
-6179 364 PERFORMAICE EVALUATIO0N OF PARALLEL BRAuCH RNO, BOUN 1/3
SEARCH 111TH THE INTEL.(U) AIR FORCE INST OF TECH
*IHTPATTERSON RFD O SCHOOL OF EOIl.. R T NRM

mmhhhmmmml
smhEmhhEmhshh
mohhhhhEEEmhhE
EohhohhEEEEEEE
EEmhhhhEEEohEE
smEohmhmhhEEE

" •1.0 J
III_1_

OiC FILE COPY

0,

Cm

OwOF

0 N6
•S

DTIC
ELECTE
APR 1 7 W8~f

PERFORMANCE EVALUATION OF PARALLEL BRANCH
AND BOUND SEARCH WITH THE INTEL iPSC

HYPERCUBE COMPUTER

THESIS

Richard T. Mraz
Captain, USAF

AFIT/GCE/ENG/86D-2

APPioved for public release:
Distibuttion Unlimited

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

87 4 16 042
.. V 2

~ AFIT/GCE/ENG/S6D-2

DTICSELE, ft

APR 1'

PERFORMANCE EVALUATION OF PARALLEL BRANCH
AND BOUND SEARCH WITH THE INTEL iPSC

HYPERCUBE COMPUTER

THESIS

Richard T. Mraz
Captain, USAF

AFIT/GCE/ENG/86D-2

Approved for public release; distribution unlimited

.~ 'b wjg. -.-. - - ~ jS1~ ~ w ~ S *W~w W..p w S~. S.~ I* * i

AFITIGCE/ENGIS6D-2

PERFORMANCE EVALUATION OF PARALLEL BRANCH AND BOUND SEARCH

WITH THE INTEL OWS HYPERCUBE COMPUTER

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Engineering in Computer Engineering

Accesion For
NTIS CRA&I-

Richard T. Mraz, B.S. By.........
Captain, USAF L\A. ,botioi/

Avilldtijiily Cxes

December 1986

Approved for public release; distribution unlimited

% %

Page
List of Figures ... v

List of Tables .. vii

A bstract .. viii

I. Introduction ... 1

Background .. 2
Problem .. 4
Classes of Search ... 6
Parallel Processing Issues .. 8

Maximum Parallelism .. 8
Problem Limitations ... 9
Algorithm Limitations .. 9
Architecture Limitations 10

Parallel Design .. 10
Overview of the Thesis ... 11

II. Intel iPSC Hypercube .. 12

iPSC Design Philosophy ... 12
- Hypercube Interconnection .. 13

Intel iPSC .. 15
iPSC Software Development ... 16
Conclusions .. 17

III. Analysis of Parallel Design .. 18

Parallel Abstract Data Types ... 18
Abstract Data Type .. 19
Parallel ADT ... 20
Analysis of the PADT ... 20

Design Methodologies .. 21
Traditional Design .. 22
Top-Down Structured Design 22
Data-Structure Design ... 23
Object-Oriented Design ... 23
Analysis of Design Methodologies 23

Parallel Models of Computation .. 24
Data-Flow Model of Computation 25
Control-Flow Model of Computation 26
Analysis of the Data-Flow and Control-Flow Models 27
Process Model of Computation 27

Object-Oriented Design .. 28
C lass ... 28
M essage .. 29
M ethod ... 30C .. O bject ... 30

ii

. 3..-. .'x~x",., .:.G'.'- -:<G%:.: .¢:,_-. '-S

4AW PageObject Design Approach .. 31

Define the Problem .. 31
Identify Objects and Attributes 31
Identify Operations .. 32
Establish Visibility .. 32
Establish Interface .. 32
Implement the Objects ... 32

Conclusions ... 34

IV. Parallel Branch & Bound ... 35

Define the Problem ... 35
Branch & Bound Search .. 38

Identify Objects and Attributes 42
Identify Operations ... 43
Establish Visibility ... 44
Establish Interface ... 50
Implement Objects ... 53
Conclusions ... 53

V. Parallel N-queens and Parallel Deadline Job
Scheduling Implementation .. 54

Parallel N-queens Constraints 55
N-queens Control Process ... 58

Overview .. 58
Meta-Controller ... 60
Terminate Check 60

N-queens Worker Process ... 61
Overview ... 61
C ontroller ... 61
Problem Solver ... 61
E-Node Expander .. 61
Bound Check ... 62
Terminate Check .. 62

Parallel Deadline Job Scheduling Constraints 63
Deadline Job Scheduling Control Process 68

Overview .. 68
Meta-Controller .. 68
Terminate Check ... 70
Bound Check .. 70

Deadline Job Scheduling Worker Process 71
O verview .. 71
C ontroller ... 71
Problem Solver ... 71
E-Node Expander ... 72
Bound Check .. 72
Terminate Check ... 72

C onclusions .. 73

,iii

VI. Performance Analysis and Experiment Results Page

Computation Time ... 74
Speed Up .. 75
Load Balance.. 76
Baseline Performance .. 76
Parallel Performance Experiments.............................. 77

Parallel N-queens,.. 78
Parallel Deadline Job Scheduling........................... 87

Conclusions ... 96

VII. Conclusions and Recommendations................................ 97

Parallel Design Methodology 97
Performance of Parallel Branch and Bound..................... 98
Suitability of Hypercube Architectures for Parallel Search 99
Recommendations ... 99

Appendix A: iPSC N-queens Source Code Description 101

Appendix B: Sequential N-queens Source Code Description 123

Appendix C: iPSC Deadline Job Scheduling Source Code Description......... 131

Appendix D: Sequential Deadline Job Scheduling Source Code Description ... 160

Appendix E: Tables of Branch and Bound Experiments....................... 176

Bibliography .. 187

Vita...190

iv

~W V 7WWW WX-. WW'1- VWW.WI ksbr " WK -- .- n "r' %1 %AI 'W

of Ftigures
Figure Page

1. U.S. Companies Offering or Building Parallel Processors 3

2. Example of Processors Communicating using Message Passing 13

3. Node Numbers for a 3-dimension cube ... 14

4. Three-Dimension cube structure with vertices labeled from 0 to 7 in binary 14

5. STACK Abstract Data Type ... 19

6. Functionality of a Design Methodology .. 22

7. Model of Computation .. 24

8. Execution of a data-flow computation (a+b)/(c+d) 26

9. Execution of a control-flow computation (A+B)/(C+D) 27

10. Example Class Hierarchy ... 29

11. High Level Language/Object Constructs Matrix 33

12. Search Strategies ... 36

13. Search Tree with Node Definitions .. 37

14. Example Search Tree .. 37

15. Branch & Bound Data Flow Diagram ... 41

16. Sequential Branch and Bound Visibility Diagram 45

17. Parallel Visibility Diagram #1 .. 46

18. Parallel Visibility Diagram #2 .. 47

19. Parallel Branch & Bound Visibility Diagram used for this research 49

20. Board Positions for the solution vector (1,4,2,3) 55

21. Partial Solution Space for the 4-queens problem 56

22. Board Positions for the answer vector (2,4,1,3) .. 57

23. Object Diagram for Parallel Branch & Bound ... 59

24. Example 4-Job Deadline Job Scheduling Solution Space 65

v
I

Figure Page

25. Object Diagram for Parallel Branch & Bound .. 69

26. N-queens Time to First Solution .. 80

27. N-queens Time to All Solutions .. 81

28. iPSC and Elxsi Speed Up Over VAX ... 83

29. Time to All Solutions Optimized for Board Sizes of 8, 9, & 10 84

30. Load Balance for the 11-queens on a D-5 Hypercube 86

31. Deadline Job Scheduling- Problem Set #1 Computation Time 90

32. Deadline Job Scheudling- Problem Set #1 Load Balance of scheduling
20-Jobs on an iPSC D-4 .. 91

33. Deadline Job Scheduling- Problem Set #2 Computation Time 93

34. Deadline Job Scheduling- Problem Set #2 Speed Up Over VAX 94

35. Deadline Job Scheudling- Problem Set #2 Load Balance of scheduling
15-Jobs on an iPSC D-4 .. 95

36. Portion of the 4-queens solution space generated during search 129

37. Example 4-Job Deadline Job Scheduling Solution Space 171

38. Portion of the 4-Job solution space generated during search 173

vi

" "";.7:,;," .:" :'7,' ":-b;. '..,': . .: • . . .,:'' '< < ,Y': ".::/-"4"":,,."'-:::'.:.''-'.'.9-''.'<" .I-

Lig oTables

Table Page

1. N-queens VAX Baseline .. 176

2. N-queens Elxsi Computation Time .. 176

3. N-queens iPSC d-5 Computation Time ... 177

4. N-queens iPSC d-4 Computation Time ... 177

5. N-queens iPSC d-3 Computation Time ... 178

6. N-queens iPSC d-2 Computation Time ... 178

7. N-queens iPSC d- 1 Computation Time ... 178

8. N-queens iPSC d-0 Computation Time ... 179

9. Load Balance for the 1 1-queens Problem on a d-5 cube 179

10. Deadline Job Scheduling VAX Baseline .. 180

11. Deadline Job Scheduling iPSC d-5 Computation Time 181

12. Deadline Job Scheduling iPSC d-4 Computation Time 182

13. Deadline Job Scheduling iPSC d-3 Computation Time 183

14. Deadline Job Scheduling iPSC d-2 Computation Time 184

15. Deadline Job Scheduling iPSC d-1 Computation Time 185

16. Load Balance - Deadline Job Scheduling Problem Set #1
20-Jobs Solved on an iPSC d-4 ... 186

17. Load Balance - Deadline Job Scheduling Problem Set #2
15-Jobs Solved on an iPSC d-4 ... 186

IF

vii

oS
!'.-"r', '' '".e".'." "-""."./."".""-"",""-"","".-.- ,-.," ". ,- "- ". ",/. ". '.- ,".e .- ,.,,e'. ".y, ". 7v.,:/, "-",',. ,", , " "-

AFIT/GC/ENG/86D-2

Abstract

With the recent availability of commercial parallel computers, researchers are examining

new classes of problems for benefits from parallel processing. This report presents results

of an investigation of the set of problems classified as search intensive. The specific

problems discussed in this report are the 4backtracking' search method of the N-queens

problem and the Least-Cost Branch and Bound search of deadline job scheduling. The

object-oriented design methodology was used to map the problem into a parallel solution.

While the initial design was good for a prototype, the best performance resulted from fine

tuning the algorithms for a specific computer. The experiments of the N-queens and deadline

job %cheduling included an analysis of the computation tine to first solution, the computation

time to all solutions, the speed up over a VAX 11/785, and the load balance of the problem

when using an Intel Personal SuperComputer (iPSC). The iPSC is a loosely couple

multiprocessor system based on a hypercube architecture. Results are presented which

compare the performance of the iPSC and VAX 11/785 for these classes of problems.

viii

Performanc Ealuation gI PEalnlk1 Branch ad Bound

&arch on t I fa iQ HXercube Compute

Within the past decade, parallel computer architectures have been a subject of significant

research effort. Integrated circuit technology, high speed communications, along with

hardware and software technology have made parallel computers much easier to build and

much more reliable (9,22,26,28). Parallel processing has also proven to be an effective

solution to certain classes of problems. Probably the most notable class is array or vector

problems that run order-of-magnitudes faster on parallel architectures such as the Cray.

Because of the recent proliferation of parallel computers, researchers are investigating other

classes of problems for potential benefits from parallel architectures. Problems classified as

search intensive is one such class. Two organizations sponsoring research in parallel

computing with problems that are typically search intensive are the Strategic Defense

Initiative Organization (SDIO) and the Defense Advanced Research Projects Agency

(DARPA) (6,7,24,29,32).

The SDIO is investigating defensive weapon systems and battle management systems for

a strategic defense (6, 29). While the 'hardware' of the strategic defense initiative such as

kinetic energy weapons, laser technology, and particle beams seem plausible, the computer

technology, algorithms, and distributed control of a strategic defense is far from reality. As

Seward and Davis point out, the SDI will "require subsystems whose complexities are

several orders of magnitude greater than those that have been developed or proposed in the

past" (19:2).

..

.. . .- - -

DARPA, on the other hand, initiated a program called the Strategic Computing Program

in 1983 (7:100). This program involves research into parallel computers as well as artificial

intelligence techniques for military applications. The Air Force component of the Strategic

Computing Program is called the Pilot's Associate (PA). Researchers for the Pilot's

Associate are investigating flight domain systems that provide expert advice in critical

mission functions, such as aircraft systems monitoring, situation assessment, mission

planning, and tactics advising (24:102).

Initial goals of the SDI and Pilot's Associate include, quantifying the practical value of

and understanding the complexity of such systems as well as defining the specifications for

an operational strategic defense or pilot's associate. Once the problems are undertood and

the accuracy of such systems has been proven, then researchers intend to "speed up" these

systems by using supercomputers or parallel computer architectures (32:74, 6:277-278).

Background

According to Hindler, the term parallel processing describes the different kinds of

simultaneous operations within a digital computer (13:1). While typical VonNeumann

architectures emphasize sequential process and control, parallel computers attempt to increase

machine performance by exploiting the independence of subtasks within a problem or the

independence of the control within a problem. Research in parallel computation traditionally

involves many areas, including (31:1102);

- Communications Networks - Distributed Control
- Distributed Operating Systems - Parallel Algorithms
- Fault Tolerant Hardware and Software - Distributed Programming Languages

4*,, ,2

2

.'.', ",-, .' . . ". ,'.,.' " ,' ".,;. ". • , .. " " ..- .',..' _',.', " j, ' ' .' ,. ,' ,'. ',.'.,',.'. ",.'. "- -,' -. ," . ", .r ,',.'2 '.-'," " -"

Given a particular problem and a specific parallel computing environment, these areas may

depend on one another. Because of such dependencies, parallel computers do not guarantee

increased performance. For example, the distributed operating system relies on the commu-

nications network for transmissions of information and control among the processing

elements. An inefficient communications subnet increases the time for error free data trans-

mission. This could easily lead to a decrease in system performance. On the other hand, a

good parallel algorithm matched with the proper parallel computer architecture could improve

performance by an order of magnitude. Kleinrock summarized the paradox by saying, "we

have the potential for this power [increased performance] --if only we could figure out how

to put all the pieces together!" (18:1200).

Recently, research in the area of parallel computers has been highly successful in several

general purpose hardware designs (see Figure 1).

Company Product

Aliant Computer Systems Corporation FX/Series
Bolt, Beranek, and Newman Butterfly
Control Data Corporation Cyber 205 Series 600
Cray Research Inc. Cray-2 and X-MP
Digital Equipment Corporation VAX 11/782 and 784

ELXSI (a subsidiary of Trilogy Inc.) System 6400
Encore Computer Corporation Multimax
ETA Systems Inc. GF-10

(a spin-off of Control Data Corporation)
Floating Point Systems Inc. T Series
Goodyear Aerospace Corporation MMP

IBM Corporation Research Parallel Project RP3
Intel Scientific Computers iPSC
Schlumberger LAd. FAIM-1
Sequent Computer Systems Inc. Balance 21000
Thinking Machines Corporation Connection Machine

Figure 1: U.S. Companies Offering or Building Parallel Processors (9:753)

. .1,

, - , ,. .,,.e .e ,,,e .-. .#". " ,, ." ,e e " .- ,e . % .-. " . "'" ... '. e .,e. .'.r ,e3 .

Clearly, this list indicates the availability of parallel processing system hardware; however, the

application and software support systems are not as prevalent. Stankovic points out that "much

of the distributed system software research is experimental work" (30:17). He further

emphasizes that "work needs to be done in the evaluation of these systems in terms of the

problem domains they are suited for and their performance" (30:17).

Yet, another parallel processing problem is the mapping of a problem to a parallel solution.

Probably the largest problem researchers face today in parallel computer systems is the inability

of humans to decipher the inherent parallelism of problems that are traditionally solved using

sequential algorithms. Patton identified a possible cause of this human shortcoming when he

said, "While the world around us works in parallel, our perception of it has been filtered

through 300 years of sequential mathematics, 50 years of the theory of algorithms, and 28

years of Fortran programming" (22:34). Basically, humans have not trained their thought

processes to accommodate the concepts of solving problems in parallel. Because of this, with-

out new parallel computing algorithms, parallel software development tools, and performance

measuring techniques, parallel computing may never be fully exploited.

Problem

Because of the proliferation of parallel computers and because a large class of problems

that may benefit from parallel processing are search intensive, this research investigates the

actual performance of the class of search problems on a parallel computer.

Two examples of the need for research into parallel search algorithms and performance

evaluations are elements of the Strategic Defense Initiative and the Pilot's Associate.

Specifically, the basic problems faced by SDI and PA researchers fall into the same class of

* -. problems, search intensive processing (see below, Classes of Search). This type of processing

4

F"~ r,~ ~ 'p~x\Y7'Y.WVWWTVYEW JW WVM WW V- "UM ff..- IWV91 1 = -

L

•* ./'_ is characterized by large solution spaces that must be examined for answers and exponential

time complexity to find a solution. For example, the SDI battle management system must

resolve the resource allocation of sensor and tracking satellites to defensive weapon systems

(29:4-5). Answers to such a search problem involves a complex solution space with

exponential computation time. Researchers plan to reduce the run time complexity using

parallel computers. The ultimate goal is to find the proper combination of parallel computer

architecture and parallel algorithm such that results can be calculated in 'real-time.' Where

'real- time' is that time interval in which an answer must be delivered (21:8). The general

approach to solve some of the battle management and PA problems uses traditional

operations research (OR) and artificial intelligence (AI) programming techniques. These

techniques are, in general, based upon a systematic search of the solution space of the

problem. Hence, this research focuses on parallel search methods. And without losing

generality, the specific technique is parallel branch and bound.

The parallel environment for this research is the Intel iPSC Hypercube computer. The

iPSC is used for three reasons, (1) the iPSC is available for parallel computing research at

the Air Force Institute of Technology; (2) the iPSC is a general purpose parallel architecture,

and (3) the iPSC has a flexible software development environment to allow comparisons

against sequential implementations. The methodology of programming the iPSC as well as

the ability to create several communications subnet configurations make it a flexible parallel

architecture (see Chapter II, Intel iPSC Hypercube, for details). The goals of this research

can be summarized as follows,

I- Explore a design methodology to map a problem onto a parallel computer.

Because of the difficulties of mapping a problem to a parallel computer, a
formal design approach is needed to help the programmer identify the parallel
activity within a problem. Since the development and proof of a new design
methodology is beyond the scope of this research, only traditional design
approaches will be examined.

5

K ,~rw ~ ~ ~w ~ '~ nm~ ~ W ur RYMN"MR ' rw w rV~~ , WT W ~r -. ~r* '

2- Measure the performance of parallel branch and bound on parallel computer.

Since some researchers with search intensive problems, such as the SDIO
and the Pilot's Associate, have requirements for 'real-time' processing,
experiments must be run to examine the possibilities for speed up. The
results of a parallel branch and bound test can be used as a benchmark for
further research as well. Since all problems used in this research could not
be examined on a dimension-0 hypercube, the performance will be evaluated
against a VAX 11/785.

3- Evaluate the Hypercube architecture as a suitable architecture for
combinatorial (i.e. search) algorithms.

In conjunction with the development of a good parallel algorithm, the speed
up of a problem can be limited by the parallel computer architecture as well.
Therefore, the parallel architecture must be evaluated.

4- Identify extensions to this research.

The scope of the research is constrained by time and computing resources.
Therefore, recommendations for continued research is essential.

£asse 9f Search

As pointed out in earlier, typical problems involved in SDI and PA research are catego-

rized as search intensive. Such problems are identified by large, sometimes complex solu-

tion spaces and exponential computation time. (See Chapter IV, Parallel Branch and Bound,

for definitions and details of how a search is represented.) It is important to keep this

research as general as possible. Therefore, the general form of any state space search,

branch and bound, is used for the performance experiments. This search technique is

important to SDIO and other military problems where optimal solutions are necessary. The

basic idea behind a search is to accept a problem in its initial state and 'search' the solution

space for a goal state. As a search progresses, a path through the solution space is created.

While building this path, choices on which path to follow are made. These choices are the

'branching' part of branch and bound. Other times, it is possible to determine that an answer

does not exist down a specific path. This is the 'bound' portion of branch and bound.

Using a general search definition is useful during the analysis and design phases of the

6

research, but specific problems must be used for actual performance measures. To this end,

two specific categories or classes of search are defined for this research.

The first search category is called 'backtracking' search. The ranking of all points in the

solution space are set to the same value. One reason for such an approach is that an accurate

ranking function can not be computed for the problem. Problems that are classified as

'backtracking' search show true exponential computation complexity. The N-queens

problem is used in this research as a typical backtracking search. The problem is

conceptually quite simple. Given an N-by-N playing board, place N chess queens such that

no queens are attacking. This problem is characterized by an exponential time complexity,

0(2n), to find all solutions. Even though the N-queens search does not use a cost function,

a bound function is used to eliminate the needless search of some parts of the solution space.

The second class of search is called least-cost branch and bound. This class of problems

uses the ranking function and bound function to guide the search. As the name implies, the

search progresses based on the least-cost' path. Deadline job scheduling is used in this

research as the typical least-cost branch and bound problem. The problem is defined as

follows. Given a set of jobs, with each job defined by the 3-tuple (pi,di,ti), where

Pi = Penalty for not scheduling job i

di = Deadline by which job i must be completed
ti = Time to run the job i

Find the largest subset of the jobs that can be run by their deadline while minimizing the total

penalty. This search uses both the ranking function to identify potentially good solution

paths and two bound functions to eliminate needless searching in parts of the solution space.

a.%

7 I.0
0

P . a q- k~ ' - ' '% '° - ',, ' - ' ,' . - ', -' ,, . ." e ' ' " "" ' "
° . . ' '. .. " '.o _ az ., .

r
While these problems are computationally trivial as compared to the problems faced by

SDIO and PA researchers, it must be emphasized this research is investigating the

performance improvements of the class of search problems on a parallel computer. Hence,

the N-queens problem and the deadline job scheduling problem should be evaluated on there

ability to categorize the two classes of search used during the performance experiments.

Paralel c s es

Before moving on, two fundamental issues of parallel processing must be addressed.

These issues, maximum parallelism and parallel design, form a basic set of constraints for

any type of parallel problem solving. First, the concept of maximum parallelism describes

inherent performance limits within a problem, an algorithm, or a parallel computer

architecture. While some of these limits can be circumvented, others become the 'bottleneck'

of performance. Second, the concept of a formal parallel design methodology has yet to

emerge from the research. The goal here is to find a way to map a problem into a parallel

computer architecture while at the same time extracting as much parallelism from the problem

as possible.

Maximum Parallelism. Simply stated, the concept of maximum parallelism places a

constraint on parallel problem solving. This constraint may take several forms. First, the

problem may inherently have limitations that cannot be overcome. Second, a poor algorithm

may inhibit parallel activity. Finally, parallel computers focus on solving specific classes of

problems. The following examples should reinforce the concepts of maximum parallelism

and the impact of these limitations on the solution.

&a z

Problem Tmitions. In his thesis, Norman uses this simple example to show the

limits of parallelism within a problem (21:16-22). Given the Lisp expression, CONS(A,B),

what is the maximum speed up? In Lisp, the function CONS simply constructs a list with

the elements of A as the first elements followed by the elements of B. During the execution

of the CONS expression, two operations are performed. First, A and B are evaluated.

Second, a pointer is assigned to construct the new list. If the actual performance of the

CONS is taken to be negligible (assigning a pointer), then the maximum speed up is

dependent on the evaluation of A and B. If the two symbols have approximately the same

time for evaluation, then the largest possible speed up from performing the CONS in parallel

is only 2x (two times). This problem creates an inherent performance limit that cannot be

overcome. The Lisp CONS example is a bit misleading. The evaluation of A and B was

assumed to be independent. If one parameter relied on the other or if one parameter required

more evaluation time than the other, at some point, one process would be blocked while

waiting for the other process to finish. This would immediately begin to reduce the ideal 2x

(two time) speed up. Therefore, dependencies among subproblems also lead to decreases in

the maximum parallelism of a problem.

Algoizbm LjMjj~fi=. As shown above, the advantages of parallelism is highly

dependent on the problem being solved. If any relationships among subproblems exist, then

additional performance limits are imposed on the parallel solution. Besides limitations

inherent to the problem, a poor algorithm could limit parallel performance. For example, in

Aid's simulation of the parallel AND-OR Tree Search, he demonstrated such a phenomenon.

Independent of the branching factor of the tree, the depth of the tree, and the probability

distribution of the random number generators at the terminal nodes, he showed that the

maximum parallelism occurred at approximately 5 nodes (1:197-199). Such a constraint may

. be overcome if the performance limit is due to a poor algorithm design.

9

Architecur Limitati. Parallel computer architectures tend to focus on specific

classes of problems. Probably the most famous supercomputer, the Cray, is an array or

vector processor. The Cray would not be suited for this research into parallel search

algorithms. Therefore, as part of analysis and design, the problem must be matched with a

compatible parallel processor. Without taking this into consideration, performance

degradation is guaranteed.

Parallel Dign. The second parallel processing issue deals with mapping a problem into

a parallel solution. For humans, thinking in parallel does not come naturally. Therefore, a

design methodology is needed to describe a problem such that parallel activity can be iden-

tified. Since prior research has not defined a parallel design strategy, one goal of this

research is to investigate a formal approach to parallel design. One issue of a parallel design

is the concept of 'granularity.' At one end of the scale, fine-grained parallel activity focuses

on several small tasks. Parallel programming languages are an example of a fine-grained

approach to parallelism. At the opposite end of the scale, coarse grained problems are

divided into only a few tasks because of subproblem dependencies or because of the inability

to identify parallel activity. The granularity of the design is also dependent on the parallel

architecture that executes the solution. While some parallel computers can handle the fine

grained approach others can only be used for course grained implementations.

Without too much insight, one can see maximum parallelism and parallel design issues

form a dicohotomy. If the solution to the problem is not designed correctly, then the

resulting algorithms cause performance bottlenecks. On the other hand, a good parallel

design could have terrible performance when placed on an inappropriate parallel architecture.

These issues are central themes in this research.

10

Oe e ftl Thesk

In summary, this completes the first part of the introduction to this thesis. The problem

and goals of the research are straightforward. But, as the analysis shows the final parallel

solution may be limited by constraints inherent to the problem, particular to the parallel

design or algorithm, or imposed by the parallel architecture. Hence, the approach to solve

the problem and to meet the goals must follow a logical path. First, Chapters I and II present

the fundamental concepts and goals of the research as well as details about the Intel iPSC

computer. Chapter I completes the introduction with a description of the parallel architecture

used in the research. Next, Chapter M analyzes parallel design. Here an examination of

three approaches to map a problem into a parallel solution identifies the object-oriented

design methodology as a good candidate for parallel design. Chapter III finishes this

analysis with a formal approach to conduct an object design. In the third section, Chapters

IV and V present a formal object design of parallel branch and bound. Chapter IV defines a

general parallel branch and bound design. Based on this general design, Chapter V describes

the implementation of the N-queens and the deadline job scheduling problems that will be

used in the performance experiments. Finally, the actual performance experiments are

defined and the results analyzed in Chapters VI and VII. Chapter VI defines the performance

measures used to compare the iPSC with an industry standard, the VAX 1/ 785. Chapter

VII finishes the thesis with conclusions about this research and recommendations for further

study.

111

Chapter I introduced this research with a discussion of the basics of parallel processing,

a description of the problem, a definition of the classes of search, and an outline of funda-

mental parallel processing issues. This chapter concludes the introduction with a description

of the hypercube interconnection and the Intel iPSC computer. Basically, the iPSC is a

general purpose parallel architecture with its processing elements (nodes) connected in a

hypercube topology. First, the iPSC design philosophy is examined. Next, a formal

definition of the hypercube interconnection is presented. Finally, the details of the Intel iPSC

along with its software development environment is discussed.

IpsC D Phshy

Initial research on the hypercube, known as the Cosmic Cube, was conducted by

Professor Charles L. Seitz at the California Institute of Technology (8,26). His research is

supported by the Department of Energy and Intel Scientific Computers. The fundamental

basis of the hypercube computer can be described by the process model of computation (26).

(An analysis and comparison of several models of computation can be found in Chapter III,

Analysis of Parallel Design). Simply stated, the process model describes the interaction of

processes using message passing instead of shared variables (26:22). Using such a model,

"a programmer can formulate problems in terms of processes and 'virtual' communication

channels between processes" (26:23). The iPSC adheres to the process model of

computation in two ways. First, the programmer can define and encapsulate a process on

any iPSC node. In fact, several processes can be placed on each iPSC node. Second, the

iPSC operating system provides a set of message passing primitives for interprocess

communication. Figure 2 shows an example of how several processes communicate using

12
[.,.... , .,.,.. . ,-. 1

messages. The processor interconnection strategy used to support this model of computation

as well as provided good message passing properties is called the binary n-cube or

hypercube.

Node 0 Node 1

1 2

Noe Node 3

Figure 2: Example of Processes communicating using Message Passing

Hvnercube Interconnection

The binary n-cube or hypercube is classified as a limited interconnection strategy since

each node is only connected to a few of the total number of processors. As described by

Wu, the binary n-cube is a network of 2n processors where each node has n neighbors

(36:239). The number 'n also describes the dimension of the cube. For example, a

dimension-3 cube has 23 nodes and each node has 3 neighbors. Each node in a hypercube

13

PZ

can be identified using a binary number of length n . Figure 3 shows the labels for a d-3

hypercube. Using the binary node IDs, the nodes of the cube are arranged such that

neighboring nodes only differ by a power of two. Tuazon et al shows that the Hamming

distance between neighboring nodes is 1 (34:667). He also points out that the Hamming

distance can be used to determine the distance between any two nodes in the cube. Figure 4

shows the example of a 3-dimension cube. Notice the node numbers and the Hamming

distance between adjacent nodes.

NQ& NdeNumber
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Figure 3: Node Numbers for a 3-dimension cube.

000 001

010 011

101

110 111

Figure 4: Three-Dimension Cube structure, with
vertices labeled from 0 to 7 in binary (28:66)

14

[I

.L.VV %.e .-

Since the most efficient message passing occurs between nearest neighbors, it would benefit

programmers to use such process/message passing during the problem formulation.

Unfortunately, many problems cannot be mapped into a true hypercube communication

pattern. But, by defining specific message communications among the nodes, a programmer

can configure the hypercube into several logical structures, such as ring, tree, mesh, grids,

torus, and bus (17,26). Using these structures, nearest neighbor communications is

maintained and the structure of the parallel solution also matches the structure of the problem.

IntliPc
The Intel Personnel Supercomputer or iPSC, based on the original work at Caltech, uses

the processor/message passing paradigm. The physical configuration of an iPSC has two

components, the intermediate host and the hypercube. First, the intermediate host provides a

development environment and cube controller for programmers. Intel offers its own 310
,0

microcomputer running the Xenix operating system as the interrn,,i,,,ie host. Xenix is a

UNIX version 7 derivative with enhancements from Berkeley, NI ,,, osoft, and Intel (17).

While other machines with an Ethernet interface that run Xenix or Berkeley 4.2BSD UNIX

can also be used to connect to the Intel 310, the 310 microcomputer must be used to compile

and run the iPSC application.

The second part of an iPSC, the hypercube, is a cabinet or series of cabinets that house

the processor boards and communication lines for the hypercube processors. The basic

hypercube contains 16 nodes (4-dimension cube) with the largest configuration containing

128 nodes (7-dimension cube). Each node within the iPSC has an Intel 80286 processor and

an 80287 numeric co-processor with 512 Kbytes of memory. Each node also has monitor

and kernel software. The node monitor contains the 'boot-strap' and self-test routines that

15

..

initialize the node at power up. The node kernel serves as an local operating system that

performs process management, interprocess communication, buffer management, and

memory management

Pc Software Delopumnt

The iPSC supports four development languages, Fortran, C, Lisp, and 80286

Assembler. For each language an appropriate library of message passing primitives is

available. For the intermediate host and iPSC nodes, the following operations can be used,

SHost Command Function
copen Open a communications channel
cclose Close a communications channel
recvmsg Receive a message from the cube
sendmsg Send a message to the cube
cubedim Return the dimension of the cube
probemsg Check for a specific message type
syslog Write a message to the System Log
load Load a process into the cube
lkill Kill a process in the cube
lwait Place a process in a wait state

Node Command Function
copen Open a communications channel
cclose Close a communications channel
recv Asynchronous receive message
recvw Synchronous receive message
send Asynchronous send message
sendw Synchronous send message
cubedim Return the dimension of the cube
syslog Write a message to the System Log
probe Check for a specific message type
status Check the status of a channel
mynode Return my node number
mypid Return my process ID number
clock Return Clock Ticks (1/60th of a sec resolution)

16

-~* Ad~f.~ J -

S Intel also offers an iPSC simulator that runs under Xenix or 4.2BSD. While the simulator

can be used to prototype applications or to learn the basic concepts of the iPSC, it does not

model the actual parallel activity of the iPSC. Therefore, the iPSC simulator should not be

used to 'load balance' or to 'fine tune' an application.

The Intel iPSC is a flexible, general purpose parallel computer architecture. Created

from original research at Caltech, the iPSC offers a true message passing architecture that

gives the programmer a wide range of logical interconnection strategies. With the

introduction to this thesis complete, it is time to focus on the problem of measuring the

performance of parallel branch and bound search. Before such tests can be executed, a

parallel design of the sequential branch and bound technique must be created. Because a

formal parallel design methodology does not exist, this research investigated strategies to

map a problem into a parallel solution. The next chapter analyzes these strategies.

17

M. Analys 2f Pallel kign

In the previous two chapters, the classes of problems, the issues of parallel processing,

and the description of the Intel iPSC Hypercube computer established the scope and funda-

mental concepts of this thesis. At this point, the research focuses on the development of a

parallel design methodology. This is the first goal of the thesis. With a design approach in

hand, then a formal development of the N-queens and deadline job scheduling can be

presented. During the analysis in this chapter, it is important to remember that the ultimate

goal is to speed up the performance of the branch & bound search using a parallel computer.

Therefore, the analysis and design decisions are influenced by the nature of search problems

as well as the characteristics of the iPSC computer. These same decisions may or may not be

appropriate for sequential problem solving or other parallel computer architectures. Because

of time limitations, this research cannot develop and prove a new design methodology.

Therefore, the analysis is restricted to three techniques used today, abstract data types,
traditional design methodologies, and models of computation.

Par Abstrat D.aa IM
This section examines the concepts of abstract data types for parallel design. The study

of abstract data types (ADT) or data structures is a fundamental course in most computer

science and computer engineering curricula. Horowitz and Sahni developed a formal

definition of ADTs along with techniques to analyze computer programs (15). Extending

their ideas, a formal description of parallel abstract data types can be developed. But, as the

analysis shows, this approach only exploits limited parallelism of a problem.

18

Abstract Data I. Using the Horowitz and Sahni definition, a data structure or

abstract data type (ADT) can be described by a set of Domains, a set of Functions, and a set

of Axioms (15:1-7). The set of Domains defines the mapping of the ADT functions. This

concept is similar to a math function that maps from one 'domain' into a second 'domain'

(20:43). Figure 5 gives an example of an abstract data type defining a Stack. The set of

Domains for the Stack are [item, stack, boolean}. Notice how the Stack functions map from

one domain to a second domain. Next, the set of Functions define the legal operations for

the data type. The Stack ADT (Figure 5) defines five functions, (Create, Add, Delete, Top,

Isemts}. Finally, using the set of Axioms, the designer can prove the correctness of the

ADT. The axioms show the error conditions and legal combinations of the functions. Many

common ADTs used in computer programs include array, queue, stack, string, graph, and

tree. Sometimes a programming language abstracts the definition of the data structures. For

example, most languages support arrays as a primitive data type. Other data types must be

designed, implemented, and proven correct. Therefore, ADTs can be used in a hierarchy to

build more and more complex data structures.

structure STACK (item)
declare CREATE () -+ stack

ADD (item, stack) - stack
DELETE (stack) -- stack
TOP (stack) - item
ISEMPTS (stack) -+ boolean

for all S e stack, i e item let
ISEMPTS(CREATE) ::= true
ISEMIPTS(ADD(i,S)) ::= false
DELETE(CREATE) ::= error
DELETE(ADD(i,S)) ::= S
TOP(CREATE)..-' error
TOP(ADD(i,S)) i

end
end STACK

Figure 5: STACK Abstract Data Type (15:67)

19

Parallel AT. Following the same paradigm established by Horowitz and Sahni, a

parallel abstract data type (PADT) can be defined with a set of Domains, a set of Functions,

and a set of Axioms. The set of Domains defines the mapping of the PADT functions. The

set of Axioms will be used to prove the correctness of the PADT. Since the set of Domains

and the set of Axioms only cfme the parallel abstract data type, no parallelism can be

exploited from them. Therefore, the only parallelism that mU exist is in the set of

Functions. The functions that can be performed in parallel define 'active' data structures.

For example, each element of a linked list could be placed on a separate processor. Any

computations on the entire list may be completed in 0(1) time. The sequential linked list or
'passive' data structure would require O(N) computation time. An interesting, maybe not so

obvious, phenomena occurs when using an 'active' data type. Notice in the simple example

of the linked list, the order-of time decreased, 0(1) < O(N) , but the space requirements

reversed. The sequential solution needs only one processor and O(N) Space, but the 'active'
data structure needs O(N) processors and 0(1) Space. Therefore, Parallel Abstract Data

Types trade time efficiency for space efficiency.

Analysis f t PADT. The PADT may be used to reduce the Order-of Time computa-

tions for some functions at the expense of increasing the Order-of Space requirements.

Using the PADT concept to promote fine grained parallelism in computers may be useful in

Parallel Programming Languages. As such, the details of the parallelism is abstracted and

the programmer can build even higher level structures to define more complex PADTs. Seitz

describes this type of parallelism as a covert technique to introduce parallelism using

sequential processors (26:25). Some commercial parallel processors use this idea to define

abstract parallel data structures. One machine, the CM- 1 (Connection Machine 1) runs a

parallel implementation of Lisp, CmLisp (Connection Machine Lisp). The parallel structure

within CmLisp is called the xector (pronounced zek-tor). A xector is defined by a Domain, a

20

Range, and a Mapping much in the same way a sequential data structure is described (14:33).

For example, a list can be defined as a xector where each element resides on a separate

processor. Using a parallel data structure like a xector, Lisp programs may run faster by

using the inherent parallelism of list processing functions. Hillis shows some of the CmLisp

time order complexity reductions (14:38),

hist.Dpraflo Vector Lid XeLtor
Remove O(N) O(N) 0(1)

Sort O(N log N) O(N log N) 0(0og 2 N)

Length 0(1) O(N) 0(logN)

Unfortunately, using such a mechanism may not exploit the full potential of parallelism

within a problem. Basically, the PADT approach maps a problem defined for a sequential

computer into parallel data structures. This mapping may not exploit all of the parallelism

within the problem itself. Seitz recommends parallelism techniques such as these Min each

nod of the parallel processor because at each node "we are tied to sequential program

representations" (26:26). Therefore, to extract the "most" parallelism from problems,

another approach must be taken.

esign Mthdolho *

In the previous section, the parallel abstract data types only provided a limited parallel

solution because the PADT does not exploit the parallelism of the problem itself. Therefore,

a general approach is needed that examines the problem for potential parallel activity. Such

approaches are design methodologies. Since a parallel design methodology does not exist,

an analysis of design strategies is in order. After reviewing three popular methodologies, a

design style for this research was selected. While analyzing design strategies, it is important

to remember the ultimate goal of design is to accurately represent or model the problem space

21

(5:39). If a methodology can do this, then the designer should be able to identify the

inherent parallelism within the problem.

Traditional Design. Software design methodologies are used to defime a disciplined

approach to problem solving. Figure 6 shows a functional representation of a problem, a

design methodology, and a solution. The problem is characterized by real-world objects,

operations, algorithms, and results (5:38-39).

Figure 6: Functionality of a Design Methodology

The design methodology creates a bridge from the real-world or problem space into the

solution space. The solution for this discussion is modeled by computer hardware and

software. Three popular design methodologies include, Top-Down Structured Design,

Data-Structure Design, and Object-Oriented Design (4,5,12,23,37). The scope of this

research does not permit an in-depth review of each of these design styles, but a summary of

each methodology may help the reader.

ID-Down Structured Desgn. Top-Down design is one of the more popular design

styles since it is well suited for several programming languages and VonNeumann computer

architectures. Simply stated, Top-Down Structured Design is a method where a system is

decomposed into its major functions. Those functions are decomposed into smaller pieces,

and so on until a function can be described in a programming language (37:2). While this

22

. _ • . • • • . • . - - - - o o - - -. * °
°

**" * " *-,-. -o 4 -o," "

design methodology works well for sequential machines, it does not support features needed

when describing a parallel solution, such as distributed control and interprocess

communication (5:32).

Data-Structure Dei. This design methodology originated from the COBOL language.

Based on work by Jackson, Data-Structure Design defines the data structures of the system.

From the data structures, the programmer defines the structure of the program modules

(5:32). This design style is similar to the abstract data type approach to parallelism.

Data-Structure Design has the limitations of the abstract data type approach as well as

limitations on describing the solution space of the problem.

Oj,rientd sign. Starting with work at MIT, Stanford, and the University of

North Carolina, object-oriented design is a flexible design methodology. Used not only as

(-- the basis for programming languages, object-oriented design has also been used in other

disciplines. The Intel 432 microprocessor is an example of an object-oriented computer

architecture. The object-oriented design strategy is based on the concept of decomposing a

problem into objects, operations, and interactions among the objects.

Analysi QgL e go M lhod.]gic. No one has developed a methodology for parallel

design. Therefore, one must rely upon a software design style that models the problem

accurately as well as provides a flexible design environment. The results of such a design

should help the programmer identify the parallel parts of the problem. Commonly used

design techniques, such as Top-Down Structured Design and Data-Structure Design, cannot

accurately define the problem space and therefore do not support parallel design or parallel

processor implementation. On the other hand, the object-oriented design methodology meets

these requirements. Some work with object-oriented parallel design has already been carried

23
e , J,.,',.,..',, .'., ,'., , .,..:., ...-. v.,-,.:..:.. .. ,.,.,... :.,. ... ,.... ,. • ,"' , ":" " ' ":. .;'."." :"" :,"."t

out by researchers using Occam, the concurrent language for Inmos'transputer (3). Booch

also points out that from his experience "an object view of the problem space lends itself well

to exploiting massive parallelism" (3). Because of the ability to accurately describe the

solution space of a problem, this research will be based on the object-oriented design

methodology.

Parallel Models 91 omputatin

An analysis of parallel models of computation reinforces the decision to use the object-

oriented design methodology. A look at these models also reviews the basic concepts of the

Hypercube architecture. (See Chapter II, Intel iPSC Hypercube, for details). Just as a

design methodology is used for a disciplined approach to problem solving, a model of

computation establishes a formal definition of a computer system. Figure 7 shows the

relationship between a model of computation and computer architectures.

Real Computer

Figure 7: Model of Computation

As the figure implies, models of computation are used to define computer architectures,

either real or abstract. Gajski and Peir identify three basic sequential models of computation

(11:10-11), (1) Operational Model, (2) Applicative Model, and (3)VonNeumann Model. The

operational model, such as a Turing Machine, is used as a simple and concise mathematical

24
P % % '% ." ," .pr , • " ' % % %!r

w js .Fv WW. xRIr ,r rrVUI,~:r r.w t 9OK WkrJW WTVVtIJ WjWJ W 0'A - W vW

description of a computer system (11:10). A slightly more complex model, the applicative

model, also has a concise description but is not supported by a mathematical definition

(11:11). A pure Lisp Machine can be described by an applicative model of computation.

Finally, the VonNeumann model serves as the basis for almost all conventional computer

systems. Computers based on the VonNeumann model are much more complex than their

operational or applicative counterparts.

A goal of this research is to explore parallel design strategies. As part of that goal, this

research selected a design strategy and a model of computation that are compatible with each

other. For example, the VonNeumann model along with the Top-Down Structured Design

Methodology seem to work well for most sequential machines. Unfortunately, as Treleaven

points out, the sequential models cannot adequately describe parallel computers (33:275).

Therefore, they cannot be used in this research. In response to this, palle models of

computation have been developed. Gajski and Peir describe a parallel model of computation

as a graph, where the nodes of the graph define the tasks or processes that must be carried

out, and the arcs of the graph define the order of node firing. Despite this rather simple idea

about parallel computers, several complex parallel computer architecture have been designed.

Three specific parallel models of computation include the Data-Flow Model, the Control-

Flow Model, and the Process Model (11,26,33). The scope of this research does not permit

an in-depth review of each model of computation, but a summary may help the reader.

Data-ow Model 2f CoImi1Ruta.n. In the data-flow model, each node may 'fire when all

of the data it needs for execution is available. Each node receives its data and forwards results

along the arcs using a 'token'. Earh token contains data or instructions for a node. See Figure

8 for an example of the data-flow computation. An important aspect of data-flow machines is

their ability to extract the parallelism of a problem at run-time instead of at design time.
J.4

25

a bc d

(a+b) (c-d)

Figure 8: Execution of a data flow computation (a+b)/(c-d) (11:12(a))

Cotrl-low Model gf Comp atin. The control-flow model uses tokens to pass

pginICr information between nodes. The actual data resides in a global memory. This

scheme is useful when performing computations on large data structures like matrices.

Figure 9 shows the computation of (A+B)/(C-D) using a control flow graph.

Shared
A B C D Memory

Figure 9: Execution of a control flow computation (A+B)/(C-D) (11:12)

26

Anaaysi of te Data-low and Co l Models. The Data-Flow and the

Control-Flow Models of Computation are useful in describing a parallel solution to specific

problems. Unfortunately, both of these models limit the definition of a system by restricting

the class of parallel processors. For example, the data-flow model maps the problem to

data-flow computer architectures and the control-flow model maps the problem to parallel

computers with a shared memory. A general parallel model of computation is needed to

remove the limitations of a specific architecture while designing a parallel solution. If a

programmer has the freedom to choose a parallel computer, then upon completion of the

general design, a suitable parallel architecture can be selected. On the other hand, if a

programmer is restricted by a specific computer architecture, a general model of computation

can still be used to describe the problem. One such model with this flexibility is the process

model of computation.

Proess Model of C..liuajin. The process model of computation describes the

interaction of processes using message passing instead of shared variables (26:22). Both

the data-flow and the control-flow base their computer descriptions on shared data. Using

the process model, a programmer defines a general parallel solution by formulating the

problem in terms of processes and "virtual" communication channels between processes.

Interestingly, the object-oriented design methodology decomposes problems based on

objects (independent processes) and communications or message-passing among those

objects. Because the Hypercube is defined by the process model of computation, parallel

solutions map naturally to the iPSC Hypercube using the object-oriented design style. Seitz

also recommends the process model approach to parallel design because (26:26),

27

We do not know how to write a program that translates application
programs represented by old, dusty FORTRAN decks into programs that
exploit concurrency between nodes. In fact, because efficient concurrent
algorithms may be quite different from their sequential counterparts, we
regard such a translation as implausible, and instead try to formulate and
express a computation explicitly in terms of a collection of communicating
concurrent processes.

Object-Oriented Dsg

In summary, the object-oriented design methodology is used as the parallel design

strategy for this thesis. The object model not only represents the problem space accurately

but also maps naturally into an iPSC implementation. At this point, a description of object

design is in order. This discussion also includes a design approached defined by Booch

(4,5). In short, the object-oriented design methodology can be defined as a software design

tool "in which the decomposition of a system is based on the concept of an object" (4:211),

and an object can be defined as an instance of an abstraction from the problem space.

Objects typically initiate action or respond to requests from other objects. Some computer

languages like Smalltalk and Lisp Flavors directly support the definition and interaction of

objects. Object design is not restricted to computer languages. Besides a general software

design style, object-oriented design has also been used for compu,.r architectures, such as

the Intel 432. A problem can be accurately abstracted into the solution space using only four

basic constructs, (1) Class; (2) Method; (3) Message; and (4) Object

Clas. A class defines a template for an object. This template includes a set of attributes

about an object and a set of operations for that object- Classes may form a hierarchy in

which each subclass inherits the attributes and operations of its ancestors. A hierarchy of

classes is generally used to "factor the common properties of a set of objects" (4:216).

Figure 10 shows a class hierarchy of the class of Aircraft, Jet, Piston, and Turbo-Prop.

28

.;.?:.

4e4'd °.P...............d;.a

While the specific attributes and operations are collected in the Jet, Piston, and Turbo-Prop

Classes, the common properties are identified at the highest (most generJ) class, Aircraft.

For example, if this hierarchy is used within an air traffic control system, the attribute

'position' pertains to all aircraft. Hence, the attribute 'position' is associated with the most

general class, Aircraft Class. On the other hand, specific attributes about a Learjet must be

incorporated into the Jet Class.

Aircraft
Class

Jet Piston Turbo-Prop

Class Class Cls

Figure 10: Example Class Hierarchy

Message. Objects use messages to initiate an action or a response to another object. The

response could range from changing the state/attribute of the object to sending messages to

other objects. The message passing paradigm creates two important concepts, interface

specification and information hiding. As an interface specification, messages serve as the

rules-of-communications among objects. The interface specifications may be reguarded as

the external view or the abstract behavior of an object (4:217). The second concept,

information hiding, protects the details of bow the operation takes place. For example, using

the Aircraft Class Hierarchy once again, one may "send" the message TYPE to an aircraft

object. As an interface specification, the response should be an appropriate aircraft type such

as B747, DC-10, etc. To re-enforce the concept of information hiding, we have no idea how

the TYPE message was actually calculated.

29

Method. A method "denotes the response of an object to a message from another object"

(4:215). The response may change the state of an object, return a value, compute a function,

or send messages to other objects. Methods define the internal behavior of an object. As

such, the method explicitly defines the functions, parameters involved, data structures, and

details of how the response is calculated. Continuing the example, the TYPE message

could be an attribute of the Aircraft Class. Then, the response would only consist of

returning the value of that attribute.

O.jec An object is a unique instance of a class. The object inherits all the attributes

and operations of its parent class and its ancestors. An example of an object would be

United Flight 300. The attributes of United 300 include Type = B747, Position = 48'North

100' West, Ground Speed = 600 Knots, Destination = LAX, etc.

Using the above building blocks, the object model can represent any abstraction from the

problem space. This includes abstract data types, entities within the problem space, inter-

actions among the entities, and object support tools such as complex data structures. Since

the concept of an object encompasses many abstractions, Booch tries to simplify the idea a

bit more by identifying three subclasses of objects, the Actor, the Server, and the Agent

(4:216). While Actor objects initiate action from other objects, Server objects only respond

to requests from other objects. Finally, Agent objects combine the properties of the Actor

and the Server by initiating action and responding to requests. For example, the control

within the problem can be classified an Actor object since it initiates action; and a queue data

structure is classified as a Server object since it only responds to requests.

30

.a

Even though most computer languages do not support object-oriented concepts directly,

an object design can be useful in almost any software development environment Since most

computer languages support subroutine, function, or procedure calls, programmers can build

abstract data types. As Booch points out, abstract data types represent Ag(nt objects and

Server objects (4:216). Therefore, one must find a representation of an Actor object to

complete the transition from object-oriented languages to other computer languages.

Typically, Actor objects are the control or main module of the procedural language.

Therefore, the Actor object becomes the control or finite state machine within the computer

language. Even though object design concepts create a good model for almost any problem,

a well defined approach is necessary. Booch recommends the following steps (4:213-214,

5:38-44),

1- Define the Problem 4- Establish Visibility
2- Identify Objects and Attributes 5- Establish Interface
3- Identify Operations 6- Implement the Objects

Define Ik Problem. Before a good design begins, it is necessary to understand the

problem thoroughly. Sometimes the problem can be examined using an analysis technique

such as dataflow diagrams. Other times, an analysis technique must be coupled with a

software prototype to aid in problem understanding.

Idenify QWc and Attribute. At this point, identify all of the Actors, Agents, and

Servers within the system. Typically, nouns identify the objects. The attributes of an

objects are the necessary pieces of information that an object needs to do its job.

31

Idenfr Q=ttion. Next, determine all of the operations performed by the object or on

the object. During this phase, any timing considerations must be identified as well. For

example, a 'window' object in a computer terminal window-system must be 'open' before

any operations can be applied.

Esablish VisibIly. At this point, the interactions and dependencies among the objects

are identified. This step builds the topology of the objects and helps us identify the mapping

of the problem space into the solution space.

Esblish Interface. Next, the interface or external view of each object is created. This

interface sets up the rules of communications between objects.

Implement the Qki,.. Finally, the internal representation of each object is established.

The internal view defines the data structures and details of how the objects performs its

functions. Many times objects are implemented from lower level objects. Systems

developers can also experiment with different implementations as long as they obey the

interface specs.

The figure on the next page shows the mapping of the four object-oriented constructs

into the Ada, C, and Pascal languages (see Figure 11). Ada supports all of the features of an

object-oriented language except for the class hierarchy inheritance (4:217). Using a bit more

care, Pascal and C Language may also be used for object-oriented programming. C

I'. Language is used for all experiments in this research.

32

I' e ,, , , ." , " .- .- ,"." , (_,,,r , ,_ " -, .,., . '- -.- . - .'. ," .

Class Methods Objects Messages

-Package with - Subprograms - Instances of private - External View
private or exported from or limited private supported by
limited private package spec. types separate pkg

Ada types, specification

(Actor) - Internal View
supported by

- Tasks/Task Types separate pkg
(Actor) body

- Abstract Data - Functions - Instances of an - Interface to
Type Abstract Data FunctionsTyeor

- Primitive Data Pri e Data - Extemal View
C Type Type Supported by

"Header Files"
- State Machine
(Actor) - Internal ViewSupported by

function body

- Prcedues -Instances of an' " ~- Abstract Data - Procedures -Isaesoan - Intrface to
ATra Abstract Data Functions and

Type - Functions Type or Procedures

Pascal - Primitive Data Primitive Data

Type Type
- State Machine
(Actor)

Figure 11: High Level Language/Object Constucts Matrix

33

~CuConuions

Many researchers have developed ways to speed up computations using parallel

techniques. Some have focused on parallel data types while others re-evaluate each problem

for inherent parallel activity. One goal of this research is to investigate an approach for

parallel design. This analysis selected the object-oriented design methodology because of the

ability to accurately model the problem space as well as map the final design into the

hypercube implementation. For this research, the six-step object design approach as defined

by Booch is used. Even though the steps are presented sequentially, anyone using them

should expect to visit each step several times before declaring the design final. This chapter

concludes the analysis of parallel design techniques. Continuing, the research proceeds with

a general parallel branch and bound design based on the object model in the next chapter.

34

IS IV. Eaza&lk zBnch and Bound

Using the six step object-oriented design approach defined in the previous chapter, this

chapter presents a formal object design of parallel branch and bound. A general design is

given and some insight about the design decisions are examined for each step. The

implementation details of the N-queens problem and deadline job scheduling can be found in

the next chapter. While this design is presented in a orderly fashion, the actual design

involved an interative approach. The designer should expect to visit each step several times.

The design in this chapter proved useful in two ways for this research; (1) the design of an

actual problem allows this research to draw conclusions about the usefulness of the

object-oriented design methodology for parallel processing; and (2) the design prepares the

problems for a performance test.

Define th Problem

Before the design is presented, the concept of search must be defined. Search is a basic

Operations Research (OR) and Artificial Intelligence (Al) programming technique. Such a

strategy is used when problems cannot be solved using direct methods (i.e. formulas,

algorithms, etc) (25:55). Typically, a search is reguarded as a sequential, centalized control

strategy that accepts a problem and its initial state and 'searches' the solution space for a goal

state. The efficiency of a search is dependent on how well it uses the domain specific

knowledge of the problem (25:55). Several specific search strategies have been developed.

Each strategy varies the way the solution space is examined. While sometimes the entire

solution space is blindly searched for an answer, other search techniqu- ,se heuristics or

rules as a guide through the solution space. Below, Rich lists examples of specialized search

strategies (see Figure 12).

35

Vh7 Branch & Bound B*
Depth-First Search Breadth-First Search
Best-First Search AO*
A* Heuristic SearchHill Climbing Alpha-Beta Cutoff
Constraint Satisfaction

Figure 12: Search Strategies (25)

From this basic introduction, the details of the search programming technique is in order.

The following definitions, descriptions as well as examples should prepare the reader for the

search experiments used in this thesis. For more information, consult (2) (16), and (25).

First, the problem space for a search is typically represented using a tree or network

organization (a network can be represented as a tree) (16:325). Horowitz and Sahni describe

the search tree as follows (16:325-329): The root of the tree represents the initial state of the

problem (see Figure 13). Each nonterminal node in the tree represents a problem state in

the search. The set of all paths from the root node to any node in the tree define the solution

space for a given problem. As the search progresses, a node that has been inspected but all

of its children have not been generated is called a live node. The live node currently being

expanded is called the E-node. Finally, a dead node is one that has been inspected and all

of its children have been generated.

Even though trees are used to represent the solution space of a search, the tree is usually

not stored explicitly in the computer. Because search problems have the additional overhead

of combinatorial explosion due to the branching factor or the depth of the tree, only the

portions of the tree needed are kept in storage.

36
i+

oot
Nonterminal

Node

Terminal Node

Figure 13: Search Tree with Node Definitions

Using the definitions of the search tree, a blind search, such as depth-first and breadth

first search, does not use knowledge of the problem domain to control the search process.

Given the tree in Figure 14, a depth-first search visits the nodes in the following order,

A-B-D-E-C-F-G

and a breadth-first search visits the nodes in this order,

A-B-C-D-E-F-G

Figure 14: Example Search Tree

37

The other techniques, called intelligent search, try to narrow the search space, shorten the

search time, and reduce the storage needed by applying knowledge of the problem domain to

control the search. The following actions are used to meet the three goals of 'intelligent'

search (2:59),

1- Decide which node to expand next.

2- Select the most promising successors when expanding a node.
3- Eliminating or pruning the search tree.

The most general search strategy that incorporates all three of these techniques is known as

branch and bound search. Because of its general form, branch and bound can model 'blind'

as well as 'intelligent' search by changing certain parameters (see next section).

Branch and Bound Search. Branch and bound search is the general form of any state

space search. Therefore, many of the search strategies used in OR and AI can be modeled

using branch and bound. Furthermore, it is important for research of this type to attack the

most general form of a problem. Branch and bound meets this requirement.

Branch and bound search is characterized by a ranking function, c(X), and a bounding

function, b(X). First, the ranking function measures the cost to reach an answer from node

X in the search tree. During the search, the E-node (next node to expand) is selected from a

list of live nodes. The E-node selection may be based on the value of c(X). For example, if

c(X) is the cost to reach an answer and the E-node selection picks the node with the least

c(X), then the branch and bound search models a least-cost search. Even though the search

follows the lowest cost path to the solution, using such a cost function can be computa-

tionally expensive. Computing the cost to reach an answer node usually entails an additional

search of a subtree. Therefore, the branch and bound ranking function, c(X), is a trade off

38

INI,

i' V ~ ' '' . . i ~ V ~ * , * . ' '-" ," i" ', '.'t,,' ., "'.'+ ,."','-."3.* "-.''' -, ,.''i *,-\., -,-''. -1"..-.

S between the time to compute the cost and the efficiency of the cost function. Instead of

computing the actual cost to an answer, most branch and bound searches use a function,

g(X), that estimates the cost of reaching an answer node. Using g(X), the live nodes are

ordered by the following function,

c'(X) = h(X) + g(X)

where,
c'(X) = Total estimated cost
h(X) = Cost of reaching node X from the root node
g(X) = Estimated cost of reaching a solution from node X

Some examples of using the estimating cost function are (16:372).

h(X) = level of node X in the search tree
g(X) = 0

c'(X) = Breadth-First-Search

h(X) = 0
g(X) > g(Y), Y = child of X

c'(X) = Depth-First-Search

Next, the bound function, b(X), examines node X for specific boundary conditions. If

the node passes the bound function, then it becomes a live node. If the node does not pass

the bound function, then the node becomes a dead node. The bound function prunes the

search tree and therefore eliminates needless computation in parts of the search space where

solutions are 'known' not to exist. In fact, some searches may incorporate several bound

functions.

39
., .I ""-.

V - -~ *t.~*.*.** *.~** ~ ~ .1k . a .

Any search that incorporates a cost function for selecting the next E-node and a bound

function to prune the search tree is called a branch and bound search. The efficiency of such

a search is keyed upon the accuracy of the cost function and the bound function. A poor cost

function may direct the search to the wrong part of the search space, and a poor bound

function may prune a subtree that has an answer node.

To summarize, search is used when an algorithmic solution does lot exist. The search

programming technique offers a way to examine all possible points in the solution space for

an answer. Because of the exponential nature of a search problem, an exhaustive

examination of the solution space is computationally prohibitive. Hence, a variety of search

techniques have been developed to reduce the time to find an answer. Sometimes a 'blind'

search is appropriate while other times more complex 'intelligent' searches are needed. In

any case, the most general state space search is called branch and bound. This programming

(. technique is characterized by two functions, a cost function and a bound function.

Based on this analysis, a dataflow diagram of branch and bound is shown on the next

page (see Figure 15). In addition to this analysis, sequential versions of the N-queens and

deadline job scheduling were programmed to understand the two problems used in this

research. Descriptions of the sequential code can be found in Appendix B and D

respectively.

40Z P-I

&r~~~~~rV .3 - 7~ 7x -T ~ ~ ~W - WW FT- -r~ r k Nr -

Report Vector(s) Add
Generator Terminate Live

CheckNode
to Q

Nex t
r~eportProblem

Live Node
Solution

Livepodet

FLive Node Q

LiveNod

Figue 1: Brnch& Bund ata-ow Diara
User Contolle 14 el41

:~.:~'p . .. * -~-. - -~ ~ next

Before moving to the next step in the object-oriented design, the representation of a node

in the search space must be described. For this research, a node in the branch and bound

search problem is represented as a vector, (x1,x2 ,..., xn) (16:323). Each xi is constrained

by explicit and implicit constraints. First, the explicit constraints define the range of values

that each xi can be assigned. For example, xi r {0,1 } is a set of explicit constraints. The

xi's can have the same set or different sets of explicit constraints. All nodes in the solution

space satisfy the explicit constraints. The second set of constraints, called implicit

constraints, define the relationships among the xi's. The bound function insures that the

implicit constraints are met. Any node in the solution space that meets both the explicit and

implicit constraints is an answer node.

Using the dataflow diagram (Figure 15), all objects in the problem domain as well as the

attributes for each object can be defined. Branch and bound search has the following

objects.

Problem Solver Solution Vector
Solution Explicit Constraints
Solution Implicit Constraints

E-Node Expander Solution Vector
Solution Explicit Constraints

Bound Check Solution Vector

Solution Implicit Constraints

Termination Check Terminate Condition

Controller Current State of the Machine
List of Live Nodes

42

I

.. PIP dCRWIOgrflDoilns

Next, determine the operations performed by the object and required of the object.

During this design step, the designer identifies timing considerations as well. This timing

information is vital to identify the parallel and non-parallel parts of the problem. First,

examine the operations performed by the objects. Booch points out that these operations

roughly match the data flows into an object (4:219).

ObjectOeration PerformedL hv thk he *e

Problem Solver Find all Children of an E-Node
Examine Live Nodes for Solutions and Answers

E-Node Expander Generate the children of an E-node

Bound Check Check the Children of an E-Node
against the Explicit Constraint Function

Termination Check Check if solution meets terminate condition

Controller Solve the Problem
Collect Live Nodes
Collect Answers

Notice the Controller does not distinguish between a Problem given by the user and

expanding the next E-Node for a Solution. Since the User's Problem as well as the E-Node

can be any valid state space vector, the Controller does not have to make the distinction.

Next, the operations required 'of the object' are defined. Booch points out that "these

operations roughly parallel the action of a data flow from an object" (4:219).

Qbjet Opratoon Reguairdof he Obhject

Problem Solver Expand E-Node
Determine if a Live node = Answer

E-Node Expander Generate all Children of an E-Node

43

Objec f flQa' ion R e ft bje ct - - - -

Bound Check Send Live Nodes to Problems Solver

Termination Check Check for termination

Controller Solve the Problem
Add a new Live Node to the Heap
Check for Problem Termination

Before moving to the next step, the designer must identify the timing relationships among the

objects.

loop
if Problem has Terminated then

End
else

Get a Problem to Solve -- get E-Node
Solve the Problem -- expand E-Node
Check for Bound Conditions

repeat

Wah used this timing information to defie four branch and bound 'processes' that can run

in parallel, (1) Parallel Termination Check; (2) Parallel Problem Selection; (3) Parallel

Problem Solution; and (4) Parallel Bound Check (35:96).

EtbihVisibility

This step, establish object visibility, defines the topology of the solution space and the

structure of the parallel solution. Using a diagram such as Figure 16, the designer identifies

the dependencies among the objects. The object model at this point creates a continuum of

possibilities for parallelism. At one end of the scale, all objects are placed on one processor.

Programmers do this today when writing a sequential program. At the opposite end of the

spectrum, each object or a collection of objects are placed on a separate processor. The

optimal parallel solution lies somewhere between these extremes. An examination of some

visibility diagrams points out how the parallel visibility analysis works.
,'.

44

~~~~~~~ % .% "*% : %



Terminate Problem

Check Solver

~Bound

E-Node
Expander

Figure 16: Sequential Branch and Bound Object Visibility Diagram

The first parallel visibility diagram shows a collection of worker processors (Processor

#1 ""Processor #N) whose sole purpose is to solve a particular problem (see Figure 17).

The remaining objects (controller, bound check, terminate check, and e-node expander) are

placed in another processor. Of the four parallel 'processes' defimd in the timing analysis

by Wah, this visibility strategy attempts to create parallel activity by solving several problems

at once. But, this configuration of objects creates a communications bottleneck at the

Processor with the controller, e-node expander, bound check, and terminate check. Such a

design would limit parallel activity.

45

, SO



Processor

Bound E-Node

Check 
E-pander

STerminate

Processor- I roessor-2 Processor-N

Figure 17: Parallel Object Visibility Diagram #1

In the second parallel visibility diagram, an attempt to increase parallel activity is shown

(see Figure 18 on the next page). Here, by distributing complete problem solving objects,

the problem solver, the e-node expander, and the bound check, some of the computation

workload-of the Central Conatroleris shared. In this formulation of parallel branch and

bound, the Central Controller would also be useful in searches that incorporate global

boundaries. Unfortunately, the communications bottleneck still exists at the controller. This

bottleneck limits parallel activity.

46



Processor

Terminate Controller Bound
Check Check

Processor-I

Problem
Solver

E-Node Bound
Expander Check

Processor-N

Problem
Solver

Expander Check

Figure 18: Parallel Visibility Diagram #2

47



Finally, the parallel visibility approach used in this thesis is shown in Figure 19. In this

parallel design, several instantiations of complete branch and bound search processors are

controlled by a Meta-Controller. The Meta-Controller is used to keep Worker Processes

busy, maintain the machine state, and terminate the search. This formulation also works

well for state space searches with dependencies generated from other branches of the solution

space (global dependencies). If a branch and bound search has a global dependency such as

an upper or lower bound, then the value of this bound must be available to all branch and

bound processors. The Meta-Controller can be used to distribute this bound.

Before leaving this design phase, a mapping from the object-oriented design strategy and

the process model of computation can be completed. Notice that the object model describes

the problem space as fine grained' objects that communicate via message passing. The

process model of computation defines a computer system where processes communicate

using messages as well. A direct mapping of a process to an object can be made. Or, for

efficiency and reduced communications overhead, a collection of objects (on one node) can

be consolidated into one process. Therefore, the object model defines the problem space as

'fine grained' and the process model implements the solution as fine or coarse as needed for

efficiency.

48

,... / ,., .% _,,, ..- ,. . ,, .e% .. - % .-. , , . ._. - , .. ' -,,, . ,, - . , . _. _. .... .' _ _ ... r,....," ,',, ,. ,_



Processor

Terminate MetaCheck Controller

SProcessor-N

BExpander
(Terminate Prbe

Check Solver

Conrole

Figure 19: Parallel Branch and Bound Visibility Diagram used for this research

49

-- - - -..-,: -.... , .-,---.,-,- - -,.:-. -.-,%. _ .,.-,-.-.-: .a"._.• - _..- ._.-... .'.



snas..aps y p r arena - pW aa as aWI. ana r' . - ,-. .,-. , , - L l" .- ,-l l- W Wn WS WWW ,WFW YWT

Egsablish Interface
Now, the message passing interface is created for each object. This interface describes

the external or abstract behavior of the object while the implementation details of ho the

object performs its operations are hidden (4:214). The interface specifications for the branch

and bound search are described below.

Meta-Controller -+ User
* Accept Initial Problem Vector from User
• Maintain State of the Machine
* Find a Solution to the Initial Problem

Meta-Controller -+ Controller
* Broadcast Global Upper Bounds
* Distribute problems to solve

Meta-Controller -+ Terminate Check
* Find all Solutions
• Find the first solution
* Find an optimal solution based on additional constraints

Meta-Controller -+ Bound Check
-Maintain Global Upper Bound(s)

Controller -+ Meta-Controller:
* Accept Problem Vector from Meta-Controller
* Find all solution to the Problem Vector

Controller -+ Problem Solver:
- Given an E-Node return Live Node(s) or Answer Nodes(s).

Controller -+ E-Node Expander:
• Given an E-Node generate all Children.

Controller -+ Bound Check
* Given a Child node check against implicit constraints

Controller -+ Terminate Check:

* Receive a terminate message from the Meta-Controller

50

.. . ,. .. ,.,. . , ., " . . ,.,.,, . . ". ,.. ,, . . -. , , .... .,,,r, ,



From these specifications, the programmer implements a branch and bound search for a

specific problem. But, before going to the final step in this design, it is important to

understand the importance of the interface. Simply stated, the interface specifications must

be defined with parallel operations in mind. The Controller and the E-Node Expander

interface is a good example as shown in Figure 18: Parallel Visibility Diagram #2. Assume

this interface is defined as follows:

E-node Expander -4 Controller
* Given an E-node generate one child

And given the following problem state,

LiAvailable Processors

Initial Problem {1,2,...,N}

no parallel activity could occur. First, the Controller selects Processor # 1 and the Initial

Problem for expansion. This would leave the state of the machine as,

Lve Ndes Available Processors

<Empty> {2,...,N}

There is no more work left for the remaining available processors. Once Processor #1

returns from solving the initial problem, the state of the machine will be,

Liv Available Processors

New Live Node (1,2,...,N}

51



Once again, the first processor is tasked to solve the only problem in the Live Node pile.

Therefore, this interface specification does not promote parallel activity. With the following

interface, parallel activity is much more likely,

E-node Expander -+ Controller

Given an E-Node generate all Children.

The sequence of states for the Controller would now look something like this,

Live N es Available Processors

Initial Problem { 1,2,...,N }

LivN Available Processors
Live Node- I 12,...,N}
Live Node-2

LiveN Available Processors
Live Node-k [...,N-2,N-1,N}

Live Node-k+l

LN Available Processors
Live Node-n-2 {....N-2,N-1,N}
Live Node-n- I

Live Node-n

Now, when Processor #1 becomes available, other processors have been creating more

problems to solve. This analysis points out the limitation of the design and the

communications bottleneck in the second parallel visibility diagram. A thorough analysis of

each interface, such as the one described above, is necessary. A poor interface could limit

the maximum parallel activity of a problem.

52



Implemen 1k Objects

The final step in an object design is to implement the objects. The internal view as well

as the details of how the object performs its operations is now defined. Many times a

complex object can be implemented from lower level objects thus creating a hierarchy. For

example, the Meta-Controller keeps a list of Live Nodes in a queue data structure. This

queue is in essence a lower level object with operations and attributes of its own. Systems

developers can also experiment with different implementations as long as they obey the

interface specifications.

Search is a sequential, centralized control strategy used to systematically examine the

solution space of a problem. To map this strategy into a parallel solution, the object-oriented

design methodology and the object design approach as defined by Booch was used. In fact,

the object design model proved to be quite useful in describing the problem of branch and

bound search as well as extracting parallel activity. While this chapter presented a general

design of parallel branch and bound, specific problems must be implemented for

performance experiments. To reach this goal and to complete the parallel design, the next

chapter presents details of the parallel N-queens and parallel deadline job scheduling

implementations.

53

IU



+ ..:,V. Prallel N len ad Parael

Dedline &b Scdling ImpJemen

In the previous chapter, a general object-oriented design for the branch and bound search

was presented. Using this design, the details of the two search prc 'lems can be addressed.

The first class of search, backtracking search, is exemplified by the N-queens problem. The

goal of the N-queens search is to place N chess queens on an N-by-N playing board such

that no queens are attacking. The characteristics of the N-queens show exponential time

complexity along with an exponential number of answer nodes in the solution space. During

the backtracking search, the nodes in the solution space are examined using a depth-first

while certain branches of the search tree can be pruned using a simple bound function (see

Chapter IV, Parallel Branch and Bound). The second class of search, least-cost branch and

bound, is modeled by the deadline job scheduling problem. The goal of this problem is to

find the largest subset of jobs that can be run by their respective deadlines while minimizing

the total penalty incurred. Such a problem can exhibit exponential time complexity in the

worst case scenario and linear complexity in the trivial case. In all cases, the deadline job

scheduling problem is exemplified by a small number of answer nodes in the solution space.

During the least-cost branch and bound search, the nodes in the solution space are examined

in least cost order and branches of the search tree are pruned by two bound functions. The

discussions of the parallel implementation of these two search problems open with a

description of the implicit and explicit constraints as well as the implementation of the

solution vector. This is followed by the implementation details of each object as defined in

the object-oriented design. The results of the performance experiments are then presented in

Chapter VI.

54

..,, ,.,. +, ,. . -.,- -., +.-,-., .,- ,-.- .-,-.--,,.- -.."-:,.,, ,,,", , .."- -."",;,-"-.y.'-:,',-.:- '-:,,,:.'%.'- -.,. ."S, .. -- .':" .+",. :



Before examining the implementation of each branch and bound object, the implicit and

explicit constraints as well as the solution vector must be defined (16:337-339). The

N-queens problem can be solved with a vector, (x 1,x2 ,-' ,xn), where xi is the column on

which queen i is placed. For example, the 4-queens problem has a solution vector of

(xX 2,x3 ,x4), and the value of x1 would identify the column number of the playing board

in which queen #1 is placed. Each xi in the vector is bound by explicit and implicit

constraints (see Chapter IV, Parallel Branch and Bound, for details). The explicit constraints

define those values that can be assigned to each xi . For the N-queens problem, the explicit

constraints are defined as xi e { 1,2,...,N}. For example, the explicit constraints for

4-queens problem are xi e {1,2,3,41. Given the definition of the solution vector and the

description of the explicit constraints, a valid solution node in the 4-queens search space

would be (1,4,2,3). Figure 20 shows a corresponding diagram of the playing board. Since

every node in the solution space meets the explicit constraints, Figure 21 on the next page

shows the partial solution space of the 4-queens problem as well. The grey node in the

Figure 21 represents the example solution vector (1,4,2,3).

Q

Q

Q

Q

Figure 20: Board positions for solution vector (1,4,2,3)

55



IA-
x0

x CM

AI Vv. \Y&- .d%



The second set of constraints, implicit constraints, define the relationship among the various

xi's. The nodes in the solution space that meet both the explicit and implicit constraints

define answ nodes to the problem. The implicit constraints for the N-queens problem do

not allow any queens to be in the same column or to be placed on a common diagonal or

subdiagonal. The example solution vector (1,4,2,3) clearly violates these implicit constraints

(see Figure 20) and therefore cannot represent an answer node to the 4-queens problem.

With these constraints in mind, Figure 22 shows the board positions and the black node in

Figure 21 identifies the answer node, (2,4,1,3) to the 4-queens problem.

Q

Q
~Q

Q

Figure 22: Board positions for answer vector (2,4,1,3)

Based on the implicit and explicit constraints, the implementation of the solution vector

for the Parallel N-queens problem is a simple one dimension array of N+ 1 elements. The

first element of the array is used to maintain the state information during the search. Using

the fist element to maintain the state, an explicit live node queue is no longer needed. All

information to conduct the search is contained in the current solution vector. In the case of

the N-queens, the state information needed is the identity of the next queen to 'place on the

board.' For example, the solution vector (1,3,-,.) shows queen #3 (vector[O]) as the next

57



queen to place on the board. The remaining elements of the vector correspond to queen #I

placed in column 1 (vector[l]) and queen #2 placed in column 3 (vector[2]). From this

example, the solution vector array would have the following values,

vector[O] = 3 vector[l] = 1 vector[2] =3

For the N-queens search, the live nodes are examined in the order they enter the live node

queue. Therefore, the branch and bound cost function parameters are defined as follows:

h(X) = 0 (all nodes have the same cost)
g(X) = 0 (estimated cost not used)

c'(X) = Depth First Search

The next sections describe the implementation of each object for the parallel N-queens problem.

It may be useful to follow the implementation of the parallel N-queens with the visibility

diagram developed in the object-oriented design of parallel branch and bound (see Figure 23).

N-uens Control Process

Overview. Focusing on the top processor box in Figure 23, three objects, the

meta-controller, the terminate check, and the bound check, work together to control the

progress of the parallel search. The meta-controller becomes the central control, the terminate

check identifies the stop condition, and the bound check could maintain global bounds

throughout the search. Because the N-queens problem does not maintain global constraints,

the bound check is not implemented. As recommended by Intel programmers, communications

between processes must be minimized for efficient use of the iPSC architecture (17). There-

fore, to reduce communications overhead, two objects, the meta-controller and the terminate

check are grouped into one iPSC process called the Control Process. A detailed description of

both Control Process objects follows.

58



n ,I.n S. an-nn .r ... e 1r71"uL ut s.....-. .. -.- . -

Processor

Terminate Conto-e
Check

Processor- 1

/TerminatePrbe

Controller

SFigure 23: Object Diagram for Parallel Branch & Bound

59 Check1Termnat Pro
Check Solver



Mea ntro . The meta-controller for the parallel N-queens performs three major

operations; (1) keep a list of problems; (2) keep a list of idle worker nodes; and (3) give

problems to the worker nodes to solve. First, the list of live nodes (list of problems) is

maintained as a FIFO queue data structure. Before the parallel search begins, the meta-

controller creates an initial list of problems to solve. This translates to generating the first

levels of the search tree. Through experiments, the optimal number of problems to create

was determined to be 5 times n, where n is the number of processors in the hypercube. It

should be noted the experiments for this thesis have been optimized for large board sizes.

Since the N-queens problem is solved using the depth-first search method, all live nodes are

expanded in the order they enter the queue. The second task for the meta-controller is to

maintain a list of idle worker nodes. Using a status array with two status values, BUSY or

AVAILable, the Worker Processes send WORK REQUEST messages to the Meta-Controller

when they need work. The meta-controller in turn sets the node status to AVAILable.

Finally, the controller must assign problems to the worker nodes. Before a problem can be

assigned, two conditions must be met, (1) the live node queue must not be empty, and (2) a

worker node must be AVAILable. After passing these two conditions, the meta-controller

picks a problem from the live node queue and sends it to the worker. The worker status is

then set to BUSY. Notice in the parallel environment, several nodes are expanded

simultaneously.

Terminat £hQk. For the N-queens experiments, the termination condition was to find

all solutions. This condition occurs when the live node queue is empty and all of the worker

nodes have posted WORK REQUESTS. This translates to a machine state where no more

work is available and all of the workers need something to do. Once this condition occurs in

the Control Process, the meta-controller sends KILL messages to all Worker Processes.

60

4, .~. S *S % .. ,V.*~%~%d././~ * ' ~- *'



N-gue.es Worker Pf.cem

Overview. Examining Figure 23 once again, processor #1 through processor #N

contain a complete branch and bound problem solver. In this case, for efficiency and

reduced communications, all five branch and bound objects are collected to form the iPSC

Worker Process. The Worker Process is a modified version of the sequential N-queens

code. Most of the modifications include communications functions so the Worker Process

can send and receive information from the intermediate host and the Control Process. The

details of the Worker Process objects follows.

Control . The controller object initializes the worker node by receiving the board size

from the intermediate host and sending a WORK REQUEST to the Control Process. The

controller then enters an infinite loop waiting for a problem to solve. If an E-node message

arrives, then hand the E-node to the problem solver. Once the problem solver object

finishes, send a WORK REQUEST to the Control Process. If a KILL message arrives,

'break' the infinite loop and terminate the Worker Process.

Problem Solver. The problem solver is contained in a 'while' loop within the controller.

Upon receiving an E-node message from the Control Process, the problem solver searches

the subtree defined by the E-node. The goal of the problem solver is to find all answer nodes

in the subtree.

E-Node pand. Given an E-node, the next queen to place on the board can be found

in the first element of the E-node vector, vector[O]. Using this value, generate all children of

the E-node. For example, E-node (2,.,.,.) has the following children, (2,1,.,.) (2,2,.,.)
(2,3,*,-) and (2,4,-,*). '

.1

61'-



Dmd Ch~k. The bound check ensures that the implicit constraints of the problem are

met. As the children of the E-node are generated, the bound check makes sure that the new

vector represents a valid board position. A board position is valid when the new queen is not

on the same column or on a common diagonal or subdiagonal to another queen. For

example, the E-node (2,-,.,.) has only one vali child, (2,4,-,.). It should be noted if the

last queen is placed on the board in a valid position, then this vector defines an answer node.

Terminate Ch~k. The terminate check for the Worker Process is a KILL message from

the meta-controller.

The details of the C Language implementation of the Intermediate Host program, the

Control Process, and the Worker Process for the parallel N-queens can be found in

Appendix A. Besides a description of the source code, a trace of an example problem is

shown. For comparison, a sequential version of the N-queens problem was run on a DEC

VAX 11/785 and on an Elxsi System 6400. The source code and description of the

sequential N-queens can be found in Appendix B. The implementation of the parallel

N-queens proved a problem traditionally solved using a sequential computer can be mapped

to a parallel architecture. It should be noted that the N-queens search is considered a simple

search because no global bounds are maintained and subtrees can be solved independently

from the remaining parts of the search space. Therefore, the performance of a more complex

search must be examined. The deadline job scheduling problem meets this requirement

Using a least-cost branch and bound technique, the deadline job scheduling problem

maintains a global upper bound as well as a global best solution. While these additional

constraints are easy to maintain using a sequential processor, they impose additional

6I

II



complexity to the parallel solution. The following sections describe the deadline job

scheduling (DJS) constraints and the implementation of the DJS Control Process and the DJS

Worker Process.

Paralel alene Ilh qchedlig Connts

The ultimate goal of the deadline job scheduling problem is to find the largest subset of

jobs that can run by their deadlines while minimizing the total penalty incurred. Before

examining the implementation of the parallel search, it is important to understand the

constraints and the solution vector of the problem. The deadline job scheduling solution

vector, (xl,x 2 ,. . ,xn), contains a value for each of the n jobs. The explicit constraints for

this problem are simply, xi c { 1,01 where 1 denotes that job i is included in the schedule

and 0 denotes that job i has not been included into the schedule. For example, a 4-Job

problem has a solution vector of (x ,x2 ,x3 ,x4 ), and a valid solution vector would be

(1,1,1,.). This solution vector defines the search state where jobs 1, 2, and 3 have been

scheduled and job 4 has not been scheduled. To help the reader in understanding the DJS

constraints, the following job set will be used in examples throughout this section (16:384),

Jb pidi 4
1 5 1 1

2 10 3 2

3 6 2 1

4 3 1 1

where,

pi = the penalty for not scheduling job i.

di = the deadline by which job i must be completed.

ti = the time to run job i.

63

. . . . ... . . . .*.o . -*.o..:o • • • o .* .- .- *,



Using the definition of the explicit constraints, the solution space of the example job set is

depicted in Figure 24. The grey node identifies the example solution vector (1,1,1,-). The

second set of constraints, implicit constraints, define the relationship among the various xi's.

The nodes in the solution space that meet both the explicit and implicit constraints define

answ nodes. The first implicit constraint for the DJS problem is called the Deadline/Total

Time Bound. This constraint requires a job to be schedule such that the total run time for all

jobs included in the schedule does not exceed the maximum deadline. Referring to the

example 4-Job problem above, the solution vector (1, 1,o,*) passes the Deadline/Total Time

implicit constraint because the maximum deadline of jobs #1 and #2 equals 3 and the total run

time of jobs #1 and #2 equals 3. However, the solution vector (1,1,1,o) does not pass the

Deadline/Total Time Bound because the maximum deadline of jobs #1, #2, and #3 equals 3

and the total run time of those same jobs equals 4.

The second implicit constraint, Cost/Upper Bound constraint, is based on the cost of the

node and a global upper bound. The cost function is calculated in two steps (16:386). First,

find m where

m = max{il i = Sx

and Sx = the subset of jobs examined at node X.

Next, compute the cost of node X using the following equation,

c'(X) : P

iSUmisJ

where J = the set of jobs included in the schedule at node X.

64

"€"Y'

* S.. S *

..............................................................................



iU

65

st 4-a



The cost of a node translates to the total penalty paid of all jobs that have not been scheduled

so far. The cost of each node of the example job set is shown inside the circles of Figure 24.

For example, the cost of solution vector (1,0,o,.) equals 10 because,

Sx ={1,2}

m = max{i I i E SO = 2

J =f1)

c'((,0,.,.)) = P. = 10
i5 2 '

i e {2,3,4}

The second part of the Cost/Upper Bound constraint is the upper bound of node X. It is

defined by the following function,

U(x) Pi

The value of the upper bound identifies the maximum cost solution node in the subtree rooted

at node X. For example, node (0,1,.,-) of the tre in Figure 24 has an upper bound of 14

since the cost of solution node (0,1,0,0) equals 14 and solution node (0,1,0,0) is the highest

cost node in the subtree. During the search the lowest upper bound is kept as a global

bound. The global upper bound is defined by the following function,

global upper bound = min{U(x), current global upper bound}

where, x is a child of the current E-node.

66



Based on the cost of the node and the present value of the global upper bound, a child of an

E-node becomes a live node only if the cost of the child is less than the global upper bound.

From the definition of the solution vector and the DJS constraints, the implementation of

the solution vector for the parallel job scheduling problem is represented as a C Language

structure (Pascal and Ada record type). The first field of the structure is the state vector

defined by a one dimensional array of N + 1 elements. Following the model in the N-queens

problem, the first element of the array is used to maintain the state of the search. Hence, the

value in vector[0] identifies the 'next job to schedule.' For example, the solution vector

(1,0,-,.) identifies the problem state where job #3 (vector[0]) is the next job to schedule, job

#1 is included in the schedule (vector[l]) and job #2 is not included in the schedule

(vector[2]). From this example, the state vector would have the following values,

vector[O] = 3 vector[l] = 1 vector[2] = 0

The second field in the C Language structure is the cost of the state vector. Because the state

vector represents a node in the search space, the cost of the state vector can be determined

using the method described in the Cost/Upper Bound discussion.

For the deadline job scheduling search, the live nodes are examined in least-cost order.

Therefore, the branch and bound cost function parameters are defined as follows:

h(X) -- Cost of node X

g(X) = Upper Bound

c'(X) = Least-Cost Branch and Bound

67

" ' '. -.* ' , . . .' '" , , ." ""'" *" "': , , -.""- - " '.'"- '"- .'" '" '"67'-,



The next sections describe the implementation of each object for the parallel deadline job

scheduling problem. It may be useful to follow the implementation with the visibility diagram

developed in the object-oriented design of parallel branch and bound (see Figure 25).

d on J heuling Control Process

Overview. Focusing on the top processor box in Figure 25, three objects, the

meta-controller, the terminate check, and the bound check, work together to control the

progress of the parallel search. The meta-controller becomes the central control, the terminate

check identifies the stop condition, and the bound check maintains global bound throughout

the search. As recommended by Intel programmers, communications between iPSC

processes must be minimized for efficient use of this parallel architecture (17). Therefore, to

reduce communications overhead, three objects, the meta-controller, the bound check, and the

terminate check are grouped into one iPSC process called the Control Process. A detailed

* -description of the Control Process objects follows.

M -C ntro . The meta-controller for the parallel deadline job scheduling performs

five operations;

(1) Keep a list of problems
(2) Keep a list of idle worker nodes
(3) Give problems to the worker nodes to solve
(4) Maintain the global upper bound
(5) Maintain the global best solution

First, the list of problems (live nodes) are kept in a priority queue data structure. This queue

maintains the live nodes in least cost to highest cost order. From this data structure, the

least-cost live node is always expanded first and hence the name, least-cost branch and

bound. Second, the controller maintains the list of idle worker nodes using a status array

with two status values, BUSY or AVAILable. The workers send WORK REQUEST

68



Processor

Terminate Meta-
Check Controller

Processor- 1

Terminate , Problem ,

Controller

E-NodeProcessor-N

Exader Bound

SController

Figure 25: Object Diagram for Parallel Branch & Bound

69



messages to the controller when they need work. The controller in turn sets the node status

to AVAILable. Third, the controller assigns problems to worker nodes. Before a problem

can be assigned, two conditions must be met, (1) the live node queue must not be empty, and

(2) a worker node must be AVAILable. After passing these two conditions, the controller

picks the live node from the front of the queue and sends it to the worker. The worker status

is then set to BUSY. Finally, the meta-controller collects intermediate answers from the

Worker Processes. These local' best answers are handed to the bound check where the

global upper bound and the global best answer is maintained.

Teminate Chek. The terminate condition for deadline job scheduling problem is to find

the f'rst solution. This condition occurs when the live node queue is empty and all of the

worker nodes have posted WORK REQUESTS. This translates to a machine state where no

more work is available and all of the workers need something to do. Once this state occurs,

the Control Process sends a KILL message to all Worker Processes.

Bound £hQk. Workers calculate 'local' best solutions and send them to the meta-

controller. As the local 'best' nodes enter, the bound check compares the upper bound of

this new best' node to the current global upper bound. If the upper bound of the new live

node is less than the present upper bound, then a ne best solution has been found and a

new upper bound has been calculated. The meta-controller stores this node as the best

solution and broadcasts new upper bound to all workers.

70



Deadloe b Shdlng Worker Proc

Overview Examining Figure 25 once again, processor #1 through processor #N

contain a complete branch and bound problem solver. In this case, for efficiency and

reduced communications, all five objects are collected to form the iPSC Worker Process.

Because of the lack of memory at an individual iPSC node, the DJS Worker Process solves

the job scheduling problem using a different method as compared to its sequential

counterpart. While the sequential version of deadline job scheduling conducts a complete

least-cost branch and bound search, the iPSC Worker Process uses a 'blind' depth-first

search of the solution space. The depth-first method can be conducted without an explicit

queue and therefore is not impaired by a memory space limit. The following sections

describe the iPSC DJS Worker objects.

£CQntroer. The controller initializes the worker node by receiving the list of jobs to

schedule from the intermediate host and by posting a WORK REQUEST to the Control

Process. The controller then enters an infinite loop waiting for a problem to solve. If an

E-node message arrives, then send the E-node to the problem solver object. Once the

problem solver finishes, send a WORK REQUEST to the Control Process. The controller

terminates upon receiving a KILL message from the Control Process.

Problem Solver. The problem solver receives an E-node (a subtree in the search space)

from the control object. The goal of the problem solver is to search the subtree rooted at the

E-node. To do this, the problem solver conducts a simple depth-first search of the subtree.

During the search, the problem solver receives the most recent global upper bound from the

meta-controller. Additionally, the problem solver keeps track of the local 'best' solution.

Upon finishing the search of the subtree, the problem solver sends the new best solution to

71

*rn-v5~~~d.~



the Control Process. It should be noted the new 'best' node is only a 1gW optimum and it is

the responsibility of the Control Process to keep track of the global best answer.

E-Node E . An E-node is expanded by calculating two children, (1) child one

attempts to schedule the next job; and (2) child 2 does not schedule the next job. For

example, E-node (1,1,.,.) of a 4-Job problem has the following children, (1,1,1,-), and

(1,1,0,o). I
Bound Chk. As the children of the E-node are generated, the bound checks insure that

the next job can be scheduled by evaluating the Deadline/Total Time Bound and the

Cost/Upper Bound constraints. Using the 4-Job example, the first child of E-node (1,1,o,.)

is (1,1,1,-). This child does not pass the Deadline/Total Time Bound because jobs # 1, #2,

and #3 have a total run time of 4 and a maximum deadline of 3. Hence, child 1 does not

become the next live node. The second child, (1,1,0,-), may or may not be valid because of

the dependency upon the value of the global upper bound when E-node (1,1,.,.) is

expanded. The cost of node (1,1,0,.) is 6. It will become a live node if the global upper

bound is greater than 6.

Terminae k. The Worker Process terminates when the Control Process sends a

KILL message.

The details of the C Language implementation of the Intermediate Host program, the

Control Process, and the Worker Process for the parallel deadline job scheduling can be

found in Appendix C. For comparison, a sequential version of the job scheduling problem

was run on a DEC VAX 11/785. The source code description of sequential DJS can be

72



found in Appendix D. A trace of an example problem is also included in Appendix D. The

implementation of the parallel DJS proves once again a problem traditionally solved using a

sequential computer can be mapped to a parallel architecture. Even though the Worker

processes in the parallel use a different search method, this implementation shows how a

more complex search with global bounds and a global best answer can be solved

concurrently.

Conclusions

The implementations of the parallel N-queens and parallel deadline job scheduling follow

the object-oriented design developed in Chapter IV. While the details of the actual source

code was not presented, the implementation of the objects and the packaging into iPSC

processes was defined. Using these implementations of parallel search, the performance of

these two problem can now be measured. The next two chapters defines the performance

measures used in this research and presents an analysis of the experimental results,

I
-, .1

°A

73.. .. . . . . . . .. . .. , .,. .. ...: . . .. .



N&AVI. Pefrac nlsswdEprmna eut

The implementation details of the two search problems, N-queens and deadline job

scheduling were presented in the last chapter. Once these implementations were tested and

validated, a series of performance experiments were run. Many times one experiment needed

additional tests to explain and justify the results. Hence, three measures, Computation Time,

Speed Up, and Load Balance, are used to categorize the performance of the parallel search

problems and the iPSC computer. These measures were selected for three reasons, (1) most

researchers present these results in the literature; (2) most of the more complex performance

measures are beyond the scope of this research; and (3) these measures are valid for MIMD

programmed machines. (It seems most parallel performance research is constrained to SIMD

evaluations. See (27) for details). In the next sections, the three performance measures, the

sequential baseline as well as the results of the parallel N-queens and the parallel deadline job

scheduling are described.

Comiann Tme
The first measure of an algorithm's performance is run time. Because the parallel

computational environment involves additional processes, one representation of the total

computation time of an algorithm is defined by the following formula (1:95),

TN = Ts + Tc + Tw (1)

where

TN = Computation Time for N processors

Ts = Start Up Time

Tc = Processors Computation Time

Tw = Wind Down Time

74

* . ..- . . . . " ..



Start Up time, T., measures the time to initialize the parallel processor before any parallel

computations can begin. Start up may include such things as initial parsing of the job, initial

message transfers, or down load time of the programs to the parallel processor itself. The

second term, processor computation time Tc, measures the time the computer spends actually

solving the problem. This term is common in sequential processor run time analysis. The

final term in equation 1 is wind down time, Tw .This time accounts for the gathering of

results from the various processors in the computer and analyzing or tallying those final

results.

The second performance measure, speed-up, compares the time to compute a solution

using one processor and the time to compute a solution using N processors. It is defined as

follows (26:28),

S= Ti/TN (2)
where

Tl = Time to compute a result with one processor

TN = Time to compute a result with N processors (Eqn 1)

The speed up of a problem run in parallel is easy to understand. If a problem can be parsed

into N subproblems, with each subproblem taking I/N in the total computation, then the

maximum speed-up of N is achieved. The perfect speed up, N, is highly unlikely because

the overhead of the start up and the wind down time as well as the communications among

processing elements induce limitations on this measure. Properly, the T, time should be a

d-O hypercube. Unfortunately, a single iPSC node could not support a queue large enough

to solve large deadline job scheduling problems. Therefore, the T, time is calculated using

VAX 11/785. The TN times are calculated for various size iPSC cubes.

75

-" ,,, ,. " , ". ' ,'.'.; .".' ,'- -, -. -.". .'.." "..-'..'.' .'. ."..'. ".' ... ". '.' .'. .'" '.''." .'? . . . " " " 2-



The third performance measure is load balance. Because of the nature of the design and

the branch and bound problem, the load is defined to be the number of E-nodes examined by

a Worker Process. Even though this is a simple measure, when plotted against the average

load performed across all worker processors balanced and unbalanced work loads can be

identified. Single Instruction Multiple Data (SIMID) problems that partition data to promote

parallel activity tend to have regular communication and computation cycles. These problems

show the best performance under balanced work loads (19). Since parallel search is a

Multiple Instruction Multiple Data (MIMD) problem, the communication and computation

cycles cannot be guaranteed to be regular. Hence, the load balance measure must be

evaluated along with the other performance measures before conclusions can be reached.

in erfomance

(4 The sequential baseline for this research is a Digital Equipment Corporation VAX 11/785

running the 4.2 BSD (Berkeley Software Distribution) UNIX operating system. The VAX

is used as the sequential baseline for two reasons, (1) a VAX was available for this research;

and (2) the VAX is the defacto industry standard for performance measures. The config-

uration of the machine used for this research has 8 Megabytes of main memory and 1800

Megabytes of disk storage. The sequential versions of the N-queens and deadline job

scheduling problems were programmed in C Language. The source code for both problems

is in Appendices B and D respectively. The time information was obtained using the UNIX

"times" function. Of the four parameters measured by the "times" function, this research

focused on user-time. The user-time of a process is that time devoted to computation. The

overhead associated with system calls, page swaps, etc. was not used for two reasons, (1)

76

.2,%. A. ,:. :..... .? .:.: g ,?,. .:::7:,. - , .



this research is actually interested in compute time of the algorithm and not operating system

overhead; and (2) the VAX is under various system loads during the course of the exper-

iments which would influence system time and the overall timing data.

Because the "times" function has a resolution of 1/60th of a second, the following

procedure was used to calculate the benchmark times. First, each of the N-queens and

deadline job scheduling problems was run ten times. Then, the highest time answer and the

lowest time answer were thrown away and the remaining eight times were averaged. Several

experimental runs show that the computation time calculated by the "times" function varied

by one or two clock ticks. Therefore, this averaging procedure reflects an accurate timing

analysis of the problem. It is also important to note for small problem sizes the 1/60th of a

second resolution resulted in some 'unmeasurable' test runs.

An Elxsi System 6400 supercomputer was also available for this research. The

sequential version of the N-queens that was run on the VAX was also run on the Elxsi. The

Elxsi was unavailable for sequential deadline job scheduling tests. This machine is

configured with 16 Megabytes of main memory and 1896 Megabytes of disk storage. The

timing results were compiled using the UNIX "times" function and the same averaging

procedure as on the VAX.

Parallel erformance zprmntm

The results of the parallel versions of the N-queens and deadline job scheduling (DJS)

are presented in this section. Before listing the results, the experimental procedure should be

identified. After the parallel design, each problem was tested on the Intel iPSC simulator

running on a VAX. While the simulator creates a good environment to learn how to program

77



~ an iPSC, it does not show true parallel activity. Therefore, it should not be used to fine tune

a problem. After porting the code to the iPSC, the original design was modified to achieve

the best computation times. It should be noted object design worked well for an initial

implementation, but the best performance results were attributed to fine tuning on the actual

hardware. Details on the actions taken to fine tune the N-queens and deadline job scheduling

are discussed below. Once the run time versions of the problems were coded, tested, and

validated, then each problem was run on several cube sizes. The N-queens problems were

run on d-0, d-l, d-2, d-3, d-4, and d-5 hypercubes (where d=dimension). The deadline job

scheduling problems were run on d-l, d-2, d-3, d-4, and d-5 hypercubes. The d-O cube did

not have enough memory for the DJS d-0 experiments. For each experiment, an averaging

procedure is used to calculate the timing results. The averaging steps included 10 separate

runs, removing the highest and the lowest times, and then averaging the remaining eight

C results. The timing function for all runs was calculated using the iPSC Clock function on the

nodes. The resolution of the iPSC Node Clock function is 1/60th of a second. Once again,

the timing experiments show that the iPSC computation time for a particular problem was

within a 2 or 3 clock tick resolution. Therefore, the averaging procedure represents an

accurate measure of the computation time.

Parallel N . Tables of the performance measures for the parallel N-queens

experiments can be found in Appendix E. The data shown in this chapter has been plotted to

show trends and for comparisons. Upon porting the parallel N-queens software from the

iPSC Simulator to the actual iPSC, the original design was modified to achieve the best

computation times. The only parameter of the parallel N-queens used for fine tuning resides

in the iPSC Control Process. This process has the responsibility to create the initial set of

problems to solve. At some point in time, it becomes beneficial to stop creating problems

78
U



4and to start handing them out to worker nodes. The results of the experiments for this

analysis have been tuned to large problem sizes by creating 5 time n problems, where n

equals the number of processors in the cube.

First, an analysis of the time to compute the first solution of the N-queens problems

represents the simple case of an answer to a search problem. If AU answer to a search meets

the requirements of the problem, then the time to first solution is important. Since the iPSC

has the additional overhead of a start up time, wind down time, as well as communications

among the processors, the hypercube matched the VAX and Elxsi while solving IA=

problems (see Figure 26). Therefore, for small problems the overhead appears to be

excessive. However, for larger problems (13-queens or greater), the advantage of parallel

processing becomes apparent.

Second, an analysis of the time to compute all solutions of the N-queens problem

represents the opposite case of answers to a search problem. These experiments model the

search for an optimal solution. As the computation time and speed up measures show, the

suitability of parallel processing is dependent on the problem size. Once again, for small

problems, the overhead of start up time and communications time within the iPSC

overwhelms the computation time of the problem. On the other hand, for large problems,

parallel processing demonstrates the possibilities for increased performance. First, the

inherent exponential behavior of search problems is shown in Figure 27. Cognizant of the

semi-log plot and concentrating on the VAX and Elxsi curves, the time to all solutions shows

true exponential time complexity. Notice that the iPSC d-4 and d-5 curves cross the VAX at

approximately the 8-queens mark. This translates to a speed up of one (see Figure 28).

Continuing the analysis, the d-4 and d-5 hypercubes show significant speed ups between the

79



ICI

0

0'

800

Ir VC



A 0 u

0% o

~.2 81

f;:iZ - . e Z. Z. Z 0!



board sizes of 8 and 10. Beyond the 10-queens problem, the inherent exponential nature of

the search is introduced once again. For problems larger than 1O-queens, the iPSC shows

'maximum parallelism' with a constant speed up. The d-4 levels to a constant speed up of -7

over VAX and the d-5 hypercube reaches a steady state speed up of -16 over VAX. The

speed up curves in Figure 28 reinforce this analysis by showing the reduction to the time

order complexity (increasing speed ups) followed by a leveling to an approximate constant.

It should be noted that smaller cube sizes show similar exponential complexity trends. (The

plots for the small cube runs are not shown, refer to the tables in Appendix E). While the

d-3 hypercube reaches a constant speed up of -5, the d-2 cube and the Elxsi have approx-

imately the same speed up of 1.7 over VAX. Small hypercubes, l-d and 0-d, show no

advantage to parallel processing with speed ups of 0.5 and 0.1 respectively.

One final observation can be made about the time to all solutions. Figure 27 shows that

the d-4 hypercube actually computed all solutions faster than a d-5 hypercube for small job

sizes. This phenomena is attributed to the fime tuning parameter as described in the

beginning of this section. For these experiments, the Control Process created 5 times n

problems to solve, where n is the number of nodes in the cube. This value was selected to

get the best performance from large problem sizes. If the Control Process creates 2 times the

number of nodes in the cube of initial problems, then the system is tuned to the 8, 9, and

10-queens problem sizes (see Figure 29). Therefore, the parallel search can be tuned to run

efficiently if the range of problem sizes are known.

82

'-S. .



00
Ie4

000 oe

83i



ak~~~wwvwlm~~~ ra Svw vww.Iv~vww ~-

06
-44

0

0

0

-E

000

000

84



V, MN',.' ' V 1KW F W . Pf W IN WU

Finally, the load balance analysis shows that even though the N-queens is an MIMD

problem that exhibits irregular computation and communications cycles, the work load was

balanced across all worker nodes. In Figure 30, the load balance for the 11-queens problem

running on a d-5 hypercube is shown. This plot is typical for all board sizes of 8 or greater.

The line denotes the average work load across all nodes and the dots represent the actual

work load at a particular node. The best speed ups for problems occurred using a large

dimension cube with large problem sizes. Since the range of best performance coincides

with the range of equivalent load balance, an even load balance may be desirable while

designing a parallel solution to 'backtracking' search problems.

85

... j*.*'*~ .~. --.. * .. .. ~ - *** *. * d



0

U 0

0CCC

86-



A-M7P 394 PERFORIICE EYRLIMTIOU OF PRLLE BRACH mN Mon 33
EM WI1TH TIE INTEL. (U) RlR FORCE INST OF TECH

MIGHT-PATTERSCU W9l ON SCHOOL OF ENGI.. R T MEOM
wgCL#KSIFIED EC FITO2 /EN O-F/2 N

Ehhmmhmmhhhhu
EhhmhhmhmhEEEE



L3=2

11IL2



WOzT.ITIM wru" M NKO OWN rII71- n-t--bt 5Z r . MM~r.w u. -Vr,.'r,

In summary, the results of the N-queens tests show parallel processing can reduce the

time order complexity of a simple 'backtracking' search over a narrow range of problem

sizes. At some point after this reduction in the time complexity, the inherent exponential

nature of the search problem is introduced once again. These results also show that parallel

processing may show speed ups while solving a simple search (first answer) to more

difficult searches (optimal answer). With these results in hand, an examination of a more

complex search is in order.

Deallel Dradline Lb Schljling. Tables of the performance measures for the parallel

DJS experiments can be found in Appendix E. The data shown in this chapter has been

plotted to show trends and for comparisons. Before analyzing the results of the job

scheduling experiments, a description of the test data is necessary. Since the deadline job

scheduling solution uses least-cost branch & bound, the time to schedule a set of n+1 jobs

may take less time than scheduling n jobs. Therefore, two Mcud-equivalent classes of

problems were devised such that the more jobs to scheduled create a more difficult problem

to solve. Two reasons for creating Muciid -equivalent classes are, (1) the proof of equivalent

classes of jobs is beyond the scope of this research; and (2) job sets with these characteristics

make the analysis a bit easier.

With this background, the first set of problems guarantees that all jobs can be scheduled.

The VAX solves this set of problems in O(n) time. As described in Chapter V, each job is

defined by a 3-tuple (pi, di, q), where pi is the penalty paid if the job is not scheduled, di is

the deadline when the job must be finished running, and ti is the time to run job i. Creating a

set of n jobs with the following characteristics guarantees that all jobs can be scheduled,

87

.NpVV . i,~ %* .* % * . * 4



~P.= 1, v i
n

t : min(d i )
i-i

The following list shows a typical job mix for problem set #1,

JiIj n l°° I
1 2 1 100
2 3 1 200
3 2 1 300
4 3 1 400

II

II

The second pseudo-equivalent class is described with the following values for pi, dj, andt ,

t.=

.= L ii2*t.

d M l

i 2

The VAX solves problems defined with these parameters in exponential time. The following

table shows a typical job list for the second problem set,

88

3365



Upon porting the parallel DJS software from the iPSC Simulator to the actual iPSC, the

original design was modified to achieve the best computation times. The only parameter of

the parallel DJS used for fine tuning resides in the iPSC Control Process. This process has

the responsibility to create the initial set of problems to solve. At some point in time, it

becomes beneficial to stop creating problems and to start handing them out to worker nodes.

For the first set of DJS problems, n problems are created, where n equals the number of

processors in the cube. For the second set of DJS problems, 4 times n problems are

generated. It should be noted that these parameters were selected to get the best performance

from large problem sizes.

First, an analysis of the first job set. Parallel processing appears to show no reductions

in the time order complexity of O(n) problems (Figure 31). The best performance was

attributed to the iPSC d-1 and the best speed up was approximately 0.33 over VAX. Since

S this search problem degenerates to an examination of the left-most branch of the search tree,

the problem does not map well to a parallel processor. The Load Balance analysis shows

this result (Figure 32). Basically, this problem cannot be run in parallel. For small problem

sizes (scheduling 15 jobs or less) only one processor solves the problem and for large

problem sizes two processors are used. This problem re-enforces the concept of maximum

parallel activity because of limitations inherent to the problem.

89

-. i ' * .. , **p1
' , •- q .i•*



C)'

00

I gIC
n I.-

90



00 r- R ,FF~w7

I'

II 7J

0-0

C4i

911

UJ

~b!



S Next, the exponential class of job schedules must be examined. The run time analysis shows

that significant reductions in the time order complexity can be achieved. In Figure 33, the

semi-log plot of the VAX computation time shows the inherent exponential nature of the

problem. The iPSC d-4 and d-5 curves demonstrate the power of the parallel computation

with problem sizes of 11 or greater. It should be noted the the best speed up achieved was

58 times over VAX with a d-5 hypercube solving a 15-Job problem. The d-4 reached a

speed up of 43 times over VAX (see Figure 34). A dimension-3 cube achieved a speed up

33 times over VAX. Finally, d-2 and d-1 hypercubes solved the problems approximately 3

times faster than the VAX. These results can be explained while examining the global upper

bound during the parallel computation. Figure 35 shows the load balance of scheduling 15

jobs on a d-4 hypercube. Even though the load is unbalanced, the iPSC solved this problem

43 times faster than the VAX. Solving this same problem on a d-5 cube, all worker nodes

have E-node Expansion Counts (loads) equal to zr. This anomaly is attributed to the

" global upper bound. In a d-4 cube, the Control Process generates 64 initial problems. As

the workers solve these problems concurrently, the global upper bound converges quickly to

the best upper bound in the entire search space. Once the upper bound converges, the

workers no longer search the subtrees. They only prune the remaining search space. In the

case of the d-5 hypercube, the Control Process generates 128 initial problems to solve. At

this point the upper bound has already converged, and the search quickly ends with the

workers only pruning the search space and never actually searching a subtree.

92



14 6 l

75 -2m

U. 0

c-

en~

0i .c

93~

Zz % %



I

.~ .i;Z4

9E

z

00

+.

~ en

94z



I It mO U v vwv -V PV PV j

000

-

C4

95



In summary, the results of the deadline job scheduling problems show that a more

complex search with global constraints can be mapped to a parallel architecture. The

experiments with the O(n) job set re-enforces the concept of maximum parallel activity due to

limitations within the problem. On the other hand, the tests of the exponential job set show

that significant reductions in the time order complexity can be achieved for complex search

techniques.

The results from running parallel search experiments on the Intel iPSC justify the

fundamental issues of this research. Search techniques can be mapped to parallel

architectures and speed ups can be achieved. The results also emphasize the strong

dependency among the problem, the size of the problem, the parallel design, and the parallel

- computer architecture. With these results in hand, the next chapter completes this research

with final conclusions and recommendations.

96

Ia *~ ~ S ~*.4* .- * ' ' . . t



VII. Cocuin and Recommendltin

The performance evaluation of parallel branch and bound search is almost complete. The

analysis, design, and experiments are finished, but the conclusions to this research must be

summarized. First, a review of the research is appropriate. In Chapters I and II the funda-

mental issues, the classes of problems, and the parallel environment for this thesis was

established. Next, in Chapter III, an analysis of parallel design was conducted to investigate

the process of mapping a problem into a parallel computer architecture. The results of this

investigation selected the object-oriented design methodology. Chapter III continued with a

discussion of the object model as well as a presentation of a formal object design approach.

Using the object model, Chapter IV developed a general parallel branch and bound design.

In preparation for the performance experiments, Chapter V described the implementation

details of the parallel N-queens and parallel deadline job scheduling problems. Chapter VI

concluded the performance tests with descriptions of the measures and an analysis of the

experimental results. To finish the research, this chapter presents the final conclusions and

recommendations in four parts, (1) Parallel Design Methodology, (2) Performance of Parallel

Branch and Bound, (3) Suitability of the hypercube architecture for parallel search, and (4)

Recommendations.

Parallel Deskmadr Mthodlou

The results of the first goal identified the object-oriented design methodology as a good

design approach to map a problem into a parallel solution. The object model worked well for

this research. Object design created a fine grained mapping of the problem space, and the

implementation of the design focused on collecting several objects into coarse grained iPSC

processes. During the design, details of the branch and bound problem were not overlooked

97
_3

~. . . . . . . . . . .. . . . . .. . . ,



and during the implementation, inefficiencies of communications were reduced. Even

though the initial design needed fine tuning to achieve the best performance, the implemen-

tation of the initial design created a good prototype. One reason for the success of the objeci

design methodology is similarity between the object model and the iPSC process model of

computation. Therefore, this research recommends the object-oriented design methcolog\

as a parallel design strategy for the hypercube architecture.

Performance o1 Paralle Branch and Bound

To meet the second goal of this research, the performance of the class of search

problems was measured on a parallel processor. As the results show, a sequential prcblem

solving technique, like search, can be mapped to a parallel processor and speed ups over

traditional sequential machines can be achieved. In fact, over a narrow range, the parallel

solution reduced the time order complexity of the problem. The results of these experiments

also show speed ups while computing answers to simple 'backtracking' search as well as

more complex search problems that maintain global constraints.

Overall, the research concludes the performance of parallel branch and bound is

dependent on the size of the problem, the parallel design of the problem, and the parallel

computer architecture. In the case of the size of the problem, if any answer or if an optimal

answer to a search problem is needed, then parallel processing may reduce the time

complexity for large problem sizes. In the case of parallel design, the results show the

hypercube architecture reduces the time order complexity over a range of problem sizes until

some point where the exponential nature of search is introduced once again. These results

re-enforce to concept of maximum parallel activity because of limitations inherent in the

parallel design and inherent to the problem. Finally, in the case of the parallel computer

98
-

m 
o

. • - , • . • • . . . . . . .° • o . . . .



architecture, the performance of search was improved using a parallel processor. This

performance needs additional analysis. Search is a sequential control strategy that was

mapped to a loosely coupled parallel architecture. Because search is a tightly coupled

technique and because the hypercube is a loosely coupled architecture, some performance

degradation is possible.

Sutailt e 91 SU r=ot Searc~h Prblm

The third goal of this research was to examine the suitability of the hypercube

architecture to solve search problems. While the results of these experiments may not meet

the 'real-time' requirements of the SDIO and Pilot's Associate researchers, this research

recommends the hypercube architecture to solve search problems in parallel. An additional

analysis justifies this conclusion. First, the Intel iPSC shows reductions in the time

(complexity and speed ups of 58 times over VAX. Since one iPSC node has far less

computational power as compared to a single VAX 11/785, one can envision much more

powerful processors or custom processors configured in a hypercube topology. Such a

machine could possibly have the capacity to meet the 'real-time' needs for these researchers.

Recommendations

Several topics for continued research in parallel processing can be recommended. First,

the object-oriented design methodology must be evaluated as a general purpose parallel

design strategy. The object model worked well for this research because of its similarity

with the iPSC process model of computation. Before object design can be used as a general

purpose parallel design strategy, it must be exercised by mapping other problems to the

hypercube architecture as well as to other parallel architectures. Second, the performance of

the class of search problems must be measured on other parallel architectures. It should be

99

Is



noted that branch and bound is a sequential programming technique with centa control.

This tightly coupled algorithm was mapped onto an extremely loosely coupled computer

hypercube architecture. Even though this research successfully produced speed ups, the

nature of the hypercube and the nature of the problem are not similar. Therefore, experi-

ments with parallel search on more tightly coupled architectures, such as shared memory

machines, should be conducted. Third, research in new algorithms to solve search problems

should be examined. This research mapped a sequential programming technique to a parallel

processor. In this case, search shows an inherent exponential time complexity. Research in

new algorithms along with the distributed nature of a parallel computer may be able to reduce

the time order complexity over a larger range of problem sizes or over the entire range of

problems. Finally, the hypercube architecture must be evaluated as a solution to other

classes of problems. The hypercube architecture along with its general process model of

(0" computation create a good environment to conduct research for a several classes of

problems.

In closing, the contribution of this research must be explained. Parallel processing is

still in its infancy. Several parallel computers are commercially available but the classes of

problems best suited for these machines, parallel design methodologies, and software

development environments have been slow to develop. Despite the state of knowledge about

such a complex topics, speculation about the benefits of parallel processing is quite

abundant This speculation is usually not supported by analytic or experimental

justifications. This research has reached conclusions about the benefits of parallel processing

and parallel search in particular. These conclusions have been supported by mapping a

parallel search algorithm to the Intel iPSC hypercube computer. Hence the results of this

thesis can be used as a benchmark for continued study in parallel search algorithms.

100
iI



W U WVMVr ., W Vr V1 R- wr. VV TW-C ,. WE -IV -WVWr. -v - VW s- SW WVIraWV s-NWV V s- s-a V - viaWV

Appendix A:

N-queecns Source CD& Depion

This appendix describes the source code for the parallel version of the N-queens

problem. The appendix is divided into four sections, (1) intermediate host code, (2) control

process code, (3) worker process code, and (4) an example trace of the 4-queens problem.

The source code for the intermediate host program is shown on the next five pages. This

program is the link between the user and the parallel N-queens software that runs on the

iPSC. First, the host queries the user for the board size of the problem, the dimension of the

hypercube, and the number of times the problem should be run. Next, the host initializes

the computation time variables. Then, the host down loads the "control" program and the

"worker" program to the iPSC. This is followed by sending all nodes initialization

information, the board size of the problem. The control process also needs to know the

number of nodes in the cube. After these transactions, the host waits for the 'problem

complete' message from the control process. Upon receiving that message, the host collects

the timing data. Once all repetitions have been run, the average time to first solution and the

average time to find all solutions is reported.

101

~t



* THESIS *

* f-queens Problem *
* ,

* Intermediate Host Program *
* ,

* Date: 24 Oct 1986 *
* ,

* Functions: This is the iPSC intermediate host program for *
* * the N-queens Problem. This program loads the *

* iPSC with the Worker and Control Processes,
* and then waits for an answer message from the *
* Control Process. Upon receiving this message, *
* the Host Program retrieves the Timing Data to *
* calculate the Time to First Solution and the *
* Time to All Solutions of the N-queens. *
* ,

* The averaging method to compute the time *
* information is quite simple. First, run the *
* N-queens problem for In' repetitions (a user *
* entered parameter). Next, remove the maximum *
* time as well as the minimum time and average *
* the remaining numbers. It should be noted that *
* the minimum number of repetitions that this *
* program will run is 3. *

* The user must enter three parameters for this *
* program to run, (1) Board Size, (2) Cube *
* Dimension, and (3) Number of Repetitions. Make *
* sure the iPSC is initialized to the same *
* dimension as the input parameter. *
* .

* Libraries: Standard Input & Outpu *
* iPSC chost definitions *

* iPSC Operating System: Release 2.1
**

* Language: C Language
**

* Input Parameters: Board Size of the Problem
* Dimension of the iPSC
* Number of Repetitions

* Outputs: Time to First Solution
* Time to All Solutions
,

* Author: Capt Rick Mraz

**** ****** *************1**************************************

102



TV US russ Uvvv UVIVWU' vy RWim yW fln* _J- 7

* HEADER FILES *
** * * **** ************************** *** *****

#include <stdio.h>
#include "/usr/ipsc/lib/chost.def"

* Define Constants *

#define NODEPID 0 /* Node Process ID
#define HOST PID 1 /* Host Process ID
#define BOARD SIZE 10 /* Send Board Size to nodes */
#define TIMES 100 /* Get Time data from nodes */
#define NUMNODES 130 /* Send number of nodes to

the Control Process
#define INFINITY 9000000 /* Need a big number ??? /
#define VECTOR-SIZE 12 /* Maximum Board Size

* Define Functions and Globals *

long min); /* Use this to get the time
to the first solution */

- int number of nodes; /* Number of nodes in cube */

******** ********** ****** **** ** **** ***** ** ****

* Main Program *
**** *** ** * **************** ********** *** ** ********

main()
{
int boardsize, /* N-queens Board Size */

cid, /* Channel ID
dim, /* Dimension of cube
i, /* Iteration Counter

ignore, /* Place holder....
rep_count, /* Iteration Counter
reps, /* Repetitions
type, /* Message Type
cnt, /* Msg Byte Count */
node, /* Sending Node
pid; /* Process ID

103

~ *(~~* * 'nt - p~ ~vV ~~6P



-M long maxfirst, /* Max time- 1st answer */
min _first, /* Min time- 1st answer */
totalfirst, /* Total time (for avg) *1
max-all, /* Max time- all answers */
min_all, /* Min time- all answers */
totalall, /* Total time (for avg) */
first[32], /* Time to first answer *1
tempfirst, /* Temp first answer
all; /* Time to all answers */

/* ----- Get the Problem Parameters from the Terminal ----- *

printf("Enter Board Size: ");
scanf("%d",&boardsize);
printf("Enter Cube Dimension: ");
scanf("%d",&dim);
number of nodes - l<<dim;
printf ("Enter Number of Repetitions: ");
scanf("%d",&reps);

/* ----- Initialize Time Data Variables ------*

max-first 0;
min _first - INFINITY;

totalfirst - 0;
max all 0;
min all - INFINITY;
total-all - 0;

*-----.Run the N-queens for 'reps' number of times ....
- load the iPSC with the Worker and the Control Process
- Down load the Board Size and Number of Nodes in the cube
- Wait for a FINISHED message from the Control Process
- Collect the Timing Data -----

for(rep_count-l; rep_count<-reps; rep_count++){
cid - copen(HOSTPID);

load("worker",-lNODEPID);
Ikill(O,NODE PID);
load("control",0,NODEPID);

for(i=0; i<number of nodes; i++)
sendmsg(cid,BOARDSIZE,&boardsize,sizeof(boardsize),i,

NODEPID);

sendmsg(cid,NUMNODES,&numberofnodes,sizeof(number of nodes),
0,NODEPID);

104

.. . .!

V VJ



reCVisg (cid,&type,&igjnore,sizeof (igjnore) ,&cnt,&i,&pid);

for(i-l; i<number of nodes; i++)(
sendmsg(cid,TIk4ES,&ignore,sizeof(ignore) ,i,NODE_-PID);
recvznsg (cid, &type, &first i], sizeof (first fi] ), &cnt,

&ignore,&pid);

sendmsg(cid,TIMES, &ignore,sizeof (ignore) ,O,NODE_-PID);
recvmsg (cid, &type, &all, sizeof (all) ,&cnt, &ignore, &pid);

if (min all > all) min all - all;
if (max-all < all) max-all - all;

total-all +-all;

temp-first =min(first);

if (minm first > temp_first) min-first - temp_first;
if (max-first < temp first) max-first - temp first;

total -first +- temp first;
lwaitall(-l,NODEPID);

/* ----- Compute average time to first solution and average time to
all solutions ----

total-first - total-first - mm _first - max-first;
total-all - total-all - min-all - max-all;

printf ("Time to 1st Solution:%f\n",
(float)total -first/((reps-2)*lOOO.O));

printf ("Time to All Solutions: %f\n",

cclose (cid);

105



* Name : Min *
* Parameters : f - Array of Long Integers *

* Function : Find the minimum value in array 'f' *

long min(f)
long f[32];
I
int i;
long m;

m - INFINITY;
for(i-1; i<number of nodes; i++)

if ((m>f(i]) && (f(i] !- 0))

return (m);

106



The second program is the iPSC Control Process. The source code is on the following

seven pages. Once loaded by the intermediate host program, the Control Process begins its

initialization. First, the clock is started, a communications channel is opened, and the

problem queue is initialized. Then receive the board size of the problem and the number of

nodes in the cube. Next, create the initial set of problems to solve. This translates to

generating the first levels of the search tree. Once the initial set of jobs is created, measure

the start up time. Next, enter the control loop. As long as problems are in the queue and

work has been assigned to the worker nodes, do the following, (1) check for a work request,

and (2) try to hand out problems. If a work request comes in, set the status of the node to

AVAILable. To hand out a problem two conditions must be met, (1) the queue must not be

not empty and (2) a free processor is AVAILable. The control process terminates when the

queue is empty and all workers have posted work requests. This translates to a machine state

where no problems are available and all workers need a problem to solve. Upon exiting

from the control loop, set a stop time and send a KILL message to all of the worker

processes. Finally, send the timing data to the intermediate host.

107
Iil



1v71 1. ..-

-* THESIS *

* iPSC N-q.e-nA Control Process *

* Date 24 Oct 1986 *
, *

* Functions: This C Language program defines the Control *

* Process for the iPSC Parallel N-queens Problem. *

*. * First, the initial problem information, Board *
.* Size and Number of Nodes in the cube, are *

* * received from the Intermediate Host. Then, *

* the Controller creates an initial set of *

* problems to solve. This corresponds to *

• * generating the first levels of the search tree. *
, *

• Now that the problem list is ready, get 'work *

• requests' from the Worker Processes and hand *

* out problems. Once the problem queue is empty *

• and all Worker Processes have posted a 'work *

* request' messages, then all solutions have been *

* found. *
• *

* Language: C Language *

* Libraries: iPSC Node definitions
* FIFO Queue Routines *

* iPSC Operating System: Release 2.1 *

* Messages from Host: Board Size *

• Number of Nodes *
• *

* Message to Host: Time to find all Solutions *
• *

* Message from Worker: Work Request *
• *

• Messages to Worker: Problem (subtree) to Solve *

• Termination (Kill) Message *
* *

• Author: Capt Rick Mraz *

*****1

i 108

I



* HEADER FILES *

#include "/usr/ipsc/lib/cnode.def" /* Hypercube Node Header */

#include "q.h" /* Queue Routine Header */

* CONSTANT DEFINITIONS *

#define AVAIL -1 /* Node Available for work */
#define BUSY -2 /* Node is busy
#define MAX DIMENSION 5 /* Max dim of cube
#define TRUE 1 /* True - 1
#define FALSE 0 /* False - 0

#define HOST 0x8000 /* Intermediate Host */
#define NODE PID 0 /* Node Process ID */

__ I
#define HOST PID 1 /* Host Process ID

#define BOARDSIZE 10 /* Board Size Msg */
#define ALL 30 /* Live Node Msg
#define WORKREQUEST 45 /* Worker needs work...
#define ENODE 50 /* Generate Children Msg */
#define KILL 60 /* Kill worker Process
#define TIMES 100 /* Send Time information */
#define FINISHED 120 /* Send Finished msg */
#define NUM_NODES 130 /* Receive Cube Dimension */

/*******************************************]

* Global Variables *

int nodestatusE(l<<MAXDIMENSION)+l, /* Worker Status Array

vector[VECTORSIZE+l], /* Solution Vector
number of nodes; /* Number of Nodes in cube */

.1-S

109



' * iPSC Control Process - Main Program *
I ~~* *t** ****** ********************

main()

/* ----- Control Process Variables ----- *

int boardsize, /* Size of Playing board
i, /* Iteration Counter *1
ignore, /* Place holder ....
nextnode, /* Node that needs work
request, /* Work Request Msg Var
row, /* Place queen on this row */
workassigned, /* Num of Workers Busy

E_node[VECTORSIZE + 1], /* Next node to expand
cid, /* Channel ID */
cnt, /* Msg Length
node, /* Node number
pid; /* Process ID

long start, /* Start timer *1
stop, /* Stop timer */
startuptime; /* Measure Start Up Time

S 1* ----- Initialize the Control Process
- Take a Time Stamp

- Open a Communications Channel for the NODE Process ID
- Initialize the queue ------ *

start = clocko;
cid = coDen(NODEPID);
q_init();

/*-... Receive the Board Size and the Number of Nodes from the Host----

recvw(cid,BOARD_SIZE,&boardsize,sizeof(board size),&cnt,&node,
&pid);

recvw(cid,NUMNODES,&numberof nodes,sizeof(number of nodes),&cnt,
&node, &pid);

/* ----- Set all Worker Nodes to BUSY ------*

work_assigned - number of nodes - 1;
for(i=l; i<number of nodes; i++)

node status(i] BUSY;

110

* ,4.. . .' •" - . -- 4-.. ". '- - '- .



F- MORT9 P r1-P Vn. .'-,. .,J rJ'MP r . rr' r RSnVP3M~ff--

/* ----- Generate the initial set of problems to solve ....
- generate the search tree until the number of problems (length

of the queue) equal 5 times the number of nodes in the cube.

This is optimized for large problems on large cube sizes.

- Make sure to only include those jobs that meet the bound
condition ------ *

vector(O) - 1;
while ((qclength <- (number of nodes*5)) &&

(vector[O] < boardsize))
deleteq(vector);
row - vector(O];
vector[0]++;

while (vector(row] <- boardsize)(
vector[row]++;

while ((vector[row] <-boardsize) && (bound(row) == FALSE))
vector(row]++;

if (vector(row) <- boardsize)
addq (vector);

startup_time - clock() - start;

/* ----- Enter the Control Loop
- When the queue is empty (no more problems to solve)
- and when no work has been assigned
- then all solutions have been found ------ *

while ((qstatus !- Q_EMPTY) II (workassigned)){

/*---- If the queue is not empty and if there is a free
processor, then get an E-Node (problem) from the queue
and send it to the Worker Node -----

while ((q status !- QEMPTY) &&

((nextnode - get freeprocessoro) != BUSY)){

deleteq(E node);
nodestatus[next_node] - BUSY;
workassigned++;

sendw(cid,ENODE,Enode,sizeof(Enode),
nextnode,NODEPID);

II
..-. 1, . . . . . .. , . . . . . . .. .. . . , . , . . , -, .-. , , , . .¢ .



/* ----- If a 'work request' comes in, update the node status
to AVAILable ----- */

while (probe(cid,WORK_REQUEST) >=0){
recvw(cid,WORKREQUEST,&request,sizeof(request),&cnt,&node,

&pid);
workassigned--;
node status[node] = AVAIL;

[*---...Once all solutions have been found,
- take time stamp
- notify the Intermediate Host that the computation is complete

- send a KILL message to all Worker Processes
- and then send the computation time data to the Host -----

stop = clock() - start;

sendw(cid,TIMES,&i,sizeof(i),HOST,HOSTPID);
for(i=l; i<number of nodes; i++)

sendw(cid,KILL,&ignore,sizeof(ignore),i,NODEPID);

recvw(cid, TIMES,&ignore,sizeof(ignore),&cnt,&node,&pid);
sendw(cid,ALL,&stop,sizeof(stop),HOST,HOST PID);

tO cclose (cid);

* *

* Name Get Free Processor *

* Parameters None *
* Function Return the number of the free *

[ * processor, or return BUSY is all *

* processors are busy. *
* *

* *** * * ************* *****************************

get freeprocessor()

int i;

for(i=1; i<number of nodes; i++)
if (nodestatus[i] == AVAIL)

return(i); u

return (BUSY);

11

[, 112

[*



" Name : Bound *
" Parameters : Row - the row to place the queen on *
" Function : Make sure the queen is not on the *

• same column or on a similar diagonal *
• with another queen. *
• *

bound (row)
int row;
[

int i;

for(i=l; i<row; i++)
if ((vector[i] =- vector[row]) II /* same column */
(abs(vector(i]-vector[row]) -= abs(i-row))) /* same diagonal */

return (FALSE);

return (TRUE);

(.1

113 I



* THESIS *

* iPSC N-queens Queue Routine Header *

* Date : 24 Oct 1986 *

* Function: This header file defines the FIFO queue routines *
* that the iPSC Control Process needs to maintain *
* a list of live nodes (list of problems to solve). *
* For this implementation, a simple 'ring' data- *
* structure was used for the FIFO queue. *

* Language: C Language •
* ,

* iPSC Operating System: Release 2.1 *

* Author: Capt Rick Mraz *

#define QBUSY 1 /* The Queue is being used */
#define Q_EMPTY 2 /* The Queue is Empty *1
#define QFULL 3 /* The Queue is Full */
#define Q SIZE 200 /* Max of 200 elements
#* Idefine VECTORSIZE 25 /* Max Problem - 25-queens *1

int front, /* Front pointer to the queue*/
q[Q_SIZE] [VECTORSIZE+lJ, /* Queue definition *
q length, /* Queue Length *
q_status, /* Queue Status-{Q_EMPTY,

Q_BUSY, Q_FULL)
rear q; /* End of the queue pointer *

int addqo, /* Add queue function *
deleteq(); /* Delete queue function *

114

- -o- - - - .. - - ,. . • , • , •- .. .. . - .. . ,- .- . .



The next source code listing is the worker process. It resides on all nodes except node 0.

The worker process is the sequential version of the N-queens problem modified with some

communications to get the initial problem size and to interact with the control process. Once

loaded by the intermediate host program, the worker process initializes the answer-count and

opens a communications channel. Then it receives the board size from the host and sends a

work request to the controller. Once the work request is sent, the worker process enters an

infinite control loop. Inside this loop, the worker waits for two events, (1) receive an

ENode message, and (2) receive a KILL message. If an E_Node message arrives, then

find all solutions in the subtree defined by the E-node. This portion of the code is the

scg.untal N-queens. The boundary condition on the "while" loop was changed to only

examine the subtree instead of the entire search space. Remember to take a time hack after

finding the first answer. Upon finding all solutions in the subtree, send a work request to

the controller. If a KILL message arrives, then terminate the infinite loop, and send the

timing data to the host.

115 Zt

'.t -.6J



' * THESIS *
, *

* iPSC N-queens Worker Process *
, *

, *

• Date : 24 Oct 1986 *
. *

* Functions: This C Language program defines the Worker *

* Process for the iPSC Parallel N-queens Problem. *

* First, the initial problem information, Board *

* Size, is received from the Intermediate Host. *

• Then, a 'work request' is sent to the Control *

• Process (Node 0). *
. *

• Upon entering an Infinite Loop, wait for an *

S* ENode (Problem) Message or a Terminate (Kill) *

* message from the Control Process. If an ENode *

* message arrives, then find all answers in that *

• subtree. If a Kill message arrives, then *

• terminate the Infinite Loop. *

• Upon terminating the Infinite Loop, send run *

• time data back to the Host. *
, *

• Language: C Language *

Libraries: iPSC Node definitions
.*

• iPSC Operating System: Release 2.1 *
. *

* Message from Host: Board Size *
, *

* Message to Host: Time to find first Solution *
, *

* Message from Control: Solve Subtree (E node) *

* Termination (Kill) Message *
, *

* Message to Control: Work Request *
, *

* Author: Capt Rick Mraz *
, *

* *

**************************************t********************** ***/*

116

. . . . - -



* HEADER FILES *
* ** *** **** * ** *********** ** ***** ******** ***

#include "/usr/ipsc/lib/cnode.def" /* iPSC Node Definitions

/*** ** ***** * *****************************

* CONSTANT DEFINITIONS *

#define TRUE 1 /* True - 1 */
#define FALSE 0 /* False - 0 */

#define CONTROLLER 0 /* Controller - Node 0 *1
#define HOST OxSOOO /* Intermediate Host
#define NODE PID 0 /* Node Process ID
#define HOSTPID 1 /* Host Process ID

#define BOARDSIZE 10 /* Board Size Msg *1
#define FIRST 20 /* Send time to 1st answer *1
#define WORKREQUEST 45 /* Worker needs work...
#define ENODE 50 /* Generate Children Msg *1
#define KILL 60 /* Kill worker Process */
#define TIMES 100 /* Send Time information *1

* Global Variables *
***********i****************

int vector[VECTORSIZE+1]; /* Solution Vector *1

4 Worker Process - Main Program *
* **** * ***** **** ****** ***************

main()

/* ----- Worker Process Variables ------*

int answer count, /* Count the Answer Nodes */
boardsize; /* Size of playing board */
first, /* Solving First Solution */
i, /* Iteration Counter *1
ignore, /* Place holder .... *1
me, /* My node number *1
root, /* Root of the Subtree */
row, /* The Queen goes here
cid, /* Channel Id */
cnt, /* Msg Length Count *1
node, /* Node msg goes to */
pid; /* Process ID

117



- ~ -; ~ ~ ~'.~-':''~--.r~ ~ir' ~ -aim-r II-' P W9 ~ "-

long start, /* Start Time Hack
first-answer; /* Time to first Answer

/* ------Initialize the Worker Process
- Set the first answer flag to TRUE
- Find out my node number
- Set the answer count to 0
- Open a Communications Channel for the NODE Process ID ------*

first - TRUE;
me - mynodeo;
count - 0;
cid - copen(NODEPID);

/* ----- Receive the Board Size and Send a Work Request-------*

recvw(cid,BOARDSIZE,&board -size,sizeof(board-size),
&cnt,&node,&pid);

start - clocko;
sendw(cid,WORKREQUEST, Lie, sizeof (me) ,CONTROLLER,NODEPID);

/--- Enter an Infinite Loop Waiting for problems to solve ----- *

for;;)

/* ------If an ENode arrives,
- Receive the messge
- Solve the Subtree for all Answer Nodes
- once finished, send a 'work request' the the Controller ------*

if (probe(cid,E_-NODE) >- 0)(
recvw(cid,ENODE,vector, sizeof (vector) ,&cnt,&node,&pid);

/* ----- Place the queen in this row and subtree root------*
row - vector(0J;
root - row-l;

/* 1----- Don't backtrack past the root of the subtree ------*
while (row>root)f

/* ----- Place the next queen on the board ----- *
vectorfrow] - vectortrow) + 1;

* 118



/* ----- Check for the bound conditions ----- *
-' while ((vector[row] <- boardsize) &&

(bound(vector,row) -- FALSE))
vector[row] - vectorfrow] + 1;

/* ----- If the last queen is successfully put on the board,
- then an answer node has been found. If it is the

first answer, then take a time check.
- If the queen is less than the board size, then

increment the row variable so the next queen can be
placed on the board

- If the queen is greater than the board size, then
a node has been reached with no answers in the
subtree.

Continue the search by 'backtracking', (i.e.
decrement the row variable. This will cause the
problem solver to find the next valid position for
the previous queen. - ----- */

if (vector [row) <- boardsize) (
if (row -- board size)(

if (first)(
first answer - clock() - start;

count++;

first - FALSE;

else
count++;

else{
row++;

vectortrow = 0;

else
row--;

/* ----- After all Answers are found in the Subtree, send a
'work request' to the Control Process ----- */

sendw(cid,WORKREQUEST,&me, sizeof(me),CONTROLLER,NODEPID);

/* ----- During the search, if a Kill message is received, break
from the Infinite Loop -----

if (probe(cid,KILL) >- 0) break;

119
I



------ Once the terminate message arrives,
- then send the computation time data to the Host ----- *

recvw(cid,TIMES,&ignore,sizeof(ignore),&cnt,&node,&pid);
sendw(cid,FIRST,&firstanswer,sizeof(firstanswer),

HOST,HOSTPID);

* ,

* Name : Bound *
* Parameters : Row - Queen is placed in this row *
* Function : Make sure the new queen is not in the *
* same column as any other queens, and *
* cannot attack on a diagonal. *
* ,

bound(vector, row)
int vector[VECTORSIZE+1;
int row;

int i;

for(i-1; i<row; i++)
if ((vector(i] -- vector[row]) II

[abs(vectorti)-vectortrow]) -- abs(i - row)))
return (FALSE);

return(TRUE);

120

.. .

. . . . °., , - -, . , - -. - - , • - - ':- .- .- .- .- -..-. : - , .' ." ." ." *"-, °%-.',.. " 5.5"-..



In this final section, a trace of the parallel N-queens shows how the control and worker

processes communicate to solve the N-queens problem. The example shown here is the

4-queens problem solved on a 2-dimension cube (4 nodes). The control process resides on

Node 0 and the worker processes reside on Nodes 1, 2, and 3. The description of the

parallel search starts after the intermediate host loaded the iPSC and each node performed its

own initialization.

Lj Q ve Worker #1 Worker #2 Worker #3

(1,.,.,-) available available available
(2,.,.,-)
(3,.,.,.)
(4,.,-,.)

-- Solve Subtree (1,.,.,-) with Worker #1

(2,.,.,.) busy available available(4,.,.,.)

- Solve Subtree (2,.,.,.) with Worker #2

(3,.,.,-) busy busy available
(4,.,.,.)

-- Receive a Work Request from Worker #1
-- Solve Subtree (3,-,.,.) with Worker #3

(4,.,.,-) busy busy busy

-- Handle Work Request from Worker #1

<Empty> busy busy busy

- Receive Work Request from Worker #2

<Empty> busy available busy

121

w" . , " " € , " . .¢' '. J "5* 5,q
5

""5.- ,.5 °** 5,*" * S""I ," ' ." """ 
"

"-% ""'" " ,"'. " " " " -



Receive Work Request from Worker #3-Receive Work Request from Worker #1

<Empty> available available available

-- Control Process send KILL messages to all Workers

-- Workers and Control Processes send timing information back to Host

<<< END TRACE >>>

(_0

I

122
JI

.1



Appendix B:
SrunilNqen Source Code Description

The listing on the following pages was run on a DEC VAX 111785 and an Elxsi System

6400. The run times for various board sizes sets a baseline for performance comparisons

with the iPSC Hypercube (see Chapter VI, Performance Measures and Experiment Results).

This version of the N-queens is written in C Language. The description of the code follows.

Page one of the listing defines the Header Files, Constants, and Variables used in the

program. The main program starts on the second page of the listing. First, the initial state of

the problem is set. The first solution flag is set to TRUE. This flag is used to take a time

check when the first answer arrives. Next, the solution vector, (xl,x2 .... ,xn) where n = the

board size of the problem, is set to (0,*,...,*) where * defines an xi that has not been

determined. Then, the row variable is set to place the first queen on the board. After the

user enters a board size, the 'start-time' is taken.

Next, all solutions are computed inside the while loop. Once the problem backtracks

past row I, the problem is finished. First, place the queen on the next column. The solution

vector now looks like this, (1,*,....). Next, make sure this is a valid position by checking

the bound function. The bound function makes sure that the new queen is not on the same

column as any other queen and it checks that the new queen cannot attack on the diagonal. If

the position is OK, then continue. If the position is not OK, then place the queen on the next

column, (2,*,*,.), and check the bound again. If the queen is placed off the board (row >

board size), then continue.

123
I



Once a valid solution vector is computed, the vector constitutes an answe if the row

equals the board size. For this problem, the only solution vector of interest is the first one.

Once the first solution arrives, take a time check. If the row does not equal the board size,

then place the next queen on the board (increment the row variable). If the the row is greater

than the board size, then an invalid state has been found and the solution vector must

backtrack finding a better place for the previous queen (decrement row).

Once all of the solutions have been found, take a stop time and print the computation

time to find the first solution and to find all solutions.

(12

124

-* %-. I \.**Hi, * **i** -



I#

* THESIS *

* Sequential N-queens Problem *

* Date: 8 Aug 1986 *

* Functions: The following program solves the N-queens problem. *

* Given a 'board size', the program posts the time to *

* compute the first solution and the time to compute all *
* solutions.*
* *

* Language: C Language *

* Operating System: 4.2 BSD UNIX *

* Libraries: Standard I/O Types.h Times.h *
* *

* Author : Capt Rick Mraz *
*
v  

* *

[* * *

S **************************************************

.0 * HEADER FILES *
* ********** ********************

#include <stdio.h>
#include </sys/h/types.h>
#include </sys/h/times.h>

/* ********************** ********************* *****

* CONSTANTS *
********************************

#define TRUE 1
#define FALSE 0

*********** ***************************** ******

* N-QUEENS VARIABLES *

int first, /* Solving First Solution */
row, /* Place the Queen in the row */
boardsize; /* Size of playing board

int vector[12]; /* Solution Vector

struct tms time first; /* Time for First Solution *1
struct tms starttime; /* Start of Computation
struct tms stop time; /* End of Computation

125

. .. . .J..* 4 *4* * ... .t- . Y ... t. .. ... . .... . . .



* Main program for the N-queens problem *

main()

/*--- Initialize the system ----

first - TRUE; /* Find first solution */

vector[l) - 0; /* Initial Problem Vector
row - 1; /* Place ist queen here .... */

printf("Enter Board Size: "); /* Get Board Size
scanf("%d",&board-size);

times(&starttime); /* Set Start Time

/* ----- Find all Solutions ----- *

while (row > 0)(
vector[row] = vector[row]+l; /* Next Column

*---Find a valid Column for the next queen ----- *

while ((vector(row] <= boardsize) &&
(bound(row) -- FALSE))

vector[row] - vector[row] + 1;

/*---- If the first solution is found, then take a time stamp
* otherwise,

* place the next queen on the board
* if a valid place for the queen can not be found, then 'backtrack' */

if (vectorirow] <= boardsize){

if ((row -= board size) &&
(first))(
times(&timefirst); /* Time for 1st solution
first - FALSE;

else{
row++; /* Place next queen
vector[row] = 0;

else
row--;

/* Backtrack

)/* end while loop */

126
.,



%%

/* ----- Computation Over.. .Calculate the run times ------*
times (&stoptime);

printf("Time First Solution: %f sec\n",

(float) (timefirst.tms utime-starttime.tmsutime)/60.0);
printf("Time All Solutions: %f sec\n",

(float) (stop_time. tmsutime-starttime. tmsutime) / 60.0);

* Name: Bound
* .

* Parameters: Row - Queen is placed in this row *
* *

* Function: Make sure the new queen is not in the same *
* column as any other queens, and cannot attack *

* on a diagonal. Return FALSE if the position is *
* not valid. Return TRUE is the board position is *

valid. *

bound (row)
int row;

int i;

for(i=1; i<row; i++)
if ((vectorli] -= vector[row]) I

(abs(vector[i]-vector[row]) -- abs(i - row)))

return (FALSE)

return (TRUE);

~I

127

%--V



The following list shows the progression of the solution vector during the 4-queens

search. The tree representation is shown in Figure B 1.

(0,#,,) Initial Vector

(1,'.,o) Place the first queen in column I

(1,1,.,.) Place next queen...Same column (Bound)

(1,2,.,-) Attack on Diagonal (Bound)

(1,3,.,.) The first valid position for queen #2

(1,3,1,.) Place next queen...Same column (Bound)

(1,3,2,.) Attack on Diagonal (Bound)

(1,3,3,-) Same column (Bound)

(1,3,4,*) Attack on Diagonal (Bound)

(1,3,5,.) The third queen doesn't have a valid position

(1,4,*,,) Backtrack- find the next valid position for queen #2

( 1,4,1,.) Same column (Bound)

(1,4,2,.) The first valid position for queen #3

(1,4,2,1) Same column (Bound)

(1,4,2,2) Same column (Bound)

(1,4,2,3) Attack on Diagonal (Bound)

(1,4,2,4) Same column (Bound)

(1,4,2,5) The fourth queen doesn't have a valid position

(1,4,3,.) Backtrack- find the next place for
queen #3...Attack on Diagonal (Bound)

(1,4,4,o) Same column (Bound)

128



C4)

0

K

129



(1,4,5,.) The third queen doesn't have a valid position

(1,5,.,o) Backtrack- The second queen doesn't have a valid position

(2,°,°,°) Backtrack- The next valid position for queen #1

(2,1,.,.) Attack on Diagonal (Bound)

(2,2,.,.) Same column (Bound)

(2,3,°,.) Attack on Diagonal (Bound)

(2,4,.,.) The first valid position for queen #2

(2,4,1,-) The first valid position for queen #3

(2,4,1,1) Same column (Bound)

(2,4,1,2) Same column (Bound)

(2,4,1,3) The first answer to the 4-queens problem

130

9



'NW; Appendix C:

iM Deadln Q Sdling Source Cd Description

The parallel source code for the deadline job scheduling problem is on the following

pages. This description is divided into three sections, (1) intermediate host program, (2)

control process program, and (3) worker process program. This software is written in C

Language for the Intel iPSC Hypercube computer.

First, a description of the intermediate host source code. This program serves as an

interface between the user and the iPSC. Therefore, information about the dimension of

hypercube, number of jobs to schedule, as well as the 3-tuples that define each job must be

provided to this program. Upon reading this data, the host program initializes the hypercube

by down loading the control and the worker software into the appropriate nodes. Then, the

(- number of jobs to schedule and the job 3-tuple data is loaded into the cube. After this

initialization, the intermediate host waits for an answer from the control process. Once this

message is received, then the best answer and the run time information is retrieved. The host

listing is on the next few pages.

131

I



m , *** ****** ** ********** ******** **** ** ******** ******** ********

* THESIS *

• iPSC Deadline Job Scheduling *

* Intermediate Host Program *
, *

* Date: 5 Nov 1986 *

* Functions: This is the iPSC intermediate host program for *

* the the Deadline Job Scheduling Problem. This program*
* loads the iPSC with the Worker and Control Processes, *
* and then waits for an answer message from the Control *
* Process. Upon receiving this message, the Host *

* Program retrieves the Timing Data. *
• *

* The averaging method to compute the time information *

* is quite simple. First, run the problem for 'n' *
• repetitions (a user entered parameter). Next, remove *

• the maximum time as well as the minimum time and *

• average the remaining numbers. It should be noted *

• that the minimum number of repetitions that this *

• program should run is 3. *
• *

• The following information must be available from the *

• standard input device so this program can initialize *

• * the iPSC processing elements: *

• 1- iPSC Dimension *

* 2- Number of Repetitions to run *

• 3- Number of Jobs to Schedule *

* 4- (Penalty, Deadline, Time) triple defined *

• for each of the jobs *

* Libraries: Standard Input & Output *

• iPSC chost definitions *
• *

* Language: C Language *

* Operating System: iPSC Release 2.1 *

* Input Parameters: Dimension of the iPSC *
• Number of Repetitions*

• Number of Jobs to Schedule *

• (Penalty, Deadline, Time) Job ID 3-tuple *

* Outputs: Start Up Time
* Total Run Time

* Author : Capt Rick Mraz I
132

.... . .



"t **** * ****************** *** * ****** ********** *

* Header Files *

#include <stdio.h> /* Standard 10 *1
#include "job.h" /* Job Information Header
#include "q.h" /* Solution Vector Header
#include R/usr/ipsc/lib/chost.def" /* iPSC Host Definitions

* Define Constants *

#define INFINITY 9999 /* Need a big Number??
#define ALL NODES -1 /* All cube nodes */
#define ALLPIDS -1 /* All Process IDs */

#define DIM 30 /* Send Dimension msg *1
#define NUM JOBS 50 /* Send number of jobs
#define NEW JOB 60 /* Send a Job Triple
#define UBOUND 70 /* Send an Upper Bound

#define NODE PID 0 /* Node Process ID */
#define CONTROLLER 0 /* Controller - Node 0
#define HOSTPID 1 /* Host Process ID *1

* Define Global Variables *
***** *** ** *********************

int dim, /* Cube dimension *1
i, /* Iteration Counter
ignore, /* dummy variable
u_bound, /* Upper Bound */
number ofjobs, /* Number of Jobs
number of nodes, /* Number of Nodes in Cube */

cid, /* Channel ID
node, /* Node number
cnt, /* Msg Length
type, /* Msg Type */
pid; /* Process ID

JOB joblist[MAXJOBS]; /* Array of Job Triples

NODE best; /* Global Best Solution */

133



A Main Program ,
****** *****************************

main()

int cycle, /* Iteration Counter
reps; /* Number of Repetitions

long run, /* Run Time
init, /* Start Up Time
min_init, /* Min Init Time
maxinit, /* Max Init Time
totalinit, /* Total Init Time
mintime, /* Min run time */
maxtime, /* Max run time */
total-time; /* Total run time */

/* ----- Get the Problem Parameters from the Terminal ------*

printf("\n\n\tParallel Deadline Job Schedule System\n");
printf("\t ------------------------------------- \nn");

scanf("%d",&dim);
number of nodes - 1<<dim;

scanf("%d",&reps);
scanf("%d",&numberofjobs);
for(i-1; i<-numberofjobs; i++)
scanf("%dtd%d",&job list[i].p,&job-list[i].d,&job-list[i].t);

/* ----- Initialize Time Data Variables ------*

cid = copen(HOSTPID);
u bound - INFINITY;

min init - 100000;
min time = 100000;

max init = 0;
max time - 0;

total init - 0;

total time - 0;

134

'|



/* ---- Run the DJS Problem for 'reps' number of times ....
- load the iPSC with the Worker and the Control Process
- Down load the Dimension of the Cube, the Number of Jobs,

and the array of Job Triples.
- Wait for a FINISHED message from the Control Process
- Collect the Timing Data ------*

for(cycle-1; cycle<-reps; cycle++)(

load("worker",ALL_-NODES,NODEPID);
lkill(O,NODEPID);
load("control",O,NODEPID);

sendmsg(cid,DIM,&dim,sizeof (dim) ,O,NODEPID);

for(node=O; node<number -of nodes; node++)(
sendmsg(cid,NUM_-JOBS,&number-of-jobs,

sizeof (number of jobs) ,node,NODEPID);
sendmsg(cid,U_-BOUND,&u_bound,

sizeof(u-bound),node,NODEPID);

for(node=O; node<nuxnber of nodes; node++)
for(i-l; i<=number-of_jobs; i++)

sendmsg(cid,NEW_-JOB,&job -list~iJ,sizeof (JOB),C node,NODE_PID);

recvmsg(cid,&type,&best,sizeof (NODE) ,&cnt,&i,&pid);
recvmsg(cid,&type,&init,sizeof(init),&cnt,&i,&pid);
recvmsg (cid, &type, &run, sizeof (run) ,&cnt, &i, &pid);

if (min mit > mnit) min _miit - mnit;
if (max-imit < mnit) max-imit - init;

if (min time > run) min _time - run;
if (max-time < run) max-time - run;

total mnit +- mnit;
total-time +- run;

lwaitall(-l,NODEPID);

/--Print the best job schedule once all reps have been run --- /

printf ("The Best Job Schedule is: 1");
for(i=1; i<-number-of_jobs; i++)

if (best.vector~iJ -- 1)I

printfC("hn\n"); 
rnf(% ,i

135I



.4'. i -penalty(best);
printf ("Penalty - dn,)
i - total-run(best);
printf("Total Time - dn,)
i - max(best,nuxnber_of jobs);
printf ("Deadline - dn",)

total -mit - total -miit - min mit - max-imit;
total-time - total-time - min-time - max-time;

*printf("Init Time - %f (sec)\tTotal Time- %f (sec)\n",
(float)total - nit/((reps-2)*1000.0),
(float)total-time! ((reps-2) *1000.0));

oclose (cid);
lwaitall (-1,NODEPID);

* Name :Penalty*
* Parameters: n- Solution Node*
" Function :Return the total penalty of the node

* defined by n.*

WyT

penalty (n)
NODE n;

I mnt i,p;

p = 0;
for(i-l; i<-number -of jobs; i++)

if (n.vector[i] !=1)

p +-job list(i].p;

return (p);

L*
136



* Name : Max *

* Parameters : E-node - Solution Vector *
* Last - Last Job in the Schedule *

* Function : Return the Maximum Deadline of the *

* those Jobs Scheduled in the E-node. *

i * *

max(E_node,last)
NODE Enode;
int last;

V{

int i,m;

m = job_list(last].d;
for(i-l; i<-last; i++)

if ((E node.vector[i] -= 1) &&
(m < joblistji).d))

m - job list[i].d;

return (m);

/

* Name : Total Run *
* Parameters : n - solution vector *

* Function : Return the total run time of all jobs *

* scheduled in node n. *

************************** *

totalrun(n)
NODE n;

int i,t;

t - 0;
for(i=l; i<=number of jobs; i++)

if (n.vectorti] == 1)
t + job list[i].t;

return (t);

13

137



* Job Header File *

* Date: 28 Nov 86 *

* Functions: This header file describes the 3-tuple that *

* defines a Job for the job scheduling program. *

* Node Information Record *

#define MAX-JOBS 50

* Node Information Record *
*************************************

struct job I
int p; /* Penalty
int d; /* Deadline
int t); /* Time to Run

- typedef struct job JOB; /* Define the type job */

138

* .. % J.-% V. % 
'

,%,, .



I.I

/ ********** ******************************************************

* QUEUE HEADER FILE *

* Date: 28 Nov 1986 *

* Function: The following header file defines the solution *
* vector and the priority queue functions needed *
* by the parallel job scheduling system. *

#include <stdio.h>

/********** ***************************************

* Define Constants *

*define TRUE 1 /* True is defined as integer 1** *

#define FALSE 0 /* False is defined as integer 0 */
#define VECTOR SIZE 15 /* Vector Size
#define QSIZE 600 /* Maximum Length of Queue
#define EOL -1 /* End of Linked List Marker
#define EMPTY 1 /* Queue Empty (status)
#define QBUSY 2 /* Queue Busy (status)
#define FULL 3 /* Queue Full (status) *1

/-.

* Node Information Record *
******************************

struct node I
int vector[VECTORSIZE+l]; /* Solution Vector
int cost; /* Cost of the solution vector *1
int link); /* Forward Links for the queues */

typedef struct node NODE; /* Define the type NODE *1

int front, /* Front of the queue pointer */
qclength, /* Queue Length
q status, /* Queue Status
freeptr; /* Free List pointer *

NODE q[QSIZE+I]; /* Queue of search space nodes

NODE delete_qo; /* Delete a node from the queue *
insertpriorityo; /* Insert by priority *

139



The second program needed to run the deadline job scheduling problem in parallel, is the

control process. This is defined by the source code on the next pages. Once the intermediate

host loads the control process into the hypercube, its initialization begins. First, the

dimension of the hypercube, the number of jobs to schedule, the 3-tuples for each job, and

the initial upper bound are received from the intermediate host. Then the control process

creates the initial set of problems to solve. After this is finished, the control process enters a
loop with three operations. The first operation is to monitor for 'work request' messages

from the worker nodes. If a 'work request' arrives, then set the status of that node to

AVAILable. The second operation is to hand out problems to solve. To hand out a problem

the problem queue must not be empty and a worker must be AVAILable. Once a problem is

sent to a worker, mark the node as BUSY. The third operation is to collect the 'local' best

answers from the worker nodes. If the upper bound of a 'local' best answer is less than the

present upper bound, then a new upper bound and a new global best answer has been found.

Remember the new best answer two constraints and broadcast the new upper bound to all
workers. This process terminates once the problem queue is empty and all workers have

posted a 'work request'. This translates to a machine state where there are no problems to

solve and all workers need work. Upon reaching this machine state, terminate the search by

sending a KILL message to all workers and sending the best answer and run time data to the

intermediate host.

140

I



' / ** ********** ** ***** **** ******* ****** ****** ******** ** *********

* THESIS *

* iPSC Deadline Job Scheduling *

* iPSC Control Process Program *

* Date: 5 Nov 1986 *

* Functions: This is the iPSC Control Process program for the *
* Deadline Job Scheduling problem. The control process *
* monitors the progress of the parallel search and *

* returns the answer to the intermediate host. The *

* Control Process needs the following information to *

* conduct a parallel search: *

* 1- iPSC Dimension *
* 2- Number of Repetitions to run *

* 3- Number of Jobs to Schedule *

* 4- (Penalty, Deadline, Time) triple defined *

* for each of the jobs *
* *

* After receiving this information, the control process *

* creates the initial set of problems to solve. Once *

* these problems are ready, then the controller enters a*
* loop to solve the search. Inside this loop, three *

* operations are performed, (1) Handle work requests *C. *from the worker nodes, (2) Hand out problems to worker*
nodes, and (3) Maintain the global upper bound and *

* global best answer. *

* Once the problem queue is empty and all workers *

* have posted a work request, terminate the search by *

* sending a KTLL message to all workers and by sending *
* the answer and the run time data to the intermediate *

* host. *

* Libraries: Standard Input & Output
iPSC cnode definitions *

* Language: C Language *

Operating System: iPSC Release 2.1 *

* Message from Host: Dimension of the iPSC *
* Number of Repetitions *

* Number of Jobs to Schedule *

* (Penalty, Deadline, Time) Job ID 3-Tuple *

* Message to Host: Answer to the Search *

* Start Up Time *

* Total Run Time *

141
I



Message to Worker: Solve Subtree (E-node)

* Termination (Kill) Message *
* .

* Message from Worker: Work Request *
* Total Run Time *
* ,

* Author : Capt Rick Mraz *

* HEADER FILES *

#include <stdio.h> /* Standard 10
#include "/usr/ipsc/lib/cnode.def" /* Hypercube Node Header */
#include "q.h" /* Queue Routine Header */
#include "job.h" /* Job information Header */

* Define Constants *

#define AVAIL -1 /* Node Available for work */
#define BUSY -2 /* Node is busy *1
#define MAX_DIMENSION 5 /* Max dim of cube */

#define HOST 0X8000 /* Intermediate Host
#define NODEPID 0 /* Node Process ID
#define CONTROLLER 0 /* Controller - Node 0
#define HOST PID 1 /* Host Process ID
#define INFINITY 9999 /* Need a big Number??

#define ENODE 10 /* Generate Children Msg *1
#define DIM 30 /* Rec the cube dimension *1
#define WORK REQUEST 40 /* Worker needs work...
#define NUMJOBS 50 /* Rerc number of jobs */
#define NEWJOB 60 /* Rec a Job triple */
#define UBOUND 70 /* Rec/Send the Upper Bound */
#define KILL 80 /* Kill worker Process
#define TIMES 100 /* Send Time information *1
#define INIT 110 /* Send Start Up time *1
#define STOP 130 /* Send Stop time *I
#define ANSWER 160 /* Send the answer to Host */
#define BEST 200 /* Rec a best from Workers */

1
142

IV



3 nI 7 V._;T? IF- V i'-J- ,w;j;JJ y rT -

Define Global Variables *
* ********** ********************

int number of nodes, /* Number of nodes in cube */
number of jobs, /* Number of jobs
u bound, /* Global Upper Bound *1
node status[33); /* Worker Status Array *1

NODE best, /* Global Best Solution
local-best, /* Worker Best Solution
copy_nodeo, /* Copy a node
E node; /* Next node to expand *1

JOB job list [MAX_JOBS]; /* Array of Job Triple Info *I

*******************************************************

* Main Program *

main()

int i, /* Iteratiop Counter *1
ignore, /* Forget this parameter *1
dim, /* Dimension of cube
bestbound, /* Best Solution U Bound

( kill, /* Kill Msg Variable
newbound, /* U Bound- Local Best Node */
nextnode, /* Node that needs work
request, /* Work Request Msg Var *1
work assigned,

cid, /* Channel ID
node, /* Node number *1
cnt, /* Msg Length
pid; /* Process ID

long start, /* Start timer */
stop, /* Stop timer */
inittime, /* Measure Start Up Time */
timefirst; /* Time to first solution

/* ----- Initialize the Control Process by....
- Take a start time hack
- Open a communications channel
- Receive the dimension of the hypercube
- Receive the Number of Jobs to Schedule
- Receive the initial Upper Bound
- Receive the Job Triple information for all jobs
- Generate the Initial Set of Problems to Solve -----

143

% %



r U r. WIsWt V lSVxn p..W w w n l w wq.WVnf~r.1'Wff71nnifl r r f ,nrivsr. - - - - - -

start - clocko;
cid - copen(NODEPID);

recvw(cid,DIM,&dim,sizeof (dim) ,&cnt,&node,&pid);

number-of-nodes -l(<din;

work-assigned - number-of-nodes - 1;

recvw(cid,NUMJOBS,&number-of jobs,sizeof (number-of-jobs),
&cnt, anode,apid);

recvw(cid,UBOUND, au-bound,sizeof(u,_bound) ,&cnt,&node,&pid);

for(i=1; i<=number -of -jobs; i++)
recvw(cid,NEWJOB,aJob list Ci],sizeof (JOB) ,&cnt,&node,&pid);

* ~qinito0;
create mnit jobs 0;

best.cost - INFINITY;

* mnit-time - clock() - start;

/* ------While there are problems to solve or work has been assigned,
- Collect Work Requests from the Worker Nodes
- Hand out problems to Solve
- Collect Local Best answers and Maintain the Global Upper Bound

and Global Best Answer----*

while((c~status !-EMPTY) 11 (work-assigned))(

/*- Collect Work Requests and Set the Status to AVAILable --

while (probe(cid,WORK _REQUEST) >'=O){
recvw(cid,WORKREQUEST,&request, sizeof (request),

&cnt, &node, apid);
node -status[nodej AVAIL;
work-assigned--;

144



/* ----- If there are problems in the queue and if there is a
worker available,

- Mark the Worker as BUSY

- Get a problem (E-node) from the problem queue
- Send it to the Worker ----- *

while ((qstatus !- EMPTY) &&
((nextnode - getfree-processoro) !- BUSY))(
nodestatus[nextnode] - BUSY;
E_node - delete q(;
workassigned++;
sendw (cid, E_NODE,&E node,sizeof(NODE),next-node,

NODEPID);
)

/* ----- Collect the Local Best Answers from the Workers,
- If the upper bound of the local best answer is less than

the global upper bound, then a new global best answer
has been found.

- Remember the Global Best Solution and broadcast the new
upper bound to all worker nodes ----- *

while (probe(cid,BEST) >- 0)(
recvw(cid,BEST,&localbest,sizeof(NODE),&cnt,

&node,&pid);

newbound - bound(localbest);
if (new bound < ubound)(

best - copynode(localbest,best);
u bound - new-bound;

for(i-l; i<number of nodes; i++)
sendw (cid, UBOUND, &ubound, sizeof (ubound),

i,NODE PID);

/* ----- Once the best answer has been found, terminate the search by
- taking a stop time

- send a KILL message to all worker nodes
- send timing information to the intermediate host ------*

stop - clock() - start;

for(i-1; i<number of nodes; i++)

sendw(cid,KILL,&ignore, sizeof(ignore),i,NODEPID);

145
, . ,,. ,.. ... . , - ... -.. -.,. .. .- ... .. .... .. - . -'I



sendw(cid,ANSWER,&best,sizeof(NODE),HOST,HOSTPID);
sendw(cid,INIT,&inittime,sizeof(inittime),HOST,HOSTPID);
sendw(cid, STOP,&stop, sizeof(stop),HOST,HOSTPID);

cclose(cid);

/*********************************************************
* *

* Name : Get Free Processor *
* Parameters : none *
* Function : If a worker is available, return its *
* node number, otherwise return BUSY. *
* *

getfree_processor()

int i;

for(i-l; i<-number of nodes; i++)
if (nodestatus[i] -- AVAIL)

return(i);

return (BUSY);

* Name : Copy Node *
* Parameters : nl - Source Node *
* n2 - Destination Node *
* .

* Function : Copy node, nl, into node, n2, and *
* return node, n2. *
* ,

** ************************************

NODE copy_node(nl,n2)
NODE nl,n2;

int i;

for (i-0; i<-VECTORSIZE; i++)
n2.vector(i] - nl.vector[i];

n2.cost - nl.cost;

return(n2);

146



1* *********************************** *******************

* Name Cost *

* Parameters: n - solution vector *

* Function Return the cost of the solution node *

* represented by n. *
* *

cost (n)
NODE n;

int m,i,c;

M- 0;

for(i-1; i<n.vector[O]; i++)
if (n.vector[i]-- 0)

m- i;

c - 0;
for(i-l; i<-m; i++)

if (n.vector(i] -- 0)
c +- joblist[i].p;

return (c);

* Name Bound *

* Parameters: n - solution vector *

* Function Return the upper bound of node n *
* *

bound (n)
NODE n;

int i,b;

b - 0;
for(i=1; i<-number of jobs; i++)

if (n.vector[i] !- 1)
b + job list[i].p;

return (b);
I

147

N"



* Name : Max *
* Parameters: Last - Last Job placed in job schedule *
* Function : Return the maximum deadline of those *
* jobs included in the schedule so far. *
* ,

max(last)
int last;

int i,
m;

m - joblist[last].d;

for(i=1; i<-last; i++)
if ((Enode.vector[i] -- 1) 1&

(m < joblist [i] .d))
m - job list[i].d;

return (m);

* Name : Create Init Jobs *
* Parameters: none *
* Function : Create the initial set of problems to *
* solve. This translates to building the *
* first levels of the search tree. Use a *
* least-cost branch and bound search *
* technique while creating these initial *

problems.

create_initjobs(
I
NODE Enode; /* Solution Vector *1

int i, /* Iteration Counter *1
bestpenalty, /* Penalty of Best Answer *I
deadline, /* Deadline Constraint *1
job, /* Schedule this job *1
timebound, /* Time Constraint *1
new bound, /* Penalty of new vector */
new-bound; /* Bound of new vector

148



/* ----- Initialize the problem queue with a solution vector and set
the cost of the best answer to infinity ----- *

E node.vector[O] - 1;
E_node.cost - ubound;

for(i-l; i<-number_of-Jobs; i++)

E node.vector(i] - 9;

insertpriority(E-node);

best.cost - INFINITY;

/* ----- Add problems to the queue until there are 4 times the number of
nodes in the hypercube of problems or until the queue is empty
- If the queue goes empty, then the problem was considered trival

and the control process solved it sequentially ----- *

while (( q_length < (number of nodes*4)) && (q_status !- EMPTY))(
E_node - delete qO;

/* ----- Get the E-node from the queue and calculate its Deadline
and Total Run time ---- /

job - E node.vector[O];
if (job <- number_of_jobs)(

E_node.vector[O]++;

/* ----- Generate the first child (add the job to the schedule)
- Calculate the Deadline and the Total Time Constraints
- Add the next job if the deadline is greater than or

or equal to the time constraint ----- *

if (job <- number ofjobs)(

time bound - 0;
deadline - max(job);

for(i-l; i<job; i++)
if (Enode.vector(i] -= 1)

timebound +- joblist[i).t;
timebound +- joblist[jobJ.t;

if (deadline >- time bound){
E_node.vector[job] - 1;
E_node.cost - cost(Enode);
if (Enode.cost < ubound)(

if ((newbound - bound(Enode)) < bestbound))(
best - copy-node(Enode,best);
best-bound - bound(best);

149



insertpriority (E-node);

if (newbound < ubound) ubound - new bound;

/* ----- Generate the second child (don't schedule the job)
- If the upper bound of the child is less than the

present upper bound, then a new best answer has been
found and a new upper bound has been found ----- *

E node.vector(job] - 0;
E_node.cost - cost(Enode);
if (Enode.cost < ubound){

if ((newbound - bound(Enode)) < bestbound)){
best - copynode(Enode,best);
best-bound - bound(best);

insert-priority(Enode);

if (newbound < ubound) ubound = newbound;

150

* . ,4*f~t~.~~,J* *d* , *r 1
, p ,. .....- .* S. , .I-_'_-.,' ,.' .. .*.' ,.,..,.,..,-.' '.' ' ',.,...-.-. ,..;.-.- ',o . ,.-..,.,, ., -, ,.,



The third program for the parallel deadline job scheduling search is the worker process.

It is defined by the C Language source code on the next few pages. The worker process

does not resemble its sequential counterpart. For the sequential deadline job scheduling

solution, the entire search is conducted using the least-cost branch and bound technique.

Because of memory problems, only the control process can keep the initial problems in least-

cost order. The worker processes search the subtrees (problems) using a simple depth-first

search. With this information, the worker process begins its initialization once loaded by the

intermediate host. The initial steps include receiving the number of jobs to schedule and the

3-tuple for each job. The last initialization step is to send a 'work request' to the control

process. Next, the worker process enters an infinite control loop with two operations. The

first operation monitors for an E-node message from the control process. Upon receiving the

E-node, find the best answer in the subtree. Once the subtree is investigated, send a 'work

request' to the control process. The second operation is to monitor for a KILL message.

Upon receiving a KILL message, terminate the search.

151



* THESIS *

* iPSC Deadline Job Scheduling *
* iPSC Worker Process Program *

* Date: 5 Nov 1986 *

* Functions: This is the iPSC Worker Process program for the *
* parallel deadline job scheduling problem. This *
* program needs the following information from the *
* intermediate host for initialization: *

* 1- Number of Jobs to Schedule *
* 2- (Penalty, Deadline, Time) 3-tuple defined for *
* each of the jobs *
* 3- The initial upper bound *

* After receiving this information, the worker process *
* enters its control loop. Inside this two operations *
* are performed, (1) Solve a problem for the Control *
* Process, and (2) Terminate the search upon receiving *
* a KILL message. *

* Libraries: Standard Input & Output *
* iPSC cnode definitions *

* Language: C Language *

* Operating System: iPSC Release 2.1 *

* Message from Host: Number of Jobs to Schedule *
* (Penalty, Deadline, Time) Job ID 3-tuple *
* Initial Upper Bound *

* Message to Host: None *

* Message from Control: Solve Subtree (Enode) *
* Termination (Kill) Message *

* Message to Control: Work Request *

* Author: Capt Rick Mraz *

152

e 01 or r-% " Z ° -%- - %# " -" o"° - ' 4- " " " " .L""".i . , " , """"" ."



7 U f VWJL~~WI-VW VWVWV "AWwM M K~ wwU yyv NWW~!VW MWmW ww" U-. WW MN7 V- - - --

* Header Files *

#include <stdio.h> /* Standard 10 */
#include "/usr/ipsc/lib/cnode.def" /* Hypercube Node Header
#include "q.h" /* Solution Vector
#include "job.h" /* Define Job 3-tuple 'I

/***** ********************************************

• Define Constants *
****************************

#define HOST 0x8000 /* Intermediate Host
#define NODE PID 0 /* Node Process ID
#define CONTROLLER 0 /* Controller - Node 0
#define HOST PID 1 /* Host Process ID
#define INFINITY 9999 /* Need a big number ?? *

#define E NODE 10 /* Generate Children Msg *
#define WORKREQUEST 40 /* Worker needs work... *
#define NUM JOBS 50 /* Rec Num Jobs to schedule *
#define NEW JOB 60 /* Rec a Job 3-tuple *
#define UBOUND 70 /* Rec Initial Upper Bound */
#define KILL 80 /* Kill worker Process *
#define BEST 200 /* Send Local Best to Control*/

/* *** *********************************************

• Define Global Variables *

int cid, /* Channel ID
childcount, /* Work Load Count
u_bound, /* Upper Bound */
number of jobs; /* Number of Jobs to Schedule*/

JOB joblist[MAXJOBS); /* Array of Job 3-tuples

NODE Enode, /* Next node to expand *
best, /* Local Best Answer *
copy node 0; /* Copy one vector to another*/

153

% %-



Fro .. V. 7 yrT vr IT R-'-v "-W,7-r t 1, a ww unU uurt-t.-s'-'* -

* Main Program

maino(

int i, 1* Iteration Counter *
cnt, /* Msg Length
ignore, /* Forget this parameter *
me, /* My node number *
node, /* Node number *
pid; /* Process ID

/* ------Initialize the Control Process by....
- Open a communications channel
- Receive the Number of Jobs to Schedule
- Receive the initial Upper Bound
- Receive the Job Triple information for all jobs---*

cid = copen(NODEPID);

recvw(cid,NUMIJOBS,&nunber_of jobs,sizeof (number-ofjobs),
&cnt,&node,&pid);

recvw(cid,UBOUND,&u-bound,sizeof(u-bound) ,&cnt,&node,&pid);

for(i=l; i<=number-of jobs; i++)
recvw(cid,NEWJOB,&job-list[iJ,sizeof(JOB),&cnt,&node,&pid);

sendw(cid,WORK_-REQUEST, &ignore,sizeof (ignore),
CONTROLLER,NODEPID);

best.cost -INFINITY;

/*---- Enter the control loop
- If an Enode msg arrives, solve the subtree denoted by the enode.
After solving the subtree, request more work.

- If a KILL rnsg arrives, terminate the control loop------*

for (;;)J
if (probe(cid,E_-NODE) >- OH

recvw(cid,E_-NODE,&E-node,sizeof(NODE),&cnt,&node,&pid);
solve-subtree(E-node);
sendw(cid,WORK_-REQUEST, &ignore, sizeof (ignore),

CONTROLLER,NODEPID);

if (probe (cid, KILL) >-O) break;

cclose(cid);

154



* Name : Cost *
* Parameters: n - solution vector *
* Function: Return the cost of the solution node *
* represented by n. *

cost (n)
NODE n;
{

int m,i,cost;

m = 0;
for(i=l; i<n.vector[O]; i++)

if ((n.vector[i]-- 0))
m- i;

cost = 0;
for(i-l; i<-m; i++)

if (n.vector[i] -= 0)
cost +- joblist(i].p;

return (cost);

* Name : Max ,
* Parameters: Last = Last Job Scheduled *
* Function: Return the maximum deadline of those *
* jobs included in the schedule so far. *
* ,

* *** ****** ************************

max(Enode,last)
NODE Enode;
int last;

int i,m;

m = job list[last].d;

for(i-i; i<-last; i++)
if ((E_node.vector(i] -- 1) &&

(m < job list[i] .d))
m - joblist[i].d;

return (m);

155



* Name : Max *
* Parameters: Last - Last Job Scheduled *

* Function: Return the maximum deadline of those *
* jobs included in the schedule so far. *

getbestbound(u)
int u;
I
int node,

pid,
cnt,
new-bound;

while (probe(cid, U_BOUND) >- 0){
recvw(cid,U_BOUND,&newbound,sizeof(newbound),

&cnt,&node,&pid);
if (new-bound < u) u - newbound;

return(u);

/********* ************************************************
* *

Name : Copy Node *
* Parameters: nl - Source Node *
* n2 - Destination Node *

* Function: Copy node, nl, into node, n2, and return *

* node, n2. *

** **** **** *********************************

NODE copynode(nl,n2)
NODE nl,n2;

int i;

for(i-0; i<-VECTOR SIZE; i++)
n2.vector[i] - nl.vector(i];

n2.cost - nl.cost;

return (n2);

I

156 '4
S

i % '[ , i ,., .'-i• , ,:, :'' 3 : : 4, ,':, .'• ,. : 2; 2 > : ;'. p. .* . 9.:'



* Name Bound *
* Parameters: n - solution vector *

* Function: Return the upper bound of node n *
, *

bound(n)
NODE n;
I
int i,

p;

p - 0;
for(i-l; i<-number, ofjobs; i++)

if (n.vector[i] !- 1)
p +- job-list(i].p;

return (p);

/*********** **********************************************
, *

Name : Solve Subtree
* Parameters: E-node - Subtree (problem) to search *

* Function: Given the subtree defined by the E node, *

* search the subtree for an answer using a *

* depth-first search technique. *
* *

* If a new 'local' best answer was found *

* send it to the Control Process before *

* returning.*
* *

solvesubtree(Enode)
NODE Enode;

int job, /* Schedule this Job
i, /* Iteration counter */
newbestflag, /* Found a new best?
root, /* Root of subtree */
deadline, /* Schedule Deadline
timebound, /* Time Constraint
best_bound, /* Penalty of best node */
newbound; /* new upper bound */

157



job - E node.vector[O];
root - Job - 1;
new-best-flag - FALSE;

/*-------- Only solve the subtree defined by the root---
while (job > root){

switch (E-node.vectorljob])t

/*- Case 9: Add the Job to the schedule --
case 9:

deadline M Max(E_node, job);

time bound - 0;
for(i-l; i<job; i++)

if (E_node.vector~i] -- 1)
time bound +- job list~i].t;

time-bound +- job list~joblI.t;

E node-vectortjob] - 1;
if (deadline >- time-bound)(

E -node.cost - cost(E-node);
u -bound - get best-bound Cu-bound);

Uif (E -node-cost < u-bound)
if ((new-bound - bound(E-node)) <

best bound)({(7. new -best flag - TRUE;
best - copy__node(E node,best);
best-bound - bound1(E-node);

if (new-bound < u-bound) u-bound =new-bound;

if (job < number of jobs) job++;

break;

/*--- Casel: Do not schedule the next Job --
case 1:

E node.vectorfjob] - 0;
E node.cost - cost(E-node);

if (E-node.cost < u-bound)(
u-bound - get best_bound(u-bound);
if ((new-penalty - bound(E-node)) <

bestyPenalty) I
best - copy-node(E -node,best);
new -best_flag - TRUE;
best-bound - bound(E-node);

158



if (newbound < ubound) u bound - new-bound;

/*--- If the present job is less than the total number of jobs
to schedule, then
- Schedule the next job by incrementing 'job'
- Otherwise, this is the terminal node of the left-most
branch of the search tree ..... therefore, continue the
depth-first search by backtracking to the right-branch
(decrement 'job') ---*/

if (job < numberofjobs)
Job++;

else(
E node.vector[job] - 9;
job--;

I

break;

/*--- Case 0: Reached the terminal node of the right-most
branch of the tree.. .therefore, backtrack
by decrementing 'Job' ---

case 0:
E_node.vector(job] - 9;
job--;
break;

/*---- If a new local best is found,
send it to the Control Process ----- *

if (newbest_flag)
sendw(cid,BEST,&best,sizeof(NODE),CONTROLLER,NODEPID);

159
K

'Ne"R V V '

~U' ~ -' ~ W 1 U ~ ~ ~ U~ ~ * ' u~m~* - U



Appendix D:

Sueta Dadline Lob SceuigSource Co&descio

The listing on the following pages was run on a DEC VAX 11/785. The run times for

various board sizes sets a baseline for performance comparisons with the iPSC Hypercube

(see Chapter VI, Performance Measures and Experiment Results). This version of deadline

job scheduling is written in C Language. The description of the code follows.

Pages 1 and 2 of the listing define the Header Files, Constants, and Variables used in the

program. The main program also starts on the second page of the listing. First, the initial

state of the problem is set. The E node is initialized, and the upper bound is set to

INFINITY, and the 'best' solution is set. Next, the number of jobs is read from standard

input followed by the initialization of the job list array. Once the jobs are read, the initial

problem vector, (xl,x2 ,. .. ,xn) where n = the number of jobs to be scheduled is set to

(1,.....,.) where • defines an xi that has not been determined. The number 1 in the first

element, vector[0], identifies job #1 is the first job to try to schedule. Then, the cost of the

initial problem is set equal to the upperbound. The live node queue is then initialized with

this first vector.

Next, the while loop is executed until the first solution i, found. This condition occurs

once all live nodes have been examined but, while there is something in the queue, the

following procedure is conducted. First, get an E-node (the next node to expand) from the

front of the live node queue. The next job to schedule for that particular E-node can be found

in the first element of the vector, vector[O].

160



Before generating children, increment the first element, vector[O]. This sets the state of

the solution vector such that the next job is scheduled if this child becomes a live node.

Then, determine the maximum deadline and the total run time of those jobs scheduled so far.

This information is needed to generate the first child.

Now, generate the first child. This child attempts to add the next job to the schedule.

The next job can be scheduled only if the maximum deadline is greater than or equal to the

total run time plus the time to run the next job. If this job meets these requirements, schedule

it by setting the value of its vector to 1, and compute the cost of the child. Next, the child

becomes a live node (inserted into the live node queue) only if the cost of the child is less

than the upper bound. If the child is a live node, it may also be the best solution so far. The

live node is best solution if the cost of the live node is less than the upperbound and the total

penalty of the live node is less than the total penalty of the best solution. Finally, before

leaving the first child generation, check to see if the child sets a new upperbound.

Now it's time to generate the second child. This child does not have to pass the time and

deadline test since it does not add this job to the schedule. First, do not schedule this job by

setting its vector to 0. Next, calculate the cost of the child. If the cost is less than the upper

bound, then is becomes a live node (insert it into the live node queue). If this child becomes

a live node, also check for best solution so far. The conditions for the live node and the best

solution are the same for this child as they were for the first child. Finally, check to see if the

child sets a new upperbound.

Once the solution has been found, take a stop time and print the best job schedule as well

as the time to find that schedule.

161



I** * ***** ********************************************* ************

* THESIS *
, *

* Sequential Deadline Job Scheduling *

* Date : 27 Aug 1986 *

* Function: Given a set of job described with the following *

* parameters, *
, *

* - Deadline to finish running by *

* - Penalty if the job does not run *

* - Time to run the job *
, *

* Find the largest subset of jobs that can be run *
* by their deadline as well as minimize the total *
* penalty paid. *

* Language: C Language *
* *

* Operating System: 4.2 BSD UNIX *
* *

* Libraries: Standard I/O Types.h Times.h *
* *

* Author: Captain Rick Mraz *

/************************************************
* HEADER FILES *
********* *********************

#include <stdio.h> /* Standard 10
#include </sys/h/types.h> /* Time structure type */
#include </sys/h/times.h> /* Time functions
#include "q.h" /* Queue Routine Header
#include "j.h" /* Job information Header */

/************************************************
* CONSTANTS *

*define INFINITY 999999 /* Need a large number??

162



-R. FORN W

* VARIABLES*

int i, /* Iteration Counter */

bestpenalty, /* Penalty of best solution */

deadline, /* Maximum Deadline

newpenalty, /* Penalty of live node *1

number of jobs, /* Total number of jobs */

job, /* Schedule this job

timebound, /* Total run time of jobs */

newbound, /* new upper bound */

upperbound; /* Upper Bound */

NODE livenode, /* Live node */

best, /* Best node so far...

E_node, /* Next node to expand

copynode(), /* Clone a Node...

temp; /* Temporary Vector */

JOB joblist[MAXJOBSJ; /* Array of Jobs to Schedule*/

struct tms start time; /* Start of Computation *

struct tms stop_time; /* End of Computation */

B**** ** ***** ***** * ************* ***** ***

* Main Program... Sequential *

* Deadline Job Scheduling *

main()

/* ----- Initialize the job scheduler ----- *
times(&start time);

* upper-bound - INFINITY;
best.cost = INFINITY;

q_init(;

/* ----- Read in the list of jobs to schedule ----- *
scanf("%d",&number ofjobs);
for(i=l; i<-numberof_jobs; i++)

scanf(-%d%d%d",&job-list[i].p,&job-list~i].d,&job-list[i].t);

*163



/* ----- Initialize the Problem Vector & Live Node Q- */
temp.vector(O] - 1;
for(i-1; i<-number ofjobs; i++)

temp.vector[i] - 9;

temp.cost - upperbound;
insert_priority (temp);

/* ----- Find the best schedule ------*
while (q_status !- EMPTY)(

delete_q(E-node,q); /* Get E-node from queue */

job - Enode.vector[O]; /* Schedule this job */
if (job <- number of jobs)[

E_node.vector[O]++; /* Schedule the next job... */

if (job <- numberofjobs)H /* Calculate Time & Deadline*/
time bound - 0;
deadline - max(Enode, job);

for(i-l; i<-job; i++)
if (Enode.vector[i] -= 1)

timebound += job list[i].t;

/* ----- Generate First Child ----- */
if (deadline >- (timebound + job list[job] .t)){

E_node.vectortjob) - 1;
E_node.cost - cost(Enode);

if (Enode.cost < upperbound)[

livenode - copy node(Enode,livenode);
insertpriority(livenode);

if ((new-penalty totalpenalty) <
(best_penalty - totalpenalty))

best - copynode(live_node,best);

if ((new bound = bound(Enode)) < upperbound)
upper-bound - newbound;

164

%A



/* ----- Generate Second Child -----
E_node.vector[job] - 0;
E_node.cost - cost(E_node);

if (Enode.cost < upper bound){
insertjpriority(E-node);

if ((newpenalty = totalpenalty) <

(best_penalty = total_penalty))
best - copynode(E_node,best);

if ((newbound - bound(Enode)) < upper bound)
upperbound - new-bound;

/* ----- Computation Complete.. .Take Time Measure ----- *
times(&stop_time);

print_solution(best);
printf("\nTime to Solution: %f sec\n",

(float) (stoptime.tmsutime-starttime.tms_utime)/60.0);

* Name: Bound *
* Parameters: n = calculate the bound of this node *
* *

* Function: Calculate the bound of the node, n. The *

* bound of a node equals the sum of all *
* penalties of those jobs not included in *
* the job schedule so far. *

* ************************* ***

bound(n)
NODE *n;

int i,

b = 0;
for(i=1; i<-numberofjobs; i++)

if ((n->vector[i] -= 0) II (n->vector(i] = 9))
b +- job list[i].p;

return (b);

165



* Name: Copy Node *

* Parameters: n - Copy this node *

* Function: Copy the Node, n, into a new node and *

* return a pointer to the new node. *
, *

NODE copy_node (nl,n2)
NODE nl,n2;

int i;

for (i0; i<=VECTORSIZE; i++)
n2.vector(i] - nl.vector[i];
n2.cost - nl.cost;

return (n2);

• Name: Max *

• Parameters: n - Use this vector *

* job - find max deadline compared to *

• this job *

• Function: Find the maximum deadline of the vector *

• n and the job *

•**************************** *.

max (n, job)
NODE n;
mnt job;

int i,

m;

m - joblist(job).d;

for(i=l; i<=last; i++)
if ((E_node.vector(i] = 1) && (m < job list[i].d))

m - job list[i].d;

return (m) ;

166 0

,I
p



* Name: Cost *

* Parameters: n - Calculate the cost of this node *
, *

* Function: The cost of the job scheduling vector *

* an additional parameter, 'im'. m is *

* defined as follows, *
* *

* m - max(S) *
. *

* where Sx is the set of jobs *

* examined so far. *
* *

* The cost is then computed using the *

* following summation, *
* *

* x Pi *

* i<m *

* iJ *

* where J is the set of jobs scheduled *

* so far and pi is the penalty for *

* job i. *
* *

cost (n)
NODE n;
I
int m,

i,

c;

m = 0;

for(i=l; i<n.vector(O); i++)
if (n.vector[iJ == 0)

m = i;

c = 0;

for(i=l; i<=m; i++)
if (n.vector[i] 0)

c +- job list[i].p;

return(c);

167

YS)



I%*- IIVJ S.WIVV --iIVr - - a . , - - W

* Name: Print Solution *
* Parameters: b - best solution *
* *

Function: Print the best job schedule given the best *
*vector. Also print the total penalty paid *

printsolution(b)
NODE b;

int i,
penalty;

printf("The Best Job Schedule is:\n");
printf( -------------------------- \n");
printf("\tJob(s) : "

penalty = 0;
for(i=l; i<=number of .jobs; i++)(

if (best.vector[i] 1)
printf("%d ",i);

penalty += job-list[i].p;

printf("\n\n");
printf("\nPenalty = %d\n",penalty); print_vector(best);

/**********************************************************
* ,

*Name: Total Penalty*

* Parameters: n = Find the Total Penalty of this job I
* *

* Function: Return the total penalty paid. *
* *

********************************************************|

total-penalty (n)

NODE *n;

int i,p;

for(i=1; i<=numberofjobs; i++)
if (n.vector(iJ != l1.

p += job_list[iJ.p;
return(p);

P 168



* Job Information Header File*
* *

* Sequential Deadline Job Scheduling *

* Date: 28 Aug 1986 *
* *

* Author: Captain Rick Mraz *
* *

* Language: C Language *

* *

* Header files *

#include <stdio.h> /* Standard I/O *

* Constants *

#define MAXJOBS 30 /* Maximum of 30 jobs */

'** ******
* Node Information Record *
* ******* **** **** ** * ******** *******************

struct job
int p; /* Penalty
int d; /* Deadline
int t); /* Time to Run

typedef struct job JOB; /* Define the type JOB

h/

* FUNCTION DEFINITIONS- job queue functions *

void insert_priorityo;
void deleteq();

169



To re-enforce the least-cost branch & bound algorithm, an example problem is in order.

Given the following job sequence (16:384),

1 5 1 1

2 10 3 2

3 6 2 1

4 3 1 1

find the subset of jobs such that the penalty paid is minimal. The solution vector for this

problem, (x 1,x2 ,x3 ,x4 ), has the following explicit constraints, xi c 11,01 where 1 denotes

that job i is included in the schedule and 0 denotes that job i has not been included in the

schedule. For example, solution vector (1,1,1,1) identifies all jobs have been scheduled.

Oe The entire solution space of this problem is shown in Figure D1. Next, the implicit

constraints define the relationships between the xi's. The first implicit constraint,

Deadline/Total Time constraint, is quite easy to understand, the next job can be scheduled

only when the maximum deadline of the jobs under consideration is greater than or equal to

the total run time of those same jobs. For example, the grey node in Figure Dl identifies the

solution vector (1,1,1,.) that does not pass the implicit constraint because the maximum

deadline of jobs 1,2,and 3 equals 3 and the total run time of those same jobs equals 4. The

second implicit constraint, Cost/Upper Bound constraint, relies upon the cost of the node

and the value of the upper bound. The number inside each node of Figure D1 identifies the

cost of that node. See Chapter 5 for the details on how the cost and upper bounds are

calculated.

7,0

170

a. I.



Ice

171



Combining the explicit constraints and the implicit constraints the search tree to find the

answer to this job set looks like Figure D2. The square nodes identify those children that can

not be scheduled because of the Deadline/Total Run Time constraint. The nodes with the B

beside them identify those nodes that failed the Cost/Upper Bound constraint. In the

following trace of least-cost branch & bound, the Uve Node Q shows the list of live nodes

ordered by least-cost (the number to the right is the cost of that vector); the Upper Bound at

that point in the search; and the Best Solution (total penalty of that solution is to the right of

the vector). With this information, the trace of this least-cost branch & bound search goes as

follows:

LiveNd UBound Bsl n Remarks

(.,*,.,-) 0 24 (0,0,0,0) 24 Initial Problem

-- Expand next E-node (*,*,-,.)

(I,.,.,.) 0 19 (I,.,.,.) 19 Ist Child, update ubound & best

(1,o,.,.) 0 14 (1,.,.,.) 19 2nd Child, update u bound
(0,.,.,.) 5

-- Expand next E-node (1,.,,)

(1,1,.,.) 0 9 (1,1,.,*) 9 1st Child, update u_bound & best
(0,.,.,.) 5

(1,1,.,.) 0 9 (1,1,.,-) 9 2nd Child
(0,.,.,.) 5
(1,0,.,.) 10

-- Expand next E-node (1,1,-,.)

(1,1,1,.) Bound Deadline/Total Time Constraint

(0,.,*,.) 5 9 (1,1,.,.) 9 2nd Child
(1,1,0,-) 6
(1,0,.,.) 10

172

r w~~%



000

4r-

173



v NU Bound BestSolutn Remak&
-- Expand next E-node (0,.,.,.)

(0,1,.,-) 5 9 (1,1,.,-) 9 1st Child
(1,1,0,.) 6
(1,0,.,.) 10

(0,1,.,.) 5 9 (, 1,.,.) 2nd Child
(1,1,0,.) 6
(1,0,.,-) 10
(0,0,.,-) 15

-- Expand next E-node (0,1,.,-)

(0,1,1,.) 5 8 (0,1,1,.) 8 1st Child, update u_bound & best
(1,1,0,-) 6
(1,0,.,.) 10(0,0,-,-) 15

(0,1,1,-) 5 8 (0,1,I,.) 8 2nd Child
(1,1,0,-) 6
(1,0,.,-) 10
(0,1,0,-) 11
(0,0,.,-) 15

i-- Expand next E-node (0,1,1,.)

(0,1,1,1) Bound Deadline/Total Time Constraint

(0,1,1,0) Bound Cost/Upper Bound Constraint

-- The live node queue now looks like this

(1,1,0,.) 6 8 (0,1,1,.) 8
(1,0,.,-) 10
(0,1,0,.) 11
(0,0,.,-) 15

-- Expand next E-node (1,1,0,.)

(1,1,0,1) Bound Deadline/Total Time Constraint

(1,1,0,0) Bound Cost/Upper Bound Constraint

-- The live node queue now looks like this

(1,0,.,-) 10 8 (0,1,1,.) 8(o,IOA-) I1I
(0,0,-,-) 15

174
IS



LiveNode.Q U Bound BetSolution Remarks

-- Expand next E-node (1,0,-,-)

(1,0,1,-) Bound Cost/Upper Bound Constraint

(1,0,0,-) Bound Cost/Upper Bound Constraint

-- The live node queue now looks like this

(0,1,0,.) 11 8 (0,1,1,.) 8
(0,0,.,.) 15

-- Expand next E-node (0,1,0,.)

(0,1,0,1) Bound Cost/Upper Bound Constraint

(0,1,0,0) Bound Cost/Upper Bound Constraint

-- The live node queue now looks like this

(0,0,.,.) 15 8 (0,1,1,-) 8

-- Expand next E-node (0,0,.,.)

(0,0,1,-) Bound Cost/Upper Bound Constraint

(0,0,0,-) Bound Cost/Upper Bound Constraint

-- The live node queue is now empty and the search terminates with the following job schedule as
the best answer:

Job Subset = {2,3}
Penalty = 8

175



Appendix E:

TablesQ f Branch and Bound Ex.p.ment

The following tables tally the results of the N-queens and the deadline job scheduling

experiments. Dash entries could not be calculated because some test were not made. The

analysis of this data can be found in Chapter VI, Performance Analysis and Experiment Results.

In that chapter, some of this tabular data has been plotted to show trends and for comparisons.

N-un Experimental Results

Table 1
N-queens VAX Baseline

Board Time to Time to
Size First Solution (sec) All Solutions(sec'

4 0.0" 0.0000
5 0.0000 0.0167
6 0.0167 0.0734
7 0.0017 0.3848
8 0.0999 2.0042
9 0.0333 10.1958

10 0.1253 54.1718
11 0.0685 308.1500
12 0.4778 1837.5555

Table 2
N-queens Elxsi Computation Time

Board Time to Time to Speed Up
_&ze First Solution (sec) All Solutions(se) OverVAX

4 0.0000 0.0000 0.000
5 0.0000 0.0167 1.000
6 0.0000 0.0500 1.468
7 0.0000 0.2500 1.539
8 0.0500 1.1667 1.717
9 0.0167 5.9400 1.717

10 0.0667 30.6500 1.767
11 0.0333 172.2500 1.789
12 0.2667 1045.5333 1.758

176



Table 3
N-queens iPSC d-5 Computation Time

Board Start Time to Time to Speed Up Speed Up
Size ...J_1a First Solution (sec) All Solutions(sec) Over VAX Overd-0

4 0.384 0.448 0.520 0.000 0.154
5 0.416 0.400 0.624 0.027 0.058
6 0.496 0.450 1.024 0.077 0.166
7 0.800 0.764 2.468 0.156 0.314
8 0.544 0.49 2.206 0.908 1.717
9 0.512 0.400 2.198 4.639 8.771

10 0.490 0.400 4.084 13.264 24.823
11 0.496 0.424 18.144 16.984
12 0.464 0.704 110.538 16.624
13 0.656
14 1.328
15 1.776
16 4.240 ----
17 3.248
18 11.744
19 15.920
20 11.248

Table 4
N-queens iPSC d-4 Computation Time

Board Start Time to Time to Speed Up Speed Up
-Size ....P First Solution (sec) All Solutions(se) OverVAX Over d-

4 0.192 0.368 0.440 0.000 0.018
5 0.208 0.180 0.384 0.044 0.094
6 0.288 0.234 1.086 0.068 0.157
7 0.288 0.266 1.066 0.361 0.726
8 0.256 0.212 1.114 1.799 3.400
9 0.240 0.208 1.824 5.590 10.569

10 0.240 0.434 7.006 7.732 14.470
11 0.224 0.284 39.984 7.707
12 0.240 0.504 270.480 6.794 -----
13 0.784 .....
14 2.976
15 1.136 .....
16 3.536 .....
17 2.880 .....
18 26.976 ---- I
19 18.048 ----- "-- -----20 20.016 -

I

I



Table 5
N-queens iPSC d-3 Computation Time

Board Start Time to Time to Speed Up Speed Up
-Si- ..-129 First Solution (sec' AD Solutionssec) Of VAX Over d-0

4 0.096 0.096 0.166 0.000 0.048
5 0.096 0.096 0.284 0.059 0.127
6 0.176 0.176 0.584 0.126 0.291
7 0.110 0.110 0.556 0.692 1.392
8 0.112 0.128 0.848 2.363 4.467
9 0.120 0.120 2.974 3.428 6.482

10 0.128 0.176 13.744 3.942 7.376
11 0.128 0.192 75.462 5.038
12 0.112

Table 6
N-queens iPSC d-2 Computation Time

Board Start Time to Time to Speed Up Speed Up
,Size . First Solution (sec) All Solutions(sec) Over VAX Over d-0

4 0.064 0.042 0.240 0.000 0.068
5 0.080 0.064 0.222 0.075 0.162
6 0.080 0.108 0.310 0.237 0.548
7 0.064 0.056 0.488 0.789 1.586
8 0.064 0.060 1.344 1.491 2.819
9 0.064 0.096 6.130 1.663 3.145

10 0.064 0.206 30.896 1.753 3.281
11 0.064 0.314 173.800 1.773
12 0.064

Table 7
N-queens iPSC d- 1 Computation Time

Board Start Time to Time to Speed Up Speed Up
Size _..p First Solution (sec) All Solutions(sec) Over VAX Overd-

4 0.032 0.042 0.116 0.000 0.069
5 0.032 0.032 0.240 0.696 0.15
6 0.032 0.038 0.352 0.209 0.483
7 0.032 0.032 0.894 0.430 0.866
8 0.032 0.064 3.630 0.552 1.044
9 0.032 0.064 17.622 0.579 1.094

10 0.032 0.288 91.668 0.591 1.106
11 0.032 .....
12 0.032 .....

178

," , , " ',,", t ,, : .. ,,' -. " '" - " ** -" "- " .* " ""* " "- """* " " ". . .. . " " '- -



Table 8
N-queens iPSC d-0 Computation Time

Board Time to Time to Speed Up
_i First Solution (sec) Al Solutions(sec) O VAX

4 0.000 0.008 0.000
5 0.000 0.036 0.038
6 0.026 0.170 0.065
7 0.002 0.774 0.089
8 0.204 3.788 0.111
9 0.074 19.278 0.126

10 0.254 101.376 0.101
11
12

Table 9
Load Balance for the I 1-queens Problem on a d-5 cube

Node E-nodes Node E-nodes
Number Epanded Number

1 10499 16 10365
2 11141 17 10844
3 10850 18 10511
4 11031 19 10527
5 11092 20 10459
6 11321 21 10760
7 10932 22 10331
8 10807 23 10833
9 10647 24 10179
10 10548 25 10738
11 10506 26 11099
12 10931 27 10600
13 10525 28 10947
14 10125 29 10453
15 10635 30 10570

31 10153

179



Table 11

Deadline Job Scheduling iPSC d-5 Computation Time
(Time in Seconds)

Number Start Up Run Time Speed Up Start Up Run Time Speed Up
ofJobs im SVAX ime t Over VAX

4 0.868 2.392 0.029 0.894 2.408 0.034
5 0.892 2.800 0.026 0.908 2.800 0.033
6 0.902 3.192 0.021 0.964 3.204 0.410
7 0.920 3.598 0.023 1.062 3.600 0.055
8 0.956 4.396 0.019 1.246 3.996 0.102
9 0.976 4.796 0.017 1.672 4.392 0.210

10 0.968 4.788 0.018 1.150 4.810 0.358
11 0.994 5.186 0.017 1.502 5.188 0.833
12 1.012 5.584 0.018 1.480 5.588 2.270
13 1.028 5.986 0.018 1.502 5.982 7.023
14 1.042 6.384 0.017 1.494 6.380 23.567
15 1.076 6.792 0.018 1.528 9.534 58.130
16 1.084 7.184 0.017
17 1.124 7.660 0.018
18 1.160 8.052 0.017
19 1.164 8.448 0.017
20 1.188 9.138 0.017
21 1.196 9.194 0.019
22 1.222 9.584 0.018
23 1.232 10.150 0.018
24 1.264 10.392 0.019
25 1.288 10.812 0.019

181



Table 12

Deadline Job Scheduling iPSC d-4 Computation Time
(Time in Seconds)

Number Start Up Run Time Speed Up Start Up Run Time Speed Up
fIJobs m Iim Probl t#1 Oyer VAX ime P Over VAX
4 0.468 1.194 0.058 0.482 1.194 0.060
5 0.468 1.400 0.052 0.512 1.702 0.054
6 0.520 1.642 0.041 0.578 1.612 0.081
7 0.526 1.800 0.045 0.660 1.874 0.106
8 0.546 2.006 0.041 0.844 1.990 0.205
9 0.594 2.260 0.040 0.758 2.198 0.420

10 0.580 2.410 0.037 0.764 2.384 0.722
11 0.592 2.598 0.035 0.758 2.592 1.668
12 0.632 2.856 0.036 0.776 2.790 4.546
13 0.630 3.002 0.036 0.820 3.902 10.766
14 0.650 3.196 0.034 0.806 6.792 22.137
15 0.666 3.390 0.035 0.828 12.832 43.190
16 0.690 3.596 0.035
17 0.678 3.790 0.037
18 0.694 4.316 0.032 .....
19 0.732 4.674 0.031 .....
20 0.722 4.444 0.035
21 0.738 4.590 0.038 .....
22 0.748 4.930 0.035
23 0.764 4.994 0.037
24 0.774 5.196 0.037
25 0.790 5.390 0.038

182



4 Table 13

Deadline Job Scheduling iPSC d-3 Computation Time
(Time in Seconds)

Number Start Up Run Time Speed Up Start Up Run Time Speed Up
f1Jobs Tim= Problem Set #1 Over VAX imem etS#2 Over VAX
4 0.274 0.594 0.116 0.282 0.594 0.137
5 0.284 0.688 0.106 0.312 0.688 0.133
6 0.308 0.802 0.083 0.368 0.794 0.165
7 0.320 0.894 0.091 0.472 0.914 0.217
8 0.340 0.996 0.082 0.416 0.996 0.410
9 0.342 1.090 0.076 0.418 1.096 0.842

10 0.354 1.190 0.075 0.438 1.312 1.312
11 0.368 1.288 0.071 0.450 1.778 2.431
12 0.382 1.390 0.073 0.456 2.636 4.812
13 0.400 1.494 0.072 0.474 4.324 9.715
14 0.406 1.592 0.068 0.486 7.664 19.619
15 0.420 1.694 0.070 0.506 16.714 33.159
16 0.432 1.794 0.070 .....
17 0.448 1.892 0.074
18 0.464 1.996 0.069 .....
19 0.464 2.094 0.070
20 0.484 2.190 0.069 ...............
21 0 5r)2 2.296 0.076 .....
22 0., 1 2.532 0.069 ..........
23 0.52- 2.490 0.074
24 0.538 2.588 0.075 ..........
25 0.560 2.712 0.075

-. . .• - . , '



79 394 PERFONME EYRLUAT ION OF PARALLEL DUWICH RMS Mu
SEMCH WITH THE INTEL . U) AIR FORCE INST OF TECH

IOT-PRTTERSOM WD OHl SCHOOL OF EMS!. R T IUAZ
LPULRSSIFIED DEC 96 RFIT/OOE/ENLID-2 F/O 9/2 ML



All 1.0 It,

ii.-[

I -I

!1.25 L A 14 3.

- Imn._ -



Table 14

Deadline Job Scheduling iPSC d-2 Computation Time
(Time in Seconds)

Number Start Up Run Time Speed Up Start Up Run Time Speed Up
ofJobs M Pim e lemS 1 verL VAX LM Problm ISm#2 Over VAX

4 0.160 0.290 0.237 0.176 0.294 0.276
5 0.172 0.340 0.214 0.206 0.340 0.270
6 0.192 0.394 0.169 0.258 0.386 0.340
7 0.206 0.440 0.185 0.240 0.576 0.344
8 0.216 0.520 0.156 0.262 0.710 0.575
9 0.226 0.540 0.154 0.270 0.920 1.003

10 0.242 0.594 0.151 0.278 1.318 1.306
11 0.258 0.646 0.142 0.298 2.244 1.926
12 0.268 0.690 0.148 0.322 7.058 1.797
13 0.282 0.740 0.146 0.340 13.836 3.036
14 0.294 0.790 0.137 -----
15 0.316 0.846 0.140
16 0.326 0.900 0.139 ..........
17 0.336 0.942 0.148
18 0.344 0.990 0.139 ..........
19 0.356 1.044 0.140 .....
20 0.372 1.090 0.141 .....
21 0.384 1.140 0.154 ..........
22 0.394 1.192 0.147 ..........

. 23 0.414 1.246 0.149 .....
24 0.428 1.300 0.149 -----
25 0.432 1.336 0.153

184

%21
.. .,.. . . . .... .. . . . ... .. .. .. ,. .. .. . . .Q . . .. . . . .. . . ., ,, " ,, . -, .. . ,-



IV Table 15

Deadline Job Scheduling iPSC d- Computation "ime
(Time in Seconds)

Number Start Up Run Time Speed Up Start Up Run Time Speed Up
ofJobs Tim Pbem S 1 O VAX Tme Poblem #2 Ov VAX

4 0.100 0.208 0.331 0.120 0.146 0.556
5 0.112 0.224 0.326 0.130 0.336 0.275
6 0.118 0.246 0.271 0.150 0.434 0.302
7 0.134 0.276 0.294 0.152 0.588 0.336
8 0.146 0.304 0.267 0.168 0.896 0.456
9 0.174 0.342 0.244 0.178 1.446 0.640

10 0.176 0.368 0.243 0.198 2.606 0.660
11 0.194 0.394 0.233 0.212 5.036 0.858
12 0.206 0.420 0.243 0.228 9.812 1.293
13 0.222 0.456 0.238 0.240 13.264 3.167
14 0.230 0.482 0.225
15 0.248 0.512 0.232
16 0.256 0.542 0.231
17 0.272 0.566 0.247
18 0.288 0.598 0.230 .....
19 0.300 0.632 0.231
20 0.314 0.656 0.232
21 0.328 0.696 0.251 .....
22 0.336 0.720 0.243
23 0.350 0.756 0.245 ..........
24 0.362 0.784 0.247 .....
25 0.380 0.816 0.250

185



*Load Balance - Deadline Job Scheduling
Problem Set #I

20-Jobs Solved on an iPSC d-4

Node E-nodes Node E-nodes

1 125 9 0
2 60 10 0
3 0 11 0
4 0 12 0
5 0 13 0
6 0 14 0
7 0 15 0

Table 17
Load Balance - Deadline Job Scheduling

Problem Set #2
15-Jobs Solved on an iPSC d-4

Node E-nodes Node E-nodes

CO 1 326 92843
2 2806 10 3183
3 6065 11 1959
4 2694 12 2047
5 2765 13 3313
6 3102 14 1984
7 2412 15 1536

186

odors.



I. A k, Selim G. C M1. "Design, Analysis, and Inplementation of a Parallel Tree Search
Algorithm," =~ Inna~i ago Patternf Anayi~ nd Machine InzcWgw=, PAM]L4:
192-203 (March 1982).

2 Barr, Avron, and Edward A. Feigenbaum. T1k Handbffl oArtiial 1nWl &=,
Vol 1. Stanford, California: HeurisTech Press, 1981.

3 Booch, Grady. Arpanet Electronic Mail Message, 4 June 1986.

4 Booch, Grady. "Object-Oriented Development," F Transacti n Software
Engecrng. SE-2: 211-221.

5 Booch, Grady. Software ngin with da. Menlo Park, California:
Benjamin/Cummings, 1983.

6 Bosma, John T. and Richard C. Wheelan uik Ig te S gia Lkfe ni iaiv.
Arlington, Virginia: Pasha Publications, 1985.

7 Defense Advanced Research Projects Agency (DARPA). Suctk CaM~ ufLig.
AD-A 141 282/9, Arlington, VA, 1983.

lip 8 Fox, Geoffrey C., and Steve W. Otto. "Algorithms for Concurrent Processors,"
Pyis Ida: 13-20(May 1984).

9 Frenkel, Karen A. "Evaluating Two Massively Parallel Machines," Communications Q1
th AC.M: 22 752-758 (August 1986).

1() Fuller, Samuel H. "Performance Evaluation," ,mIrdtoto u Archite
(Second Edition), edited by Harold S. Stone. Chicago: Science Research Associates.
1980.

11 Gajski, Daniel d., and Jih-Kwon Peir. "Essential Issues in Multiprocessor Systems."
Comlpute: 9-27 (June 1985).

12 Gane, Chris and Tnsh Sarson. S l rm Systems Analyis: tooh & labniu
(second edition). New York: Improved System Technologies, Inc., 1977.

13 Handler, Wolfgang. "Innovative Computer Architecture-How to increase parallelism but
not complexity," Parallel Processing Systems, edited by David J. Evans. Cambndge.
MA: Cambridge University Press, 1982.

14 Hillis, W. Daniel Ihc Connion Mach ne Cambridge, Mass: MIT Press, 1985

15 Horowitz, Ellis, and Sartij Sahni. Fundamenta f Dt Structure in PASCAL
Rockville, Maryland: Computer Science Press, 1984.

187

V- -, .. ,. . . . . . . .. - .. '.. . . .- . ..



16. Horowitz, Ellis, and Sartij Sahni. EndAMCn1 gh CQMM= oAfgdjhkm. Rockville,
Maryland: Computer Science Press, 1978.

17. Intel iPSC Concurrent Programming Workshop Notes, Intel Scientific Computers,
Beaverton, Oregon. (16-20 June 1986).

18. Kleinrock, Leonard. "Distributed Systems," mmunicatin a12t ACfM, 21:
1200-1213 (November 1985).

19. Lee, Lieutenant Ronald. Pedorman om a Analysis ofSir of t An
Machines. MS Thesis. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH, December 1985.

20. Lipschutz, Seymore. Schaum's Outlin Scrita I= and Problems of Distec
M tnlici. New York: McGraw-Hill, 1976.

21. Norman, Captain Douglas 0. &aoning, in Real -Time for the lot i Aga : An
£umiagii of A Model Dasd A~sh a Baaging in Real-Tim fag Artifcial

=i A I A. MS Thesis. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH,
December 1985.

22. Patton, Peter C. "Multiprocessors: Architecture and Applications," Comgute : 29-40
(June 1985).

C" 23. Page-Jones, Meilir. The Practical CM&idQ t SICrd System Lkign. New York:
Yourdan Press, 1980.

24. Retelle, LtCol John P. Jr. "The Pilot's Associate-Aerospace Application of Artificial
Intelligence," Sgnllg: 100-105 (June 1986).

25. Rich, Elaine. ificial In, lligcnc. New York: McGraw-Hill, 1983.

26. Seitz, Charles L. "The Cosmic Cube," Communications of tbe ACM: 28 22-33 (January
1985).

27. Siegel, Leah J. Ctal. "Performance Measures for Evaluating Algorithms for SIMD
Machines," =E sio on Softwr ngineering, S-: 319-331 (July 1982).

28. Siegel, Howard Jay, and Robert J. McMillen. "The Multistage Cube: A Versatile
Interconnection Network," Co mpjlc: 65-76 (December 1981).

29. Seward Walter D., and Nathaniel J. Davis IV. "Opportunities and Issues for Parallel
Processing in SDI Battle ManagementlC3." Presented at the AIAA Computers in
Aerospace V Conference, October 1985.

30. Stankovic, John A. et Al. "A Review of Current Research and Critical Issues in
Distributed System Software," Disibuted Pessing Tchnical Committe Newsletter.
7: 14-47 (March 1, 1985).

188

S r-~" . " -.



31. Stankovic, John A. "A Perspective on Distbuted Computer Systems,"
Irxna wbona MUMmC-M: 1102-1115 (December 1984).

32. Stein, Kenneth J. "DARPA Stressing Development of Pilot's Associate System."
Aviation N We 5==d UliIMjl: 69-74 (22 April 1985).

33. Treleaven, Philip C. "Parallel Models of Cornutation," Lai zlcessi~g. Systems.
edited by David J. Evans. Cambridge, MA: Cambridge University Press, 1982.

34. Tuazon, J., &I al. "Caltech/JPL Mark U Hypercube Concurrent Processor." IEEE
Publication, 1985.

35 Wah, Benjamin W. C1 al. "Multiprocessing of Combinatorial Search Problems.
CoImputerI: 93-108 (June 1985).

36. Wu, Angela Y. "Embedding of Tree Networks into Hypercubes," Joumrnal f Parallel
nd D Cg~pglng, 2:238-249 (1985).

37. Yourdon, Edward. Manalingz S j Th umd Tehniques (Second Edition). Englewood
Cliffs, New Jersey: Prentice-HIl, 1979.

189



1wVITA

Captain Richard T. Mraz was born on 16 November 1960 in Gloversville, New York.

After graduating from Mayfield Central High School, Mayfield, New York in 1978 he

attended the United States Air Force Academy. Upon graduation from USAFA in 1982 with

an Bachelor of Science in computer science, he was assigned to the Air Force Data Systems

Center (now Is Information Systems Group), Pentagon, Washington, D.C. At the

Pentagon, his primary duties included local area and long haul computer network analysis.

In May of 1985, Captain Mraz entered the Computer Engineering program at the School of

Engineering, Air Force Institute of Technology.

190
# ?~**~%~?*JE* *~d*~~*I ~ §~ ~°



SECURITY CLASSIFICATION OF THIS PAGE

IREPORT DOCUMENTATION PAGE OMB No.70,0-0 8M

REPQT SEURIY CLSSIICATONlb. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

2b. DIECLASSIFICATION /DOWNGRADING SCHEDULE Approved for public release;
_______________________________distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCE/ENG/86D- 2

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(IN applicble)

School ofEngineering AFIT/ENG _____ ______________

6c. ADDRESS (City, State, and ZIP Code) 7b- ADDRESS (City, Stott, and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio4 5 4 3 3 -6 5 8 3  __ _________________

11a. NAME OF FUNDING /SPONSORING 8 b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION j(If applicable)

OSD/SDIO ___________________

11c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT ITASK WORK UNITPentagon, Washington D .C. ELEMENT NO. NO, NO ACCESSION NO.

20301-7100 II
11. TITLE (ncueSecurity Classification) Performnce Evaluation of Parallel Branch and Bound

with the Intel iPSO Hypercube Computer

.2PROA UHRS Richard T. Mraz, Captain, USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, month, Day) 1S5 PAGE COUNT
MS Thesis FROM __ _TO I1986 December I201

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse If necessary and identify by block number)
FIELD GROUP SUB-GROUP Parallel Processing Parallel Search

09 02 IBranch and Bound Search

T 
Object-Oriented Design Hypercube

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Advisor: Walter D. Seward, LtCol, USAF
Assistant Professor of Electrical and Computer Engineering

"Ted tIOO60 LAW AFR IWo.f

,.*,.DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
MUNLASIFED/NLMITD SAME AS RPT. 0 DTIC USERS Unc lass if ied

2a. NAME OF RESPONSIBLE INDIVIDUAL I22b. TELEPHONE (include Are oe 22c OFFICE SYMBOL
Walter D. Seward, LtCol, USAF I(513) 255-2024"Coe I AFIT/ENG

DD Form 1473, JUN 86 Pre vious editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE



With the recent availability of commercial parallel computers, researchers are examining

new classes of problems for benefits from parallel processing. This report presents results

of an investigation of the set of problems classified as search intensive. The specific

problems discussed in this report are the 'backtracking' search method of the N-queens

problem and the Least-Cost Branch and Bound search of deadline job scheduling. The

object-oriented design methodology was used to map the problem into a parallel solution.

While the initial design was good for a prototype, the best performance resulted from fine

(.e tuning the algorithms for a specific computer. The experiments of the N-queens and deadline

job scheduling included an analysis of the computation time to first solution, the computation

time to all solutions, the speed up over a VAX 11/785, and the load balance of the problem

when using an Intel Personal SuperComputer (iPSC). The iPSC is a loosely couple

multiprocessor system based on a hypercube architecture. Results are presented which

compare the performance of the iPSC and VAX 11/785 for these classes of problems.

I& 
,

--



.Mow--- W


