
AD-AI79 373 EXPERT PROGRAMNER COMPREHENSION OF COKPUTER PROGRAMS - i
(U) CHICAGO UNIV ILL GRADUATE SCHOOL OF BUSINESS
N PENNINGTON 81 DEC 86 NG9t4-82-K-8759

UNCLASSIFIED F/G 9/2 NJ

ENIIIIIIIIIIEllllllllllll
"Kllllll

-//

66,l 12 .
Q36

MICROCOPY~ RESOLUION TEST CHART

IM~

w~~ ww Av 0 *

afflulnxm OV.A

Expert Programmer Comprehension

of Computer Programs:

Final Report

Nancy Pennington
Graduate School of Business
Center for Decision Research

University of Chicago

E L

I

Expert Programmer Comprehension
of Computer Programs:

Final Report

Nancy Pennington
Graduate School of Business
Center for Decision Research

University of Chicago

December 1, 1986

This research was sponsored by the Personnel and Training Research Programs, Psychological
Sciences Division, Office of Naval Research, under Contract No. N00014-82-K-0759, Contract
Authority Identification No. NR667-503.

Reproduction in whole or part is permitted for any purpose of the United States Government.
Approved for public release; distribution unlimited. D T,37DTIC

CELECTE j
0. , AP I 1 1987

unclassified 179373
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release; distribution2b. DECLASSIFICATION / DOWNGRADING SCHEDULE ulmtd
unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Graduate School of Business (If applicable) Personnel and Training Research Programs
University of Chicago Office of Naval Research (Code II42PT)

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)
1101 E. 58th Street 800 North Quincy Street
Chicago, IL 60637 Arlington, VA 22217-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) N00014-82-K-0759

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT [TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO

61153N RR04206 RR04206-OA NR667-503
11 TITLE (Include Security Classification)

Expert Programmer Comprehension of Computer Programs: Final Report

12. PERSONAL AUTHOR(S)
Pennington, Nancy

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Final FROM9/82 TO 8/85 1986, December, 1 36

16 SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP -FSUB-GROUPF5 0U Scomputer programming, expertise, text comprehension,

09 cognitive skill, problem solving, software psychology

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

'This report summarizes research on experienced programmers' comprehension of computer
programs carried out during the 36-month contract period of September 1, 1982 through
August 31, 1985. Based on an extensive review of the programming skill literature, we
proposed an analysis of programs based on multiple abstractions (points-of-view) that
characterize program text and design. Research questions concerned how multiple
abstractions are coordinated into effective mental representations necessary to comprehend
programs; how different kinds of programming knowledge enter into program comprehension;
what comprehension strategies distinguish those programmers who obtain high levels of
comprehension from those who do not. Our research results suggest a two-stage model of
comprehension. In the first stage, procedural representations dominate program under-

standing; in later stages, functional representations appear to dominate. Changes in the
dominant representation were more extreme for programmers who talked out loud while workin
suggesting that both time and task demands influence the nature of program understanding.

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0-UNCLASSIFIED/UNLIMITED 9 SAME AS RPT. I] DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Dr. Michael Shafto 202-696-4596 ONR 1142PT

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete

4.,.o,

19. (cont.)

We interpreted these results in terms of van Dijk and Kintsch (1983) who propose textbase

macrostructure and situation model memory representations in comprehension. The feature

that distinguished the best comprehenders from the poorest in our research was the use

of cross-referencing strategies in which procedural relations in program text (textbase

macrostructure) were explicitly mapped onto functional relations, expressed in the

language of the real-world objects to which the program referred (situation model).

The poorest comprehenders tended to use singular strategies, working either at the

program text level or at the real-world domain level, but not both. JI
Accession For

AITIS GRA&
DT IC TAB
Unannounced 5
Justifoation

Distribution/

Availability Cod#s

t SpeoCIal

U 2I

' OSP''v

Programmer Comprehension

1

Expert Programmer Comprehension of Computer Programs:

Final Report

The psychology of computer programming is important for both practical and

theoretical reasons. From a practical point of view software accounts for the

major portion of the cost in the the development of computer systems (Boehm,

1973). The ability to control these costs will rely in part on improving

programmer effectiveness. In addition, it has become increasingly difficult to

guarantee the quality of software as the complexity, variety, and

sophistication of programs increases. A high quality program needs to be not

only reliable and correct but easy to use, maintain, and modify. The need for

empirical research in this area is highlighted by a lack of consensus among

computer professionals about which particular programming methods, tools, or

language features improve productivity and the quality of programming products.

These disputes can be addressed directly by research on the psychology of

programming.

From a theoretical point of view, computer programming is an example of a

complex cognitive skill. As such, the nature of the skill and its acquisition

are of substantial interest to theoretical psychology (Anderson, 1981). A

cognitive theory of computer programming skill, of necessity, includes

components specific to the domain of computer programming. For example,

experienced programmers must have large stores of knowledge highly specific to

computer programming tasks. However, computer programming skill also includes

more general components such as problem solving, learning, and memory, which

are common to all expert skill tasks. Thus, existing work in cognition rnd

expert skill can help to illuminate the nature of programming skill while

z

'4%

Programmer Comprehension

2

research on the psychology of programming can help to extend and refine general

cognitive theories (Anderson, 1983).

Review

In an early paper (Pennington, 1982), we reviewed the research on computer

programming skill involving experienced programmers (excluding studies of

learning to program). We divided studies into those that investigated

particular "programming practices" and those that sought to develop a

comprehensive theory of programming skill. The bulk Qf the research (over 80%)

on programming fell into the first category, addressing questions concerning

what features of programming practices and programming languages simplify or

enhance the composition, comprehension, debugging, and modification of computer

programs.

The most frequently studied programming practices have included:

techniques of commenting and documenting programs, mnemonic variable naming and

style of program layout; the benefits of certain language features, degrees of

control flow structuring, data typing, global and local variables, and looping

constructs; and the utility of particular forms of program representation such

as flowcharts, program design languages, and others. The results of these

dozens of studies (see Pennington, 1982, Table 1 for a summary) yield few

general conclusions as to the utility of various programming practices and

forms.

In our review, we argued that failures to place research on programming

practices in a larger context informed by psychological theory and to analyze

carefully the programming task domain have contributed to a proliferation of

empirical results that are difficult to interpret. For example, many of these

I

Programmer Comprehension

3

studies concentrated on whether rather than how aids such as flowcharts and

program design languages help in program design and comprehension. When viewed

in this way (asking how), higher level issues that emerged from these studies

concern what kinds of information are embedded in the program text; which kinds

need to be accessed; and which kinds require an alternate representation

because they are too difficult to abstract easily by ordinary processing

(Green, 1980; Green, Sime, & Fitter, 1980). This requires an analysis of

programming tasks and a theory of programming skill that specifies which

meanings in programs are relatively clear (e.g., inferred automatically), and

which information is relatively difficult to extract from program text and is

critical to comprehension or other tasks.

The second, smaller body of research on programming has sought to develop
'C.

comprehensive cognitive theories of programming skill (see Pennington, 1982,

Table 2). In contrast to the heavily empirical flavor of the programming

practices research (with some exceptions) the theories of programming skill

have not been submitted to extensive empirical test (also with some

exceptions). In this literature the study of programming skill has drawn on a

variety of other cognitive domains such as text comprehension, planning, and "

other expert skill domains. Research treating programs-as-texts has focused on

comprehension strategies and memory. Treatments of programming-as-planning has

focused on problem solving strategies and problem decompositions. Treatments

of programming-as-expert-skill has focused on the organization of knowledge

specific to the programming domain that is implicated in both comprehension and

construction of programs. The central questions that emerge from a review of

this literature reflect questions that also emerge from programming practices

F%

J,

..

% %

Programmer Comprehension

4

studies: a) What are the successive representations of the program as the

external problem domain is transformed into a representation in the programming

language? b) How do successive transformations retain or obscure information

about data structure, data flow, control flow and function? c) Are there

fundamental structural components that are psychologically meaningful? d) What

is the nature of programming knowledge and how does it influence the execution

of programming skill?

Conceptual Framework

In order to develop a framework within which to address these questions,

in a subsequent paper (Pennington & Grabowski, 1985; Pennington, in press), we

elaborated the idea that an essential feature of program design and program

comprehension is that there are multiple interconnections between program parts

that are difficult to conceptualize simultaneously (Green, 1980; Green, et al,

1980). We proposed an analysis of program designs and program texts in the

form of "multiple abstractions." We use the word "abstraction" to mean a

solution design in which some relations between parts are specified but others

are not. For example, an architect's floorplan is one abstraction of a house

plan and the exterior drawing is another. In each, certain interrelations

between parts are explicitly specified, others can be inferred, and others are

completely unspecified. This is also true of a rhythmic abstraction or

thematic abstraction of a musical score. The utility of performing such an

analysis within a problem solving domain is to identify the kinds of

information "in the solution design" that need to be coordinated in the design

"-'P process and detected in comprehension processes. Although these abstractions

are not intended to specify mental entities, they provide a starting point for

U A.

1% 7

Programmer Comprehension

5 '

thinking about how alternate conceptualizations of computer programs might

provide a basis for mental representations at different points in program

design and comprehension processes.

An example of a very simple "toy" programming problem and four different

abstractions of a solution to it are presented in Figures 1 through 5. The

programming problem (Figure 1) is to rearrange a table of codes so that all

codes of one type are moved to the first part of a table of codes, all codes of

a second type are placed in the second part of the table, plus some other

marking and printing requirements.

Insert Figure I about here

The first abstraction of the problem solution is structured in terms of

the goals of the program, that is, what the program is supposed to accomplish

or produce (Figure 2). It is labeled a goal hierarqhy but could also be

described as a decomposition according to the major program functions or

outputs. The first level decomposition shows that the program will "do" or

produce three things: a rearranged table, identifying labels for each code, p.,

and some printed output. At the next level, subgoals are specified for each

higher level goal. For example, rearrangement of the table involves separating

"A" codes from "B" codes, putting "A" codes first into the table, and putting

"B" codes second into the table. Notice that in this abstraction there is no

explicit information as to how these goals will be accomplished. For example,

the "A" and "B" codes could ue separated and then counted up and then put back

. into the table. Alternatively, a single code from the table could be examined,

classified as "A" or "B", added into the appropriate "A" or "B" counter, placed

PROBLEM: REARRANGE A TABLE OF CODES SO THAT ALL TYPE "A" CODES
COME BEFORE ALL TYPE "B" CODES IN THE TABLE. LABEL EACH
CODE AS TO ITS TYPE@ PRINT OUT THE NUMBER OF "A" AND
"B" CODES IN THE TABLE.

.... FIGURE 1. A SIMPLE PROGRAMMING PROBLEM

Ilk

Programmer Comprehension

6

at the beginning or end of the table according to its "A" or "B" status, and

then the next code would be examined. Some inferences about the ordering of

events can be made from this abstraction on the basis of everyday knowledge,

for example, a code must be classified before it can be counted as a member of

the category, but details of the procedure to do this are not specified.
5.. ****** ******** **********

Insert Figure 2 about here

A second abstraction is structured in terms of processes, operating on

data objects that transform the initial data objects into the outputs of the

program (Figure 3). For example, Figure 3 shows that the data object "Table"

*"is used by the process "Select A Codes" to produce a "List of A Codes" but

"Table" is not itself transformed until it enters the process "Put A Codes in

Table" at which point it emerges from this process as a new version of "Table."

Because the flow of each data object can be traced through the series of

transformations in which it participates, this is called a data flow

'5 abstraction. This abstraction is closely related to the goal hierarchy. For

example the first level decomposition of goals is, in the goal hierarchy

(Figure 2), to rearrange codes, label codes, and print. These correspond to

the final data objects at the bottom of the data flow abstraction (Figure 3)

which are "Table," and "Report." The goal hierarchy can be at least partly

recovered from the data flow abstraction by working up from the bottom of the

data flow abstraction although it requires the application of knowledge to

infer the grouping of subgoals with their goals. However, in the data flow

abstraction, everything that happens to a particular data object is readily

available in a way that is not apparent from the goal hierarchy. In addition,

'p."

04

1 4.'

GOAL HIERARCHY: THE PROGRAM ACCOMPLISHES CERTAIN GOALS BY PP; '
OUTPUTS. EACH LEVEL IDICATES A HIGHER ORDEP =AL
IS DECOMPOSED INTO SUBGOALS,

REARRANGE TABLE SO ALL "A" CODES
COME BEFORE ALL "B" CODES, LABELING

*. EACH AS TO TYPE, PRINT OUT NUMBER
OF "A" AND "B" CODES,

LiRARAG I |
RERAGLABEL PRINT OUT

CODES POSITIONS NUMBER OF CO.E3

:. I nAt -A -" LA
,. SEPARATE A PLACE "A PLACE B LABEL LABEL PRINT NO P!N7

CODES FROM CODES IN CODES IN A S B S OF A'S OF B'

B " CODES FIRST PART TABLE AFTER

OF TABLE "A" CODES

COUNT PRINT COUNT
A'S NO'A'S B'S

,i...

p .. ,.-. Figure 2. Abstraction ot" f'un(tion.

n.1

* '

-. .,. .. V *°°,* ~ . ~ ~ **p

Programmer Comprehension
7 '

7

this abstraction allows more inferences to be made about the order in which

certain operations will occur than does the goal hierarchy abstraction. If an

action (marked by a box, e.g., "Label B Positions" in the lower right of Figure

3) has a data object as an input (marked by an oval, e.g., "Table") then the

action cannot take place until the data object is available; thus the process

that produces a data object (e.g., "Select A Codes") must execute prior to the

process that consumes it ("Count A Codes").

Insert Figure 3 about here

A third abstraction is structured in terms of the sequence in which

program actions will occur (Figure 4). This is called a control flow

abstraction because the links between program actions in this structure

represent the passage of execution control, instead of the passage of data as

in the data flow abstraction. Traditional programming flowcharts are a

standard expression of a control flow abstraction. This abstraction highlights

sequencing information but conclusions about data flow must be extracted by

looking for repeated mentions of variable names. For example to find out in

what events "Number of A Codes" participates (easily determined in the data

*flow abstraction, Figure 3), it is first necessary to see that this quantity is

represented by a variable called "Next-A Loc" and then to track its use in the -A

sequence of actions. To complicate things further, this variable is doing

double duty as a counter of "A" codes and as a pointer to where the next "A"

code goes in the table. This makes it difficult to extract goal information,

even at a detailed level. So the sequence of statements involved in the %2,

subgoal "Count the Number of A Codes" (Figure 2) not only is embedded in

DATAFLOW REPRESENTATION: PROGRAM ACTIONS TRANSFORM INITIAL DATA
OBJECTS INTO FINAL DATA OBJECTS. ':> INDICATE DATA
OBJECTS. INDICATE PROGRAM ACTIONS. ,

TAL

SELECT "A" CODES SELECT "B" CODES

IST OF
"Am CODES ONCD

COMPUTE NO0 COUN-A CODES"

"B" CODESE

PRINT NO OF PUT "A" CODES IN PUT "B CODES IN
"An CDES ABLETABLE

TABE POINTER (TABLE) POINTER

I CODES OLABEL A POSITIONS [LABEL "B" POSITIONS[
4' !:i"! TABLE

.;REPORT Q

81 Figure 3. Abstraction of data'low.

04-

:f,,." -'.%*~~ ~.4.

Programmer Comprehension

8

statements serving an indexing function, but is alo widely dispersed in the

sequential abstraction (Figure 4).

Insert Figure 4 about here

A fourth abstraction is structured in terms of the program actions that

will result when a particular set of conditions is true (Figure 5). This

abstraction is like a decision table in which each possible state of the world

is associated with its consequences; it also resembles the production system

condition-action notation that is used to represent human procedural knowledge

(e.g., Anderson, 1983; Newell & Simon, 1972). In a conditionalized action

abstaction, the program is viewed as being in a particular state at each moment

in time, that some set of conditions exists. These conditions trigger an

action, execution of the action results in a new state, the new state triggers

another action, and so on. In this kind of abstraction, it is easy to find out

what results if a given set of conditions occurs and also relatively easy to

find out what set(s) of conditions can lead to a given action. This kind of

state information is much harder to deduce from the other abstractions.

However, information about the sequence in which actions occur and information

about higher level goals are difficult to extract in the conditionalized action

abstraction (Figure 5).

Insert Figure 5 about here

This analysis of the multiple abstractions that characterize a computer

program also applies to English language instructions, such as training

manuals, recipes, knitting instructions, and assembly instructions written for

n J A AVi .

CONTROL FLOW REPRESENTATION: PROGRAM ACTIONS OCCUR IN A
SPECIFIED SEQUENCE

SET CURRENT LOC TO ZERO

SET NEXT-A LOC TO ZERO
GET TABLESIZE

REPEAT UNTIL TABLESIZEGET TABLE ELEMENT "

REPEAT UNTIL TABLESIZE
INCREMENT CURRENT LOCATIONSEL CT

°i"A' CODE: INCREMENT NEXT-A LOC

SWAP TABLE ELEMENTS NEXT-A LOC WITH CURRENT LOC
MARK NEXT-A LOC WITH "AN
IMARK CURRENT LOC WITH "B"t

""B" CODE: DO NOTHING

PRINT NEXT'-A LOC

PRINT (TABLESIZE MINUS NEXT-A LOC)

Figure 4. Abstraction of control ftlow.

1 4

CONDITIONALIZED ACTION REPRESENTATION: A SET OF CONDITIONS RESULTS
IN THE EXECUTION OF SOME ACTION(S). THE EXECUTION
OF AN ACTION RESULTS IN A NEW SET OF CONDITIONS.

ACTIONS. 1 , , . , 1 r-4 % J:,-

'-" 8 I I -W -- I J = " I

- _j UJ

CONDITIONS
(STATE OF THE WORLD)

START
TABLE NOT FILLED -x

TABLE FILLED

CURRENT-LOC-O

CURRENT-LOCm

CURRENT-LOC-
XXXX

"-' ! BTWN 0,TS

HAVE "Am XxMOE "A"

HAVE "B" H

Figure 5. Abstraction of conditions and actions.

_le

d"

,. 44 "- " * 4 . -, " %- , " " . 4 .. ""

Programmer Comprehension

-, 9

one's own future use or for another person's use. In these tasks, too, the

writer wants to convey to another person what should be accomplished (goal

hierarchy), how to do it (sequential procedure), the sets of conditions under

which particular actions should be taken (conditionalized action), and/or the

set of transformations that a particular object should go through (data flow).

Part of the difficulty of writing clear instructions, and clear computer

programs, is due to the tradeoffs that inevitably occur in how much of each

-_ kind of information can be highlighted simultaneously. Uncertainty about the

"best" way to write instructions may be largely due to uncertainty about which

of these (or other) structures should serve as the organizing principle for the

.' .. instructions.

For computer programming the issue of the types of relational information

necessary to describe a program is a complex one. Critical questions for

p.. programming research concern how these multiple abstractions are coordinated

4 into effective mental representations necessary to compose or understand a

program. One might also ask whether there is a psychologically dominant way of

conceptualizing programs and how this interacts with programming language and

programming task. Arguments about which programming languages and programming

. methods are easier to use and are more comprehensible may in fact be arguments

about which if any of these abstractions correspond more closely with the way

that programmers actually think about programs.

" ,~Research

In our conceptual framework, we argued that comprehension of computer

programs involves detecting or inferring different kinds of relations between

program parts. We have also argued (Pennington, in press) that different kinds

. . . .* . %

i . _ -4 _ _

Programmer Comprehension

10

of programming knowledge will facilitate detection and representation of the

different textual relations. Our first empirical research investigated the

role of programming knowledge in program comprehension and the nature of mental

representations of programs; specifically, whether procedural (control flow) or

functional (goal hierarchy) relations dominate programmers' mental

representations of programs at various stages in the comprehension process

(Pennington, in press). A summary of the correspondences we proposed between

-U textual relations (abstractions of program text), knowledge structures, and

hypothesized mental representations is shown in Table 1. Features of the text

activate different kinds of knowledge, some of which will provide an organizing

structure for the mental representation of the text. The first two rows of

Table 1 represent alternative hypotheses concerning the dominant form of the

mental representations of programs.

Insert Table 1 about here

Under the first hypothesis (Table 1, row 1), knowledge of text structure

plays an organizing role in the mental representation of programs during

comprehension. Comprehension proceeds by segmenting statements at the detail

level into phrase-like groupings that then combine into higher order groupings.

Syntactic markings provide surface clues to the boundaries of these segments

and the segmentation reflects the control structure of the program. Thus in

terms of the multiple abstractions of programs (Figures 2 through 5), sequence

information should be readily available; data flow connections that occur

across unit boundaries should be relatively more difficult to infer; and

function information should be least accessible since it is most closely

--...... ;..%

Table 1
Correspondences Between Text Abstractions,

Knowledge Structures, and Mental Representations

TEXT KNOWLEDGE MENTAL N

RELATIONS STRUCTURES REPRESENTATION

Control Flow Text Structure Procedural Episodes

Function Plan Knowledge Functional Representation
Data Flow

Condition-Action Unknown Unknown

10

4.. .

,..

4.
.4,r

4 °

9e:'

Programmer Comprehension

related to data flow and requires coordination across text structure units.

Under the second hypothesis (Table 1, row 2), knowledge of program plans
4--

plays an organizing role in the mental representation of programs during

comprehension. Comprehension proceeds by the recognition of patterns that

implement known programming plans. Plans are activated by partial pattern

matches and confirming details are either sought or assumed. The resulting

segmentation reflects the data flow structure of the program indexed by program

function. Thus in terms of the multiple abstractions of programs (Figures 2

through 5), data flow and function information should be readily available;

sequence and detail operations should be less accessible.

There are several reasons to be interested in which of these views better

characterizes computer program comprehension. The nature of mental

representations of programs and the units that underlie their organization

(e.g., Adelson, 1984; Curtis, et al., 1984) are important for resolving

arguments over how programs ought to be structured, understanding the

psychological complexity of programs, and extending insight into skilled

performance to an important complex task. Second, the two modes of

comprehension have different consequences in terms of the kinds of information

that are relatively easy or difficult to abstract from program text (Green,

1980). This in turn is important in determining standards for computer

programming practices, tools, languages, and education.

The research summarized in this section (see Pennington, in press;

Pennington, in preparation for full reports) was designed to operationally

identify the form of mental representations of program texts, provide

information about the kinds of relational information in programs that are most

IW.1

" ", '" -, "o. -." " " ."-' .. -.'- " ."-" " " ""-, ."'" .". "'-'" "".''."',"",''," " . ',''.'".""..,' .' .'.'"'. '," '."." '.." ." ." " . "",' .'.-'.,t .4'

Programmer Comprehension

12

accessible, and investigate the roles of two kinds of programming knowledge,

text structure knowledge and Plan knowledge in program comprehension.

In the first study, experienced programmers studied short program texts

and responded to comprehension questions and memory tests. Short texts were

used to obtain a high degree of experimental control. Although programming

studies have typically used texts of this length, it is desirable to examine

experimental results in more realistic settings. In the second study

programmers engaged in a more natural task in which they studied a program of

moderate length, made a modification to it, and responded to comprehension

questions. Thus the first study provides relatively direct information

concerning the form of mental representations of program text. In the second

- study, comprehension data provide indirect evidence concerning the same

questions for a different, more natural task.

Study One

The subjects in the first study (Pennington, in press) were 80

professional programmers with an average of 10.2 years experience as

professional programmers. One-half of these programmers programmed primarily

in FORTRAN and one-half programmed primarily in COBOL although most knew more

than one programming language and about one-half of the sample had taught at

least one computer programming course.

Subjects studied 8 short program texts, answered 48 comprehension

questions (6 per text), and responded to a recognition memory test for each

text. For each text, an analysis was performed that designated a hypothesized

memory representation under the two hypotheses shown in Table 1. The TS (text

structure) analysis reflected the hypothesis that the memory macrostructure

I _

Programmer Comprehension

13 ..:

(Kintsch & van Dijk, 1978) was organized according to procedural units in which F

control flow relations between program parts dominate. The PK (plan knowledge) .

analysis reflected the hypothesis that the memory macrostructure was organized

according to functional units in which function and data flow relations between
program parts dominate. Under these alternate hypotheses, different sets of

program statements were proposed to be more closely related in memory.

Priming manipulations in the recognition memory tests were designed to

test the alternate memory structures. Specifically, support for a TS

macrostructure would be obtained if response times to targets preceded by a TS

prime were reliably faster than the same targets preceded by a PK prime. If

this were the case, we could infer that the items specified by the TS analysis

as forming a cognitive unit were in fact "closer" in memory than were the items

specified by the PK analysis. Alternatively, support for a PK macrostructure

would be obtained if response times to targets preceded by a PK prime were

reliably faster than the same targets preceded by a TS prime. Finally, if some

response times to PK-primed targets were faster and other response times to TS-

primed targets were faster, then no inferences could be drawn regarding which

of the formulations more accurately portrays the nature of mental T1
representations.

Comprehension questions were constructed to ask about different textual '.J.,

relations: control flow, data flow, function, and condition-action (state).

Response times and error rates for different kinds of comprehension questions

provided additional measures regarding relations that dominate in mental

representations. Specifically, if support for a PK macrostructure were

obtained with the recognition response times, then we expected to see fewer

Programmer Comprehension

14

errors and faster response times, for function and data flow comprehension

* questions. Alternatively, if support for a TS macrostructure were obtained

with the recognition response times, then we expected to see fewer errors and

faster response times for detailed operations and control flow comprehension 7W

questions.

The results of this study provided evidence that the dominant memory

representation, formed during comprehension of short program texts in this r.

experimental context, is organized by a small set of abstract program units

related to the control structure of the program. More specifically, of the

four program abstractions presented earlier (Figures 2 through 5), relations

captured by the procedural, control flow abstraction (Figure 2) appeared to be

central in comprehension in our experimental task. Furthermore, the nature of

the mental unitization of these relations corresponds to the basic building

*" blocks of sequence, iteration, and conditional identified by early advocates of

structured programming.

Both recognition memory results and comprehension questions results

converged to support this conclusion (Pennington, in press). In the

I.. recognition memory test, recognition occurred faster when a statement was

immediately preceded by a statement in the same text structure (TS) unit than

when it was immediately preceded by a statement that was not in the same text

structure unit (see Figure 6). This implies that statements in the same TS

unit were closer together in programmers' memory structures. This priming

effect cannot be accounted for by the text surface distance between statements,

by syntactic similarity between statements, or by argument repetition since

these features were controlled by counter-balancing across test items.

7

Programmer Comprehension

15

Insert Figure 6 about here

Reponses to comprehension questions about control flow relations and

program operations were answered faster and with fewer errors than were

questions about data flow and function relations, supporting the idea that

control flow and operation information is easier to access in memory (see

Figure 7). This pattern differed for language groups and for top and bottom

quartile subjects (divided according to comprehension scores on this

comprehension test); COBOL programmers showed more errors on data flow

* questions and top quartile comprehenders were distinguished by their superior E

performance on function questions (see Figure 7). This suggests that the

initial phases of comprehension are devoted to the comprehension of procedural -i

relations with later phases involving function inferences.

Insert Figure 7 about here

These empirical results fit a view of program comprehension in which the

meaning of program text is developed largely from the bottom up. The text is

first segmented according to simple control patterns segregating sequences,

loops, and conditional patterns. At this level some specific inferences are

.4-. made concerning the procedural roles of the segments. Data flow and function

connections often require integration of operations across separate segments.

For example, calculation of an average involves an initialization, a running

7. sum, and final calculation; these usually occur in separate procedural units.

Our results suggest that these connections are made later in comprehension, and

for programmers with the lowest comprehension scores they are not made

,-%- b

CL~.-. I.rr V-

..

LiJ

LA-)

PL~~fn " /.

:,,.

I-I0
i4.." ,-- '- l~

4--

C'4 ol c ,-l .

,-', ".- - 0/ " -
m,=.-, 0 4 • 4 ' , , i..

g " -

!!saNO:)3S NI 3IWI.I3Nd3

i' Figure Study One response times for recognition memory items comparingPK

' PK-

primed item times t~o TS-primed item tie o ahset o aeil

" . !within language adjusted for the effects of subject group (Panel A)

k:-and for each subject gopwithin language adjusted for the effects

of materials set (Panel B).

* S -S 0

-

t' '. -,-.-.-.-. --- - ..- - '-.- -.-.':',-,- .-', v .. .-.- ."....'-i-'--- ' -i-'L--"'."."--' " "-"-"[';:, ' "-: -" 'I'

Ir" .I--, G_; . ,'_ .. ;,:...;:._.. .-.z.' .0.4. .,-... ,4 ,- -,' ,-,,-,..

KEY flUPPER QUAIRTILE
50.1 O LOWER QUARTILE

40

~20
a-

- ..

00 -W

I -°m - - - 0

INFORMATION CATEGORIES INFORMATION CATEGORIES

FORTRAN COBOL

Figure 7, Study One comprehension question error rates by information

category for top and bottom quartile subjects within each language. i,

Z ;.

Programmer Comprehension

16

correctly or at all within the time limits imposed by our study.

Study Two

In the first study, programmers' comprehension strategies may have been

influenced by several aspects of the experimental task: short undocumented

program segments, the series of short study trials, and the demands of memory

questions. In a second study, a more natural programming environment was

created in which programmers studied a program of moderate length (200 lines)

and then made a modification to it (Pennington, in press; Pennington, in

preparation). At two different points in time they were asked to summarize the
9..

program and respond to comprehension questions. Half of the programmers were

asked to think aloud while they worked and the other half worked silently.

As in the first study, comprehension questions in the second study were

designed to ask about particular relations between program parts: control

flow, data flow, function, and condition-action relations. If the results of

the previous study were to generalize to this task environment, then we

expected to see good comprehension of control flow relations early in the

comprehension process with comprehension of data flow and function catching up

later in the process. Alternatively, data flow and function inferences would

be made more readily at the outset due to the larger context in the program

text used in the second study.

.- .-Forty of the 80 professional programmers who participated in the previous

4. study were invited to return for the second study. These 40 subjects included

20 COBOL and 20 FORTRAN programmers and were those programmers who had scored

K "in the top and bottom quartiles in the comprehension task in the previous

study. 0

%-%
9.

Programmer Comprehension

17

Comprehension results from the second study reinforce and extend the

conclusions from the first study, that the understanding of program control
* r~

flow and procedures precedes understanding of program functions (see Figure 8).

This pattern of comprehension results appeared even in the context of a longer,

partially documented program after a lengthy study period. Analyses of program

summaries also support this conclusion by showing a preponderance of procedural

summary statements over data flow and function statements.

SE, 'I.W****W*W*WW*,

Insert Figure 8 about here

The story of program comprehension does not, however, end with the

establishment of a procedural representation. In our second study, a different

comprehension pattern emerged after a second exposure to the program during

which programmers completed a program modification (see Figure 9). After the

*" modification task, there was a marked shift toward increased comprehension of

program function and data flow at the apparent expense of control flow

information and this shift was more extreme for programmers who were asked to

think aloud while working. This suggests that either the additional time or

the goal of modifying the program resulted in a change in the dominant memory

representation. The fact that talking aloud while working enhanced this shift

suggests that task effects, rather than the extra time alone, are responsible.

Insert Figure 9 about here

One way to understand this shift in comprehension patterns is to go to

theories of text comprehension and speculate about a construct, introduced by

van Dijk and Kintsch (1983), that they call a situation model. In this (1983)

.'

-.5

,.mt.

i so

50 J
40

~30
W

z
W

S 20

-

0 z
-j l J 0
0 U. J -

I w I-Z

z l C . z Z

INFORM4ATION CATEGORIES

AFTER STUDY

Figure , Study Two comprehension question error rates by information

category, after Study task.

~i

-F- ~.- ,.-

60 "60

50

40

S30
UI

La
":20 __ _'il _." mu

00

-1LLIJ

0 M
-INFORMATION CATEGORIES INFORMATION CATEGORIES

AFTER MODIFICATION AFTER MODIFICATION -.

NOTALK SUBJECTS TALK SUBJECTS A.

%.'

Figure q Study Two comprehension question error rates by information

category, after Modification task, for Talk and Notalk subjects,

Programmer Comprehension

18

work, van Dijk and Kintsch suggest that two distinct but cross-referenced

representations of a text are constructed during comprehension. The first

representation, the textbase, includes a hierarchy of representations,

consisting of a surface memory of the text, a microstructure of interrelations

between text propositions, and a macrostructure that organizes the text

representation. The second representation, the situation model is a mental

model (e.g., Johnson-Laird, 1983) of what the text is about referentially. In

our context, the program text used in the second study is conceptually about

searches, merges, computations, and so forth; referentially, it is about cables

that take up space, making sure that there is enough space for the cables in

the building under design, etc. It is plausible that the functional relations

between program procedures are more comprehensible in terms of the real world

objects. Thus, the textbase macrostructure may be dominated by procedural

relations that largely reflect how programs in traditional languages are

structured. The functional hierarchy can be developed with reference to a

situation model expressed in terms of the real world objects. Data from our

analysis of program summaries in the second study are consistent with this

idea: procedural summary statements were most often expressed in terms of

program concepts and functional summary statements were most often expressed in

terms of the real world object domain.

Van Dijk and Kintsch (1983) also suggest that the construction of the

situation model depends on the construction of the textbase in the sense that

the textbase defines the actions and events that need explaining. This is

consistent with our findings in both studies that procedural representations

precede functional representations. In fact, our results suggest that both

.-. %v%;

Programmer Comprehension

19

time and incentive (talking aloud to an experimenter and having to do a

modification) are involved in the successful construction of a functionally

based situation model.

A second major purpose of our second study was to descriptively

investigate computer program comprehension strategies by analyzing the verbal

protocols collected from one-half of the programmers during the program study

phase (Pennington, in preparation). We were especially interested in any

systematic differences that might appear between the top quartile (Ql)

comprehenders and the bottom quartile (Q4) comprehenders, differences that

cannot be attributed to experience alone since all of our programmers were

highly experienced professionals. Since the top quartile conprehenders showed

substantially better comprehension both in our experimental task as well as our

more natural task, features of comprehension strategies evidenced in the verbal

protocols may well be those that lead to higher levels of comprehension. - "

As a general summary, we have found that top (Ql) comprehenders are more

likely to pursue what we have come to call cross-referencing strategies in

comprehension compared to s strategies more often used by bottom (Q4)

comprehenders. We suggested earlier that there are two different "worlds"

relevant to a computer program text. One is the "program world" in which

various instructions to the computer carry out actions that have effects on

values of data objects and the sequence of action execution. The other is the

"domain world" in which real world objects exist that are the reason that the

program was written. For example, in our second study, the domain world

corresponding to the stimulus program was one in which cables were being

allocated to locations in a building design. The program world was one in

,'., N , S. % , * .. % % 4* % U . .. • %. . . . -% ,

W" 4

Programmer Comprehension

20

which lists of numbers were compared against other lists of numbers, some of 20

them added up together and so forth.

When we say that Q4 comprehenders used singular strategies, we mean that

they talked about one world 2l the other almost exclusively. One type of Q4

comprehender followed the program listing in great detail but rarely stopped to

coordinate this with why particular program actions were required. The

contrasting type of Q4 comprehender used the briefest of clues from the program

listing (variable names, a single action) to leap immediately to domain world

inferences about what was being accomplished. The latter strategy led to a

great many errors concerning the purpose of the program and in a few cases

rather fanciful stories about what was going on. The former strategy led to an

J1% I understanding of detail but later errors in higher level inferences.

When we say that Ql comprehenders used cross-referencing strategies, we

mean that they worked in both worlds, using implications of one world for the

other to verify inferences that they were making. For example, after working

out a procedure at the program level, they would stop to translate this into

the domain world; if the relations in the domain world did not make sense, they

would go back to see where they had gone wrong. Conversely, inferences in the

4. domain world would often have implications for what they might expect to see in

the program. In these cases, programmers checked in the program to see if

their predictions held up; if not, they knew that they didn't have the

correspondences right.

Our conclusions regarding strategy differences between QI and Q4

comprehenders are supported by analyses of program summary statements and

analyses to date of the verbal protocols. We found that Q4 summaries contained

A.n

.- .

Programmer Comprehension

21

either more detail or more vague (without referent) statements compared to
QI

summaries (Pennington, in preparation). For verbal protocols, Q1 subjects show

more transitions between program and domain levels in their inferences
and more

correct function inferences. These results support the view of program

comprehension set forth earlier, that a textbase macrostructure will be

dominated by procedural relations reflecting the. program world and that
a

second situation model expressed in terms of the real world domain will
be

critical for developing a functional hierarchy, Our results also suggest that

the mapping between the two worlds and the ability to use one to check the

other are central to accurate and complete program comprehension.

VC,'

%%

'S..

,'5.

"-.r

'-5

.1I

Programmer Comprehension

22

REFERENCES

Adelson, B. (1984). When novices surpass experts: The difficulty of a task

may increase with expertise. Journal of Experimental Psychology:

Learning, Memory, and Cognition, 10, 484-495.

Anderson, J. R. (Ed.) (1981). Cognitive skills and their acquisition.

Hillsdale, NJ: Erlbaum.

Boehm, B. W. (1973). Software and its impact: A quantitative assessment.

Datamation, 19, 48-59.

Curtis, B., Forman, I., Brooks, R. E., Soloway, E., & Ehrlich, K. (1984).

Psychological perspectives for software science. Information Processing

and Management, 20, 81-96.

van Dijk, T. A. & Kintsch, W. (1983). Strategies of discourse comprehension

New York: Academic Press.

Green, T. R. G. (1980). Programming as a cognitive activity. In H. T. Smith

and T. R. G. Green (Eds.), Human interaction with computers. New York:

Academic Press.

Green, T. R. G., Sime, M. E., & Fitter, M. J. (1980). The problems the

programmer faces. Ergonomics, 23, 893-907.

Johnson-Laird, P. N. (1983). Mental models. Cambridge, MA: Harvard

University Press.

Kintsch, W. & van Dijk, T. A. (1978). Toward a model of text comprehension

and production. Psychological Review, 85, 363-394.

Newell, A. & Simon, H. A. (1972). Human problem solving. New York:

Prentice-Hall.

Pennington, N. (1982). Cognitive components of expertise in computer

'..

Programmer Comprehension

23

programming: A review of the literature. Psychological Documents, 1985,

15, No. 2702.

Pennington, N. & Grabowski, B. (1985). Cognitive components of expertise in

computer programming: A conceptual framework. Unpublished manuscript,

University of Chicago, Chicago, IL.

Pennington, N. (in press). Stimulus structures and mental representations inI expert comprehension of computer programs. Cognitive Psychology.

Pennington, N. (in preparation). Cross-referencing strategies in computer

program comprehension. Unpublished manuscript, University of Chicago,

,..I..
Chicago, IL.

VV

<Cr V

4.5

'1

Programmer Comprehension

24

Technical Reports and Publications

Pennington, N. (1982, July). Cognitive components of expertise in computer

programming: A review of the literature. (Psychological Documents, 1985,

15, No. 2702.)

Pennington, N. and Grabowski, B. (1985, January). Cognitive components of

expertise in computer programming: A review and conceptual framework.

(ONR Technical Report S, currently under revision for journal submission.)

Pennington, N. (1985, January). Stimulus structures and mental

representations in expert comprehension of computer programs. (ONR

Technical Report 2.)

Pennington, N. (1986, September). Stimulus structures and mental

representations in expert comprehension of computer programs. (ONR

Technical Report 3, also Cognitive Psychology, in press.)

Pennington, N. (in preparation). Cross-referencing strategies in computer

program comprehension. (ONR Technical Report 4, in preparation.)

Pennington, N. (1986, December). Expert Programmer Comprehension of Computer

Programs: Final Report. (ONR Final Report.)

'64

-i.i

• H

:..: -,

Programmer Comprehension

25

Acknowledgements and Scientific Personnel

We wish to thank Dr. Henry Halff and Dr. Michael Shafto of the Office of

Naval Research for their support and encouragement during the contract period. "

At the University of Chicego, we received assistance from Beatrice Grabowski,

Paul Harvell, John Keating, Helena Szepe, Lori Hunsaker, Jane Ann Layton, and

Elizabeth Norman during the course of the project. Colleagues at the Center

for Decision Research, Joshua Klayman, Lola Lopes, and Robin Hogarth, provided

valuable comments on manuscripts at various stages of completion.

% "

p -,

~f, 1 987/02/05

Distribution List [Chicago/Pennington] NR 667-503

Dr. Beth Adelson Dr. Fred Chang
Department of Computer Science Strategic Technology Division
Tufts University Pacific Bell
Medford, MA 02155 2600 Camino Ramon

Rm. 3S-453
Dr. Robert Ahlers San Ramon, CA 94583

Code N711
Human Factors Laboratory Dr. Davida Charney
Naval Training Systems Center English Department
Orlando, FL 32813 Penn State University

University Park, PA 16802
Dr. Ed Aiken
Navy Personnel R&D Center Dr. L. J. Chmura
San Diego, CA 92152-6800 Computer Science and Systems

Code: 7590
Dr. John R. Anderson Information Technology Division
Department of Psychology Naval Research Laboratory
Carnegie-Mellon University Washington, DC 20375
Pittsburgh, PA 15213

*Defense Technical
Dr. John Black Information Center
Teachers College Cameron Station, Bldg 5
Columbia University Alexandria, VA 22314
525 West 121st Street Attn: TC
New York, NY 10027 (12 Copies)

Dr. Deborah A. Boehm-Davis ERIC Facility-Acquisitions
Department of Psychology 4833 Rugby Avenue
George Mason University Bethesda, MD 20014
4400 University Drive
Fairfax, VA 22030 Dr. Marshall J. Farr

Farr-Sight Co.
Dr. Jeff Bonar 2520 North Vernon Street
Learning R&D Center Arlington, VA 22207
University of Pittsburgh
Pittsburgh, PA 15260 Mr. Wallace Feurzeig

V. Educational Technology

Commanding Officer Bolt Beranek & Newman
CAPT Lorin W. Brown 10 Moulton St.

NROTC Unit Cambridge, MA 02238
Illinois Institute of Technology
3300 S. Federal Street Dr. John R. Frederiksen
Chicago, IL 60616-3793 Bolt Beranek & Newman

50 Moulton Street
Maj. Hugh Burns Cambridge, MA 02138
AFHRL/IDE
Lowry AFB, CO 80230-5000 Dr. Michael Friendly

Psychology Department
Dr. John M. Carroll York University
IBM Watson Research Center Toronto ONT
User Interface Institute CANADA M3J 1P3
P.O. Box 218
Yorktown Heights, NY 10598

U.

1987 /02/05

Distribution List [Chicago/Pennington] NR 667-503

Dr. Sherrie Gott Dr. David Kieras
AFHRL/MODJ University of Michigan
Brooks AFB, TX 78235 Technical Communication

College of Engineering
". James G. Greeno 1223 E. Engineering Building

University of California Ann Arbor, MI 48109
Berkeley, CA 94720

Dr. R. W. Lawler
Dr. Henry M. Halff ARI 6 S 10
Halff Resources, Inc. 5001 Eisenhower Avenue
'118 33rd Road, North Alexandria, VA 22333-5600
Ar.Lington, VA 22207

Dr. Clayton Lewis
Dr. Bruce Hamill University of Colorado
The Johns Hopkins University Department of Computer Science
Applied Physics Laboratory Campus Box 430
Laurel, MD 20707 Boulder, CO 80309

Dr. Jim Hollan Dr. Stuart Macmillan
Intelligent Systems Group FMC Corporation
Institute for Central Engineering Labs

Cognitive Science (C-015) 1185 Coleman Avenue, Box 580
UCSD Santa Clara, CA 95052
La Jolla, CA 92093

Dr. James S. McMichael

Dr. Ed Hutchins Navy Personnel Research
Intelligent Systems Group and Development Center
Institute for Code 05

Cognitive Science (C-015) San Diego, CA 92152
UCSD
La Jolla, CA 92093 Dr. James R. Miller

MCC
Dr. R. J. K. Jacob 9430 Research Blvd.
Computer Science and Systems Echelon Building #, Suite 231
Code: 7590 Austin, TX 78759
Information Technology Division
Naval Research Laboratory Dr. Nancy Morris

Washington, DC 20375 Search Technology, Inc.
5550-A Peachtree Parkway

Dr. Robin Jeffries Technology Park/Summit
Hewlett-Packard Laboratories Norcross, GA 30092
P.O. Box 10490
Palo Alto, CA 94303-0971 Dr. Allen Newell

Department of Psychology
Dr. Wendy Kellogg Carnegie-Mellon University
IBM T. J. Watson Research Ctr. Schenley Park
P.O. Box 218 Pittsburgh, PA 15213
Yorktown Heights, NY 10598

4'>

1987/02/05

Distribution List (Chicago/Pennington] NR 667-503

Dr. A. F. Norcio Dr. Elliot Soloway
Computer Science and Systems Yale University
Code: 7590 Computer Science Department
Information Technology Division P.O. Box 2158
Naval Research Laboratory New Haven, CT 06520
Washington, DC 23375

Dr. Ralph Wachter I
Dr. Donald A. Norman JHU-APL
Institute for Cognitive Johns Hopkins Road .4

Science C-015 Laurel, MD 20707
University of California, San Diego
La Jolla, California 92093 Dr. Barbara White '-

Bolt Beranek & Newman, Inc.
Dr. Judith Reitman Olson 10 Moulton Street
School of Business Cambridge, MA 02238

Administration .

University of Michigan Dr. Wallace Wulfeck, III
Ann Arbor, MI 48106 Navy Personnel R&D Center

San Diego, CA 92152-6800
'. Peter Polson
University of Colorado Dr. Joseph L. Young
Department of Psychology Memory & Cognitive
Boulder, CO 80309 Processes

National Science Foundation
Dr. Steven E. Poltrock Washington, DC 20550
MCC,Human Interface Program .

3500 West Balcones Center Dr.
Austin, TX 78759

Dr. William B. Rouse
Search Technology, Inc.
5550-A Peachtree Parkway
Technology Park/Summit

4,Norcross, GA 30092

4' Dr. Marc Sebrechts

Department of Psychology
Wesleyan University
Middletown, CT 06475

* Dr. Colleen M. Seifert
Intelligent Systems Group
Institute for

Cognitive Science (C-015)
UCSD
LP Jolla, CA 92093

Dr. Sylvia A. S. Shafto
*, Department of

Towson State University

Towson, MD 21204

~"']

4= |.: , 44 ** .

ps I

