections are made later in comprehension, and for
programmers with the lowest comprehension scores they are not made correct:v
or at all within the time limits imposed by this study.

Several alternative views of program comprehension are not supported by
the research results. For example, views based on strong analogies to chess
players' perceptual pattern recognition processes are not supported (cf.,
Creeno & Simon. 1984). Patterns in program text that are recognized quick!v,
appear to be general, few in number, and are discernible through syntactic
markers of the language (programming keywords). Proposals that programs are
understood initially through recognition of program plans, from an expert's
mental library of hundreds or thousands of plans, that assign roles to
configurations of program statements are not supported by this research (Rich
& Shrobe, 1979, Soloway, et al., 1983). While plan knowledge may well be
implicated in some phases of understanding and answering questions about
programs, the relations embodied in the proposed plans do not appear to form
the organizing principles for memory structures. Claims that data flow
relations (Atwood & Ramsey, 1978; Kant & Newell. 1984; Weiser, 1982) or
function hierarchies (Adelson. 1984) underlie the preferred or natural
representation of programs are also not supported. Our results suggest that
the natural representation of programs is procedural, at least for programs
written in traditional programming languages. The best comprehenders in the
present study were better at inferring function relations than were poorer
comprehenders, but they also showed stronger effects for text structure mpeor-.'
organization.

A final result concerns the influence of programming language on
comprehension (Green, 1980; Green, et al., 1980). There Is an indication in
the data that programming language may affect the relations represented in
initial phases of comprehension and the difficulty of extracting different
kinds of information from the program. COBOL programmers were consistently
better at responding to comprehension questions about data flow than were
FORTRAIN programmers. Furthermore, control flow relations were less easily
inferred by COBOL programmers. This may be due to features of COBOL and
FORTRAN that allow FORTRAN to be programmed in an order corresponding more
closely to actual flow of control from statement to statement (at least in
these short segments). In COBOL it is more usual to perform loops that are
listed elsewhere in the code. Thus the surface structure of the test in CCBOTh
corresponds less well to execution sequence than In FORTRAN This can be seen
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h comparing Figure I.A (program text) arid Fgirp e A a::a ' n , :

the loop that sums a lIst of numbers is executed in sfatement t i,,r is
specIfied in statements II through 15 In the FCRTPAN version of this

segment, the loop occurs in statements 5 through 9 of the code and is exec'utP,4

when encountered there. Thus, there is some evidence that disruption of

procedural units in the program text may affect comprehension patterns.

Although the data are consistent with a hypothesis that greater difficult. in

extracting procedural text units is related to great-r difficulty in

extracting program function, we must label this conclusion tentative because

(ThBOL and FORTRAN languages and programmers differ in other ways as well.

It is important to question the extent to which the particular task used

in the present research limits generalization of these results. For example,
the conclusion that comprehension has a more bottom-up character and is

organized in memory by procedural control constructs may be specific to
understanding small program texts that do not have a larger context. Even If

this were the case, it would not sharply dilute the importance of the present

experiment. First, most research on programming skill has used similar short

texts. Thus findings in this skill domain must be reconciled with the current

results. For example developers of the plan knowledge theories have suggested
that expert programmers' recall of texts like these is due to recognition of

program plans (Greeno & Simon, 1984; Soloway, et al., 1983). Of course, the

present results suggest that this is not the case; that chunking in recall is

expia ned by the grouping of statements into the sequence, loop and

cotniirmnal text units suggested by structured programming advocates. Second,

the prnram segments used in the present research were all texts that were
orl~inallv embedded within larger programs. To the extent that the larger

c(t:ext dops not illuminate all program segments equally, the kind of

proces sin reported in this experiment will certainly occur in actual

procramming tasks. However, we are also interested in an empirical analysis

of the extent to which the first study's results are general across different

prozraming tasks and for longer programming texts. This question is

addressed in the second study.

STUDY TWO

In the first study, programmers' comprehension strategies may have been

influered by several aspects of the experimental task: short undocumented

program segments, the series of short study trials, and the demands of memory
questions. In Study Two, a more natural programming environment was created

in which programmers studied a program of moderate length (200 lines) and then
ma(le a modification to it. At two different points in time they were asked to
summarize the program and respond to comprehension questions. Half of the

programmers were asked to think aloud while they worked and the other half

worked silently.

As In the previous study, comprehension questions were designed to ask
about particulax relations between program parts: control flow, data flow,
function, arid condition-action relations. If the results of the previous
study 1peneralize to this task environment, then we expect to see good

comprehension of control flow relations early in the comprehension process
with comprehension of data flow and function catching up later in the process

Alternatively, data flow and function inferences may be made more readily at

the outset due to the larger context in the Study Two program text.
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t e r 1ad
5uhiects. Forty of the 80 professional programmers who participated in

the previous study were invited to return for the second study. These 40
subjects included 20 COBOL and 20 FORTRAN programmers and were those
programmers who had scored in the top and bottom quartiles in the
comprehension task In the previous study. Subjects were run over a period of
six months from September 1984 to February 1985. Each programmer was paid a
$50.00 fee for participation.

Materials. The stimulus program used for this research is a 200-line
program currently in production use at a Chicago firm. The program was one of
a series of programs that keeps track of and computes specifications for
industrial plant designs. Originally written in COBOL, the program Includes
both file manipulation and computation. The text was easily translated into a
believable FORTRAN program. The program contained a minimal amount of
documentation as in the original production version of the program. The
documentation included an introductory set of comments describing the program
as one that keeps track of the space allocated for wiring (called cables
below) and the wiring assigned to that space during the design of a building.
No documentation was included within the COBOL text but the FORTRAN version
contained one-line comments corresponding to COBOL paragraph headers. Thus
the level of documentation in the two versions was judged to be equivalent
with the naturally-occurring exception that variable names were shorter in
FORTRAN.

A modification task was devised that required altering the program to
produce an additional output file and an exception list. As with most non-
trivial modifications, this task required a relatively complete understanding
of the goals of the original program (function), how different variables
entered into computations and outputs (data flow), and where in the execution
sequence certain transformations occurred (control flow).

A list of 40 comprehension questions was constructed that included 10
questions about control flow (e.g., Is a point number grouping processed
normally when a type code for a cable is not found?), 10 questions about data
flow (e.g., Does the value of TFR-WIDTH influence the value of DESIGN-INDEX
for a particular point number?), 10 questions about function (e.g., Is a
report created with point numbers that exceed a DESIGN-INDEX?), and 10
questions about program states (e.g., when the end of the POINT-INDEX file is
reached, can there be records in the TLMP-EXCEED file that have not yet been
read?). Half of the questions were correctly answered with a "yes" response
and half with a "no" response. The forty questions were divided into two
matching lists of twenty questions. For a question on the first list, a
similar question was included on the second list so that the two lists
contained comparable questions. The lists were arranged In a single random
order.

Procedure. Subjects participated in one experimental session lasting
approximately 2.5 hours at the University of Chicago, Northwestern University,
or their place of'business. Subjects were familiar with the IBM personal
computer used during the session since all subjects had participated in the
previous study. All instructions were presented on the display monitor. The
first part of the session consisted of general task instructions and detailed

instructions concerning the method of displaying and altering the program
text, including practice manipulating a program listing using these features,

Programmers were instructed that they were to make a modification to a
program normally maintained by another programmer. However the "other
programmer" was going on vacation and the modification was urgent. The
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siubhects' task then was to become familiar with the program and to make the
chanlg's to it. Furthermore, the hypothetical other programmer had left the
program with the subject to study and would return in 45 minutes to explairi
the modification task. Subjects accepted this scenario as realistic and
meaningful. Thus in the study phase programmers studied the 200-line program
for ,9 minutes. Half of the subjects were Instructed to think aloud (Talk
Condition) while they studied and the remaining half were allowed to stud,,

silently (Notalk Condition).
The program text was presented on the computer display and subjects could

scroll forward or backward, jump to another place in the program, split the
screen into halves and scroll either half. Subjects were also allowed to tak
notes or draw diagrams while studying the program. Most of the programmers
were familiar with studying programs on a terminal but for those who were not,
the split screen feature served the purpose of keeping a finger in a listing
and jumping ahead in the listing. The program controlling the experiment kept
track of the programmer's study sequence by recording which program line was
in the center of the display screen.

After the 45 minute study period, programmers were asked to type in a
summar, of the program and then to respond to the first list of 20
corprehension questions. In responding to the comprehension questions,
progra.mrers positioned their fingers on "yes" and "no" response keys. They

had been instructed to respond yes or no as quickly and accurately as
possible. On presentation of a question, subjects responded and then were
gi.*en an opportunity to explain their responses. They then positioned tlhelr

finerors to receive the next comprehension question.
After the 20 comprehension questions and a short break, the modificatior.

task was explained to the programmer and a time limit of 30 minutes was
speej'ifid. Subjects were told that they should begin actual modifications a-
ar-. point when they felt ready. If necessary the full 30 minutes could be

5:-cnt continuing to learn about the program. However, all programmers had a',
least bPgun to make modifications by the end of the period and many had
crrcpletpd their changes. During the 30 minute modification phase, the Talk
Condition subjects were again asked to think aloud while they worked and the

Noalk subjects were permitted to work silently.
Tie session concluded with a second request to summarize the program aol

tien to respond to the second list of 20 comprehension questions. The
prnr(dire for these tasks was the same as before. The controlling program

lc-cotr'i all responses, explanations, and times to respond.
1', -! Comprehension question responses form the focus of the analyses

f-r the current report in the following research design: 2 (COBOL, FORTRAN
l ':ac.o s' x 2 (NI, Q4 comprehension quartiles) x 2 (Talk, Notalk Conditions)
x . rnprohensinn test lists after study, after modification) x 4 (control
flow, data flow. state, and function information category of comprehension
qe,'orrs). l.anguage, comprehension quartile and the Talk/Notalk Condition
were between sibjects factors; time of test and information category of the

,rvn erhnion questions were repeated measures within subjects.

Analyses of the proportion of errors in response to comprehension
questions ahonut different kinds of program relations reveal a pattern of

errnrs that varies across information category according to time of
comprehension test and talk-aloud condition of the programmer. Conditions at
the first time of test, after the 45 minute study phase, are most directly
comparable to the conditions of comprehension testing in Study One. For this
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reason, results are presented separately below for cOmO,,z,hr, P !()n after
study phase and after the modification phase. In addition, a nla;9P ,f
program summaries are available for summaries collected after the St'VId phas-
Summaries collected after modification could not be analvzed in the same rer .,
because programmers tended to refer to their earlier summaries and then to
concentrate on describing their modifications rather than giving complete
program summaries as instructed.

Comprehension aftPe study chase. After 45 minutes of study, the
comprehension pattern for comprehension questions about control flow, data
flow, program state, and function relations resembles the comprehension
pattern observed for Study One, with questions about control flow answered
most accurately, followed closely by data flow. Errors on function questions
and program state questions are relatively more frequent, f(3,96) - 11.64.
p < .001 (see Figure 10). This pattern across information categories did not
differ reliably by language, quartile or talk-aloud condition (s less than
2). Upper and lower quartiles differed in overall level of comprehension.
f(1,32) - 15.75, p < .001, with upper quartile subjects making approximatel,.
40% errors and lower quartile subjects making 60% errors. These error rates
are high in part because they have been corrected for guessing by using the
explanations provided by the programmer to determine comprehension.
Uncorrected error rates averaged 25% for upper quartile subjects and 3 % for
lower quartile subjects. Analyses performed on uncorrected error rates
yielded the same results as those performed on error rates corrected for
guessing.

Insert Figure 10 about here

Program summaries were analyzed by classifying each summarv statement
according to the kind of program relation to which it referred and according
to the level of detail specified in the statement. The first class ificart-T
is referred to as the .p of summary statement in terms of information
categories; types included procedura, data flow, and functio statements.
These distinctions are best illustrated by the following excerpts from
summaries. Procedural statements include statements of process, orderinzt '91
conditional program actions. The summary of SlOq consisted of mostly
procedural statements,

"...after this, the program will read in the cable file, comparine
against the previous point of cable file, then on equal condlitIn
compares against the internal table... if found, will read the tra'.-
area-point file for matching point-area. In this read if fouTid.
will create a type-point-index record. If not found, will read
another cable record..."

Data flow statements also include statements about data structures. S.111
wrote a summary that contains references to many data flow relatfon,

."The tray-poinr file and the tray area file are combined to create a
tray-area-point file in phase one of the program. Phase two tahlpq
information from the type-code file in working storage. The
parameter file, cables file, and the tray-area-point file are then
used to create a temporary-exceed-index file and a point-index
file..."

S057 wrote a summary that contains many function statements,
...the program is computing area for cable accesses throughout a

building. The amount of area per hole is first determined and then
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a talhie t~r (TM los And lneaoprq is io~v <. , 4 ,
!eadr to a cc, mulate the sim of the cables' diae r s w,, ng rhi. -

each hole..."

The examples above also differ in the vi eof Ji contained in the
suim.aries, the secord dimension on which we classified summar, statements
Four levels of detail were specified for coding: (a) dytaled statements
contained references to specific program operations and variables (b) ,gjO.
level statements referred to a program's procedural blocks such as a searc-t

routine or to files as a whole; (c) doma_, B level statements talked about real
world objects such as cables and buildings; and (d) v statements did Tr,c

have specific referents. The excerpts presented above were also chosen

because they differ in the predominant level of detail. SlOQ's procedural
summary is most detailed; S415's data flow statements are at a program (fi.,
level; and S057's function statements are at a domain level. An example of a
vage statement is, "this program reads and writes a lot of files."

The foregoing examples were chosen for illustrative purposes because the.
contained a concentration of particular types of statements at a particular
level of detail. Most summaries contained a mixture of statement types and
levels but can be summarized in terms of general trends across subjects and
comparisons can be made between languages, comprehension quartiles, and ta>
aloud conditions.

In terms of statement type, the majority (57%) of programmers' suimmary

statements were classified as procedural, .0% were data flow/data Str'nture
statements, and 13% were function statements, Z(2,64) - 29.31, < 1>0. 7hi
pattern did not differ by quartile, by language, or by tank-aloud condition

In terms of the lev.el of detail, classifying the same 100% of the s'w-rmar;
statements in a second way, the predominant level was the program/file level
accounting for 38% of the statements, 18% of the statements were detailed, ''
were specified at the domain level, and 21% were vague, f(3.96) - o.47,
p < .001. This pattern across level of detail differed for upper ard lower

quartile subjects, f(3,96) - 4.65, 2 < .01, with lower quartile comprehenders

summaries containing relatively more statements at a detailed level (20% (,4
versus 16% QI) and more statements at a vague level (30% Q4 versus 14% l) ,A

final observation concerns a relation observed between sunary statement
and level. A majority of program summary statements about program function
were expressed in the language of real-world objects (cables, space. crowi:
etc.) rather than in the language of programs. The majority of procediral

sunmmarv statements were expressed in terms of program objects (files,
computations, searching, etc.) rather than in the domain language

Cootrehen~slon after modification rbase lxoking again at comprehe'.,
errors for different information categories, the ccmprehenson pattern h!f

on the second comprehension test after the modification task. [(3?QO - --

p < .001 (comprehension trial by information category interaction In an A' ".
treating comprehension trial as a repeated measure). The pattern of er ro,
for this trial (see Figure 11) shows the fewest errors for data flow aT'',

function questions with more errors ,n control flow questions,
[(3,96) - 14,85, p < .001. Furthermore, this pattern is more exagcera'Pe T
the programmers who talked aloud while working, f(3,96) - 5.Q3, p l,! qro
Figure II). Although second trial patterns are exaggerated for Talk guhev1.-
overall comprehension accuracy for Talk and Notalk subjects was roug£hly
equivalent, [(1.32) - 1.01. Patterns of errors across information categury

did not differ by comprehension quartile or by language.
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Insert Figure 11 about here
*********** ***** ***** * *

Comprehension results from Study Two (Figure 10) reinforce and extend the
conclusions from Study One that the understanding of program control flow and
procedures precedes understanding of program functions. This pattern of
comprehension results appeared even in the context of a longer, partially
documented program after a lengthy study period. Analyses of program
summaries also support this conclusion by showing a preponderance of

procedural summary statements over data flow and function statements.

It is important to note that the story of program comprehension does not
end with the establishment of a procedural representation. In Study Two a
different comprehension pattern emerged after a second exposure to the program

during which programmers completed a program modification (Figure 11). After
the modification task, there was a marked shift toward increased comprehension

of program function and data flow at the apparent expense of control flow

information and this shift was more extreme for programmers who iere asked to
think aloud while working. This suggests that either the additional time or
the goal of modifying the program resulted in a ¢hange in the dominant memory

representation. The fact that talking aloud while working enhanced this shift
sugFests that task effects, rather than the extra time alone, are responsible.

One way to understand this shift in comprehension patterns is to go back

to theories of text comprehension and speculate about a construct, introduced
by van Dijk and Kintsch (1983), that they call a situation model. In this

(1183) work, van Dijk and Kintsch suggest that two distinct but cross-

referenced representations of a text are constructed during comprehension.
The first representation, the teytbase, includes the hierarchy of
representations, described in the introduction to the present paper,

consisting of a surface memory of the text, a microstructure of interrelations

between text propositions, and a macrostructure that organizes the text
representation. The second representation, the situation model is a mental
model (e.g., Johnson-Laird, 1983) of what the text is about referentially. In
our context, the program text in Study Two is conceptually about searches,

merges, computations, and so forth; referentially, it is about cables that

take up space, finding out how big a particular cable is, computing the total

size of the cables allocated to a particular space, comparing the cable

allocation to the size of the space, etc. It is plausible that the functional

relations between program procedures are more comprehensible in the terms of

the real world objects. Thus, the textbase macrostructure may be dominated bv
procedural relations that largely reflect how programs in traditional

languages are structured. The functional hierarchy can be developed with

reference to a situation model expressed in terms of the real world objects.
Data from our analysis of program summaries are consistent with this idea.

Procedural summary statements were most often expressed in terms of program
concepts and functional summary statements were most often expressed in terms

of the real world object domain.

Van Dijk and Kintsch (1983) also suggest that the construction of the

situation model depends on construction of the textbase in the sense that the
textbase defines the actions and events that need explaining. This is
consistent with our findings in both studies that procedural representations
precede functional representations. In fact our results suggest that both

time and incentive (talking aloud to an experimenter and having to do a
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m-dIfIcation) are involved in the successful construction of a functionaily
haPd situation model. If this analysis is correct, we could imagine
conditions that might assist and speed-up the extraction of program function

nnd the construction of a functional representation. For example,
docimpntation concerning the real world domain and the relation of program
procedures to the domain might promote a simultaneous construction of both
kinds of understanding.

One final aspect of the results of Study Two deserves comment.
Comprehension quartile as determined by comprehension scores in the
experimental setting of Study One predicted the comprehension scores in the
more natural task of Study Two. However, the error rates on comprehension
questions for both upper and lower quartile comprehenders were quite high in
Study Two, even after 1.25 hours of study and modification. Is this cause for

practical concern, considering the fact that we are studying professional

programmers with an average of 10 years of experience -- people who are

responsible for the programs that help design buildings, monitor space
programs, keep track of bank balances, control defense systems and so on? Th-
high error rates are not by themselves cause for concern because programmers
were answering questions without reference to the program listing. It does
not necessarily follow that the same errors would be made if subjects could

have "looked up" the answers in the program. Greater concern would be
warranted we found that the high error rates were accompanied by great

confidence in level of understanding, a measure we did not collect. But, our

casual observations of subjects who talked while working suggest that this may

have been the case for some of the programmers.

GENERAL DISCUSSION

At the outset we presented an analysis of computer program texts in terms
of multiple abstractions of the text to illustrate different relations between
parts of programs. Specific abstractions expressing important relations in
the design of computer programs include a goal hierarchy highlighting major

functional achievements of a program (Figure 2), a data flow abstraction
highlighting the transformations that are applied to data objects (Figure 3),
a control flow abstraction highlighting the temporal sequence of execution of

program actions (Figure 4), and a conditionalized action representation
specifying states of the program and the actions invoked (Figure 5). Although

this specific analysis is specific to computer programming, analogies can 
be

developed for closely related tasks that involve other kinds of texts such as

instructional texts, and more distant analogies for design task in which other
kinds of relations are more central.

The views of computer program comprehension contrasted throughout this

report, based on analyses of plan knowledge (PK) and text structure knowledge
(TS), represent claims about which kinds of relations outlined in the multiple
abstractions analysis play a central organizing role in program comprehension.
PK theory suggests that data flow and function relations will be dominant and
TS theory suggests that control flow or procedural relations will be central.
More generally, these two views represent positions about the role of
different kinds of knowledge in comprehension. TS theory emphasizes the role
of abstract knowledge of program text structures while PK theory emphasizes
the role of a large collection of content-dependent knowledge that links

specific program functions to plans that achieve them.
The present research results strongly support a view of program

comprehension in which abstract knowledge of program text structures plays the
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Initia organizing role in memory for programs, and that control flow or
procedural relations dominate in the macrostructure memory representation.
These results are consistent with conclusions reached by researchers in other
text comprehension domains who suggest that knowledge of narrative and
expository text structures guides comprehension processing and plays an
important role above and beyond other content schematic factors (e.g.,
Carpenter & Just, 1981; Cirilo & Foss, 1980; Haberlandt, Berian, & Sandson,
1980; van Dijk & Kintsch, 1983; Johnson & Handler, 1980; Kieras, 1985;
Handler, 1978, 1984; Handler & Johnson, 1977; Rumelhart, 1975, 1980; Stein &
Glenn, 1979; Thorndyke, 1977). These results are not consistent with
conclusions suggesting such knowledge is not involved in comprehension in
domains where extensive content knowledge may be available (e.g., Black &
Bower, 1980; Black & Wilensky, 1979; Bruce, 1980; Schank & Abelson, 1977;
Thorndyke & Yekovich, 1980). Thus as there is good evidence that "episodes"
function as psychological units in story comprehension, there is also good
evidence that structured programming building blocks function as psychological
units in program comprehension.

In terms of the multiple abstractions analysis, programmers' mental
representations in this research were closest to the procedural representation
(Figure 4) based on control flow relationships. Should we then conclude that
a procedural form is the "natural" mental representation? In the current
research, we originally expected that mental representations would show
function and data flow relations to be primary. If that had occurred, then
there would be ample ground to claim that these relations reflected a
"natural" or preferred cognitive organization because text and language
structure as well as the programmers' training combine to highlight procedural
relations. However, given the current results, we are not sure whether the
mental organization reflects language/text structure and training, or
cognitive "naturalness," or both. There is some evidence from research on the
comprehension of procedural instructions that the memory structure reflects
procedural relations rather than functional relations whether or not the text
from which the procedure is learned has a procedural form (Smith & Spoehr,
1984). On the other hand, the language differences found in the present
research suggest that language structure will matter, that the form in which
it is convenient to mentally represent a design will be a form that is closely
related to the structure of the stimulus. This is consistent with an emphasis
that was popular in earlier problem solving research: stimulus structures are
a major influence on the form of mental representations, even for logically
isomorphic problems (Hayes & Simon, 1977).

We also found evidence that in later stages of program comprehension.
under appropriate task conditions, a second representation is available that
reflects the functional structure of the program and is expressed in the
language of the real world domain to which the program is applied. Our
explanations for this later, task-related shift in comprehension are
speculative and draw on the concept of a situation model representation of the
program that is distinct from the macrostructure organization of the textbase
(van Dijk & Kintsch, 1983). What is clear from our research is that this
second, functional representation is not constructed quickly or automatically
Programmers required extensive involvement with the program before being able
to use this structure to respond to questions about the program. Further
research is needed to explore the viability of the situation model explanation
and the extent to which changes in stimulus structures will alter the time
course of its emergence.
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Footnotes

'Contention over the number of conceptual units concerns whether
variations on looping structures should be recognized as separate constructs.
These controversies do not affect the discussion.2 1t can be less since the programmer may know that a single command in
the programming language executes one or more actions.3Data from 6 additional subjects were discarded due to programmer
difficulty with English (1), mechanical problems during the course of the
experiment resulting in incomplete data (3), and motivational problems in
completing the experiment (2).

4A response time for a given subject and item was labeled extreme if it
was more than 2.5 standard deviations from the subject's mean response time
over correct responses, and if it was simultaneously greater than 2.5 standard
deviations from the mean response time for that particular item computed over
subjects in the same subject group. In addition, all response times greater
than 10.0 seconds were considered extreme. About 1.9% of the response times
were identified as extreme and their removal lowered the average response time
by about 150 milliseconds and reduced variability. For example the "cleaned"
average response time for correct "yes" items was 2.512 seconds compared to a
2.670 uncleared mean. All analyses were performed on cleaned and uncleaned
data and In no case was the direction of differences between means altered by
the removal of extreme response times.

5To some extent these predictions are dependent on the time course of
comprehension so that more errors would be made earlier about less accessible
information. Analyses of comprehension questions by presentation position
were not informative due to the small number of Items per cell at this level
of analysis.

6 Lengths of the comprehension questions varied (from 8 to 19 syllables,
mea- - 13.2 syllalhes) so response times were adjusted for reading time in
order to compare response times between different information category
question sets as follows: Response times were standardized for each subject.
the response time predicted by a subject's syllables/response time correlation
was subtracted out; the remainder is a standardized residual "due to
thinking." No differences in results occur using other common methods of
adjustment.
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'This does nor preclude priming due to some other unknown form of

relatedness that coincidently was confounded with TS unit memhership.

However, this "other" basis would also have to account for converging

comprehension question results and for results obtained in the second study
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Figure II. Study Two comprehension question error rates by information
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Table I
Correspondences Between Text Abstractions,

Knowledge Structures, and Mental ReprPsentatlons

TEXT KNOWLEDGE MENTAL
PFLTIflNS STRUCTURES REPRESENTATIrN

Control Flow Text Structure Procedural Episodes

Function Plan Knowledge Functional Representation
Data Flow

Condition-Action Unknown Unknown
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Table 2
Mean Response Times for Target Recognition Test Items

as a Function of Prime Type

A. All subjects, response time in seconds

FORTRAN COBOL
SUBJECTS AND MATERIALS SUBJECTS AND MATERIALS

Subject Group

Within Language FKime TS Prime K rimeS Pre

Subjects Group 1 2.691 2.695 2.526 2.834
(A Materials) (B Materials) (A Materials) (B Materials)

Subjects Group 2 2.248 1.972 3.048 2.594
(B Materials) (A Materials) (B Materials) (A Materials)

All Subjects 2.470 2.333 2.787 2.714

B. Upper quartile (QI) comprehension subjects, response time in seconds

FORTRAN COBOL

SUBJE-TS AND MATERIALS SUBJECTS AND MATERIALS
SubJect Group
Within Langugg PK Prime TS Prime K Prime Tue

Q1 Subjects Group 1 2.560 2.463 2.667 2.948

(A Materials) (B Materials) (A Materials) (B Materials)

Q1 Subjects Group 2 2.220 1.807 2.780 2.063

(B Materials) (A Materials) (B Materials) (A Materials)

All Q1 Subjects 2.391 2.135 2.724 2.505
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