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AFIT/GA/AA/86D-7

Abstract

This study investigated periodic orbits about asteroids

rotating in free space. Oscillatory orbits about equi-

librium points as well as those orbits encircling the body

were found. While a method was derived for finding orbits

of all inclinations, only equatorial orbits are presented in

this report. The major emphasis is on stable, periodic

orbits, but certain unstable orbits are presented where

appropriate.

The analysis assumed that asteroids could be

represented by triaxial ellipsoidal bodies rotating about

their major axis of inertia. Hamilton's canonical equations

were derived to describe the dynamics. An algorithm was

then developed and used to solve the equations of motion in

such a way as to find closed, periodic orbits.
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PERIODIC ORBITS ABOUT ROTATING ASTEROIDS IN FREE SPACE

I. Introduction

Thousands of asteroids revolve around the Sun, mainly

between the orbits of Mars and Jupiter. Some of these are

large enough to consider orbiting with a small probe or

satellite. There is also evidence that at least a few

asteroids have their own natural satellites (1:9-10). For

these reasons, this study investigates families of orbits

about such bodies.

As is common practice, it is assumed that asteroids

have a triaxial ellipsoid shape with axes a > b > c and a

rotation about the shortest axis (7:436). (See Figure 1.)

Further, the gravitational perturbations of the Sun,

planets, and other asteroids are assumed to be negligible

(free space). Orbits around such bodies have been investi-

gated in the past, but no previous attempt has been made to

find the equations of motion in such a way as to be condu-

cive to numerical solution (3:37-38; 8:707-710; 9:75-84).

Also, because these earlier studies did not compute actual

orbits, they made no attempt to describe the appearance of

such orbits.

-.-. .- . ,. .- & ; ,. .,.•. .- .. .. .. . ;..; ,;. '. '-
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Figure 1: Asteroid Geometry

The specific task in this study is to derive the equa-

tions of motion in such a way as to facilitate numerical

solution for orbits about an arbitrary triaxial ellipsoid in

free space. In process of finding these orbits, the equi-

librium points for such bodies will also be investigated.

Finally, as an example, the results for a fictitious, but

realistic, asteroid will be presented in a graphical format.
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II. Problem Dynamics

The problem to be solved is that of finding the motion

of a small satellite orbiting an asteroid. It is assumed

that the asteroid can be modeled as a triaxial ellipsoid,

rotating about its shortest axis with some angular velocity.

If the satellite mass is so small as to not effect the

motion of the asteroid, then it can be assumed that the

center of mass for the system is fixed in inertial space and

is located at the center of mass of the asteroid. Further,

the problem is restricted to asteroids in free space.

Equations of Motion

The equations of motion are to be numerically solved,

so they are derived with this in mind. Most numerical

!" integration packages are written to solve first order

differential equations; therefore, the Hamilton canonical

equations are derived and used to describe the motion.

The first step in finding the equations of motion is to

form the Hamiltonian

H :Epiq i - L (2-1)

where pi and qi are the generalized momenta and velocities,

respectively. The last term, L, denotes the Lagrangian,

defined simply as

r L= T - V (2-2)

3
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Figure 2: Gravitational Potential

with T and V being the kinetic energy and potential energy

of the satellite. It is these two terms that must be

determined before the Hamiltonian can be assembled.

Potential Energy. The gravitational attraction of the

asteroid on the satellite provides the potential energy and

an expression for this can be found (4:431, 434-436).

Figure 2 shows the body-fixed (rotating) coordinate system

to be used for this calculation. From the figure, it is

clear this can be written in the integral form

V = -Gmif(dm2)/r (2-3)

where r = 1- P1 is the distance shown in Figure 2 and G

is the Universal Gravitational constant.

4



The 1/r term in Eq. (2-3) can be written:

[ R ~ ~ Ri -1/2
r = R 1 - R (2-4)

If it is assumed that the asteroid dimensions are smaller

than the distance between the mass centers, then the right-

hand side can be expanded in a power series:

r =R- I + + -+ . . •
R2 2 [8 R

(2-5)

Carrying out the algebra, this can be rewritten as:

-1 -1 R " p 1 p2 3 (K . p)2 PR3

r R + + R + order (2-6)R3  2 R3  2 R5  R

Using the body-fixed reference frame previously shown

in Figure 2 and applying the following definitions

= x@x + YCy + z z

R (i + m6 + n8 ) (2-7)
x y z

K p = R (lx + my + nz)

where 1, m, and n are the appropriate direction cosines, Eq.

(2-6) can be substituted into Eq. (2-3) to yield an

5



expression for the potential. After ignoring the higher

order terms and some simplification, this is written as:

-Gml f Gml/

V = -fdm 2 - -f (lx + my + nz) dm2

Gm 2 2 2 2
- [ 3 (lx + my +nz) 2  (x + y + Z ) ] dm
2R 3 f2

(2-8)

The first integral is trivial:

-Gml f -Gmlm 2
-± dm 2 -- (2-9)

R R

The second integral becomes zero when the origin of the

axis system is placed at the center of mass.

The final term of Eq. (2-8) can be expanded into

easily recognizable quantities:

Gm 1

Gm [ 3(x + my + ny) 2  
- (x 2  + y2 ) ] dm22R3

Gm 12 _ )f 2 2 )[22R3  (312 x2 dm 2 +(3m 2  1) y2 dm 2
2R3  f 1

+ (3n 2 - )Jz2 din2 + 61mfxy dm2

. + 61n fxz dm 2 + 6mnnJyz din2l (2-10)

6
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This can be simplified by noting

,fx2 din2 = 1/2 [ (x2 + z2 ) + (x2 + Y2 ) _ (y2 + z 2 )] dm2

= 1/2 (1yy + Izz + Ixx)

fy2 dm 2 = 1/2] [(x 2 + y2) + (y2 + z 2 ) _ (x 2 + z2)] dm 2

= 1/2 (Izz + Ixx + Iyy)

fz2 dm 2 = 1/2f [(y 2 + z2 ) + (x2 + z2 ) - (x2 + y2 )] dm 2

= 1/2 (Ixx + Iyy + Izz)

O-v fxy din2 = Ixy

J xz dm 2 = Ixz

Jyz dm 2 = Iyz  (2-11)

where Ixx, Iyy, Izz are the mass moments of inertia and Ixy,

Ixz, Iy z are the mass products of inertia (4:435-436). If

it is assumed that, in addition to originating at the center

of mass, the axes are arranged such that Ixx, Iyy, and Izz

are principal moments of inertia, then Ixy = Ixz = Iyz = 0.

7



Clearly, Eq. (2-8) can now be written as:

-Gmlm 2  Gm, 2
V = - - [ (31 - 1) (I + I - I

R 4R3  yy zz xx

+ (3m2 - 1) (Ixx + Izz - Iyy)

+ (3n2 - 1) (Ixx + Iyy - Izz (2-12a)

The body-fixed spherical coordinates shown in Figure 3

will prove to be more convenient, so Eq. (2-12a) is

rewritten

V -Gmlm 2  Gm 1V Gm 2 - [ (3cos cos2 k - 1) (I + I -I)

R 4R3  yy zz xx

+ (3cos20 sin 2 - 1) (I + -yy

" (3sin 2  - 1) (Ixx + Iyy - Izz) ] (2-12b)

where R is the distance between the mass centers, is the

longitude measured from the x-axis, and is the latitude.

Kinetic Energy. The kinetic energy of the satellite is

simply

T =(1/2)m v2(-3
Sinert(2-13)

where the inertial velocity of the satellite is given by:

v inert = vrel + (P x R) (2-14)

8
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2

Figure 3: Polar Coordinates

V rel is the velocity relative to the asteroid, is the

angular velocity of the asteroid, and A is the distance

between mass centers as was previously defined.

Using the spherical coordinates shown, Eq. (2-14)

becomes:

vR 0eo R + S2) Cos 0le +Re (2-15)inert 0 jA R

Thus, the kinetic energy, T, becomes:

T=(1/2) mi [R~2 R2 ( + * 2s 0 + *2] (2-16)

9



Haig on epesin ortepoetaladkiei

follo ing exresnd fxreor s the Lagpotnangankinti

m1 2.2 2 + 2c 2O Gmlm2
L -[ R~ + R (X~ oo+R I

2 R

Gm1 ,
* _ [ (3cos 2 cos 2 x )( +I -I

4R 3  yy zz xx

* (3cos2 0 sin2X - 1) (I)(X + I -z I yy)

* (3sin2@ - 1) (jx yy - Izz (2-17a)

Since the mass of the satellite, inl, is small and non-

zero, it is convenient to divide it out and work with

equations on a per unit mass basis. Thus, the Lagrangian is

rewritten as:

L [R 20 2+ R 2( X+Q)2cos2 0 + R2 ] +

2 R

G 2 2
* - [ (3cos 0 cos2 - 1) (1 + I -I

ZR3  yy zz xx

* (3cos20 sin 2,X - 1) (Ix +. I - I y

* (3sin2 0 - 1) (IX + I -y Izz (2-17b)

10
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The last task before substituting into Eq. (2-1) to

find the Hamiltonian is to find expressions for the

generalized velocities, qi. This is easily accomplished by

using Lagrange's Equations

L 2 2
P =-= R (X+n) cos0

6L 
2x O R

bL

PR - R (2-18)
aR

and rearranging to find:

PX

R2cos 2

PO
R2

SPR (2-19)

11



The Lagrangian can be rewritten using Eqs. (2-19):

2  2 /P 2 2 2 Gm2
- R coso + -2 R4  R2cos2) +

G 2 2* - ( (3cos '0 cos2A- 1) (I - I
4R 3  yy zz xx

* (3cos2o sin2X - 1) + I - Iyy)

+ (3sin2o - 1) (Ixx + Iyy - IZZ) (2-20)

Finally, Eqs. (2-19) and (2-20) can be substituted into

Eq. (2-1) to yield the Hamiltonian:

H P2 2  p2 P2 Gm 2

0 R

2R2  2R2 cos 2 + 2 R

G 2 2
- [ (3cos 0 cos2 - 1) (Iy + I - I4R3  yy zz xx )

+ (3cos2o sin2 - 1) (Ixx + I - Iyy)

" (3sin 2o - 1) (II yy - Izz) (2-21)

Recalling Hamiltonian mechanics and taking the appro-

priate partial derivatives, Hamilton's canonical equations

of motion can be found:

2. PA 2 S (2-22a)
R2 cos 20

12
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P0 (2-22b)

~R 2 P

P R(2-22c)

3G 2
R3 (Ixx - I) coso cosx sinx (2-22d)

2 sino 3G

0 R2 cos30 2R' yy xx

+ (21 - I - I ) ] coso sino (2-22e)zz xx yy

-Gm 2  3G 2 2
P - - - [ (3cos 0 cos X - 1) (I + I - I1
R R2  4R4  yy zz xx

2 - 2
(3cos sin -l) + I - I )

x1 x + yy

2+(sn0- )(I + I - I )](3in i)(xx YY zz )

+ +- (2-22f)
R3cos20 R3

Method of Solution

The problem to be tackled next is that of integrating

the equations of motion to find orbits that are periodic in

time. This is done by choosing the initial conditions that

13



will cause the orbit to return to the same point with the

same velocity after the given period. A priori, one does

not know these initial conditions, so a method must be

derived to find them.

One logical method to go about finding these proper

initial conditions is outlined as follows:

1) Select an orbital period.

2) Guess a set of initial conditions.

3) Integrate the equations of motion.

4) If the orbit does not return to the same starting

point with the same velocity, then vary the

initial conditions and repeat step 3.

Step 1 is simply a matter of choice. For Step 2,

simple circular orbital motion is assumed to give a fairly

good first guess at the initial conditions. The integration

in Step 3 is to be performed by Haming, a fourth-order

predictor-corrector algorithm (6). Thus, the problem is

reduced to finding an efficient means of completing Step 4.

If the coordinates and momenta are assembled into the

vector x(t), then a general equation of motion can be

written:

x(t) = f[x(t),tI (2-23)

14



Assuming that a reference solution, Ro(t), has been found, a

nearby orbit can be defined as

= Ro(t) + 6x(t) (2-24)

where 6x(t) is a small displacement in the reference

orbit. To a first order approximation, 6x(t) can be shown

to be related to a displacement at t = tI  by

(t) = (t,t I ) 6R(t I ) (2-25)

a (t)
Where *(t,t I) is the state transition

(l) x O(t)

matrix (6:128-129). It can also be shown that the state

(f9 transition matrix can be found by solving the differential

equation

i(t't ) 1 A(t) C(t,t )  (2-26)

with the boundary condition that 4*(t 1 ,t i) = I, the identity

matrix (6:130-131). A(t) is the variational matrix and is

defined as:

A(t) = - (2-27)x
x 0 (t)

(For reference, the individual terms of the matrix are

listed in Appendix B.) Note that, since A(t) is evaluated

15
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along the reference orbit, Eq. (2-26) can be integrated

concurrently with the integration of Eq. (2-23).

Now that a reference orbit and the state transition

matrix have been found, it remains to use this information

to efficiently vary the initial conditions to produce a

closed orbit (Step 4). This is a relatively simple proce-

dure and will now be derived.

Figure 4 shows three typical orbits starting at X= Ir/2

and continuing for one-half period. If these are truly

periodic orbits, then there are certain conditions that must

hold due to symmetry. These are clearly

X(t 2 )  = [ X (t 1 ) + n r I

PR2 = p 0(t 2 ) = -PO (tl) (2-28)

R = PR(t 2 ) = PR(tl) = 0

where X(t1 ) = ir/2. These can be arranged and placed in a

vector:

X(t2 ) - [ X(tl) + n ]

= P0 (t 2 * + P0 (t 1 ) = 0 (2-29)

P R(t) - P R(t )

If this vector, G, is evaluated on a reference path, x (t)0

that is not a closed orbit. then it will not be equal to

zero; instead, it will be equal to some error, . (If it is
nearly closed, will be small.)

16
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(Minor Orbits) (Major Orbits) (Major Orbits)

Figure 4: Typical Orbits

For orbits varied slightly from the reference orbit,

an expansion of G about the reference orbit can be written.

To a first order approximation, this is (5:6):

[x 0 (t 2 ) + 6x(t 2 ), t 2 )] G C [x 0 (t 2 ), t 2 ] + 6x(t 2)

x (t
0 2

(2-30a)

More conveniently, this is written as

17



G [x(t 2 ), t 2 ]  " G [x0 (t2 ), t2] + B 6x(t 2 ) (2-30b)

where B = - and can be easily be shown to be:

Xo (t2)

1 0 0 0 0 0

B 0 0 0 0 1 0 (2-31)

0 0 0 0 0 1

Recall that on the reference path:

(x0 (t2 ), t2 ]  = e (2-32)

And, if the varied orbit is a closed orbit, then:

G [x(t 2 ), t2] = 0 (2-33)

Thus, after substituting Eqs. (2-32) and (2-33) into

Eq. (2-30b):

B 6R(t 2 ) = - (2-34)

Recall that the problem is to find the variation

at t = tI  that makes the varied orbit a closed orbit.

Eq. (2-21) relates variations at t = t 2 to variations at

t = t1 . Thus, Eq. (2-34) can be written:

B 6R(t 2 ) = B *(t 2,tI ) 6R(t I ) = - (2-35)

18
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The product B O(t 2 ,tl) is a 3 x 6 matrix, so it cannot

simply be inverted to find 6X(tl). However, examining this

product in more detail reveals:

6X(t I )

6 (t 1 )

6R(t I )

B 4(t 2 ,tI ) 6x(t I ) = B *(t 2 ,tI ) 6PX (tl) (2-36)
6PO (t I )

6PR(tl)

Recalling Eqs. (2-28), the initial conditions X(tl),

PO(tl), and PR(tl) were set and not allowed to vary; there-

fore, their corresponding variations at t = tI are zero.

This allows the first, fifth, and sixth columns of the

product to be eliminated from consideration:

6 X (tY)

[B t(t 2 ,tI ) 6R(ti)] 2 3 4  = [B 4(t 2 ,tl)] 2 3 4  60(ti)

6PX (tj)

(2-37)

Using this reduced form, Eq. (2-35) can now be written:

6A(t 1I

[B 4(t 2',tl)]234 60(t 1 ) =-e 2 3 4  = -[G[x(t2),t2] 234

jj\A (t1j
-2-38)

19



The reduced product is a square matrix and can he inverted

to solve for 6x(tI):

6 A(t I )

60(t1 ) = -[B C(t 2 ,tl) 1 23 4  (G[x(t2 ),t2 ]}2 3 4  (2-39)

6 PX (t 1 )

Using this solution in Eq. (2-24), the initial

conditions can be corrected. Note that, since first order

approximations have been made at various steps, this

correction may not result in a closed orbit. However, if

the initial reference orbit is close enough, then the

correction will produce a solution that is closer to a

closed orbit. Thus, simple iteration is all that is needed

to complete Step 4.

For reference in later chapters, it is important to

note that the G vector is all that determines the type of

orbit that will be found. The value of n will determine if

it is a minor or a major orbit. (Figure 4 shows the result

of this selection.) The choice of P0 (t 1 ) determines the

inclination of the orbit. [Selecting P0 (t 1 ) = 0 results in

equatorial orbits.]

Stability of Orbits

Once a periodic orbit has been found, it is useful to

know if it is stable. Since this is a Floquet problem, the

condition necessary to determine stability is well

20



documented (4:264-270; 6:143-148). For this reason the

criterion for stability will be stated and used here without

proof.

The stability of the orbit is governed by the character

of the Poincare' exponents, Ail as defined by the

determinant

I [ (t 1 + ),tl] - exp(AiT) I I = 0 (2-40)

where T is the period of the orbit (6:144). Note that the

terms ai = exp(XiT) are simply the eigenvalues of

*[(t 1 + T),t 1 ] and that the Poincare' exponents are given

by:

Ai = (1/7) loge (ai ) (2-41)

If the orbit is stable, then the Xi's must all be purely

imaginary (4:268; 6:142).

Notice that, after integrating Eqs. (2-23) and (2-26)

for an entire orbit, b[(t + T),t has been found.

Thus, it is a relatively minor addition to calculate the

Poincare' exponents and, therefore, determine the stability

of the orbit.

Verification and Error Detection

Long derivations and the use of a computer invite the

introduction of errors. With this in mind, two tests were

used help verify that the results were accurate.
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Equation Verification. A simple method can be derived

to simultaneously verify that both the equations of motion,

f, and the variation matrix, A(t), have been entered into

the computer correctly. This is done by recalling the

definition:

A(t) - (2-42)

(t)

Each term of A(t) can be be approximated by

Bfi .fi[(xj + Axj),t] - fi[(X j - AXj),t]
a i - t (2-43)

x iXj 2 Axj

where Axj is a sufficiently small number.

Thus, for any point, the terms aij can be calculated

exactly using the equations in Appendix B and approximately

by using Eq. (2-39). If the values do not approach the same

limit as 4xj gets small, then an error exists in either the

equations of motion or in the variation matrix. (It was

found that a typical error resulted in differences of at

least 25%.) This method of numerical differentiation was

used in verifying the program used to generate the results

in this paper.

Dynamics Verification If, during the numerical inte-

gration, the orbit passes too close to a singularity in the

equations of motion, it is possible that the path will cease

to be realistic. "Too close" is an ambiguous limitation on
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the problem, so it would be useful if some way could be

found to detect when it occurs. Fortunately, there is a

simple method to detect when this (or any other unforeseen

anomaly) causes the integration of the problem dynamics to

break down.

Since the Hamiltonian is not a function of time for

this problem, it is a constant for all points on any given

orbit. Thus, if the Hamiltonian changes suddenly from one

point to the next along the path, it is very probable that

the limitations on the dynamics have been exceeded. This

simple check was performed automatically at each integration

point.
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III. Equilibrium Points

The equilibrium points will prove to be important

starting points in the computation of orbits. Thus, it is

advantageous to solve for them first. The procedure for

doing this is simple and yields a closed-form solution.

Locations in State Space

Equilibrium points, by definition, are points in state

space from which the satellite will not move if it is placed

exactly there. In equation form, this condition can be

written:

x = 0 (3-1)

Referring to Eqs. (2-22), it is clear that a system of six

equations in six unknowns is produced:

PX
2 2 - = 0 (3-2a)

R cos 0

PO
2 0 (3-2b)

P = 0 (3-2c)

3G 23 (I - Iy) cos 0 cosA sin= 0 (3-2d)
R 3 xx yy
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2
-P sino 3G222 [ (cosx - sin) (I -

R2 cos30 2R3  yy xx

+ (21 - I - I ) ] coso sin0 = 0 (3-2e)zz xx yy

-Gm 2  3G 2 2

2 4 (3cos cos A -1) (I + I - I )R 4R yy zz xx

" (3cos24sin k -1 ) (I xx + Izz - Iyy

+ (3sin2 - 1) (I + I - I ) ]xx yy zz

P2 2
+ x = 0 (3-2f)

R3cos 2# R3

After some simple manipulation, the system can be

reduced to give the following set of points:

R, P2 0, 0, R1, R2, 0, 0 ) (3-3a)
,~~ '. .- R. P p. R 1 .

R, - 0, R 0 0 (3-3b)X O'R (2 2' 2'

R, P , P r, 0, R1 1 R 2, 0, 0 ) (3-3c)

(X0 R, PX, PO~ ' R 2 ( 0' 0 , R 2 ' R 2 0, (3-d

The terms R, and R 2  represent all of the physically

realistic roots of the two equations that result from
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substituting the values for x, 0, P, and PR along with the

expression for P. into Eq. (3-2f). These equations are:

3G

R5 - Gm - -2 (I + I - 21x) = 0 (3-4a)1 2 1 2 ZZ yy xx

R2 - Gm -2 3G I - 21) = 0 (3-4b)2 2 1 2 Zz xx yy

Note that the number of equilibrium points depends on

the number of physically realistic roots of Eqs. (3-4).

Unfortunately, it is impossible, by simple inspection, to

determine a general rule regarding the number of the

realistic roots. For this reason, seven actual asteroid-

like bodies were examined. The results were then analyzed

to see what, if any, conclusions could be drawn about the

typical nature of the roots and, therefore, the radii of the

equilibrium points. [For reference, the approximate dimen-

sions, mass, and rotation rate used for each of these bodies

are given in Table I (1:10; 2:138; 7:452).]

These calculations did, indeed, reveal information

about the general nature of the roots. Since every body

examined exhibited the same trends, it can be concluded that

the results from these calculations are typical of realistic

asteroids. Thus, the following generalities can be made:
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1. Eq. (3-4a) has only one real root. This root, R1 ,

has a magnitude that represents a radius slightly

greater than that required for a synchronous orbit

about an equivalent spherical body.

2. Eq. (3-4b) has three real roots. Two of these

roots represent radii so small as to be inside the

body; therefore, there is only one realistic root,

R2 . for this equation also. R2 has a magnitude

slightly less than that required for a synchronous

orbit about an equivalent spherical body.

3. Because Eqs. (3-4) have only one realistic root

each, there are exactly four equilibrium points

given by Eqs. (3-3).

Table I: Typical Asteroid Data

Axes Lengths
Name a (km) b (km) c (km) Q(rad/s) Mass (kg)

Hebe 114.0 92.0 92.0 2.39 x 10- 4  1.15 x 10 1 9

Hektor 170.0 63.9 56.5 2.53 x 10- 4  7.33 x 1018

Juno 137.0 112.0 112.0 2.42 x 10- 4  2.05 x 1019

Nysa 40.9 27.1 23.0 2.73 x 10- 4  3.04 x 1017

Pallas 311.0 272.0 272.0 2.21 x 10- 4  2.75 x 1020

Psyche 142.0 107.0 84.9 4.06 x 10- 4  1.54 x 101 9

Phobos 13.3 11.0 9.2 2.28 x 10- 4  1.61 x 1016
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Stability of Equilibrium Points

An equilibrium point is stable if the eigenvalues of

the variation matrix, A, are all purely imaginary (4:222;

6:138-140). The eigenvalues calculated using:

SA - Xil I = 0 (3-5)

where A is evaluated at the equilibrium point in question

and the Xi's are the eigenvalues at that point.

It would be extremely difficult to find a general

solution for the eigenvalues in Eq. (3-5). Fortunately, it

is not necessary to find a general solution to determine the

stability of the points. This is because the equilibrium

points for the bodies in Table I were substituted into

Eq. (3-5) and, once again, all seven examples yielded the

same results. These results, with reasonable certainty, can

be considered to be general for typical asteroids and are

stated as follows:

1. The points at A = 0 and X= w are unstable

equilibrium points. These points are described

completely by Eq. (3-3a) and Eq. (3-3c).

2. The points at X = 7r/2 and X = (3 r)/2 are

stable equilibrium points. These points are

described completely by Eq. (3-3b) and Eq. (3-3d).
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Example Asteroid Calculations

X. ~As an example, the equil1ibriurr points for the f icti-

tious asteroid of Appendix A were calculated and checked for

stability. The results of these calculations are summarized

in the following sections.

Equilibrium Point Results. The first step in calcu-

lating these points was to find to roots of Eqs. (3-4).

These roots, as well as R, and R2 , are listed in Table II

and Table III, respectively. (Note that the roots follow

Table II: Roots of Eq. (4-3a) for Example Asteroid

(-5.113402188516e-01) +( 8.484056878152e-01)i

(-5.113402188516e-01) + (-8.484056878152e-01)i

( 1.850707134977e-03) + ( 2.466559517092e-0l)i

l .850707134977e-03) + (-2.466559517092e-01)i

(l.018979023433e+00) + ( 0.OOOOOOOOOOO0e+00)i

R= 1.018979023433 LU

Table III: Roots of 7q. (4-3b) for Example Asteroid

(-4.953656785376e-01) + ( 8.741840563661e-0l)i

(-4.953656785376e-01) + (-8.74184056366le-01)i

(-1.694701567977e-01) + ( 0.OOOOOOOOOOO0e*00)i

(l.703036684758e-01) + ( 0.OOOOOOOOOOO0e+00)i

(9.898978453971e-01) + ( 0.GJOOOOOOOOOOe+00)i

R2  0.9898978453971 LU

-- p. 29



N .the generalities stated on page 27.) Using these values for

R, and R 2 , the equilibrium points were found with Eqs. (3-3)

and are shown in Table IV.

Stability Results. The final conclusions of the sta-

bility calculations are given in Table IV. While the deter-

mination of stability was the main goal of solving the

eigenvalue problem, it is interesting to note the

information that can be obtained from the actual solutions

for the stable equilibrium points.

The magnitudes of the eigenvalues give frequencies at

which to start searching for oscillatory orbits near these

points, while the eigenvectors give information about the

Table IV: Equilibrium Points for Example Asteroid

Point X 0 R PX PO PR Stability

1 0 0 R1  P1\ 1  0 0 Unstable

2r
2 - 0 R2 P X2  0 0 Stable

2

3 0 R1  PX 1  0 0 Unstable

3r R2 P) 0 0 Stable4- 0 2 A

R1 = 1.018979023433 LU PX 1 = 1.0386121930138 LU 2 /TU

R2 = 0.989897843297 LU PA2 = 0.9801751485797 LU 2 /TU

* .. %
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initial perturbation in direction and momenta from these

points (6:140-141). [In later computations of oscillatory

(minor) orbits, it was found that the eigenvalues and

eigenvectors were of little use other than the determination

of stability.] The eigenvalues and eigenvectors are

listed -, Table V for reference.

Table V: Eigenvalues and Eigenvectors at Stable

Equilibrium Points

X12= (±0.4960063637745e+00)i

(-0.9391331508767e+00) + (0.OOQOOOOOOOOO0e+00)i

(0.0000000000000e+00) + (0.OOOOOOOOOOOO0e+00)i

( 0.0000000000000e+00) + (±0.2894518434642e+00)i

1,2 ( .000000000000e-00) + (±0.1167656750469e+OO)i

(0.0000000000000e+00) + (0.00QOOOOOOOOO0e+00)i

(-0.1435699563645e+00) + (0.0000OOOOOOOO0e+00)i

X34= (±0.8673722342857e+00)i

(-0.8799966095281e+00) + (0.OOOOOOOOOOOO0e+00)i

(0.0000000000000e+00) + (0.OOOOOOOOOQOO0e+O0)i

(0.0000000000000e+00) + (±0.3953216071260e+00)i

E 34 (0.0000000000000e+00) +4 (±0.6043478055486e-01)i

(0.0000000000000e+00) +- 0.0OOOOOOOOOOO0e+00)i

(-0.3428909856343e+00) +, 0.OQOQOOOOOOOQ0e+00)i

(Table continued on next page.)
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Table V (Continued):

X5, 6 = (11.001386855817e+00)i

0.0000000000000e 00) + ( 0.0000000000000e+00)i

(-0.7137642827302e+00) + ( 0.0000000000000e+00)i

(0.0000000000000e+00) + ( 0.0000000000000e+00)i
E5 ,6  ( O.O000000000000e+OO) + ( O.O000000000000e+O0)i

( O.0000000000000e+O0) + (±0.7003859997878e+00)i

(0.0000000000000e+00) + ( 0.0000000000000e 00)i
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IV. Minor Orbits

Minor orbits are those orbits that are merely oscilla-

tions about the stable equilibrium points. This chapter

will present minor orbits that lie in the equatorial plane

for the example asteroid described in Appendix A. Note that,

since the orbits about the two equilibrium points are simply

mirror images of each other, it is only necessary to solve

for the orbits about one point. For convenience, the point

at A = W/2 was used.

As shown in Chapter II, the G vector determines the

characteristics of the orbit that will be found by the

numerical method. If the integration is to be started at

X = Ir/2, the G vector is:

X (t 2 )  - Or/ 2)

= P (t2 ) (4-1)

P R(t 2 )

Using this E vector, minor orbits can be found using the

equations and methods derived in Chapter II.

Orbits were found very near these equilibrium points.

A typical example of this family of orbits is shown in

Figure 5. The initial conditions are plotted against the

frequencies of these orbits in Figures 6 and 7. Note that

below a frequency of approximately .47 rad/TU, the orbits

became unstable.
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Figure 5: Typical Minor Orbit Near Equilibrium Point

1.08-

A
1.06 A

1.02-

S1.00-

0
0.98

0.96,
0.44 0.46 0.46 0.47 0.48 0.49 0.60

FREQUENCY (RAD/TU)
O3UNSTABLE A STABLE

Figure 6: Initial Radius -vs- Frequency
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Figure 7: Initial PX -vs- Frequency

Another family of stable orbits was found starting at a

frequency of approximately .44 rad/TU. A typical example of

this family is shown in Figure 8. Radii and momenta data

are given in Figures 9 and 10, respectively. Note that the

orbits of this family become unstable near a frequency

of .395 rad/TU.

No other families of stable orbits wer3 found. There

were, however, other interesting orbits computed. Examples

of a few of these are shown in Figures 11 - 1 ilong with

the initial conditions of R and P\ used to compute them.

(In all cases, this radius is the maximum radius at which

the orbit crosses perpendicular to the y-axis.) Table VI

S summarizes all of the minor orbits found.
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Figure 8: Typical Minor Orbit Near f = .44 Rad/TU
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Figure 10: Initial Px -vs- Frequency

Figure 11: f = .441 Rad/TU, R = 0.9004120106766 LU,
P- 0.7992199550355 LU 2 /TU
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Figure 12: f =.321 Rad/TU, R = 1.019464633106 LU,
PX= 0.8960785897863 LU2 /TU

Figure 13: f =.305 Rad/TU, R = 1.239528500246 LU,
=X 0.9255337942752 LU2 /TU
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Figure 14: f =.290 Rad/TU, R = 1.354845715264 LU,
p 1.117080805423 LU 2 /TU
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Table VI: Summary of Minor Orbits Computed

f R p Stability

(Rad/TU) (LU) (LU2 /TU)

0.490 1.039041236844 1.000867256234 stable

0.480 1.062624482299 1.012978217714 stable

0.470 1.067382477069 1.019509104377 stable

0.460 1.046834141438 1.019299715560 unstable

0.450 0.986160355569 1.005650561067 unstable

0.449 0.977985586688 1.003324500188 unstable

0.441 0.900412010677 0.977219955036 unstable

0.440 0.888168589907 0.972473210712 unstable

0.440 1.238387157667 1.056690380877 stable

0.435 1.082095823329 0.991288299428 stable

0.435 1.227741787424 1.059177135627 stable

0.430 1.222281650472 1.061495283471 stable

0.425 1.219455010081 1.063773482440 stable

0.420 1.218033152644 1.066023461238 stable

0.415 1.217344653087 1.068234383201 stable

0.410 1.216985353084 1.070392195973 stable

0.405 1.216688740817 1.072483329113 stable

0.400 1.216261042734 1.074494680583 stable

0.395 1.215545133971 1.076412660583 stable

0.394 1.215354721541 1.076783747396 unstable

(Table continued on next page)
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Table VI (Continued):

f R Px Stability

(Rad/TU) (LU) (LU2 /TU)

0.392 1.214917630362 1.077512354812 unstable

0.390 1.214397843252 1.078221895716 unstable

0.360 1.187912621470 1.085107385175 unstable

0.340 1.117341867891 1.077631737758 unstable

0.330 1.038614678848 1.059840481020 unstable

0.325 0.984840557323 1.044125555788 unstable

0.321 1.019464633106 0.896078589786 unstable

0.320 1.029113207899 0.897003545851 unstable

0.319 1.039006180956 0.897988374479 unstable

0.315 1.081426148767 0.902665051849 unstable

0.310 1.130850261552 0.909059307428 unstable

0.307 1.195416827916 0.918602755456 unstable

0.305 1.239528500246 0.925533794275 unstable

0.302 1.350055576137 0.942682054990 unstable

0.300 1.390296759434 1.113911631307 stable

0.290 1.354845715264 1.117080805423 stable

0.280 1.326851733481 1.118784303008 unstable

0.270 1.296053037078 1.119238555695 unstable
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V. Major Orbits

Major orbits are those orbits that completely encircle

the body. This chapter will present major orbits that lie

in the equatorial plane for the example asteroid.

Unlike with the minor orbits, there is not just one

vector for the major orbits. The reason for this becomes

clear when it is noted that the period of these orbits is

actually the synodic period as defined as

27
Psy = 1 -f(5-1)syn n -_ f

where f2 is the rotational frequency of the asteroid and f

is the frequency of the orbit. When f > Q, the satellite

"outruns" the asteroid, implying that the mean radius the

orbit is inside the radius for synchronous orbit.

Similarly, f < 52 implies that the mean radius lies outside

the synchronous radius.

Thus, referring back to Figure 3 the G vector for each

case can be easily assembled. If the integration is to be

started at A I r/2, then these vectors are:

(t2) - (3 /2)

= P 0 (t2 ) for f > n (5-2a)

PR(t2)
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t 2 ) + (/2)

G P0 (t2 ) for f < n (5-2b)

L PR(t2 )

Using these G vectors and the method of solution

derived in Chapter II, a wide range of major orbits were

found. Due to numerical instability, solutions could not be

found in the range .6 < f < 1.45 rad/TU. However, outside

this range, orbits were computed and are presented in the

following sections.

Major Orbits With f > Q

The orbits with a frequency greater than exhibited

'I, several interesting characteristics. The first is that they

were all stable orbits. The second characteristic is the

fact that the paths change shapes considerably over the

range of frequencies. Because of this second character-

istic, these orbits are grouped by frequency for

presentation.

5.2 > f > 1.97 Rad/TU. An orbit with a frequency of

approximately 5.2 rad/TU just clears the asteroid, so this

is upper limit on the frequencies investigated. This orbit

is shown in Figure 15 Figures 16 - 18 show the development

of the family of orbits as the frequency decreases (and the

radius increases). At a frequency of about 2.1 rad/TU, the

orbits begin to rapidly change in appearance.

Figures 19 - 23 show this trend. Note that in going from a
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frequency of 5.2 rad/TU to 1.97 rad/TU, the orbits went

from being elongated along the x-axis to being elongated

along the y-axis.

1.97 > f > 1.70 Rad/TU. No physically realistic orbits

could be found in this range. All orbits found had a shape

similar to that of f = 1.97 rad/TU, with a radius at X = w

so small as to cut into the body.

Figure 15: f = 5.2 Rad/TU, R = 0.3285791620856 LU,
P= 0.5223527976000 LU 2 /TU

Figure 16: f = 4.5 Rad/TU, R = 0.3660469358352 LU,
P = 0.5586415882509 LU 2 /TU
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Figure 17: f =3.5 Rad/TU, R =0.4368881991385 LU,

Cho, P 0.6178884298666 LU2 /TU

Figure 18: f =2.2 Rad/TU, R = 0.6577526393746 LU,I
=X 0.7272907495521 LU 2 /TU
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Figure 19: f - 2.1 Rad/TU, R = 0.7244296006906 LU,
P= 0.7315590587046 LU 2/TU

Figure 20: f = 2.05 Rad/TU, R = 0.7816397303163 LU,
P= 0.7267807751077 LU 2 /TU

46

S



Figure 21: f = 2.02 Rad/TU, R = 0.8294374811680 LU,
PX = 0.7182213754289 LU 2 /TU

Figure 22: f = 2.00 Rad/TU, R = 0.8676722280846 LU,
P= 0.7089389646567 LU 2 /TU
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Figure 23: f = 1.97 Rad/TU, R = 0.9325366690062 LU,
PX = 0.6892195230246 LU2 /TU

1.70 > f > 1.45 Rad/TU. In this range, the orbits take

on a simple elliptical shape, as shown in Figures 24 and 25.

It is interesting to note that these orbits are, once again,

elongated along the x-axis.

1.45 > f > 11 Rad/TU. Due to these orbits passing close

to the stable equilibrium points, the numerical method used

became unstable. Instead of converging on a solution, the

iteration scheme diverged. This was most likely due to a

singularity in the state transition matrix caused by two or

more very close solutions. As a result, no orbits in this

range were found.
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Figure 24: f = 1.70 Rad/TU, R = 0.5775263323319 LU,
P= 0.7793806659997 LU2 /TU

Figure 25: f =1.45 Rad/TU, R = 0.6914873259638 LU,
P= 0.8237375426793 LU2 /TU
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Major Orbits With f < S2

Unlike the inner orbits, these have almost no variation

in shape with frequency. All but one orbit (f = .5 rad/sec)

computed was stable.

S1 > f > 0.6 Rad/TU. Once again, attempted computation

of orbits close to the synchronous radius caused the

numerical method to become unstable and diverge. Thus, no

closed paths in this range were found.

0.6 > f Rad/TU. As the frequency decreases (and the

radius increases), these paths quickly lose their elongation

and become almost perfectly circular. This is shown in

Figures 26 and 27. It is interesting to note that the only

unstable major orbit found occurred at f = 0.5 rad/TU.

Figure 26: f = 0.6 Rad/TU, R = 1.328869494267 LU,
Px= 1.198300228534 LU 2 /TU
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Figure 27: f = 0.5 Rad/TU, R = 1.574940235844 LU,
PA= 1.271992801430 LU 2 /TU

Remarks on Major Orbits

Figures 28 and 29 graphically summarize all of the

major orbits computed in this study. These computations

reveal several interesting features of the major orbits.

These are:

1. No physically realistic major with frequencies in

the range 1.97 > f > 1.70 rad/TU were found.

2. Interesting phenomena occur near frequencies of

2.0 11, f?, and 0.5fl rad/TU. At frequencies very
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close to f = 2.O rad/TU, the orbits begin to

rapidly change their shape. (See Figures 22 - 25.)

Near f = n rad/TU, the method of solution became

unstable and diverged. The only unstable major

orbit found was at a frequency very close to

f = 0.511 rad/TU.

3. At frequencies lower than f = .4 rad/TU, the orbits

are essentially circular. Below this, the

satellite behaves as if the asteroid were a

spherical body.

52



2.00-

0

1.76

0

1.60

1.26

0
< 1.00Wg

0
0

00

0.76 0
Ao

0.25 , 1 ,
0.0 1.0 2.0 3.0 4.0 6.0

FREQUENCY (RAD/TU)
OFAMILY I AFAMILY 2 CFAMILY 3

Figure 28: Initial Radius -vs- Frequency

53
r 53 - , w . . • q • ,S



1.40
0

1.30
0

1.20 0

1.10

1.00
C~4

0.90

0.80 AA

0.70

0.600 0
0

00

0.0 1.0 2.0 3.0 4.0 6.0
FREQUENCY (RAD/TU)

OFAMILY I AFAMILY 2 OFAMILY 3

Figure 29: Initial P. -vs- Frequency

54



Conclusion and Recommendations

The key results of this study have been stated in each

chapter already, so they will not be repeated in detail

here. To summarize the results, each step of the problem

solution will be looked at from the aspect of possible

future research.

Dynamics and Method of Solution

The equations of motions were derived using a truncated

power series expansion for the gravity potential. A future

study could retain more terms in the series, but this is not

recommended. The inaccuracy introduced by ignoring surface

features (craters, etc.) and assuming a triaxial shape for

the asteroid is probably greater than that due to the trun-

cated terms.

If major orbits near the synchronous radius are to be

investigated in future studies, another method of solution

needs to be found. Instead of setting a period and iter-

ating on 0, R, and P,' it might be advantageous to set R

and iterate on 0, PA' and the period.

Equilibrium Points

The equilibrium points were fully investigated. No

further study is recommended.
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Minor Orbits

The study of the minor orbits produced a host of

seemingly unrelated paths. These orbits should be

investigated in more depth to see if any relationships can

be found. Additionally, inclined orbits should be

investigated.

Major Orbits

If a new method cf solution that remains stable near

the synchronous radius is developed, then the major orbits

in this region should be investigated. Once again, inclined

orbits should also be investigated.

Related Problem for Study

An interesting extention of this research would be to

include the gravitational effects of a nearby planet. Thus,

orbits about such bodies as Phobos and Deimos (Martian

moons) could be investigated.

Conclusion

This study found the governing equations for the motion

of a small satellite about a rotating asteroid. Methods

were then employed to solve these in such a way as to find

the equilibrium points, minor orbits about the stable equi-

librium points, and major orbits for a fictitious asteroid.

All orbits found were in the equatorial plane of the

asteroid.
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Appendix A: Fictitious Asteroid Characteristics

Any real asteroid could have been selected to use as an

example, but Hektor was originally selected due to the fact

that it is one of the more ellipsoidal bodies. It was

found, however, that by using a slower rotation rate, the

dynamics produced more extreme behavior. For this reason,

a fictitious asteroid was invented with the dimensions of

Hektor and a slower rotation rate. The physical character-

istics of this body are given in Table VII.

Table VII: Fictitious Asteroid Data (Standard Units)

a (kin) b (kin) c (kin) 11(rad/s) Mass (kg)

170.0 63.9 56.5 21rx 10- 5  7.33 x 10 1 8

For numerical reasons, it is desirable to convert to a

canonical system of units that allows the integration to be

performed with numbers of approximately the same order of

magnitude. Appropriate length units (LUs), time units

(TUs), and mass units (MUs) can easily be fcund to accom-

plish this. If one length unit is defined as the radius of

a synchronous circular orbit about an equivalent spherical

body and if it is desired to set Gm 2 = 1 LU3 /TU2 , then the
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following conversion factors for length, time, and mass

units can be found:

1 LU = 467.8 km

1 TU = 1.592 x 104 sec (A-i)

1 MU = 7.33 x 1018 kg

After converting the the values in Table VII to these

units, the moments of inertia can also be calculated. The

physical data in these new units are given in Table VIII.

These values were considered to be exact and were used in

all of the example calculations.

Table VIII: Fictitious Asteroid Data (Canonical Units)

a = 0.341 LU

b = 0.128 LU

c = 0.113 LU

'xx 5.86 x 10- 3 LU 2 "MU

Iyy = 2.58 x 10- 2 LU 2 "MU

Izz = 2.65 x 10- 2 LU 2 "MU

= .3184" rad/TU

G = 1 MU.LU
3 /TU 2
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qw Appendix B: Variational Matrix

Terms of A Matrix:

02PX sino -2Px
a11  =012 R 2 C 3 013 R = o 20

1
a14 R2 Cs2 0a = 0 a 16 0

0 0 ~ -2 P

a =0 a a0 a21 22 23 26

a3 =0 a3 0 a3 10

3G 2 .2 2

41a( - I cos sin cos in

42 = ,; (Iy - ) C5 in oAsn
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9G 2
a43 = (I - I ) cos0 cosA sinX

43 R 4 y xx

a 4 4  0

a 4 5  0

a4 6 - 0

6G
a 5 1  - (I - I ) coso sino cosA sinX

51 R3  yy~ XX

O p2 3P2 sin2  3G

a - 2 2 4 ( (cos A - sin 2A) (I I
52 R 2 Cos2 R2cos40 2R3  yy xx

+ (2Izz - Ixx - Iyy] (cos 20 - sin20)

2P2sino 9G 2- +- A (cos A - sin2 A) (I - I)
53 R3cos30 2R4 yy xx

+ (2Iz - - I yy) coso sino

2 P. sin
a54  2cos3

a5 5 = 0
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a 5 6 =0

a 9G - cosX sinx cos 061 R, " XX

2X sino 9G22

a6 - - -I( - I ) (sin X - Cos x)
62 R3Cos 30 2R 4 y XX

+ (I xx+ I1 - 21Z coso in

2Gm 2  3G 2 2
63 3 -~ [ (3cos 0 cos~ -1X + I -I63 R 3 R 5Y Z zz XX

+ (3cos2o sin 2A - 1) (IX + I~ -z In

+ (3sin2 o - 1) (Ix + I yy- IZZ)

3P2  3P;

R Cos 0 R

a

a65 R3

a 66 =0
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Block 19:

This study investigated,'periodic orbits about asteroids

rotating in free space, /4scillatory orbits about equi-

librium points as well as those orbits encircling the body

were found. While a method was derived for finding orbits

of all inclinations, only equatorial orbits are presented,im.n-

this report.;- The major emphasis is on stable, periodic

orbits, but certain unstable orbits are presented where

appropriate.

The analysis assumed that asteroids could be

represented by triaxial ellipsoidal bodies rotating about

their major axis of inertia. Hamilton's canonical equations

were derived to describe the dynamics. An algorithm was t2

then developed and used to solve the equations of motion in

such a way as to find closed, periodic orbits. (,]C ,
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