D-A179 384

~nQ
W
(3
o
&
X

m
:
L]
:
&
m
;

>
~
)
Lad
=t
=
L
=
=
[
E

GHT-PATTERS

W

3

o

] -!H‘ I

3
- -—-‘1‘ i

FFTEERE

EFEE

FEEF

1" “ Ee g
= j8 *

il ;
1.25

s e

=

Moo e o L g e

W

A AR, (5 5 5 ST LR O LG Ll Bk 8 SO0 10 1 A0 N ¢

afi\)

[3

bt

gTié FILE COPY

AD~-A179 384

PERFORMANCE EVALUATION OF PARALLEL BRANCH

4

AND BOUND SEARCH WITH THE INTEL iPSC
HYPERCUBE COMPUTER

THESIS

Richard T. Mraz
Captain, USAF

AFIT/GCE/ENG/86D-2 .

-

DISTRIBUTION STATEZH=NT A

Approved for public release: l
Distribution Unlimited '

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

D e i P

Wright-Patterson Air Force Base, Ohio

o

’ N
|
DTIC
ELECTE
APR1'719_87 ‘
D
16 042

5 Y8

[Pl e = - oy

[yt

LR~y

‘ﬁ.@ AFIT/GCE/ENG/86D-2

v
PERFORMANCE EVALUATION OF PARALLEL BRANCH
AND BOUND SEARCH WITH THE INTEL iPSC
HYPERCUBE COMPUTER

THESIS

Richard T. Mraz
Captain, USAF

RO N

AFIT/GCE/ENG/86D-2

-

¥

Approved for public release; distribution unlimited

‘5'1111&.

34 g, PRI 9 w8 b a'batd a'd aig 2 ok’ PR OV RO Ya 8's &' died” te g1a 2'a Aa At At ek, caboaf tafsab tab ol aBatat At agk agf ial - g0

hi;} AFIT/GCE/ENG/86D-2

PERFORMANCE EVALUATION OF PARALLEL BRANCH AND BOUND SEARCH

WITH THE INTEL iPSC HYPERCUBE COMPUTER

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University .
(e In Partial Fulfillment of the
| Requirements for the Degree of

Master of Engineering in Computer Engineering

Lf\.ccesion- for

_ \
NTIS CRA&I v, X

Dric 1A8 Q
U::annouiced U]

Justitic:tior, S

[Justit]
Richard T. Mraz, B.S. By '
, . ' LR T R T TE RIS S &
Captain, USAF e :

Availability Coces

| e

: Avii 1d/or~
|

Di:t Spucial : f
December 1986 ﬂ, / j ;

Approved for public release; distribution unlimited

. 3]

oy \-"'\‘J.ﬁ_‘.'-_.\;.\..\;;. ';..;«.}\;_\- AT AT N

List of Figures

List of Tables

Vg Vg 8% A%y Wy
S TN

Page

... v
.. vii
.. viii
INtroductonovuiiiiniiiiiiiiiir e 1
Background.........ccviiiiiiiiiiiiiiiiii 2
Problem ..o 4
Classes of Searchcccevviiiiiiiiiiiiiiiii e 6
Parallel Processing Issues ccoccoiiiiiiiiiiiininiiiiininnne. 8
Maximum Parallelism ccooviiiiiiiiiiiiiiniiee 8
Problem Limitationscoeiiiiiiiiininiiicineninennn 9
Algorithm Limitationscccveeeiieieniniiieiennenennns. 9
Architecture Limitationsc.cccoeviiiiiieiniiinninen. 10

Parallel Designccccceviiniiiiiiiiiiiiiii i 10
Overview of the Thesisccooeviiiiiiiiiiiiiiiiiniiinnnn, 11
Intel iPSCHypercube cccoeiiiiiiiiiiiiiiiiiiiiiiiiicceeeee 12
iPSC Design Philosophycccocviiiiiiiniiiiiiiiiiiiiieieenn 12
Hypercube Interconnection cceeeviiiiiiiininiiiiiinenninennnn 13
INtel IPSC e 15
iPSC Software Developmentcccevveieiiiinrineeiereenennnennn 16
CONCIUSIONSeuvuiniiiniiiiiiieiiiiniii e e 17
Analysis of Parallel Design cccooiieiiiiiiiiiiin 18
Parallel Abstract Data Typescccccviiiiiiiiiiiniiiiinininnne, 18
Abstract Data Typeccceeveiiiiiniininiiiiiiiiiicininienne 19
Paralle]l ADTc.cooviiiiiiiiiiiiiiiie e e 20
Analysis of the PADTccooviiiiiiiiiiiiiiiiiineen 20
Design Methodologiescoiviiiiiiiiiiiiiiiiiiii 21
Traditional Design ccoeviiiiiiieiiiiiiiiiiiieenenens 22
Top-Down Structured Designcccovveieiiiiiinnnenennne.. 22
Data-Structure Design ccoeviieieiiiiiiiiininniiieeenenenn. 23
Object-Oriented Design cocvevvuviniiiiiiiiiiienennnnn 23
Analysis of Design Methodologiesc.coocveennnn. 23
Parallel Models of Computation............cccoeueereieniienininnnnnn. 24
Data-Flow Model of Computationc..ceueneennn 25
Control-Flow Model of Computationc.cccceeuveenns 26
Analysis of the Data-Flow and Control-Flow Models 27
Process Model of Computationcccovieeennnn. 27
Object-Oriented Design ccoeveiiiniiiiiiiiiiiiiiieiieaeenenennn. 28
Class coieeii e 28
MESSABE ..viniiniiititiit ittt aa e 29
Methodoevniiiniiiii e 30
(0,117 - S PO PP TT PPN 30

& Py
’ Object Design Approachcoccviviiiiiiiiiiiiiiiiiininininn, 31
Define the Problemcccoiiiiiniiiiiiiiiiiiiiiniieenns 31
‘ Identify Objects and Attributescoooeeiviniiiininnnnn 31
' Identify Operationscccoceviviiiiiniininiiiinininnne, 32
» Establish Visibilityccccooviiiiiniiiiiiiii, 32
. Establish Interfaceccccceviiiiiiiiiiiiiiiiiiiienienennnnn. 32
) Implement the Objects ccoevvirrnrnecinnneiiiineceinnennnn 32
(600 T 1113 1o 1 T S 34
X Iv. Parallel Branch & Bound.............ccoevvniiiiniiiiiiinineniiinienenne, 35
3 Definethe Problemc...ocveviiiiniiiiiiiiiiiiiiiieneeeaee 35
; Branch & Bound Search...........cccooiviiiiiiiiiiiiiiinenen.. 38
Identify Objects and Attributes cocoveviiiniiiiiiiinininnnen 42
Identify Operationscocovevrviiiniiiiieniiiiiinineninn, 43
Establish Visibilityccc.oooviiiiiiiiiii 44
EstablishInterfacec.cccovviieiiiniiiiiiiiiiiiiiiiieeenennnnan 50
Implement Objects coccceveniniiiiiiiiiiiiiiiiiiiiiinieaane 53
CONCIUSIONS ...ceueineieeiiaeinineieierii e reeneeneness 53
V. Parallel N-queens and Parallel Deadline Job

Scheduling Implementationcoceviviiiiiiiiiiiiiiiiiii 54
Parallel N-queens Constraints coveveiiiniiiinennnnnn. 55
o N-queens Control Process cocoevviieniniiiiniineiininennnnn.. 58
(o OVETVIEWvcovenveoesserssensnesssmesesssesmomeoeseesoenre 58
! - Meta-Controllercoovveiiiiiiiiiiiiiiiiiiiiee e 60
i Terminate Check oociiiiiiiiiiiiiiicn e 60
h N-queens Worker Process cccveviiiiiniiiieniiiiinnennnne 61
OVEIVIEW ..onniiiiiiiivii i eirtt et e e et setseeaanan 61
Controllercoviiiiiiii e 61
Problem Solvercooviiiiiiiiiiiii e, 61
E-Node Expanderccccocviiiiiiiinininiininiininenenen.. 61
Bound Check o.oiiiiiiiiiiiiiiiiin e, 62
Terminate Check oiiiiiiiiiiiiiiiiiiiiinc e, 62
1 Parallel Deadline Job Scheduling Constraints 63
Deadline Job Scheduling Control Processc..eeeee. 68
OVEIVIEW ..ottt e e ereeaiee e eneaneanns 68
Meta-Controllerccoevveeieniiiiiiiiiiiiieii e, 68
Terminate Check ooiiiiiiiiiiiiii e 70
Bound Check ...ooooviiiiiiiiiiiiiiii e, 70
Deadline Job Scheduling Worker Process 71
OVEIVIEW .ooviiiiiiiiiiiiiiirt ettt eeeeieeaeeseneneanaanans 71
Controlleroiiiniiii 71

Problem Solverooiiiiiiiiiiic e 71 !

E-Node Expandercocoiiiiiiiiiiiiiiiiiiiien 72 '

Bound Check ...oooiviviiiiiiieniiiiiire e 72 '

Terminate Check oiiiiiiiiiiiiiii e, 72 ‘

O CONCIUSIONS . ..e.ueeeiiiritenies ittt trrreseneieareateenaenenaas 73 %

[

[

i1} |

!

- ! - Y b I RATIRE R N YL T TSN YT S LI
A3 AL WSO N LR L NG G A A AN

T

L 2N o o g

he B B W o

Y

Baseline Performance oviiiiiiiiieriiinirererrnnnnneeseeesnnns 76

Parallel Performance Experimentsc..ccceecviiiinvininineninen, 77
ParalleIN-queensccooviiniiiiiiiiiiiiii e, 78
Paralle] Deadline Job Schedulingc..cccevvvvininnennnnn. 87
COoNCIUSIONSviviniiriiiiieiirerereereeaneirieenseneneenereeneenennenns 96
VII. Conclusions and Recommendationsccccvvveiiiinninenennnn, 97
Parallel Design Methodologyccoceeviiiiiiniiininiienininennns. 97
Performance of Parallel Branch and Bound 98
Suitability of Hypercube Architectures for Parallel Search 99
Recommendationscc.eceieiiiiniiiiieiinieieniineinineenennnn 99
Appendix A: iPSC N-queens Source Code Description.................cceuuenennn.. 101
Appendix B: Sequential N-queens Source Code Description........................ 123
Appendix C: iPSC Deadline Job Scheduling Source Code Description............ 131
(,J Appendix D: Sequential Deadline Job Scheduling Source Code Description...... 160
@
o Appendix E: Tables of Branch and Bound Experiments...................c.......... 176
Bibliography..........ccoiiiiiiiiiiiiiii e 187
VAL e e e e e 190
o
iv

W RS S T d bdidsd T LI

ﬁr

A
A
]
¢
\
far
XY
o
7]
4
d
f«.;
2
‘ 1]
iy
'.J
s
F'é
S.'
x
v,
?‘
4

4
..
\
)
.
e
d

& List of Figures
Figure Page
1. U.S. Companies Offering or Building Parallel Processors..................c.ueen.. 3
2. Example of Processors Communicating using Message Passing.................... 13
3. Node Numbers for a 3-dimension cube..........ocovvviiiiiiiiiiiiiiiiiinnenn.. 14
4. Three-Dimension cube structure with vertices labeled from O to 7 in binary....... 14
5. STACK Abstract Data TYPe.......ccoueuiiiiiiiiiiiiiiiiiiiieninetiinenernenrnenenens 19
6. Functionality of a Design Methodology.........cocevviviiiiiiiiiniiiiiiiiiineninnens. 22
7. Model of COmMPULAON.cuiuinininiiienreiiiiiiiii e ereereae e e eaee 24
8. Execution of a data-flow computation (a+b)/(c+d)............cccoeveiiiiin.... 26
9. Execution of a control-flow computation (A+B)/(C+D)...........cccocooiiiinal. 27
10. Example Class Hierarchy...........ccoviiiiiiiiiiiiiiiiiiic i iceeiee e 29
11. High Level Language/Object Constructs Matrix.........c..covevieieieninnnininnnn.. 33
C. 12, SEArCh STAEGIES.vevveeeeeesreeeeeeeeeeeeeeeeeeeeeeeeeeeeee e eeeeeeeeeeseeeeeeeen 36
13. Search Tree with Node Definitions.ccoveueuiiininiiiiiiiiiieeniiiniinannn.., 37
14. Example Search Tree.........couvuiiiiiiiiiiiiiiiiiiiiiie i, 37
15. Branch & Bound Data Flow Diagram...........c.cocouviviiiiiiininiiniinininiinn.s 41
16. Sequential Branch and Bound Visibility Diagram................................... 45
17. Parallel Visibility Diagram #1..............ocoiiiiiiiiiii e 46
18. Parallel Visibility Diagram #2...........cc.ooiiiiiiiiiiiiiiiiin e, 47
19. Parallel Branch & Bound Visibility Diagram used for this research.................. 49 .}
20. Board Positions for the solution vector (1,4,2,3).......cccvvviiiiiiiiiiiiiiiennnnnn.. 55 $
21. Partial Solution Space for the 4-queens problem.....................oo 56 b
22. Board Positions for the answer vector (2,4,1,3)......c.ovviiiiiiiiiiiiiiiaen, 57
23. Object Diagram for Parallel Branch & Bound.................ccooeiiiiiiiiin 59
<. 24. Example 4-Job Deadline Job Scheduling Solution Space................c..c..ooonll. 65
o
v

A N AEIC NI PO P TN N X N
DG LRI (s GUT S TN

;%& Figure

Page

25. Object Diagram for Parallel Branch & Bound..............cocccociiiiii, 69

26. N-queens Time to First Solution...........coviiiiiiiiiiiiiiiiiiiiiiiiiccnn 80

27. N-queens Time to All SOIUtIONS.covviiiiiiiiiniiiiiiiiriie i 81

{ 28. iPSC and Elxsi Speed Up Over VAX......ccciviiiiiiiiiiiiniiiiiieneniniereneesineanes 83

29. Time to All Solutions Optimized for Board Sizes of 8,9, & 10..................... 84

30. Load Balance for the 11-queens on a D-5 Hypercube...........cccoooeiiiiiiianinie. 86

31. Deadline Job Scheduling- Problem Set #1 Computation Time........................ 90
s 32. Deadline Job Scheudling- Problem Set #1 Load Balance of scheduling

} 20-Jobsonan iPSCD-4.........ooiiiiiiiiiiiiiiier e 91

33. Deadline Job Scheduling- Problem Set #2 Computation Time........................ 93

i 34. Deadline Job Scheduling- Problem Set #2 Speed Up Over VAX.........c........... 94
35. Deadline Job Scheudling- Problem Set #2 Load Balance of scheduling

C’ 15-Jobs onaniPSC D-4.......ccoiiiiiiiiiiiiiiiiiii 95

i 36. Portion of the 4-queens solution space generated during search...................... 129

37. Example 4-Job Deadline Job Scheduling Solution Space............c.ccoeeevenennne. 171 |
38. Portion of the 4-Job solution space generated during search............c...c.coueenn 173

1
¢
(]
0
4

DR A S R RIS S S R IR
m_ :(:..LJL.SJLA_{L.,:¢:’*L!’A ".\!'.:I'.\,V .‘-'.\-"_'.'_'.‘ ey

Lo

Table
1. N-queens VAX Baseline......c.c.ocoviuiniiiiiiiiiiiiiiiiiiiia
N-queens Elxsi Computation Time...........ccoeiiiiiiiiiiiiii
N-queens iPSC d-5 Computation Time........cccocvuieinininiiiiiiniiinii.
N-queens iPSC d-4 Computation Time..........ccooiiiiiiiiiiiiiiininiiiiin
N-queens iPSC d-3 Computation Time...........ooeviiieieiieiinininiiniiinenienn

2

3

4

5

6. N-queens iPSC d-2 Computation Time............cooeeiiiiiiiiniiii

7. N-queens iPSC d-1 Computation Time............coooeiiiiiiiiii

8. N-queens iPSC d-0 Computation Time...........cccovvviiiiiiiiiiiiin

9. Load Balance for the 11-queens Problemonad-5cube......................c.......
10. Deadline Job Scheduling VAX Baseline............cccocveiiiiniiieniiiiiniiniinnnnn..
11. Deadline Job Scheduling iPSC d-5 Computation Time.................ccceenenen..o.
12. Deadline Job Scheduling iPSC d-4 Computation Time.............cccovevienan..n
13. Deadline Job Scheduling iPSC d-3 Computation Time..............ccoceuvnvnnn....
14. Deadline Job Scheduling iPSC d-2 Computation Time...............c.ceeveieninan..
15. Deadline Job Scheduling iPSC d-1 Computation Time...............ccceeenennnn.n.

16. Load Balance - Deadline Job Scheduling Problem Set #1
20-Jobs Solved on aniPSCd-4..........cooiiiiiiiiiiiiiii e

17. Load Balance - Deadline Job Scheduling Problem Set #2
15-Jobs Solved on aniPSCd-4.........c..ocoviiiiiiiiiiiiiic e,

ta gty gt Ble o'l atovaty Sie alopdiataf teb Mlnfal bl ool Rud taly

R AFIT/GC/ENG/86D-2

Abstract

With the recent availability of commercial parallel computers, researchers are examining
new classes of problems for benefits from parallel processing. This report presents results
of an investigation of the set of problems classified as search intensive. The specific
problems discussed in this report are the 'i)acktrackingrsearch method of the N-queens
problem and the Least-Cost Branch and Bound search of deadline job scheduling. The
object-oriented design methodology was used to map the problem into a parallel solution.
While the initial design was good for a prototype, the best performance resulted from fine
tuning the algorithms for a specific computer. The experiments of the N-queens and deadline
g job scheduling included an analysis of the computation tim.e to first solution, the computation

time to all solutions, the speed up over a VAX 11/785, and the load balance of the problem
when using an Intel Personal SuperComputer (iPSC). The iPSC is a loosely couple
multiprocessor system based on a hypercube architecture. Results are presented which

compare the performance of the iPSC and VAX 11/785 for these classes of problems.]

L W

3

) - Al LIS NS AL co B T I e R N A
N L e e T e e e N N e e e s a s TR A S AN AR ATV

< aatl g . N o T s 0 d n.d'ad cmdad'ad as nd'al-adat'adatedts Ala e Blo it o aby AL Y U DR Wi

N Performance Evaluation of Parallel Branch and Bound
Search on the Inte] iPSC Hypercube Computer "
L. Introduction :

Within the past decade, parallel computer architectures have been a subject of significant

research effort. Integrated circuit technology, high speed communications, along with

hardware and software technology have made parallel computers much easier to build and
much more reliable (9,22,26,28). Parallel processing has also proven to be an effective
solution to certain classes of problems. Probably the most notable class is array or vector 3
problems that run order-of-magnitudes faster on parallel architectures such as the Cray. :
Because of the recent proliferation of parallel computers, researchers are investigating other
C’ classes of problems for potential benefits from parallel architectures. Problems classified as f
search intensive is one such class. Two organizations sponsoring research in parallel ;
i computing with problems that are typically search intensive are the Strategic Defense '5
| Initiative Organization (SDIO) and the Defense Advanced Research Projects Agency N
(DARPA) (6,7,24,29,32).
| 3
} The SDIO is investigating defensive weapon systems and battle management systems for }
} a strategic defense (6, 29). While the 'hardware’ of the strategic defense initiative such as
kinetic energy weapons, laser technology, and particle beams seem plausible, the computer P
technology, algorithms, and distributed contro! of a strategic defense is far from reality. As 1'
Seward and Davis point out, the SDI will "require subsystems whose complexities are \
several orders of magnitude greater than those that have been developed or proposed in the .
o past” (19:2). -

et e e e =t et
LA"..I AN P A L P L

- v w -

v v—

—~ v -

- v w

[4 fc

’
LNy

DARPA, on the other hand, initiated a program called the Strategic Computing Program

in 1983 (7:100). This program involves research into parallel computers as well as artificial
intelligence techniques for military applications. The Air Force component of the Strategic
Computing Program is called the Pilot's Associate (PA). Researchers for the Pilot's
Associate are investigating flight domain systems that provide expert advice in critical
mission functions, such as aircraft systems monitoring, situation assessment, mission

planning, and tactics advising (24:102).

Initial goals of the SDI and Pilot's Associate include, quantifying the practical value of
and understanding the complexity of such systems as well as defining the specifications for
an operational strategic defense or pilot's associate. Once the problems are understood and
the accuracy of such systems has been proven, then researchers intend to "speed up" these

systems by using supercomputers or parallel computer architectures (32:74, 6:277-278).

Background

According to Hindler, the term parallel processing describes the different kinds of
simultaneous operations within a digital computer (13:1). While typical VonNeumann
architectures emphasize sequential process and control, parallel computers attempt to increase
machine performance by exploiting the independence of subtasks within a problem or the
independence of the control within a problem. Research in parallel computation traditionally

involves many areas, including (31:1102);

- Communications Networks - Distributed Control
- Distributed Operating Systems - Parallel Algorithms
- Fault Tolerant Hardware and Software - Distributed Programming Languages

XA

Given a particular problem and a specific parallel computing environment, these areas may
depend on one another. Because of such dependencies, parallel computers do not guarantee
increased performance. For example, the distributed operating system relies on the commu-
nications network for transmissions of information and control among the processing
elements. An inefficient communications subnet increases the time for error free data trans-
mission. This could easily lead to a decrease in system performance. On the other hand, a
good parallel algorithm matched with the proper parallel computer architecture could improve
performance by an order of magnitude. Kleinrock summarized the paradox by saying, "we
have the potential for this power [increased performance] --if only we could figure out how
to put all the pieces together!" (18:1200).

Recently, research in the area of parallel computers has been highly successful in several

general purpose hardware designs (see Figure 1).

Company Product
Alliant Computer Systems Corporation FX/Series
Bolt, Beranek, and Newman Butterfly
Control Data Corporation Cyber 205 Series 600
Cray Research Inc. Cray-2 and X-MP
Digital Equipment Corporation VAX 11/782 and 784
ELXSI (a subsidiary of Trilogy Inc.) System 6400
Encore Computer Corporation Multimax
ETA Systems Inc. GF-10
(a spin-off of Contro] Data Corporation)
Floating Point Systems Inc. T Series
Goodyear Acrospace Corporation MMP
IBM Corporation Research Parallel Project RP3
Intel Scientific Computers iPSC
Schlumberger Ltd. FAIM-1
Sequent Computer Systems Inc. Balance 21000
Thinking Machines Corporation Connection Machine

Figure 1: U.S. Companies Offering or Building Parallel Processors (9:753)

%

3 Clearly, this list indicates the availability of parallel processing system hardware; however, the

application and software support systems are not as prevalent. Stankovic points out that "much

R e

of the distributed system software research is experimental work" (30:17). He further

emphasizes that "work needs to be done in the evaluation of these systems in terms of the

problem domains they are suited for and their performance” (30:17).

Yet, another parallel processing problem is the mapping of a problem to a parallel solution.
Probably the largest problem researchers face today in parallel computer systems is the inability
of humans to decipher the inherent parallelism of problems that are traditionally solved using
sequential algorithms. Patton identified a possible cause of this human shortcoming when he
said, "While the world around us works in parallel, our perception of it has been filtered
through 300 years of sequential mathematics, S0 years of the theory of algorithms, and 28
years of Fortran programming" (22:34). Basically, humans have not trained their thought
processes to accommodate the concepts of solving problems in parallel. Because of this, with-
out new parallel computing algorithms, parallel software development tools, and performance

measuring techniques, parallel computing may never be fully exploited.

Problem
Because of the proliferation of parallel computers and because a large class of problems
that may benefit from parallel processing are search intensive, this research investigates the

actual performance of the class of search problems on a parallel computer.

Two examples of the need for research into parallel search algorithms and performance

-—— a e o

evaluations are elements of the Strategic Defense Initiative and the Pilot's Associate.

Specifically, the basic problems faced by SDI and PA researchers fall into the same class of

problems, search intensive processing (see below, Classes of Search). This type of processing

........... A R S S el AT R 'J'\J --,\"-*\ ‘-)\'_\._\.,'-..\'.‘-'_\"‘\...\"\‘.\ IR TS T IS TR T IS
"o)

SN
L)

is characterized by large solution spaces that must be examined for answers and exponential

2

time complexity to find a solution. For example, the SDI battle management system must

resolve the resource allocation of sensor and tracking satellites to defensive weapon systems

T T AT o VEERN .. " Vs TV W Ty s

(29:4-5). Answers to such a search problem involves a complex solution space with
exponential computation time. Researchers plan to reduce the run time complexity using
parallel computers. The ultimate goal is to find the proper combination of parallel computer
architecture and parallel algorithm such that results can be calculated in 'real-time." Where
'real- time' is that time interval in which an answer must be delivered (21:8). The general
approach to solve some of the battle management and PA problems uses traditional
operations research (OR) and artificial intelligence (AI) programming techniques. These
techniques are, in general, based upon a systematic search of the solution space of the
problem. Hence, this research focuses on parallel search methods. And without losing

generality, the specific technique is parallel branch and bound.

The parallel environment for this research is the Intel iPSC Hypercube computer. The
iPSC is used for three reasons, (1) the iPSC is available for parallel computing research at
the Air Force Institute of Technology; (2) the iPSC is a general purpose parallel architecture,

P~

and (3) the iPSC has a flexible software development environment to allow comparisons

against sequential implementations. The methodology of programming the iPSC as well as
the ability to create several communications subnet configurations make it a flexible parallel

architecture (see Chapter II, Intel iPSC Hypercube, for details). The goals of this research

can be summarized as follows,

1- Explore a design methodology to map a problem onto a parallel computer.

Because of the difficulties of mapping a problem to a parallel computer, a
formal design approach is needed to help the programmer identify the paraliel
activity within a problem. Since the development and proof of a new design
methodology is beyond the scope of this research, only traditional design

)
)
b
¥
v
v
¥
!
\
}
[}
i
]
1
!
d

approaches will be examined.
5
.. \‘
f:‘f‘.’- L"-:"L. :-‘L. \. :"\: !..A.J.’).J-..s...x. y2 ;L"A L, L‘:At-‘- da . . '_' “L “A k“‘h T N

b
d
i

Y XX Y-

-~ X

4 -
n

o Ll AL

2- Measure the performance of parallel branch and bound on parallel computer.
Since some researchers with search intensive problems, such as the SDIO
and the Pilot's Associate, have requirements for ‘'real-time’ processing,
experiments must be run to examine the possibilities for speed up. The
results of a parallel branch and bound test can be used as a benchmark for
further research as well. Since all problems used in this research could not

be examined on a dimension-0 hypercube, the performance will be evaluated
against a VAX 11/785.

3- Evaluate the Hypercube architecture as a suitable architecture for
combinatorial (i.e. search) algorithms.
In conjunction with the development of a good parallel algorithm, the speed
up of a problem can be limited by the parallel computer architecture as well.
Therefore, the parallel architecture must be evaluated.

4- Identify extensions to this research.

The scope of the research is constrained by time and computing resources.
Therefore, recommendations for continued research is essential.

Classes of Search

As pointed out in earlier, typical problems involved in SDI and PA research are catego-
rized as search intensive. Such problems are identified by large, sometimes complex solu-
tion spaces and exponential computation time. (See Chapter IV, Parallel Branch and Bound,
for definitions and details of how a search is represented.) It is important to keep this
research as general as possible. Therefore, the general form of any state space search,
branch and bound, is used for the performance experiments. This search technique is
important to SDIO and other military problems where optimal solutions are necessary. The
basic idea behind a search is to accept a problem in its initial state and ‘search’ the solution
space for a goal state. As a search progresses, a path through the solution space is created.
While building this path, choices on which path to follow are made. These choices are the
'branching' part of branch and bound. Other times, it is possible to determine that an answer
does not exist down a specific path. This is the ‘bound’ portion of branch and bound.

Using a general search definition is useful during the analysis and design phases of the

AR NI RN N N G O,

- - - - L - - ‘.-‘ "l - - . - . b.\.!.‘. -
\J‘J'f 1.'\" f.'l ~" .n‘f J’-‘ 'f- W et e -

- a n

ol = w2 e w

Y YT VYV T UTT Y TN T U U I NI UR I I I LS T mafiEaT AT AT AN EASBMET RN ENA ST E N UN S N AN WiN NN Tewved u .

research, but specific problems must be used for actual performance measures. To this end,

two specific categories or classes of search are defined for this research.

The first search category is called ‘backtracking’ search. The ranking of all points in the
solution space are set to the same value. One reason for such an approach is that an accurate
ranking function can not be computed for the problem. Problems that are classified as
‘backtracking' search show true exponential computation complexity. The N-queens
problem is used in this research as a typical backtracking search. The problem is
conceptually quite simple. Given an N-by-N playing board, place N chess queens such that
no queens are attacking. This problem is characterized by an exponential time complexity,
O(2M), to find all solutions. Even though the N-queens search does not use a cost function,

a bound function is used to eliminate the needless search of some parts of the solution space.

The second class of search is called least-cost branch and bound. This class of problems
uses the ranking function and bound function to guide the search. As the name implies, the
search progresses based on the 'least-cost’ path. Deadline job scheduling is used in this
research as the typical least-cost branch and bound problem. The problem is defined as
follows. Given a set of jobs, with each job defined by the 3-tuple (p;,d;.t;), where

p; = Penalty for not scheduling job i
d; = Deadline by which job i must be completed
t; = Time to run the job i

Find the largest subset of the jobs that can be run by their deadline while minimizing the total
penalty. This search uses both the ranking function to identify potentially good solution

paths and two bound functions to eliminate needless searching in parts of the solution space.

« N
=
h A

———— T

L gn i as i b g

Lo sl e e o 4

(o

K,/

s

While these problems are computationally trivial as compared to the problems faced by

SDIO and PA researchers, it must be emphasized this research is investigating the
performance improvements of the class of search problems on a parallel computer. Hence,
the N-queens problem and the deadline job scheduling problem should be evaluated on there

ability to categorize the two classes of search used during the performance experiments.

Paralle] Processing Issues

Before moving on, two fundamental issues of parallel processing must be addressed.
These issues, maximum parallelism and parallel design, form a basic set of constraints for
any type of parallel problem solving. First, the concept of maximum parallelism describes
inherent performance limits within a problem, an algorithm, or a parallel computer
architecture. While some of these limits can be circumvented, others become the ‘bottleneck’
of performance. Second, the concept of a formal parallel design methodology has yet to
emerge from the research. The goal here is to find a way to map a problem into a parallel
computer architecture while at the same time extracting as much parallelism from the problem

as possible. F

Maximum Parallelism. Simply stated, the concept of maximum parallelism places a
constraint on parallel problem solving. This constraint may take several forms. First, the

problem may inherently have limitations that cannot be overcome. Second, a poor algorithm

may inhibit parallel activity. Finally, parallel computers focus on solving specific classes of
problems. The following examples should reinforce the concepts of maximum parallelism

and the impact of these limitations on the solution.

S W TN RIAIN TN AN N V2 A Aot NN A,

YT N Y OOy Al ok 2B oth i a'ladoa’latos Soat agf Mo b0 N g Ay gt . g 4

'{&'@- Problem Limitations. In his thesis, Norman uses this simple example to show the
limits of parallelism within a problem (21:16-22). Given the Lisp expression, CONS(A,B),
what is the maximum speed up? In Lisp, the function CONS simply constructs a list with
the elements of A as the first elements followed by the elements of B. During the execution ‘
of the CONS expression, two operations are performed. First, A and B are evaluated.
Second, a pointer is assigned to construct the new list. If the actual performance of the
CONS is taken to be negligible (assigning a pointer), then the maximum speed up is
dependent on the evaluation of A and B. If the two symbols have approximately the same
time for evaluation, then the largest possible speed up from performing the CONS in parallel .
is only 2x (two times). This problem creates an inherent performance limit that cannot be
overcome. The Lisp CONS example is a bit misleading. The evaluation of A and B was)
assumed to be independent. If one parameter relied on the other or if one parameter required
. more evaluation time than the other, at some point, one process would be blocked while "
(! waiting for the other process to finish. This would immediately begin to reduce the ideal 2x
(two time) speed up. Therefore, dependencies among subproblems also lead to decreases in

the maximum parallelism of a problem.

Algorithm Limitations. As shown above, the advantages of parallelism is highly
dependent on the problem being solved. If any relationships among subproblems exist, then
additional performance limits are imposed on the parallel solution. Besides limitations .

inherent to the problem, a poor algorithm could limit paralle]l performance. For example, in
Akl's simulation of the parallel AND-OR Tree Search, he demonstrated such a phenomenon. q
Independent of the branching factor of the tree, the depth of the tree, and the probability

distribution of the random number generators at the terminal nodes, he showed that the

maximum parallelism occurred at approximately 5 nodes (1:197-199). Such a constraint may

BN be overcome if the performance limit is due to a poor algorithm design.

!]
- - - . - e e - - - . - LK T ® . - " . - " - - - a® R S T PR P L R ¥ - \
LX}Z\&%’ PP Y 75 705 L4 TR S A A, S ST A S L7 LSRR, 1 v gl R S 11, o S A S U L R LR

!
& Archisecture Limitations. Parallel computer architectures tend to focus on specific .
classes of problems. Probably the most famous supercomputer, the Cray, is an array or .
vector processor. The Cray would not be suited for this research into parallel search
algorithms. Therefore, as part of analysis and design, the problem must be matched with a
compatible parallel processor. Without taking this into consideration, performance {
degradation is guaranteed. .

Parallel Design. The second parallel processing issue deals with mapping a problem into
a parallel solution. For humans, thinking in parallel does not come naturally. Therefore, a
design methodology is needed to describe a problem such that parallel activity can be iden-
tified. Since prior research has not defined a parallel design strategy, one goal of this :
research is to investigate a formal approach to parallel design. One issue of a parallel design 1
is the concept of ‘granularity.’ At one end of the scale, fine-grained parallel activity focuses
“". on several small tasks. Parallel programming languages are an example of a fine-grained
approach to parallelism. At the opposite end of the scale, coarse grained problems are
divided into only a few tasks because of subproblem dependencies or because of the inability
to identify paraliel activity. The granularity of the design is also dependent on the parallel '.
architecture that executes the solution. While some parallel computers can handle the fine

grained approach others can only be used for course grained implementations.

Without too much insight, one can see maximum parallelism and parallel design issues
form a dicohotomy. If the solution to the problem is not designed correctly, then the
resulting algorithms cause performance bottlenecks. On the other hand, a good parallel
design could have terrible performance when placed on an inappropriate parallel architecture.

These issues are central themes in this research.

10

“ A "m B 'RMT"A"a "N "a® - W WL W e . W 8 e W R A T R AT W "y \‘-\\‘s'\\'-‘
LGN, I TN AL AL TN N S A R RN M R N AT R A SN A R A N N A E A N,

L ok J8 Jar Ll

" o

v u S

Overview of the Thesis
In summary, this completes the first part of the introduction to this thesis. The problem

and goals of the research are straightforward. But, as the analysis shows the final parallel
solution may be limited by constraints inherent to the problem, particular to the parallel
design or algorithm, or imposed by the parallel architecture. Hence, the approach to solve
the problem and to meet the goals must follow a logical path. First, Chapters I and II present
the fundamental concepts and goals of the research as well as details about the Intel iPSC
computer. Chapter Il completes the introduction with a description of the parallel architecture
used in the research. Next, Chapter III analyzes parallel design. Here an examination of
three approaches to map a problem into a parallel solution identifies the object-oriented
design methodology as a good candidate for parallel design. Chapter III finishes this
analysis with a formal approach to conduct an object design. In the third section, Chapters
IV and V present a formal object design of parallel branch and bound. Chapter IV defines a
general parallel branch and bound design. Based on this general design, Chapter V describes
the implementation of the N-queens and the deadline job scheduling problems that will be
used in the performance experiments. Finally, the actual performance experiments are
defined and the results analyzed in Chapters VI and VII. Chapter VI defines the performance
measures used to compare the iPSC with an industry standard, the VAX 11/785. Chapter

VII finishes the thesis with conclusions about this research and recommendations for further

study.

11

e

L an g -

v

II. Intel iPSC Hypercube

Chapter I introduced this research with a discussion of the basics of parallel processing,
a description of the problem, a definition of the classes of search, and an outline of funda-
mental parallel processing issues. This chapter concludes the introduction with a description
of the hypercube interconnection and the Intel iPSC computer. Basically, the iPSC is a
general purpose parallel architecture with its processing elements (nodes) connected in a
hypercube topology. First, the iPSC design philosophy is examined. Next, a formal
definition of the hypercube interconnection is presented. Finally, the details of the Intel iPSC

along with its software development environment is discussed.

Initial research on the hypercube, known as the Cosmic Cube, was conducted by
Professor Charles L. Seitz at the California Institute of Technology (8,26). His research is
supported by the Department of Energy and Intel Scientific Computers. The fundamental
basis of the hypercube computer can be described by the process model of computation (26).
(An analysis and comparison of several models of computation can be found in Chapter III,
Analysis of Parallel Design). Simply stated, the process model describes the interaction of
processes using message passing instead of shared variables (26:22). Using such a model,
"a programmer can formulate problems in terms of processes and 'virtual' communication
channels between processes™ (26:23). The iPSC adheres to the process model of
computation in two ways. First, the programmer can define and encapsulate a process on
any iPSC node. In fact, several processes can be placed on each iPSC node. Second, the
iPSC operating system provides a set of message passing primitives for interprocess

communication. Figure 2 shows an example of how several processes communicate using

12

';*.:;_‘ messages. The processor interconnection strategy used to support this model of computation
as well as provided good message passing properties is called the binary n-cube or
hypercube.

Node 0 Node 1

i Node 2 Node 3
e
7

b Figure 2: Example of Processes communicating using Message Passing

Hypercube Interconnection
The binary n-cube or hypercube is classified as a limited interconnection strategy since

each node is only connected to a few of the total number of processors. As described by

(36:239). The number 'n ' also describes the dimension of the cube. For example, a
dimension-3 cube has 23 nodes and each node has 3 neighbors. Each node in a hypercube

13

»
Wau, the binary n-cube is a network of 2” processors where each node has n neighbors J
¢
i
’
3
.
q

s can be identified using a binary number of length n . Figure 3 shows the labels for a d-3

hypercube. Using the binary node IDs, the nodes of the cube are arranged such that
neighboring nodes only differ by a power of two. Tuazon ¢t al shows that the Hamming
distance between neighboring nodes is 1 (34:667). He also points out that the Hamming
distance can be used to determine the distance between any two nodes in the cube. Figure 4

shows the example of a 3-dimension cube. Notice the node numbers and the Hamming

distance between adjacent nodes.

\)O\MAWN—‘OE

111

Ay Figure 3: Node Numbers for a 3-dimension cube.

110 111

Figure 4: Three-Dimension Cube structure, with
vertices labeled from O to 7 in binary (28:66)

14

L A Mol N Sad Rab tubiins taloselnta e gia 440 £°8 8 L8 Lol A/ i ki abithbhintiet i iat et bt 44 Aol A MR A AL A S A A a i b el o ha da Lo B Sie Bk
-
U
»

-.:::;" Since the most efficient message passing occurs between nearest neighbors, it would benefit
programmers to use such process/message passing during the problem formulation.
Unfortunately, many problems cannot be mapped into a true hypercube communication
pattern. But, by defining specific message communications among the nodes, a programmer

can configure the hypercube into several logical structures, such as ring, tree, mesh, grids,

torus, and bus (17,26). Using these structures, nearest neighbor communications is

maintained and the structure of the parallel solution also matches the structure of the problem.

Intel iPSC

The Intel Personnel Supercomputer or iPSC, based on the original work at Caltech, uses
the processor/message passing paradigm. The physical configuration of an iPSC has two
components, the intermediate host and the hypercube. First, the intermediate host provides a
development environment and cube controller for programmers. Intel offers its own 310
7 . microcomputer running the Xenix operating system as the interm. .t.ute host. Xenix is a
UNIX version 7 derivative with enhancements from Berkeley, M. rosoft, and Intel (17).
While other machines with an Ethemet interface that run Xenix o1 Berkeley 4.2BSD UNIX
) can also be used to connect to the Intel 310, the 310 microcomputer must be used to compile

and run the iPSC application.

The second part of an iPSC, the hypercube, is a cabinet or series of cabinets that house
the processor boards and communication lines for the hypercube processors. The basic
hypercube contains 16 nodes (4-dimension cube) with the largest configuration containing
128 nodes (7-dimension cube). Each node within the iPSC has an Intel 80286 processor and
an 80287 numeric co-processor with 512 Kbytes of memory. Each node also has monitor

and kernel software. Thc node monitor contains the boot-strap’ and self-test routines that

PRV Py

15

D g . Y And i - ¥ r gl Y d & r ¥
L b ils ple i e s tes ia s tat el platiia siebate afata At aTatile BAss e atai lnf Wla pia gt Catalh aintat il sol Aol tal taf, tafatal Ao tate ol tah Ral tub tad Sab oty Aatutnd o0

: Q::;.' initialize the node at power up. The node kemel serves as an local operating system that
performs process management, interprocess communication, buffer management, and
memory management.
iPSC Software Development
A The iPSC supports four development languages, Fortran, C, Lisp, and 80286
: Assembler. For each language an appropriate library of message passing primitives is
available. For the intermediate host and iPSC nodes, the following operations can be used,
Host Command
copen Open a communications channel
cclose Close a communications channel
) recvmsg Receive a message from the cube
5 sendmsg Send a message to the cube
cubedim Return the dimension of the cube
probemsg Check for a specific message type
syslog Write a message to the System Log
@ load Load a process into the cube
- Iall Kill a process in the cube
Iwait Place a process in a wait state
Node Command Function
copen Open a communications channel
3 cclose Close a communications channel
- recv Asynchronous receive message
recvw Synchronous receive message
send Asynchronous send message
sendw Synchronous send message
cubedim Return the dimension of the cube
syslog Write a message to the System Log
probe Check for a specific message type
status Check the status of a channel
! mynode Return my node number
mypid Return my process ID number
clock Return Clock Ticks (1/60th of a sec resolution)

16

R IR A Ol DU A I A AL IC A I A SO N N B A N A S OOt KR X AL A RN ST N
P . Dy ot W g e, : Wy, " . 2 : LA W

....

O

f:.\‘\
R

Intel also offers an iPSC simulator that runs under Xenix or 4 2BSD. While the simulator
can be used to prototype applications or to leam the basic concepts of the iPSC, it does not
model the actual parallel activity of the iPSC. Therefore, the iPSC simulator should not be

used to ‘load balance' or to 'fine tune’ an application.

Conclusions

The Intel iPSC is a flexible, general purpose parallel computer architecture. Created
from original research at Caltech, the iPSC offers a true message passing architecture that
gives the programmer a wide range of logical interconnection strategies. With the
introduction to this thesis complete, it is time to focus on the problem of measuring the
performance of parallel branch and bound search. Before such tests can be executed, a
parallel design of the sequential branch and bound technique must be created. Because a
formal parallel design methodology does not exist, this research investigated strategies to

map a problem into a parallel solution. The next chapter analyzes these strategies.

17

A2 A4

E] IMI. Analysis of Paralle] Design

In the previous two chapters, the classes of problems, the issues of parallel processing,

and the description of the Intel iPSC Hypercube computer established the scope and funda-
mental concepts of this thesis. At this point, the research focuses on the development of a
parallel design methodology. This is the first goal of the thesis. With a design approach in
hand, then a formal development of the N-queens and deadline job scheduling can be
presented. During the analysis in this chapter, it is important to remember that the ultimate
goal is to speed up the performance of the branch & bound search using a parallel computer.
Therefore, the analysis and design decisions are influenced by the nature of search problems
as well as the characteristics of the iPSC computer. These same decisions may or may not be
appropriate for sequential problem solving or other parallel computer architectures. Because
of time limitations, this research cannot develop and prove a new design methodology.

o Therefore, the analysis is restricted to three techniques used today, abstract data types,
traditional design methodologies, and models of computation.

Paralle]l Abstract Data Types
This section examines the concepts of abstract data types for parallel design. The study

of abstract data types (ADT) or data structures is a fundamental course in most computer
science and computer engineering curricula. Horowitz and Sahni developed a formal
definition of ADTs along with techniques to analyze computer programs (15). Extending
their ideas, a formal description of parallel abstract data types can be developed. But, as the

analysis shows, this approach only exploits limited parallelism of a problem.

E
E
2

Y
-

hY

18

XA i

A,

Y NN NN B S R R

o~ A A

%

Abstract Data Type. Using the Horowitz and Sahni definition, a data structure or
abstract data type (ADT) can be described by a set of Domains, a set of Functions, and a set
of Axioms (15:1-7). The set of Domains defines the mapping of the ADT functions. This
concept is similar to a math function that maps from one 'domain’ into a second 'domain’
(20:43). Figure S gives an example of an abstract data type defining a Stack. The set of
Domains for the Stack are {item, stack, boolean}. Notice how the Stack functions map from
one domain to a second domain. Next, the set of Functions define the legal operations for
the data type. The Stack ADT (Figure 5) defines five functions, {Create, Add, Delete, Top,
Isemts}. Finally, using the set of Axioms, the designer can prove the correctness of the
ADT. The axioms show the error conditions and legal combinations of the functions. Many
common ADT's used in computer programs include array, queue, stack, string, graph, and
trec. Sometimes a programming language abstracts the definition of the data structures. For
example, most languages support arrays as a primitive data type. Other data types must be
designed, implemented, and proven correct. Therefore, ADTs can be used in a hierarchy to

build more and more complex data structures.

structure STACK (item)
declare CREATE () — stack

ADD (item, stack) — stack
DELETE (stark) — stack
TOP (stack) — 1item

ISEMPTS (stack) — boolean

forall Sestack, i eitem let
ISEMPTS(CREATE) := true
ISEMPTS(ADD(i,S)) ::=false
DELETE(CREATE) ::= error
DELETE(ADD(,S)) =S
TOP(CREATE) 1= efror
TOP(ADD(,S)) =1

end

end STACK

Figure 5: STACK Abstract Data Type (15:67)

19

. - - B - - - . v . - - - .. Ay - -, . L INEY e .
g 1.-{'.\-_ '-I"J"-" DA \)\'..’\‘,"., \’\.’\_’\'.\..\ ‘--.‘. > ,._\;. WA

-

gt v gd gty d gl ™= et B 2 % gt PR TR Y O TR OO I VPN & VWU Y ORI RU T WrRTTRa Y

@ Pandllel ADT. Following the same paradigm established by Horowitz and Sahni, a
paralle] abstract data type (PADT) can be defined with a set of Domains, a set of Functions,
| and a set of Axioms. The set of Domains defines the mapping of the PADT functions. The
; set of Axioms will be used to prove the correctness of the PADT. Since the set of Domains
} and the set of Axioms only define the parallel abstract data type, no parallelism can be
} exploited from them. Therefore, the only parallelism that may exist is in the set of
Functions. The functions that can be performed in parallel define 'active' data structures.
For example, each element of a linked list could be placed on a separate processor. Any
computations on the entire list may be completed in O(1) time. The sequential linked list or
'passive’ data structure would require O(N) computation time. An interesting, maybe not so
obvious, phenomena occurs when using an 'active' data type. Notice in the simple example
of the linked list, the order-of time decreased, O(1) < O(N) , but the space requirements
reversed. The sequential solution needs only one processor and O(N) Space, but the ‘active'
L’.V' data structure needs O(N) processors and O(1) Space. Therefore, Parallel Abstract Data

Types trade time efficiency for space efficiency.

Analysis of the PADT. The PADT may be used to reduce the Order-of Time computa-
tions for some functions at the expense of increasing the Order-of Space requirements.
) Using the PADT concept to promote fine grained parallelism in computers may be useful in
Parallel Programming Languages. As such, the details of the parallelism is abstracted and

the programmer can build even higher level structures to define more complex PADTs. Seitz

describes this type of parallelism as a covert technique to introduce parallelism using

sequential processors (26:25). Some commercial parallel processors use this idea to define

abstract parallel data structures. One machine, the CM-1 (Connection Machine 1) runs a

o within CmLisp is called the xector (pronounced zek-tor). A xector is defined by a Domain, a

-
' '

)

i parallel implementation of Lisp, CmLisp (Connection Machine Lisp). The parallel structure
! 20

)

'-... \r.‘ \' N \{%{\mAJ_.A}..A:A.;_.;_A ..‘ ;_A‘;_‘Li‘h ‘A\.;*_; .“l‘\

NPT Y WL Y P L. AL) 1o bt abd Do’ Bu' ta 800 Bal uy' g Sob pot g 4 p.t .) g, ¢ e wowae Y. s aip Alo B'e A - [N

- o -

LYE.X I i

@ Range, and a Mapping much in the same way a sequential data structure is described (14:33).
For example, a list can be defined as a xector where each element resides on a separate
processor. Using a paralle] data structure like a xector, Lisp programs may run faster by

& using the inherent parallelism of list processing functions. Hillis shows some of the CmLisp

time order complexity reductions (14:38),

4 List Operation Yector List Xector
Remove om) ON) o)

: Sort O(N log N) O(N log N) O(log2 N)

X Length 0(1) ON) O(log N)

- »

Unfortunately, using such a mechanism may not exploit the full potential of parallelism
within a problem. Basically, the PADT approach maps a problem defined for a sequential

il Sl el

N computer into parallel data structures. This mapping may not exploit all of the parallelism

.~

within the problem itself. Seitz recommends parallelism techniques such as these within each
node of the parallel processor because at each node "we are tied to sequential program
representations” (26:26). Therefore, to extract the "most” parallelism from problems,

another approach must be taken.

- o~ - -

Design Methodologies

In the previous section, the paralle]l abstract data types only provided a limited parallel
A solution because the PADT does not exploit the parallelism of the problem itself. Therefore,
a general approach is needed that examines the problem for potential parallel activity. Such
approaches are design methodologies. Since a parallel design methodology does not exist,
an analysis of design strategies is in order. After reviewing three popular methodologies, a
, design style for this research was selected. While analyzing design strategies, it is important

! ot to remember the ultimate goal of design is to accurately represent or model the problem space
/

21

Lo . L Y o Pl A AL AC A AN
')}JD"‘._ :.%i?.n.ﬁ'ﬂ.&.ﬁ.u?.pﬂr s

2\

LN NP Y
e D,

(5:39). If a methodology can do this, then the designer should be able to identify the
inherent parallelism within the problem.

Traditional Design. Software design methodologies are used to define a disciplined
approach to problem solving. Figure 6 shows a functional representation of a problem, a
design methodology, and a solution. The problem is characterized by real-world objects,

operations, algorithms, and results (5:38-39).

Design
Methodology

Figure 6: Functionality of a Design Methodology

The design methodology creates a bridge from the real-world or problem space into the
solution space. The solution for this discussion is modeled by computer hardware and
software. Three popular design methodologies include, Top-Down Structured Design,
Data-Structure Design, and Object-Oriented Design (4,5,12,23,37). The scope of this
research does not permit an in-depth review of each of these design styles, but a summary of

each methodology may help the reader.

Top-Down Structured Design. Top-Down design is one of the more popular design
styles since it is well suited for several programming languages and VonNeumann computer
architectures. Simply stated, Top-Down Structured Design is a method where a system is
decomposed into its major functions. Those functions are decomposed into smaller pieces,

and so on until a function can be described in a programming language (37:2). While this

22

e ™ e P ™
o Ll y T

Q‘&‘, design methodology works well for sequential machines, it does not support features needed
when describing a parallel solution, such as distributed control and interprocess

communication (5:32).

Data-Structure Design. This design methodology originated from the COBOL language.
Based on work by Jackson, Data-Structure Design defines the data structures of the system.
From the data structures, the programmer defines the structure of the program modules
(5:32). This design style is similar to the abstract data type approach to parallelism.
Data-Structure Design has the limitations of the abstract data type approach as well as

limitations on describing the solution space of the problem.

Object-Oriented Design. Starting with work at MIT, Stanford, and the University of
North Carolina, object-oriented design is a flexible design methodology. Used not only as
C.v the basis for programming languages, object-oriented design has also been used in other
disciplines. The Intel 432 microprocessor is an example of an object-oriented computer
architecture. The object-oriented design strategy is based on the concept of decomposing a

problem into objects, operations, and interactions among the objects.

Analysis of Design Methodologies. No one has developed a methodology for parallel
design. Therefore, one must rely upon a software design style that models the problem
accurately as well as provides a flexible design environment. The results of such a design
should help the programmer identify the parallel parts of the problem. Commonly used
design techniques, such as Top-Down Structured Design and Data-Structure Design, cannot '
accurately define the problem space and therefore do not support parallel design or parallel

processor implementation. On the other hand, the object-oriented design methodology meets

these requirements. Some work with object-oriented parallel design has already been carried

PR
'.".
s

23
>

~ St St .t

8N NN N . . "o N A
W re)Y - L. rd o s L j
A N N N T A g A N D N S D A R S S0 SIS TC I s o N R AT SRS

oy % 34 gl gt gt

o

out by researchers using Occam, the concurrent language for Inmos' transputer (3). Booch
also points out that from his experience "an object view of the problem space lends itself well
to exploiting massive parallelism” (3). Because of the ability to accurately describe the
solution space of a problem, this research will be based on the object-oriented design
methodology.

Parallel Models of Computation

An analysis of parallel models of computation reinforces the decision to use the object-
oriented design methodology. A look at these models also reviews the basic concepts of the
Hypercube architecture. (See Chapter II, Intel iPSC Hypercube, for details). Just as a
design methodology is used for a disciplined approach to problem solving, a model of
computation establishes a formal definition of a computer system. Figure 7 shows the

relationship between a model of computation and computer architectures.

Real Computer
Model of /(Amhitecture)
Computation

Figure 7: Model of Computation

As the figure implies, models of computation are used to define computer architectures,
either real or abstract. Gajski and Peir identify three basic sequential models of computation
(11:10-11), (1) Operational Model, (2) Applicative Model, and (3)VonNeumann Model. The

operational model, such as a Turing Machine, is used as a simple and concise mathematical

24

description of a computer system (11:10). A slightly more complex model, the applicative
model, also has a concise description but is not supported by a mathematical definition
(11:11). A pure Lisp Machine can be described by an applicative model of computation.
Finally, the VonNeumann model serves as the basis for almost all conventional computer
systems. Computers based on the VonNeumann model are much more complex than their

operational or applicative counterparts.

A goal of this research is to explore parallel design strategies. As part of that goal, this
research selected a design strategy and a model of computation that are compatible with each
other. For example, the VonNeumann model along with the Top-Down Structured Design
Methodology seem to work well for most sequential machines. Unfortunately, as Treleaven
points out, the sequential models cannot adequately describe parallel computers (33:275).
Therefore, they cannot be used in this research. In response to this, parallel models of

‘-é computation have been developed. Gajski and Peir describe a parallel model of computation
as a graph, where the nodes of the graph define the tasks or processes that must be carried
out, and the arcs of the graph define the order of node firing. Despite this rather simple idea
about parallel computers, several complex parallel computer architecture have been designed.
Three specific parallel models of computation include the Data-Flow Model, the Control-
Flow Model, and the Process Model (11,26,33). The scope of this research does not permit

an in-depth review of each model of computation, but a summary may help the reader.

Data-Flow Model of Computation. In the data-flow model, each node may 'fire’ when all
of the data it needs for execution is available. Each node receives its data and forwards resulis

along the arcs using a 'token’. Earh token contains data or instructions for a node. See Figure

8 for an example of the data-flow computation. An important aspect of data-flow machines is

their ability to extract the parallelism of a problem at run-time instead of at design time.

25

N Y
s
[3
RV EL PRI |

- T Y PR \
R T e DY
N o o »

A T T TR I Y

- - - - . - ‘= - - - - -« T “w Y -\ - - - A] - Y . -
O A S AN SN I RN SN R ARG AN N A AU PN s

THERTOUEE Ty NI F A TME METUVE RMa e em VW wnRnevVsns ---v]

L8
=T
a b c d
(a+b) (c-d)
Figure 8: Execution of a data flow computation (a+b)/(c-d) (11:12(a))
Control-Flow Model of Computation. The control-flow model uses tokens to pass
pointer information between nodes. The actual data resides in a global memory. This
scheme is useful when performing computations on large data structures like matrices.
C‘M Figure 9 shows the computation of (A+B)/(C-D) using a control flow graph.

Shared
A B C D Memory

— NV

Figure 9: Execution of a control flow computation (A+B)/(C-D) (11:12)

26 !

iy Analysis of the Data-Flow and Control-Flow Models. The Data-Flow and the
Control-Flow Models of Computation are useful in describing a parallel solution to specific
problems. Unfortunately, both of these models limit the definition of a system by restricting
the class of parallel processors. For example, the data-flow model maps the problem to

data-flow computer architectures and the control-flow model maps the problem to parallel

computers with a shared memory. A general parallel model of computation is needed to
remove the limitations of a specific architecture while designing a parallel solution. If a
programmer has the freedom to choose a parallel computer, then upon completion of the
general design, a suitable parallel architecture can be selected. On the other hand, if a
programmer is restricted by a specific computer architecture, a general model of computation
can still be used to describe the problem. One such model with this flexibility is the process

model of computation.

\.‘. Process Model of Computation. The process model of computation describes the
interaction of processes using message passing instead of shared variables (26:22). Both
the data-flow and the control-flow base their computer descriptions on shared data. Using
the process model, a programmer defines a general parallel solution by formulating the
problem in terms of processes and "virtual" communication channels between processes.
Interestingly, the object-oriented design methodology decomposes problems based on
objects (independent processes) and communications or message-passing among those
objects. Because the Hypercube is defined by the process model of computation, parallel
solutions map naturally to the iPSC Hypercube using the object-oriented design style. Seitz
also recommends the process model approach to parallel design because (26:26),

.........................

v

- e

L 4 \ad Sah tad tat taf Aab taf al tel Yl Al Sult
P T T Y S T T T T T Y T VT IV I O UV OV N T R U OV N TS TV OV TV OO ==,

We do not know how to write a program that translates application
programs represented by old, dusty FORTRAN decks into programs that
exploit concurrency between nodes. In fact, because efficient concurrent
algorithms may be quite different from their sequential counterparts, we
regard such a translation as 1mplausxblc, and instead try to formulate and
express a computation explicitly in terms of a collection of communicating
concurrent processes.

In summary, the object-oriented design methodology is used as the parallel design
strategy for this thesis. The object model not only represents the problem space accurately
but also maps naturally into an iPSC implementation. At this point, a description of object
design is in order. This discussion also includes a design approached defined by Booch
(4,5). In short, the object-oriented design methodology can be defined as a software design
tool "in which the decomposition of a system is based on the concept of an object” (4:211),
and an object can be defined as an instance of an abstraction from the problem space.
Objects typically initiate action or respond to requests from other objects. Some computer
languages like Smalltalk and Lisp Flavors directly support the definition and interaction of
objects. Object design is not restricted to computer languages. Besides a general software
design style, object-oriented design has also been used for compu..r architectures, such as
the Intel 432. A problem can be accurately abstracted into the solution space using only four

basic constructs, (1) Class; (2) Method; (3) Message; and (4) Object.

Class. A class defines a template for an object. This template includes a set of attributes
about an object and a set of operations for that object. Classes may form a hierarchy in
which each subclass inherits the attributes and operations of its ancestors. A hierarchy of
classes is generally used to "factor the common properties of a set of objects” (4:216).

Figure 10 shows a class hierarchy of the class of Aircraft, Jet, Piston, and Turbo-Prop.

(e A" i AL VA As oA o' u¥d 2V a®f 28 ‘D 4 L 0 Lol B4 Sall Salk Al Cal S el Jal o Al Ale e b e Mo b ol o b A A Tl gt EAt A R A AR AR v.'lT
!t

-

'2::} While the specific attributes and operations are collected in the Jet, Piston, and Turbo-Prop
Classes, the common properties are identified at the highest (most gener..l) class, Aircraft.
For example, if this hierarchy is used within an air traffic control system, the attribute
'position’ pertains to all aircraft. Hence, the attribute 'position’ is associated with the most
general class, Aircraft Class. On the other hand, specific attributes about a Learjet must be
incorporated into the Jet Class.

Aircraft
Class
/ \ !
Jet Piston Turbo-Prop
Class Class Class

Figure 10: Example Class Hierarchy

Message. Objects use messages to initiate an action or a response to another object. The i
response could range from changing the state/attribute of the object to sending messages to
other objects. The message passing paradigm creates two important concepts, interface

specification and information hiding. As an interface specification, messages serve as the

oY Y

rules-of-communications among objects. The interface specifications may be reguarded as

the external view or the abstract behavior of an object (4:217). The second concept,

information hiding, protects the details of how the operation takes place. For example, using
the Aircraft Class Hierarchy once again, one may "send” the message TYPE to an aircraft

object. As an interface specification, the response should be an appropriate aircraft type such
as B747, DC-10, etc. To re-enforce the concept of information hiding, we have no idea how

the TYPE message was actually calculated.

u; .: 3]

& D P ok of B BAW Bl Bl i -t B

29

I * W R P N Y E .." M "..‘- .'\‘-- -'-.
ARSI S AL SO RSO TN

| e CPCN e At le A At e gnaitredia At SLlt i Sl ale b W.W?WHWWW\WWWWVV;
.

Method. A method "denotes the response of an object to a message from another object”

(4:215). The response may change the state of an object, return a value, compute a function,

1

or send messages to other objects. Methods define the internal behavior of an object. As

such, the method explicitly defines the functions, parameters involved, data structures, and
details of how the response is calculated. Continuing the example, the TYPE message
could be an attribute of the Aircraft Class. Then, the response would only consist of

returning the value of that attribute.

Object. An object is a unique instance of a class. The object inherits all the attributes
and operations of its parent class and its ancestors. An example of an object would be
United Flight 300. The attributes of United 300 include Type = B747 , Position = 48'North
100" West, Ground Speed = 600 Knots, Destination = LAX, etc.

Using the above building blocks, the object model can represent any abstraction from the
problem space. This includes abstract data types, entities within the problem space, inter-
actions among the entities, and object support tools such as complex data structures. Since
the concept of an object encompasses many abstractions, Booch tries to simplify the idea a
bit more by identifying three subclasses of objects, the Actor, the Server, and the Agent
(4:216). While Actor objects initiate action from other objects, Server objects only respond
to requests from other objects. Finally, Agent objects combine the properties of the Actor
and the Server by initiating action and responding to requests. For example, the control
within the problem can be classified an Actor object since it initiates action; and a queue data

structure is classified as a Server object since it only responds to requests.

L rselu

Object Design Approach

Even though most computer languages do not support object-oriented concepts directly,

an object design can be useful in almost any software development environment. Since most
computer languages support subroutine, function, or procedure calls, programmers can build
abstract data types. As Booch points out, abstract data types represent Agcnt objects and
Server objects (4:216). Therefore, cne must find a representation of an Actor object to
complete the transition from object-oriented languages to other computer languages.
Typically, Actor objects are the control or main module of the procedural language.
Therefore, the Actor object becomes the control or finite state machine within the computer
language. Even though object design concepts create a good model for almost any problem,
a well defined approach is necessary. Booch recommends the following steps (4:213-214,
5:38-44),

1- Define the Problem 4- Establish Visibility
2- Identify Objects and Attributes 5- Establish Interface
3- Identify Operations 6- Implement the Objects

Define the Problem. Before a good design begins, it is necessary to understand the
problem thoroughly. Sometimes the problem can be examined using an analysis technique
such as dataflow diagrams. Other times, an analysis technique must be coupled with a

software prototype to aid in problem understanding.
Identify Objects and Attributes. At this point, identify all of the Actors, Agents, and

Servers within the system. Typically, nouns identify the objects. The attributes of an

objects are the necessary pieces of information that an object needs to do its job.

31

SPIIACIINNAZIOE

: g
o

PR A FETEEERT XS

P@ﬁ#’."ﬁ‘"'i‘rx‘QG‘I&‘r‘)ﬁ?-‘.&“r’i“-f’ﬁ(???‘-’!ﬁ-‘.‘-‘?ﬁ'&'.’(Lot

Identify Operations. Next, determine all of the operations performed by the object or on
the object. During this phase, any timing considerations must be identified as well. For
example, a 'window' object in a computer terminal window-system must be ‘open’ before

any operations can be applied.

Establish Visibility. At this point, the interactions and dependencies among the objects
are identified. This step builds the topology of the objects and helps us identify the mapping
of the problem space into the solution space.

Establish Interface. Next, the interface or external view of each object is created. This

interface sets up the rules of communications between objects.

Implement the Objects. Finally, the internal representation of each object is established.
The internal view defines the data structures and details of how the objects performs its
functions. Many times objects are implemented from lower levei objects. Systems

developers can also experiment with different implementations as long as they obey the

interface specs.

The figure on the next page shows the mapping of the four object-oriented constructs
into the Ada, C, and Pascal languages (see Figure 11). Ada supports all of the features of an
object-oriented language except for the class hierarchy inheritance (4:217). Using a bit more
care, Pascal and C Language may also be used for object-oriented programming. C
Language is used for all experiments in this research.

32

l
1
{
{
{

Class Methods Objects Messages
- Package with | - Subprograms |- Instances of private] - External View
rivate or exported from | or limited private supported by
ted private | package spec. | types separate pkg
Ada types. State Machine specification
(Actor) - Internal View
supported by
- Tasks/Task Types | separate pkg
(Actor) body
- Abstract Data - Functions - Instances of an - Interface to
Type Abstract Data Functions
. Type or :
- Primitive Data Primitive Data - External View
C Type Type Supported by
"Header Files"
- State Machine .
(Actor) - Internal View
Supported by
function body
- Procedures - Instances of an - Interface to
i q.:;?ct Data Abstract Data Functions and
- Functions Type or Procedures
Pascal |. Primitive Data Primitive Data
Type Type
- State Machine
(Actor)

At a
Lot de, Ca L

Eouieint

Figure 11: High Level Language/Object Constructs Matrix

., =

% Conclusi

Many researchers have developed ways to speed up computations using parallel
techniques. Some have focused on parallel data types while others re-evaluate each problem
for inherent parallel activity. One goal of this research is to investigate an approach for
parallel design. This analysis selected the object-oriented design methodology because of the
ability to accurately model the problem space as well as map the final design into the
hypercube implementation. For this research, the six-step object design approach as defined
by Booch is used. Even though the steps are presented sequentially, anyone using them
should expect to visit each step several times before declaring the design final. This chapter
concludes the analysis of parallel design techniques. Continuing, the research proceeds with

a general parallel branch and bound design based on the object model in the next chapter.

IV. Paralle] Branch and Bound

Using the six step object-oriented design approach defined in the previous chapter, this
chapter presents a formal object design of paraliel branch and bound. A general design is
given and some insight about the design decisions are examined for each step. The
implementation details of the N-queens problem and deadline job scheduling can be found in
the next chapter. While this design is presented in a orderly fashion, the actual design
involved an interative approach. The designer should expect to visit each step several times.
The design in this chapter proved useful in two ways for this research; (1) the design of an
actual problem allows this research to draw conclusions about the usefulness of the
object-oriented design methodology for parallel processing; and (2) the design prepares the

problems for a performance test.

Define the Problem

Before the design is presented, the concept of search must be defined. Search is a basic
Operations Research (OR) and Artificial Intelligence (Al) programming technique. Such a
strategy is used when problems cannot be solved using direct methods (i.e. formulas,
algorithms, etc) (25:55). Typically, a search is reguarded as a sequential, centralized control
strategy that accepts a problem and its initial state and 'searches’ the solution space for a goal
state. The efficiency of a search is dependent on how well it uses the domain specific
knowledge of the problem (25:55). Several specific search strategies have been developed.
Each strategy varies the way the solution space is examined. While sometimes the entire
solution space is blindly searched for an answer, other search techniqu.. use heuristics or
rules as a guide through the solution space. Below, Rich lists examples of specialized search

strategies (see Figure 12).

e P IC AT P P P PG G A s R S
e e T Tt i B s .

tel te’ e et Jat R N R R U N A NP RN TR M PR S Wy nd it gt fol's tad et

@ Branch & Bound B*

Depth-First Search Breadth-First Search
Best-First Search AO*
A* Heuristic Search

5 Hill Climbing Alpha-Beta Cutoff

Constraint Satisfaction

Figure 12: Search Strategies (25)

From this basic introduction, the details of the search programming technique is in order.
The following definitions, descriptions as well as examples should prepare the reader for the

search experiments used in this thesis. For more information, consult (2) (16), and (25).

N First, the problem space for a search is typically represented using a tree or network
organization (a network can be represented as a tree) (16:325). Horowitz and Sahni describe
' ‘ the search tree as follows (16:325-329): The root of the tree represents the initial state of the
(. . problem (see Figure 13). Each nonterminal node in the tree represents a problem state in
the search. The set of all paths from the root node to any node in the tree define the solution
' space for a given problem. As the search progresses, a node that has been inspected but all
X of its children have not been generated is called a live node. The live node currently being
expanded is called the E-node. Finally, a dead node is one that has been inspected and all

of its children have been generated.

Even though trees are used to represent the solution space of a search, the tree is usually
¢ not stored explicitly in the computer. Because search problems have the additional overhead
of combinatorial explosion due to the branching factor or the depth of the tree, only the

: portions of the tree needed are kept in storage.

\ 28,
. '_‘J

- e e

Nonterminal Node

Terminal Node

Figure 13: Search Tree with Node Definitions

Using the definitions of the search tree, a blind search, such as depth-first and breadth
first search, does not use knowledge of the problem domain to control the search process.

Given the tree in Figure 14, a depth-first search visits the nodes in the following order,
@ A-B-D-E-C-F-G
and a breadth-first search visits the nodes in this order,

A-B-C-D-E-F-G

Figure 14: Example Search Tree

. o
Al

e Y)
)

37

--------------- . N LTe CTO PR ECYRRRIS TG)
B R 2 R A A A W L S T TR L A R SRS G Ch e G R NN

". .
»

» N

i AN

s ~an“an b g0 s g o a MR @ o o o oo e aun

D
L
g
$.
>l
:
?
9
N
.
N
Y
4

!
v
.l

ERPRVRY A Rl AN A VA VAL AP DA S S A0 SN

g

L4

2

Y N
A

The other techniques, called intelligent search, try to narrow the search space, shorten the
search time, and reduce the storage needed by applying knowledge of the problem domain to
control the search. The following actions are used to meet the three goals of 'intelligent’

search (2:59),

1- Decide which node to expand next.
2- Select the most promising successors when expanding a node.
3- Eliminating or pruning the search tree.

The most general search strategy that incorporates all three of these techniques is known as
branch and bound search. Because of its general form, branch and bound can model 'blind'

as well as 'intelligent’ search by changing certain parameters (see next section).

Branch and Bound Search. Branch and bound search is the general form of any state
space search. Therefore, many of the search strategies used in OR and Al can be modeled
using branch and bound. Furthermore, it is important for research of this type to attack the

most general form of a problem. Branch and bound meets this requirement.

Branch and bound search is characterized by a ranking function, ¢(X), and a bounding
function, b(X). First, the ranking function measures the cost to reach an answer from node
X in the search tree. During the search, the E-node (next node to expand) is selected from a
list of live nodes. The E-node selection may be based on the value of ¢(X). For example, if
c(X) is the cost to reach an answer and the E-node selection picks the node with the least
¢(X), then the branch and bound search models a least-cost search. Even though the search
follows the lowest cost path to the solution, using such a cost function can be computa-
tionally expensive. Computing the cost to reach an answer node usually entails an additional

search of a subtree. Therefore, the branch and bound ranking function, c(X), is a trade off

38

i
!
|
\
h
Y

% between the time to compute the cost and the efficiency of the cost function. Instead of

computing the actual cost to an answer, most branch and bound searches use a function,
g(X), that estimates the cost of reaching an answer node. Using g(X), the live nodes are

ordered by the following function,

¢’(X) = h(X) + g(X)

where,

¢’(X) = Total estimated cost
h(X) = Cost of reaching node X from the root node
g(X) = Estimated cost of reaching a solution from node X

Some examples of using the estimating cost function are (16:372).

h(X) =level of node X in the search tree
gX) =0

¢’(X) = Breadth-First-Search

h(X) =0
g(X) 2g(Y), Y = child of X

¢’(X) = Depth-First-Search

Next, the bound function, b(X), examines node X for specific boundary conditions. If
the node passes the bound function, then it becomes a live node. If the node does not pass

el e e e

the bound function, then the node becomes a dead node. The bound function prunes the

search tree and therefore eliminates needless computation in parts of the search space where

solutions are 'known' not to exist. In fact, some searches may incorporate several bound

functions.

A
l"-'
D

39

Wt A A G SO S UG W et QN 10 057 (UGG N, Y, (G O

0% Any search that incorporates a cost function for selecting the next E-node and a bound

function to prune the search tree is called a branch and bound search. The efficiency of such

a search is keyed upon the accuracy of the cost function and the bound function. A poor cost x
function may direct the search to the wrong part of the search space, and a poor bound

function may prune a subtree that has an answer node. X

To summarize, search is used when an algorithmic solution does hot exist. The search
| programming technique offers a way to examine all possible points in the solution space for
| an answer. Because of the exponential nature of a search problem, an exhaustive

examination of the solution space is computationally prohibitive. Hence, a variety of search "

techniques have been developed to reduce the time to find an answer. Sometimes a ‘blind'
‘ search is appropriate while other times more complex ‘intelligent’ searches are needed. In '
any case, the most general state space search is called branch and bound. This programming '

technique is characterized by two functions, a cost function and a bound function. '

Based on this analysis, a dataflow diagram of branch and bound is shown on the next
page (see Figure 15). In addition to this analysis, sequential versions of the N-queens and
deadline job scheduling were programmed to understand the two problems used in this .

research. Descriptions of the sequential code can be found in Appendix B and D

respectively.

NS)
w
| S MY
Solution)
Vector(s Add
R t .
G,,f.!’,’;';o, Terminate Live
Check Node
toQ
J § Solve
Next \1—'—)
Live Node
Solution
Report
t v
Live Node Q
Live Node |
E-node
Controll Select
‘y!._- User ontroller ext
[) E-node
E-node Live Node ___/
!
E-node Live Node(s)
E-node Children of E-node Bound
Expander Check
" Figure 15: Branch & Bound Dataflow Diagram

41

‘s b'a t‘alad'nt'sa k' A

Before moving to the next step in the object-oriented design, the representation of a node
in the search space must be described. For this research, a node in the branch and bound
search problem is represented as a vector, (x1,X9,..., X;) (16:323). Each x; is constrained
by explicit and implicit constraints. First, the explicit constraints define the range of values
that each x; can be assigned. For example, x; € {0,1} is a set of explicit constraints. The
x;'s can have the same set or different sets of explicit constraints. All nodes in the solution
space satisfy the explicit constraints. The second set of constraints, called implicit
constraints, define the relationships among the x;'s. The bound function insures that the
implicit constraints are met. Any node in the solution space that meets both the explicit and

implicit constraints is an answer node.

Using the dataflow diagram (Figure 15), all objects in the problem domain as well as the
~ attributes for each object can be defined. Branch and bound search has the following

objects.

Object Altributes

Problem Solver Solution Vector
Solution Explicit Constraints
Solution Implicit Constraints

E-Node Expander Solution Vector
Solution Explicit Constraints

Bound Check Solution Vector
Solution Implicit Constraints

Termination Check Terminate Condition

Controller Current State of the Machine
List of Live Nodes

42

. P S P S R S N R T R IR R e R N LI R R I o . AP 7 A RN A PRI I S TR
AR AT A5, L R AL NS T Al O, O, QSOOI R L AU A SR AU N A R A R N NN

(2.

2’4

'8 ¢

Tl TR N LN LD v 'L WX . 14 w VX Rl A C X8 8o

Identify Operations

Next, determine the operations performed by the object and required of the object.
During this design step, the designer identifies timing considerations as well. This timing
information is vital to identify the parallel and non-parallel parts of the problem. First,
examine the operations performed by the objects. Booch points out that these operations

roughly match the data flows into an object (4:219).

Object Qperation Performed by the Object
Problem Solver Find all Children of an E-Node

Examine Live Nodes for Solutions and Answers
E-Node Expander Generate the children of an E-node
Bound Check Check the Children of an E-Node

against the Explicit Constraint Function
Termination Check Check if solution meets terminate condition
Controller Solve the Problem

Collect Live Nodes

Collect Answers

Notice the Controller does not distinguish between a Problem given by the user and
expanding the next E-Node for a Solution. Since the User's Problem as well as the E-Node

can be any valid state space vector, the Controller does not have to make the distinction.

Next, the operations required 'of the object’ are defined. Booch points out that "these
operations roughly parallel the action of a data flow from an object” (4:219).

Qbject Operation Required of the Object

Problem Solver Expand E-Node
Determine if a Live node = Answer

E-Node Expander Generate all Children of an E-Node

43

O R P PN A A N R N S O A A N F T A AT e O R N A A g R R R e

Le,

>’

TR @
h \"1\‘ LY ;\)" ‘J\J

Lo

Object QOperation Required of the Object

Bound Check Send Live Nodes to Problems Solver
Termination Check Check for termination
Controller Solve the Problem

Add a new Live Node to the Heap
Check for Problem Termination

Before moving to the next step, the designer must identify the timing relationships among the

objects.

loop

if Problem has Terminated then
End

else
Get a Problem to Solve -- get E-Node
Solve the Problem -- expand E-Node
Check for Bound Conditions

repeat

Wah used this timing information to define four branch and bound ‘processes’ that can run
in parallel, (1) Parallel Termination Check; (2) Parallel Problem Selection; (3) Parallel
Problem Solution; and (4) Parallel Bound Check (35:96).

Establish Visibilif
This step, establish object visibility, defines the topology of the solution space and the
structure of the parallel solution. Using a diagram such as Figure 16, the designer identifies
the dependencies among the objects. The object model at this point creates a continuum of
possibilities for parallelism. At one end of the scale, all objects are placed on one processor.
Programmers do this today when writing a sequential program. At the opposite end of the
spectrum, each object or a collection of objects are placed on a separate processor. The
optimal parallel solution lies somewhere betwcen these extremes. An examination of some

visibility diagrams points out how the parallel visibility analysis works.

PR Ly ’J‘ e '4' e 4 O o e o e e e e
T Y . P N

Problem
Solver

Terminate
Check

E-Node
Expander

Figure 16: Sequential Branch and Bound Object Visibility Diagram

® The first parallel visibility diagram shows a collection of worker processors (Processor
o #1 --Processor #N) whose sole purpose is to solve a particular problem (see Figure 17).
The remaining objects (controller, bound check, terminate check, and e-node expander) are
placed in another processor. Of the four parallel 'processes’ defined in the timing analysis
by Wah, this visibility strategy attempts to create parallel activity by solving several problems
at once. But, this configuration of objects creates a communications bottleneck at the

Processor with the controller, e-node expander, bound check, and terminate check. Such a

design would limit parallel activity.

45

v o -] o %) ™™ » - L T S N) wl » waw v. h..\ ‘- ‘-‘ ., - Ty .-‘\ - Ir\ -
| T T N R 0y O gt W ST TR S S S AT ¢ Ak A WO S A R VR o A

®

=

B e P L P e A B A W e Y M s A R

1.t

o gia g

Processor
Bound E-Node
Check Expander
Terminate
Check

Processor-1 Processor-2

;

Problem
Solver

Processor-N

Problem
Solver

Figure 17: Parallel Object Visibility Diagram #1

In the second parallel visibility diagram, an attempt to increase parallel activity is shown
(see Figure 18 on the next page). Here, by distributing complete problem solving objects,

the problem solver, the e-node expander, and the bound check, some of the computation

_ workload of the Central Controller is shared. In this formulation of parallel branch and

bound, the Central Controller would also be useful in searches that incorporate global

boundaries. Unfortunately, the communications bottleneck still exists at the controller. This

bottleneck limits parallel activity.

"1 . \)\..\‘.M'\‘.\ “\a

PN Y

ce eaEm o ® A A A_F.a. awn

"""" I
NSNS

N O N N N I NI I I S A NN xoe g R a4 R Banda b0 g 2 3

Processor

Terminate Bound ,_
Check Check :

Processor-1

Problem
Solver

E-Node

Expander Bound

Check

Processor-N

Problem
Solver ¥

E-Node Bound
Expander Check 4

Figure 18: Parallel Visibility Diagram #2

2

-

»"
v %
-

>

47

\

VE\ t"‘k" \E-' E'CMQ'_\RLR? ."E‘M‘ \'&'-!\'l-.}I‘t\.'t-.}-.-'i:‘.s' ‘\

Finally, the paralle] visibility approach used in this thesis is shown in Figure 19. In this

parallel design, several instantiations of complete branch and bound search processors are
controlled by a Meta-Controller. The Meta-Controller is used to keep Worker Processes
busy, maintain the machine state, and terminate the search. This formulation also works
well for state space searches with dependencies generated from other branches of the solution
space (global dependencies). If a branch and bound search has a global dependency such as
an upper or lower bound, then the value of this bound must be available to all branch and

bound processors. The Meta-Controller can be used to distribute this bound.

Before leaving this design phase, a mapping from the object-oriented design strategy and
the process model of computation can be completed. Notice that the object model describes
the problem space as fine grained' objects that communicate via message passing. The
process model of computation defines a computer system where processes communicate

& using messages as well. A direct mapping of a process to an object can be made. Or, for
efficiency and reduced communications overhead, a collection of objects (on one node) can
be consolidated into one process. Therefore, the object model defines the problem space as
fine grained' and the process model implements the solution as fine or coarse as needed for

efficiency.

S

L

B e P e N e YTt Tt Y e

Y
\i\j

Meta-
Controller

Terminate
Check

Processor-1

Terminate
Check

Problem
Solver

@
E-Node Processor-N
Expander
Terminate Problem
Check Solver
E-Node
Expander
Figure 19: Parallel Branch and Bound Visibility Diagram used for this research
B .. \
R
49
O POt TRt S P OSSN I

Wﬂmmmmmwmwmmm“'v

Now, the message passing interface is created for each object. This interface describes
the external or abstract behavior of the object while the implementation details of how the
object performs its operations are hidden (4:214). The interface specifications for the branch
and bound search are described below.

Meta-Controller — User
* Accept Initial Problem Vector from User
» Maintain State of the Machine
« Find a Solution to the Initial Problem

Meta-Controller — Controller
* Broadcast Global Upper Bounds
* Distribute problems to solve

Meta-Controller — Terminate Check
* Find all Solutions
* Find the first solution
* Find an optimal solution based on additional constraints

@ Meta-Controller — Bound Check
: *Maintain Global Upper Bound(s)

Controller - Meta-Controller:
* Accept Problem Vector from Meta-Controller
* Find all solution to the Problem Vector

Controller — Problem Solver:
* Given an E-Node return Live Node(s) or Answer Nodes(s).

Controller — E-Node Expander:
* Given an E-Node generate all Children.

Controller - Bound Check
» Given a Child node check against implicit constraints

Controller — Terminate Check:
* Receive a terminate message from the Meta-Controller

Sy
A

50

- - - - o -

R R R R G T A S N R R Rt R R R S A E R R L AR LR SR St SO TR CNCAL RS ST SN X0 24 0
£ f 3 LA . . 5 . y . = N . M . » » s

® e N Ve et s e’ Haka¥at Jal o¥a? hat ve anat 5 oot Aaf g2t gl aod $a8 pob. ut ok el ol 'S i rve

From these speciﬁcaﬁons, the programmer implements a branch and bound search for a
specific problem. But, before going to the final step in this design, it is important to
understand the importance of the interface. Simply stated, the interface specifications must
be defined with parallel operations in mind. The Controller and the E-Node Expander
interface is a good example as shown in Figure 18: Parallel Visibility Diagram #2. Assume
this interface is defined as follows:

E-node Expander — Controller
*» Given an E-node generate one child

And given the following problem state,

Live Nodes Available Processors
Initial Problem {1,2,....N}

no parallel activity could occur. First, the Controller selects Processor #1 and the Initial

Problem for expansion. This would leave the state of the machine as,

Live Nodes Available Processors
<Empty> {2,....N}

There is no more work left for the remaining available processors. Once Processor #1

returns from solving the initial problem, the state of the machine will be,

Live Nodes Available Processors
New Live Node {1,2,...N}

51

w X N L) 2) A

N

S

TV T W O Y TR

(®

e

~X-

Once again, the first processor is tasked to solve the only problem in the Live Node pile.

Therefore, this interface specification does not promote parallel activity. With the following

interface, parallel activity is much more likely,

E-node Expander — Controller
* Given an E-Node generate all Children.

The sequence of states for the Controller would now look something like this,

Live Nodes Available Processors
Initial Problem {1,2,....N}

Live Nodes Available Processors
Live Node-1 {2,...,N}

Live Node-2

Live Nodes Available Processors
Live Node-k {....N-2N-1N}
Live Node-k+1

Live Nodes Available Processors
Live Node-n-2 {...N-2N-1N}
Live Node-n-1

Live Node-n

Now, when Processor #1 becomes available, other processors have been creating more
problems to solve. This analysis points out the limitation of the design and the
communications bottleneck in the second parallel visibility diagram. A thorough analysis of
cach interface, such as the one described above, is necessary. A poor interface could limit

the maximum parallel activity of a problem.

52

SIS l}\} ~ } '.';)"".E\}:‘ !\.f -}:}:&}t&i

:

1
[

ey

Implement the Objects
The final step in an object design is to implement the objects. The internal view as well

as the details of how the object performs its operations is now defined. Many times a
complex object can be implemented from lower level objects thus creating a hierarchy. For
example, the Meta-Controller keeps a list of Live Nodes in a queue data structure. This
queue is in essence a lower level object with operations and attributes of its own. Systems
developers can also experiment with different implementations as long as they obey the

interface specifications.

Conclusions

Search is a sequential, centralized control strategy used to systematically examine the
solution space of a problem. To map this strategy into a parallel solution, the object-oriented
design methodology and the object design approach as defined by Booch was used. In fact,
the object design model proved to be quite useful in describing the problem of branch and
bound search as well as extracting parallel activity. While this chapter presented a general
design of parallel branch and bound, specific problems must be implemented for
performance experiments. To reach this goal and to complete the parallel design, the next
chapter presents details of the parallel N-queens and parallel deadline job scheduling

implementations.

[P Oy W W WP P W W P ap aeerep.

V. Paralle] N-queens and Paralle]

In the previous chapter, a general object-oriented design for the branch and bound search
was presented. Using this design, the details of the two search prc’lems can be addressed.
The first class of search, backtracking search, is exemplified by the N-queens problem. The
goal of the N-queens search is to place N chess queens on an N-by-N playing board such
that no queens are attacking. The characteristics of the N-queens show exponential time
complexity along with an exponential number of answer nodes in the solution space. During
the backtracking search, the nodes in the solution space are examined using a depth-first
while certain branches of the search tree can be pruned using a simple bound function (see
Chapter IV, Parallel Branch and Bound). The second class of search, least-cost branch and
bound, is modeled by the deadline job scheduling problem. The goal of this problem is to
find the largest subset of jobs that can be run by their respective deadlines while minimizing
the total penalty incurred. Such a problem can exhibit exponential time complexity in the
worst case scenario and linear complexity in the trivial case. In all cases, the deadline job
scheduling problem is exemplified by a small number of answer nodes in the solution space.
During the least-cost branch and bound search, the nodes in the solution space are examined
in least cost order and branches of the search tree are pruned by two bound functions. The
discussions of the paralle] implementation of these two search problems open with a
description of the implicit and explicit constraints as well as the implementation of the
solution vector. This is followed by the implementation details of each object as defined in
the object-oriented design. The results of the performance experiments are then presented in
Chapter VI

54

rm“mwmmmwm“““thﬁ ATE M AW TR T AR LT v

Before examining the implementation of each branch and bound object, the implicit and
explicit constraints as well as the solution vector must be defined (16:337-339). The
N-queens problem can be solved with a vector, (x{,xy,...,X), where x; is the column on

which queen i is placed. For example, the 4-queens problem has a solution vector of

Lo gran 2 & Vo o o b SN 4

(x1,X2,X3,X4), and the value of x; would identify the column number of the playing board

kot g i

in which queen #1 is placed. Each x; in the vector is bound by explicit and implicit
constraints (see Chapter IV, Parallel Branch and Bound, for details). The explicit constraints
define those values that can be assigned to each x;. For the N-queens problem, the explicit
constraints are defined as x; € {1,2,...,N}. For example, the explicit constraints for
4-queens problem are x; € {1,2,3,4}. Given the definition of the solution vector and the
description of the explicit constraints, a valid solution node in the 4-queens search space
. would be (1,4,2,3). Figure 20 shows a corresponding diagram of the playing board. Since
C every node in the solution space meets the explicit constraints, Figure 21 on the next page
shows the partial solution space of the 4-queens problem as well. The grey node in the

Figure 21 represents the example solution vector (1,4,2,3).

)

Figure 20: Board positions for solution vector (1,4,2,3)

P
LA

55

LIS " e ‘ AL P P N)
ROV AN M ST A

- e e

o

h

s
(X4

4 f,p-’. LY, e o

1%

X1=4

x1=1

x1=3

x1=2

X2=4 X2=1 X2=4 x2=1 X2=4

X2=2

SR07 1L I MY

56

326)

Partial Solution Space for the 4-queens problem (16

Figure 21

.' \'f\ ‘-\J‘ -"'-' -'.\'\"n’:'-"\"-."‘v"\'-."\"\.‘\ -'\-‘- ...

-

e

-.‘ Y

*;355 The second set of constraints, implicit constraints, define the relationship among the various
x;'s. The nodes in the solution space that meet both the explicit and implicit constraints
define answer nodes to the problem. The implicit constraints for the N-queens problem do
not allow any queens to be in the same column or to be placed on a common diagonal or
subdiagonal. The example solution vector (1,4,2,3) clearly violates these implicit constraints
(see Figure 20) and therefore cannot represent an answer node to the 4-queens problem.
With these constraints in mind, Figure 22 shows the board positions and the black node in

Figure 21 identifies the answer node, (2,4,1,3) to the 4-queens problem.

Figure 22: Board positions for answer vector (2,4,1,3)

Based on the implicit and explicit constraints, the implementation of the solution vector
for the Parallel N-queens problem is a simple one dimension array of N+1 elements. The
first element of the array is used to maintain the state information during the search. Using
the first element to maintain the state, an explicit live node queue is no longer needed. All
information to conduct the search is contained in the current solution vector. In the case of

the N-queens, the state information needed is the identity of the next queen to ‘place on the

B A R A S G L% X

board." For example, the solution vector (1,3,+,) shows queen #3 (vector[0]) as the next

@)

b 0gt Kgt)

queen to place on the board. The remaining elements of the vector correspond to queen #1
placed in column 1 (vector[1]) and queen #2 placed in column 3 (vector{2]). From this

example, the solution vector array would have the following values,
vector[0] =3 vector[l]=1 vector[2]=3

For the N-queens search, the live nodes are examined in the order they enter the live node

queue. Therefore, the branch and bound cost function parameters are defined as follows:

h(X) = 0 (all nodes have the same cost)
g(X) =0 (estimated cost not used)

¢'(X) = Depth First Search

The next sections describe the implementation of each object for the parallel N-queens problem.
It may be useful to follow the implementation of the parallel N-queens with the visibility
diagram developed in the object-oriented design of parallel branch and bound (see Figure 23).

N-queens Control Process

Overview. Focusing on the top processor box in Figure 23, three objects, the
rmeta-controller, the terminate check, and the bound check, work together to control the
progress of the parallel search. The meta-controller becomes the central control, the terminate
check identifies the stop condition, and the bound check could maintain global bounds
throughout the search. Because the N-queens problem does not maintain global constraints,
the bound check is not implemented. As recommended by Intel programmers, communications
between processes must be minimized for efficient use of the iPSC architecture (17). There-
fore, to reduce communications overhead, two objects, the meta-controller and the terminate

check are grouped into one iPSC process called the Control Process. A detailed description of

both Control Process objects follows.

L aB cn oAb s o o

LER P at =

= T

(o

Tw:

PR

o
NS

.

Processor

Terminate
Check

Meta-
Controller

Processor-1
Terminate Problem
Check Solver
Controller
E-Nodo > Processor-N
Expander Check
Problem
Solver

E-Node
Expander

Figure 23: Object Diagram for Parallel Branch & Bound

59

- \'.-.. ‘f)q'\-f\I\J\ N

>
%23 Meta-Controller. The meta-controller for the paralle]l N-queens performs three major

s

-
)

o700y,

operations; (1) keep a list of problems; (2) keep a list of idle worker nodes; and (3) give
problems to the worker nodes to solve. First, the list of live nodes (list of problems) is
maintained as a FIFO queue data structure. Before the parallel search begins, the meta-
controller creates an initial list of problems to solve. This translates to generating the first
levels of the search tree. Through experiments, the optimal number of problems to create
was determined to be § times n, where n is the number of processors in the hypercube. It
should be noted the experiments for this thesis have been optimized for large board sizes.
Since the N-queens problem is solved using the depth-first search method, all live nodes are
expanded in the order they enter the queue. The second task for the meta-controller is to
maintain a list of idle worker nodes. Using a status array with two status values, BUSY or
AVAlLable, the Worker Processes send WORK REQUEST messages to the Meta-Controller
when they need work. The meta-controller in turn sets the node status to AVAILable.
Finally, the controller must assign problems to the worker nodes. Before a problem can be
assigned, two conditions must be met, (1) the live node queue must not be empty, and (2) a
worker node must be AVAILable. After passing these two conditions, the meta-centroller
picks a problem from the live node queue and sends it to the worker. The worker status is

then set to BUSY. Notice in the parallel environment, several nodes are expanded

simultaneously.

Terminate Check. For the N-queens experiments, the termination condition was to find
all solutions. This condition occurs when the live node queue is empty and all of the worker
nodes have posted WORK REQUESTS. This translates to a machine state where no more
work is available and all of the workers need something to do. Once this condition occurs in

the Control Process, the meta-controller sends KILL messages to all Worker Processes.

f,

_ P S P SR S T RIS R T R I A TS IR
TR G T TAT N ..f.’"-',.f~(\f$f~ \,‘V’.'I"I_‘\-I‘,\I‘..-“\-r SN N D A A N Aol

-

~~~~

R TI "

-



W“mwmm E o2 at 4f gt Sal. at Sat - v, pRo al, Sla gia Aia gea Ate Mo bl dieedeiednedabedadkediatdh bt

Overview. Examining Figure 23 once again, processor #1 through processor #N
contain a complete branch and bound problem solver. In this case, for efficiency and
reduced communications, all five branch and bound objects are collected to form the iPSC
Worker Process. The Worker Process is a modified version of the sequential N-queens
code. Most of the modifications include communications functions so the Worker Process
can send and receive information from the intermediate host and the Control Process. The

details of the Worker Process objects follows.

Controller. The controller object initializes the worker node by receiving the board size
from the intermediate host and sending a WORK REQUEST to the Control Process. The
controller then enters an infinite loop waiting for a problem to solve. If an E-node message

. arrives, then hand the E-node to the problem solver. Once the problem solver object
G'. finishes, send a WORK REQUEST to the Control Process. If a KILL message arrives,
‘break’ the infinite loop and terminate the Worker Process.

Problem Solver. The problem solver is contained in a 'while' loop within the controller.
Upon receiving an E-node message from the Control Process, the problem solver searches

the subtree defined by the E-node. The goal of the problem solver is to find all answer nodes

in the subtree.

E-Node Expander. Given an E-node, the next queen to place on the board can be found
in the first element of the E-node vector, vector[0]. Using this value, generate all children of
the E-node. For example, E-node (2,,%,*) has the following children, (2,1,%,¢) (2,2,
(2,3,%°) and (2,4,,°).

61

KPR FNENNRANIY B oS WSVl § & - .~ =

4
1}

s

.
"'v
]
.




Y.
g Bound Check. The bound check ensures that the implicit constraints of the problem are
met. As the children of the E-node are generated, the bound check makes sure that the new

vector represents a valid board position. A board position is valid when the new queen is not
on the same column or on a common diagonal or subdiagonal to another queen. For
example, the E-node (2,¢,+,*) has only one yalid child, (2,4,+,%). It should be noted if the

last queen is placed on the board in a valid position, then this vector defines an answer node.

Terminate Check. The terminate check for the Worker Process is a KILL message from

the meta-controller.

The details of the C Language implementation of the Intermediate Host program, the
Control Process, and the Worker Process for the parallel N-queens can be found in
Appendix A. Besides a description of the source code, a trace of an example problem is
shown. For comparison, a sequential version of the N-queens problem was run on a DEC
VAX 11/785 and on an Elxsi System 6400. The source code and description of the
sequential N-queens can be found in Appendix B. The implementation of the parallel
N-queens proved a problem traditionally solved using a sequential computer can be mapped
to a parallel architecture. It should be noted that the N-queens search is considered a simple
search because no global bounds are maintained and subtrees can be solved independently
from the remaining parts of the search space. Therefore, the performance of a more complex
search must be examined. The deadline job scheduling problem meets this requirement.
Using a least-cost branch and bound technique, the deadline job scheduling problem
maintains a global upper bound as well as a global best solution. While these additional

constraints are easy to maintain using a sequential processor, they impose additional

62

mLe L eansug et T a T w " LI T T P S T T T T I e T Tl e T e e P S O A S
N N A Y N N A A A A N A N N A A A B A N A A P SR AL AC RO AT S I




@' complexity to the parallel solution. The following sections describe the deadline job
scheduling (DJS) constraints and the implementation of the DJS Control Process and the DJS

Worker Process.

The ultimate goal of the deadline job scheduling problem is to find the largest subset of
jobs that can run by their deadlines while minimizing the total penalty incurred. Before
examining the implementation of the parallel search, it is important to understand the
constraints and the solution vector of the problem. The deadline job scheduling solution
vector, (X1,X9,...,Xp), contains a value for each of the n jobs. The explicit constraints for
this problem are simply, x; € {1,0} where 1 denotes that job i is included in the schedule
and O denotes that job i has not been included into the schedule. For example, a 4-Job
problem has a solution vector of (x},x2,X3,x4), and a valid solution vector would be
(1,1,1,¢). This solution vector defines the search state where jobs 1, 2, and 3 have been
scheduled and job 4 has not been scheduled. To help the reader in understanding the DJS
constraints, the following job set will be used in examples throughout this section (16:384),

Iob p; di §
; 1 51 1
’ 2 103 2

3 6 2 1 )
‘ 4 31 1

where,

! p; = the penalty for not scheduling job i.

i d; = the deadline by which job i must be completed.
t; = the time to run job i.

V

)

Do,
A 'N

63




Aed'anadatal ol g o d's oo B g3, tie R bl Rie Al

4\7 Using the definition of the explicit constraints, the solution space of the example job set is
depicted in Figure 24. The grey node identifies the example solution vector (1,1,1,+). The
second set of constraints, implicit constraints, define the relationship among the various x;'s.
The nodes in the solution space that meet both the explicit and implicit constraints define
answer nodes. The first implicit constraint for the DJS problem is called the Deadline/Total
Time Bound. This constraint requires a job to be schedule such that the total run time for all
jobs included in the schedule does not exceed the maximum deadline. Referring to the
example 4-Job problem above, the solution vector (1,1,¢,%) passes the Deadline/Total Time

implicit constraint because the maximum deadline of jobs #1 and #2 equals 3 and the total run

v

time of jobs #1 and #2 equals 3. However, the solution vector (1,1,1,+) does not pass the
Deadline/Total Time Bound because the maximum deadline of jobs #1, #2, and #3 equals 3

and the total run time of those same jobs equals 4.

The second implicit constraint, Cost/Upper Bound constraint, is based on the cost of the
node and a global upper bound. The cost function is calculated in two steps (16:386). First,

find m where

m=max{ili€e Sy}

and S, = the subset of jobs examined at node X.

Next, compute the cost of node X using the following equation,

¢ (X) = z pi

ism
i€)

]
f where J = the set of jobs included in the schedule at node X.
!

e




9oedg uonnjog 3ulnpayos qof Jul[pea(] qof-p djdwexq :pg aundty

OO O0OOOOO® ®OOGC
0=px 0=pX 0=px 0=bx 0=pX
D & D O & & o -
N N e N\ N\ S |
o o o ) i
0~2x 1= 0= 1=2x
0 ©
~
®




&

The cost of a node translates to the total penalty paid of all jobs that have not been scheduled
so far. The cost of each node of the example job set is shown inside the circles of Figure 24.

For example, the cost of solution vector (1,0,*,¢) equals 10 because,

S, = {1.2}

m=max{ilie S;} =2

J ={1}

(M0 = D, p. =10
is2 1
ie {234}

The second part of the Cost/Upper Bound constraint is the upper bound of node X. Itis
defined by the following function,

U@ = ) p

iel

The value of the upper bound identifies the maximum cost solution node in the subtree rooted
at node X. For example, node (0,1,,¢) of the tree in Figure 24 has an upper bound of 14
since the cost of solution node (0,1,0,0) equals 14 and solution node (0,1,0,0) is the highest
cost node in the subtree. During the search the lowest upper bound is kept as a global
bound. The global upper bound is defined by the following function,

global upper bound = min{U(x), current global upper bound}

where, x is a child of the current E-node.

* [T ... R
T ALY .r .-".r".l-‘ A




oA (
A Based on the cost of the node and the present value of the global upper bound, a child of an !

E-node becomes a live node only if the cost of the child is less than the global upper bound.

From the definition of the solution vector and the DJS constraints, the implementation of :
the solution vector for the parallel job scheduling problem is represented as a C Language B
structure (Pascal and Ada record type). The first field of the structure is the state vector ")
defined by a one dimensional array of N + 1 elements. Following the model in the N-queens
problem, the first element of the array is used to maintain the state of the search. Hence, the
value in vector{0] identifies the 'next job to schedule.’ For example, the solution vector
(1,0,,7) identifies the problem state where job #3 (vector[0]) is the next job to schedule, job .
#1 is included in the schedule (vector{1]) and job #2 is not included in the schedule

(vector{2]). From this example, the state vector would have the following values, .
vector[0] =3 vector[1]=1 vector[2] =0

The second field in the C Language structure is the cost of the state vector. Because the state
vector represents a node in the search space, the cost of the state vector can be determined

using the method described in the Cost/Upper Bound discussion.

For the deadline job scheduling search, the live nodes are examined in least-cost order.

Therefore, the branch and bound cost function parameters are defined as follows:

h(X) = Cost of node X
g(X) = Upper Bound

¢'(X) = Least-Cost Branch and Bound

Ly
v
.




&

p - w-

R 2%

”.

W LA WA |. » Py ’

R AT I U R T U O RN AR A T A O R e Y T e &' abs B'am A

The next sections describe the implementation of each object for the parallel deadline job
scheduling problem. It may be useful to follow the implementation with the visibility diagram
developed in the object-oriented design of parallel branch and bound (see Figure 25).

Deadline Job Scheduling Control Process

Overview. Focusing on the top processor box in Figure 25, three objects, the
meta-controller, the terminate check, and the bound check, work together to control the
progress of the parallel search. The meta-controller becomes the central control, the terminate
check identifies the stop condition, and the bound check maintains global bound throughout
the search. As recommended by Intel programmers, communications between iPSC
processes must be minimized for efficient use of this parallel architecture (17). Therefore, to
reduce communications overhead, three objects, the meta-controller, the bound check, and the
terminate check are grouped into one iPSC process called the Control Process. A detailed
description of the Control Process objects follows.

Meta-Controller. The meta-controller for the parallel deadline job scheduling performs

five operations;

(1) Keep a list of problems

(2) Keep a list of idle worker nodes

(3) Give problems to the worker nodes to solve
(4) Maintain the global upper bound

(5) Maintain the global best solution

First, the list of problems (live nodes) are kept in a priority queue data structure. This queue
maintains the live nodes in least cost to highest cost order. From this data structure, the
least-cost live node is always expanded first and hence the name, least-cost branch and
bound. Second, the controller maintains the list of idle worker nodes using a status array

with two status values, BUSY or AVAILable. The workers send WORK REQUEST

68

N O X WA € P A" R T A N YT AR T n " B n ™ 3 T BAY RN n TV A AT AN SN e e e Y



% Processor

Terminat Meta-
%'l:‘el::‘l? ¢ Controller %«l)‘z::‘l
Processor-1
Terminate Problem

Check Solver
| @

E-Node Processor-N

Expander
i :

E-Node

Bound
Expander Py

oS Figure 25: Object Diagram for Parallel Branch & Bound




N UGV ITRTEERFTILSTF W 1€ T NN Ty

PRI,

‘7&1} messages to the controller when they need work. The controller in turn sets the node status
to AVAILable. Third, the controller assigns problems to worker nodes. Before a problem
can be assigned, two conditions must be met, (1) the live node queue must not be empty, and
(2) a worker node must be AVAILable. After passing these two conditions, the controller
picks the live node from the front of the queue and sends it to the worker. The worker status
is then set to BUSY. Finally, the meta-controller collects intermediate answers from the
Worker Processes. These local’ best answers are handed to the bound check where the

global upper bound and the global best answer is maintained.

Terminate Check. The terminate condition for deadline job scheduling problem is to find
the first solution. This condition occurs when the live node queue is empty and all of the
worker nodes have posted WORK REQUESTS. This translates to a machine state where no
more work is available and all of the workers need something to do. Once this state occurs,

. the Control Process sends a KILL message to all Worker Processes.

Bound Check. Workers calculate local' best solutions and send them to the meta-
controller. As the local ‘best' nodes enter, the bound check compares the upper bound of
this new 'best’ node to the current global upper bound. If the upper bound of the new live
node is less than the present upper bound, then a pew best solution has been found and a
new upper bound has been calculated. The meta-controller stores this node as the best

solution and broadcasts new upper bound to all workers.

Pt
254

70 |

et e mmea e et aa mm A ettt e tae e st T L TR
P . v - . . SR S " DA A e R -
MU N A AR R SO SRS G SOOI . SN . .

3



WNMMW’MTXWWWWmMWmem TG WETEY wry W m

IR
@  Deadiine Job Scheduling Worker Process
Overview. Examining Figure 25 once again, processor #1 through processor #N

contain a complete branch and bound problem solver. In this case, for efficiency and

reduced communications, all five objects are collected to form the iPSC Worker Process.
Because of the lack of memory at an individual iPSC node, the DJS Worker Process solves
the job scheduling problem using a different method as compared to its sequential
counterpart. While the sequential version of deadline job scheduling conducts a complete
least-cost branch and bound search, the iPSC Worker Process uses a 'blind’ depth-first
search of the solution space. The depth-first method can be conducted without an explicit
queue and therefore is not impaired by a memory space limit. The following sections
describe the iPSC DJS Worker objects.

Controller. The controller initializes the worker node by receiving the list of jobs to
‘%" schedule from the intermediate host and by posting a WORK REQUEST to the Control
Process. The controller then enters an infinite loop waiting for a problem to solve. If an
E-node message arrives, then send the E-node to the problem solver object. Once the
problem solver finishes, send a WORK REQUEST to the Control Process. The controller

terminates upon receiving a KILL message from the Control Process.

Problem Solver. The problem solver receives an E-node (a subtree in the search space)
from the control object. The goal of the problem solver is to search the subtree rooted at the
E-node. To do this, the problem solver conducts a simple depth-first search of the subtree.
During the search, the problem solver receives the most recent global upper bound from the
meta-controller. Additionally, the problem solver keeps track of the local 'best’ solution.

Upon finishing the search of the subtree, the problem solver sends the new best solution to

....... e n o mp Ny SN p AN T T j
PAATLHA HORGI, SR B A VLG UUN, O LG



the Control Process. It should be noted the new 'best' node is only a Jocal optimum and it is

the responsibility of the Control Process to keep track of the global best answer.

E-Node Expander. An E-node is expanded by calculating two children, (1) child one
attempts to schedule the next job; and (2) child 2 does not schedule the next job. For
example, E-node (1,1,¢,°) of a 4-Job problem has the following children, (1,1,1,¢), and
(1,1,0,).

Bound Check. As the children of the E-node are generated, the bound checks insure that
the next job can be scheduled by evaluating the Deadline/Total Time Bound and the
Cost/Upper Bound constraints. Using the 4-Job example, the first child of E-node (1,1,,¢
is (1,1,1,+). This child does not pass the Deadline/ Total Time Bound because jobs #1, #2,
and #3 have a total run time of 4 and a maximum deadline of 3. Hence, child 1 does not
become the next live node. The second child, (1,1,0,*), may or may not be valid because of
the dependency upon the value of the global upper bound when E-node (1,1,s,°) is
expanded. The cost of node (1,1,0,%) is 6. It will become a live node if the global upper
bound is greater than 6.

Terminate Check. The Worker Process terminates when the Control Process sends a
KILL message.

The details of the C Language implementation of the Intermediate Host program, the
Control Process, and the Worker Process for the parallel deadline job scheduling can be
found in Appendix C. For comparison, a sequential version of the job scheduling problem
was run on a DEC VAX 11/785. The source code description of sequential DJS can be

72

T PO RIUARN T UVPY PRI RAAAITIEYE Jd eSS e ol JuArlSsas( |

AER # L s v s S O e A

s N1ER S & T &L




VLI VA VEAE WY TLAT LI PLEN TR VLEE VLAY VLECTLE T T T

Fla .
5&' found in Appendix D. A trace of an example problem is also included in Appendix D. The

implementation of the parallel DJS proves once again a problem traditionally solved using a

|
|

sequential computer can be mapped to a parallel architecture. Even though the Worker
processes in the parallel use a different search method, this implementation shows how a
more complex search with global bounds and a global best answer can be solved

concurrently.

Conclusions

The implementations of the parallel N-queens and parallel deadline job scheduling follow
the object-oriented design developed in Chapter IV. While the details of the actual source
code was not presented, the implementation of the objects and the packaging into iPSC
processes was defined. Using these implementations of parallel search, the performance of
these two problem can now be measured. The next two chapters defines the performance

C‘ measures used in this research and presents an analysis of the experimental results.

.Au‘
..\‘\’

73

%

....................
b ’ 'n'-'-'.-.‘."' . = .l'u. . \ ----------
Mt T e %t e e T e
L_‘."‘_" PR RN I AP S lpet et L A_‘L'L'L n:‘ ‘I_'A.‘in_'n. NS L\-JA-\A.“-_'L"AJ IJL. A_{A-‘fL(JJ-iL*A_‘A“




@ V1. Performance Analysis and Experimental Results

The implementation details of the two search problems, N-queens and deadline job
scheduling were presented in the last chapter. Once these implementations were tested and
validated, a series of performance experiments were run. Many times one experiment needed

additional tests to explain and justify the results. Hence, three measures, Computation Time,

Speed Up, and Load Balance, are used to categorize the performance of the parallel search
problems and the iPSC computer. These measures were selected for three reasons, (1) most
researchers present these results in the literature; (2) most of the more complex performance
measures are beyond the scope of this research; and (3) these measures are valid for MIMD
programmed machines. (It seems most parallel performance research is constrained to SIMD
evaluations. See (27) for details). In the next sections, the three performance measures, the

( ) sequential baseline as well as the results of the parallel N-queens and the parallel deadline job
@
bt scheduling are described.

Computation Time

The first measure of an algorithm's performance is run time. Because the parallel

e

computational environment involves additional processes, one representation of the total

computation time of an algorithm is defined by the following formula (1:95),

ITN=Tg+T.+ T (1)
where
TN = Computation Time for N processors
Tg = Start Up Time
T, = Processors Computation Time
Ty = Wind Down Time

P

74

--------- R -\' O P Cet et et
A.f " “p J ’_ALfL_A L{A__A. .A’:A.;‘I‘.A:;L{L{L{.L'_L -

Wﬂnm’ bad Bal B2 el 028 2 i a8 Al oot 0 Lot Al Al ot AL et £ And Al ek Anl Ak Sefh Aol Auk bed Aol Ak Al b dad duk ded dedb Adbde

LAl A




L& aa oa o

)

¥ Start Up time, T, measures the time to initialize the parallel processor before any parallel

computations can begin. Start up may include such things as initial parsing of the job, initial
message transfers, or down load time of the programs to the parallel processor itself. The
second term, processor computation time T,,, measures the time the computer spends actually
solving the problem. This term is common in sequential processor run time analysis. The
final term in equation 1 is wind down time, T,. This time accounts for the gathering of
results from the various processors in the computer and analyzing or tallying those final

results.

Speed-Up
The second performance measure, speed-up, compares the time to compute a solution

using one processor and the time to compute a solution using N processors. It is defined as

. follows (26:28),

"‘5‘

S= Ti/TN ¢3)
where

T, = Time to compute a result with one processor
TN = Time to compute a result with N processors (Eqn 1)

The speed up of a problem run in parallel is easy to understand. If a problem can be parsed
into N subproblems, with each subproblem taking 1/N in the total computation, then the
maximum speed-up of N is achieved. The perfect speed up, N, is highly unlikely because
the overhead of the start up and the wind down time as well as the communications among
processing elements induce limitations on this measure. Properly, the T, time should be a
d-0 hypercube. Unfortunately, a single iPSC node could not support a queue large enough
to solve large deadline job scheduling problems. Therefore, the T time is calculated using
VAX 11/785. The Ty times are calculated for various size iPSC cubes.

75

v



(

v v Y VT Y

).

-

o " e e

" " g alaiatad ¥ ¢ s Bl ava @Y TR " gaaftat st _Ra' CRY O™ ¢t Rt B
.3 ‘¢ A “W T > 3 .

Load Balance

The third performance measure is load balance. Because of the nature of the design and
the branch and bound problem, the load is defined to be the number of E-nodes examined by
a Worker Process. Even though this is a simple measure, when plotted against the average
load performed across all worker processors balanced and unbalanced work loads can be
identified. Single Instruction Multiple Data (SIMD) problems that partition data to promote
parallel activity tend to have regular communication and computation cycles. These problems
show the best performance under balanced work loads (19). Since parallel search is a
Multiple Instruction Multiple Data (MIMD) problem, the éommunication and computation
cycles cannot be guaranteed to be regular. Hence, the load balance measure must be

evaluated along with the other performance measures before conclusions can be reached.

Baseline Performance

The sequential baseline for this research is a Digital Equipment Corporation VAX 11/785
running the 4.2 BSD (Berkeley Software Distribution) UNIX operating system. The VAX
is used as the sequential baseline for two reasons, (1) a VAX was available for this research;
and (2) the VAX is the defacto industry standard for performance measures. The config-
uration of the machine used for this research has 8 Megabytes of main memory and 1800
Megabytes of disk storage. The sequential versions of the N-queens and deadline job
scheduling problems were programmed in C Language. The source code for both problems
is in Appendices B and D respectively. The time information was obtained using the UNIX
"times" function. Of the four parameters measured by the "times" function, this research
focused on user_time. The user_time of a process is that time devoted to computation. The

overhead associated with system calls, page swaps, etc. was not used for two reasons, (1)

76



this research is actually interested in compute time of the algorithm and not operating system
overhead; and (2) the VAX is under various system loads during the course of the exper-

iments which would influence system time and the overall timing data.

Because the "times" function has a resolution of 1/60th of a second, the following
procedure was used to calculate the benchmark times. First, each of the N-queens and
deadline job scheduling problems was run ten times. Then, the highest time answer and the
lowest time answer were thrown away and the remaining eight times were averaged. Several
experimental runs show that the computation time calculated by the "times" function varied
by one or two clock ticks. Therefore, this averaging procedure reflects an accurate timing
analysis of the problem. It is also important to note for small problem sizes the 1/60th of a

second resolution resulted in some 'unmeasurable’ test runs.

An Elxsi System 6400 supercomputer was also available for this research. The
sequential version of the N-queens that was run on the VAX was also run on the Elxsi. The
Elxsi was unavailable for sequential deadline job scheduling tests. This machine is
configured with 16 Megabytes of main memory and 1896 Megabytes of disk storage. The
timing results were compiled using the UNIX "times" function and the same averaging

procedure as on the VAX.

Paralle] Performance Experiments

The results of the parallci versions of the N-queens and deadline job scheduling (DJS)
are presented in this section. Before listing the results, the experimental procedure should be
identified. After the paralle]l design, each problem was tested on the Intel iPSC simulator

running on a VAX. While the simulator creates a good environment to learn how to program

77




an iPSC, it does not show true parallel activity. Therefore, it should not be used to fine tune
a problem. After porting the code to the iPSC, the original design was modified to achieve
the best computation times. It should be noted object design worked well for an initial
implementation, but the best performance results were attributed to fine tuning on the actual
hardware. Details on the actions taken to fine tune the N-queens and deadline job scheduling
are discussed below. Onccl the run time versions of the problems were coded, tested, and
validated, then each problem was run on several cube sizes. The N-queens problems were
run on d-0, d-1, d-2, d-3, d-4, and d-5 hypercubes (where d=dimension). The deadline job
scheduling problems were run on d-1, d-2, d-3, d-4, and d-S hypercubes. The d-0 cube did
not have enough memory for the DJS d-0 experiments. For each experiment, an averaging
procedurc is used to calculate the timing results. The averaging steps included 10 separate
runs, removing the highest and the lowest times, and then averaging the remaining eight
results. The timing function for all runs was calculated using the iPSC Clock function on the
nodes. The resolution of the iPSC Node Clock function is 1/60th of a second. Once again,
the timing experiments show that the iPSC computation time for a particular problem was
within a 2 or 3 clock tick resolution. Therefore, the averaging procedure represents an

accurate measure of the computation time.

Paralle] N-queens. Tables of the performance measures for the parallel N-queens
experiments can be found in Appendix E. The data shown in this chapter has been plotted to
show trends and for comparisons. Upon porting the parallel N-queens software from the
iPSC Simulator to the actual iPSC, the original design was modified to achieve the best
computation times. The only parameter of the parallel N-queens used for fine tuning resides

in the iPSC Control Process. This process has the responsibility to create the initial set of

problems to solve. At some point in time, it becomes beneficial to stop creating problems ;




T

@ and to start handing them out to worker nodes. The results of the experiments for this

analysis have been tuned to large problem sizes by creating S time n  problems, where n

equals the number of processors in the cube.

First, an analysis of the time to compute the first solution of the N-queens problems
represents the simple case of an answer to a search problem. If any answer to a search meets
the requirements of the problem, then the time to first solution is important. Since the iPSC
has the additional overhead of a start up time, wind down time, as well as communications
among the processors, the hypercube matched the VAX and Elxsi while solving large
problems (see Figure 26). Therefore, for small problems the overhead appears to be
excessive. However, for larger problems (13-queens or greater), the advantage of parallel

processing becomes apparent.

Second, an analysis of the time to compute all solutions of the N-queens problem
represents the opposite case of answers to a search problem. These experiments model the
search for an optimal solution. As the computation time and speed up measures show, the
suitability of parallel processing is dependent on the problem size. Once again, for small
problems, the overhead of start up time and communications time within the iPSC
overwhelms the computation time of the problem. On the other hand, for large problems,
parallel processing demonstrates the possibilities for increased performance. First, the
inherent exponential behavior of search problems is shown in Figure 27. Cognizant of the
semi-log plot and concentrating on the VAX and Elxsi curves, the time to all solutions shows
true exponential time complexity. Notice that the iPSC d-4 and d-5 curves cross the VAX at
approximately the 8-queens mark. This translates to a speed up of one (see Figure 28).

Continuing the analysis, the d-4 and d-5 hypercubes show significant speed ups between the




ag® gat g% Bt gt gt

ti gfg Wy e 8 e’ v.

N W JE

uonN|Og 18I 0) durt], suadnb-N :9z am3ry

az1§ preoqg
OCO6ISBI LIGISIVIEIZIIION G 8 L 9 S ¥
1000
% o100
. 0010
S-POSdr m| —H——— 000'1 (295)
ST o suonnjos
: . sy
XVA -® 00001 so5ouny
000°001
000°0001
uonNIos 1s31g 000°00001
0} dwy
sudanb-N
e

80



suonnjos [[y 03 dul], sudanb-p :£z N34

s-pOsa 41
rpOSd! &
xg -O
XVA &

ozIS preog
cl It o1 6 8 L
suonnios IV
0) dwy)
sudanb-N

100
01°0
001
ooor1 (999)
suonn[os
e
orauny
007001
000001
00700001

W PR W o TEEe W X S ST EmuE e

81

o

»

Y

A IR NN NN N BN S

e % s N
QUG MO

»
Al

2 %
BN




—y——_

board sizes of 8 and 10. Beyond the 10-queens problem, the inherent exponential nature of

the search is introduced once again. For problems larger than 10-queens, the iPSC shows
'maximum parallelism' with a constant speed up. The d-4 levels to a constant speed up of ~7
over VAX and the d-5 hypercube reaches a steady state speed up of ~16 over VAX. The
speed up curves in Figure 28 reinforce this analysis by showing the reduction to the time
order complexity (increasing speed ups) followed by a leveling to an approximate constant.
It should be noted that smaller cube sizes show similar exponential complexity trends. (The
plots for the small cube runs are not shown, refer to the tables in Appendix E). While the
d-3 hypercube reaches a constant speed up of ~5, the d-2 cube and the Elxsi have approx-
imately the same speed up of 1.7 over VAX. Small hypercubes, 1-d and 0-d, show no
advantage to parallel processing with speed ups of 0.5 and 0.1 respectively.

One final observation can be made about the time to all solutions. Figure 27 shows that
the d-4 hypercube actually computed all solutions faster than a d-5 hypercube for small job
sizes. This phenomena is attributed to the fine tuning parameter as described in the
beginning of this section. For these experiments, the Control Process created S times n
problems to solve, where n is the number of nodes in the cube. This value was selected to
get the best performance from large problem sizes. If the Control Process creates 2 times the
number of nodes in the cube of initial problems, then the system is tuned to the 8, 9, and

10-queens problem sizes (see Figure 29). Therefore, the parallel search can be tuned to run

efficiently if the range of problem sizes are known.




XVA 2RAQ d() p3adg 1sx]g pue DS i :8z 4314

sz1§ preog

g ©
7P OSd! &
$POSd! &

XVA 1340 dp) peodg

- w‘—

dn peadg

)
o,
A

LY

83

LA ICUICN

~
A

e Ze ey,

o

'
-

A0 IO AR

>

b




01 % ‘6 ‘8 JO sazIS paeog Joj paziwndQ suonn[os [[y 0) A, 67 Uni]

azi§ preog

SPOSdt O
P-POSd! &

84

.t;:.

87

o

N
r
(o]
p—
\'."t

01 % ‘6 ‘8 Jo sazig preog Joj pazrundo
SuUODN[OS [V 03 Wi, susdnb-N

oo

‘e

W

Pl

.
"

~'
~
NG

G2
¥
<

{.

.....



Finally, the load balance analysis shows that even though the N-queens is an MIMD

problem that exhibits irregular computation and communications cycles, the work load was
balanced across all worker nodes. In Figure 30, the load balance for the 11-queens problem
running on a d-5 hypercube is shown. This plot is typical for all board sizes of 8 or greater.
The line denotes the average work load across all nodes and the dots represent the actual
work load at a particular node. The best speed ups for problems occurred using a large
dimension cube with large problem sizes. Since the range of best performance coincides
with the range of equivalent load balance, an even load balance may be desirable while

designing a parallel solution to ‘backtracking' search problems.

85




aqnauadAH ¢~(] © uo susanb-{ | oy Joj ouejeg Peo (g undi

JaquinN 3pON
1€ 62 (z ST € 1z 6l LI SL € 11 6 L § € |1
ittt
T 0002
T 000Y
T 0009
popuedx3
sapouqg
T 0008
00001
00021
aqnd -~ & uo Suruuns suaanb-1|
3y 10§ dueeq peo]
X J

£
po
o

86

E 4'_4'.4'_‘ .
PO Py Y

‘e
oo

i VA

Y




3
2
¥
&

e




P 8 Bte §lp Pty WY, b By 0P . 47 At wie st t, ol cae é N ¢
) AL RN A AN LN PR e R AL AL LT AL R LI LN LIS LN PR L T MWLEE (LNt LA LY T L) {1 [ e ® . gf ah. g9 @t ca®. a%. o0 ei . ab. .5 -

e - -

W

»

&

‘H|

o

- — .*ﬁ ;4. \

—
.
"y

FFFFEERE

EEEE

= el a4
CI? o [N Y
N

—
.
—

rr

r

fe

N
(3

ep——
—
———

- -

s dis

- -

Y Lt ™

Vi

N TR NN BT RSN L S T P e L PO AP A
2 '. '&‘-;ﬁi?@;h\:ﬁﬁ'.\_.mm M



v

Lan ox g ae o

T

Lan an o ] W

,-
S’.

In summary, the results of the N-queens tests show parallel processing can reduce the

time order complexity of a simple ‘backtracking' search over a narrow range of problem
sizes. At some point after this reduction in the time complexity, the inherent exponential
nature of the search problem is introduced once again. These results also show that parallel
processing may show speed ups while solving a simple search (first answer) to more
difficult searches (optimal answer). With these results in hand, an examination of a more

complex search is in order.

Parallel Deadline Job Scheduling. Tables of the performance measures for the parallel
DJS experiments can be found in Appendix E. The data shown in this chapter has been
plotted to show trends and for comparisons. Before analyzing the results of the job
scheduling experiments, a description of the test data is necessary. Since the deadline job
scheduling solution uses least-cost branch & bound, the time to schedule a set of n+1 jobs
may take less time than scheduling n jobs. Therefore, two pseudo-equivalent classes of
problems were devised such that the more jobs to scheduled create a more difficult problem
to solve. Two reasons for creating pseudo-equivalent classes are, (1) the proof of equivalent
classes of jobs is beyond the scope of this research; and (2) job sets with these characteristics

make the analysis a bit easier.

With this background, the first set of problems guarantees that all jobs can be scheduled.
The VAX solves this set of problems in O(n) time. As described in Chapter V, each job is
defined by a 3-tuple (p;, d;, t;), where p; is the penalty paid if the job is not scheduled, d; is
the deadline when the job must be finished running, and t; is the time to run job i. Creating a

set of n jobs with the following characteristics guarantees that all jobs can be scheduled,

87

A M A an M W A R T R M i W




2 t, < min(d,)

i=]

The following list shows a typical job mix for problem set #1,

dob & 8 4
100
200

300
400

The second pseudo-equivalent class is described with the following values for p;, d;, and t;,

t. =1

2%t

G Lgl ‘i_|

The VAX solves problems defined with these parameters in exponential time. The following

table shows a typical job list for the second problem set,

o PRy Y
I W W N
ok ek pund pumd

WY, W CLLM SR N F e X at X -W A b dindiodinll.

Job & p; 4;
1 1 2 §

2 2 4 § ;
3 3 6 5§
4 4 8 §

.

!

)

]

!

8 o

8 ;

]

X

-----------
N A N ) s 0, . »

L]

X X "

Y AR AR R AL S S I T P LR R T AL DRI L AL Y S St Sl S St Sl ey WCRESER LN E Ly
@l‘l-‘id-'; R NV AT N NI SN N N NI NN TN P SR PN REN AT IIN NI W N RN AT AT A WA 2}5‘_ P




)]

Upon porting the parallel DJS software from the iPSC Simulator to the actual iPSC, the

original design was modified to achieve the best computation times. The only parameter of
the parallel DJS used for fine tuning resides in the iPSC Control Process. This process has
the responsibility to create the initial set of problems to solve. At some point in time, it
becomes beneficial to stop creating problems and to start handing them out to worker nodes.
For the first set of DJS problems, n problems are created, where # equals the number of
processors in the cube. For the second set of DJS problems, 4 times n problems are
generated. It should be noted that these parameters were selected to get the best performance

from large problem sizes.

First, an analysis of the first job set. Parallel processing appears to show no reductions
in the time order complexity of O(n) problems (Figure 31). The best performance was
attributed to the iPSC d-1 and the best speed up was approximately 0.33 over VAX. Since
this search problem degenerates to an examination of the left-most branch of the search tree,
the problem does not map well to a parallel processor. The Load Balance analysis shows
this result (Figure 32). Basically, this problem cannot be run in parallel. For small problem
sizes (scheduling 15 jobs or less) only one processor solves the problem and for large
problem sizes two processors are used. This problem re-enforces the concept of maximum

parallel activity because of limitations inherent to the problem.

89

------

.
® o u AEE 2TH R A S e




g at

U

&y ¢ gl 8ot bzt ipt gt gt B

>t

¥

oun] uopeindwo)
T# 19§ W2[qo1q -3uTnpaysS qof Surpe(] :]1¢ am3L]

$qof JO JIQUINN

XVA &
1-POSa O
-POSd! -

aur L uny XVA Pue DSt ﬁ
14 39S wWdqoid 141
Sunnpayos qof surpesq

’

o By

(GARCRAS

«
B

L4
xh

¥ 0T AN T RS VA

.
o

-
¥ S ]

B

ST A RGN,

-
[}



— & TPy

W.
K.

-

- mrm

P A VTV RN R T V. V. T TR T A R & % e YR ames o s e

- DSd! UE U0 Sqof-07 Sul[pnayds Jo Jouefeg peo]
[ # 19S WI[qOId -3unnpaydg qof unpea(] :Z¢ undig

13qUInN 9pON

S $1 € 2 1L O 6 8 L 9 § ¥ ¢ T 1

00— ————————————+ 0
T oz
ITS

® T 09  popuedxg

sopou-g 5
1 o8
T 001
1 oul
$-d DS Ue U0 PIALOS SQOf-OT
1# 1S wo[qoid
Sunnpaydg qOf AUIPEa(] - duEfeq Peo] ovl

o .

L] 4 B <

I g U W

g W W e S i il e Tk - P

. - -
IV A PN AL AL

AL L A
>, PG AN TS S

. e TN e e ety e e
o -L"L'CL'.L'.L'.L':L' LTINS

A

N

Ay

aiatal

ta v
alat

PN 4 -. Py

R S S
-
-

Ly

NIRRT S W
P .
R AR SR

TN

I e S

8



Ty

L an i

o e o e

T T T

k

-------

LA CN CEINRN L ONCIASA VS A YN

Next, the exponential class of job schedules must be examined. The run time analysis shows

that significant reductions in the time order complexity can be achieved. In Figure 33, the
semi-log plot of the VAX computation time shows the inherent exponential nature of the
problem. The iPSC d-4 and d-5 curves demonstrate the power of the parallel computation
with problem sizes of 11 or greater. It should be noted the the best speed up achieved was
58 times over VAX with a d-5 hypercube solving a 15-Joo problem. The d-4 reached a
speed up of 43 times over VAX (see Figure 34). A dimension-3 cube achieved a speed up
33 times over VAX. Finally, d-2 and d-1 hypercubes solved the problems approximately 3
times faster than the VAX. These results can be explained while examining the global upper
bound during the parallel computation. Figure 35 shows the load balance of scheduling 15
jobs on a d-4 hypercube. Even though the load is unbalanced, the iPSC solved this problem
43 times faster than the VAX. Solving this same problem on a d-5 cube, all worker nodes
have E-node Expansion Counts (loads) equal to zero. This anomaly is attributed to the
global upper bound. In a d-4 cube, the Control Process generates 64 initial problems. As
the workers solve these problems concurrently, the global upper bound converges quickly to
the best upper bound in the entire search space. Once the upper bound converges, the
workers no longer search the subtrees. They only prune the remaining search space. In the
case of the d-5 hypercube, the Control Process generates 128 initial problems to solve. At
this point the upper bound has already converged, and the search quickly ends with the

workers only pruning the search space and never actually searching a subtree.

92

)

L e i S W §

-— e s .




dwi ], uonendwio)
T# 198 wdjqoId -3urnPayog qOf uNpea(] €€ ungiy

$qOf JO JIQUINN
SL vI € T Il O 6 8 L 9

S

L4

P OSd! &
$-pIOsdt O
XVA &

100

oro

(998)
uonnjos 18Iy
o) 2]

0001

00°001
000001
awiL], uny XV A pue DSt
T# 19S wdIqoid
8uiinpayog qofr sul[peaq
a @,
@

93

o

e

.

i

. -" ~“ ..' L
o PR

L

WS,
Sataelor

R




N .

G0y

XVA 1340 d) paadg 7# 198 Walqoxq -Sulinpayds qof aurpea(] :p¢ undig

bl et anm ARAE LS. AL Al A L i I &
’

$QOf JO JaquInN
ST +I €I Im or 6 8 L 9 S ¢
100
010
S-pOsdl O
001 dn paads
¥-POSd! -&
00°01
00°001
XV A 19AQ d) peads
T# 195 waqoid
urinpayog qof autjpesd
) e

e Py Bl e

A




WP Y N AR T T A AT @ T C LR AT T I B T T s @GRS T @

- DSd! U Uo $qOf-G T Sulnpayos jo duefeg peo]
Ti# 19 walqald -3ulnpaydg qof uljpea( :g¢ uNLy

1oquinN 9poN
it of 6 8 L 9 S v € T 1
— 0
T 0001
¢ T 000z
°
. & e o y -

PS ® ﬁ Cu0t “
papuedxy =N
sapou-gq

T ooov
T 000s
¢ T 0009
- DSd! UB UO PIA[OS SqO[-S ]
T# 195 W3[qoid 1
3unnpayog qor aurpea(] - souE[eq peo] 000L
4._ h-”.--.

(e




In summary, the results of the deadline job scheduling problems show that a more
complex search with global constraints can be mapped to a parallel architecture. The

experiments with the O(n) job set re-enforces the concept of maximum parallel activity due to

limitations within the problem. On the other hand, the tests of the exponential job set show

that significant reductions in the time order complexity can be achieved for complex search

techniques.

Conclusions

The results from running parallel search experiments on the Intel iPSC justify the
fundamental issues of this research. Search techniques can be mapped to parallel
architectures and speed ups can be achieved. The results also emphasize the strong

dependency among the problem, the size of the problem, the parallel design, and the parallel

)

@

b computer architecture. With these results in hand, the next chapter completes this research
with final conclusions and recommendations.

.:ﬁ:.|

i

96

- " e R T R D" AT A "a® v - I S e PR R Y R W VL) RV RN FO R S e T e )
s QRGN L PR RO AL AT AE IR A A A P .l.*,-r. el .’f.(l'.‘ L G N




-
(ol
L 2

oW

(o

‘!

The performance evaluation of parallel branch and bound search is almost complete. The
analysis, design, and experiments are finished, but the conclusions to this research must be
summarized. First, a review of the research is appropriate. In Chapters I and II the funda-
mental issues, the classes of problems, and the parallel environment for this thesis was
established. Next, in Chapter ITI, an analysis of paraliel design was conducted to investigate
the process of mapping a problem into a parallel computer architecture. The results of this
investigation selected the object-oriented design methodology. Chapter III continued with a
discussion of the object model as well as a presentation of a formal object design approach.
Using the object model, Chapter IV developed a general parallel branch and bound design.
In preparation for the performance experiments, Chapter V described the implementation
details of the parallel N-queens and parallel deadline job scheduling problems. Chapter VI

concluded the performance tests with descriptions of the measures and an analysis of the

»
P
»

experimental results. To finish the research, this chapter presents the final conclusions and
recommendations in four parts, (1) Parallel Design Methodology, (2) Performance of Parallel
Branch and Bound, (3) Suitability of the hypercube architecture for parallel search, and (4)

Recommendations.

Paralle] Design Methodology

The results of the first goal identified the object-oriented design methodology as a good
design approach to map a problem into a parallel solution. The object model worked well for
this research. Object design created a fine grained mapping of the problem space, and the
implementation of the design focused on collecting several objects into coarse grained iPSC

processes. During the design, details of the branch and bound problem were not overlooked

97




aliaste' Al atn Al a\aghe Ble i n Sla Bta JAetlie st e don Aar e S UENMASAS R AN A i, i afiint el it il it et i jat i et S bad JAatobe o i o

Low,
g

‘o

and during the implementation, inefficiencies of communications were reduced. Even
though the initial design needed fine tuning to achieve the best performance, the implemen-

tation of the initial design created a good prototype. One reason for the success of the object

design methodology is similarity between the object model and the iPSC process model of
computation. Therefore, this research recommends the object-oriented design methedology

as a parallel design strategy for the hypercube architecture.

Performance of Paraliel Branch and Bound

To meet the second goal of this research, the performance of the class of search

e SN

‘ problems was measured on a parallel processor. As the results show, a sequential problem

solving technique, like search, can be mapped to a parallel processor and speed ups over
{ traditional sequential machines can be achieved. In fact, over a narrow range, the parallel

* ( . solution reduced the time order complexity of the problem. The results of these experiments

C L Ay lacaca s 4 4 4

also show speed ups while computing answers to simple ‘backtracking' search as well as

Y

more complex search problems that maintain global constraints.

Overall, the research concludes the performance of parallel branch and bound is
dependent on the size of the problem, the parallel design of the problem, and the parallel
computer architecture. In the case of the size of the problem, if any answer or if an optimal
answer to a search problem is needed, then parallel processing may reduce the time
complexity for large problem sizes. In the case of parallel design, the results show the

hypercube architecture reduces the time order complexity over a range of problem sizes until

e

some point where the exponential nature of search is introduced once again. These results
re-enforce to concept of maximum parallel activity because of limitations inherent in the

parallel design and inherent to the problem. Finally, in the case of the parallel computer

W KA T A S DL L iAW BA AW A

Lo an gn B a3

98

Wy
. a1 L LA e




architecture, the performance of search was improved using a parallel processor. This
performance needs additional analysis. Search is a sequential control strategy that was
mapped to a loosely coupled parallel architecture. Because search is a tightly coupled
technique and because the hypercube is a loosely coupled architecture, some performance

degradation is possible.

Suitability of the iPSC for Search Problems

The third goal of this research was to examine the suitability of the hypercube
architecture to solve search problems. While the results of these experiments may not meet
the 'real-time' requirements of the SDIO and Pilot's Associate researchers, this research
recommends the hypercube architecture to solve search problems in parallel. An additional
analysis justifies this conclusion. First, the Intel iPSC shows reductions in the time
complexity and speed ups of 58 times over VAX. Since one iPSC node has far less
computational power as compared to a single VAX 11/785, one can envision much more
powerful processors or custom processors configured in a hypercube topology. Such a

machine could possibly have the capacity to meet the ‘real-time' needs for these researchers.

Recommendations

Several topics for continued research in parallel processing can be recommended. First,
the object-oriented design methodology must be evaluated as a general purpose parallel
design strategy. The object model worked well for this research because of its similarity
with the iPSC process model of computation. Before object design can be used as a general
purpose parallel design strategy, it must be exercised by mapping other problems to the

hypercube architecture as well as to other parallel architectures. Second, the performance of

the class of search problems must be measured on other parallel architectures. It should be

- .-




p 2= ac

vTw VW WY v T v Y

-

- —

&

noted that branch and bound is a sequential programming technique with central control.
This tightly coupled algorithm was mapped onto an extremely loosely coupled computer
hypercube architecture. Even though this research successfully produced speed ups, the
nature of the hypercube and the nature of the problem are not similar. Therefore, experi-
ments with parallel search on more tightly coupled architectures, such as shared memory
machines, should be conducted. Third, research in new algorithms to solve search problems
should be examined. This research mapped a sequential programming technique to a parallel
processor. In this case, search shows an inherent exponential time complexity. Research in
new algorithms along with the distributed nature of a parallel computer may be able to reduce
the time order complexity over a larger range of problem sizes or over the entire range of
problems. Finally, the hypercube architecture must be evaluated as a solution to other
classes of problems. The hypercube architecture along with its general process model of
computation create a good environment to conduct research for a several classes of

problems.

In closing, the contribution of this research must be explained. Parallel processing is
still in its infancy. Several parallel computers are commercially available but the classes of
problems best suited for these machines, parallel design methodologies, and software
development environments have been slow to develop. Despite the state of knowledge about
such a complex topics, speculation about the benefits of parallel processing is quite
abundant. This speculation is usually not supported by analytic or experimental
justifications. This research has reached conclusions about the benefits of parallel processing
and parallel search in particular. These conclusions have been supported by mapping a
parallel search algorithm to the Intel iPSC hypercube computer. Hence the results of this
thesis can be used as a benchmark for continued study in parallel search algorithms.

100

y

PY

PAPRFRFTE G PRI P LPRFW Y 5 W W WS Y " (| F. . ¥ WSy Y




A Appendix A:

This appendix describes the source code for the parallel version of the N-queens
problem. The appendix is divided into four sections, (1) intermediate host code, (2) control
process code, (3) worker process code, and (4) an example trace of the 4-queens problem.
The source code for the intermediate host program is shown on the next five pages. This
program is the link between the user and the parallel N-queens software that runs on the
iPSC. First, the host queries the user for the board size of the problem, the dimension of the
hypercube, and the number of times the problem should be run. Next, the host initializes
the computation time variables. Then, the host down loads the "control" program and the
"worker" program to the iPSC. This is followed by sending all nodes initialization
information, the board size of the problem. The control process also needs to know the
number of nodes in the cube. After these transactions, the host waits for the 'problem
complete’ message from the control process. Upon receiving that message, the host collects
the timing data. Once all repetitions have been run, the average time to first solution and the

average time to find all solutions is reported.

]
o2
fate

101

--------------- Te
,il*\\.r.- (_{\JJ'J-'J‘...: ! o



Ty

W
*
*
*
*
*
*
*
* Functions:
*x
*
*
*
*
*
*
x
*
*
*
*
*
*
*

a *

(o .
*
*
*
*
*
*
* Libraries:
*
*
*
*
* Language:
*
*
*
*
*
* Outputs:
*
*
*
*
*

)

M 4

\' 'c{‘.f v » e, ":' "'('- .

THESIS
N-queens Problem

Intermediate Host Program

Date: 24 Oct 1986

This is the iPSC intermediate host program for
the N-queens Problem. This program loads the
iPSC with the Worker and Control Processes,
and then waits for an answer message from the
Control Process. Upon receiving this message,
the Host Program retrieves the Timing Data to
calculate the Time to First Solution and the
Time to All Solutions of the N-queens.

The averaging method to compute the time
information is quite simple. First, run the
N-queens problem for 'n' repetitions (a user
entered parameter). Next, remove the maximum
time as well as the minimum time and average
the remaining numbers. It should be noted that
the minimum number of repetitions that this
program will run is 3.

The user must enter three parameters for this
program to run, (1) Board Size, (2) Cube
Dimension, and (3) Number of Repetitions. Make
sure the iPSC is initialized to the same
dimension as the input parameter.

Standard Input & Outpu
iPSC chost definitions

iPSC Operating System: Release 2.1

C Language

Input Parameters: Board Size of the Problem

Dimension of the iPSC
Number of Repetitions

Time to First Solution
Time to All Solutions

W

‘o,

Author: Capt Rick Mraz

102

~' -'.-‘ »y . 1\“-*_‘-"‘-"'\ . e :«,nl\'- “» \"- .'(“h;.‘l:_i"*
3 - - h .

/*t*****t************t********tttt*****i********t*t*t**t**t*****

* %+ R R R R R R R R R R % % % ok % ok % o % F % R % % % O % % B % % % % F % F F % % % % * * *

**********t**********************************i************t****/

PR ST TR

&

¢“-¢'.*‘.

o e s

-"-\

<




/****i***t**t****itt*t****i***ti*t*****t**t*

* HEADER FILES *
KAKRRRRRRRRRRRRKRRRRRRRRRRARRARRRRRAKKAKRA KR K/

#include <stdio.h>
#include "/usr/ipsc/lib/chost.def"

/*********t**********t**ttt***t*******ﬁ**t**

* Define Constants *
*tit**********************tt*t***t****iit*i*/
#define NODE_PID 0 /* Node Process ID */
#define HOST_PID 1 /* Host Process ID */
#define BOARD_SIZE 10 /* Send Board Size to nodes */
#define TIMES 100 /* Get Time data from nodes */
#define NUM_NODES 130 /* Send number of nodes to
the Control Process */
#define INFINITY 9000000 /* Need a big number ?27?? x/
#define VECTOR_SIZE 12 /* Maximum Board Size */
/*******************************************
* Define Functions and Globals *
********************************************/
long min(); /* Use this to get the time
to the first solution */
int number_of nodes; /* Number of nodes in cube */

/*******************************t****************ti*

* Main Program *
**********ﬁ*****************************t***********,
main ()
{
int board size, /* N-queens Board Size  */
cid, /* Channel ID */ i
dim, /* Dimension of cube */
i, /* Iteration Counter */
ignore, /* Place holder.... */ (
rep_count, /* Iteration Counter */ i
reps, /* Repetitions */
type, /* Message Type */
cnt, /* Msg Byte Count */
node, /* Sending Node */

]

{

|

pid; /* Process 1D */ i
|

|

103




:ﬁﬁ long max_first, /* Max time- lat answer */
o min_first, /* Min time- 1lst answer */
total_first, /* Total time (for avg) */
max_all, /* Max time- all answers */
min_all, /* Min time- all answers */
total_all, /* Total time (for avg) */
first([32], /* Time to first answer */
temp_first, /* Temp first answer */
all; /* Time to all answers */
{ [ X Get the Problem Parameters from the Terminal ----- */
printf ("Enter Board Size: ");
scanf ("%d", &board_size);
printf ("Enter Cube Dimension: ");
scanf ("%d", &dim) ;
number_of nodes = 1<<dim;
printf ("Enter Number of Repetitions: ");
scanf ("%4d", &xeps);
[ K Initialize Time Data Variables ----- */
max_first = 0;
Zal. min_first = INFINITY;
e total first = 0;
max_all = 0;
min_all = INFINITY;
total_all = 0;
[ rm——— Run the N-queens for 'reps' number of times....
1 - load the iPSC with the Worker and the Control Process
: - Down load the Board Size and Number of Nodes in the cube
s - Wait for a FINISHED message from the Control Process
: - Collect the Timing Data  ----- *x/
)
for(rep_count=1l; rep count<=reps; rep_count++) {
cid = copen (HOST_PID):
load ("worker™,-1,NODE_PID) ;
1kill (0,NODE_PID) ;
load("control™, 0,NODE_PID);
for (i=0; i<number_ of_nodes; i++)
sendmsg (cid, BOARD_SIZE, §board size,sizeof (board size),i,
NODE_PID) ;
sendmsg (cid, NUM_NODES, &énumber_of nodes, sizeof (number_of nodes),
0,NODE_PID) ;
=
N
104
N N A R A Y YN NN A e

e w R SR P s P s s s NS AL s e a2 Cmlatata aAta A AN . em T W N




D
E :ik;
D

EO&J‘(JJ}h.AMLMMf .

recvmsg (cid, &étype, éignore, sizeof (ignore), &écnt, &i, epid);

for(i=1; i<number_ of_nodes; i++){(
sendmsg (cid, TIMES, &ignore, sizeof (ignore), i,NODE_PID);
recvmsg (cid, &type,&first[i),sizeocf (first(i])),&cnt,
&ignore, &pid) ;
}

sendmsg (cid, TIMES, &§ignore, sizeof (ignore), 0,NODE_PID) ;
recvmsg (cid, &étype, ¢all,sizeof (all), &cnt,&ignore, &pid) ;

if (min_all > all) min_all = all;
if (max_all < all) max_all = all;

total_all += all;
temp_first = min(first);

if (min_first > temp_first) min_first = temp_first;
if (max_first < temp_first) max first = temp_first:;

total first += temp first;
lwaitall(-1,NODE_PID);

[ R=——— Compute average time to first solution and average time to
all solutions =0 0——-e- *)

total first = total first - min first - max_first;
total_all = total_all - min_all - max_all;

printf("Time to 1lst Solution:%f\n",
(float)total first/((reps-2)*1000.0));

printf ("Time to All Solutions: $f\n",
(float)total_all/((reps-2)*1000.0)):

cclose (cid) ;

105

ORGSR A R R




T

W

/***itiiitﬁtt**ittiit**tﬁi*t*ﬁ****i*ﬁtitt*tt*t*ﬁt*ﬁttt*tt

*

* Name : Min

* Parameters : f = Array of Long Integers

* Function : Find the minimum value in array 'f‘

*

RAAR R AR R AR R AR AR R R AR R R AR R R R AR R R R R R R AR KRR AR R AR KRR R R AR A AR AR R
long min (f)

long £(32];

{
int i;
long m;

m = INFINITY;
for(i=1; i<number_ of_nodes; i++)
if ((m>f(i)) && (£{i) !'= 0))
m= f(i];
return(m) ;

YO RS ChiSg




2

o)

The second program is the iPSC Control Process. The source code is on the following

seven pages. Once loaded by the intermediate host program, the Control Process begins its
initialization. First, the clock is started, a communications channel is opened, and the
problem queue is initialized. Then receive the board size of the problem and the number of
nodes in the cube. Next, create the initial set of problems to solve. This translates to
generating the first levels of the search tree. Once the initial set of jobs is created, measure
the start up time. Next, enter the control loop. As long as problems are in the queue and
work has been assigned to the worker nodes, do the following, (1) check for a work request,
and (2) try to hand out problems. If a work request comes in, set the status of the node to
AVAILable. To hand out a problem two conditions must be met, (1) the queue must not be
not empty and (2) a free processor is AVAILable. The control process terminates when the
queue is empty and all workers have posted work requests. This translates to a machine state
where no problems are available and all workers need a problem to solve. Upon exiting
from the control loop, set a stop time and send a KILL message to all of the worker

processes. Finally, send the timing data to the intermediate host.

107

. P
______________ ) , N
fn. 'f ~.\\..£l.'.‘-'(l- Jn.!f&_x.,_\ q.t;.t& 1... " "\.\L\.L i, " . ’ (N ') ‘-A;'_A}_.\A P



Pr

&,

R AR R R AR R R R R AR R R AR AR RN R AR AR R R AR R AR AR AR R A AR R R AR R LR KRR RRARE R R
THESIS

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Date

Functions:

iPSC N-queans Control Process

24 Oct 1986

Process for the iPSC Parallel N-queens Problem.
First, the initial problem information, Board
Size and Number of Nodes in the cube, are
received from the Intermediate Host. Then,

the Controller creates an initial set of
problems to solve. This corresponds to
generating the first levels of the search tree.

Now that the problem list is ready, get 'work
requests' from the Worker Processes and hand
out problems. Once the problem queue is empty
and all Worker Processes have posted a 'work
request' messages, then all solutions have been
found.

Language: C Language

Libraries: iPSC Node definitions

FIFO Queue Routines

iPSC Operating System: Release 2.1

Messages from Host: Board Size

Number of Nodes

Message to Host: Time to find all Solutions

Message from Worker: Work Request

Messages to Worker: Problem (subtree) to Solve

Termination (Kill) Message

Author: Capt Rick Mraz

KRR K I AR R AR A AR RAARARRA R AR R AR AR A AR AAR KRR AR AR R AR AR AR AR AR A AR A A A&k

108

This C Language program defines the Control

»

NSOk % o % M ok % R % R R R % % % ok % % % % ok % % % % % ¥ % % % % % % * ¥ R % % * ¥ * *




b tat et tat \ar bag L T W O W T U T I TS TR T A TR T I T TS T A RN A AR T W AU R AR R VR
(2t 8 Pia Aty Ris 2o at o Ao L g tak vaf Gamtat Mg ¢, 7

J‘:{. /lt*iitii**t***********t*t**tt***t*****t**t »
pAY * HEADER FILES *
*tt*tttitﬂtt*************************i*****/
#include "/usr/ipsc/lib/cnode.def" /* Hypercube Node Header */
#include "q.h" /* Queue Routine Header */
/tt*t*****'kt******t*****************tt*****
* CONSTANT DEFINITIONS *
*t********t*t***t*'k*****************t******/
#define AVAIL -1 /* Node Available for work */
#define BUSY -2 /* Node is busy */
#define MAX DIMENSION 5 /* Max dim of cube */
#define TRUE 1 /* True =1 */
#define FALSE 0 /* False = 0 */
#define HOST 0x8000 /* Intermediate Host */ f
#define NODE_PID 0 /* Node Process ID */ i
#define HOST_PID 1 /* Host Process ID */
L}
! #define BOARD_SIZE 10 /* Board Size Msg */
! #define ALL 30 /* Live Node Msg */
#define WORK_REQUEST 45 /* Worker needs work... */
#define E_NODE 50 /* Generate Children Msg */
#define KILL 60 /* Kill worker Process *x/
#define TIMES 100 /* Send Time information */
- #define FINISHED 120 /* Send Finished msg */
". #define NUM_NODES 130 /* Receive Cube Dimension */
/******iﬁ*ii*t****titt*********ﬁ****ﬁt***'k*
* Global Variables *
*tt***i**iit******t***t****i******t**ﬁti***/
int node_status[{1<<MAX DIMENSION)+1], /* Worker Status Array */
vector {VECTOR_SIZE+1], /* Solution Vector */
number_of nodes; /* Number of Nodes in cube */
q
-
;
;i
3
.
‘i
N
A~ ‘-'
! T | 5
| 109 2
a
e
\ ?
. . ’ Py PR N NN R RTINS R '~,-‘-“-..\d.\“
\‘.’_ Y DG oy AN SN Yo s e, A A AN, % ~ Nt :




/iti*i***it*t***tt****t***t*tt**ttt****tt***it**

* iPSC Control Process - Main Program *
t**ii**i*t*ﬁt*i***ﬁ***t**ti**ﬁ**iit**ﬁﬁ***it*ii*/
main ()
{
[rm——— Control Process Variables —----- */
int board_size, /* Size of Playing board */
i, /* Iteration Counter */
ignore, /* Place holder.... */
next_node, /* Node that needs work */
request, /* Work Request Msg Var */
row, /* Place queen on this row */
work_assigned, /* Num of Workers Busy */ r
E_node [VECTOR_SIZE + 1}, /* Next node to expand */
cid, /* Channel 1D x/
cnt, /* Msg Length */
node, /* Node number */
pid:; /* Process ID */ é
long start, /* Start timer */
stop, /* Stop timer */
startup_time; /* Measure Start Up Tire */ j
1
[*=————= Initialize the Control Process

- Take a Time Stamp

- Open a Communications Channel for the NODE Process ID
- Initialize the queue @ ----- */

start = clock{():

cid = copen (NODE_PID) ;
g_init ()
/*--—- Receive the Board Size and the Number of Nodes from the Host----*/

B il

recvw(cid,BOARD_SIZE, &éboard size,sizeof (board_size),&cnt, &node,
&pid);

recvw(cid,NUM_NODES, &énumber_of nodes, sizeof (number_ of_ nodes),&cnt,
&node, &pid) ;

[ Set all Worker Nodes to BUSY —----- */

work_assigned = number of nodes - 1;
for(i=1; i<number_of nodes; i++)
node_status([i] = BUSY:

A 8 A A AW ol o s AW .

110 ?




el [*———— Generate the initial set of problems to solve....

2-X - generate the search tree until the number of problems (length
of the queue) equal 5 times the number of nodes in the cube.
This is optimized for large problems on large cube sizes.

- Make sure to only include those jobs that meet the bound
condition « ----- */

vector (0] = 1;
while ((g_length <= (number_ of_nodes*5)) &&
(vector[0) < board size)) {
deleteg(vector):;
row = vector(0]:;
vector [0]++;

while (vector[row] <= board_size) {
vector[row]++;

while ((vector[row] <=board_size) && (bound(row) == FALSE}) ;
1 vector[row]++;

if (vector[row] <= board size) K
addg(vector);

}
‘. startup_time = clock() - start;
[Fr=m=—= Enter the Control Loop

- When the queue is empty (no more problems to solve)
- and when no work has been assigned

- then all solutions have been found = ----- */ .
while ((g_status != Q EMPTY) || (work_assigned)){ ‘
/*---- If the queue is not empty and if there is a free :
processor, then get an E-Node (problem) from the queue
and send it to the Worker Node ----- */ ’

while ((q_status != Q EMPTY) &&
((next_node = get_free_processor()) != BUSY)) {
deleteq(E_node) ;
node_status[next_node] = BUSY;
work_assigned++;
sendw(cid,E_NODE,E_node, sizeof (E_node),
next_node,NODE_PID) ;

¥
)
»
’

o,
\( .
A S P S R AN r T \._I .- .' -
L.'.'_!:'._ 'i':‘:is‘:g.j-_\'_g._, PPN ‘h-n L\Afgp “ ’I'.L.AJJ\J ENTAS S DA J\P ’-f L




TRV VT

[ R——m—— If a 'work request' comes in, update the node status
to AVAILable  —-—---- */

while (probe(cid,WORK_REQUEST) >=0) {
recvw{cid, WORK_REQUEST, &érequest, sizeof (request), &cnt, &node,
&pid) ;
work_assigned--;
node_status[node] = AVAIL:

[rmm——— Once all solutions have been found,
- take time stamp
- notify the Intermediate Host that the computation is complete
- send a KILL message to all Worker Processes
- and then send the computation time data to the Host ----- x/

stop = clock() - start;
sendw(cid, TIMES, &i,sizeof (i) ,HOST,HOST_PID):
for(i=1; i<number of nodes; i++)

sendw(cid, KILL, §ignore, sizeof (ignore),i,NODE_PID);

recvw(cid, TIMES, &ignore, sizeof (ignore), &cnt, &node, &pid) ;
sendw (cid,ALL, §stop,sizeof (stop) ,HOST,HOST_PID);

cclose(cid);

/*********it************t*******t***t*****t**************

* *
* Name : Get Free Processor *
* Parameters : None *
*  Function : Return the number of the free *
* processor, or return BUSY is all *
* processors are busy. *
* *
Ak AR R A A AR KR AR AR R ARAA A A A AR A Ak AX A A A A AR R A A A Ak kA A Ak kA hkk k%

/
get free processor()

{
int i;
for (i=1; i<number_of nodes; i++)
if (node_status[i] == AVAIL)

return(i):;

return (BUSY) ;

112

s S At e R R d A DR

Py

.

g
|
|




/t*****t**t***************t*********************t**t*****

* * {
* Name : Bound *

* Parameters : Row = the row to place the queen on *

* Function : Make sure the queen is not on the *

* same column or on a similar diagonal *

* with another queen. *

* *
**********t********t*************tt*********t************/

bound (row)
int row;
{

int i;

for(i=1; i<row; i++)
if ((vector[i] == vector(row]) || /* same column x/
(abs (vector([il-vector[row]) == abs(i-row))) /* same diagonal */
return (FALSE) ;

return (TRUE) ;

> W9 e v =

113

o e e Ca® s 0 T N T " o o T e "
XD RS A S A VNG S R A



Ty
:% /lii*ttiitﬁtﬁ'*tttitﬁttt**i*i*ttﬁtttiﬁiii*tt*iitttt*tt*ﬁlt**ittit

* THESIS
* *
* iPSC N-queens Queue Routine Header *
* *
* ®
* Date : 24 Oct 1986 *
* *
* Function: This header file defines the FIFO queue routines *
* that the iPSC Control Process needs to maintain *
* a list of live nodes (list of problems to solve). *
* For this implementation, a simple ‘'ring' data- *
* structure was used for the FIFO queue. *
* *
* Language: C Language *
* *
* iPSC Operating System: Release 2.1 *
* *
* Author: Capt Rick Mraz *
* *
*i*it***tti*t********ti*ttit****t**ttitittitt*tti***tt*t**ti**it/
#define Q BUSY 1 /* The Queue is being used */
#define Q EMPTY 2 /* The Queue is Empty */
#define Q FULL 3 /* The Queue is Full */
- #define Q_SIZE 200 /* Max of 200 elements */
L $define VECTOR SIZE 25 /* Max Problem = 25-queens  */
int front, /* Front pointer to the queue*/
qlQ_SIZE] [VECTOR_SIZE+1], /* Queue definition */
q_length, /* Queue Length * /
q_status, /* Queue Status={Q EMPTY,
Q_BUSY, Q FULL} */
rear_q; /* End of the queue pointer */
int addq(), /* Add queue function */
deleteqg(); /* Delete queue function */
D\c
e
114

A AR A LR L

fm m e e e ——— W ——




FCOCOCTRT- O

&

P
L

< .

N

A

)

‘l

»

~

I.

‘v

h)
ke
.
"

4 'l':'_f,
¢ A4
¢

L

(]

o

]

d
"\'-..

14, &b

SRR

" T RET N
BN NN (el

The next source code listing is the worker process. It resides on all nodes except node 0.
The worker process is the sequential version of the N-queens problem modified with some
communications to get the initial problem size and to interact with the control process. Once
loaded by the intermediate host program, the worker process initializes the answer_count and
opens a communications channel. Then it receives the board size from the host and sends a
work request to the controller. Once the work request is sent, the worker process enters an
infinite control loop. Inside this loop, the worker waits for two events, (1) receive an
E_Node message, and (2) receive a KILL message. If an E_Node message arrives, then
find all solutions in the subtree defined by the E-node. This portion of the code is the
sequential N-queens. The boundary condition on the "while" loop was changed to only
examine the subtree instead of the entire search space. Remember to take a time hack after
finding the first answer. Upon finding all solutions in the subtree, send a work request to
the controller. If a KILL message arrives, then terminate the infinite loop, and send the

timing data to the host.

115

o mr T Aty op earamann . Ca . ey N ot A AN A LT
Dk VA A ) ’\Mﬁﬂ\i{ﬁiﬁ&i;&;i'&;{x:sf.;t;':\i-.(;t-.ﬁ.ﬁu'::’}g{\{x‘f-.'f.-.{s'!



- e e &

i s

- L

A:c /******t****ﬁ*t*************t*************t*****it***************

@

*

*

*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*

*
*

*

*

*
*
*

*
*
*
k]
*
*
*
*
*
*
*
*
*
*

”;"'-:‘l.,\:.if-'.:'-q.‘{-'.\-{;,

Date

Functions:

THESIS

iPSC N~queens Worker Process

: 24 Oct 1986

Process for the iPSC Parallel N-queens Problem.
First, the initial problem information, Board
Size, is received from the Intermediate Host.
Then, a 'work request' is sent to the Control
Process (Node 0).

Upon entering an Infinite Loop, wait for an
E_Node (Problem) Message or a Terminate (Kill)
message from the Control Process. If an E_Node
message arrives, then find all answers in that
subtree. If a Kill message arrives, then
terminate the Infinite Loop.

Upon terminating the Infinite Loop, send run
time data back to the Host.

Language: C Language

Libraries: iPSC Node definitions

iPSC Operating System: Release 2.1

Message from Host: Board Size

Message to Host: Time to find first Solution

Message from Control: Solve Subtree (E_node)

Termination (Kill) Message

Message to Control: Work Request

Author: Capt Rick Mra:z

AR R R R AR KRR RRRR R R AR AR R AR AR AR AR R AR R AR AR RAARARRARRRRA AR R Ak kAR kk*

116

This C Language program defines the Worker




b S e an 28 2 Cha sl o 4 - -

L an an e g

Ervvwm—-wmrrr"m—-rwrvvvwwn-1z—ﬁ-wﬁ-lwvvv*wWﬁ-rz\Wﬁw -
'r-

(e

/t*******tﬁﬂQti**************************tt

* HEADER FILES *
t****t***ttt***********i*********i*t*******/
#include "/usr/ipsc/lib/cnode.def™ /* iPSC Node Definitions

/*********t**tt*******************t********

* CONSTANT DEFINITIONS *
**********i**********************t*********/

#define TRUE 1 /* True =1

#define FALSE 0 /* False = 0

#define CONTROLLER 0 /* Controller = Node 0
#define HOST 0x8000 /* Intermediate Host
#define NODE_PID 0 /* Node Process ID
#define HOST_PID 1 /* Host Process ID
#define BOARD SIZE 10 /* Board Size Msg
#define FIRST 20 /* Send time to 1lst answer
#define WORK_REQUEST 45 /* Worker needs work...
#define E_NODE 50 /* Generate Children Msg
#define KILL 60 /* Kill worker Process
#define TIMES 100 /* Send Time information

/*******************************t**********

* Global Variables *
t*****t****t*******t***************tt******/

int vector[VECTOR _SIZE+1]: /* Solution Vector

/**********t*******************************t****

* Worker Process - Main Program *
**********t*****t***************ﬁ**i************/
main ()
{
[ e Worker Process Variables -----~ */
int answer_count, /* Count the Answer Nodes
board size; /* Size of playing board
first, /* Solving First Solution
i, /* Iteration Counter
ignore, /* Place holder....
me, /* My node number
root, /* Root of the Subtree
row, /* The Queen goes here
cid, /* Channel Id
cnt, /* Msg Length Count
node, /* Node msg goes to
pid; /* Process 1D
117

*/

*/
*/

*/
*/
*x/
*/

*/
*/
*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

UL W W e %)

-4 _a_ssww




N I T T R T AP I T S T R T s sy

*
»
ég' long start, /* Start Time Hack */
first_answer; /* Time to first Answer */
[ rm———— Initialize the Worker Process

- Set the first answer flag to TRUE
- Find out my node number
- Set the answer count to 0

- Open a Communications Channel for the NODE Process ID ----- */
first = TRUE:;

me = mynode () ;

count = 0;

cid = copen(NODE PID);

[*—=m-- Receive the Board Size and Send a Work Request ----- */

recvw(cid,BOARD_SIZE, &éboard_size,sizeof (board_size),
&cnt, &node, &pid) ;
start = clock():
sendw (cid, WORK_REQUEST, &me, sizeof (me) , CONTROLLER, NODE_PID) ;

[ r=———- Enter an Infinite Loop Waiting for problems to solve —----—- */
@ ..
(\,__, for(;;){
[ *=m——= If an E Node arrives,
~ Receive the messge
~ Solve the Subtree for all Answer Nodes
~ Once finished, send a 'work request' the the Controller ----- */
) if (probe(cid,E_NODE) >= 0} {
, recvw(cid,E_NODE, vector, sizeof (vector), &cnt, &ncde, &pid) ;
(: [*=——— Place the queen in this row and subtree root —----- */
i row = vector{0]):;
root = row-1;
3 [ *————— Don't backtrack past the root of the subtree ----- */
while (row>root) {
[ r=——— Place the next queen on the board ----- */
vector{row)] = vector{row] + 1;
NN
roe
"t
118
NN R R R TR A R0 (e LRIy 1 Ty ORI S R G R DA Y, LR GO LR N 201 02 S AR A N e



N /e Check for the bound conditions ----- */

bt while ((vector[row] <= board_size) &&

(bound (vector,row) == FALSE))
vector[row] = vector(row] + 1;

[ *————— If the last queen is successfully put on the board,

- then an answer node has been found. If it is the
first answer, then take a time check.

- If the queen is less than the board size, then
increment the row variable so the next queen can be
placed on the board

- If the queen is greater than the board size, then
a node has been reached with no answers in the
subtree.

) Continue the search by 'backtracking', (i.e.
decrement the row variable. This will cause the
problem solver to find the next valid position for
the previous queen. ----- */

if (vector[row] <= board size) {
if (row == board_size) { L
if (first) { )
first answer = clock() - start;
count ++;
(~ first = FALSE;

L a2

L }
else
count++;
}
else{
row++;
vector[row) = 0;

SRR e ol ol

}

L o g

else
row--; 1
} 1
/¥ After all Answers are found in the Subtree, send a !
'work request' to the Control Process —----~ */ :
{

sendw (cid, WORK_REQUEST, &éme, sizeof (me) , CONTROLLER, NODE_PID) ;

JAEEEEE During the search, if a Kill message is received, break
from the Infinite Loop ----- */

if (probe(cid,KILL) >= 0) break;

]
i
119 1
!
|

.-y ~ ) \&\ s?\!\i\mtgt\-:& :\.!'.]'-"-'!'-‘!‘-' ~

T W W
——

o .




v
l.
’,
~
»
]
|
i
{
i

| > Once the terminate message arrives, :
[ ~ then send the computation time data to the Host ----- */

.

recvw(cid, TIMES, éignore, sizeof (ignore), &cnt, &énode, &pid) ;
sendw (cid,FIRST,&first_answer,sizeof (first_answer), t
HOST, HOST_PID) ;

/*tii*t****tt*t*t*i***ﬁit****ii*****tﬁ********i****titi**

* * L]
"

* Name : Bound * #

* Parameters : Row = Queen is placed in this row * :

* Function : Make sure the new queen is not in the *

* same column as any other queens, and * {

* cannot attack on a diagonal. * 4

* * ~

**t******t*tt**************t**t*i***t****ti*tt*****tt**t*/

bound (vector, row)

int vector[VECTOR_SIZE+1]:;

int row; N

{ 5

int i <

W)

for(i=1; i<row; i++)
- if ((vector[i] == vector([row]) ||
( (abs (vector[i)-vector[row]) == abs(i - row)))
return (FALSE) ;

return (TRUE) ;

—
[ e gn gk 2 SN gR 0B

- wuW . ®

®
U . \
- N
o~

120

@ 2L




In this final section, a trace of the parallel N-queens shows how the control and worker
processes communicate to solve the N-queens problem. The example shown here is the
4-queens problem solved on a 2-dimension cube (4 nodes). The control process resides on
Node 0 and the worker processes reside on Nodes 1, 2, and 3. The description of the
parallel search starts after the intermediate host loaded the iPSC and each node performed its

own initialization.

Live Node Q Worker #1 Worker #2 Worker #3
(1,0,2,° available available available
G
(4,00,

-- Solve Subtree (1,¢,°,*) with Worker #1
(2,00, busy available available
e

-- Solve Subtree (2,¢,¢,¢) with Worker #2

8,',0,- busy busy available

-- Receive a Work Request from Worker #1
-- Solve Subtree (3,¢,°,*) with Worker #3

4,000 busy busy busy

-- Handle Work Request from Worker #1

<Empty> busy busy busy
-- Receive Work Request from Worker #2
<Empty> busy available busy
2.
l.’.:;.
121
R R S O A SO AR SRR NS




"o -- Receive Work Request from Worker #3
&«
A -- Receive Work Request from Worker #1

<Empty> available available available

-- Control Process send KILL messages to all Workers
-- Workers and Control Processes send timing information back to Host

<<< END TRACE >>>

=
~ Dy

122

BRA N @ ma e AW,




) t;‘)

Appendix B:

The listing on the following pages was run on a DEC VAX 11/78S5 and an Elxsi System
6400. The run times for various board sizes sets a baseline for performance comparisons
with the iPSC Hypercube (see Chapter VI, Performance Measures and Experiment Results).

This version of the N-queens is written in C Language. The description of the code follows.

Page one of the listing defines the Header Files, Constants, and Variables used in the
program. The main program starts on the second page of the listing. First, the initial state of
the problem is set. The first solution flag is set to TRUE. This flag is used to take a time
check when the first answer arrives. Next, the solution vector, (x1,X2,-..,X,) where n = the
board size of the problem, is set to (0,e,...,») where * defines an x; that has not been
determined. Then, the row variable is set to place the first queen on the board. After the

user enters a board size, the 'start-time' is taken.

Next, all solutions are computed inside the while loop. Once the problem backtracks

past row 1, the problem is finished. First, place the queen on the next column. The solution

vector now looks like this, (1,s,...,+). Next, make sure this is a valid position by checking
the bound function. The bound function makes sure that the new queen is not on the same

column as any other queen and it checks that the new queen cannot attack on the diagonal. If

the position is OK, then continue. If the position is not OK, then place the queen on the next
column, (2,¢,,*), and check the bound again. If the queen is placed off the board (row >

board_size), then continue.

[ ]
g
:
A
:
e

123



'@2 Once a valid solution vector is computed, the vector constitutes an answer if the row
equals the board size. For this problem, the only solution vector of interest is the first one.

Once the first solution arrives, take a time check. If the row does not equal the board size,

WY VST

then place the next queen on the board (increment the row variable). If the the row is greater
than the board size, then an invalid state has been found and the solution vector must

backtrack finding a better place for the previous queen (decrement row).

Once all of the solutions have been found, take a stop time and print the computation

time to find the first solution and to find all solutions.

e f A o
AL S W W R R RGP kel ok i A RR

Lan o B g o an o

124

. e - . . e A H g e et e tm At el . e
B R “ore . SRRt o . ; . X AN ,

LSRR ‘.




?“"F‘J‘Jw

r’e
BAA
b
/nttiti*tﬂiti**ii****itt******i***t*t****i**tt*t***i**t****t*ittt**tittttixt*
* THESIS *
* *
* Sequential N-queens Problem *
* *
* *
* Date: 8 Aug 1986 *
* *
*  Functions: The following program solves the N-queens problem. *
* Given a 'board size', the program posts the time to *
* compute the first solution and the time to compute all *
* solutions. *
* *
* Language: C Language *
* *
* Operating System: 4.2 BSD UNIX *
* *
* Libraries: Standard I/0 Types.h Times.h *
* *
* Author : Capt Rick Mraz *
* *
* *
*t****t*****t**********************t*t****tﬁ***it**t*****t******t*t***t***ktt/
/:L /t***t***i**t*****i***i*t***t********t**ti*******
'@ * HEADER FILES *
t*t*t**tt**tt*t**************t****tt******ti*****/
#include <stdio.h>
#include </sys/h/types.h>
#include </sys/h/times.h>
/tt****it**tt****i**t**i*i***tt*ttti*******t*****
* CONSTANTS *
ﬁ***i***t***t***t*********tt*i*****tt******t*k*t*/
#define TRUE 1 :
#define FALSE Y !
|
/****t************************ti******t*i**t***** ‘
* N-QUEENS VARIABLES * 1
itt******ﬁttﬁ****i**t*t**ti*tt*t*t*t*tt***t****tt/ ‘
int first, /* Solving First Solution */ i
row, /* Place the Queen in the row */ |
board_size: /* Size of playing board */ :
int vector([12]; /* Solution Vector */ :
{
struct tms time_first; /* Time for First Solution */ :
struct tms start_time; /* Start of Computation */ '
— struct tms stop_time; /* End of Computation */ ;
Uxf i
S !
. '
125

N 0 S e ] -

TR N R AN A SIS




L)) JRRAR AR AR AR R AR R KRR AR AR AR AR AR AR AR KR AR R AR AR AR kR

* place the next queen on the board

*

if (vectorlrow] <= board size) {
if ((row == board_size) &&
(first)) {

* Main program for the N-queens problem *
ttkt***t**tttti*****t*t'k***t*****i***********tl
main ()
{
[ *em——— Initialize the system ~---- */
first = TRUE; /* Find first solution
vector([l) = 0; /* Initial Problem Vector
row = 1; /* Place lst queen here....
printf ("Enter Board Size: "): /* Get Board Size
scanf ("%d", &board_size);
times (&start_time); /* Set Start Time
[ rmm Find all Solutions ----- */
while (row > 0){
vector{row] = vector{row]+l; /* Next Column
[ rmm——— Find a valid Column for the next queen —-----%/
while ((vector([row] <= board size) &&
. (bound(row) == FALSE))
(’ vector[row] = vector[row] + 1;
/*~-—-- 1f the first solution is found, then take a time stamp
* otherwise,

if a valid place for the queen can not be found, then 'backtrack'

times (&time_first); /* Time for lst solution

first = FALSE;
}
else

row++; /* Place next queen

vector[row] = 0;
}
else
row--;
/*
}/* end while loop */

126

Backtrack

*/
*/
*/

*/

*/

*/

*/

e o o g

A B de ke M Mo

A L NED .tatatATA A A LD .22 e e U W fama e Wkt Sl d £ AW



A Computation Over...Calculate the run times ----- */
times (&stop_time);

printf ("Time First Solution: %f sec\n",

(float) (time_first.tms_utime-start_time.tms_utime)/60.0);
printf ("Time All Solutions: %f sec\n",

(float) (stop_time.tms_utime-start_time.tms_utime)/60.0);
}

[ AR RRAAAARKAKA KRR KRR RA AR AR AR R AN AR AR A AR AR R AR A AR AN AR AR AR A ARk Ak kA kA Ak

* *
: * Name: Bound *
J * *
i . . .
, * Parameters: Row = Queen is placed in this row *
] * *
*  Function: Make sure the new queen is not in the same *
* column as any other queens, and cannot attack *
* on a diagonal. Return FALSE if the position is *
* not valid. Return TRUE is the board position is *
* valid. *
* *
***********t***********************************************t*t*t**/

(e

bound (row)
int row;
{

) int i

for(i=1; i<row; i++)
if ((vector[i]) == vector[rowl) ||
(abs (vector[i]-vector[row]) == abs(i - row)))
return (FALSE) ;

return (TRUE) ;

127




o

R4

& y B LI
ML S

The following list shows the progression of the solution vector during the 4-queens

search. The tree representation is shown in Figure B1.

Vector
(0’. ). ’.

(l’o,o,o
(l,l,‘,’
(1’2’0,0
(1,3'0’0
(1,3,1,)
(1,322,9)
(1,3,3,%)
& (1,34,%)
(1,35,
(1,4’0,0
(1,4,1,9)
(1,4,2,%)
(1,4,2,1)
(1,4,2,2)
(1,4,2,3)
(1,4,2,4)
(1,4,2,5)
(1,4,3,%)

(1,4,4,%)

Notes
Initial Vector

Place the first queen in column 1

Place next queen...Same column (Bound)
Attack on Diagonal (Bound)

The first valid position for queen #2

Place next queen...Same column (Bound)
Attack on Diagonal (Bound)

Same column (Bound)

Attack on Diagonal (Bound)

The third queen doesn't have a valid position
Backtrack- find the next valid position for queen #2
Same column (Bound)

The first valid position for queen #3

Same column (Bound)

Same column (Bound)

Attack on Diagonal (Bound)

Same column (Bound)

The fourth queen doesn't have a valid position

Backtrack- find the next place for
queen #3...Attack on Diagonal (Bound)

Same column (Bound)

128

T S E T A A N R R P P
ST T NI I N, Rt L NS

P

‘_".’.- .-.'u.-. “wv}u"’
Shl, l'-f.'l ALl

-
t
]

ff'_'f'.'f'.":’l

L VR TR S N TP . SR Sl R R S T AP I N A LA LSRG P W s v v - °



WY T . .Ts T VT MR T TeTE .

(1€€:91) -
Yoreag Juun(y paleIdudn
9%edg uonnjog suadnb- jo uoniod :9¢ 2unSig

» -F\.',-

<

N

o

129

f\(\f\.‘\f_‘(‘\{ l‘f\-f "'-."‘..".. "J‘.;.'_'

)
N " @ P
&5 & wa

y v 4

o




O TOR

O TURTS * a¥ la¥ ap?

Vector
(1,4,5,)
(1,5,
(2,0,0,°
(2,1,0,¢
(2,2,0,¢
(2,3,0,0
(2,4,
(2,4,1,7)
(2,4,1,1)
(2:4,1,2)
(24,1,3)

3 83 el gt Bl ot a v 2t w.f aal w)t et B ‘3 3 pald p.b gt

Notes

The third queen doesn't have a valid position
Backtrack- The second queen doesn't have a valid position
Backtrack- The next valid position for queen #1
Attack on Diagonal (Bound)

Same column (Bound)

Attack on Diagonal (Bound)

The first valid position for queen #2

The first valid position for queen #3

Same column (Bound)

Same column (Bound)

The first answer to the 4-queens problem

130




"'&" Appendix C:

The parallel source code for the deadline job scheduling problem is on the following
pages. This description is divided into three sections, (1) intermediate host program, (2)
control process program, and (3) worker process program. This software is written in C b

Language for the Intel iPSC Hypercube computer.

First, a description of the intermediate host source code. This program serves as an

Lan e o

interface between the user and the iPSC. Therefore, information about the dimension of

PR o

hypercube, number of jobs to schedule, as well as the 3-tuples that define each job must be

provided to this program. Upon reading this data, the host program initializes the hypercube

v TTTYTY

by down loading the control and the worker software into the appropriate nodes. Then, the

‘o)

number of jobs to schedule and the job 3-tuple data is loaded into the cube. After this

initialization, the intermediate host waits for an answer from the control process. Once this

-

message is received, then the best answer and the run time information is retrieved. The host

listing is on the next few pages.

Y

8.
vy
)

{ 131

e A& MWD e _ " .4 A 4 M. o £ KB AN KA A Btk BB R el

R R P P R e T e e T T R e e e A L e e
o~ e, ."\.-_ \'\- 4" 4 - '..'.- o - . ) » Ny,

w0t

. v
-




T

a

2%
&

(o

/*******ttttt******t***t*****iitit**iit**ti*ii*tti*t*ttt****tt*t*

THESIS
iPSC Deadline Job Scheduling
Intermediate Host Program

Date: S5 Nov 1986

Functions: This is the iPSC intermediate host program for
the the Deadline Job Scheduling Problem. This program
loads the iPSC with the Worker and Control Processes,
and then waits for an answer message from the Control
Process. Upon receiving this message, the Host
Program retrieves the Timing Data.

The averaging method to compute the time information
is quite simple. First, run the problem for 'n'
repetitions (a user entered parameter). Next, remove
the maximum time as well as the minimum time and
average the remaining numbers. It should be noted
that the minimum number of repetitions that this
program should run is 3.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
The following information must be available from the *
standard input device so this program can initialize *
the iPSC processing elements: *
*

1- iPSC Dimension *
2- Number of Repetitions to run *
3- Number of Jobs to Schedule *
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

/

4- (Penalty, Deadline, Time)
for each of the jobs

triple defined
Libraries: Standard Input & Output
iPSC chost definitions

Language: C Language
Operating System: iPSC Release 2.1
Input Parameters: Dimension of the iPSC

Number of Repetitions

Number of Jobs to Schedule

(Penalty, Deadline, Time) Job ID 3-tuple

Outputs: Start Up Time
Total Run Time

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
x
*
*
*
*
*
*
*
*
x
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* Author : Capt Rick Mraz
*

]

ARRR AR R R R AR ARNRARRRARARN R A AR KRR R RN RRARRA KRR AR AR A ARARARA R A A AR A A AR

132

B TR e e NN N
L \"n' ﬁt\i’l’.‘n ) W PN,

. -
LRSS | 3 W RLUFRIFWW S N - T

ARSI

h ‘--
h
»
-




: 2:?5) /*********ﬁ*t********t****t***t*i**t***t***i*t****t
. * Header Files *
***t********************t*****t*kt**********it***t*/
#include <stdio.h> /* Standard 10
#include "job.h" /* Job Information Header
#include "q.h" /* Solution Vector Header
#include "/usr/ipsc/lib/chost.def" /* iPSC Host Definitions
) /**'k'k*******'k**k***********t***ttt*****t*iit****t*'ﬁ
\ * Define Constants *
J **t*****t*tt******t******t************it***********/
" #define INFINITY 9999 /* Need a big Number??
g #define ALL_NODES -1 /* All cube nodes
#define ALL PIDS -1 /* All Process IDs
A #define DIM 30 /* Send Dimension msg
! #define NUM_JOBS 50 /* Send number of jobs
#define NEW_JOB 60 /* Send a Job Triple
#define U_BOUND 70 /* Send an Upper Bound
. #define NODE_PID 0 /* Node Process ID
#define CONTROLLER 0 /* Controller = Node 0
#define HOST_PID 1 /* Host Process ID
-
-~
!‘? /ttt****‘k**t***'k'kit**'k***********‘k***k***i*********
.
3 * Define Global Variables *
¥ t***i********'k****'k*************i**********t*t*t**t/
int dim, /* Cube dimension
b i, /* Iteration Counter
ignore, /* durmy variable
u_bound, /* Upper Bound
number_of_jobs, /* Number of Jobs
number_ of nodes, /* Number of Nodes in Cube
cid, /* Channel ID
- node, /* Node number
4 cnt, /* Msg Length
H type, /* Msg Type
\ pid; /* Process 1D
JOB job_list [MAX JOBS]: /* Array of Job Triples
NODE best; /* Global Best Solution
2
f n'_-v
A
J) e
d
]

133

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/

*/




.:h"’)‘ /**‘t*****ﬁ*iﬁﬁ***i***t**iit*iﬁt*itﬂi**t***ﬁﬁt**it'ﬁ**i**t*
tar * Main Program *

ittt**t********i*****tﬁ*i************i*ti*ti*t**tt****t**/

main ()

{

int cycle, /* Iteration Counter x/
reps; /* Number of Repetitions */

long run, /* Run Time */
init, /* Start Up Time */
min_init, /* Min Init Time */
max_init, /* Max Init Time */
total_init, /* Total Init Time */
min_time, /* Min run time */
max_time, /* Max run time */
total time; /* Total run time */
[ rm——— Get the Problem Parameters from the Terminal —---- */
printf ("\n\n\tParallel Deadline Job Schedule System\n"):;
printf("\t-——--—rmrmm e \n\n") ;
scanf ("%d4d", &dim) ;
number_of nodes = 1<<dim;

- scanf ("%d",&reps);

scanf ("%d", énumber_of jobs);
for(i=1l; i<=number_of_ jobs; i++)
scanf ("%d%dsd”,&job_list[i].p,&job_list[il.d,&job _list([i].t);

[ *mm——— Initialize Time Data Variables ----- */
cid = copen (HOST_PID):
u_bound = INFINITY;
min_init = 100000;
min_time = 100000;
max_init = 0;
max _time = 0;
total_init = 0;
total_time = 0;
fS;:
l. ]
134
y
§
\
N
O G S BN I B G Y N G N A A AN N, S A P ate b b " NN IR



L4

e [ Fmmmmm Run the DJS Problem for 'reps' number of times....

R - load the iPSC with the Worker and the Control Process

- Down load the Dimension of the Cube, the Number of Jobs,
and the array of Job Triples.

- Wait for a FINISHED message from the Control Process

- Collect the Timing Data ----~- */

for (cycle=1; cycle<=reps:; cycle++)

load ("worker"™,ALL NODES,NODE_PID});
1kill (0,NODE_PID);
load("control”,0,NODE_PID);

sendmsg(cid,DIM, &dim, sizeof (dim), 0,NODE_PID) ;

for(node=0; node<number_ of_nodes; node++) {
sendmsg (cid,NUM_JOBS, &énumber_ of_jobs,
sizeof (number_of_ jobs),node,NODE_PID);
sendmsg (cid, U_BOUND, &u_bound,
sizeof (u_bound),node,NODE_PID) ;
}

for (node=0; node<number_of nodes; node++)
for(i=1; i<=number of_ jobs; i++)
sendmsg (cid,NEW_JOB, &job_list[i],sizeof (JOB),
(— node, NODE_PID) ;

recvmsg(cid, &type, &best,sizeof (NODE), &cnt, &i, &pid) ;
recvmsg(cid, &type, &init,sizeof (init),&cnt, &i, &pid);
recvmsg (cid, &type, &run, sizeof (run), &cnt,&i, &pid);

if (min_init > init) min_init = init;
if (max_init < init) max_init = init;

if (min_time > run) min_time = run;
if (max_time < run) max_time = run;

total_init += init;
total_time += run;

lwaitall(-1,NODE_PID) ;
}

/*--- Print the best job schedule once all reps have been run ---*/

printf ("The Best Job Schedule is: {"):;
for (i=1; i<=number_of_ jobs; i++)
if (best.vector[i] == 1)
printf("%d ",1i);
printf ("}\n\n");

135

AW SO Y SPYIFrE F TS L LRI FIFSIS S )

e et et e - P ST T
P ‘.t "‘.".' < - ' * ‘.‘ A R 1S T e e e e e e %
JLIA" ’ "L'Af;!(; P LXL".' A L(A."L{L"L el e L\;.('. AN A."f;.‘ P A..A".L. L'IA_ A L' L,A-,l 'A.( i e A A A A A




i = penalty(best);

printf ("Penalty = %d\n",i):;

i = total_run(best);

printf ("Total Time = %d\n",1i);
i = max(best,number_of_jobs);
printf ("Deadline = %d\n\n",i);

total_init = total_init - min_init - max_init;
total time = total_time - min_time -~ max_time;

printf("Init Time = %f (sec)\tTotal Time= %f (sec)\n",
(float)total_init/((reps-2)*1000.0),
(float)total_time/ ((reps-2)*1000.0));

cclose (cid):;
lwaitall (-1,NODE_PID):;

/********'k**t********************'k***t****t*t*ti****t*****

* *
*  Name : Penalty *
* Parameters : n = Solution Node *
* Function : Return the total penalty of the node *
e * defined by n. *
. * s
pid *********t******************************i**t*tt**********/
penalty(n)
NODE n;
{
int i,p;
p=0;

for(i=1; i<=number_ of_jobs:; i++)
if (n.vector[i] != 1)
p += job_list[i].p:

return(p):

7 L S ]

S

136

. _ e . LR R

AP L e Sl L
. s
K

L T A L L A P ., N -_-- .‘.-"-..' « . '.._'.._ RRE A AU AT '-..
. A_fl_':‘..{A_(L':‘_'AA.“A_' L,;.'.-n_"_f;.f‘_'.;j;&‘_“;_“;: LTV PE N PRI YL PSRN A S Py




F:nxﬂ:!31In:ﬁr1rﬂxﬁrﬂFﬂ!Wa1xn!W!H!Hxnlﬂ!n!Hlﬂ!ﬁlH!ﬂlH!!lﬁ!ﬁlﬂ!!!ﬁ!ﬁrﬂr!!ﬁiﬁrﬁyrlrrrﬂrrﬁrﬁwﬂrnrnrrrrrr'twsv;vrvzr;

«, & /******************t*****’k**********************t**t**ttt

T - W

*
Name : Max *
Parameters : E-node = Solution Vector *
Last = Last Job in the Schedule *
Function : Return the Maximum Deadline of the *
those Jobs Scheduled in the E-node. *

* % * % * *

X FX Ka.x

%* *
**t*******t**'k**t*t***t*****t*i**************************/
max (E_node, last)

NODE E_node;

int last;

{

P, S T Lo ae an d

int i,m;

m = job_list(last].d;
for(i=1; i<=last; i++)
if ((E_node.vector[i] == 1) &&
(m < job_list[i]).d))
m = job_list([i].d;

TN T Y

return(m) ;

/*********i****************i***********t*****************

*

o *  Name : Total Run *

d * Pparameters: n = solution vector *
* Function : Return the total run time of all jobs *

* scheduled in node n. *

* *

***t******i***********************‘k****t***************t*/

1)
total_run(n)
NODE n;

int i,t:

t = 0;
for(i=1; i<=number_of_jobs; i++)
if (n.vectorl[i] == 1)
t += job_list[i].t;

return(t)

137

. . D S »
\.‘\- \‘- ‘I,‘v‘sl‘._-‘.' I\J'._- _‘J‘

- - - - m
VoYl

e T Ty




138

-~ - s Va® W Ce ™\ "m

-(M“.““-H-'WIN'“-‘W--T

R
[}
C_\E' /*t***t*tt*ﬁ**t*tit***t*tﬁt***tt*ii**ﬁ*ﬁiiii*i*ﬁi**t*i**********i
* Job Header File *
* *
* L 4
* *
* Date: 28 Nov 86 *
* *
*  Functions: This header file describes the 3-tuple that *
* defines a Job for the job scheduling program. *
* *
* *
*****k********t************************************t************/
/*********t*****t*t******************************
* Node Information Record *
**********t***t***************t**t*********t*****/
#define MAX_JOBS S0
/‘k******************************************'k****
* Node Information Record *
*t*******t****t******t************t*t**********t*/
struct job {
int p: /* Penalty */
int d; /* Deadline */
e int t}; /* Time to Run */
‘®
- typedef struct job JOB; /* Define the type job */
~,
DA
v

, o e Y N oy OV Sy S N R T P S R L O S JALIA '\."..'-'-' " '_.-' '-'.-f‘.-' -1.4
&}:}&.}\:}:&&&(S&ﬁm&ﬁ “".‘ - N \'.‘ £ *\". ':"L'-':L(L"L\.\‘L\l':;';g'; L \-“" \’..‘xl"ni'l QT A s e N ‘.&4:'1.




W YeTY s

*

LR T, VEECC YT Y Y Y T
s
P
\
.
*» % % % * % *

#include <stdio.h>

SRR % 3, O

/********tttt**ﬁi********i*t********t************t*****t*t*t*tt**

QUEUE HEADER FILE

Date: 28 Nov 1986

#define TRUE 1
#define FALSE 0
#define VECTOR_SIZE 15
#define Q_SIZE 600
#define EOL -1
#define EMPTY 1
#define Q BUSY 2
#define FULL 3
,1’-
(4!
* Node Information Record
struct node {
int vector [VECTOR SIZE+1];
int cost;
int link}:
typedef struct node NODE;
int front,
q_length,
q_status,
freeptr;
NODE qlQ_SIZE+1);
NODE delete_q{();
insert priority();

/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*

/*
/*
/*
/*
/*
/*

/*
/*

*
*
*
*
Function: The following header file defines the solution *
vector and the priority queue functions needed *

by the parallel job scheduling system. *

*

/

AA AR AR R AR KRR AR AA KRR R AR AN AR R AR AR A AR AR AR A A AR RN AR kAR R ANk Ak kA kA Ak kK

/i***t**i*tt*********t**t**t********i************

* Define Constants
********ittit**t*******t*i******t****************/

*

True is defined as integer 1
False is defined as integer 0
Vector Size

Maximum Length of Queue

End of Linked List Marker
Queue Empty (status)

Queue Busy (status)

Queue Full (status)

/****tt**i*ti***t********t*iti******t*********t**

*

t*******ttQQ****t********t***tt*****t*********t**/

Solution Vector
Cost of the solution vector
Forward Links for the queues

Define the type NODE
Front of the queue pointer
Queue Length

Queue Status

Free List pointer

Queue of search space nodes

Delete a node from the queue
Insert by priority

139

it Sl Gad S Qo Ao Loh Rall Gf Lo S

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/




The second program needed to run the deadline job scheduling problem in parallel, is the
control process. This is defined by the source code on the next pages. Once the intermediate
host loads the control process into the hypercube, its initialization begins. First, the
dimension of the hypercube, the number of jobs to schedule, the 3-tuples for each job, and
the initial upper bound are received from the intermediate host. Then the control process
creates the initial set of problems to solve. After this is finished, the control process enters a
loop with three operations. The first operation is to monitor for 'work request’' messages
from the worker nodes. If a 'work request’ arrives, then set the status of that node to
AVAlLable. The second operation is to hand out problems to solve. To hand out a problem
the problem queue must not be empty and a worker must be AVAILable. Once a problem is
sent to a worker, mark the node as BUSY. The third operation is to collect the 'local’ best
answers from the worker nodes. If the upper bound of a local’ best answer is less than the
present upper bound, then a new upper bound and a new global best answer has been found.
Remember the new best answer two constraints and broadcast the new upper bound to all
workers. This process terminates once the problem queue is empty and all workers have
posted a 'work request’. This translates to a machine state where there are no problems to
solve and all workers need work. Upon reaching this machine state, terminate the search by
sending a KILL message to all workers and sending the best answer and run time data to the

intermediate host.

140

- . s - A . nt?



% /*****************t**t****t****************t*****t*t******t***t**
’ THESIS

iPSC Deadline Job Scheduling
iPSC Control Process Program

Date: 5 Nov 1986

Functions: This is the iPSC Control Process program for the
Deadline Job Scheduling problem. The control process
monitors the progress of the parallel search and
returns the answer to the intermediate host. The
Control Process needs the following information to
conduct a parallel search:

1- iPSC Dimension

2- Number of Repetitions to run

3- Number of Jobs to Schedule

4- (Penalty, Deadline, Time) triple defined
for each of the jobs

* % % % ¥ F % R ¥ % F % % % % % F % X *

After receiving this information, the control process *
creates the initial set of problems to solve. Once *
these problems are ready, then the controller enters a*
loop to solve the search. Inside this loop, three *
operations are performed, (1) Handle work requests *
from the worker nodes, (2) Hand out problems to worker*
nodes, and (3) Maintain the global upper bound and *
global best answer.

Once the problem queue is empty and all workers

have posted a work request, terminate the search by

sending a KILL message to all workers and by sending
the answer and the run time data to the intermediate
host.

Libraries: Standard Input & Output
iPSC cnode definitions

Language: C Language

Operating System: iPSC Release 2.1

Message from Host: Dimension of the iPSC

#‘&t*tl}i####*&#t***t*l-#*l‘&******&******}****ﬁ***#

%* % % % % % A* * % * % % % B ¥ ¥ F* X ¥ X * * *»

Number of Repetitions »

Number of Jobs to Schedule .

(Penalty, Deadline, Time) Job ID 3-Tuple q

»

q

Message to Host: Answer to the Search o

Start Up Time N

Total Run Time !

n'?- |
e :
’

p

141 {

8

'.'.\,‘-r‘n(\

h‘fﬂ' P I AN S



* % % % ¥ * ¥ * % *

Author

Message from Worker: Work Request
Total Run Time

: Capt Rick Mraz

Message to Worker: Solve Subtree (E_node)
Termination (Kill) Message

KRR AR R AR AR AR AR AR R AR R AR RRARRRRA AR R RARRR RN R AR A RAARARAR AN RN AN AR AR R A&

*
*
*
*
*
*
*
*
*
/

/*t***************************t****t*it*******t*ti*

*

HEADER FILES

*

i****'k*****t***********t*ﬁ*t*itit*****tﬁti****t*tit/

#include
#include
#include
#include

<stdio.h>

"/usr/ipsc/lib/cnode.def"

"q.h"
"3job.h"

/* Standard 10
/* Hypercube Node Header
/* Queue Routine Header

/* Job information Header

/'k********t*****t*t***t*ii***i***********tﬁ***t**

Define Constants
***i******i******t****tt**tit**t********t******t*/

*

#define
#define

#define MAX DIMENSION

#define
#define
#define
#define
#define

#define
#define
#define
#define
tdefine
#define
#define
#define
#define
#define
#define
#define

AVAIL
BUSY

HOST
NODE_PID
CONTROLLER
HOST_PID
INFINITY

E_NODE
DIM
WORK_REQUEST
NUM_JOBS
NEW_JOB
U_BOUND
KILL
TIMES
INIT
STOP
ANSWER
BEST

-1
-2
5

0x8000

0
0
1

9999

10
30
40
50
60
70
80
100
110
130
le0
200

/*
/*
/*

/*
/*
/t
/*
/*

/*
/t
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

142

NI A

N

*

Node Available for work
Node is busy
Max dim of cube

Intermediate Host
Node Process ID
Controller = Node 0
Host Process 1D
Need a big Number??

Generate Children Msg
Rec the cube dimension
Worker needs work...
Rec number of jobs

Rec a Job triple
Rec/Send the Upper Bound
Kill worker Process
Send Time information
Send Start Up time

Send Stop time

Send the answer to Host
Rec a best from Workers

.

At .t et At Attt
N SN s A LT T

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

.
P e MR RN WP ST Lt A Al ' X N B



Lo an S a2

/*********tt**************************i*i********

* Define Global Variables *
*tt***t*i*ti*************t***********t**t********/
int number_ of_nodes, /* Number of nodes in cube
number_ of_jobs, /* Number of jobs
u_bound, /* Global Upper Bound
node_status[33]; /* Worker Status Array
NODE best, /* Global Best Solution
local_best, /* Worker Best Solution
copy_node(), /* Copy a node
E_node; /* Next node to expand
JOB job_list [MAX_ JOBS]): /* Array of Job Triple Info

/t*****t*************************************************

* Main Program *
***************t*******t**********t**t*******************/
main ()

{

int 14, /* Iteration Counter
ignore, /* Forget this parameter
dim, /* Dimension of cube
best_bound, /* Best Solution U Bound
kill, /* Kill Msg Variable
new_bound, /* U Bound- Local Best Node
next_node, /* Node that needs work
request, /* Work Request Msg Var
work_assigned,
cid, /* Channel ID
node, /* Node number
cnt, /* Msg Length
pid; /* Process ID
long start, /* Start timer
stop, /* Stop timer
init_time, /* Measure Start Up Time
time_first; /* Time to first solution
[rmm——- Initialize the Control Process by....

- Take a start time hack

- Open a communications channel

- Receive the dimension of the hypercube

- Receive the Number of Jobs to Schedule

- Receive the initial Upper Bound

- Receive the Job Triple information for all jobs

- Generate the Initial Set of Problems to Solve —----- */

143

*/
*/
*/
*/

*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/




start = clock();
cid = copen(NODE_PID);

recvw(cid,DIM, &dim, sizeof (dim) , &cnt, &node, &pid) ;
number_of_nodes = 1<<dim;

work_assigned = number_ of nodes - 1;

recvw(cid,NUM_JOBS, &énumber_of_jobs,sizeof (number_ of_jobs),
&cnt, &node, &pid) ;

recvw(cid, U_BOUND, &u_bound, sizeof (u_bound), &cnt, &node, &pid) ;

for(i=1; i<=number_of_jobs; i++)
recvw(cid,NEW_JOB, &job_list[i], sizeof (JOB),&cnt, &node, &pid) ;

q_init O
create_init_jobs () ;

best.cost = INFINITY:
init_time = clock() - start;

————— While there are problems to solve or work has been assigned,

- Collect Work Requests from the Worker Nodes

- Hand cut problems to Solve

- Collect Local Best answers and Maintain the Global Upper Bound
and Global Best Answer -—----%/

while((q_status != EMPTY) || (work assigned)) {
/*-=-- Collect Work Requests and Set the Status to AVAILable ---*/
while (probe(cid,WORK_REQUEST) >=0) {
recvw (cid, WORK_REQUEST, &request, sizeof (request),
&cnt, &node, &pid) ;

node_status[node] = AVAIL;
work assigned--;

144

. . CPRC ».-., ‘. .: -._-{:.-

At S

>, .-.'. X '-J‘ (4 N




Qis [r————- If there are problems in the queue and if there is a
» worker available,
~ Mark the Worker as BUSY
- Get a problem (E-node) from the problem queue
- Send it to the Worker ----- */

while ((q_status != EMPTY) &&
((next_node = get_free processor()) != BUSY)){
node_status[next_node] = BUSY;
E node = delete_q{):;
work_assigned++;
sendw (cid, E_NODE, &E_node, sizeof (NODE), next_node,
NODE_PID) ;

[ *m——— Collect the Local Best Answers from the Workers,

- If the upper bound of the local best answer is less than
the global upper bound, then a new global best answer
has been found.

- Remember the Global Best Solution and broadcast the new
upper bound to all worker nodes -——-- */

while (probe(cid,BEST) >= 0){
recvw(cid,BEST, &local_best,sizeof (NODE), &cnt,
&node, &pid) ;

G new_bound = bound{local_best);
if (new_bound < u_bound) {
best = copy_node(local best,best);
u_bound = new_bound;
for(i=1; i<number_of_ nodes; i++)
sendw (cid, U_BOUND, &u_bound, sizeof (u_bound),
i,NODE_PID) ;

}

[ A== Once the best answer has been found, terminate the search by
- taking a stop time
- send a KILL message to all worker nodes
- send timing information to the intermediate host ----- */

stop = clock() - start;

for(i=1; i<number_of nodes; i++)
sendw(cid,KILL, &éignore,sizeof (ignore),i,NODE_PID) ;

145




cclose(cid);

1 /*************t****i*t**t********ti*tt*******************
* x

1 * Name : Get Free Processor *
* Parameters : none *

* Function : If a worker is available, return its *

* node number, otherwise return BUSY. *

* *
*********t**********************t**t*****t***************/

get_free_processor()
{

int i;

for(i=1; i<=number of_nodes; i++)
if (node_status[i] == AVAIL)
return(i);

return (BUSY) ;

cgv }

/********************************************tt********t*

* *
* Name : Copy Node *
* Parameters: nl = Source Node *
* n2 = Destination Node *
* *
* Function : Copy node, nl, into node, n2, and *
* return node, n2. *
* *
*****************tt*t*******************i***********t***t/

NODE copy_node (nl,n2)
NODE nl,n2;
{

int i;

for (i=0; i<=VECTOR_SIZE; i++)
n2.vector[i) = nl.vector[i]:

n2.cost = nl.cost;
return(n2);

146

. -
'LJ.MA)LAA J.A-_'-AA'-

@ sendw (cid, ANSWER, &best, sizeof (NODE) , HOST, HOST PID);
sendw (cid, INIT, &init_time,sizeof (init_time),HOST,HOST_PID);
sendw(cid, STOP, &stop, sizeof (stop) ,HOST, HOST_PID);

G A AT

Ke

el




m= 0;

m

c = 0;

Cc

>, return(c);
Co 1

b

return(b);

/t***************t******t*****t*t*****t*********i********

int m,i,C:

for(i=1l; i<n.vector{0]; i++)
if (n.vector(i]== 0)

- i;

for(i=1; i<=m; i++)
if (n.vector(i] == 0)

+= job_list[i].p:

/i************************************t*******tttt*******

* *
* Name : Bound *
* Pparameters: n = solution vector *
* Function : Return the upper bound of node n *
* *
AR KA ARAA R AR AR R AR A AR R RARAR AR AA KRR AR ARKRAAARRA AR A AR A A A A A h Ak k&
bound (n)
NODE n;
{

int i,b;

b=0;

for(i=1; i<=number_of_ jobs; i++)
if (n.vector[i] != 1)

+= job_list (i].p;

147

*
* Name : Cost *
* Parameters: n = solution vector *
* Function : Return the cost of the solution node *
* represented by n. *
] *
*t******t**************t*******t***************tttt**t***/
cost (n)
NODE n;
{

/

A

Py

[ ™R s m B A S S8

'\Jxru*u’

T T
‘...“’




@ /**t*ﬁi***itt***i***ti*****t***ttt*t**t*******t*i********

* *
* Name : Max *
* Parameters: Last = Last Job placed in job schedule *
* Function : Return the maximum deadline of those *
* jobs included in the schedule so far. *
* *
*****************tt****t****ﬁti******t***i***ttt*'kttt*t**/
max(last)
int last;
{
int i,
m;
m = job_list[last].d:
for(i=1; i<=last; i++)
if ((E_node.vector(i] == 1) &&
{(m < job_list[i].d))
m = job list[i].d;
return(m);
}
/**‘k*'k******t*******tt********************t****i**t*t****
(. * *
L 2d
*  Name : Create Init Jobs *
* Parameters : none *
* Function : Create the initial set of problems to *
* solve. This translates to building the *
* first levels of the search tree. Use a *
* least-cost branch and bound search *
* technique while creating these initial *
* problems. *
* *
******’kt***t********t****t***tt****************i**t**t***/
create_init_jobs ()
{
NODE E_node; /* Solution Vector
int i, /* Iteration Counter
best_penalty, /* Penalty of Best Answer
deadline, /* Deadline Constraint
job, /* Schedule this job
time_bound, /* Time Constraint
new_bound, /* Penalty of new vector
new_bound; /* Bound of new vector

148

*/

*/
*/
*/
*/
*/
*/
*/




P Y P

5 ) Y s)\' LU WA Y YA \:’\' ) \:_s:.-.:_\:.\

%25 [ r———— Initialize the problem queue with a solution vector and set
v the cost of the best answer to infinity ----- */

E _node.vector{0] = 1;
E_node.cost = u_bound;

for(i=1; i<=number_ of_ jobs; i++)
E_node.vector(i] = 9;

insert_priority(E_node);
best .cost = INFINITY;

[ Add problems to the queue until there are 4 times the number of
nodes in the hypercube of problems or until the queue is empty
- If the queue goes empty, then the problem was considered trival
and the control process solved it sequentially ----- */

while (( g_length < (number_of nodes*4)) && (g_status != EMPTY)) {
E_node = delete_q();

[ *———— Get the E-node from the queue and calculate its Deadline
and Total Run time -~--%/

job = E_node.vector([0];
if (job <= number_ of_jobs) {
E_node.vector{0)++;

e v

[ *————= Generate the first child (add the job to the schedule)
- Calculate the Deadline and the Total Time Constraints
- Add the next job if the deadline is greater than or
or equal to the time constraint ----- */

if (job <= number_of_jobs) {
time_bound = 0;
deadline = max (job);

for(i=1; i<job; i++)
if (E_node.vector([i] == 1)
time_bound += job_list[i].t:
time_bound += job_list[job].t:

if (deadline >= time_bound) {
E_node.vector([job] = 1;
E_node.cost = cost (E_node);
if (E_node.cost < u_bound) {
if ((new_bound = bound(E_node)) < best_bound)) {
best = copy_node (E_node,best);
best_bound = bound(best):

149

-

M T N LR R RE I S N




insert_priority(E_node);
| |

if (new_bound < u_bound) u_bound = new_bound;
}

Generate the second child (don't schedule the job)

- If the upper bound of the child is less than the
present upper bound, then a new best answe:r has been
found and a new upper bound has been found ~----- */

E_node.vector(job] = 0;
E node.cost = cost(E_node);
if (E_node.cost < u_bound) {
if ((new_bound = bound(E_node)) < best_bound)) {
best = copy_node (E_node,best) ;

best_bound = bound(best) ;
}

insert_priority(E_node);
}

if (new_bound < u_bound) u_bound = new_bound;

150




. .- - . . .- R T A IR N L PR OO
s AL -- » e L) TN e . AN . \\\\ b
4 - . N . . ol -

The third program for the parallel deadline job scheduling search is the worker process.
It is defined by the C Language source code on the next few pages. The worker process
does not resemble its sequential counterpart. For the sequential deadline job scheduling
solution, the entire search is conducted using the least-cost branch and bound technique.
Because of memory problems, only the control process can keep the initial problems in least-
cost order. The worker processes search the subtrees (problems) using a simple depth-first
search. With this information, the worker process begins its initialization once loaded by the
intermediate host. The initial steps include receiving the number of jobs to schedule and the
3-tuple for each job. The last initialization step is to send a 'work request' to the control
process. Next, the worker process enters an infinite control loop with two operations. The
first operation monitors for an E-node message from the control process. Upon receiving the
E-node, find the best answer in the subtree. Once the subtree is investigated, send a 'work
request’ to the control process. The second operation is to monitor for a KILL message.

Upon receiving a KILL message, terminate the search.

151

<4
X

(n .-\

LSRR iy




a L a_a

'v\\'v

v,

%%

/*t****ttt*t*****i*******tﬁ***********tt*********************t*t*
THESIS

iPSC Deadline Job Scheduling
iPSC Worker Process Program

Date: 5 Nov 1986

Functions: This is the iPSC Worker Process program for the
parallel deadline job scheduling problem. This
program needs the following information from the
intermediate host for initialization:

1- Number of Jobs to Schedule

2- (Penalty, Deadline, Time) 3-tuple defined for
each of the jobs

3~ The initial upper bound

*

*

*

*

*

*

*

*

*

*

*

*x

*

*

*

*

*

*

* After receiving this information, the worker process
* enters its control loop. Inside this two operations
* are performed, (1) Solve a problem for the Control
* Process, and (2) Terminate the search upon receiving
* a KILL message.

*

* Libraries: Standard Input & Output

* iPSC cnode definitions

*

* Language: C Language

*

* Operating System: iPSC Release 2.1

*

* Message from Host: Number of Jobs to Schedule

* (Penalty, Deadline, Time) Job ID 3-tuple
* Initial Upper Bound

*
*
*
*
*
*
*
*
*
*
*

Message to Host: None

Message from Control: Solve Subtree (E_node)
Termination (Kill) Message

Message to Control: Work Request

Author: Capt Rick Mraz

KRR RA A AR R AR KRR AR IR AR RRAR A AR AR AR KRR R AR AR A AR AR A AR A AR A AR AR AR Ak ok ko

TNk % % ok R % % % % % % %k ok % % % X R F % % % % % % % % % % % % % % % % % * O F % % * ¥ *

152

L W r g T el fa T Ta T oy ¥ TR AT A AT At .t ALY ] ™ ‘ A
AT AN o A" A At ~ :{._Im.m_&hmLh.‘lL\._aJL\‘_KL\‘_\-_AL.f




‘:'\,'*n /*********itt******t****t***tt****i*****t*******

R * Header Files *
'k'k'k*t****’kitt****************i******************/
#include <stdio.h> /* Standard 10 */
#include "/usr/ipsc/lib/cnode.def” /* Bypercube Node Header */
#include "q.h" /* Solution Vector */
#include "job.h" /* Define Job 3-tuple */

/*t*tt****itt*t************ﬂ*****t*****i***t****t

* Define Constants *
**t******ttt********'k****************************l

#define HOST 0x8000 /* Intermediate Host */
#define  NODE_PID 0 /* Node Process ID */
#define CONTROLLER 0 /* Controller = Node 0 */
#define  HOST_PID 1 /* Host Process ID */
#define INFINITY 9999 /* Need a big number ?2°? */
#define E_NODE 10 /* Generate Children Msg */
#define WORK_REQUEST 40 /* Worker needs work... */
#define NUM_JOBS 50 /* Rec Num Jobs to schedule */
#define NEW_JOB 60 /* Rec a Job 3-tuple */ )
#define U_BOUND 70 /* Rec Initial Upper Bound */
#define KILL 80 /* Kill worker Process */
#define BEST 200 /* Send Local Best to Control*/

JERKARRRARRAKRARKRAR KRR AARARA AR AR AR A AR kA AR AR AR A A AR A AR )

* Define Global Variables *
****t***tti**************ﬂ*********************tt/
int cid, /* Channel 1D */ !
child count, /* Work Load Count */
u_bound, /* Upper Bound */ :
number_of_jobs; /* Number of Jobs to Schedule*/
JOB job_list [MAX JOBS); /* Array of Job 3-tuples */ .
NODE E_node, /* Next node to expand */
best, /* Local Best Answer */ Y
copy_node () ; /* Copy one vector to another*/ .
{
f
\
\]
|
P
P\f'.
153

AN SAGLY




CONTROLLER, NODE_PID) ;

best .cost = INFINITY;

Y rTe e

/*---- Enter the control loop

if (probe(cid,E_NODE) >= 0){

solve_subtree (E_node) ;

}

if (probe (cid,KILL)>=0) break;
}
cclose (cid);

. .‘_’

0
»

154

]
.&? /tt******t**i*'k****t*********i******i**tt****t**t*ti*****
LY

* Main Program
t**tt****t*t*-k*t*************'k******t**t*********t*t*****/

x

Forget this parameter

t main ()
{
) int i, /* Iteration Counter
cnt, /* Msg Length
ignore, /*
p me, /* My node number
3 node, /* Node number
pid: /* Process ID
[r————— Initialize the Control Process by....
- Open a communications channel
1 - Receive the Number of Jobs to Schedule
¢ - Receive the initial Upper Bound
b - Receive the Job Triple information for all jobs ----- */
I cid = copen(NODE_PID) ;
; recvw (cid, NUM_JOBS, &number_of_jobs,sizeof (number_of_jobs),
4 &cnt, &node, &pid) ;
y
: recvw (cid,U_BOUND, &u_bound, sizeof (u_bound), &cnt, &node, &pid) ;
(’ for(i=1; i<=number_of jobs; i++)

recvw(cid,NEW_JOB,&job_list[i],sizeof(JOB),&cnt,&node,&pid);

sendw (cid, WORK_REQUEST, &ignore, sizeof (ignore),

recvw(cid,E_NODE,&E_node,sizeof(NODE),&cnt,&node,&pid)'

} sendw (cid, WORK_REQUEST, tignore, sizeof (ignore),
CONTROLLER,NODE_PID);

*/
*/
*/
*/
*/
*/

J - If an Enode msg arrives, solve the subtree denoted by the enode.
' After solving the subtree, request more work.

E - If a KILL msg arrives, terminate the control loop —---- */

p

: for(;;){

p

i
1
{
Y
)
Y
)
L
"




Nop Bk A gt d g ey R Pan g et by Uop St i g vad ron tag tig Kok Uaf el but ig) €k ot bR igh b bt gt il tal aig g g d : : 3 AR A T IvO sty et

g&i} JRRR AR RRR R R R KRR AR AR AR AR R AR R A AR R AR R A AN KRR R AR AR A R

* *

* Name : Cost *

* Parameters: n = solution vector * ’
* Function: Return the cost of the solution node *

* represented by n. *

*x *
*********************t***********************************/

cost (n)
NODE n;
{ t

int m,i,cost;

m= 0;
for(i=1; i<n.vector[0]; i++) ;
if ((n.vector[i]== 0))
m= i, ;
cost = 0;
for (i=1; i<=m; i++)
if (n.vector([i] == 0)
cost += job_list[i].p;

return(cost);

/*********t*********************************t*********t**

* *
*  Name : Max *
* Parameters: Last = Last Job Scheduled *
* Function: Return the maximum deadline of those *
* jobs included in the schedule so far. *
* *
*t*************t**********************************t******/ X

max (E_node, last)
NODE E_node;

int last;

{

int i,m;

m = job list({last].d;
for(i=1; i<=last; i++)
if ((E_node.vector[i] == 1) &&
(m < job_list[i]).d))
m = job_list(i].d;

e SN

return(m);

155

B T T o e B T g T g T T P N A T N N A T N S S A s e e A R N A R N N NS I POt Y



3&9 [rr kR kR R AR R R R R R RRRAR KR AR RARRRRRAR R AN R AR R R AR AN R R R Rk
*

*

*

*

*

*

]
Name : Max *
Parameters: lLast = Last Job Scheduled *
Function: Return the maximum deadline of those *
jobs included in the schedule so far. *

*

*

KRR ARRKRRR AR R AR R AN RRARRARRRARRAARRR AR RARAA A AR AR R AR AR AR A RN /
get_best_bound(u)

int u;

{

int node,
pid,
cnt,

new_bound;

while (probe(cid,U_BOUND) >= 0){
recvw(cid, U_BOUND, &new_bound, sizeof (new_bound),
&cnt, &node, &pid);
if (new_bound < u) u = new_bound;
}
return(u);
' }

/*****t***t**********t***********t*t*ﬁ*t**i********tt***ﬁ

N *
| G * Name : Copy Node *
‘ * Parameters: nl = Source Node *
| * n2 = Destination Node *
j * ®
‘ * Function: Copy node, nl, into node, n2, and return *
‘ * node, n2. *
* *
! **********tt**t***t************t****t******tt*t*t*it*****/
NODE copy_node (nl,n2)
NODE nl,n2;
{
int i;
for(i=0; i<=VECTOR_SIZE; i++)
n2.vector[i] = nl.vector(i];
n2.cost = nl.cost; ,
return(n2); i
) h
L)

156

AR B N S I S

']
’
d

RV ST 03 L T, Ch LN (T Ny, o, o LR QLR Y, iyt 0L N O8 ¢



Al /***t**t***tt**t**t*********t*****t*t**t**t***t*t*****t**
* *
* Name : Bound *
* Parameters: n = solution vector *
{ * Function: Return the upper bound of node n *
* *
t**kt**ti*tt***t***t****i********t*********t************t/
bound (n)
NODE n:
{
int i,
P’
p=0;

for(i=1; i<=number_of_jobs; i++)
if (n.vector[i] != 1)
p += job_list[i].p;

return(p) :;

/t*tt*****tt********t***************************t********

*

Name : Solve Subtree *

Parameters: E-node = Subtree (problem) to search *

Function: Given the subtree defined by the E_node,
search the subtree for an answer using a
depth-first search technique.

send it to the Control Process before
returning.

*» % % * % X % #* * ¥

*

*

*

*

If a new 'local' best answer was found *

*

*

* *
*

KA AR R KRR AR R AR R A RRRARARRN AR R AR R AR A AR RN AARR AR A AR R AR A Ak Rk /
solve_subtree (E_node)

NODE E_node;
{
int job, /* Schedule this job */ !
i, /* Iteration counter */
new_best_flag, /* Found a new best? */
root, /* Root of subtree */
deadline, /* Schedule Deadline */
time_bound, /* Time Constraint */
best_bound, /* Penalty of best node */
new_bound; /* new upper bound */

157

NI TN IR JER N I A SO UlR 200 A COER gl L



NS B0 Sop b ¥ 6.0 va® ot Vaf b Mt b ot wal ot Vg ot b i ad i at it atal el -atad 3 L} 4 X CETERPLIYOR ‘av 1

@Eﬂ job = E_node.vector(0];
root = job - 1;
new_best flag = FALSE;

----- Only solve the subtree defined by the root -----*/
while (job > root){

-y s
~
*»

switch (E_node.vector[job]) {

/*--—- Case 9: Add the Job to the schedule --~*/
case 9:
deadline = max (E_node, job) ;

time_bound = 0;
for(i=1; i<job; i++)
if (E_node.vector([i] == 1)
time_bound += job_list[i].t;
time_bound += job_list[job].t:

E_node.vector{job] = 1;
if (deadline >= time_bound) {
E_node.cost = cost (E_node);
u_bound = get_best_ bound(u_bound) ;
if (E_node.cost < u_bound)
if ((new_bound = bound(E_node)) <
- best_bound) {
C.,, new_best flag = TRUE;
best = copy node (E_node,best);
4 best_bound = bound(E_node) ;
) }

if (new_bound < u_bound) u_bound = new_bound:

if (job < number_of_ jobs) job++;
}

break;

/*=--— Casel: Do not schedule the next job --=*/
case 1:
: E_node.vector([job] = 0;
E_node.cost = cost (E_node);

if (E_node.cost < u_bound) {
u_bound = get_best_bound(u_bound);
K if ((new_penalty = bound(E_node)) <
A best_penalty) {
best = copy_node(E_node, best);
new_best_flag = TRUE;
best_bound = bound(E_node);

At
sod

158 ‘
i

: -
. - - . \ AL 1A % % L AL N (SR R S S LA TR LA SUR LR S SUIL L S AT WA T ) &"\1
OIS T 50 it ‘.o".c.o ...- N .c‘ 3 N .. Ly $~$.' P AT M AN R RN, 3 o o 2 Ca . N



@ if (new_bound < u_bound) u_bound = new_bound:

/*--- 1f the present job is less than the total number of jobs
to schedule, then
- Schedule the next job by incrementing 'job’
- Otherwise, this is the terminal node of the left-most

branch of the search tree..... therefore, continue the
depth-first search by backtracking to the right-branch
(decrement 'job') ---*/

if (job < number_ of_ jobs)
job++;

else{
E_node.vector{job) = 9;
job--;

}

break:

/*--- Case 0: Reached the terminal node of the right-most
branch of the tree...therefore, backtrack
by decrementing 'job' —---*/

case 0:

E_node.vector(job] = 9;
. job—-;
6 break;
}
/*~--- If a nevw local best is found,
send it to the Control Process ~-=—-=- %/

if (new_best_flag)
sendw (cid, BEST, ébest, sizeof (NODE) , CONTROLLER,NODE_PID) ;

‘55Q
‘\

159

had ¥ W AEUN AN RS 0

ST W r g B esd BOXE

s



Mg e

rote,
R

R AL L I IR T W U RN AR TR U e 878 0% 0 0 p Ay b gl ' it & B da) 08 6ok Lot igb b

Appendix D:

The listing on the following pages was run on a DEC VAX 11/785. The run times for
various board sizes sets a baseline for performance comparisons with the iPSC Hypercube X
(see Chapter VI, Performance Measures and Experiment Results). This version of deadline

job scheduling is written in C Language. The description of the code follows.

Pages 1 and 2 of the listing define the Header Files, Constants, and Variables used in the
program. The main program also starts on the second page of the listing. First, the initial
state of the problem is set. The E_node is initialized, and the upper_bound is set to
INFINITY, and the 'best’ solution is set. Next, the number of jobs is read from standard
input followed by the initialization of the job_list array. Once the jobs are read, the initial
problem vector, (X{,X3,...,X) where n = the number of jobs to be scheduled is set to
(1,s,...,%) where ¢ defines an x; that has not been determined. The number 1 in the first
element, vector[0], identifies job #1 is the first job to try to schedule. Then, the cost of the
initial problem is set equal to the upper_bound. The live node queue is then initialized with

this first vector. )

Next, the while loop is executed until the first solution i, found. This condition occurs
once all live nodes have been examined but, while there is something in the queue, the
following procedure is conducted. First, get an E-node (the next node to expand) from the
front of the live node queue. The next job to schedule for that particular E-node can be found

in the first element of the vector, vector[0].




Before generating children, increment the first element, vector{0]. This sets the state of

the solution vector such that the next job is scheduled if this child becomes a live node.
Then, determine the maximum deadline and the total run time of those jobs scheduled so far.

This information is needed to generate the first child.

Now, generate the first child. This child attempts to add the next job to the schedule.
The next job can be scheduled only if the maximum deadline is greater than or equal to the
total run time plus the time to run the next job. If this job meets these requirements, schedule
it by setting the value of its vector to 1, and compute the cost of the child. Next, the child
becomes a live node (inserted into the live node queue) only if the cost of the child is less
than the upper bound. If the child is a live node, it may also be the best solution so far. The
live node is best solution if the cost of the live node is less than the upper_bound and the total
penalty of the live node is less than the total penalty of the best solution. Finally, before

leaving the first child generation, check to see if the child sets a new upper_bound.

Now it's time to generate the second child. This child does not have to pass the time and
deadline test since it does not add this job to the schedule. First, do not schedule this job by
setting its vector to 0. Next, calculate the cost of the child. If the cost is less than the upper
bound, then is becomes a live node (insert it into the live node queue). If this child becomes
a live node, also check for best solution so far. The conditions for the live node and the best
solution are the same for this child as they were for the first child. Finally, check to see if the

child sets a new upper_bound.

Once the solution has been found, take a stop time and print the best job schedule as well

as the time to find that schedule.




2t F o had gl Al tad Fa€ wad b cal o -at rato ol val halo ol ale ate At st dla die Ala gco fla Sle Al Al deidiiiedbediededtidiideit i
SR8t e tale ab gt gt Al S 3t ot i at ot gt igl gk b Al ot gl

\

/t*********tt*******t*t**t***************t************************
* THESIS
* *
* Sequential Deadline Job Scheduling *
* *
* Date : 27 Aug 1986 *
* Function: Given a set of job described with the following *
* parameters, *
* *
* - Deadline to finish running by *
* - Penalty if the job does not run *
* ~ Time to run the job *
* *
* Find the largest subset of jobs that can be run *
* by their deadline as well as minimize the total *
* penalty paid. *
* *
* Language: C Language *
* *
* Operating System: 4.2 BSD UNIX *
* *
* Libraries: Standard I/0 Types.h Times.h *
* *

=N * Author: Captain Rick Mraz *

¢ :

- ***********tt********t****************t***************************/
/***-k**'k**tt***************ti******t*********t**
* HEADER FILES *
****'k*****tt***********************t*i*******t**/
#include <stdio.h> /* Standard IO */
#include </sys/h/types.h> /* Time structure type */
#include </sys/h/times.h> /* Time functions */
#include "gq.h" /* Queue Routine Header */
#include "j.h" /* Job information Header */

/'kt*t**t*ttt***'k**i****i****ik******************

* CONSTANTS *

ﬁt*******i*************it*****i***ttt******t****/

#define INFINITY 999999 /* Need a large number?? */

[}
o
s L]
od
162

"'Cﬁ;ﬂ;i.;igi.‘-”"'v,"fq:"'-’""r-'-:.'f f.:f ‘_':-.\-*;’-




A LAATe » 5N

etz Ak 0 N

aa t L.L4

"\5

>,

/it***************t******i**t***********t*******

* VARIABLES *
t******t***tt*******t**********tt****t********t*/
int i, /* Iteration Counter */
best_penalty, /* Penalty of best solution */
deadline, /* Maximum Deadline */
new_penalty, /* Penalty of live node */
number_of_jobs, /* Total number of jobs */
job, /* Schedule this job */
time_bound, /* Total run time of jobs */
new_bound, /* new upper bound */
upper_bound; /* Upper Bound */
NODE live_node, /* Live node */
best, /* Best node so far... */
E_node, /* Next node to expand */
copy_node (), /* Clone a Node... */
temp; /* Temporary Vector */
JOB job_list [MAX JOBS]; /* Array of Jobs to Schedule*/
struct tms start_time; /* Start of Computation */
struct tms stop_time; /* End of Computation */

/*******t***************************************

* Main Program...Sequential *
* Deadline Job Scheduling *
t**t***t***t*********************************t**/
main() |

[ rm———— Initialize the job scheduler ----- */

times (&start_time):

upper_bound = INFINITY;
best .cost = INFINITY:;
q_init ();

[ R Read in the list of jobs to schedule ----- */
scanf ("%d", &number_of_jobs);
for(i=1l; i<=number of_ jobs; i++)
scanf ("$d%dsd", &job_list[i].p,&job_list[i}).d,&job_list[i].t);

163

P05 Frg LV I WA .’(.'I'."{-‘V".v'._-’ .r\-"..u'_‘- Tl gl Ll e SR X RO 0 AR v NN

.‘-_\

N




@ﬁ; AL Initialize the Problem Vector & Live Neode Q -—--- */
' temp.vector(0] = 1;
for (i=1; i<=number_ of_ jobs; i++)
temp.vector[i] = 9;

temp.cost = upper_bound;
insert_priority(temp);

[*———— Find the best schedule ----- */
while (q_status != EMPTY) (
delete_qg(E_node,q); /* Get E-node from queue */
job = E_node.vector([0]; /* Schedule this job */
if (job <= number_of_jobs) {
E_node.vector[0]++; /* Schedule the next job.. */
if (job <= number_ of_ jobs) { /* Calculate Time & Deadline*/

time_bound = 0;
deadline = max(E_node, job);

for(i=1; i<=job; i++)
if (E_node.vector(i] == 1)
time_bound += job_list[i].t;

[*mmmmm Generate First Child ----- */
R if (deadline >= (time_bound + job_list[job].t)){(
G E _node.vector[job]l = 1;
E_node.cost = cost (E_node);

if (E_node.cost < upper_bound) {

live_node = copy_node (E_node,live_node) ;
insert_priority(live_node);

if ((new_penalty = total penalty) <
(best_penalty = total_penalty))
best = copy_node(live_node,best)

}
if ((new_bound = bound(E_node)) < upper_ bound)
upper_bound = new_bound;

164

2

h [ RSN LA

58S




QL2

i20%

[*————- Generate Second Child ----- */
E node.vector[job] = 0;
E_node.cost = cost (E_node);

if (E_node.cost < upper_bound) {
insert_priority(E_node):

if ((new_penalty = total penalty) <
(best_penalty = total penalty))
best = copy_node (E_node,best) ;

}

if ((new_bound = bound(E_node)) < upper_ bound)

upper_bound = new_bound;

[*m———— Computation Complete...Take Time Measure
times (&stop_time);

print_solution (best):
printf ("\nTime to Solution: %f sec\n",

(float) (stop_time.tms_utime-start_time.tms_utime)/60.0);

}

/*********i**k**t**************************tt*************

Name: Bound

Parameters: n = calculate the bound of this node

bound of a node equals the sum of all
penalties of those jobs not included in

the job schedule so far.

*******it***********************************************/

bound (n)

NODE *n;

{

int i,
b;

b= 0;
for(i=1; i<=number_ of jobs; i++)

*
*
*
*
* Function: Calculate the bound of the node, n.
*
*
*
*
*x

*
*
*
*
The *
*
*
*
*

if ((n->vector(i] == 0) || (n->vector(i] == 9))

b += job_list[i].p;

return(b) ;

165

Ly VA T A A A S UL AL SR SRR S,
T NN R TR I AN A A VA



(o

/**it******t****************i*****t*****i******kiiti*iit**
*
*
*
*
*

*

*
Name: Copy Node *
Parameters: n = Copy this node *
Function: Copy the Node, n, into a new node and *

return a pointer to the new node. *
*

*********t*t***************************t*********ttit*i**/
NODE copy_node (nl,n2)

NODE nl,n2;

{

int i;

for (i=0; i<=VECTOR_SIZE; i++)
n2.vector[i] = nl.vectorl[i]:
n2.cost = nl.cost:;

return(n2);

}

/*******t******************************it********t********

*
Name: Max *
Parameters: n = Use this vector *
job = find max deadline compared to *

this job *

*

Function: Find the maximum deadline of the vector *
n and the job *

*

*» % * * * X X *

*
*********t*************i*i************t************t*****/

max{n, job)

NODE n;
int job;
{

int i,

m;

m = job_list[job].d;
for(i=1; i<=last; i++)
if ((E_node.vector[i] == 1) && (m < job_list[i].d))
m = job_list[i].d;

return(m) ;

166

AN PP L L LA LIS aAW BB LI L T Bttt ot AT 2o,

[ W W



“%
x?j
1 §

/ﬁ*t***t*************t**********t**************t******t***

* % % % R % % % % % % % % F X % * % % * * %

*

Name: Cost
Parameters: n = Calculate the cost of this node

Function: The cost of the job scheduling vector
an additional parameter, 'm'. m is
defined as follows,

m = max(Sx)

where Sy is the set of jobs
examined so far.

The cost is then computed using the
following summation,

2‘ Pi
1<m
ieJd

where J is the set of jobs scheduled

so far and p; is the penalty for
job i.

cost (n)
NODE n;

{

intm,

i,

c;

m= 0;

for (i=1; i<n.vector([0]; i++)

if (n.vector{i) == 0)
m= i;
c = 0;
for(i=1; i<=m; i++)
if (n.vector([i] == 0)
c += job_list([i].p:

return(c)

167

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
AR KRR R RAKR AR AR AR AR R RA R AR AR AR AR AR A AR AR AR AR A AR A AR Rk A AR AR R A A A kK

L al ralolal el Al b tale:ala abn Al dte 5o Alin B0 A'e & 2

/

_'f,;.r_:l‘_;{ ‘.-,:.-,:.r.;.r_‘ o el O '(,;.r_'_.r’- AN, O s' \'\".n '..r G \".-\'.: \.g_.-__'.:\'.-__.:_. .-.\._..\.‘ \_..-\.-\. R

TSUBLWLUWLELEY

A R A i e ol W

2 a5 naw o aoa



> 7

@ /*******t******t******************************************
* *
* Name: Print Solution *
* Parameters: b = best solution *
* *
*  Function: Print the best job schedule given the best *
* vector. Also print the total penalty paid *
* *
********t**t***********t********************t************/
print_solution(b)

NODE b:

{

int i,
penalty;

printf ("The Best Job Schedule is:\n");
printf ("——---—emm—m e \n");
printf ("\tJob(s): ")

penalty = 0;
for(i=1; i<=number_of jobs; i++){(
if (best.vector([i] == 1)
printf("%d ",1i);

if (best.vector[i] !'= 1)
“. penalty += job_list[i]).p:;
A }

printf ("\n\n");
printf ("\nPenalty = %d\n",penalty); print_vector(best):

/*t**k***t******************t**********************t***t**

* *

* Name: Total Penalty *
; * Parameters: n = Find the Total Penalty of this job *

* *

*  Function: Return the total penalty paid. *

* *

**********t************t*****i***t*******iitiiti**t**x***/

total penalty(n)

NODE *n:;

{

int i,p:;

for(i=1; i<=number_of_ jobs: i++)
if (n.vector{i] '= 1)
p += job_list[i].p:
return(p);

- -

S
y
v

168

3
|
}

W WS YW a W wm_ow.

e T e V" a™ LG N P L P N N T A S WO T SR S gt Y
S, .A}A};Eh} h&k.ﬂ*)ﬂ»ﬁ?&‘;)ﬂ\a COF 2P PRI ‘_-\.L".a_\_.\‘\_.\ﬁ\...




L 2t R e R - ite SR Ry # oy Sl lve d-g B p e dla aie flg die ala-Alo 8T Sl Rie glu aToaata hlg g1o 4V AUCAU R, Uo et gl MV ala-a0aral, AU alo~alo sty ASo phy o3, b el yt ol "2l -at

/*********************t*****k**********************t**************

* Job Information Header File *
* *
* Sequential Deadline Job Scheduling *
* *
* Date: 28 Aug 1986 *
* *
* Author: Captain Rick Mraz *
* *
* Language: C Language *
* *
* *
******************************************************************/

/**************************t********************

* Header files *
********************************************t***/
#include <stdio.h> /* Standard I/0 */

/***********************************************

* Constants *
************************************************/

#define MAX_JOBS 30 /* Maximum of 30 jobs */

»
Qé /t******************************tk*t************

* Node Information Record *
*********************************t**************/

struct job {

int p; /* Penalty */
int d; /* Deadline */
int t}; /* Time to Run */
typedef struct job JOB; /* Define the type JOB */

/*********t************t*********i*i*****************

* FUNCTION DEFINITIONS- job queue functions *
*******************t*************t*****************t*/

void insert_priority():
void deleteq();

Y

169

.

P v",I""-"’ -'-f‘f..';."‘ﬂ.: .f‘."f-'ﬂ-r' L "\;‘V\lhw;uf'-’\’\ ald yf--f"fx.f-".“f\f.‘)‘..- \f\..':-( ....'\{\.-\.-;"’ .* -’\‘-4
W . Wy Wy N R Kal R R ¥ RN .. Pan )



3

To re-enforce the least-cost branch & bound algorithm, an example problem is in order.

Given the following job sequence (16:384),

ob p 4 §
1 5 11
2 10 3 2
3 6 2 1
4 3 1 1

find the subset of jobs such that the penalty paid is minimal. The solution vector for this
problem, (x1,X2,X3,X4), has the following explicit constraints, x; € {1,0} where 1 denotes
that job i is included in the schedule and O denotes that job i has not been included in the
schedule. For example, solution vector (1,1,1,1) identifies all jobs have been scheduled.
The entire solution space of this problem is shown in Figure D1. Next, the implicit
constraints define the relationships between the x;'s. The first implicit constraint,
Deadline/Total Time constraint, is quite easy to understand, the next job can be scheduled
only when the maximum deadline of the jobs under consideration is greater than or equal to
the total run time of those same jobs. For example, the grey node in Figure D1 identifies the
solution vector (1,1,1,*) that does not pass the implicit constraint because the maximum
deadline of jobs 1,2,and 3 equals 3 and the total run time of those same jobs equals 4. The
second implicit constraint, Cost/Upper Bound constraint, relies upon the cost of the node
and the value of the upper bound. The number inside each node of Figure D1 identifies the
cost of that node. See Chapter 5 for the details on how the cost and upper bounds are
calculated.

170

- - -y - R I - - L LI P I D RIS P N L IR I R PRI TSR P TP Y
R O LS LR N L f\f‘q'\\f.'-l‘ I\I\l\-\f.‘q e Ly .\J' S J' o 4- N .J‘- IS 4 J‘\-'.? .'-'.. - RO




it Akl d ol b i b Al AT At sk ST ard alh oYL oNL il ol aiiaath o KD P Tl L

T PR R TR Y P WO TN N N ET TP RO MO Y RO R Y RV TN E WIRRE T EW WY WYY P W UW WL

22edg uognjog Suinpayog qof dutipea(] qof-p d(durexq :L¢ aundig

POOO OO OE® ® OO @

0= =px 0=px 0=px

1=pX 1=px I=px 1=px I=pX [=pX 1=px 1=pX

(12) (D (1) () (Y (o) )

=2

0=¢x I=¢x 0=¢X 1

[}
R

0=¢x 1=€x 0=¢x [=€x

171

o=0x 1= 0=zx 1=x

RIS

<
N ¢

0=Ix I=1x

A

Syt e
P S ¥ Ny

WA N AN
8 I SO S LA A

\
q

SN

{ '\J:

R




Wy
&

follows:
Live Node O
(o000 0

hat gt o B B 8 g v L c au Lt Bal g s ot J

U Bound
24

-- Expand next E-node (s,°,°,

- (l).’.’. 0 19
@
(Loss) O 14
(0’.’.’. 5
L -- Expand next E-node (1,°,s,
(1,10 O 9
(O’o,o’o 5
~ (1,1,52) O 9
: (0:.’.’. 5
! (1,0,',’ 10
-- Expand next E-node (1,1,
(1,1,1,2) Bound
: (O’o’o'o 5 9
(1,1,0) 6
(l ’0’.’. 10

.....

AR
AN Y

Best Solution
(0,0,00)0 24

(l,o’o’o 19

(1,500) 19

(1’1,.’. 9

(1’1’.’. 9

119 9
172

Combining the explicit constraints and the implicit constraints the search tree to find the
answer to this job set looks like Figure D2. The square nodes identify those children that can
not be scheduled because of the Deadline/Total Run Time constraint. The nodes with the B
beside them identify those nodes that failed the Cost/Upper Bound constraint. In the
following trace of least-cost branch & bound, the Live Node Q shows the list of live nodes
ordered by least-cost (the number to the right is the cost of that vector); the Upper Bound at
that point in the search; and the Best Solution (total penalty of that solution is to the right of

the vector). With this information, the trace of this least-cost branch & bound search goes as

Remarks
Initial Problem

1st Child, update u_bound & best
2nd Child, update u_bound

1st Child, update u_bound & best

2nd Child

Deadline/Total Time Constraint
2nd Child

~>

-

o




yaueag Suun(g pajesauan)
soedg uonn[og o[-} 31 JO UOTLO 8¢ dInT1]

1T <1

0=€x I=€x

ST

0=px

q |
1 8
0=px
I=px
1 $
0=¢x T=€x
S
1=2x
0=Ix

0=px

1=pX

91 0l

0=gx I=¢X

01

0=2x

I=1x

[=¢x

0=€x 1=¢x

I=0x

WR T Y ¥ T T, TR T LT T.Te T WY ERTY .Y .7,

173




U Bound

& Lits Node O
-- Expand next E-node (0,,¢,*

©1,e°) 5 9
(1,1,0,5) 6
(1,00) 10

(0.1,5°) 5 9
(1,1,0,) 6
(1,0) 10
0,0,50) 15

-- Expand next E-node (0,1,¢,¢

©0,1,1,2) 5 8
1,1,0) 6
(1,0°) 10
0,0, 15

©11) 5 8
(1,10°) 6
(1,0,) 10
0,1,0,+) 11
00 15 |
(o -- Expand next E-node (0,1,1,7)
©,1,1,1) Bound

(0,1,1,0) Bound

(l’l’.’.

(l’l’.’.

0,1,1,%)

0,1,1,9)

-- The live node queue now looks like this
(1 ’ 1 ’O’.) 6 8
(1,0.) 10
0,1,0,o) 11
(0,0,0,°) 15

-- Expand next E-node (1,1,0,°)

(1,1,0,1) Bound

(1,1,0,0) Bound

0,1,1,%)

-- The live node queue now looks like this

(1,0,) 10 8
(0,1,0,) 11
(0,000) 15

0,1,1,%)

e }

174

8

8

Remarks

1st Child

2nd Child

1st Child, update u_bound & best

2nd Child

Deadline/Total Time Constraint
Cost/Upper Bound Constraint

Deadline/Total Time Constraint
Cost/Upper Bound Constraint




@& Live Node © UBound  BestSolution  Remarks
-- Expand next E-node (1,0,+,

(1,0,1,*) Bound Cost/Upper Bound Constraint

(1,0,0,*) Bound Cost/Upper Bound Constraint
-- The live node queue now looks like this

0,1,0,) 11 8 ©,1,1) 8

0,0,+0) 15
-- Expand next E-node (0,1,0,°)

(0,1,0,1) Bound Cost/Upper Bound Constraint
(0,1,0,0) Bound Cost/Upper Bound Constraint
-- The live node queue now looks like this
0,0,5,°) 15 8 ©,1,1,) 8
-- Expand next E-node (0,0,
@ (0,0,1,*) Bound Cost/Upper Bound Constraint
(0,0,0,*) Bound Cost/Upper Bound Constraint

-- The live node queue is now empty and the search terminates with the following job schedule as
the best answer:

Job Subset = {2,3}
Penalty =8
3
175

..... et B
RN ALY AR AR LA CAECL LT NAD LN ok

.7 .
skl e A



Appendix E:
Tables of Branch and Bound Experiments

The following tables tally the results of the N-queens and the deadline job scheduling
experiments. Dash entries could not be calculated because some test were not made. The
analysis of this data can be found in Chapter VI, Performance Analysis and Experiment Results.

In that chapter, some of this tabular data has been plotted to show trends and for comparisons.

N-queens Experimental Results
Table 1
N-queens VAX Baseline
Board Time to Time to
@- 4 0.0000 0.0000
5 0.0000 0.0167
6 0.0167 0.0734
7 0.0017 0.3848
8 0.0999 2.0042
9 0.0333 10.1958
10 0.1253 54.1718
11 0.0685 308.1500
12 0.4778 1837.5555
Table 2
N-queens Elxsi Computation Time
Board Time to Time to Speed Up
Size  First Solution (sec)  All Solutions(sec) V.
4 0.0000 0.0000 0.000
5 0.0000 0.0167 1.000
6 0.0000 0.0500 1.468
7 0.0000 0.2500 1.539
8 0.0500 1.1667 1.717
9 0.0167 5.9400 1.717 ‘
10 0.0667 30.6500 1.767 |
11 0.0333 172.2500 1.789
5, 12 0.2667 1045.5333 1.758 .
':.:;. :
|
|
176 !

M T I DU T I Sl I S I I P --.'.-* PP -’
IR O G TAR GO AR AL GRS WL 354 SO



177

Table 3
N-queens iPSC d-5 Computation Time
Board Start Time to Time to Speed Up
Size.  _Up  First Solution (sec)  All Solutions(sec) QL:L_AX
4 0.384 0.448 0.520
5 0.416 0.400 0.624 0.027
6 0.496 0.450 1.024 0.077
7 0.800 0.764 2.468 0.156
8 0.544 0.49 2.206 0.908
9 0.512 0.400 2.198 4.639
10 0.490 0.400 4.084 13.264
11 0.496 0.424 18.144 16.984
12 0.464 0.704 110.538 16.624
13 e 0656 000 -
14 @ e 13286 e
15 e 1776 000
16 W 4240 e
17 e 3248 0 e
18 e OB e —
19 e 15920 e -----
20 e 11248 e
S Table 4
e N-queens iPSC d-4 Computation Time
Board  Start Time to Time to Speed Up
4 0.192 0.368 0.440 0.000
5 0.208 0.180 0.384 0.044
6 0.288 0.234 1.086 0.068
7 0.288 0.266 1.066 0.361
8 0.256 0.212 1.114 1.799
9 0.240 0.208 1.824 5.590
10 0.240 0.434 7.006 7.732
11 0.224 0.284 39.984 7.707
12 0.240 0.504 270.480 6.794
13 e 0784 0 e
14 ... 2976 e
15 e 1.136 e
16 - 35%¢ 0 e
17 e 28 0 e
18 e PR —
19 18048
20 e 20016 0 e
Pyt
LR

FAER e e £ AR AL AL RS LSS BN el B Pl NN o R R R R RN el S S e




@ ‘ Table §

N-queens iPSC d-3 Computation Time

Board  Start Time to Time to Speed Up  Speed Up
0.096 0.096 0.166 X 0.048
5 0.096 0.096 0.284 0.059 0.127
6 0.176 0.176 0.584 0.126 0.291
7 0.110 0.110 0.556 0.692 1.392
8 0.112 0.128 0.848 2.363 4.467
9 0.120 0.120 2974 3.428 6.482
10 0.128 0.176 13.744 3.942 7.376
11 0.128 0.192 75.462 5038 -
12 0.112 === eeeee eeeee e
Table 6
N-queens iPSC d-2 Computation Time
Board  Start Time to Time to SpeedUp  Speed Up
Size.  _Up  Eirst Solution (sec)  All Solutions(sec) Q!LQI‘_AX Overd-0
4 0.064 0.042 0.240 0.068
5 0.080 0.064 0.222 0 075 0.162
6 0.080 0.108 0.310 0.237 0.548
- 7 0.064 0.056 0.488 0.789 1.586
C.:, 8 0.064 0.060 1.344 1.491 2.819
9 0.064 0.096 6.130 1.663 3.145
10 0.064 0.206 30.896 1.753 3.281
11 0.064 0.314 173.800 .73 -
12 0064 - e e e
Table 7
N-queens iPSC d-1 Computation Time
Board Start Time to Time to Speed Up  Speed Up
Size.  _Up__ First Solution (sec)  All Solutions(sec) Over VAX  Overd-0
4 0.032 0.042 0.116 0.000 0.069
5 0.032 0.032 0.240 0.696 0.15
6 0.032 0.038 0.352 0.209 0.483
7 0.032 0.032 0.894 0.430 0.866
8 0.032 0.064 3.630 0.552 1.044
’ 9 0032  0.064 17.622 0.579 1.094 {
; 10 0.032 0.288 91.668 0.591 1.106
11 0032 - e e
12 0032 - e e

178




by W B N Y% 00 nap 2y Vg L0 b b g Mok cabt ld i 8 baty g0 tpiglaiginl el pla-gia A tie s p 8 R 9 Bb {0 f 0 o iatahat oy ot

8] Table 8

¥ N-queens iPSC d-0 Computation Time
Board Time to Time to Speed Up
0.000 0.008 0.000
5 0.000 0.036 0.038
6 0.026 0.170 0.065
7 0.002 0.774 0.089
8 0.204 3.788 0.111
9 0.074 19.278 0.126
10 0.254 101.376 0.101
11 ——— e ————-
12 e ke e
Table 9
Load Balance for the 11-queens Problem on a 4-5 cube
Node E-nodes Node E-nodes
Number Expanded Number
1 10499 16 10365
2 11141 17 10844
3 10850 18 10511
4 11031 19 10527
5 11092 20 10459
(o 6 11321 21 10760
; 7 10932 22 10331
8 10807 23 10833
9 10647 24 10179
10 10548 25 10738
11 10506 26 11099
12 10931 27 10600
13 10525 28 10947
14 10125 29 10453
15 10635 30 10570
31 10153
o)

179

Jatat ol Sk ¥ gox 4.t




@ Table 11

Deadline Job Scheduling iPSC d-5 Computation Time

(Time in Seconds)
Number StartUp  Run Time SpeedUp StartUp  Run Time Speed Up
ofJobs  Time  ProblemSet#1 OverVAX Time Problem Set#2 Over VAX
4 0.868 2.392 0.029 0.894 2.408 0.034
5 0.892 2.800 0.026 0.908 2.800 0.033
6 0.902 3.192 0.021 0.964 3.204 0.410
7 0.920 3.598 0.023 1.062 3.600 0.055
8 0.956 4.396 0.019 1.246 3.996 0.102
9 0.976 4.796 0.017 1.672 4.392 0.210
10 0.968 4.788 0.018 1.150 4810 0.358
11 0.994 5.186 0.017 1.502 5.188 0.833
12 1.012 5.584 0.018 1.480 5.588 2.270
13 1.028 5.986 0.018 1.502 5.982 7.023
14 1.042 6.384 0.017 1.494 6.380 23.567
15 1.076 6.792 0.018 1.528 9.534 58.130
16 1.084 7.184 0017 - e -
17 1.124 7.660 0018 -
18 1.160 8.052 0017 - e e
19 1.164 8.448 0.017 —--- ———— e
20 1.188 9.138 0017 - e
21 1.196 9.194 0019 - e e
. 22 1.222 9.584 0018 - e
(o 23 1232 10.150 0018  —o e
- 24 1.264 10.392 0019 - e
25 1.288 10.812 0019 - e e
v'?::
A
181

. e P N s P A A" A" s b Al tava® DY I N R R AL T RS R AT P TR T TR Ry (L NS PN
E-St-ﬁﬁ'&yi\';&‘ﬂ-f.-.-z.-it-:ﬁ\&&ﬁﬂxﬁsﬁsﬁﬁxiﬁﬁfaﬁt\t~.i-.iu.xiat-.':-.t-:.\:-,:-.' ROV A AR A A AR AR A



G

.
s
F

Y5500

sk

Deadline Job Scheduling iPSC d-4 Computation Time

Number StartUp  Run Time
ofJobs  Time  Problem Set #1

4 0.468 1.194

5 0.468 1.400

6 0.520 1.642

7 0.526 1.800

8 0.546 2.006

9 0.594 2.260
10 0.580 2.410
11 0.592 2.598
12 0.632 2.856
13 0.630 3.002
14 0.650 3.196
15 0.666 3.390
16 0.690 3.596
17 0.678 3.790
18 0.694 4316
19 0.732 4.674
20 0.722 4.444
21 0.738 4.590
22 0.748 4.930
23 0.764 4.994
24 0.774 5.196
25 0.790 5.390

o I‘I\I\.Z WA B,

Table 12
(Time in Seconds)

Speed Up  Start Up

Over VAX  Time
0.058 0.482
0.052 0.512
0.041 0.578
0.045 0.660
0.041 0.844
0.040 0.758
0.037 0.764
0.035 0.758
0.036 0.776
0.036 0.820
0.034 0.806
0.035 0.828
0035 W -----
0037  -—---
0.032 -
0.031 ————-
0.03§  -—---
0.038  -----
0.035 = ----
0.037 -
0.037  -----
0.038  -----

182

Run Time

1.194
1.702
1.612

-----

PRI Y
------

Speed Up

Over VAX
0.060
0.054
0.081
0.106
0.205
0.420
0.722
1.668
4.546

LA S A B A R B8 0t Aad Bk .0 $o0 SaF Rat ot Bob Rat Sit iyt A0 o Th Jla 050 o7 B8 4 ) g 'T




e ———— Y ———— W W W W rmmm— e T ==

Number

Start Up

Jime

0.274
0.284
0.308
0.320
0.340
0.342
0.354
0.368
0.382
0.400
0.406
0.420
0.432
0.448
0.464
0.464
0.484
c.snN2
0.21»
0.52-

0.538
0.560

Table 13

Deadline Job Scheduling iPSC d-3 Computation Time
(Time in Seconds)

Run Time

0.594
0.688
0.802
0.894
0.996
1.090
1.190
1.288
1.390
1.494
1.592
1.694
1.794
1.892
1.996
2.094
2.190
2.296
2.532
2.490
2.588
2.712

Speed Up  Start Up
Over VAX Time

0.116
0.106
0.083
0.091
0.082
0.076
0.075
0.071
0.073
0.072
0.068
0.070
0.070
0.074
0.069
0.070
0.069
0.076
0.069
0.074
0.075
0.075

183

0.282
0312
0.368
0.472
0416
0418
0.438
0.450
0.456
0474
0.486
0.506

Run Time
Problem Set#2
0.594
0.688
0.794
0.914
0.996
1.096
1.312
1.778
2.636
4.324

Speed Up
Over VAX
0.137
0.133
0.165




79 384 PERFORMANCE EVALUATION OF PARALLEL BRANCH AND BOUND
lll'l’ll THE IITEL (U) lll rms IIST W TECH
-MT'I’ERSM RT
UNCLASSIFIED DEC 86 AF1T/GCE/ENG/96D-. F/G /2




PO N

-.
L)

[

SIS X

RO, AL

o’

g oo

N R

_ .f
Jdaa o
um—m—m—kknuuu -

==

-_— - asedl e——




@;';; Table 14
Deadline Job Scheduling iPSC d-2 Computation Time
(Time in Seconds)
Number StartUp  Run Time Speed Up StartUp Run Time Speed Up
ofJobs  Time  ProblemSet#l OverVAX Time Problem Set#2 Over VAX

4 0.160 0.290 0.237 0.176 0.294 0.276

5 0.172 0.340 0.214 0.206 0.340 0.270

6 0.192 0.394 0.169 0.258 0.386 0.340

7 0.206 0.440 0.185 0.240 0.576 0.344

8 0.216 0.520 0.156 0.262 0.710 0.575

9 0.226 0.540 0.154 0.270 0.920 1.003

10 0.242 0.594 0.151 0.278 1.318 1.306

11 0.258 0.646 0.142 0.298 2.244 1.926

12 0.268 0.690 0.148 0.322 7.058 1.797

13 0.282 0.740 0.146 0.340 13.836 3.036
14 0.294 0.790 0.137 - ——— e
15 0.316 0.846 0140 - e
16 0.326 0.900 0139 - e
17 0.336 0.942 0148 -
18 0.344 0.990 0139 s e
19 0.356 1.044 0140 - e
20 0.372 1.090 0.141 T P
21 0.384 1.140 0154 - -
22 0.394 1.192 0147 - -
6 23 0414 1.246 0149 - .
24 0.428 1.300 0149 -~ .
25 0.432 1.336 0.153 s e e




»

0S4
Y Table 15
Deadline Job Scheduling iPSC d-1 Computation Time
(Time in Seconds)

Number StartUp  Run Time SpeedUp StartUp  Run Time Speed Up
oflobs . Timec ProblemSet#l OverVAX Time  Problem Set#2 Over VAX

4 0.100 0.208 0.331 0.120 0.146 0.556
5 0.112 0.224 0.326 0.130 0.336 0.275
6 0.118 0.246 0.271 0.150 0.434 0.302
7 0.134 0.276 0.294 0.152 0.588 0.336
8 0.146 0.304 0.267 0.168 0.896 0.456
9 0.174 0.342 0.244 0.178 1.446 0.640
10 0.176 0.368 0.243 0.198 2.606 0.660
11 0.194 0.394 0.233 0.212 5.036 0.858
12 0.206 0.420 0.243 0.228 9.812 1.293
13 0.222 0.456 0.238 0.240 13.264 3.167
14 0.230 0.482 0.225 e e e
15 0.248 0.512 0232 - —— e
16 0.256 0.542 0231 - — e
. 17 0.272 0.566 0.247 e e e
- 18 0.288 0.598 0230 - .
19 0.300 0.632 0231 - .
20 0.314 0.656 0232 - — e
21 0.328 0.696 0251 - .
‘o 22 0.336 0.720 0243 - L L
< 23 0.350 0.756 0245 - .
24 0.362 0.784 0.247 —— e
25 0.380 0.816 0250 - —— e
D
. 185




& Table 16

Load Balance - Deadline Job Scheduling

Problem Set #1
20-Jobs Solved on an iPSC d-4
Node E-nodes Node E-nodes
1 125 0
2 60 10 0
3 0 11 0
4 0 12 0
5 0 13 0
6 0 14 0
7 0 15 0
Table 17
Load Balance - Deadline Job Scheduling
Problem Set #2
15-Jobs Solved on an iPSC d-4
Node E-nodes Node E-nodes
(e Slumber Niguber
o 1 326 9 843
2 2806 10 3183
3 6065 11 1959
4 2694 12 2047
5 2765 13 3313
6 3102 14 1984
7 2412 15 1536
7
186

ATt B A b B S




e am g n a4

10

11

12

13

15

Bibliography

. Akl, Sehm G. gt al. "Design, Analysis, and Implementation of a Parallel Tree Search

Algorithm,” IEEE Transactions op Paticrn Analysis and Maching Intelligence, PAMI-4:
192-203 (March 1982).

. Barr, Avron, and Edward A. Feigenbaum. The Handbook of Artificial Intelligence,

Vol 1. Stanford, California: HeurisTech Press, 1981.
Booch, Grady. Arpanet Electronic Mail Message, 4 June 1986.

Booch, Grady. "Object-Oniented Development,” [EEE Transactions on Softwarc
Engincenng, SE-12: 211-221.

Booch, Grady. Softwarc Engineering with Ada. Menlo Park, Califomnia:
Benjamin/Cummings, 1983.

Bosma, John T. and Richard C. Wheelan. Guide 1o the Strategic Defense Initiative.
Arhington, Virginia: Pasha Publications, 1985.

. Defense Advanced Research Projects Agency (DARPA). Strategic Computing.

AD-A141 282/9, Arlington, VA, 1983

Fox, Geoffrey C_, and Steve W. Otto. "Aligonthms for Concurrent Processors,"
Physics Today: 13-20 (May 1984).

Frenkel, Karen A. “"Evaluating Two Massively Parallel Machines,” Communications of
the ACM: 29 752-758 (August 1986).

Fuller, Samuel H. "Performance Evaluation,” ntroduction to

Computer Architecture
(Second Edition), edited by Harold S. Stone. Chicago: Science Research Associates.,
1980.

Ga)ski, Daniel d., and Jih-Kwon Peir. "Essential Issues in Multiprocessor Systems.”
Computer: 9-27 (June 198S5).

Gane, Chnis and Trish Sarson. Structured Systems Analysis: too]s &
(second edition). New York: Improved System Technologies, Inc., 1977.

Handler, Wolfgang “Innovative Computer Architecture-How to increase parallelism but
not complexity,” Paralle] edited by David J. Evans. Cambndge.
MA: Cambndge University Press, 1982.

Hillis, W. Daniel. The Connection Machine Cambridge, Mass: MIT Press, 1985

Horowitz, Ellis, and Sartij Sahni. Eundamentals of Data Structures in PASCAL
Rockville, Maryland: Computer Science Press, 1984.

187




16.

17.

18.

19.

20.

21.

22

24,

25.
26.

27.

28.

29.

Horowitz, Ellis, and Sartij Sahni. Fundamentals of Computer Algorithms. Rockville,
Maryland: Computer Science Press, 1978.

Intel iPSC Concurrent Programmin g Workshop Notes, Intel Scientific Computers,
Beaverton, Oregon. (16-20 June 1986).

Kleinrock, Leonard. "Distributed Systems,” Communications of the ACM, 28:
1200-1213 (November 1985).

Lee, Lieutenant Ronald. Performance Comparison and Analysis of State of the Ant
Machines. MS Thesis. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH, December 198S.

Lipschutz, Seymore. Schaum's Qutline Series Theory and Problems of Discrete
Mathematics. New York: McGraw-Hill, 1976.

Norman, Captain Douglas O. nmummmmmmmm A
Examination of a Model Based Approach to Reasoning in for Artificial
Intelligence Systems using 8 Distnbuted * MS Thesis. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH,
December 1985.

Patton, Peter C. "Multiprocessors: Architecture and Applications,” Computer: 29-40
(June 1985).

. Page-Jones, Meilir. The Practical Guide to Structured Systems Design. New York:

Yourdan Press, 1980.

Retelle, LtCol John P. Jr. "The Pilot's Associate-Aerospace Application of Artificial
Intelligence,” Signal: 100-105 (June 1986).

Rich, Elaine. Artificial Intelligence. New York: McGraw-Hill, 1983.

S;istz, Charles L. "The Cosmic Cube,” Communications of the ACM: 28 22-33 (January
1985).

Siegel, Leah J. et al. "Performance Measures for Evaluating Algorithms for SIMD
Machines,” JEEE Transactions on Software Engincering, SE-8: 319-331 (July 1982).

Siegel, Howard Jay, and Robert J. McMillen. "The Multistage Cube: A Versatile
Interconnection Network,” Computer: 65-76 (December 1981).

Seward Walter D., and Nathaniel J. Davis IV. "Opportunities and Issues for Parallel
Processing in SDI Battle Management/C3." Presented at the AIAA Computers in
Acrospace V Conference, October 1985.

Stankovic, John A. g1 al. "A Review of Current Research and Critical Issues in

Distributed System Software," Distributed Processing Technical Committec Newsletter.
7: 14-47 (March 1, 1985).

188



—-— Ty e e waw wwwwe L dnh Al ook b ot g

% 31. Stankovic, John A. "A Perspective on Distributed Computer Systems,” IJEEE
Transactions on Computers. C-33: 1102-1115 (December 1984).

) 32. Stein, Kenneth J. "DARPA Stressing Development of Pilot's Associate System.”
' Aviation Week and Space Technology: 69-74 (22 April 1985).

33. Treleaven, Philip C. "Parallel Models of Computation,” Bammmsmgs&nnm
edited by David J. Evans. Cambridge, MA: Cambridge University Press, 1982.

34. Tuazon, J.. gt al. "Caltech/JPL Mark II Hypercube Concurrent Processor.” IEEE
Publication, 198S.

35. Wah, Benjamin W. gt 2. "Multiprocessing of Combinatorial Search Problems.
Computer: 93-108 (June 198S).

36. Wu, Angela Y. "Embedding of Tree Networks into Hypercubes,” Journal of Parallel
and Distributed Computing. 2: 238-249 (1985).

{ 37. Yourdon, Edward. ing The Structured Techniques (Second Edition). Englewood
Cliffs, New Jersey: Prentice-Hall, 1979.

-

189




Captain Richard T. Mraz was born on 16 November 1960 in Gloversville, New York.
After graduating from Mayfield Central High School, Mayfield, New York in 1978 he
attended the United States Air Force Academy. Upon graduation from USAFA in 1982 with

an Bachelor of Science in computer science, he was assigned to the Air Force Data Systems
Center (now 15t Information Systems Group), Pentagon, Washington, D.C. At the
Pentagon, his primary duties included local area and long haul computer network analysis.
In May of 1985, Captain Mraz entered the Computer Engineering program at the School of
Engineering, Air Force Institute of Technology.

@

i‘F\’

o :
190 1
|

", LN JE S PR PR ~ YRS G P TR Y
Ao ﬁﬁﬂMﬁ;ﬁ\J




HIS PA

Form oved
I REPORT DOCUMENTATION PAGE OM.,C.‘,’_”;,M,..
% 19 REPQRT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
¢4Unclassified
20. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION / AVAILABILITY OF REPORT |

Approved for public release;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE )
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
AFIT/GCE/ENG/86D~2
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicable)
School of Engineering AFIT/ENG
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, 0hi°45433-6583

{ 8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) i
0SD/SDI0
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
Pentagon, Washington D.C. ELEMENT NO. | NO. NO IACCESSION NO.
9 20301-7100

11. TITLE (Include Security Classification) Per formance Evaluation of Parallel Branch and Bound
with the Intel iPSC Hypercube Computer

— . PERSONAL AUTHOR(S)

9 Richard T. Mraz, Captain, USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |15 PAGE COUNT
MS Thesis FROM 10 1986 December 201

16. SUPPLEMENTARY NOTATION

* 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Parallel Processing Parallel Search
09 02 Branch and Bound Search

' Object-Oriented Design Hypercube

E 19. ABSTRACT (Continue on reverse if necessary and identify by block number)

) Thesis Advisor: Walter D. Seward, LtCol, USAF
Assistant Professor of Electrical and Computer Engineering

Rpproved t\r)p lle reloaser 1AW Arm 180,

b WOLAVE f)"ﬁ,“) Y

Dean tor Kenes Bl

d Pref
Air Forre Insin - 'riesstonal Dev

A Techn o 5
Wight Pattersvg Al p (8] ‘;4;} ¢

lopment

»+*J0. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
" B UNCLASSIFIEDAUNUIMITED [ saMe AS RPT.  [Jomnic users | Unclassified
e~ —————————— e
228. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) | 22c. OFFICE SYMBOL
Walter D. Seward, LtCol, USAF (513) 255-2024 AFIT/ENG
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

~ - .. - -

. P R T A N -y, - Cat e B S S S “ e - -
R G N 2 SR 28 T T T Ca T T T T Tatats At oty



T N TR A O O A R S T R T W T o T T T O T N T O OV P R O O

Abstract

With the recent availability of commercial parallel computers, researchers are examining
new classes of problems for benefits from parallel processing. This report presents results
of an investigation of the set of problems classified as search intensive. The specific
problems discussed in this report are the ‘backtracking' search method of the N-queens
problem and the Least-Cost Branch and Bound search of deadline job scheduling. The
object-oriented design methodology was used to map the problem into a parallel solution.
While the initial design was good for a prototype, the best performance resulted from fine
tuning the algorithms for a specific computer. The experiments of the N-queens and deadline
job scheduling included an analysis of the computation time to first solution, the computation
time to all solutions, the speed up over a VAX 11/785, and the load balance of the problem
when using an Intel Personal SuperComputer (iPSC). The iPSC is a loosely couple
multiprocessor system based on a hypercube architecture. Results are presented which
compare the performance of the iPSC and VAX 11/785 for these classes of problems.

P
NN N M R A R NNV NN NN t’;tttt'{;t;i:?.él.iti.&;




R R Pl v el c b gt b a4 S gk el i g en 2 p 8 @ ) »
| ? E ND
|

5 81
JIC

R oW LA LT LTI -« -~ o at R CE L TS IR SN e Mt Rt ARy At Wyt C B -
;:‘.‘:“‘p“,.ﬂ AR I\ "C 079, 478 78y ' LN 3 XY .. ‘.Q‘O.t " R J \‘~ "". “. .0 ~ .‘ \-\\\ .. .-N‘ \\ N ‘!\\ N ".\.\ AN \.\ N

sy RP-paraar




