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Abstract

This study investigated periodic orbits about asteroids
rotating in free space. Oscillatory orbits about equi-
librium points as well as those orbits encircling the body
were found. While a method was derived for finding orbits
of all inclinations, only equatorial orbits are presented in
this report. The major emphasis is on stable, periodic
orbits, but certain unstable orbits are presented where
appropriate.

The analysis assumed that asteroids could be
represented by triaxial ellipsoidal bodies rotating about
their major axis of inertia. Hamilton's canonical equations
were derived to describe the dynamics. An algorithm was
then developed and used to solve the equations of motion in

such a way as to find closed, periodic orbits.
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PERIODIC ORBITS ABOUT ROTATING ASTEROIDS IN FREE SPACE

I. Introduction

Thousands of asteroids revolve around the Sun, mainly
between the orbits of Mars and Jupiter. Some of these are
large enough to consider orbiting with a small probe or
satellite. There is also evidence that at least a few
asteroids have their own natural satellites (1:9-10). For
these reasons, this study investigates families of orbits
about such bodies.

As 1s common practice, it is assumed that asteroids
have a triaxial ellipsoid shape with axes a > b > ¢ and a
rotation about the shortest axis (7:436). (See Figure 1.)
Further, the gravitational perturbations of the Sun,
planets, and other asteroids are assumed to be negligible
(free space). Orbits around such bodies have been investi-
gated in the past, but no previous attempt has been made to
find the equations of motion in such a way as to be condu-
cive to numerical solution (3:37-38; 8:707-710; 9:75-84).
Also, because these earlier studies did not compute actual
orbits, they made no attempt to describe the appearance of

such orbits.
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Figure 1: Asteroid Geometry

The specific task in this study is to derive the equa-
tions of motion in such a way as to facilitate numerical
solution for orbits about an arbitrary triaxial ellipsoid in
free space. In process of finding these orbits, the equi-
librium points for such bodies will also be investigated.
Finally, as an example, the results for a fictitious, but

realistic, asteroid will be presented in a graphical format.
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@E? I1. Problem Dynamics

The problem to be solved is that of finding the motion
of a small satellite orbiting an asteroid. It is assumed
that the asteroid can be modeled as a triaxial ellipsoid,
rotating about its shortest axis with some angular velocity.
If the satellite mass 1is so small as to not effect the
motion of the asteroid, then it can be assumed that the
center of mass for the system is fixed in inertial space and
is located at the center of mass of the asteroid. Further,

the problem is restricted to asteroids in free space.

Equations of Motion

‘1. The equations of motion are to be numerically solved,
t so they are derived with this in mind. Most numerical
integration packages are written to solve first order
differential equations; therefore, the Hamilton canonical
equations are derived and used to describe the motion.
The first step in finding the equations of motion is to
form the Hamiltonian
where p; and éi are the generalized momenta and velocities,
respectively. The last term, L, denotes the Lagrangian,
defined simply as
o3 L=T-=-V (2-2)
o
3

RS A CUS O R C8 TR R R




Figure 2: Gravitational Potential

with T and V being the kinetic energy and potential energy
"" of the satellite. It is these two terms that must be

determined before the Hamiltonian can be assembled.

Potential Energy. The gravitational attraction of the

asteroid on the satellite provides the potential energy and
an expression for this can be found (4:431, 434-436).
Figure 2 shows the body-fixed (rotating) coordinate system
to be used for this calculation. From the figure, it is

clear this can be written in the integral form

v = -Gml[(dmz)/r (2-3)

where r = |R - Pp| 1is the distance shown in Figure 2 and G

is the Universal Gravitational constant.

....................
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The 1/r term in Eq. (2-3) can be written:

-1/2

= - 2
- - 2R - p p
TRt o | — - (—) (2-4)

If it is assumed that the asteroid dimensions are smaller
than the distance between the mass centers, then the right-

hand side can be expanded in a power series:

= = 2 = - 2
-1 -1 R-p 1 4p 312R = p ¢p
r = R 1+ - = (- + = - - + e e .
2 2 \R 8| R? R
(2-5)
“; Carrying out the algebra, this can be rewritten as:
2 - -
-1 -1 Reep 1 p 3R - 5?2 0
r = R =+ -— = o+ - + order " (2-6)
R 2 &3 2 R R

Using the body~fixed reference frame previously shown

in Figure 2 and applying the following definitions

p = X&, + yéy + 28,
R = R (lex + mey + nez) (2-7)

p = R (1Ix + my + nz)

21

where 1, m, and n are the appropriate direction cosines, Eq.

(2-6) can be substituted into Eq. (2-3) to yield an

A - ..‘ \' .'w I..‘n \"-.‘ -.f.‘\‘ . B ,"
" v (n L.Lu" PR RO .8
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expression for the potential. After ignoring the higher

order

terms and some simplification, this is written as:

-Gmy Gmy
V= -— dm_, - — {lx + my + nz) dm
R 2 R 2
- — [ 3 (1x + my +nz)2 - (x +y + 22) ] dm
(2-8)
The first integral is trivial:
-Gmy -Gmimp
- dm2 = (2-9)
R R

The second integral becomes zero when the origin of the

axis system is placed at the center of mass.

The final term of Eq. (2-8) can be expanded into

easily recognizable quantities:

Gmj
—_ [ 3(1x + my + ny)2 - (x2 + y2 + 22) ] dm2
2R3
Gmy
= —— (312 - l)'/x2 dm2 + (3m2 - 1)./‘3/2 dm2
2R3
2 2
+ (3n® - 1) z dm2 + 61lm Xy dm2
+ 61n/xz dm,, + 6mnfyz dm,, (2-10)
6
Tt e R P A P S A A A S AT & AT N NN
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This can be simplified by noting

2
fX dm2

1/2 f[(x2 +22) + (x2 + y%) - (y? + 22)] am,

1/2 (Iyy * I, v Iy

nyz dm, = 1/2./'[(x2 + y2) + (y2 + 22) - (x2 + 22)] dm,

i}
[
~
N

(IZZ * IXX + Iyy)

2
fz dmz

"
[
~
N
—
P

!

+

N
N

+

»
N

+

N
N
1
x
N
+
<
—
Q
3
N

1/2 (Igye * Iyy +1,,)

»x X

N <

Qu Q.

3 3
N N

| 1}

— —
x X
N <

(2-11)

<
N
Q.
3
N
[
(o]
<
N

where Ixx' are the mass moments of inertia and I

Iyy' I,, Xy’

I,,, are the mass products of inertia (4:435-436). 1If

Igze Yz

it is assumed that, in addition to originating at the center
of mass, the axes are arranged such that Ixx’ Iyy, and Izz

are principal moments of inertia, then IXy =1y, = Iyz = 0.
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Clearly, Eq. (2-8) can now be written as:

-Gm1m2 Gml

v = - [ (312 - 1) (1. + I - 1_.)
R 4R3 Yy 2z XX
2
+ (3m© - 1) (Iyye + I, - Iyy)
#0302 = 1) (I *+ Iyy = 155 ] (2-12a)

The body-fixed spherical coordinates shown in Figure 3
will prove to be more convenient, so Eg. (2-12a) 1is

rewritten

"Gmlmz Gml

2 2
vV = - [ (3cos™d cos™) - 1) (I + I - I_.)
R 4R3 Yy z2z XX
+ (3coszo sinzx - 1) (I + 1 - I,,)
XX zz Yy
+ (3sin%p = 1) (I, + I,y = I,,) ] (2-12b)

where R is the distance between the mass centers, is the

longitude measured from the x-axis, and is the latitude.

Kinetic Energy. The kinetic energy of the satellite is

simply

2

inert (2-13)

T = (1/2)mlv

where the inertial velocity of the satellite is given by:

vinert = vrel @ xR (2-14)

Bl Bl U MR D ndh

- - LD % Y S L P R LIPS R I N R Y S e )
A sy N s s s N



Figure 3: Polar Coordinates

;rel is the velocity relative to the asteroid, { is the

angular velocity of the asteroid, and R is the distance
between mass centers as was previously defined.
‘Using the spherical coordinates shown, Eq. (2-14)

becomes:

-~ -
[

Vinert = R® & * R[(A + Q) coso]ek + Rep (2-15)

Thus, the kinetic energy, T, becomes:

T = (1/2) my [R262 + R X*Sl)zcosz¢ + ﬁzl (2-16)

N T S A o S G A A A N S S S A S L A A VR S S LSO

AL 4 n'\-"..f W, RN
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.
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Having found expressions for the potential and kinetic
energy, the Lagrangian can now be formed. Substituting
Egs. (2-12b) and (2-16) into Egq. (2-2) results in the

following expression for the Lagrangian:

m Gm,m
1 . . . 172
L = — [ R2¢2 + RZ(A-FQ)zcoszo + R? ] o+
2 R
Gm
1 2 2
+ — [ (3cos® cos“i 1) (Iyy + Izz - Ixx)
4R
+ (3cosz¢ sinzx - 1) (I + I - I,,)
XX zz Yy
+ (3sin?p - 1) (Igy + I,y = I,,) ] (2-17a)

Since the mass of the satellite, my., is small and non-
zero, 1t 1is convenient to divide it out and work with
equations on a per unit mass basis. Thus, the Lagrangian is

rewritten as:

1 Gm
. . 2
L= - [ R29% + RP(A+Q)2cos% + R% ] +
2 R
G
2
+ 4—3 [ (3cos’e cosz)\ - 1) (Iyy + Izz - Ixx)
R
+ (3cosz¢ sinzx - 1) (I + I - I.,.)
XX zz vy
+ (3sin%p - 1) (I + I, = I,,) ] (2-17b)

10
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The last task before substituting into Eg. (2-1) to
find the Hamiltonian is to find expressions for the
generalized velocities, éi. This is easily accomplished by

using Lagrange's Equations

oL
2 2
P = — =R" (A+Q) cos
xR °
oL
P¢=—.-=R2¢
o9
oL .
P, = — = R (2-18)
R 3R
and rearranging to find:
P,
A= —2— -0
R2cos2¢
. P
0 -2
R2
. [
R = PR (2-19)

11

A

’

|

[

R I SR et gy o o e e - .. .y, ~ ~.\~j
g N G A R N SN R St S N N N R A A N A N GG A4 NG PRGN NN A A 2



The Lagrangian can be rewritten using Egs. (2-19):

2p2 2
1 R gp P

Gm)
L = — + R2 X cosz0 + Pﬁ +
2 R4 R2cos?e R
G
+ — [ (3cosz¢ coszx - 1) (I + I -1 )
AR3 vy zz XX
+ (3cos% siny, - 1) (Io. + I = I..)
XX zz Yy
+ (3sin% - 1) (I, + Iyy = Izp) ] (2-20)

Finally, Egs. (2-19) and (2-20) can be substituted into

Eq. (2-1) to yield the Hamiltonian:

2 2 2

P P P Gm

H = LA A + R_O2 . Q Py

2R2  2R2cos?¢ 2 R

G 2 2
- ;;3 [ (3cos® cos™a - 1) (Iyy + Izz - Ixx)
+ (3cos?e sin?y - 1) (I, + I,, = I,

. 2 - -

+(3sin% - 1) (I + Iy = I,) ] (2-21)

Recalling Hamiltonian mechanics and taking the appro-

priate partial derivatives, Hamilton's canonical equations

of motion can be found:

AN _s-.:.‘_'.". PR SANRE
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. Pb
*, ¢ = — (2-22b)
'fbh R2
R = Pp (2-22¢)

‘ . 2 .
3 PA = 3 (1 - Iyy) cos @ COsA sini (2-224)

2 .
"PA sine 3G

. 2 2
P, = - [ (cos™» = sin ) (I -1 )
® R cos’p 2R3 Yy XX
L
+ (21 -1 - I1_) ] cose sineg (2-22e)

zz XX vy

) L 2
Y P = 22 -T2 [ (3cos¢ coszx - 1) (I + I -1 )
: R R 4R vy zz XX
y
' + (3cos%sinA - 1) (I + 1. -1 )

XX zz Yy
A + (3sin2¢ - 1) (1 + 1 - I1_)]
‘ XX Yy zz

2 g2
, . (2-22f)
R cos™

Method of Solution

The problem to be tackled next is that of integrating

. the equations of motion to find orbits that are periodic in

. £§} time. This 1is done by choosing the initial conditions that

]

L]

, 13
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will cause the orbit to return to the same point with the
same velocity after the given period. A priori, one does
not know these initial conditions, so a method must be
derived to find them.

One logical method to go about finding these proper

initial conditions is outlined as follows:

1) Select an orbital period.

2) Guess a set of initial conditions.

3) Integrate the equations of motion.

4) If the orbit does not return to the same starting
point with the same velocity, then vary the

initial conditions and repeat step 3.

Step 1 is simply a matter of choice. For Step 2,
simple circular orbital motion is assumed to give a fairly
good first guess at the initial conditions. The integration
in Step 3 is to be performed by Haming, a fourth-order
predictor-corrector algorithm (6). Thus, the problem is
reduced to finding an efficient means of completing Step 4.

If the coordinates and momenta are assembled into the
vector Q(t), then a general equation of motion can be

written:

'1'. . \.P.f CAVAY \*'.f'-.“\}\';-'\ ST AS AT EIRTA LT NN \I\{‘N ‘.'_\“.\ Iy

N N



q&; Assuming that a reference solution, io(t), has been found, a

nearby orbit can be defined as

X = Xg(t) + 6%(t) (2-24)

where 6x(t) 1is a small displacement in the reference
orbit. To a first order approximation, 6X(t) can be shown

to be related to a displacement at t = t; by

X(t) = @(t,t)) 6X(t;) (2-25)
j dx(t)
Where ®(t,ty) = —0/— is the state transition
ax(ty) | _
X, (t)

4 matrix (6:128-129). It can also be shown that the state
'{; transition matrix can be found by solving the differential

| equation

\ B(t,t)) = A(c) &(t,t)) (2-26)

with the boundary condition that Q(tl,tl) = I, the identity

matrix (6:130-131). A(t) is the variational matrix and is

defined as:

. A(t) = — (2-27)

(For reference, the 1individual terms of the matrix are

listed in Appendix B.) Note that, since A(t) is evaluated

15
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along the reference orbit, Eg. (2-26) can be integrated

concurrently with the integration of Eg. (2-23).

Now that a reference orbit and the state transition
matrix have been found, it remains to use this information
to efficiently vary the initial conditions to produce a
closed orbit (Step 4). This is a relatively simple proce-
dure and will now be derived.

Figure 4 shows three typical orbits starting at A= ®/2
and continuing ror one-half pericd. If these are truly
periodic orbits, then there are certain conditions that must

hold due to symmetry. These are clearly

'A(tz) = | l(tl) + nnw ]
R2¢p = Py (ty) = =Py (tg) (2-28)
R = Pglt,) = Pglty) = 0

where Alty) = W/2. These can be arranged and placed in a
vector:
—
Alty) - 0 Alty) + n¥ ]
G = P¢(t2, + P¢(t1) =0 (2-29)
PR(tZ) - PR(tl) _J

If this vector, 5, is evaluated on a reference path, io(t),
that is not a closed orbit- then 1t will not be equal to
zero; instead, it will be equal to some error, €. (If it is

nearly closed, € will be small.)
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Figure 4: Typical Orbits

For orbits varied slightly from the reference orbit,
an expansion of G about the reference orbit can be written.

To a first order approximation, this is (5:6):

aG
xo(tZ)
(2-30a)

More conveniently, this is written as

2
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»

G [i(tz), t,] 2 G [io(tz), t,] + B ai(tz) (2-30b)

3G
where B = — and can be easily be shown to be:
ox

B = 0 0 o 0 1 O (2-31)

Recall that on the reference path:

G [xo(tz), t2] = e (2=-32)
And, 1f the varied orbit is a closed orbit, then:

G [x(tz), t2] =0 (2-33)

Thus, after substituting Egs. (2-32) and (2-33) into
Egq. (2-30b):

B 6X(ty) = -& (2-34)

Recall that the problem is to find the variation
at t = t, that makes the varied orbit a closed orbit.

Eq. (2-21) relates variations at t = t, to variations at

(ad
1]

t;. Thus, Eq. (2-34) can be written:

B 8§x(ty) = B &(t,,t)) 6x(ty) = -e (2-35)

18
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iﬁ& The product B ¢(t2,t1) is a 3 x 6 matrix, so it cannot
q simply be inverted to find éi(tl). However, examining this

product in more detail reveals:

P —
SA(t;)

59(t;)

] SR(ty)
B #(ty,ty) 6X(ty) = B d(ty,tq) 6P, (t;) (2-36)
8By (t)

6Pp(tg)

—

Recalling Egs. (2-28), the initial conditions A(tq),

) P¢(t1), and PR(tl) were set and not allowed to vary; there-
‘t; fore, their corresponding variations at t = t; are zero.
This allows the first, fifth, and sixth columns of the

product to be eliminated from consideration:

SA(t)
(B &#(ty,ty) 6X(ty)]o34 = [B @(ty,t1)]534 60 (tq)

GPA(tl)

(2-37)

Using this reduced form, Eq. (2-35) can now be written:

——6A ]
(t)) [
(B @(tz,tl)]234 5¢(t1) = -€53,4 -[G[X(tz),t211234 g
~ ka(tl)
R - 12-38) )
19

B AR M A~ B R . et a R g Ny e . - IPEPE TS SIS L IS FET% A S % M ] . ) P ERWED LV
L} ..t..h.' 't -b‘- .’1.‘. vv.. ."~\ .'f\l .V\J'w £’ %, ,,‘l ‘. " ety 3 8,90, % ¢, %0, %4, %0, . ' * ¢



Ra gl ¥, A%, DY B' UL -Bin SFe Sl - Ale Rte B o thle A e Ala. Ble Rie AL Ste X u—‘».-'w']

The reduced product is a square matrix and can ke inverted

to solve for 6§(t1):

= —
sA(t])
so(t)) | = -[B&(t,,t)153, (BIR(t,),t,)0),,,  (2-39)
5PK(tl)

L —

Using this solution in Eq. (2-24), the initial
conditions can be corrected. Note that, since first order
approximations have been made at various steps, this
correction may not result in a closed orbit. However, if
the initial reference orbit is close enough, then the
correction will produce a solution that is closer to a
closed orbit. Thus, simple iteration is all that is needed
to complete Step 4.

For reference in later chapters, it is important to
note that the G vector is all that determines the type of
orbit that will be found. The value of n will determine if
it is a minor or a major orbit. (Figure 4 shows the result
of this selection.) The choice of Po(tl) determines the
inclination of the orbit. [Selecting Pb(tl) = 0 results in

equatorial orbits.]

Stability of Orbits

Once a periodic orbit has been found, it is useful to
know if it is stable. Since this is a Floquet problem, the

condition necessary to determine stability is well

20
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@ documented (4:264-270; 6:143-148). For this reason the
criterion for stability will be stated and used here without
proof.

The stability of the orbit is governed by the character
of the Poincare' exponents, Ai' as defined by the

determinant

| @l(t; + 7),t,] - exp(ay7) I | =0 (2-40)

where T is the period of the orbit (6:144). Note that the
terms a, = exp(xif) are simply the eigenvalues of
Q[(tl+ T),tl] and that the Poincare' exponents are given

by:
‘é' A= (1/1) loge(ai) (2-41)

If the orbit is stable, then the Ai's must all be purely
imaginary (4:268; 6:142).

Notice that, after integrating Egs. (2-23) and (2-26)
for an entire orbit, @[(t1 + T),t1] has been found.
Thus, it is a relatively minor addition to calculate the
Poincare' exponents and, therefore, determine the stability

of the orbit.

Verification and Error Detection

Long derivations and the use of a computer invite the
introduction of errors. With this in mind, two tests were

used help verify that the results were accurate.

21
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Equation Verification. A simple method can be derived

to simultaneously verify that both the equations of motion,
f, and the variation matrix, A(t), have been entered into
the computer correctly. This is done by recalling the

definition:

A(t) = — (2-42)

Each term of A(t) can be be approximated by

afi fi[(xj "‘ij):t] - fi[(xj 'ij)'t]

a.. = : (2-43)
1] ) .
axJ 2 AxJ
where .ij is a sufficiently small number.
Thus, for any point, the terms a.. can be calculated

1]
exactly using the equations in Appendix B and approximately
by using Eq. (2-39). If the values do not approach the same
limit as ij
equations of motion or in the variation matrix. (It was

gets small, then an error exists in either the

found that a typical error resulted in differences of at
least 25%.) This method of numerical differentiation was
used in verifying the program used to generate the results
in this paper.

Dynamics Verification 1If, during the numerical inte-

gration, the orbit passes too close to a singularity in the
equations of motion, it is possible that the path will cease

to be realistic. "Too close" is an ambiguous limitation on

22
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@ the problem, so it would be useful if some way could be

found to detect when it occurs. Fortunately, there is a

; simple method to detect when this (or any other unforeseen

. anomaly) causes the integration of the problem dynamics to
break down.

Since the Hamiltonian is not a function of time for

-

this problem, it is a constant for all points on any given
K orbit. Thus, if the Hamiltonian changes suddenly from one
point to the next along the path, it is very probable that
the limitations on the dynamics have been exceeded. This

) simple check was performed automatically at each integration

' point.

T Y
&
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I1I. Equilibrium Points

The equilibrium points will prove to be important
starting points in the computation of orbits. Thus, it is
advantageous to solve for them first. The procedure for

doing this is simple and yields a closed-form solution.

Locations in State Space

Equilibrium points, by definition, are points in state
space from which the satellite will not move if it is placed
exactly there. 1In equation form, this condition can be

written:

Xhe
"
(@]]

(3-1)

Referring to Egs. (2~22), it is clear that a system of six

equations in six unknowns 1s produced:

P
A
2 - Q = o (3'2&)
R cos'¢
E& = 0 {3-2b)
R2
PR = 0 (3-2c)
3G 5
3 (1 - 1 ) cos ® cosi sinAk =0 (3-24)
R XX Yy




2 .
-Py sing 3G

2 .2
> 3 [ (cosa - sinx) (I

3 -1 )
R™ cos’¢ 2R Yy xx

+ (21zz -1 - Iyy) ] cose sing =

-2 ( (3cos% COSZA - 1) (I
4R Yy

+ (3c052¢sin2A -1 ) (I

XX

(3sin%o - 1) (1 +

XX

P}
_t — =0
R3cos2¢ R3

After some simple manipulation, the system

reduced to give the following set of points:

The terms Rl and R2

represent all of the physically

realistic roc.s of the two equations

that result from

P ™ T ™ ™ TSNy ~ " .
.'.u“~ U N e S WAL K A0 M N 5 0 WY POV ¢
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substituting the values for i, ¢'E3’ and Pp along with the

expression for Py into Eq. (3-2f). These equations are:

. , 36
R} - Gm,RZ - — (1, * Iy, = 2L,) =0 (3-4a)
5 » 36
R) - Gm,R’ - — (I, *+ Lo = 21,0 = 0 (3~4b)

Note that the number of equilibrium points depends on
the number of physically realistic roots of Eqgqs. (3-4).
Unfortunately, it is impossible, by simple inspection, to
determine a general rule regarding the number of the
realistic roots. For this reason, seven actual asteroid-
like bodies were examined. The results were then analyzed
to see what, if any, conclusions could be drawn about the
typical nature of the roots and, therefore, the radii of the
equilibrium points. [For reference, the approximate dimen-
sions, mass, and rotation rate used for each of these bodies
are given in Table I (1:10; 2:138; 7:452).]

These calculations did, indeed, reveal information
about the general nature of the roots. Since every body
examined exhibited the same trends, it can be concluded that
the results from these calculations are typical of realistic

asteroids. Thus, the following generalities can be made:

26
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Eq. (3-4a) has only one real root. This root, Ry,
has a magnitude that represents a radius slightly
greater than that required for a synchronous orbit

about an equivalent spherical body.

2. Eq. (3-4b) has three real roots. Two of these
roots represent radii so small as to be inside the
body; therefore, there is only one realistic root,
R,, for this equation also. R, has a magnitude
slightly less than that required for a synchronous
orbit about an equivalent spherical body.

3. Because Egs. (3-4) have only one realistic root
each, there are exactly four equilibrium points

‘-; given by Egs. (3-3).
Table 1I: Typical Asteroid Data
Axes Lengths
Name a (km) b (km) c (km) Q (rad/s) Mass (kg)
Hebe 114.0 92.0 92.0 2.39 x 10”% 1.15 x 1019
Hektor 170.0 63.9 56.5 2.53 x 10”4 7.33 x 1018
Juno 137.0 112.0 112.0 2.42 x 10°% 2.05 x 1012
Nysa 40.9 27.1 23.0  2.73 x 1074 3.04 x 1017
Pallas 311.0  272.0 272.0 2.21 x 1074 2.75 x 1020
Psyche 142.0  107.0 84.9 4.06 x 10°% 1.54 x 1019
ard Phobos 13.3 11.0 9.2 2.28 x 10°%  1.61 x 1018
e
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Stability of Equilibrium Points

An equilibrium point is stable if the eigenvalues of
the variation matrix, A, are all purely imaginary (4:222;

6:138-140). The eigenvalues calculated using:

| A - a1 ] =0 (3-5)

where A 1is evaluated at the equilibrium point in question
and the Ai's are the eigenvalues at that point.

It would be extremely difficult to find a general
solution for the eigenvalues in Eq. (3-5). Fortunately, it
is not necessary to find a general solution to determine the
stability of the points. This is because the equilibrium
points for the bodies in Table I were substituted into
Eg. (3-5) and, once again, all seven examples yielded the
same results. These results, with reasonable certainty, can
be considered to be general for typical asteroids and are

stated as follows:

1. The points at A= 0 and A=®x are unstable
equilibrium points. These points are described

completely by Eq. (3-3a) and Eq. (3-3c).

2. The points at A= mw/2 and A= (3mx)/2 are
stable equilibrium points. These points are

described completely by Eg. (3-3b) and Eg. (3-3d).
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Example Asteroid Calculations

G&' As an example, the equilibrium points for the ficti-
tious asteroid of Appendix A were calculated and checked for
stability. The results of these calculations are summarized
in the following sections.

Equilibrium Point Results. The first step in calcu-

lating these points was to find to roots of Egs. (3-4).
These roots, as well as R; and R,, are listed in Table II

and Table III, respectively. (Note that the roots follow

Table II: Roots of Eq. (4-3a) for Example Asteroid

(-5.113402188516e-01)

+

( 8.484056878152e-01)1

(=5.113402188516e-01)

+

(-8.484056878152e-01)1i

§ ( 1.850707134977e~03)

+

( 2.466559517092e-01)1
( 1.850707134977e-03) + (-2.466559517092e-01)1i

(1.018979023433e+00) + ( 0.000000000000e+00)1

Ry = 1.018979023433 LU

Table III: Roots of Zg. (4-3b) for Example Asteroid

(-4.953656785376e-01)

+

( 8.741840563661e-01)1
(-4.953656785376e-01) + (-8.741840563661e-01)1

(-1.694701567977e-01)

+

( 0.000000000000e+00)1
( 1.703036684758e-01) + ( 0.000000000000e+00)1
( 9.898978453971e-01) + ( 0.G00000000000e+00)1

R, = 0.9898978453971 LU

%)

v
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R the generalities stated on page 27.) Using these values for
R, and R,, the equilibrium points were found with Egs. (3-3)
and are shown in Table 1IV.

Stability Results. The final conclusions cf the sta-

bility calculations are given in Table IV. While the deter-
mination of stability was the main goal of solving the
eigenvalue problem, it 1is 1interesting to note the
information that can be obtained from the actual solutions
for the stable equilibrium points.

N The magnitudes of the eigenvalues give frequencies at
which to start searching for oscillatory orbits near these

points, while the eigenvectors give information about the

Table IV: Equilibrium Points for Example Asteroid

Point A ® R Py B Pg Stability
1 0 0 Rl PAl 0 0 Unstable
T
- 0 R
: 2 3 2 P>‘2 0 0 Stable
J
: 3 0 Rl le 0 0 Unstable
3T
4 - 0 R2 sz 0 0 Stable
, R1 = 1.018979023433 LU le = 1.0386121930138 LU2/TU
1)
Ry = 0.989897843297 LU P)\2 = 0.9801751485797 LU2/TU
s
: '_-.:s‘
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initial perturbation in direction and momenta from these

points (6:140-141). [In later computations of oscillatory

(minor) orbits, it was found that the eigenvalues and

eigenvectors were of little use other than the determination

of stability.]

The eigenvalues and eigenvectors are

listed .n Table V for reference.

Table V: Eigenvalues and Eigenvectors at Stable
Equilibrium Points
A1,2 = (20.4960063637745e+00) i
7t0.9391331508767e+00) + 0.0000000000000e+00r;
( 0.0000000000000e+00) + ( 0.0000000000000e+00)1i
_ ( 0.0000000000000e+00) + (X0.2894518434642e+00)1i
E1’2 ) ( 0.0000000000000e+00) + (%20.1167656750469e+00) i
( 0.0000000000000e+00) + ( 0.0000000000000e+00)1
d:0.1435699563645e+00) + 0°00000000000006+00L£
A3,4 = (X0.8673722342857e+00)1
7j0.8799966095281e+00) + 0.0000000000000e+00;;
( 0.0000000000000e+00) + ( 0.0000000000000e+00)1i
_ ( 0.0000000000000e+00) + (X0.3953216071260e+00)1i
E3'4 ) ( 0.0000000000000e+00) + (X0.6043478055486e~-01)1
( 0.0000000000000e+00) + ( 0.0000000000000e+00)1i .
d:0.3428909856343e+00) + 0'00000000000006+00Li. 1

N ' ‘.vl '¢ ‘t‘ ' .

(Table continued on next page.)
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Table V (Continued):

5,6 -

h5,6 = (¥1.001386855817e+00)1

7-0.0000000000000e+00)
(-0.7137642827302e+00)
( 0.0000000000000e+00)
( 0.0000000000000e+00)
( 0.0000000000000e+00)

( 0.0000000000000e+00)

+

+

+

+

( 0.0000000000000e+00) 1
( 0.0000000000000e+00)1i
( 0.0000000000000e+00) 1
( 0.0000000000000e+00)1
(X0.7003859997878e+00) i

( 0.0000000000000e+00) 1
—

.-
.‘ I
22
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IV. Minor Orbits

Minor orbits are those orbits that are merely oscilla-
tions about the stable equilibrium points. This chapter
will present minor orbits that lie in the equatorial plane
for the example asteroid described in Appendix A. Note that,
since the orbits about the two equilibrium points are simply
mirror images of each other, it is only necessary to solve
for the orbits about one point. For convenience, the point
at A= ®/2 was used.

As shown in Chapter I1I, the G vector determines the

characteristics of the orbit that will be found by the
numerical method. 1If the integration is to be started at
A =%/2, the G vector is:

— —

x(tz) - (w/2)

G = P¢(t2) (4-1)

L_ PR(tz)

Using this G vector, minor orbits can be found using the

equations and methods derived in Chapter II.

Orbits were found very near these equilibrium points.
A typical example of this family of orbits is shown in
Figure 5. The initial conditions are plotted against the
frequencies of these orbits in Figures 6 and 7. Note that
below a frequency of approximately .47 rad/TU, the orbits

became unstable.
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Figure 5: Typical Minor Orbit Near Equilibrium Point
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Figure 7: 1Initial Py -vs-= Frequency

Another family of stable orbits was found starting at a
frequency of approximately .44 rad/TU. A typical example of
this family is shown in Figure 8. Radii and momenta data
are given in Figures 9 and 10, respectively. Note that the
orbits of this family become unstable near a frequency
of .395 rad/TuU.

No other families of stable orbits wer2 found. There
were, however, other interesting orbits computed. Examples
of a few of these are shown in Figures 11 - 1. 1ilong with
the initial conditions of R and P, used to compute them.
(In all cases, this radius is the maximum radius at which
the orbit crosses perpendicular to the y-axis.) Table VI

summarizes all of the minor orbits found.
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Figure 8: Typical Minor Orbit Near f = .44 Rad/TU
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Figure 9: 1Initial Radius -vs- Frequency
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Figure 11: = .441 Rad/TU, R = 0.9004120106766 LU,

£
P, = 0.7992199550355 LU2/TU
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Figure 12: £ = .321 Rad/TU, R = 1.019464633106 LU,
P, = 0.8960785897863 LUZ2/TU

Figure 13

= .305 Rad/TU, R = 1.239528500246 LU,

£
P, 0.9255337942752 LU2/TU

o

4%
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Figure 14: f = ,290 Rad/TU, R = 1.354845715264 LU,
P, = 1.117080805423 LU2/TU
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Table VI:

Summary of Minor Orbits Computed

AN -l»’-.:-";'-\’5"{~{\(E~(ﬂ‘ff“(

f R PA Stability
(Rad/TU) (LU) (LU2/TU)
0.490 1.039041236844 1.000867256234 stable
0.480 1.062624482299 1.012978217714 stable
0.470 1.067382477069 1.019509104377 stable
0.460 1.046834141438 1.019299715560 unstable
0.450 0.986160355569 1.005650561067 unstable
0.449 0.977985586688 1.003324500188 unstable
0.441 0.900412010677 0.977219955036 unstable
0.440 0.888168589907 0.972473210712 unstable
0.440 1.238387157667 1.056690380877 stable
0.435 1.082095823329 0.991288299428 stable
0.435 1.227741787424 1.059177135627 stable
0.430 1.222281650472 1.061495283471 stable
0.425 1.219455010081 1.063773482440 stable
0.420 1.218033152644 1.066023461238 stable
0.415 1.217344653087 1.068234383201 stable
0.410 1.216985353084 1.070392195973 stable
0.405 1.216688740817 1.072483329113 stable
0.400 1.216261042734 1.074494680583 stable
0.395 1.215545133971 1.076412660583 stable
0.394 1.215354721541 1.076783747396 unstable

(Table continued on next page)
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Table VI (Continued):

f R Px Stability
(Rad/TU) (LU) (LU2/TU)
0.392 1.214917630362 1.077512354812 unstable
0.390 1.214397843252 1.078221895716 unstable
0.360 1.187912621470 1.085107385175 unstable
0.340 1.117341867891 1.077631737758 unstable
0.330 1.038614678848 1.059840481020 unstable
0.325 0.984840557323 1.044125555788 unstable
0.321 1.019464633106 0.896078589786 unstable
0.320 1.029113207899 0.897003545851 unstable
0.319 1.039006180956 0.897988374479 unstable
0.315 1.081426148767 0.902665051849 unstable
0.310 1.130850261552 0.909059307428 unstable
0.307 1.195416827916 0.918602755456 unstable
0.305 1.239528500246 0.925533794275 unstable
0.302 1.350055576137 0.942682054990 unstable
0.300 1.390296759434 1.113911631307 stable
0.290 1.354845715264 1.117080805423 stable
0.280 1.326851733481 1.118784303008 unstable
0.270 1.296053037078 1.119238555695 unstable
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V. Major Orbits

Major orbits are those orbits that completely encircle
the body. This chapter will present major orbits that lie
in the equatorial plane for the example asteroid.

Unlike with the minor orbits, there is not just one G
vector for the major orbits. The reason for this becomes
clear when it is noted that the period of these orbits is
actually the synodic period as defined as

2w

z —_— (5-1)

Psyn
Y e - £ |

where § 1is the rotational frequency of the asteroid and f
is the frequency of the orbit. When f > Q, the satellite
"outruns" the asteroid, implying that the mean radius the
orbit 1is 1inside the radius for synchronous orbit.
Similarly, f < @ implies that the mean radius lies outside
the synchronous radius.

Thus, referring back to Figure 3 the G vector for each
case can be easily assembled. If the integration is to be

started at A =m/2, then these vectors are:

prem— ety
X(tz) - (3m/2)
G = P¢(t2) for £ > Q (5-2a)
PR(tz)
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| @ Aty + (w/2)

G = Py (t,) for £ < Q (5~2b)

P, (t

r ()

Using these G vectors and the method of solution
derived in Chapter 11, a wide range of major orbits were
found. Due to numerical instability, solutions could not be
found in the range .6 < f < 1.45 rad/TU. However, outside
this range, orbits were computed and are presented in the

following sections.

Major Orbits With f > Q

The orbits with a frequency greater than exhibited
*-ﬁ several interesting characteristics. The first is that they
4

were all stable orbits. The second characteristic is the

fact that the patns change shapes considerably over the

range of frequencies. Because of this second character-

istic, these orbits are grouped by frequency for
presentation.

5.2 > f > 1.97 Rad/TU. An orbit with a frequency of

approximately 5.2 rad/TU just clears the asteroid, so this

is upper limit on the frequencies investigated. This orbit
is shown in Figure 15 Figqures 16 - 18 show the development
of the family of orbits as the frequency decreases (and the
radius increases). At a frequency of about 2.1 rad/TU, the
orbits begin to rapidly change 1in appearance.

i?; Figures 19 - 23 show this trend. Note that in going from a
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frequency of 5.2 rad/TU to 1.97 rad/TU, the orbits went

2
20

from being elongated along the x-axis to being elongated

along the y=-axis.

1.97 > £ > 1.70 Rad/TU. No physically realistic orbits

could be found in this range. All orbits found had a shape
similar to that of f = 1.97 rad/TU, with a radius at A =1n

so small as to cut into the body.

Figure 15: f = 5.2 Rad/TU, R = 0.3285791620856 LU,

P, = 0.5223527976000 LUZ2/TU -

Figure 16: f = 4.5 Rad/TU, R = 0.3660469358352 LU,
e P, = 0.5586415882509 LU2/TU
e
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Figure 17: f

5 Rad/TU, R = 0.4368881991385 LU,

= 3.
P, = 0.6178884298666 LUZ2/TU

Figure 18: f = 2,2 Rad/TU, R = 0.6577526393746 LU,
0

P .7272907495521 LU2/TU

A
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Figure 19:

f = 2.1 Rad/TU, R = 0.7244296006906 LU,
P
A

0.7315590587046 LU2/TU

Figure 20:

op---v-’

1y, 3
AL YA ‘u’l‘-‘."- (AN AL, Uity i) .

f = 2,05 Rad/TU, R = 0.7816397303163 LU,

P

A

0.7267807751077 LU2/TU
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Figure 21: f = 2.02 Rad/TU, R = 0.8294374811680 LU,

- . g

e o “aC ey

“ P, = 0.7182213754289 LUZ/TU
o Figure 22: £ = 2.00 Rad/TU, R = 0.8676722280846 LU,
-..%.- P, = 0.7089389646567 LU2/TU
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Figure 23: f = 1.97 Rad/TU, R = 0.9325366690062 LU,
ﬁ P, = 0.6892195230246 LUZ2/TU

1.70 > £ > 1.45 Rad/TU. In this range, the orbits take

on a simple elliptical shape, as shown in Figures 24 and 25. F
It is interesting to note that these orbits are, once again,

elongated along the x-axis.

1.45 > £ > Q Rad/TU. Due to these orbits passing close

to the stable equilibrium points, the numerical method used
became unstable. Instead of converging on a solution, the
iteration scheme diverged. This was most likely due to a
singularity in the state transition matrix caused by two or
more very close solutions. As a result, no orbits in this

o range were found.
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Figure 24: £ = 1,70 Rad/TU, R = 0.5775263323319 LU,
Py, = 0.7793806659997 LU2/TU

Figure 25: f

% >

5 Rad/TU, R = 0.6914873259638 LU,

1.4
= 0.8237375426793 LU2/TU
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Major Orbits With f < @

Unlike the inner orbits, these have almost no variation
in shape with frequency. All but one orbit (f = .5 rad/sec)
computed was stable.

Q > £ > 0.6 Rad/TU. Once again, attempted ;omputation

of orbits close to the synchronous radius caused the
numerical method to become unstable and diverge. Thus, no
closed paths in this range were found.

0.6 > £ Rad/TU. As the frequency decreases (and the
radius increases), these paths quickly lose their elongation
and become almost perfectly circular. This is shown in
Figures 26 and 27. It is interesting to note that the only

unstable major orbit found occurred at £ = 0.5 rad/TU.

Figure 26: f = 0.6 Rad/TU, R = 1.328869494267 LU,
P, = 1.198300228534 LUZ/TU
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Remarks on Major Orbits

Figures 28 and 29 graphically summarize all of the
major orbits computed in this study. These computations
reveal several interesting features of the major orbits.

These are:

1.

Figure 27: f = 0.5 Rad/TU, R = 1.574940235844 LU,

P, = 1.271992801430 LUZ/TU

No physically realistic major with frequencies in

the range 1.97 > £ > 1.70 rad/TU were found.

Interesting phenomena occur near frequencies of

2.0 92, R, and 0.5Q rad/TU. At frequencies very

51




close to f = 2.,0Q rad/TU, the orbits begin to
rapidly change their shape. (See Figures 22 - 25.)
Near £ = @ rad/TU, the method of solution became

unstable and diverged. The only unstable major

orbit found was at a frequency very close to

f = 0.5Q rad/TU.

At frequencies lower than f = .4 rad/TU, the orbits
are essentially circular. Below this, the

satellite behaves as if the asteroid were a

spherical body.
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Conclusion and Recommendations

The key results of this study have been stated in each
chapter already, so they will not be repeated in detail
here. To summarize the results, each step of the problem
solution will be looked at from the aspect of possible

future research.

Dynamics and Method of Solution

The equations of motions were derived using a truncated
power series expansion for the gravity potential. A future
study could retain more terms in the series, but this is not
recommended. The inaccuracy introduced by ignoring surface
features (craters, etc.) and assuming a triaxial shape for
the asteroid is probably greater than that due to the trun-
cated terms.

If major orbits near the synchronous radius are to be
investigated in future studies, another method of solution
needs to be found. Instead of setting a period and iter-
ating on ®, R, and PA’ it might be advantageous to set R

and iterate on 9, PA' and the period.

Equilibrium Points

The equilibrium points were fully investigated. No

further study is recommended.
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Minor Orbits

The study of the minor orbits produced a host of
seemingly unrelated paths. These orbits should be
investigated in more depth to see if any relationships can
be found. Additionally, inclined orbits should be

investigated.

Major Orbits

If a new method cf solution that remains stable near
the synchronous radius is developed, then the major orbits
in this region should be investigated. Once again, inclined

orbits should also be investigated.

Related Problem for Study

An interesting extention of this research would be to
include the gravitational effects of a nearby planet. Thus,
orbits about such bodies as Phobos and Deimos (Martian

moons) could be investigated.

Conclusion

This study found the governing equations for the motion
of a small satellite about a rotating asteroid. Methods
were then employed to solve these in such a way as to find
the equilibrium points, minor orbits about the stable equi-
librium points, and major orbits for a fictitious asteroid.
All orbits found were in the equatorial plane of the

asteroid.
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Appendix A: Fictitious Asteroid Characteristics

Any real asteroid could have been selected to use as an
example, but Hektor was originally selected due to the fact
that it is one of the more ellipsoidal bodies. It was
found, however, that by using a slower rotation rate, the
dynamics produced more extreme behavior., For this reason,
a fictitious asteroid was invented with the dimensions of
Hektor and a slower rotation rate. The physical character-

istics of this body are given in Table VII.

Table VII: Fictitious Asteroid Data (Standard Units)

a (km) b (km) c (km) Q (rad/s) Mass (kg)

170.0 63.9 56.5 2xx 100  7.33 x 1018

For numerical reasons, it is desirable to convert to a
canonical system of units that allows the integration to be
performed with numbers of approximately the same order of
magnitude. Appropriate length units (LUs), time units
(TUs), and mass units (MUs) can easily be fcund to accom-
plish this. If one length unit is defined as the radius of
a synchronous circular orbit about an equivalent spherical

body and if it is desired to set Gm, =1 LU3/TUZ, then the
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following conversion factors for length, time, and mass

units can be found:

1 LU = 467.8 km

1 TU = 1.592 x 104 sec (A-1)

1 MU = 7.33 x 1018 kg

After converting the the values in Table VII to these
units, the moments of inertia can also be calculated. The
physical data in these new units are given in Table VIII.
These values were considered to be exact and were used in

all of the example calculations.

Table VIII: Fictitious Asteroid Data {Canonical Units)

0.341 LU

a

b 0.128 LU

0.113 LU

C

= -3 2.
Iyx = 5.86 x 10 LU~ MU

= ~2 2.
Iyy = 2.58 x 10 LU“*MU

- -2 1y2.
I,, = 2.65 x 1072 LU?-MU

Q
n

.3184m rad/TU

(%)
]

1 MU-LU3/TU2
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@ Appendix B: Variational Matrix
Terms of A Matrix:
a _ 0 a _ 2PA81n¢ a - -2PA
11 12 R2c053¢ 13 R3cosz¢
1
a z — a =0 a =0
14 R2c052¢ 15 16
-2P¢
21 = 0 322 7 ° %23 T 43
1
= = — = 0
a0 = 0 %25 T 22 %26
a3l=0 a32=0 a33=0
azg = 0 azg = 0 azg = 1
3G
2 2 2
a = —3- (I -1 ) (cos ) - sin A) cos o
41 R XX Yy
6G
= == (I - i A sinA
@ a42 R3 ( vy Ixx) cosp sineg cosA sin
59




9G 2
a = — (I - i
43 R4 { vy Ixx) cos ® COSA sinA
a44 = (
345 = 0
a46 = 0
6G
ag, = ;5 (Iyy - Ixx) Cos¢ sing cosA sinA
-p2 2.:im2
e; X 3PA31n (' 3G 2 2
ag, = 5 > T Yo 3 { (cos™A - sin A) (I -~ 1
R™ cos®e R%cos ¢ 2R Yy XX
¢« (21, - 1,, - I.,) ] (cos% - sin®e)
z2 XX Yy
2p?sing  9G 5 )
agy = 3 3t 2 { (cos"A = sinA) (I -1 )
R cos ¢ 2R YY XX
+ (21,, - Iy = Iyy) ] cose sing
. . 23\51n¢
54 chos3¢
a55 =0
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Py |

9G 2
aGl = F (Iyy - Ixx) COSA SinA cos ¢
2p2sing  9G 5 5
a = 3 - 4[(I - I ) (sinA = cos'A)
62 plcosdy 2R Yy XX
(I, Iyy - ZIZZ) ] cose sing
a = + — (3cos ¢ cos A - 1) (I + I -1 )
63 r3 R Yy zz XX
+ (3cos?g sin?\ - 1) (I, + I, - I..)
XX z2z YY
+ (3sin2¢ = 1) (Iyy + Iyy -1,,) ]
2 2
) 3PA A 3P¢
R4cos?‘o R4
64 R3cos ("]
. B
65 R3
a66 = 0
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