

Contents

1 Executive Summary 1

2 Progress on Design Generators 3
2.1 Introduction 3
2.2 Parsing, Table Building and Analysis 3
2.3 Schematic and Layout Back End Programs 4
2.4 Software Development 5

3 A Graphics Accelerator for Curves and Surfaces 6

4 VLSI Tools Release 3.1 8

5 Educational Offerings, 9

6 Simulation With Network C 10
6.1 Enhancements 10
6.2 Experiments 12

7 Circuit Designs 16
7.1 Decoders 16
7.2 Adders 17
7.3 Memory Elements 17

APPENDICES
A EBNF for Meei's Notation (MN)
B Application of MN to a Decoder
C Application of MN to a Multiplier
D Hercules: A Power Analyzer for MOS VLSI Circuits

* ' wi

1 Executive Summary

This document reports on the research activities of the Northwest Laboratory for
Integrated Systems.(formerly the UW/NW VLSI Consortium) for the period 10 De-
cember 1986 to 6 April 1987 under the sponsorship of the Defense Advanced Research
Projects Agency. The applicable contract for this period is MDA 903-85-K-0072.

At the beginning of calendar year 1987 we formally became the Northwest Laboratory
for Integrated Systems. As our new name implies, we see our research building upon
the design generator research and extending naturally to the larger issues of systems
design and integration.

The design generators project reached a new milestone with the completion of both
layout and schematic compilers for the declarative notation MN (see Section 2). Our
experiments have shown that the notation is sufficiently flexible to accomodate a
variety of circuit designs. Implementation of both a decoder and multiplier gives a
compact notation and emphasizes the structural correlation between the layout and
the schematic (see Appendices B and C).

Although our new name implies a new orientation, we have dealt for some time with
system issues in several ongoing projects. The Quarter Horse, a 32 bit microprocessor
designed by a half dozen students, presented problems not only in complexity-area
tradeoffs of chip design, but also in the board-level design of a Multibus interface.
The Pyramid machine, a hierarchical graphics processor, began with an nMOS chip
design and is now a 64 x 64 pixel working prototype. Most recently, the winter
quarter Advanced VLSI class initiated the design of a special processor for the real-
time generator of parametric curves and surfaces (see Section 3).

The simulation system nc (network c) received considerable use during the recent
quarter. Students in the Advanced VLSI design class employed nc in the functional
simulation of both the chip and the system interface. The designer of the memory
elements in Section 7 used nc as well as spice to verify the functionality of several
analog elements. Ongoing work focuses on language enhancements and run-time
diagnostics (see Section 6).

Several new high performance circuit designs have been initiated recently in support of
the Advanced VLSI class. We have invested considerable effort in developing flexible
generators for decoders, precharge circuitry, and sense amplifiers - common structures
in a variety of memory elements. We are currently at work writing generators for a
RAM (single/dual ported, column/row decoded), ROM, and a CAM.

Work continues on the power analyzer hercules. Designed for the analysis of both
nMOS and CMOS circuits, this tool is intended to estimate load and direct currents

1

le~dlk S

as well as flag excessive voltage drops between pins and devices. Initial experiments
indicate current estimates within 25% of spice (Appendix D).

We recently completed version 3.1 of our VLSI design software, a package that includes
tools from Berkeley, MIT and CMU as well as our own tools. The response has been
enthusiastic - so far 75 requests have been received.

2

2 Progress on Design Generators

(W. Winder, R. Nottrott)

2.1 Introduction

During the first half of 1986 a declarative model for generator construction was de-
fined. The intent of this model, which we term "Meei's Notation" (MN), is to provide a
concise representation that captures the fundamental structural and functional prop-
erties of the circuit. During the past half year, we have developed back end processes
that produce a variety of circuit descriptions from MN.

The back end processes are compilers which convert the declarative description MN
and the accompanying leaf cells into the appropriate representation. The schematic
back end schgen converts an MN and specially prepared post-script-like files into a
post-script file suitable for printing. The layout back end laygen converts an MN and
layout leaf cells (in either magic or caesar format) into a layout description. When
complete, the functional back end fungen will convert a MN and leaf cells into an nc
(network c) input file, which can be compiled and run with a stimulus file to create a
simulation. Currently, schgen and laygen have been implemented. Work is proceeding
on fungen.

Each compiler runs in three major steps: parsing, table building, and analyzing.

2.2 Parsing, Table Building and Analysis

The first major step in creating the output representation is construction of the
parse tree. This step is driven by the input description (MN), which must be an
instance of the grammar described in Appendix A. Minor changes to the grammar
previously reported have been made to increase clarity, to enhance consistency with
the C programming language, and to add features.

The parse tree is made of nodes, which are the non-terminal symbols of grammar
instance, and leaves, which are the grammar tokens (integer literals, keywords, iden-
tifiers, etc.). All subsequent processing of the compiler analyzes this tree.

The function which builds the parse tree is created by running the grammar (in yacc
form) through a yacc to yacc translator ykty.' The output of this process is then

'The lacc to yacc translator 1kly was originally developed by W. Beckett as an aid to the
development of ne.

3 5

LQQ_4_ _e _I~e _e

input to yacc to produce the parser. Ykty adds actions to the bare grammar which
cause the building of the appropriate nodes and the leaves whenever a grammar rule
is identified. Automating the tree building in this manner allows easy modification
of the grammar. Unfortunately, since parsing and analyzing are decoupled, much
care must be taken when adding the corresponding analysis functions for modified
grammars.

This parse/analyze method was taken rather than the standard yacc integrated method
(all actions within the grammar) because the tree information must be retained for
the declarative description. It is quite possible to analyze sub-trees many times with
different inputs, and the full sub-tree must be available for each analysis.

The global symbol table, leaf cell table, function table, and composite table (to assist
evaluation of objects) are each built. The parse tree is also checked to make sure
there are no meaningless constructs (for the given representation).

The exact steps performed during analysis vary from compiler to compiler, but each
analysis function is written to achieve maximum compatibility. Thus, there is one
function that evaluates all expressions regardless of representation, but separate func-
tions to "access" individual leaf cells, each dependent on the representation.

In general, during analysis a top-down decomposition is performed for each expression.
The expression is then composed and the result is returned as the value of the object.
If a line of the MN reads:

A=B IC;

and A is to be evaluated, first B is evaluated, then C is evaluated, then the two (B
and C) are vertically juxtaposed, with the resulting object passed back as the "value"
of A.

2.3 Schematic and Layout Back End Programs

The schematic back end schgen produces a postscript formation representation. When
leaf cells are evaluated, the corresponding picture is drawn on a virtual page. When
the picture is complete, it is scaled to a physical page. The leaf cell interface has
been extended to allow passing of string parameters for dynamic labeling inside the
leaves. We are currently implementing the keywords "ROT" (rotate), "MX" (mirror
in x) and "MY" (mirror in y).

The layout back end laygen is built on top of the cfl layout language. One major
extension was necessary to implement the overlap operators. The position of two

4

cells aligned by overlap is determined by one or more line labels somewhere near the
corresponding borders of two cells to be aligned. Thus if A is given by:

A = B _A C;

and A is to be evaluated, the vertical line labels near the right border of B are
compared with the vertical line labels near the left border of C. Labels are paired, if
possible, by the text of the label (must match exactly). The lengths of corresponding
line labels must be the same. If all the conditions are met, A is formed by aligning
a label in B on top of the corresponding label in C. This alignment is implemented
using two new functions in cfl, sx (signal align in the x direction) and sy (signal align
in the y direction).

2.4 Software Development

The compilers were developed with the idea of trying to reuse as much code as possible
from compiler to compiler, i.e. to maximize the general functions and minimize the
specific functions for each. To that end, most of the analysis code is used in both
of the implemented compilers, even though some particular functions may not be
appropriate (e.g. overlap in schgen). The source code is used unmodified, only having
to be recompiled with different header files (environmental differences). Heavy use was
also made of ykty and some utility functions which were created for the nc program.
To date, the following gives the source lines of code (SLOC) for each functional area
(to the nearest 500 SLOC):

Function SLOC

Parser (including grammar, lexical
analyzer and ykty) 3000

Headers and Common Analysis 5000
Utilities and Debug Facilities 3000
schgen Specific 1000
post-script support (used in schgen) 1000
laygen Specific 500
cfl (used in laygen) 16000

Total: 29500

5V 0i
~U *V V ~ %*~ ~ .~* ~: .~ \.V * 7. ,~.%j VV> - ~ ,..

3 A Graphics Accelerator for Curves and
Surfaces

(C. Ebeling)

The Advanced VLSI Design class was taught during the winter quarter as the sec-
ond of a two quarter sequence. This year we chose to implement a chip for drawing
parametric curves and surfaces that will be used to support an interactive graphical
design system. This work was done in collaboration with Tony DeRase who has devel-
oped a fast method for drawing generalized parametric curves based on deCasteljau's
algorithm.

Parametric curves (and surfaces) can be specified by a set of control points that
somehow characterize the shape of the desired curve, and a method of generating a
curve using these control points. There are many methods to generate such curves,
each of which interpolates the points differently. In general, however, the curve can
be represented by the formula:

Q(t) = ZVB,(t)

where t varies over some interval [ti, tfI. In this equation, V are the control points
and B is the blending function that generates the curve using the control points. The
number of control points determines the degree of the curve, with curves of degree 3
being the most common.

One example of a parametric curve is the Bezier curve, whose blending function is
given by:

This function can be computed using a triangular array of processors according to
deCasteljau's algorithm. The control points are presented to the base of the triangle
and are combined according to the blending function as they move through the tri-
angle, resulting in a single point on the curve corresponding to the value of t. The
entire curve can be generated by varying the value of t from 0 to 1. This method
takes advantage of parallelism both in terms of the number of processors in the array
and in terms of pipelining within the processors. Each processor performs what is
essentially a linear interpolation between two inputs, which can be done with a single
multiplication and two additions. Thus it is feasible to build an array of processors
to compute degree 3 and 4 curves on a single chip.

As DeRose has shown, this method can be extended to other parametric curves by
making the multipliers in each of the processing elements arbitrary linear functions.

6

,-'. Lw .WVWrI, sL .,y -wr

In the Bezier case these functions are t and 1 - t, but in general they can be L(t)
and R(t) under the restriction that L(t) + R(t) = 1. Uniform B-splines, non-uniform
B-splines and Lagrange curves can be generated by suitable choices for L(t) and R(t).

The class first studied a range of implementation issues and settled on two distinct
architectures. The first uses a straightforward implementation of the triangular ar-
ray with as many processing elements as possible. This allows the greatest amount
of parallelism but limits the degree of the curve to that allowed by the number of
processing elements one can fit on a chip. One team of students has designed a chip
based on this architecture for degree 4 curves. It contains the control necessary to
generate both x and y coordinates when generating curves and x, y and z coordinates
when generating surfaces. The processing elements use 16x16 modified Booth multi-
pliers and 4 pipelined stages to achieve a throughput of 5 million points per second.
The information that describes a curve, ie. the control points and the linear function
coefficients, is double-buffered so that the generation of the next curve can begin as
the previous curve is finished.

The second team implemented a more general architecture that allows curves of
greater degree. This chip uses just one high-performance processing element along
with many pipeline registers and programmable control. This chip will be somewhat
slower than the first chip but will be more flexible both with respect to the degree of
the curve generated and the actual processing method.

The I/O interface to these chips has been designed so that internal data and control
registers can be written and read directly from a processor bus. We plan to use a
standard VME board to install a graphics board based on these chips directly in
a Sun3/160 workstation. The system may then be used by the graphics group for
further research into interactive design.

7

4 VLSI Tools Release 3.1

(L. McMurchie, W.Jessop)

Included in this release are all of the Berkeley '86 tools, in particular magic. Although
we use magic extensively, we have included many of the older Berkeley tools which
may have utility in special situations. Caesar, for example, is useful for creating
actual mask geometries.

We have expanded the number of graphics terminals/workstations which magic sup-
ports. In addition to the SUN color workstation drivers distributed with the '86
Berkeley tools, there is support for the VAXstation GPX (drivers developed at Stan-
ford) as well as the Apollo DN series. All of these implementations require eight bit
planes for effective use of color. Also supported are AED and Metheus Omega color
graphics devices.

We have modified our layout assembly system cfl (Coordinate Free LAP) so that it

tangos with magic (i.e. it reads and writes .mag files). Cfl treats magic's abstract
layers just like actual mask layers. Modifications to the dbx debugger allow one to
display symbols interactively in the debug run of a cfl program.

While we use magic extensively to create layouts, we continue to use mextra to extract

CIF files created with magic, as opposed to magic's internal extractor. In fact we
have modified mextra so that it treats p-well and n-substrate as conducting layers.
(an option also exists to treat wells and substrates as nonconducting layers) We found
this necessary for detecting GND-Vdd shorts created by connecting an ohmic contact
to the wrong rail. Mextra also produces an additional file (.tbs) which contains for

every device all four terminals (gate, source, drain and substrate). The program valtbs
examines this file to insurt that all p channel devices have substrates connected to
GND, and n channel devices have substrates connected to Vdd. Any devices in
wells without ohmic contacts are flagged. An added feature of treating the wells as

conducting layers is that the input pads, which commonly contain a well resistor may

now be simulated from the actual bonding pad, instead of from inside the guard ring.

Our emphasis here at the UW is in the bulk 3 micron CMOS and scalable CMOS
technologies supplied by MOSIS. Caesar, lyra, cf, and cdrc support the 3 micron bulk
CMOS process. Magic and cfl support the scalable CMOS process. Mextra supports
both. We have derived "slow", "typical" and "fast" sets of parameters for both spice
and rnl based on information from MOSIS. We have expanded the meaning of the
.config file so it acts as a source of process parameters for both spice and ml.

We have developed a number of layout generators using cfl and include them in this
release. They vary considerably in robustness. Some are compatible with the MOSIS

8

3 micron bulk CMOS process; others are compatible with the scalable CMOS rules.
We have found the padframe generator pads especially useful. From a simple input file
a fully stuffed frame is generated, with input, output, or tristate pads placed according
to the user's requirements. The frame is consistent with the MOSIS standard frame
specifications. Other generators include a multiplier, decoder, ROM, RAM, MUX,
buffer, counter, and several varieties of shift registers. Instances created by some of
these generators have been fabricated; other generators are currently in the process
of being validated.

At the present time we have received a total of 76 requests for Release 3.1.

5 Educational Offerings

As part of an ongoing series of seminars on special topics, the LIS conducted a
seminar on fault simulation in December. The intent was to bring a local audience of
interested engineers up-to-speed on the basics of fault simulation. This seminar was
the culmination of a year's work in this field by one of the industrial liaisons to the
Consortium, Kanu Emeruwa of Microtel Pacific Research. Mr. Emeruwa successfully
set up a fault grading service for a VLSI design environment, using the public domain
software FMOSSIM (Bryant and Schuster 1984).

A number of outside speakers contributed their expertise to the seminar. Prof. Ran-
dal Bryant of Carnegie-Mellon University described the model of fault simulation
employed by FMOSSIM. Hector Sucar of Intel Corp. gave an analysis of chip defects
and the relationship of those defects to the models employed by FMOSSIM. Mr. Su-
car also described the technique of functional test grading as applied to the 80386
microprocessor.

9

6 Simulation With Network C

6.1 Enhancements

(W. Beckett)

Over the last few months major progress on nc has been limited to the conversion
of the analog simulation facilities from their development environment (Fortran on a
CDC Cyber 855) to this environment, namely C on our VAX 780 running Unix. This
work is still incomplete, since, while analog circuits seem to be simulating correctly,
convergence of the numerical method seems to require about 4/3 more iterations on
the VAX. This difference appears not to be a consequence of the difference in numer-
ical precision of the machines but rather of a subtle bug in the VAX implementation.

This quarter we made the functional and MOS capabilities of nc available to our staff
and also to a Computer Science class. The class is using it to design a special purpose
graphics chip. So far, the system seems to be working well for functional level models
and, even though the documentation is incomplete, has been well received by the
class.

Naturally, quite a number of bugs have been discovered and fixed as a result of this
"production" test. In addition, a number of excellent suggestions have been made
for enhancements to the language. These suggestions, most of which have come from
Carl Ebeling, include improving the diagnostic capabilities through a number of run
time consistency checks and making the language more compact through a macro like
capability for generating lists of element descriptors and lists of terms. We plan to
implement these suggestions as soon as time permits.

The two most severe problems to be discovered concerned the plot output and MOS
simulation. The plot output problem appeared as a consequence of an attempt to
make the nc output file compatible with one of our plot programs, simscope. When
this modification was implemented, we lost the ability to discriminate on the plot
file between two signals having the same name but residing in different parts of the
circuit hierarchy. The simulation is correct but the resulting plot is incorrect. The
simscope interface is being reconsidered.

The second major problem was discovered in the MOS evaluator. The MOS calcu-
lation computes the response of each MOS subnetwork to input events and stores
this result in a waveform table. Each signal in the waveform table is then fit with
a piece-wise linear approximation. The inflection points of the piece-wise linear ap-
proximations are then queued as output events. Prior to queuing these inflection
points, a check called the continuity condition is applied and, if possible, the first seg-

10

L \.% I A: V

ment of each piece-wise linear approximation is adjusted so that the voltage on the
corresponding node is a continuous function of time. The original continuity check
operated by computing the intersection of the current waveform for each node with
the first segment of the approximation. If the time of intersection had not yet passed
the queuing of the segment was delayed until that time. This algorithm had the effect
of preserving the slope of the approximation but modified its initial value and the
time at which it was to occur.

As implemented, the continuity check did not take the clipping boundary into account.
The clipping boundary is typically [0.0,5.0] for MOS nodes and is used to prevent
node voltages from rising or falling indefinitely. Failure to consider the clipped form
of the node voltage resulted in some cases of completely unrealistic times for the
intersections. The result would be moved so far into the future that it would be
preempted by a later event and lost altogether.

When the clipping boundary is considered, the equations for the intersections of
the two lines become complex. Rather than take this approach, a new approach
to maintaining continuity is being tried. This approach simply recomputes the first
segment of the piece-wise linear approximation in all cases in a manner that insures
continuity. The slope produced by the piece-wise linear fit procedure is no longer
used. In principle, this should make the history mechanism of nc slightly less effective.
However, in practice, the new continuity adjustment seems to be working well.

The long awaited nc document is both still longer and, regrettably, still awaited.

N

111

4

6.2 Experiments

(L. McMurchie)

RAMs are difficult circuit elements to simulate because of the high degree of coupling
between all cells connected to a single bit line. Sense amplifiers often pose difficult
problems as well because of their totally analog behavior. It is not surprising that
switch level simulators such as rnl that attempt to model charge sharing are not able
to obtain even correct functional behavior of these circuits. One is inevitably forced
to use spice to simulate small parts of the overall structure.

One of our tests of nc at the MOS transistor level has been the simulation of exactly
such a circuit - the dual-ported RAM described in Section 7.3. Figure 1 contains
the spice simulation of the read/write cycle of the memory cell, sense amplifier and
precharge circuitry. Figure 2 contains the identical experiment performed with nc.
The node labels are as indicated in figures 2 and 4 of Section 7.3. The write cy-
cle (WWORDO low) writes a logic one onto NCELLO and corresponding zero onto
CELLO. The nc representation of of CELLO and NCELLO show a reasonable linear
approximation of the rise and fall curves of spice. During the read cycle (RWORDO
high) in the spice run, RBITO and NRBITO show the differential behavior that is
amplified into OUTO and NOUTO. The analog behavior of both RBITO and NRBITO
is difficult for nc to approximate, as a comparison of figures 1 and 2 shows. Nc does,
however, model the differential behavior of these two signals sufficiently well, that
OUTO and NOUTO are correctly driven to the rails.

The spice example completed in 964 seconds on a VAX 780. The nc experiment
required 301 seconds.

Most of our experience with nc has been in the functional realm. Both of the designs
for the graphics accelerator described in Section 6 have been simulated extensively
with nc. Initially a crude model of the function of the graphics accelerator was
implemented. Only the functionality of the chip was considered. The entire processing
element was modeled with a single C language statement. Control was implemented
with nested "for" loops. Data storage resided in arrays. The overall objective was to
obtain the simplest working model of the chip as a starting point for further refining.

Because nc transforms the description of a circuit into a C program which is then
compiled, linked, and executed, the user has considerable freedom in the display of
the output data from the nc run. He can, for example, include C routines that
put data out in any format desired. By triggering these routines on changes in the
appropriate signals, the data can be outputted to the user or into a file. In the case
of the graphics chip, we linked in a graphics library with drivers for a TEK 4010 and

wrote a simple procedure that called these routines whenever the curve coordinates

12

N

were generated. An input routine asked the user for the control points describing
the curve. The resulting nc program then was able to display on the appropriate
TEK 4010 compatible device the simulated curve. The total lines of nc code required
for this experiment was less than two hundred (not including the graphics drivers);
programmer time required was a few days.

Successive refinements of this initial nc model have been made that describe the
function of the main physical components of the chip so that the model now resembles
a hardware description far more closely. The graphics interface has been retained so
that it is still possible to draw the same curves as with simplest model, albeit much
more slowly due to the much greater level of detail in the model.

Our experiences have indicated the need for more diagnostics to pinpoint problems
with models. Also useful would be a macro facility for generating entire sets of
elements and descriptors.

I
130

tUTO tOUTO

OUTS OUT@

WAITS NR81Te

RB! TO RB ITO

WVELL@ NCELLO

CELLS CELLO

uWORDS / W~ORDO

mdORDS Pw0P(~

. ~ ~ ~ 1 as. 04 .~ w.-m t..e. I eff d;* *(A 6 @Le- 7 #46* 4' aE 1 I 0. .4? O. 0. . 0 &e 0" I)o .#,'1 .

Figure 1: Spice Simulation of RAM cell and Sense Amp

14

%

Mau. oul

OUTS rOT

WELL WELL-,

CLLS CLLO
0./

WWOR .. I f.0 f.* f.6.04 fwO .4.0 f. 3w*4 . 6.I f.0 Ic .'I~.* 4.op tc

Fiur 2:N iulto fRA elad es m

S. 00"0415

RWORD Rwow

CL Ct.f. f Kf..

7 Circuit Designs

7.1 Decoders

(W. Yost)

The decoder generator provides a broad choice of styles of decoder that may be se-
lected. The current generator is an expansion of an earlier version that generated
either dynamic nand or nor style decoders using caesar format and 3-u CMOS tech-
nology. The recent work has used magic format and uses the scalable CMOS design
rules. At present the following decoder styles are supported:

Style Format Technology

1) Dynamic nand caesar 3-u CMOS

2) Dynamic nor caesar 3-u CMOS

3) Dynamic nand magic scalable CMOS

4) Dynamic nor magic scalable CMOS
5) Static nand magic scalable CMOS

(pseudo-NMOS)

6) Static nor magic scalable CMOS
(pseudo-NMOS)

7) Gate magic scalable CMOS

The static nand and nor type decoders have simply had the precharge p-type pullup
replaced by a p-type pullup with the gate grounded. The pullup in the nand decoder
lengthens with the number of selects in order to maintain the proper gate ratio.

The gate type decoder uses an and gate for each output to decode the select lines.
In the case of four or more selects, the selects are split between two nand gates, the
outputs of which are put through a nor gate to form the decoder output term. This
decoder uses fully static gates.

The generator has the feature that the number of outputs is selectable as a parameter.
This allows structures such as 3:6 decoders to be built without waste of area. This
also allows an extra select line to be used as an enable on the output. For example
in a 4:8 decoder the extra line could be used to disable all outputs.

Portions of this generator have been used in conjunction with the development of a
variety of memory elements (see 7.3). Decoders are used with the RAM to decode
the row and column addresses. In order to maintain design flexibility when using the

16

RAM in a chip design it was necessary to have the corresponding flexibility in the
decoder outputs. A feature that allows the output decoding to be specified by file
input has been developed. This option could be used in cases where only subsets of
the full address space are required; no area penalty would be incurred.

7.2 Adders

(W. Yost)

The adder generator creates a Manchester carry adder of arbitrary bit length. In this
style adder the carry chain is precharged high, the inputs are examined to determine
whether to propagate the carry from the previous bit, generate a carry or to kill any
carry from being propagated. The carry that is generated into each bit is then used
in the generation of the sum.

This generator utilizes a carry bypass function to speed up the carry evaluation. In
this type of structure the carry into a given bit position is also passed several bits
in the msb direction. If the inputs to the intervening bits are appropriate, then a
gateway is opened for the carry, enabling it to bypass the intervening logic Because
the evaluation of whether to open the bypass occurs in parallel across all bits, a
speedup over the normal serial passage of the carry occurs.

The carry bypass of this generator is organized into groups of three and four bits.
The only exceptions are five bits (organized with a single bypass), two bits (bypass
but no intervening bits) and one bit (doesn't need a bypass).

This generator can be selected by proper choice of input parameters to perform the
function of subtractor. In addition, the initial carryin bit for an adder can be specified
to be tied to the ground rail. The initial carryin to the subtractor can be specified to
be tied to the power rail. The default is to have the carryin as an input. This allows
nonstandard situations to be handled. An example would be the case of a subtraction
in which the signal being subtracted is inverted (active low instead of active high).
The desired function could result by performing an addition with the carryin tied
high.

7.3 Memory Elements

(W. Barnard)

A family of memory generators has been designed around a common set of sub-
modules. Block diagrams of the various memories are found in Figure 1. All memories

17N

IT'

utilize identical decoders, precharge circuits, and sense amplifiers. Once the initial
single port RAM was designed, the remaining memories were developed at a rate of
approximately one every week and a half. This productivity was primarily due to our
layout generation tool, cfl (Coordinate Free LAP).

Since one of the design objectives was high performance, all of the memories utilize
differential signals and a two stage differential sense amplifier. A schematic for this
sense amp is given in Figure 2. The resulting layout is 32 lambda by 180 lambda.
Particular emphasis was placed on maintaining balanced loading even during mask
misalignment. Spice simulations indicate the circuit is capable of detecting less than
.05PF difference on the BIT lines; memory access times of 8-9 ns (not counting
precharge or decoding) have been observed for 100 bit deep memories. Due to the
differential nature of the signals, memory access time is relatively independent of
memory depth; indeed, for a single bit deep memory the access time is 5-6 ns.

A previously designed decoder generator is used for row decoding and column de-
coding (See Section 7.1). A dynamic decoder was chosen for performance and area
optimization. The decoder precharge cycle overlaps the sense amp BIT line precharge
cycle. Thus, the decoder precharge time is included in part of the total memory access
time. In the case of the separate I/O RAM, the read port decoder is active high and
the write port is active low. In both cases the decoder outputs are all held inactive
during precharge.

Two different static memory cells have been designed and are schematically depicted
in Figures 3 & 4. In each case the WORD lines are run horizontally in metall and the
BIT lines are run vertically in metal2 to reduce capacitive load. Power and ground
are also routed in metal. The separate I/O RAM of Figure 3 allows simultaneous
reading and writing at different clock rates. In the case where the same cell is being
read and written, the read port tracks the write port.

The ROM cell is a two transistor implementation with one transistor pulling up and
the other pulling down. Since both transistors are p-channel the pull up is not all
the way to the power rail. However, the outputs are differential, so fast access times
are to be expected. This ROM cell configuration was chosen primarily to fit in with
the previously designed peripheral circuitry. A smaller ROM could be designed if
ROM-specific peripheral circuits were created.

The CAM is an implementation of a Hopfield Neural Net associative memory model
and behaves similarly to a ROM.

The following table lists the memory cell aspect ratios.

18

cell aspect ratio in lambda
Neural Net processor element 16 x 16

2 transistor ROM 32 x 21
single port 6 transistor RAM 32 x 41

separate I/O 8 transistor RAM 32 x 61

1

I

19-

ADR D 0WA D

RAMR

A M 4]
array IprV array

RDDR

ADDR

ko sense

Neural
Net

-ROM Arra
U array snse

02

Two Stage SENSE AMP

BIT.,, NBIT.n

3U.0/ NOUT/ n

144 Figur 24.

3.21

4.5) .0/4.

%r~ ~ ~ ~ ~~~~~30 * jIj * * .E~~~ -

Single Port RAM CELL

13 0 .0/ 51 9 ., 1 & - F O, 9 .5 F- - -,

BIT.n NBIT.n

Figure 3

Separate I/O RAM CELL

3.o
137. ~ 37.59

3.0/27.0 3.0O /2 70

3.0/18.5 3.0/16.5

2- 7 3/. /
27..

o

-- RWORD.m

RBIT.n WBIT.n NWBIT.n NRBIT.n

Figure 4

22

Appendix A

EBNF of the Declarative Description N

In the definition given below, the equal sign, "=", is to be read as "is defined as".
All character literals are enclosed in double quotes (i.e., ""). Integer literals are
represented as ILIT. String literals are represented as SLIT. A letter followed by anI
optional number of letters, characters or "-", in any order is represented as an ID.A
double quoted, upper case character string is a keyword. The vertical bar "I" is used
to separate alternatives in the definitions. Braces (i.e. " f " and " I ") specify zero
or more repititiuns. Brackets (i.e. "["and ")express option. Each definition
ends with a" .

<program> -<declaration> ""<statement> [""<in-.spec>]I

{""<statement> }""

<declaration> -<name-.decl> <type-.decl> <param-.decl> E<cell-.decl> 0
[<func-.decl>]

<name-.decl> - "INAME"I ID 11"0.

<type-.decl> - "TYPE" <type-.group> ""

<type-.group> a "LAYOUT" I "SCHEMATIC" I "FUNCTIONAL".

<param-.decl> - "PARAMETER" <param> {""<param> }"

<param> - ID "u"1 ILIT I ID I'm SLIT.

<cell..decl> - "LEAF" "CELLS" ID {""ID }""

<func-.decl> - "IFUNC"I ID f ","1 ID } ";"

<statement> - <regular-.statement> I <out-.spec>.

(regular-.statment> =<object> a<body> { "<body> }

<object> - ID C of P <index-.list> IJ)

<index-.list> - <expr> ("1," <expr> }

<expr> - <ezpr> <op> <expr> I <term>.

<op> of to**11 1 10 1 1 11%11 1 '1+11 1 11 1 1 11 1 1

,&Ho I to i I foio~ I I -It I II -I I

<term> - ILIT ISLIT I <object> I<function> I "I"J<term>
"T" <expr> ")"f IT'C <loop> ")"11 FILL "0C" <expr>""I
<geo-.op> "C" <object> ")" I "fROT"1 "C" <object> "o" <expr> ""

<function> - ID "C" <func-.parms> of)".

<func-.parms> - <expr> C""<index-.list> I""<subrange> C""<expr> JJ

<subrange> - ID "-I" <ezpr> ". ." <expr>.

<geo-.op> 0 "MX"l I "1MY"1.

<body> of <assignment> C""<IfCond> I.

<assignment> a <expr> I<out-.assign>.

<out-.assign> - "OUTPUT" <in-.out>.

<in-.out> - "1[" ID "il" "(" subrange 1 "1," <expr>) ")".

<in-.spec> - "INPUT" "a" <input> f{ "f," <input> }.

<input> = ID <in-.out>.

<out..spec> m "OUTPUT"1 I "C" <index-.list> III)"U <out-.body>I

{""<out..body>}.

<out-body> a <assignment> "1:" <expr> C""<IfCond>).I

<loop> -<loop-op> ""<object> "C" <loop..index> """"

2

6MRS S

<loopop> '' I "*"1 I "& I "-' I "1" I "I-" I "--" I

<loop-index> a <expr> I <subrange> C "," <expr>].

<IfCond> - "IF" <relation> { "&&" <relation> I "1I" <relation> }.

<relation> - <expr> <re-op> <expr>.

<re-op> 1 "<<" I "<" I "=n" I "!=" I ">" I ">=.

Notes on Semantics:

Parameters may be integers or strings. Terms may be integers, strings or geometric
objects, but must make sense in context. For example,

A = 2 + "xyz";

is meaningless. The geometric operators are vertical and horizontal juxtapose ("J"
and "-", respectively) and vertical and horizontal juxtapose with overlap ("I^" and
'--^", respectively). Loops must evaluate a positive number of times (i.e. no "NULL"

result is allowed in loops). The "FILL" term only has meaning when composing it
with a geometric operand.

3
I,

w ~ :~. - ~ ****~** * ~~f.7 .'.>,I

Appendix B

Application of MN to a Decoder

(W. Yost)

The gate type decoder is presented here as an example of the use of Meei's Notation
(MN) for creating schematic and layout diagrams. The decoder is a commonly used
logic block in which "n" selects are decoded causing one of 2**n (or less) outputs to
go active.

In this example the "inv" parameter controls the sense of the output. This decoder
is normally (inv=O) active high. The "h" parameter controls the number of output
terms in the decoder. This must be <= 2* *(#selects). The "m" and "n" parameters
determine the number of selects. In the gate decoder each output term is derived
from the selects feeding an "m" input nand gate and an "n" input nand gate which
in turn feed a nor gate. The "m" and "n" parameters would normally be equal or
within one of each other. Thus (m+n) represents the total number of select lines.

The MN for the layout is shown in Figure 1. The architecture splits the circuit into a
pullup plane and a pulldown plane. This is indicated in the first line of programming.
Other structures include a row of input buffers that fits onto the bottom of each half
and the output nor gates that are stuck onto the right hand side of each decoder row.
Figure 2 shows the tiling that is performed in this example while Figure 3 shows the
expanded Magic format layout. The MN for the schematic representation is shown
in Figure 4. The schematic itself is shown in Figure 5.

A comparison of the notation for the layout and schematic forms shows almost a
line for line correspondence. As much as possible cells that were used in a common
function were given the same names. The last half of the schematic notation performs
some routing of common inputs that isn't done in the layout. Other than that the
major differences are due to the fact that the schematic notation performs labeling,
a function that for the layout is performed outside of the context of the notation.

The rest of the differences came about through the simplification that can take place
in the schematic. Schematic glue pieces are generally not required. In the schematic
gdec.empt[l 2 ...] cells were used as spacers at points where cells routing power and
ground were used in the layout. Some pieces of layout (gdec-highr - gdec.Iowj) were
joined into a single schematic cell (gdec.npjoin). One other difference is that in the
schematic a single function Z[] filled the function of Y[] and Z[] in layout. A single

function required two slightly different layouts. In the schematic this was not so and
a single cell sufficed.

Other than the labeling, the differences between notations could be eliminated if
desired by simply not taking advantage of the minor simplifications that can be
made in the schematic notation. By judicious partitioning of the schematic leaf
cells and maintenance of a naming scheme the two notations could be made almost
interchangeable.

NAME gdee;
TYPE LAYOUT;
PARAMETER
mnv-C,
h- 6,
mn-2,
n-2;

LEAF CELLS
gdec lowj, gdecl1r, gdeclrl, gdec ninv fill, gdec-njoin, gdec -nor, gdec;-o_mnv,
gdec oneI gdec onel, gdecpmr, gdecpone, gdec high, gdecponel, gdec-highr,
gdec zero, gdcci imv, gaecypzerol, gdec_i,_ninv, gdecroutel,
gdecinv, gdecrouite2, gdec -mv fill, gdec-route3, gdec mnv full,
gdec-zero, gdec _low, gdec-zerol, gdec 11, gdecroute4;

FUNC binary;

gdec - left -- right;

left - left bot I (Ileft row(i](i-h-l..O)));
left -bot- gdec 11 -- (--(gdic_i_inv(m+n))) -- gdec mnv-fill;
left-rov~i] - gdec high -- (--(W~i,j](jinm+n..n+l))) --

(--(X~i,k](k-n..l))) -- gdec highr -- gdeclowj;
W(i,j] - gdecpzero, IF binary(i,j) -- 1

- gdecpone;
X~i,j] - gdecpzerol , IF binary(i,j) -- 1

- gdec-ponel;

right - right bot I (l(right-row(i1(i-h-1..O))):
right-bot- (--(gdec-i-ninv(m))) -- gdec ninv fill -

(--(gdec i ninv(n))) -- dec-botend;
dec-botend - gdeclr, IF invZ-U

- gdec lr -- gdec_1r1;
right-row(iJ (- Y[i'J](J-mn+n..n+l))) -- gdec-nJoin

-(-(Z~i,k](k-n..l))) -- dec-end;
dec-end - gdec nor, IF mnv--C

- gdec-nor -- gdec o inv;
Y(i,j] - gdec 'one, IF bina-ry~i,j) mm1

- gdec-zero:
Z(i,j] - gdec -onel, IF binary(i,j) m

- gdec_zerol;

Figure 1

0 0 0 0 0 0

Figure 2

01

I III

Figur 3'3

=-r..' M rT U

NM decoder;
TYPR SCBI&MTXC;
PAWEMTZ
mv-C, h-6,m'.2, ni2;

LEAFP CEUTS
gdec.Omt1, gdec..aint2, gdec eqit3, gdec ept 4, gftc i nv,
gdec nor, gdc fnd, gdec n Join, gdecnPoin, gdecocinv,
qdec one, gdec~pone *gdecp-) ol, gdecpzero, gdec-pzeol,
gdoc routelm gdc oute2, gdecroute3, gdec_ route 4, gdec...routes,
gdecjih,gdec_sero;

FTJC binary, $treat, int2str;

MKIN I

beoder in lins I body:
body -loft -- right;

in-lines- connector*--Corners;

left - loft bat I (Iloft rw i-h-1..O)));
left bpot- gdec ewt1-- (-qciiV(m+n))) -- qfeceq~t2;
left'rov(i] -gdftciigh-- (--I ~wTi'j3 (j-m+n.. +1))) --

WILD 9dec(--(X~i,k)(k-n..1))) -- qdecnpjoin;
=~~j gdec pzero, IF binary(i,j) 1

_ depone;
Xti,j] - gdecpzerol, IF binary(i,j)-1

-gdecpone 1:

right - right bot I (I(right rowji3(i-h-1..0)fl:
right bot- (-geiinm))--gdec-e.t2--

(--(gdec £ £nv(n)));
right-rowtiJ - -(z~i,j](jmjn..n+1))) --gdecnoin

dec-end(i) - qdec nor(strcat("out", NDX(i], IF inv-0
: gdec nor["'3 -- gdec-omnvatrcat(nout", MDX~il]1NDX(i] -int2itr(48 + i), IF i < 10

s treat(int2str(40 +. i/10), int2str(48 + i%10)),
IF i >- 10 A& i < 100

Z~i'j] : gdeq_one, IF binary(i,j) -- 1
-gdeq-zero:

connectors - (I conn-rovji] (i-m+n..lm);
conn-rov (±- gdecempt3-- (--(conn eemnt~i,j1cj1..m~n)))

conn element~i,j] dcrue;
-dcrut~"1 IFZ i -- £J i6 !- (m+n)
- decroutelstrat("el",NDX~m+n-jl], IF i-j 46 ii-(m+n)
-gdec-route4(w"], IF i~j 69 i!-(m+n)
- deprouto4(.trcat(usel", NDX(m+n-j])], IF i'j G& i-n(m+n)
-gdoecroute3;

corners - corneri I corner2;
corneri - (I corn rovji](i-m+n..m+l)));
corrier2 - (Icorn_rovl1i](i-zu..1))):
corn rowti]- (--(corn elemntji,j](Jj..m))) -- gdec route5-- (--(corn oeemnt(i,kJ(km+1..ms~n));corn rovlti]- (--(corn elemnt(T,j](j-l..mfl) -- gdecewt4

corn-elemnenti,j J-
9 decroute2, IF i--j

gdec routeS, if i>j- decroute4;

Figure 4

Fipm 5

~~xtti

~I~ji-j

Exz-rz,
~~T_

- - - --

Appendix C

Application of MN to a Multiplier

(M. Bailey)

A multiplier is presented here to illustrate the use of the generator back ends. This
multiplier is unsigned, with variable multiplicand and multiplier widths. The mini-
mum width supported for the multiplicand and multiplier is 3. This multiplier has
sizable input drivers, with independent driver strengths available for the multiplier
and the multiplicand. Also, portions of the GND and Vdd busses can be indepen-
dently sized.

The "Meei's Notation"(MN) for the multiplier layout is shown in Figure 1 and Fig-
ure 2. Note that the parameter list contains entries for the variables listed above.
The "m" parameter controls the width and the "n" parameter controls the height of
the multiplier array. These specify the widths of the multiplier and the multiplicand.

The multiplier is composed of five major structures. These are:

" Multiplier plane (mplane)

" Drivers for the multiplier (xdriver)

" Drivers for the multiplicand (ydriver)

* Ripple adder for the result (adder)

" Ground bus and low-order output bits (rside)

The positioning of these structures is described in the notation. Note that the ydrivers
overlap the mplane. The adder is overlapped with the multiplier plane and drivers so
that the Vdd bus at the bottom of the multiplier plane can be overlapped with the
Vdd bus at the top of the adder array. All of the other top-level cells are tiled.

In the definition of the adder, the leftadd cell is described as overlapping the addrow
cell even though there is really no overlap desired. In fact, the overlap operator is
used to align the cells so that the Vdd busses are connected.

In the definition of the xdriver cells, notice that xbuf differs depending on the widths
of the Vdd and GND busses. This is described in the notation by using the IF

1-.

i • q •- - * • ." q , . I

construct. In this case there are four different possibilities, depending on the sizes of
the busses. The cases are order dependent and are evaluated in the order listed.

The resulting layout is shown in Figure 3 and Figure 4. Figure 3 shows the cells as
they are constructed using MN, and Figure 4 is the expanded layout.

The MN for the multiplier schematic is shown in figure 5. The highest level definition
of the multiplier is similar to that in the layout description in that they are both
composed of the five structures listed above. The only difference is that there are no
overlapping operators in the schematic description, and thus all overlapping operators
in the layout description have been replaced with the corresponding non-overlapping
operator.

It is in the sub-definitions that the two descriptions differ. While the layout descrip-
tion contains complete information on the multiplier, the schematic description of
the multiplier (Figure 6) shows function blocks for the adder cells and the multiplier
cells. Since the schematic is a documentation tool, the level of detail shown in a view
is based on clarity. Thus the MN for the schematic is simpler than that of the layout.

Because the schematics of the function blocks in the schematic are of interest to the
user, these schematics are provided as separate schematics. There is one schematic
for the full multiplier (Figure 7), and another for the adder (Figure 8). Since these
schematics are static descriptions of cells, it is not necessary for these cells to use MN.
However, these cells were generated using MN because it was easy.

2

NAME mult;
TYPE LAYOUT;
PARAMETER m - 4, n - 4, xdrive - 7, ydrive -25, vdd bus -20,

gnd -bus -30;
LEAF CELLS

maul, man, maur, may, May,
my&, myt, myg, myo, myb, mybs,
muif, mulv, inuih,
zmW#d imn, imur may, nmibvi.
nma, mxf, mxg, IMo, nmv, mxgd,
mtra, mrab, mrb, Mrs, inrat, mrtb,
mrsb, inrbb, inrout, inro, mrxt mrc;

mult - (adder 1^ (ydriver - (ipian. I xdriver)) -rside;

adder -leftadd addrow;

addrowi maul -- (-(mam(m-l))) -- maur;
leftadd -addvbus - addxtid;
addvbus -may, IF vdd-bUs <-7

-(--(mav((vdd bus-i) /7 + 1)));
addxtnd - may, IF ydrve <- 7

- (--(may((ydrive-i)/7 + 1)));

ydriver - yalmost J^ upleft, IF vdd bus <- 7
m yvbustub 1^ yalmost IA upljeft;

yalmost - (ybuf(i-l..n)));
ybuf - yvbus __ Cmya -- ytrai2 -- ^ myo), IF vdd bus > 7

- myb -- (mya -- ytran2 -- ^ myo);
ytrari2 - myf, IF ydrive <- 7

= myg -- (- A(myf(ydrivei/7)));
yvbu3 - (--(myb((vdd-bus-i) /7 + 1)));
yvbustub - (--(mybs((vdd-bus-)/7)));

upleft - vertv, IF vdd bus <- 7
- horizv I " vertv;

horizv - (I (horizrow((vdd-bus-i) /7)));
horizrow m (--(mulf((vdd bus-i)/7 + 1 + (ydrive-i)/7))) -- muib;
vertv - (--(vertrow((vddbus-i)/7 + 1)));
vertrow - miilv , IF xdrive<- 7 && grid ~bus <-7

- (IHmuif((xdrive-i)/7))) I mulv, IF gnd bus <- 7
- muiv I (I(mulf((gjnd,_bus-i)/7))), IF xdrive <- 7
- (IHmulf((xdrive-i)/7))) I mulv I

(I (muif(C(grid bus-i) /7)));

Figure 1: MN for the Multiplier Layout

-. ~ ~ ~~~~~" WO we-~ . ,.. -i.- . i.r .. rw r ~U7~W ~VMW

mplane - (I(rowji](i'mi..n)));

row(li] bot left (-~o~-))
row(aJ - midf-left (- A (plain (m-1)))
bot left - b-plainylus;
bot- - bp lainjplus;
mid left -plain;
plainiplus - zmmv I plain;
plain - mmd I nwnq I mmu I 3mw;
bplainplus - mmbv I plain;

xdriver - (__A(xbUf(iusimM)));

Xbuf - mxO 1'^ xtran2 1'^ mxa, IF vdd bus <- 7 G& grid bus <- 7
- xvbu3 I (mxo IV xtran2 IV mia'), IF gridk_bus --
-(Mrxo VA xtran2 V* mxa) I Xgbus, IF vdd -bus <- I

- xvbus I (nuco 1^ ,tran2 V mxa) I xqbu3;
xvbus - (IHmxv((vdd-bu3-i)/7)));
xgbus - (I (mxgd((gnd bus-i)/7)));
xtran2 - nucf, IF xdrive <- (Vmfxrv-)7))Vmg

rside -addg'nd 1^ gndcol VA topgndcol;

addgnd - mra, IF grid bus <- 7
- mra -- (--(mrab((gndbus-l)/7)fl;

gndcol - (jV(gndout[i](i-i..n)));_

gridout(n] - mrst, IF grid-bus <- 7 rr- -(rb(nbsl/))
gndout(i] - mrsb - mrout, IF grid bus <- 7

- mrsb -- (--(mrbb((gnd Eus-l)I7))) __A~ mfroUt;
gndout~a) - mrs __A mrout, IF grid bus <- 7

- mrs -- (--(mrrb((gndbus-1)/7))) -- ^ mrout;

topgndcol - mrxcrow 1^ gcfillrow, IF vdd-bus <- 7 && xdrive <-7

- (mrxcrow I xfillrow) 1V gcfillrow, IF vdd bus <-I
w (vfillrow I mrxrow) 1^ gcfillrow, IF xdrirve <- 7

- (vfillrow I mrxrow I xfillrow) 1V gcfillrow;
vfillrow - (--(vfill((gnd,_bus-i) P7 + 1)));
vfill - (I (mro ((vdd Ibus-i) /7))) ;
xfillrow - (--Ocxfilf((gid bu3-l)/7 + 1)));

xfill - CI(mroC(xdrive-1)77)));
gcfillrow - (I(gcfill((gnd bus-i)/7 + 1)));

- mrc - (--(mnro((grid bu3-i)/7)));
mrxrow - (--(mrx((gnd-bus-i)77 + 1));

'4

Figure 2: MN kr the Multiplier Layout (continued)

4

40twW-LXmw%-NWPnW."o-IW 4

X- -XX

________ _____________________ _____________________ ______________________ _______________________

3P0Z

=-Ljjcp

Figue 3:CeU ayou forthe ultilie

w M ",fJilL, ___I_
________Q___,

-~~~~~~~~~~~~~~~r -- r-. "m ~-~* ~- ~*~ ~N*~-~' .Z~RWWWWEU

OVI

Figure 4: Expanded Cell Layout for the Multiplier1

NAME mult;
TYPE SCHEMATIC;
PARAMETER m -4, n -4;
LEAF CELLS fulMUlt_3ch, xbuf-sch, rxbuf-ach, ybuf-sch, bybufs3ch,

topcorner sch, empty sch, b-31des3ch, rsides3ch,

ladd-3ch,-add sch, iadd sch,

FUNC 3trcat, irit23tr;I

mult -(adder I (ydriver -- (mplarie I xdriver))) -- raide;

adder -empty_ sch -- eMPtY 3ch -

ladd sch[strcat("p;",int2str(i+l)) ,strcat ("p",int23tr(i+2))]
-- radd sch("O","ca,trcat("lp,int2str(n))], IF m <- 3

-emptysci -- eMty 3ch --
ladd-sch(strcat ("p"3,int23tr(m+n-2)) ,trcat ("p",int2str(m+n-1))]

-- (--(add sch["ca",strcat("p",int23tr(n+j))] (J-1..m-3)))
-radd-sc["","ca",trcat("p",int2str(n))];

ydriver -bybuf sch[strcat("y",int2str(n-1))J I
(I~ybDuf sch[streat("y",int23tr(n-i)),"O"](i - 2..nf)
I topco;rner-sch("O"];

mplane -(I(rowri](iinl..n)));
rowfil - (--(fullmult 3ch(wCf,3trcat(u"xn,int2str(m-jJ)g

"3",strcat("y";,int2str(n-i))1 (j - 1.))

xdriver - (--(xbuf sch("O","O",3trcat("x",int2str(M-J))1(j - ..M-1f)
-- rxbuCsch"O","xO"];

r31de - br31dO -sch[strcat("p",int2tr(x-1))1 I
(I (rside - ch[3trcat("p",int2str(n-i))] (i-2..n)))
I empty_sch I empty ach;

Figure 5: MN for the Multiplier Schematic

7

rw r- rwyw vrwmw ru

Fiur : cemtc igrm o teMutple

0 0 0 a 0 0

Pd~f~ Pb ~ pb" Po8o

a ~ ' - % ~ I '% V V V O ~ ' v\

Cout

Figure 7: Schematic Diagram for the Fullult Cell

Cout

Figure 8: Schematic Diagram for the Adder Cell

9

9W
I

Appendix D

Hercules: A Power Analyzer for MOS VLSI Circuits 1
(Extended abstract submitted for publication)

AKHILESH TYAGI

FR-35. Department of Computer Science
U niversitv of Washington

Seattle. WA 9819.5

ABSTRACT

Hercuks is a stage based MOS power estimator. The present CMOS version reports the average
and peak load current & the average and peak direct current due to slow rising input signals for each

stage activated by a clock or input transition. A tree like data structure models the Vdd and ground

distribution from the pin to sources/drains. The voltage drops from the pin to sources/drains are

also reported. Note that an extension of Hercules to handle nMOS circuits is also planned. It is

relatively straightforward to extend this algorithm to estimate the DC power consumption.

'Supported in part by DARPA under Contract MDA903-85-K-0072

1 Overview

The contributions of this paper are as follows.

We give a linear average time algorithm for computing current levels based on stage decom-
position [0us85] of a CMOS VLSI circuit. A stage is a chain of switches followed by either
an output or a gate. The stages are traced out in a depth-first order enabling us to deal with
the cross-coupled memory elements. The current implementation is an extension of a timing
verification program, crystal [Ous83]. Hence, it supports all the mechanisms of crystal for
flow specification.

" We have an accurate switch-level model of short-circuit current in CMOS inverters and static
circuits. In CMOS circuits, slow input signal edges give rise to short-circuit current from Vdd
to ground. The duration and magnitude of this current depend on the input signal slope,
load and the device gain. Interestingly, all these factors can be encapsulated into a single
number, rise time ratio, as observed by Ousterhout [Ous84] in a different context. The rise
time ratio is the ratio of input signal slope to the native output signal speed. Most of the
digital circuits are designed with only a fixed set of load and transistor sizes. The information
about these structures can be extracted from SPICE runs on basic types of devices occuring
in the circuit. Thus this model can predict the short-circuit current levels to within 20%
of SPICE calculations. Ousterhout [Ous84] was first to use this fact to model the effective
resistances of devices in crystal.

" As the plot in Figure 2 shows, the total charge flow is minimum at the rise time ratio of one,
or when the input and output signal have the same rise and fall times. Thus the closer the
rise time ratio of a stage is to 1, the more optimal is the driver sizing with respect to power
consumption. Hercules can report all the stages that have a rise time ratio larger than a user
specified threshold. Clearly, this information is very useful in sizing cascaded drivers.

" We extend the metal tree idea of Wilson [Wil85 to accomodate multilayer metal and loops.
Typically, a VLSI circuit does not have many loops in its power distribution metal bus
structure. We found that the comb structure, as shown in Figure 3, was the most common
form of loop encountered in power buses. Notice that it is a very compact biconnected
component, in graph theoretic terminology. We are able to deal with them very efficiently
using a depth-first based search technique.

All these components are embedded in the power analysis program Hercules. The current
version of this program does not incorporate the metal tree structure. We have a separate program
to construct a 2-layer multipin metal tree. We are working on a program for dealing with the loops
(connected components).

?1

] ~

2 Introduction

With the increasing complexity of integrated circuits, came a wide gamut of tools to assist a de-
signer. Graphics layout systems, geometric design rule checkers, circuit extractors, simulation tools
and timing analyzers are only few examples of the tools available to manage the mass complexity
of the chips. One area which is not represented in this list is power analysis. In a large chip it is
difficult to keep track of current requirements of different components. Consequently, many a time.
the buses may not be sized properly resulting in metal migration and noise problems. Although,
the power consumption of a CMOS device is dramatically smaller than that of an nMOS device,
the size of current day chips has made it necessary to pay more attention to power requirements
of a CMOS chip. Most often in a high performance chip, the drivers are sized up to provide small
delay times. Pipelined systems are very commonly used in the high performance architectures. For
such systems most of the area is switched during each clock cycle [ST86]. In addition, the power
consumption is a function of the frequency of operation. Thus the problem is even more critical
for the high performance systems.

Especially important is the information derived from the voltage drops from the power (ground)
pin to the drain (source) terminal of the transistors. For a brief duration, when the peak transient
currents are very high, this drop can be significant. The operating voltage span of a logic device falls
sharply during this time. Sometimes the devices are not designed with this much noise tolerance.
The pin to device voltage drops provide very useful diagnostic information about a chip. The
average current levels are used to size the power buses to avoid metal migration problems.

RELATED WORK: Several tools exist for the power analysis of nMOS circuits. The Berkeley
tools included a power estimator called powest for aMOS (Cme821. It counts the number of pull-
up load devices (e.g. depletion load). It makes assumptions about the fraction of time each of
these load devices can be on. More recently, Jeff Wilson developed pwranal to estimate the power
requirements of an nMOS chip [Wi185. He also developed the idea of metal tree. pwranal uses the
metal tree representation to report the pin to device terminal voltage drops. However, pwranal can
deal with only a single power pin and one layer metal. Moreover it breaks the metal bus structure
loops arbitrarily.

3 Current Estimation Algorithm

We wanted to be able to model the current flow as an instance of maz flow problem with charge
being the commodity pushed through the network. The switch model provides the ideal starting
point for this idea. Each switch can be thought of as a node in the commodity network with the
switch capacity (transistor width) and switch status (on or off) determining the node capacity.
Applying this idea to the whole circuit can still be expensive. For an exact analysis, we need to

2

S

= *

The stage activated by signal in) going from 0 -- 1 is shown by the thick line. It starts with the
n-chanel connecting to in), followed by two pass transistors A and B, terminating in the gate C.

1 E A B

GND

Figure 1: An Example of a Stage

determine the state of all the switches in the network to work out the node capacities. This involves
a complete simulation of the circuit for all 2'n input vectors (for an n input circuit), to determine the

worst case. Thus, we need to take a value-independent approach to control the problem complexity.

like the timing verifiers TV [Jou83] and Crystal [Ous851 do. The stage decomposition provides just
the right abstraction for an approximate analysis. A stage is a chain of transistors leading from a

strong voltage source (like Vdd, Ground, input or a highly capacitive bus) to an output or a gate.
Typically a stage consists of a logic gate along with all the pass transistors following it. Refer to
Figure 1 for an example of a stage. Note that a chain of transistor channels forms an electrical
path from a voltage source to the output of a stage. Thus, the flow of charge through a stage is

conserved. One transistor in a stage is distinguished as the trigger. All the other transistors in a
stage are assumed to be fully on, unless otherwise specified by the user. This gives rise to a worst

case estimate.

In CMOS there are two components to the switching current, load current and short-circuit

direct current. We deal with the direct current component in the next section. The peak load

current through a stage is the minimum of capacities of all the transistors in the stage. The
average charge flow through a stage is the product of total load capacitance and voltage swing.
The average load current through a stage is estimated by dividing the average charge by the delay
through that stage. The side paths from a stage are assumed to be off. In practice, in a structure
like pass transistor array, not many such paths seem to be active at the same time.

In a typical run of hercules, the user indicates a clock signal transition (rise or fall) and wants to
know the current requirements of this transition. Hercules finds all the nodes that can be affected

3

V. .S

by this clock transition. These nodes are the basis of the initial set of stages. Each of these stages
is handled in turn. For each stage, the average and peak load and direct current calculations are
performed. Then all the stages this stage can activate, are recursively analyzed. At the end of this
calculation, each node is tagged with its average & peak load current levels and average & peak
direct current levels. The power is given by the product of Vdd, the charge drawn from the power
supply and the frequency of this clock signal. Next, we present the algorithm.

procedure {POWERANALYSIS(clock)}
while there are unvisited nodes in the gate adjacency list of clock
do

1. visit one of the gates A from the adjacency list.
1.1 make the transistor T, gated by A, the trigger for a stage, stageA.
1.2 In a depth-first manner, expand stageA, until a complete stage has been found.
1.3 Perform delay and power analysis on this stage.
1.4 Let n, be the output node of stageA. Recursively call POWERANALYSiS(ni).

2. Update the charge and current information for the node clock. Mark A as a visited gate.
endwhile

endprocedure

In the Step 1.3 of this algorithm, the current levels from the children stages are combined
with the current levels of a stage. For a node A which is either a bus or an input, the current
requirements of all the stages with the node A are added to give the current flow at the node A.
In other cases, the maximum current of all the stages a node participates in, is the current flow
through that node. A node is considered to be a bus if its capacitance is above a threshold, or if
user tags it to be a bus.

4 Short-Circuit Current Models

In CMOS static logic gates, there is a short-circuit current component when the input signal
switches. As Veendrick [Vee84] observes, the average level of this current could be as large as
the average level of the load current. Thus it is important to consider the short-circuit current
component in a power analysis of a CMOS circuit.

Clearly the IC model would not be sufficient to model this component, because it assumes
step function input signals. The rise time of the input signal, the gain, #, of the device and the
load determine the total amount of charge flow through the short-circuit component. The key to
an efficient implementation of this model is that all these factors can be combined into a number
called rise time ratio, which equals the input signal rise time divided by the inherent output signal
rise time. Inherent output signal rise time equals the rise time of the output node when a step

4

A

.~ ,. ..~ I

100000

10 o oop-channel

UP n-channel

1000 down

100

Total Charge
10

(femto C)

1 I I I I
.01 .1 1 10 100 1000

Rise time ratio

Figure 2: A Plot of Total Direct Charge Flow Vs. Rise Time Ratio

input is applied. The information about short-circuit current can be extracted from SPICE output
on a device with different rise time ratio values. This can be stored in a table indexed by the
rise time ratio. Hercules uses this table to estimate the current flow through a stage. All the
transistors in a stage except the trigger are assumed to be fully turned on. The rise time ratio table
is used only for estimating the direct current through the trigger. This technique works for the
same reason as in Crystal. Most of the circuits are designed with few combinations of transistor
and load sizes. SPICE runs on small pieces of circuits give almost all the information about the
operating environment of these small circuits within a very large circuit.

Figure 2 shows the dependence of total charge flow on the rise time ratio for n-channel and
p-channel devices. Note that the charge flow is directly proportional to the power consumption due
to the short-circuit current. For the rise time ratio equalling 1, the total charge flow is minimized.
Veendrick also makes the same observation in [Vee84] and uses this fact to design buffers optimal
with respect to power consumption. The peak and average short-circuit currents are maximum
when there is no load. Both of them tend to decrease with increasing load. The reason for that
is that a part of short circuit current goes into driving the load. With a higher load, the amount
of excess charge available to flow from power to ground is less. With rise time ratio equal to one,
both the input and output signal speeds are equal. If the input is driven at a slower rate than this,
then the extra time for which the inverter is in short-circuit mode (V.iv - Vh. _5 Vin _5 Vn" + Vh,)
increases. This gives rise to higher direct charge flow as in Figure 2. On the other hand, if the input
signal is faster than this, then the load can not absorb all of the short-circuit current. Thus, there
is more of excess charge avialable to flow between the power and ground. In any case, Veendrick
remarks that for a rise time ratio of one, the short-circuit dissipation would be less than 20% of

D5

; . , , Nm '*"

Frcm Pin

Figure 3: An Example of a Comb Structure

the total dissipation. Now we have a very good mathematical measure of what it means to have
a good driving ratio between the driver size and the load. We can easily identify all the inverters
(stages) with a rise time ratio within 6 of 1, for a user specified 6. The user can choose a b based
on how finely tuned a system he wants.

5 Metal Bus Data Structure

Distributing power and ground with least resistance is one of the major parts of a design. Many a
time, a circuit fails to perform because the drain terminals were receiving a voltage level significantly
lower than Vdd and the source terminals were way above ground, although the external power supply
was functioning properly.

The circuit extractor meztra [MJW83] had to be modified not to merge all the electrically
equivalent metal rectangles into a single Vdd or ground node. It retains the information about the
contact cuts from a metal bus to eitherr poly or diffusion layer. The information about the location
of metal2 viaa is also kept. For further information, the reader is referred to Wilson's thesis [Wil85J.

Using the information retained by the mask geometry extractor, we construct a tree like data
structure to model the metal rectangles connecting a Vdd pin to the drain terminals. Each node
in the tree corresponds to a metal rectangle in the bus. It stores information about the resistivity,
total current flow through it, contact cuts incident on it and its neighboring rectangles. The root of
a tree points to the metal rectangle at the pin. A new node is created whenever the metal rectangle
width changes, or an orthogonal rectangle intersects, or the metal layer changes. If node1 is the
parent of node2 then the node2 metal rectangle connects with the node1 rectangle, and current

6

S

E metal EM met*12 d.fE via cut

n2 n3
n1cut2

• "'-=:. _./An1 n2 n3

cuti,$ cut2

0 n4

Figure 4: A Metal Tree Example

flows from (into) nodel into (from) node2 for a Vdd (ground) metal tree. Figure 4 illustrates
this construction. The leaves of this tree correspond to the transistor terminals, i.e., they contain
only the contact cuts. Note that this tree is constructed in depth-first order connectivity of the
metal bus. If it were a tree, then the voltage drop algorithm would be a very simple one. The
power analysis program calculates current levels and tags each source (drain) terminal with its
current requirements. The next step sums these values up the tree. Each node sums up the current
requirements of its children, its own contact cuts and transmits this information to its parent. The
root ends up with the total current requirements. In the next pass, we traverse down the tree
calculating the voltage drop across the metal rectangle for that node. Note that both the current
and the node resistance are known at this stage. At the end of this traversal, each contact cut ends
up with the voltage drop from the pin to that node. The tree construction algorithm embeds many
instances of the rectangle intersection problem, which involves reporting all the rectangles from a
set of rectangles that intersect a given rectangle. We use a two dimension extension (by Wilson
[Wil85J) of a group tree, originally proposed by McCreight [McC80], [McC81]. For a discussion on
rectangle intersection algorithms the reader is referred to Ullman (Ui!84] and Preparata, Shamos
[PS85j.

How should the loops in power/gnd structure be handled? If they are broken arbitrarily, it
could lead to a large error. We observed that it is very seldom that a designer routes power with

looping structures. However the pattern shown in Figure 3 is used quite often to feed power to
an array of cells. The bottom line introducing the loops reinforces the distribution. Recall that a
depth-first search algorithm can be easily modified to identify all the biconnected components in

7

a graph [AHU74] (A set of vertices forms a biconnected component if between any pair of vertices
there are at least two edge disjoint paths). Each loop introduces one biconnected component. Thus,
recognizing biconnencted components is equivalent to recognizing loops. The main objective of the
whole excercise is to be able to distribute incoming current correctly along the outgoing edges at
a node. We could do a complete Kirchoff Voltage Law (KVL) or Kirchoff Current Law (KCL)
analysis of the whole metal network. But a bus network can have thousands of nodes in it. KVL
or KCL analysis requires approximately n3 time. On the other hand, a biconnected component has
a very small fraction of nodes (typically an array could be of size 32, giving rise to approximately
96 node biconnected component). Doing the KVL analysis on a small number of such biconnected
components seems to be a much more efficient solution.

We can really consider the solution techniques within biconnected components and the skeleton
tree completely independently of each other. Thus we could use a simple heuristics within each
component, if we have some information about the circuit. We found that even if we assign the
outgoing currents only on the basis of conductances of the outgoing metal rectangles (rather than
the whole path), we get a very good approximation for the comb structure in Figure 3. It is partly
beacause of the uniformity in the sizes of each metal segment in such a structure.

Another issue we had to face concerns the frequency of the metal tree evaluation. When a stage
is activated, it sources/sinks currents at a certain time instant. Ideally, the metal tree ihould be
evaluated for each such time. But that does not gain us that much more information, specially
given the cost of each evaluation. We average each current value over the number of cascaded
stages in order to avoid overly pessimistic results.

6 Performance

Both the short-circuit current and load current models were validated with presently operational
version of Hercules. Hercules was run with a control PLA and a 32 register file for a 32-bit
microprocessor, QuarterHorse [HJK*85], designed at the University of Washington. The control
PLA has 19 inputs, 68 outputs and 93 implicants. The register file has 32, 32-bit registers designed
in the cross-coupled static style. Hercules was also tried on some 3 stage NAND and NOR networks.
The results are encouraging. For all the cases, the average load current and the average direct
current reported are within 25% of the SPICE reported numbers. However the peak load current
was overestimated by as much as 100%. Recall that the peak load current is minimum of the peak
currents of all the transistors in a stage. The peak direct current is calculated by dividing the total
charge flow by the time input signal takes to go from V,,. - Vth. to V, + Vth,. This number was
also found to be off by as much as 80% on the higher side. We believe that we can do better than
this with the peak load current calculation. We still do not know how to better predict the peak
direct current.

I
8d

1

7 nMOS Case

The Berkeley program powest assumes each device with a pullup load to be on. For every type
of load device like depletion, the average fraction of time the device consumes direct current,
0 < f < 1, is fixed in advance based on some experiments. For each such device, its direct current
is multiplied by this fraction. Wilson's pwranal is more sophisticated in estimating DC current by
identifying the chains of inverters or superbuffers. Only half the inverters in such a chain could
be on and hence consuming direct current at any time. It also allows the user to initialize nodes.
It propagates the initialized values as far in the circuit as it can. This can also reduce the power
estimate. The stage based decomposition of a circuit is better suited to identify the number of
pullup devices that could be on simultaneously. Note that an inverter and the pass transistors
following it are lumped into a single stage as in Figure 1. Thus in a chain of stages only half the
stages could be on. This allows for the detection of alternation in more general structures than
inverters.

8 Acknowledgements

The idea that max-flow could be useful in current analysis was suggested to me by my advisor,
Larry Snyder. I would like to thank him for many invaluable discussions. The need to consider
the direct current component in CMOS was pointed out to me by Bill Beckett. This work has
benefitted a lot from discussions with Bill Beckett and Larry McMurchie. The presentation of this
paper has improved considerablly due to Larry McMurchie's comments. I also wish to acknowledge
the influence of John Ousterhout's and Jeffrey Wilson's work on the way Hercules evolved.

References

[AHU74] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass., 1974.

[Cme82] R. Cmelik. Berkeley VLSI CAD Tools Manual. Computer Science Dept., University of
California, Berkeley, 1982.

[HJK*85] S. Ho, B. Jinks, T. Knight, J. Schaad, L. Snyder, A. Tyagi, and C. Yang. The Quarter
Horse: A Case Study in Rapid Prototyping of a 32-bit Microprocessor Chip. In IEEE
Proceedings of the International Conference on Computer Design: VLSI in Computer,
IEEE Computer Society, 1985.

[Jou83] N.P. Jouppi. Timing Analysis for nMOS VLSI. In Proceedings of 20th Design A utoma-
tion Conference, ACM-IEEE, 1983.

9

- j VV ~ * % 1&0 00%. N"'V VV V %V V:.* '. -*i "' '

[McC80] E.M. McCreight. Efficient Algorithms for Enumerating Intersecting Rectangles aud In-
tervals. Technical Report CSL-80-9, Xerox PARC, Palo Alto, 1980.

[McC81] E.M. McCreight. Priority Search Trees. Technical Report CSL-81-5, Xerox PARC. Palo
Alto, 1981.

[MJW83] R.N. Mayo, Ousterhout J.K., and Scott W.S. 1983 VLSI Tools Manual. Report No.
UCB/CSD83/115, Computer Science Dept., University of California, Berkeley. 19,s3.

[Ous83] J.K. Ousterhout. Crystal: A Timing Analyzer for nMOS VLSI Circuits. In Procuidings
of 3rd Caltech Conference on VLSI, Computer Science Press, 1983.

[Ous84] J.K. Ousterhout. Switch-Level Delay Models for Digital MOS VLSI. In Proceedings of
21st Design Automation Conference, ACM-IEEE, 1984.

[Ous85] J.K. Ousterhout. A Switch-Level Timing Verifier for Digital MOS VLSI. IEEE Trans-
actions on Computer Aided Design, July 1985.

[PS85] F.P. Preparata and M.I. Shamos. Computational Geometry, an Introduction. Springer-
Verlag, New York, NY, 1985.

[ST861 L. Snyder and A. Tyagi. The Energy Complexity of Transitive Functions. In Procd-
ings of 24th Allerton Conference on Communication, Control and Computing, Allerton.
Illinois, 1986.

[UU84] J.D. Ullman. Computational Aspects of VLSI. Computer Science Press, Rockville. Md.,
1984.

[Vee84] H. J. M. Veendrick. Short-Circuit Dissipation of Static CMOS Circuitry and Its Impact
on the Design of Buffer Circuits. IEEE Journal of Solid State Circuits, August 1984.

[Wil85] J. Wilson. Analysis of Power Requirements inside of nMOS Integrated Circuits. NI.S.
Thesis, Computer Science Dept., Oregon Graduate Center, Beaverton, 1985.

10

; .,I

