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PREFACE
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1. INTRODUCTION AND REVIEW OF PREVIOUS LITERATURE

The purpose of' this report is to provide students with a means to calcu-
late the energy levels of' impurity ions in solids and analyze experimental
results. In order to achieve this goal it is necessary to review material
which many readers may have been exposed to elsewhere. This review is rather

* ~brief', and the bibliography (sect. 1.4I) includes ref'erences to specif'ic sec-
tions of' textbooks, monographs, or papers where the material is di 'scussed in
more detail. Unf'ortunately, as in most f'ields of' science, a number of' dif'-

Sf'erent notations (in various alphabets) are used in the literature; it is
hoped that this review will help overcome somne of' this dif'ficulty.

Many mathematical results are presented without proof' with a view towards
brevity. The review of' angular momentum is directed towards the use of' the
various tabulations of' matrix elements, n-j symbols, and group tables, and our
study of group theory is simply directed toward the use of the abundant tables
of' the 32 point groups.

Most of the discussion of crystal-field theory is devoted to the point-
charge or point-multipole model. This is quite natural since most of its
recent development has been done by research workers at Harry Diamond Labora-
tories (aDL). Very recently, research workers under the direction of Paul
Caro in France have signif'icantly extended the point-multipole crystal-field
model and their contributions are also discussed.

Finally, the ongoing work at HDL on the transition-metal ions is dis-
cussed. Most of' these results are unpublished at present, but computer pro-
grams are used to illustrate directly the effect of' various free-ion and
crystal-f'ield interactions.

1.1 The Hydrogen Atom

We assume that we have an electron of' charge -e, mass m, and an
infinitely massive nucleus of charge Ze. The nonrelativistic Hamiltonian ftor
this system is

2 2h 2

2m r

where p is the momentum of the electron. The time-independent Schrodinger
equation fror this system Is given by

A 2 Ze ) 77 E*(1.2)

--- • reentdevlopenthas eendon byresarc wokersat arr Dimon Laora



where we have used the relation -- ihV. The bound solutions to equation
(1.2) satisfying all the boundary conditions are

$ntm= n£ meO(r)Y~m8¢ 1 (1.3)

where the R n(r) are the associated Laguerre polynomials and the Ym (e,ý) are
spherical harmonics. The radial functions Rn£(r) are of little interest here
and are not discussed further. The energy in equation (1.2) is

E -Z me (1.~4)
n 2n2

2n ;A

where n a 1. The quantum number Z (angular momentum) is restricted to the
values

9 < n , u. 0, 1, 2 ... (1.5)

and m, frequently referred to as the magnetic quantum number, is restricted to

-£ S m 6 1 . (1.6)

The spectroscopic notation for a sequence of Z values is

1 - 0, 1, 2, 3, 4, 5, 6, 7 ... (1.7)
S, pp d, f, g, h, i, k

along with the value of n the states are referred to as is, 2s, 2p, 3s ...
with the restriction given in equation (1.5).

The spherical harmonics are given by

Yim((,0) - NtmP9%m(cos 8)etm1 , (1.8)

where

N ( 1)m [29 + i1 1 2  ( °) 112

The Pim(cos e) are associated Legendre polynomials and are defined as

P (z) - ( - z2' 2M1 (,d)m PzW (1.9)

and the Legendre polynomials are

S. -- (T)9 (zz2  z (1.10)

10



The definitions given in (1.9) and (1.10) are restricted to m a 0. For m < 0

we have
! .m- (- 1 )mYlm , (1.11)

where Y* is the complex conjugate of Y
I-m i m*

The spherical harmonics are normalized so that

f Y*1,f(eo)Y %M(6,0) dn - 6 Vi 6m'm (1.12)

where d9 - sin 0 de do, and the integration covers the range 0 6 0 6 r, 0 1
:5 27r.

1.2 Angular Momentum Algebra

In classical mechanics, the angular momentum of a particle is defined
by

. x p (1.13)

Actually, we should specify that the angular momentum so defined is about a
K particular origin, and r+ is the vector distance from this origin to the par-

ticle with momentum 4.

If we use the commutation relations

[XiP j] - ij (1.14)

with xi - x, y, or z, then we can obtain the commutation rules for angular
momentum,

.[ixy] - It z ' [iyfz]- Z1 £x arid [z Z illy , (1.15)

which are the basic commutation rules for the Cartesian components of the
angular momentum. For convenience here we shall drop the 11 in the commutation
relations. This does not mean that we drop 1i throughout; we restore ft simply
by writing the interactions involving the angular momentum so that the 1i is
contained in tne constants. As an example of this, consider the spin-orbit
Hamiltonian

H2 2 2rs(116
2m

• _- _,1_



IAx

with t and ' having units of angular momentum 11 (the spin ang.ular momentum, =
we Vill discuss later). When these are written in terms of dimensionless

and s, we have

In2 1 BU t•( 7
H 2 2m ar (1.17)

where t and ' obey the commutation rules in equation (1.15) but 4i - 1.

For our purposes here, we want to use the spherical representation
of {, which is given by

S. -1. (t + it y)

to1 x

x - it Y)

and the commutation rules are

r t ] - £

.1 + 1 +1

[1_19L0] - 1 (1.19)

[E+J, -11 -o

The eigenfunctions of the angular momentum are the spherical har-
monics, Y m(e,$), and

L01tM> - mjIm>

(1.20)

t1l Im> - 1 . [(i;m)(X±m+1)] 1 1/2',r±i>

where

Jim> Ym (e0) •

Frequently, we shall use the unit vector P to indicate the argument of YtIm'
thus:

Yjm(e,O) - Y m( ) •

S1 2



When the Y~m are wave functions such as in equation (1.20), we have

Yzm(r) - Imm> .

The orthogonality of the wave functions as given by equation (1.12)
is

<t.'m'[gm> - 6 it,' 6 mm,

Further, we shall assume that the spin angular momentum, s, obeys the same
commutation relations as given in equation (1.19); the two-component spinor
wave functions are represented by the wave function ism >, so that the single-
electron wave function for orbital and spin angular momintum is

Jimi >tIsms> . (1.21)

The wave functions given by equation (1.21) then obey the following:

tolIm1>Imsm> - mz imI>Isms>

( I)212mt>Isms> - k(L+1)JimI>Ism>
(1.22)

sol9m >Isms> -mSl m >isms>

(S)2 JimL>Isms> - s(s+')It m >Isms>

where, of course, s - 1/2. A further property of the spherical harmonics is
given by

Iyzm(r) - (-1)Yzm(^) , (1.23)

where the inversion operator is IP - -P, a property that will be used fre-

quently in our analysis. For other symmetry operations, an explicit expres-

sion for the spherical harmonics is convenient; table 1.1 is included for this

purpose. While many of the interaction terms of the Hamiltonian were derived
by using spherical harmonics, it is convenient to introduce the tensor
operators

CLm r) (2i--+1 )I/2m(r) " (1.24)

13
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TABLE 1,1. SPHERICAL TENSOR3, C m IN RECTANOULAR C0OFDINATF.S

nom rn" rnC n,m N&r n

0 0 11

11 -1 x +iY 5 4 z(x * Y)4

1 0 1 z 5 3 -}/ (9z 2 -2( . ly)3

5 2 2-1 z(% i2( y)2

2 2 /3-/8 (x + iy) 2

5 1 V-30/ (21Z 4 
-14z

2r2  r4* * y)

2 1 O3-/27 Z(x+ iy)

5 0 163z 11 70z2r2 + 10r

2 0 2 _ 2I

66 (x + iy)

3 3 (x + iy)3

6 5 i(li + W5 y)

312 /- q ( 27 z* jy)2 321 1Z 2)x+j)

3 5z 2(x j) 6 3 - V-j-0 z(11z2 -3r
2)(x + iy)3

3 0 15z
2 -3r 2

26 2 A--5 (33Z4 - 8z2r2  r4 D(x .iy) 2

4 4 70(x + iy)4 6 1 J2*~- z(33z 4 -30z 2r2 +5r 4)(x + ly)

4 3 5z(x + Iy)3  6 0 1231z 6 
-315z

4 + 105z2 -5

4 2 V-0(7z
2 

-r
2 B(x + iy) 2

4 1 J5- z(7z2  3r2 )(x + jy)

4 0 135z
4 30z2r2 + 3r4

a~ultiplier to entry on the right.

Srince Y* (r^) -(-l) m (r we have

C im(r) - (..l.)mC ,m(r) .(1.25)

14
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The use of Cjm rather than YMI hA the interaction terms eliminates almost all
the ractors of 41. An example of this is the coupling rule for spherioel
harmonics (Rose, 1957, p 61):*

~ - s (2k*I1)(2n+I1)]'' 2
YkqYn I rj k-1(2n,+")' 1/ <kO)n(O)lt(o)> <k(q)n(m)jL'(q+m)> Ygm

(1 .26)

but

CkqCnm - I <k(O)n(O)- (O)> <k(q)n(m)jL(q+m)> C %,q+m • (1.27)

In equations (1.26)" and (1.27), all the tensor operators have the same argu-
ment. The quantities in angular brackets in equations (1.26) and (1.27) are
Clebsch-Gordan (C-G) ooe'friciehts, which we cover in section 2.

1.3 Problems
44

1. The inversion operator I converts the vector r to -r. Show that

IYLm(r^) - (-I)ZYjm(r).

2. If

C2(x)(x, y, z) + (x, -y, -z)

C2(Y)(X, , L 0) + (-x, y, -z) ,

Gh(X'Y, z) (x, v. -z)

C2(Z)(X, y, z) 4 (-x, -y, z)

C2(I)(xy, z) * (y, x, -z)

C2(2)(x, y, z) * (-y, -x, -z)

O(Lx)(x, y, z) (-x, y, z)

G(Jy)(x, y, z) N (x, -y, z)

*References are listed, alphabetically by author, at the end of each section, along with

uncited bibliographic entries pertinent to each topic.

15
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O(jl)(x, y, z) * (-y, -x, z)

a(j2)(x, y, z) + (y, x, z)

show that

C2(x)Ytm - (-I)1Yt.m(r)

C2(Y)Yim(") - (-1)'+myi.m(;),

OhYtm(r) - (-I)1+mYtm(P)

e Ckq'0iwq Ckq "C2 (Z)Ckq =C~

C2(1)Ckq = (- k eki(w/2)qCk-q

C2 ( 2 )Ckq - (-1)ke-(w/2)qCk-q

o(LX)Ckq ' IC 2 (x)Ckq - Ck.q

o(IY)Ckq - IC 2 (Y)Ckq - (-l)qCk-q

o(i1)C kq - e i(w/2)q 0k-q,

a( 1 2)Ckq - e- 'i(/2)q Ck q

by using equations (1.8), (1.9), and (1.10), or by using table 1.1.

3. Using the generating function for P (cos 8), obtain the result

I r<E P(Cos e)

where cos e - rI 1 .r 2 and r< is the smallest of the vectors r, and r 2 . From the
addition theory or spherical harmonics, we have

I
P (cos e) - m C*m(ri)Cm( r 2)

16
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The generating function for the Legendre polynomials is given in Rainville
(1960) as

2 h h6P (z) , with Ihi < I and z - cos e
(I + h - 2hz) 1' 2  1-0

4. From the generating function for Pz(z), show that P,(0) - 1,

P -1= (- 1 ), and

ML,- C 

-brC~ 

r

% +
Show, in two ways, that the sum in problem 3 is (-1) when r 2  -r 1, for
arbitrary I.

5. By expanding r x show that

÷ 4

r -r - -ar r

which is a convenient form of the V operator for spherical problems.

1.4 Annotated Bibliography and References

Condon, E. U., and H. Odabasi (1980), Atomic Structure, Cambridge University
Press, Cambridge, U.K. Chapters 3 and 4 give a thorough discussion of the
hydrogenic wave function. Pages 190 and 191 tabulate the radial wave
functions.

Judd, B. R. (1963), Operator Techniques in Atomic Spectroscopy, McGraw-Hill,
New York, NY. This outstanding textbook is frequently referred to in this
report; the book is almost completely free of typographical errors. The
problems in general are very difficult and require considerable time.
Only the preface and the first two pages are pertinent here.

Leighton, R. (1959), Principles of Modern Physics, McGraw-Hill, New York, NY,
chapter 5, The One Electron Atom.

Polo, S. R. (1961, June 1), Studies on Crystal Field Theory, Volume I--Text,
Volume Il--Tables, RCA Laboratories, under contract to Electronics Re-
search Directorate, Air Force Cambridge Research Laboratories, Office of
Aerospace Research, contract No. AF 19(604)-5541. [VoLune II gives date
as June 1, 1961.) The symmetry operations are discussed on pp 1-4ff;
Clebsch-Gordon coefficients on pp 8.1ff; and excellent tables of P•(z),
Pim(Z), and Y~m are given in the appendix, all in Vol. I.

Rainville, E. D. (1960), Special Functions, Macmillan, New York, NY. This is
just one of the numerous texts written by this outstanding teacher.
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Rose, M. E. (1957), Elementary Theory of Angular Momentum, Wiley, New York,
NY, chapter II.

Sobelman, I. I. (1979), Atomic Spectra and Radiative Transitions, Springer-
Verlag, New York, NY. This is a very excellent monograph and we fre-
quently refer to Sobelman's derivations. Beware of typographical
errors!! Pages 1 through 12 are pertinent.

Watanabe, H. (1966), Operator Methods in Ligand Field Theory, Prentice-Hall,
Englewood Cliffs, NJ. Pages 11 and 12 are applicable here; also, the
introduction is interesting. We frequently refer to this monograph. Most
of the equations are free of typographical errors. Tables of explicit
expressions for Yjm for 0 S I S 6 are given in appendix 1.2.
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2. CLEBSCH-GORDAN COEFFICIENTS

For our purpose, it is convenient to define the Clebsoh-Gordan (C-G)
coefficients as t e ooetficients in the transformation from two angular momen-
tum spaces, say, i and s, to form the composite space 3. That is,

Ijr> - I <Z(i)s(m-P)lj(m)> .zUPjs'r-P> (2.1)

where the quantity <1(.)s(m-.i)j(m)> is a C-G coefficient. The limits on the
sum in equation (2.1) are not given, as it is assumed (and will be assumed in
the following) that the sums cover all values for which the C-G coefficient
does not vanish. Since we wish to have an orthonormal basis, we have

<J'm'ljm> - 6 j,6mm,

I Z <M(1A)s(m-.)Jj(m)> <1(1j')s(m'-)i')jj'(m')> (2.2)

since

<RZI' 11> 6 , and <s,m'-U'Is,m-P> - 6 m. (2.3)

Thus, we have

6j = <Z(u)s(m-i•)jJ(m)> <M(P)s(m-iP)jj'(m)> , (2.4)

an important and very useful result. If we aisume (correctly) that the same
coefficients connect the I space to the t and s spaces, we can obtain another
condition on the C-G coefficients, namely,

6-6ss, X <(mts)Sms))j(m,+ms)> <c'(mt)s'(ms)j(mz+ms)> . (2.5)
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Some other relations among C-G coefficients are

<a(a)b(O)jc(Y)> - 0

if JI[ > a, or jil > b, or IyI > o, (2.6)

and if Y * a + B .

The C-G coefficients vanish unless the three angular momenta obey the triangle
condition, that is, la - bl s c s a + b for any permutation of a, b, or c.
Three of the most important symmetry relations of C-G coefficients are

<a(a)b(O)Jo(Y)> - (-I)a~b'c <a(-))b(-O)jt(-Y)>

a (-1)ab-c <b(B)a(a)Jc(Y)>
(2.7)

.(-1)a-.* 12_ + 1)1/2
k 2b+ i) <a(c)c(-Y)Ib(-8)>

where a + 0 - Y

The coupling procedure given in equation (2.1) can be deceptive. If we had
formed the wave function rjm> by coupling s to Z as

lrm> = X <s(u)1(m--)IJ(m)> IsP>I1,m-'> , (2.8)

the relation to equation (2.1) would be, from equation (2.7),

1jm>- I (-1)s+L-j<%(V)s(m-P)1jm> It>Is,m-0>

in which we have changed the summing index V - m-p. This overall phase factor
may have no effect, but in a long involved problem a switch from £-s to s-£
coupling can cause errors. Algebraic expressions for <a(ct)b(O)jc(a+8)> are
given by Rose (1957, pp 224-225), for c - 1/2, 1; algebraic expressions for
the related 3-J symbols for 1/2 S c S 2 are given in Brink and Satchler (1962,
p 36). A few special C-G coefficients of interest are

<a(O)b(O)Ic(O)> = (_1)s52 (2: + 1)1/2 T(s) (2.9)(L -+1 T~s,)T~s2)T~s3)(29

where

Sl =-a + b + c , s 2  a - b + c , s 3  a + b - o , s= a + b + c

20

f him " % Aw.. -.A 1 IJ !.I, .W ..



and

T(s) -
A T

2 2b11/2> (+a (b+B)

<a(a)b(O)ja~b(a*O)> "'(2a*2b a)
L a+b +a+ J

(a) al 2.0
b( " b!(a - (2.10)

<a(a)0(0)jb(O)> - 6 a,b 6 a1,0

S<Z(O)k+2(o)j1(o)> - k+l r (2t+k+2)(21-k) 11/2-k*-2 L2Z-k-1)(2t*k÷3)1 •OkOl()

The commutation relations for the spherical components of the angular
momentum of' a single electron given in equation (1.19) can be written com-
pactly in terms of C-G coefficients as

[111#1v r 2 <1(v)1(l)1~1(tp+v)> •+ and (2.11)

Is ,sP ] - r <1(v)1(u)I1(U+v)> s ,V . (2.12)

The total angular orbital momentum operator for a system of N electrons is

N K . • (1) ,(2.13)
i

and the total spin angular momentum operator is

N
w -)(2.14)

The spherical components of these operators obey the same commutation rela-
tions as equations (2.11) and (2.12), or

[ij,L] L r <1(v)1(u)1(ii+v)> Lp and (2.15)

[s .s] r/2 <1(\))1(jil11(M÷v)> Su÷ (2.16)
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Also, it should be noted that

[L ', (i)] - v12 <1(v)1(Vl)1(p+v)> I (i) and (2.17)

[S ,s ( M] - r2 <I(v11(U111(p+v1> s )V(i ) . (2.18)

Consequently, from using equations (2.15) through (2.18), we have

[LU Ckq(i)] - .'kVk-+7 <k(q)1(j)jk(q+p)> Ck,q+u (i) (2.19)

[J PCkq(i)] - [L ,Ck q(1)] (2.20)

with

The Clebsch-Gordon coefficients used here are related to the 3-j symbols by

<a /20+1cY) (1 )-a+b-Y (a b _c (2.21)

and the symmetry conditions on the 3-j symbol can be obtained from equation
(2.7). The 3-J symbols are extensively tabulated by Rotenberg et al (1969).

2.1I Problems

1. Show that
j21£m> _ £(Z+,)lim>,

+2s Ism> - s(s+1)lsm>

2. Consider the interaction (spin-orbit interaction)

I H5s-0

Show that the matrix elements of this interaction using the states given in
equation (2.1) are

<J'm'IHs jI m> - 2 [J(J+1) - 1(1+1) - s(s+1)J6 .MtS

Hint: { + ; consider
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2.2 Annotated Bibliography and References

Note: Check your favorite quantum mechanics text; there may be a
section on C-G coefficients or 3-J symbols.

Brink, D. M., and G. R. Satchler (1962), Angular Momentum, Clarendon Press,
Oxford, U.K.

Condon, E. U., and H. Odabasi (1980), Atomic Structure, Cambridge University
Press, Cambridge, U.K., appendices 2 and 3.

Condon, E. U., and G. H. Shortley (1959), The Theory of Atomic Spectra, Cam-
bridge University Press, Cambridge, U.K. The C-G notation used by Condon
and Shortley is related to that used in this report as follows:
(JlJ2mllJlJ2jm) - <J1(ml)J2(m2)1j(m)>.

Edmonds, A. R. (1957), Angular Momentum in Quantum Mechanics, Princeton Uni-
versity Press, Princeton, NJ. Relationship of the Ym of various authors
is given on page 21. His C~k) are the same as those of Judd and are the
same as our Ckq* The relation of the C-G coefficients to other notations
is given on page 52. This is a good book--but look outl It's loaded with
typographical errors.

Rose, M. E. (1957), Elementary Theory of Angular Momentum, Wiley, New York,
NY, chapter III. The relation of C-G coefficients to other symbols is
given on page 41. The commutation rules for [JUTLM] in terms of C-G are
given on pages 84 and 85.

Rotenberg, M., R. Bevins, N. Metropolis, and J. K. Wooten, Jr. (1969), The 3-j
and 6-j Symbols, MIT Press, Cambridge, MA.
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3. WIGNER-ECKART THEOREM

The Wigner-Eckart theorem states that if we have a spherical tensor Tkq in

the space spanned by the wave functions IJM>, then the matrix elements are

<J'M'ITIkqJM> - <J(M)k(q)IJ'(M')> <J'ITkIJ> (Rose, 1957) orkq (3.1)

<J'M'.ITkqIJM> - (_ 1)J'-M' (_ L )(J'ITkIJ) (Judd, 1963; Wybourne, 1965).k M' q M k1 '

The projection (q) dependence is contained in the C-G coefficients, and the

factors <J'ITkIJ> are called the reduced matrix elements.

If we have a mixed spherical tensor, rank K and projection X in spin

space, and rank k and projection q in orbital space, the Wigner-Eckart theorem

then is

<WIMjS'MAITk ILMLSMs> - <L(ML)k(q)IL'(M')> <S(Ms)K(X)IS'(M9)> <L'S'IT k'I.S>Aq L LL

(3.2)

Since the C-G coefficient is purely a geometrical factor, all the physics is

contained in the reduced matrix element. The Wigner-Eckart theorem allows the
extraction of the geometrical factors from many complicated matrix elements;

it also serves as perhaps the main motivation for the development of Racah

algebra in dealing with angular momentum states.
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3.1 A Single d Electron in a Crystal Field

As an example of the use of the Wigner-Eckart theorem, we consider, a
problem that is simple in tensor algebra but rather important in the speCtra
of impurity ions in crystals: the case of a single 3d electron ii an axpal
crystal field. Such a sy&cem could be the doubly ionized scandium ion, Sc+,
substituted for a doubly ionized constituent ion of approximately the same
ionic radius. The solid could be hexagonal with nearest neighbor ions located
along Pthe c-axis and the off-axis ions too distant to have an effect on
the Sc ion.

We assume that the remainder of the electrons on So2+ are replaced by
an appropriate spherical potential. The wave functions for the system are
taken as

*3d - R3 dY2m

(3.3)
"- R3d 12m>

and as indicated we ignore any effects of the spin in our approximation. In
Sgeneral, the radial function, R3d, can be calculated by a numerical technique

such as Hartree-Fock. The Hamiltonian for the problem we consider is

HCEF - A2 0 r 2 C2 0 (r) + A4 0 r4C4 0 (r) (3.4)

(an axial crystal "ield is defined as Akq = 0, q * 0) and we shall assume that

B kO AkO <rk>

with

<rk> f; R2d(r)r 2 dr .(35)

The series in (3.4) is terminated through four-fold fields (C4 0 ); odd-k terms,
if present, are omitted from the problem. The matrix elements of HCEF are
given by

<Zm'IHCEFI'm> - B2 0 <Zm' IC2 0 1Zm> + B40 <Im' IC 4 0 1zm> . (3.6)
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For the S4 site in yttrium aluminum garnet (YAG), the axial point oharge
lattice sums are

A20 - 6355 em
1 /A2

A4 0 - 25,089 om 1/A4

For So2+

<r2 > - 1.372 A2

<r 4 > - 4.053 A4

B20 = 8719 cmr1 ,

B40 - 101,686 cm-1

If the site were cubic, B2 0 = 0 and B44 5_ B 4 60,769.
V/70 4

By the Wigner-Eckert theorem we have, generally,

<Im'IckqIJm> - <Z(m)k(q)JZ(m')> <£1CkIR> (3.7)

and from (1.26) we have

m'' kqYm dL - [2 112 <i(m)k (q)(m')> <Z(O)k(0) I(0)> (3.8)

where we have rearranged the order of I and k in the C-G coeftioients. By
using the relation of Ckq and Ykq in equation (3.8), we have

<(mlc kqlzm> - <1(m)k(q)J9(m')> <Z(0)k(0)It(0)> (3.9)

and from (3.7) we have the important result

<aiCkl"> - <(O)k(O)It(O)> (3.10)

In general
<£' IkI•> r21+1 11/2

"- L2Tj'+J <i(O)k(0)lt'(O)>
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Thus using equation (3.9) in (3.6) we have

<2m IH CEF 2mý> - B20 <2(m)2(O0';2(m)> <2(0)2(0)12(0)> (3.11)

+ B40 <2(m)4(O)12(m)> <2(0 0)j2(0)>,

and we notice from the symmetry properties of the C-G coefficients (eq (2.7))
that <2(-m)k(O)12(-m)> - <2(m)k(0)12(m)>, so that the states with negative
projection (m < 0) have the same matrix elements as those with positive m.
Notice, also, that had we considered terms in the potential, Ckq, with k > 4,
they would not contribute since <2(m)k(0)12(m)> - 0 for k > 4.

The C-G coefficients in equation (3.11) can be found in Rotenberg et
al (1969) (the relation of the C-G coefficients and 3-J symbols is given
therein) and are

1/2<2(0)2(0)12(0)> - -(2/7)1

1/2<2(0)4(0)12(0)> - (2/7)1

<2(1)2(0)12(I)> = -(1/14)I/2

<2(1)4(0)12(I)>- 2(2/7)
3

<2(2)2(0)12(2)> - -(2/7)I/2

<2(2)4(0)j2(2)> 
- -(1/14)1/2

3

It is perhaps easier to obtain the above C-G coefficients by using equation
(2.10).

Thus the energy is given by

E0 -2B 20/7 + 2B 4 0 /7 , m - 0

E -B/7 - 4B/21 m - ±1 , (3.12)
±1 20' 41 0/2

E±2 2B20/7 + B4 0 /21 , m -2 .
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It should be noted that the trace E0 + 2E + 2E2 vanishes. This is a general

feature of spherical tensors. Since the diagonal matrix elements are given by

<XmICkq9orm> - <((m)k(O)I9(m)> <ICk ILt>

t hen~

L

a<ImICkOI.m> - <1LCkIL> I <t(m)k(O)IL(m)>

M-

The C-G coefficient

<C(m)O(O)IL(m)> - 1

- (-1)1-m Y'2-i+ <t(m)1(-m)IO(O)>

and

-L+m (21+1 1/2
<9.(m)k(O)IL(m)> - (-1) \2-2k+- <Z(m)%(-m)Ik(O)>

Therefore,

% 2 t+ 1
1 <1(m)k(O)j1(m)> - I <1(m)X(-m)jk(O)> <X(m)Z(-m)jO(O)>

m--t ý'_• m

=(2+1)6kO (3.13)

- 0 (k > O, the only values of interest here)

where we have used the orthogonality condition given in equation (2.4).

The result given in equation (3.13) is a very useful check on the
calculation of the energy matrices, since it is very easy to make a mistake in
the evaluation of the C-G coefficients.

In our later work we will encounter problems where the matrix ele-
ments of the Hamiltonian <Xm'IHILm> * 0. In these cases we have a set of
basis functions ým (such as 12m> above) and we assume
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From Sohrodinger's equation we have

Hý - E* or

P m Hm - I amE%

and we multiply through by €*, and integrate to obtain

%amHm,m amE or

(3.14)

a am[Hm,m - 1mm 0
m

which is the secular equation for determining the energy levels, E, of a
system.

All our efforts will be directed toward obtaining equation (3.14) for
many electron systems. We shall use the methods of group theory and other
techniques to reduce the number of components in equation (3.14) to a minimun.

In the previous example the matrix elements Hm~m - 0 (m' * m) and the
energy levels were given by Hmm. If we consider a tetragonal crystal field
given by

HCEF ' B2 0 C2 0 + B 4L 0)4 + B 44(C44 + C4- 4 ) (3,15)

where B44 is real, and Bp4 _4 - B4 4 , then the only matrix element different fromi•
those of equation (3.12) is

<2-21Hc 1,22> - -B_
CEF ~21B4

(3.16)-- H2
H _ = . 2 2 ,

and the secular equation for these states (12±2>) is

H2 2 - E H_2 2 =0 (3.17)

H 2-2 HH2 -2  E

with H-2 -2 - H2 2 and H2 - 2 - H-22-
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Expanding the determinant in equation (3.17) gives

(E - H )2 H . .2 ,
E H22) -H222

E H H22  ± H -.2 2 1

and from equations (3.12) and (3.16) we have (assuming B44 > 0)

E + -- 2  B"+ - V20 -21] B40 21 B44

(3.18)

E 2- B L--B7:
7 20 - , 4o 21 44'

and with the energy levels E0 and E±1 given in equation (3.12), we have all
the energy levels.

The wave funations corresponding to E± are

+- LE [122> + 12-2>]

'... -. [ 122> - 12-2>]

We then have all the energy levels of a single electron in a tetragonal
field. In all cases we have found five energy levels, which is the number of
states of the free ion (2Z + 1 - 5).

An important result can be obtained for the tetragoral crystal field
if we let B2 0 - 0 and B44 - 5Bj10 /V/7. This is the limit of a cubic field; in
this limit, from equations (3.16) and (3.10), we have

E0 -E+ -2B40/7 '

(3.19)
EI E -4,R10 /21

The doubly degenerate level (E ,E.) is denoted E and the triply degenerate
level (E±I,E_) is denoted T2 ;.These labels are for the irreducible represen-
tation of the cubic group In the Mulligan notation; E is referred to as r, and
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T2 as r 5 in the Bethe notation. The difference between the two sets of energy
levels given in equation (3.17) is frequently referred to as 1ODq and is

1ODq -10B40/21 or
(3.20)

B40 - 21Dq .

The quantity Dq or lODq is frequently reported as an experimentally determined
parameter in papers on optical data taken on transition-metal ions containing
d electrons whether in cubic sites or not. The re), ation given in equation
(3.20) holds for the many-electron configuration nd . The various coeffi.-
cients such as Dq which are commonly used for other symmetries are given by
Konig and Kremer (1977).

3.2 Problems

1. A spherical component of the angular momentum of an electron,
has the matrix elements

<lmll Ji,.Im> - <a (m)1(Q.)J%(m')> <a i1,1l,

from the Wigner-Eckart theorem. Also we have Z01jm> - mltm>. Using a table
of C-G coerficients (see Rose, 1957, appendix), evaluate <L(m)1(0)IR(m)> and
then show that

<I >- i T+1 •

2. The tensor Tkq has the property Tkq = (_I)qTk-q. Consider the matrix
element

<Wm IJTkqI 1wm

and its hermitian conjugate

(<t'm'ITkqltm>) t - <ZmIT,,zqm,>

By using the Wigner-Eckart theorem on the above matrix element and its hermi-
tian conjugate show that

<LIrT > (_1)-, [2+' + 1• 1/2
k;i> 1221 + 1 <'lkl+>
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In many books the reduced matrix elements are written (1'1Ir kit) with

(LITkI' -/2.1<LITki>

so that

(LITkit') - (-1)'-'(1'1Tkit)

3. An electron is trapped at a negative Ion vacancy site in a
solid. Taking the effective potential the electron sees as

H - B2 0 C2 0 + B22(022 + C2 -2 )

calculate the energy levels of the p state (Yjm(r)) of the electron. (The C-G
coefficients can be found on page 225 of Rose, 1957). You will need

<1"mIC 201im> - <t(m)2(o)Il(m)> <1(o)2(o)IZ(O)>

<111C2 2 11-1> - <1(-0)2(2)i1(1)> <1(0)2(0)11(0)>

<1(o)2(o)j1(0)> - /25

<1(+1)2(0)I1(±1)> - 1

<1(1)2(2)j1(1)> - r3

The answer can be obtained from

2

<1±11H11±1> - 1- B2 o

<111HI1-1> - - ! B5 22
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4. By using the results given on page 101 of Ballhausen (1962) in
equations (3.12) and (3.16), show that

B20 -'-7Ds

B40 - 21(Dq - Dt)

44- vDq .

Show that for a crystal-field interaction of C3 symmetry

B20 --7Da

B40 - -14Dq - 21D ,

B43 - 2V•,Dq

as given on page 104 of Ballhausen (note that the term involving B44 in eq
(3.15) is replaced by B43 (C4 3 - C4-3)).

3.3 Annotated Bibliography and References

Ballhausen, C. J. (1962), Introduction to Ligand Field Theory, McGraw-Hill,
New York, NY.

Brink, D. M., and G. R. Satchler (1962), Angular Momentum, Clarendon Press,
Oxford, U.K.

Hufner, S. (1978), Optical Spectra of Transparent Rare Earth Compounds, Aca-
demic Press, New York, NY.

Judd, B. R. (1963), Operator Techniques in Atomic Spectroscopy, McGraw-Hill,
New York, NY, chapters 1, 2, 3, and 4.

Konig, E., and S. Kremer (1977), Ligand Field Energy Diagrams, Plenum Press,
New York, NY. Pages 19 through 22 give relationships of the various
notations used to describe the crystal field.

Merzbacher, E. (1961), Quantum Mechanics, Wiley, New York, NY.

Rose, M. E. (1957), Elementary Theory of Angular Momentum, Wiley, New York,
NY.

Rotenberg, M., R. Bevins, N. Metropolis, and J. K. Wooten, Jr. (1969), The 3-j
and 6-j Symbols, MIT Press, Cambridge, MA.
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4. UNIT SPHERICAL TENSORS

4.1 Discussion

Because of the power of the Wigner-Ekhart theorem, it occurred to
Racah to cast the various operators representing the interactions in terms of
universal quantities that could be tabulated for a frequently used many-
particle system. Toward this end, Racah introduced the unit spherical tensors
for the electronic configuration nZN, which we define as

<'mu lUkqIlm> = <1(()k(q)jt(m')> 6,

for the orbital space and

<L'm's'm'I v~Ik[msm > - <Z(m)k(q)Iz(m')> <s(ms)i(A)fs(ms)> 6RE,6ss,

(4.1)

for orbital and spin space.

The generalization to an N-electron system is simply

N
Ukq U • Ukq(i) and

(4.2)

VKk N Kk
V Aq "•Vxq(i)
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A simple and often used example of' these tens'ors in orbital space is

I Ckq(i) - I <t•Icll"> ukq(!)
i i

(4.3)

- <0Ickl•> Ukq

where

<PIckli> - <Z(O)k(O)I•(O)>

(we omit the upper limit on the i sum in the remainder of the discussion).
The angular momentum is simply related to unit tensors by

L <tILIL> U1  and (4.4I)

<tj1zIz> 4-1-77 •

An example of a tensor in a mixed spin and orbital space occurs in
the hyperfine interaction H5 , given by

H 5  (20NWINN/I) N i .1/r, (4.5)
i

where 0 is the Bohr magneton, 8N is the nuclear magneton, p N is the nuclear
moment, and I is the nuclear spin. Now

i - si + 2(risi)/r (4.6)

or

N q(i) - Iq (i) - Y"1 7 <1(v)2(q-v)jl(q)> sV(i)C2,q-v(1) (4.7)
V

(we show in sect. 6 how eq (4.7) is obtained from eq (4.6)).
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The part of Nq(i) containing t q(i) can be written in terms of Ujq, as
in the seuond part of equation (4.4):

Ss (i )C v (i) - <sIsls><lc21{> 'V,2 (4.8)
5 v 2,q-v'2 Vvq-v

A component of N = X Ni can be written
-" i

N = /17T1TU1q - ViT .'s(s+1) <x(o)2(o)I(0))>

(4.9)

x I <1(v)2(q-v)ll(q)> V1 2

V vq-v

Thus, equation (4.5) can be written

H w (200N N/I) <1/r 3 > Z N 1* , (4.10)

q q q

with Nq given by equation (4.9).

Various authors use different normalizations of the unit spherical
tensors. The relation of the spherical tensors used here to those tabulated
by Nielson and Koster (1963) and by Polo (1961) are

<L'SlaUk ILSa> - (L'Sc' IU(k)Ilsct) vr22.+1 (4.11)
'2-L' +1

<L.S',IIVIkILSa> -(LWSWIVIkILSc7) _ /4(21+1)
[3(2L'+l)(2S'+1)]I 2

(4.12)

In addition Polo tabulates

(L'Sc•' C(k)ILSa)

where
C(K) C M (4.13)

"q CKq

Nielson and Koster (1963) tabulate the reduced Yiatrix elements of V11 only;
the rruced matrix elements for the electronic nd configuration of V
and V are calculated by Wai-Kee Li (1971).
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5. RACAH COEFFICIENTS

The Racah coefficients arise in the coupling of three angular momenta
(Rose, 1957, p 107) to form a final resultant. In the coupling of the angular
moment4, we consider two coupling schemes:

scheme A: 31+ -2 - 112 ' •12 + 33 - 1 (5.1)

scheme B: J1 + 33 ' 3 13  13 (5.2)

Coupling scheme A is represented by the wave function

A> - I <J 1 (m1 )J 2 (m2 )lJ 1 2 (m1 +m2 )> <J 12 (m 1 +m2)J 3 (m3 )9J(m)>
mI m2m 3

(5.3)

x lJlmlJ 2 m2 J 3m3 >

scheme B is represented by the wave function

jB> - I <j 1 (m1 )J 3(m3 )IJ 1 3 (m1 +m3)> <J 1 3 (m1 +m3 )J 2 (m2 )lJ(m)>

mlm 2 m3

(5.4)

x J1lml J2 n2 J 3m3 >
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The coupling sohemes A and B are connected by a unitary transformation

IB> - I <AIB>IA> ; (5.5)
A

the ooettioients of the unitary transformation are determined by taking the

inner product of equation (5.3) with equation (5.4).

We define the Racah coefficients as follows:

WOJlJ-12J 131 3;JJ) [ 1 J I /2 <AIB> (5.6)

Thus,[ (2.j 12+1)(2j 13+1 )]l/

ThUS,

[(2J 1 2 +1 )(2j 1 3 +1 ) 11/ 2 w(j 2 J 1 2 J 1 3 j 3 ;j1j)

I <J1 (m1 )J 2 (m2 ) lJ1j 2 (f1l+m 2 )> <J1 2 (m1i+m 2 ) L3(m'i "m2) JJ(m)>
1 m2

(5.7)

" <J(ml)j 3 (m'ml-n 2 ) Jl 3(m-m2 )> <J 1 3 (m-m2 )J 2 (m2 'IJ(m)>

The following equation can be obtained from equation (5.7):

<J (2)J1(m1)IJ12(m1+m2)> < 12 m1+2)J3(m-1-m2)lJ(m)>

- [(2j 1 2 +1 )(2j 1 3+1 )]1/ 2 w(J2Jljj 3 ;J 1 2 J 1 3 ) (5.8)
J13

x <j 1 (ml)J 3 m-mM1-m2 )1J 1 3 (m-m2)> <J 2 (m2 )J 1 3 (m-nM2 )Ij(m)>
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which is a relationship used often in our analysis. For cl~rity we rewrite
(5.8) as

<a(a)b(O) le(a÷O)> <e(a÷S)d(6-a-S)jc (6) >

(5.9)

- I v'(2f+1)(2e+•1) W(abcd;ef) <b(B)d(6-a-O)If(6-a)> <a(a)f(6-c€)Io(6)>
f

(Rose, 1957). The Racah coefficient is related to the symmetrized "6-j"
symbol by the following equation:

W(abcd;ef) = (-)a+b+o+d{a b e (5.10)

The symmetry of the "6-J" symbol is

Z 1 £ 2 L£3 .' Z2 X1 Z3 {. 1£3 £2 1,1 J2 J3 (5.11)

and all combinations of the relations in equation (5.7). The four triads
(J1 J2 J3), (01 Z2 13), (£i J2 X3), and (21 22 J3) must b able to form a
triangle. That is,

Li1 - J 2 1 S J3 S Jl + J2' (5.12)

with similar relations for the other triads.

An example of the use of Racah coefficients is in the calculation of
single-electron matrix elements of the operator

E kq - Z <k(q-X)1(A)jk'(q)> Ck,qAt , (5.13)

which arises in nwnerous applications. We consider the matrix element

<V'm'IEk,qIl2m> . <(m)k'(q)jL'(m')> <VI'Ek,vI> (5.14)
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by applying the Wigner-Eckart theorem, equation (3.1). Also, by taking the
same matrix element of equation (5.12) we have

<W'm'IEkqLJm> - • <k(q-X)1(A)Ik'(q)> <ttm1ICk,q_4 AR m> . (5.15)

Now we further consider the matrix element in equation (5.14) to obtain

<11'm'ICk ,c-A z Xltm> - I <t'1i'ICk,q.A1Z•"m"t> <2"m"ItAJtm" . (5.16)

where we have used matrix algebra *on the product of two operators. If we
apply the Wigner-Eckart theorem to the last matrix element in equation (5.16),
we obtain

<V"mt'l1AJ~m> =<Z(m)1(A)JX'(m"')> 6it" <•£L

also, mi" - m + A as required by the C-G coefficient. We have previously shown
that

S- • (5.17)

Therefore,

<("m"1I t P!.m> - <9,(m)1() I"v(m-.A)> 5 ',.(9T-+15) (5.18)

Using these results in the remaining C-G coefficient in equation (5.16), we
have

<(minICk,q_, it(m+A)> - <Z(m+iX)k(q-A),l'(m')> <,'ICki9.> . (5.19)

Substituting the result of equations (5.19) and (5.18) into equation
(5.16), we have

<£mIk,qA A gtm> - £t/1<L'gCk•t> <t(m)1(A)IJt(m+A)> (.0
k~q-A(5.20)

giving the matrix element in equation (5.15). If we substitute the result of
equation (5.20) into equation (5.15), then we have

<'m'nIEktqlim> - /177. <t'ICk1Z>S, (5.21)

42

-.M I ,



where

S = • <k(q-X)1(X)Ik,(q)> <,(m)1(A)I,(m+.)> <1(m+A)k(q-A)jZ'(m')>

(5.22)

The last two C-G coefficients in equation (5.22) can be recoupled by using
equation (5.8) or

<R(m)1 (A)l (m+X)> <1(m+A)k(q-X)•)'(m')>

(5.23)

"- • /(2*+1)(2"•3*I)W(1I,'k;lf) <WA(A)k(q-X))f(q)> <1(m)f(q)LZ'(m')>
f

The C-G coefficients in equation (5.23) can be rearranged by using the sym-
Smetry rules of equation (2.7) to give

<1(,)k(q-A)jf(q)> - (-1) +k'f <k(q-X)1(A)lf(q)> (5.24)

This C-G coefficient and the first C-G coefficient in equation (5.22) are the
only two C-G coefficients containing A, so that

A <k(q-X)1(,)Ik'(q)> <k(q-.)1(X)lf(q)> - 6fk, (5.25)

because of the orthogonality, as shown in equation (2.4), of the C-G coeffi-
cients. Thus, we get

S _ (-1)!+k-k'j'(2k•',+)(2Z,+1) W(9•,l,'k;,k') <1,(m)k'(q)j1'(m')> , (5.26)

which when substituted into equation (5.21) gives

<VmI Ek,q Zm> - (-1)+k-k'V,(?Z+l)(2tFl)(2k'+1) W(V.i'k;Zk') <WIC kI1.>

(5.27)
x <ft(m)k,(q)j2'(m')> .

Upon comparing the result given in equation (5.14) with equation (5.27), we
have

<t'I~k,li> - ('1)1k-k'([i(i+1)( 22i+l)( 2 k'+1)31/ 2 <Z'1ckit> W(Z1V'k;Zk')

(5.28)
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which is a useful relation if we wished to express the tensor Ek, in terms of
unit spherical tensors; in that case we would specialize equ~tion (5.28)
to 92 - £ and simply replace Ckq in equation (4.3) by E with the reduced
matrix element given by equation (5.28). We shall have frequent occasion to
express our results in terms of Racah coefficients by using equation (5.8).

5.1 Problems

It is frequently convenient to build spherical tensors of higher rank
by coupling products of angular momentum operators. One such tensor is

Tkq - I <1(c)1(q-a)Jk(q)> X aq.q% (a)

where

Tkq , (- q

(Ia Iqa+ _)qc*i qQ -1Na

in whtch, by the properties of the C-G coefficient, k is restricted to 0 < k 9
2. The Tkq thus constructed is patently a spherical tensor of rank k, projec-
tion q. The application of the Wigner-Eckart theorem (eq (3.1)) gives

<9.m'ITkq JZm> - <1(,n)k(q)JX(m')> <LITkll> (b)

with m' -, m + q.

Direct calculation of the matrix elements gives

<1MI I kQlm> - I <1(a)1(q-a)Jk(q)> <Lm'Il l •q-a (c)
aq

By using the rules for matrix multiplication we have

<Lm'Itqa unm> - I <m'It a IVmi> <"tm"YItq.alim> • (d)

Using the Wigner-Eckert theorem on the first matrix element in (d) gives

<AM'z Jl11m"> -<%1"(m"1)1(a)l(m')> <1111vI•> (e)
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But, as we have shown earlier, <111']l> - /Z('=+ 6 ,, and the C-G ooefricient
requires m" - m' - a. Substituting these results i t (d) gives

<Lm'It Rq. ILm> - <1(m'-a)1(a)L1(m')> <1(m)1(q-a)It(m'-a)> L(L+'I) (f)

where we have used the same technique used in (e) on the second matrix element
in (d).

The two C-G coefficients in (f) can be recoupled using equation (5.8)
in the text to give

<L(m)1I(q'a)jL (m' -a)> <L(m' -a)1I(a)I (m' )> (g)

- I /(2f+1)(21+1) W(M1£1;1f) <1(q-a)1(a)cf(q)> <Z(m)f(q)Jl(m')>
f

We now have the C-G coefficients uncoupled so that if we consider the sum
on a given in (a) and the C-G coefficient in (g), we have

I <1(a)l~q-a)Jk(q)> <1(q-a)1(c)jf(q)> - (-1)kafk

a

where we have used

<1(a)1(q-a)Jk(q)> - (k-1 )k <1(q-)la)Jk(q)>

Collecting all these parts together--(g), (f), and (h)--and substituting into
(c) we obtain

<Eml I ikqlg'm> ,- (-11kt(z,lI [(2k+1)(21,1)1 1/2 W(Z111;Zk) <i.(mlk(q)jZ(m')> .|

Comparing this result to (b) we obtain

<1 II.kl'> - (-1)ki(,+ ) (2k+1)(2k+1)]1/2 W( I U ;1k) (h)

1. From the results obtained above, find the following:

for k =0

W(.1t1;iO) = -1 (Rose, 1957, p 113),
/3( CH71 )

<iIT0IL> - -i CEO)
J' as
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But, from (a)

and

<1()1(Q)1(0 - (-1) 1c <1((X)O(O)11(0)>

Substituting the above,

r- a

also,

(t)2 1 tm> -(~ $(.)I Xm>

<2.m'1T 0 j12.> -<2.(m)O(O)j2.(m)> <2.1T 012.>

Show also

W(2121V;21) 1/

W(2.121;2.2) - /(22.+3) (21.--17

<21IT 1 Iv. - - AM 1 , <LI1T 212> - E2.(2+1)(22.+3)(22.-1)] 1 1/2

2. Given the results of problem 1, calculate the reduced matrix
elements of the tensor

wK- <1(0)k(Q-8)IK(Q)> 2.a T ,-
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where Tkq is given in the discussion at the beginning of section 5.1.

The reduced matrix elements of WKQ are given by the Wigner-Eckart

theorem as

<LmIWKQIJm> - <Z(m)K(Q)IZ(m')><ZIWKIt>

Then, by computing the matrix elements of WKQ by the methods of problem 1,

show that

<t[iJKIt> . "('1)k-K[i(j+1)(2Z+1)(2K41)]11/2 <j1TkIl> W(tkI(1;K)

Evaluate <9.iWkwi> for K - 0, 1, 2, 3. (The latter Racah coetficient is given
in the appendix in Rose, 1957.)

Show the following:

K(K+1) 1/2
W(£~Ki1;£K) =4K(K+1)(2K+1)£(i+1)(21+1)J k K,

W(ZK+1I1;%I,) - - L(2+1) ' k K K+

r (K+21+l)K2(21+l-K) 1/2

W(iK-I1t;£K) - [4(2K+1)K(2K-1)Z(2£+1)(£+I) k-K-i

We write

<tIWKIQ> - <ilWK(k)IZ>

Then, when K = 0, we have k = 1 and

<iWo(I)•> 0 -I>

For K = 1, we have k - 0, 1, 2, and

< w2 ( 1 > - - [ )(2 £- I )(2Z+3) ]1/2

< I1W2 (2)I0> 
6 - [ £(j+ I)(2 £ -6 )(21+3)]I/2
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For K - 3, we have k - 2 and

< IWl3(2)10> - £(-1)t(Z+1)(1+2)(2Z-1)(21+3)J 
1/2

5.2 Bibliography and References

Brink, D. M., and G. R. Satchler (1962), Angular Momentum, Clarendon Press,
Oxford, U.K., pp 40-45 and 116-118.

Edmonds, A. R. (1957), Angular Momentum in Quantum Mechanics, Princeton Uni-
versity Press, Princeton, NJ, pp 92-100.

Rose, M. E. (1957), Elementary Theory of Angular Momentum, Wiley, New York,
NY, chapter VI, also pp 225-227.

Rotenberg, M., R. Bevins, N. Metropolis, and J. K. Wooten, Jr. (1969), The 3-J
and 6-j Symbols, MIT Press, Cambridge, MA.

Sobelman, I. I. (1979), Atomic Spectra and Radiative Transitions, Springer-
Verlag, New York, NY, pp 66-72.

148

0ýZ' IR ýmvtV L1-"L1L%1k1WM1



6. RACAH ALGEBRA

It is convenient in many vector problems to express the vectors in terms
of spherical bases given by

e - ±~e

(6.1)

eo a ez

Then

e e

el,,e a -iv•7 <1(v)1(P)I1(P+V)> e]J+V (6.2)

eue 6 11V

The vector can be written

p li

;t e - A* , (6.3)
p

A . e

and

1 - A*B (6.4)u

-XA B*
ziu V

" Z (-I)PA B4
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Thus, a.s in equation (1.16) can be written

.s- • t (6.5)
IJIA

so that the spin-orbit interaction given in equation (1.16) is immediately in
spherical tensors, since ZP. and s are spherical tensors. That is, f or the
many-electron configuration•,

H - •(r) L 1 (t+1)s(s+1) (-1~ V11  . (6.6)
5-0 "114

An example of Racah algebra is the reduction or the latter part or equation
(4.6). That is, we wish to cast the interaction

C- 'S + 3 r ( r -

1 . + u l * T 
( 6 . 7 )

q q

where we have dropped the subscript i on the components and introduced the
unit vectors r - r/r. First we note that

r - * (r) (6.8)
a a1

as in equation (6.3), and we can write

= . (-) 8 CI_8 (i )s8 .(6)
r.s- - (r (6.9)

Then from (6.7) and (6.8)

T -q-Sq + 3Ciq(r) (-1)IC1.B(r)s • (6.10)

The recoupling given in equation (1.27) can be used to get

C1 qC Cl1- 1 <1(0)1(0)Ik(0)> <1(q)1(-$)Ik(q-O)> CkqB (6.11)
k
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and since <1(0)1(0)11(0)> - 0, the terms in (6.11) are restricted to k - 0 and
k - 2. Then we have

C q Cl -. <1(0)1(0)10(0)> <l(q)l(-q)lO(O)> 6 Bq

(6.12)
+ <1(0)1(0)12(0)> <1(q)1(-S)12(q-B)> C2,q-.

From the relation equation (2.10) we have <1(q)0(0)l1(q)> - 1 and by symmetry
(eq (2.7))

<l(q)l(-q)1O(O)> - (-1) I"q/V/ (6.13)

and

1q )1- 3 - 3 (_1) <1(8)2(q-B)l1(q)> C2 ,q_6

(6.14)

where we have used the symmetry relation of equation (2.7) on the C-G coef-
ficient <1(q)1(-B)12(q-B)>; also <1(0)1(0)12(0)> - -(2/5)1/2. The first term
in equation (6.14), when substituted into equation (6.10), cancels the -Sq
term, and the remainder gives

T q /1 0 <1(S)2(q-.)11(q)> saC2,q-0 (6.15)

w~ch is the form used in equation (4.7) where this interaction was cast into
V tensors.

As a further application of Racah algebra and some of the other material
discussed above, we shall derive the gradient formula (Rose, 1957, p 120). A
convenient form of the gradient operator is

Lr , (6.16)
Dr r

and we would like

grad *(r)Ckq(r) w [V,W(r)Ckq] (6.17)
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First we observe that

rCkq - Z (-1)Ae..ACxckq

- , (-1)e^ex <1(0)k(0)Ik'(O)> <1(X)k(q)lk,(q+X)> Ck,,q+X (6.18)

where we have used the coupling rule for spherical harmonies, equation (1.27)
(Rose, 1957, p 61). Now we write

rxI- a (e)C_ cLB (6.19)

and we use equation (6.2) to eliminate the cross product to produce

r - 2 (-i)X <(A•-c)I(c)j1(A)> e clti_ a_ , (6.20)

where we have replaced the sum on B by letting B - A - a. Now in calculating
the commutation we need only consider the operators in equation (6.20); thus,
we need

[C1laO t A',Ckq] . (6.21)

Since O(r) commutes with CI_£IAa, we need not consider it at present. First
we expand the commutator to obtain

[Cloa£(XCkq] = C1-l~{C%.Ckq - CkqCl-{_), (6.22)

we then use

ia .Ckq - [taoACkq] + rkqza.A (6.23)

in equation (6.22) to obtain

1 _a- Ciqa[-A_, Ckq] ÷1_aCkqi_• - 'kq 1-a a-•
S~(6.24)
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The last two terms cancel since C1 -a and Ckq commute. Thus, we obtain

[C 1 Qckq ] - 0 [ _ ]Ackq] (6.25)

[C 1_ X _XCk - C1 a #/k-Fk+)" <k(q)1(c-A)jk(q+a-A)> Ck,q+_-X (6.26)

where we have used equation (2.19) with.L•._ - Z.-A (which are identical In
the commutation brackets). The result in equation (6.26) is not quite in the
form we want, but by using the coupling rule for spherical harmonics given in
equation (1.27), we finally obtain

[C l1-a _Ckq] - .'k(k+1) <k(q)(ca-X))k(q+a-X)>

(6.27)

S <k(0)l(0)jk,,(0)> <k(q-a-X)1(-c~jk,,(q-A)> C k,, q-A
k"l

In equations (6.16), (6.17), and (6.20), we need

S[irMCkq] (6.28)

We can see from equations (6.27) and (6.20) that, when this is formed, the
terms dependent on a are

S - X <1(X-a)1(a)I1(X)> <k(q)1(a-A)jk(q+a-A)>

(6.29)
S<k(q+A-a) I(-a) Ik" (q-A) >;

that is,

[ ,C] - i V/ (-1) e <k(0)1(0)Ik"(O)> A-7771 SCk,,qX (630)

qAtmk"

with S given by equation (6.29). The 3um, S, given by equation (6.29) can be
reduced. First we write

<k(q)1(-X)jk(q+oa-A)> <k(q+ra'X)1(-oa)jk"(q-X)>

(6.31)

S/77 - 1 W(klk 1;kf) <1( - 1( ) (-)> <k(q)fC-A)Ik"(q-X5,>3
f
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where we have used equation (5.8). Thus, the sum over ei contains the terms

<I ( -) ( )1 -)> < ( -) ( ,)f - > - 6 f1 (6.32)

by the orthogonality of the C-G coefficients. We can use equations (6.32) and
(6.31) in equation (6.29) to obtain

S - v!3(2k+1) W(klk"l;kl) <k(q)1(-A)Ik"(q-X)> . (6.33)

Using the results of equation (6.33) in equation. (6.30) gives

[rx{tCkq i-'6k(k+l)(2k+1) X 1 <k(O)1(0)Ik(O)> W <klk"1;k1>
A k,

(6.34)

x <k(q)1(A)jk,,(q+A)> Ck,,,q+A

where we have changed the sign of X in the sum. Multiplying the results given
in equation (6.34) by -if(r)/r and combining them with equation (6.28), we
have (changing k" to k')

[I~rcq - (-1)e- A+ x /k~k-+1)(2-i c--W(klk'1;kll
kq A -A k' ~I' rJ

(6.35)

x <k(O)1(O)lk'(O)> <k(q)1(4)jIk'{q+X)> C k,,q+X

Mhe Racah coefficients in equation (6.35) are or simple form and are given by
Rose (1957, p 227). These are

W[ll~k)-- k ] 1/2 k' -k + 1
W(klk'l;kl) - -[6(k+l)(2k+1)1

(6.36)

r k+1 ] 1 / 2  k' -k- 1

which are the only values of k' allowed. These results used in equation
(6.18) can be written as

[Vý()Ce_ <k(q)1(A)Ik'(q+X)> CkI,q,qD Dk'o(r)

(6.37)

54



where

D L k+111/2 " k + 1 (6.37a)
L2k +1J j \ ar -rf

D -i; 1] 1/2(L + k+1 k
k" r +1) 1 k- k - 1 , (6.37b)

and we have used the result

r k÷111/2

<k(O)1(l0,k+1(0)> a•-[•1 r]1/2and

L2k +lJ

<k(0)l(0) Ik 'l(0)> " - 2k+

(from Rose, 19Z7, p 2 25k).1 The two mostk common forms of O(r) that we will
encounter are r and 1/r* For *(r) - r , we obtain

[V,rkCkl - -Ck21) <k(q)1(pjik-1(q+,)> rk- 4k-1 q+(638)

and for 1 k I

[V U,1/rk+1ck C - /(k+1)(2 <k(q)l()k+l(q+V)> 1 k+,q+p.

(6.39)

The results given in equation (6.39) are easily checked for k - 0, since for, k
- 0 we have

[V ,/r] - -<O(q)1(p)jl(q+p)> l/r 2Clq+ , ( 6 .39a)

and from the properties of the C-G coefficients, we know that q = 0
and <0(o)I(u)11(p)> - 1. Then

[V ~1/rClq] - /r 2  • (6.39b)

Also, we know from vector analysis that;

grad 1/r - -4r/r3  (6.39o)
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and

-r Z (-a r )C 1 C (6.39d)

Then we substitute equation (6.39d) in (6.390) to obtain

(grad 1/r) '2 (6.39e)

which is identical with the result of equation (6.39b). We shall use the
result given in equation (6.35) frequently later on, particularly in the form
given in equations (6.38) and (6.39).

6.1 Problems

1. In section 3.1 we gonsidered the crystal-field Hamiltonian in the
form HCEF - B2 0 C20 (r) + B40C4 0 (r) and obtained the energy splittiný 3 of a
single d electron. All the previous calculation was for the orbital states
only, neglecting the spin-orbit ccupling. For the states jjm> with
S - •+ 9 we showed (in sect. 2.1, Problems) that

<J'm's 0Hs oJm - i 6mm 2E [J(J+1) - s(t+1) - s I+i)]

where the states lJmts> are

jjma.s> - X <M(P)s(m-g)hJ(m)> It4>Ism-oi>

For these same states show that

<j'tsICklJs> - (-I) -J1 (2j+1)(2V+1) W(k9.j's;Zj) <Z(O)k(O)IL(O)>

and evaluate this quantity for

t 2
£ 2,

j or j 1 , 2 (for L-s S j S Z+s),
2 2(o

k -2 , 4l

W(kZj's;1J)- (- 1)k++'+s {Sk Z }
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and the quantity ( ) is a 6-j symbol 4hioh can be found in Roteriberg et al

(1969). Using the above results oaloulate

<j'mICkOIJm> - <j(w)k(O)Ij'(m)> <J'LsICk IJs>

and obtain the following table for the metrix elements of the crystal field.

j' m' J m '020 940

22 2 1/5 0

5 1 5 1

3 1 5 1 -A/135 -2v6/21

3 3 3 3 -1/5 0
5 _3 5 _3 2/35 -1/72 2 2 2

-5 5 5 5_2/7 1/21
_3 3 _ 5 3 - / 5 2 2

2 2 2 2

To obtain the energy levels we lot

2 2IHCEFI 2> " H1

41HcEFI> - H , and

<1IHcFI9 2 > - H12

1

(H - H ). Then, for the m - L levels, we have the secular equation
21 12 2

Hl + i (j 3-) -E H12

SII 

0

H1 2  H2 2 +H (,
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with a similar result for m - •. What Is the result for m 2 2

2. In the oonsideration of the nonrelativistio limit of the Dirac
equation, a correction to the nonrelativistio Hamiltonian arises of the form

22HI ata; rav a -(a

L r

for terms involving the orbital motion only. In equation (a),

2
a the fine structure constant - e

a 0 the first Bohr radius - -
me

V the potential energy (not necessarily spherically symmetric), • = [Z,V].

Take V - fk(r)Ckq(f) and show that

'• = '1)1 [(1 ,Ckq]I-.Af k(r)

fk(r) , }• (-1)A <k(q)1(X)jk(q+A)> CkqX_ 1-

Using this result show that

H?- ~2ao [afk(r) a~ fk(r)H' - -a -' a r) T C,,kC_ qr+1 7 <1(-A)k(q+A)lk(q)> C +
1F[ r a' r2 kq+A-A

Further, show that

<W m'I <l(-,X)k(q'•;.)Ik(q)> C- +.k 9-I•,m>

- [ ,(,+1)(2 ,+1)(2k+1)1 1/ 2 w( ,1•'k;ik) <R,(m)k(q)j,'(m')> <1'ICkIt>
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and

2 2

WLmo IN'I 10 - 0 Fk(r <Z(ni)k(q)~l'(m)')> <11ICkI.

F af k kr(r)12
ktilrl -r-7r+ .ý- L(L+1l(2L+l)k(k+ý1)(2k.1)J /W(tll'k;Lk)

r

W(Ilklk;ik) - 2Ji(+1) 2+1k(k+1) - +1(t'112

F ki'(r) - !5.L + Ek2 L(1+1) + k(k+1) -lt~~
ar ar *')r

IftoL - I. and f k - C 0r k(C 0is a constant), show that

j r2 drR ZFkit (r)R9 Z-Mo

that is,

<kr k-1 a k(k+1) <rk-2 >

3. In the basis of states given by

Urn> -X<i(11)a(m-P.)IJ(m)> Itol>sm-o>

calculate the matrix elements of~ ZA and the matrix elements of' , Show that
the following statements are true:

<J'Itl> . (.-)l) [.(9.+1)(29.+1)(2j+1)) 112 W(l.j's;9.j)

<J'Islj> - [:3(s+1)(2s+1)(2j+1)J1"2 W(lsj'9.;sj)

I4. We write a generalized spin-orbit interaction as the mixed tensor

T - X <1(a)1(q-a)Ik(q)> I as q-a
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and we wish to oaloyIat e atrix elements of T in the aoupled apaoe (single

eleotron) Ii.> with . L*.DyteW nEr4&art theorem,

<JiuflJ'Tkq lim> -<J(m)k(q)lIJ(mI)> <iIT klJ> ,(a)

which is the easy part. We now write the state lrn> as

lj>-1 .1 )(-~l~) 1>1m b

and a similar' expression for <J'm'I. so that the matrix elements given in (a)
are

<jImIlT kq jm> - I <1(ai)1(q-a)lk(q)> I M~~-pj~)

X <smU~lsq-act -

The Wigner-Eckart theorem can be used on the last two matrix elements in (a)
to give'

<sm'-'Ils IQsm-ii> - <s(m-p)1(q-ct) s(m'-v')> 479-771)

where w.e have used <11fl> - /1-71717 and <sisis> - /s-7s+-17

The first C-G coefficient in (d) requires pj'~p+a, and the second C-G
requires m-p~+q-am'-IA'; when PIi is used, this results in m' - m+q, which
agrees with the restriction on m' given by the C-0 coefficient in (a). Sub-
stituting the results of (d) into (c) gives

12 3

<YImIjT kq ljm> I <1(a)l(q-a)jk(q)> <L(pa)s(m-ii)Ij(m)> <1(uj+c)s(m+q+ij-o0I)j'(m')>
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and we shall rotor to the C-O aoeffioients by a number referring to the posi-
tion in the sum in equation (e). First we reoouple 4 and 3 using equation
(5.9) to give

<&(J)1a~l(t•a)><L(U+a)3(m+q-U-a)ljt(m')>

- (-I) I. V(2 +1 )(2 R+17)W(lIj's;Lf) <t(O)s(m+q-Vi-o0'j (m+q-a)>

f
(f)S~~~x <1 (a)f (r+q-a)jjI ,(m,) >( )

where we have used the symmetry of the C-G on 4 to reverse the order of the
first two angular momenta. We now reoouple 5 in equation (e) with the first
C-G in equation (f) to give

•-• ~<s(m-p) 1(q-a) js(m+q-V-a)> <I(v•)s(m+q-U-a)jf(m+q-a)>

S- (-1) L+s'f+l I /(2q+1)(2s+-71W(IsfI;3g) (g)

x <s(m-V)A(V)jg(m)> <1(q-a)g(m)lf(m+q-a)>

where we have used the symmetry of the C-G to rearrange the order of the
angular momentum in both coefficients. The second C-G coefficient in (e) and
the first C-G coefficient in (g) are the only coefficients containing V, and
the sum is

• <s(m-•.)L(ia)Ig(m)> <(tui)s~m-ij) Ii m)> - (- 1 )J'L5s8gj .(h)

Collecting what remains of (e) using the results of (f), (g), and (h), we have

<J'm'ITkqIjm> " (-1)JEs(s+1)9.(.+1)(2s+1)(2j+1)(2Q+1)] 1 /2

x I (-I)fyrV-f'T W(1IJ's;Zf)W(isfZ sJ)
f

(e')

x • <l(M)l(q-a)Ik(q)> <1(q-a)j(m)jf(m+q-a)>

x <1()f(m+q-a)jC(m,)> *
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We now reoouple the lost two C-0 ooefflotenta in (el) to obtain

- (-1)j,- <j(m)1q-Q)If(m+q-Q)> <f'(m~q-Q)1(CIj '(in')>

- (-)J'- I ~h-+lM..;17 (Jljl~fh <1q-a)(m~(i))

h

Finally, the eaw over a with the remaining C-O in (e') and the first C-G in
(1) gives

1 <1(m)1q-a)Ik~q)> -<1(q-a)1(cl)jh(q)> . (-1)k k Q

substituting into (5a) produces

(i'm'ITkqtJin> - (-1 )ki'J[s(s+l)(25s1 )t(t+1 )(2t+1)(2j+1)(2k+1)1 1"2

(ell)

<J(m)k(q)ljJm')> S

where

S - I (...)t(2f.~1) W(19.j's;tf) W(lsrt;sJ) W(J1j'1;tk)

From Rose (1957, p 191) or fromn Judd (1963, p 64I), we have

S - (1I)JX(llk;Zsj;Zsj') (k)

where X is the X-ooefticient and is identical to a 9-j symbol.

By comparing (all) with equation (a) we obtain

<JIITkIi> _ (_..)k+j'+j Es(s+l)(2s.1)L(L+1)(21+1)(2j+l)(2k+l)il/ 2

(evil')

xX(Ilk;tsj;Zsj')
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From the vules for rearranging the arguments of an X-ooefrioient, we have the

above equal to

X(IsJ Itsj' i)

and when k - 0 we get (Juud, 1963, p 67; Rose, 1957, p 192)

X(zsj;xsj';11O) - (-1) W(tsIs;j1) aii(1)

(see also Brink and Satohier, 1962, p 119). The latter reference gives

X(ZsJ;isj;111) - 0

therefore

<J'1T1I)J - 0

From equations (1) and (ell'), we have

<JiiT 0Ii> - (-1)+++[(~)2+)(+)2 W(fZs~s;hl) W m

From Rose (1957, p 227) , we have

W( 31 -l) -+~ IL + 3(3+1) - J(J+1)J (n)

W[1L+tsts;ssJ1)s+)111

and from equation Wm

<J'jT 0Ii> 2r (-1 E(1+1) + s(S+1) - J(J+1)] (0C)

Now when k -0 in Tkq as defined at the beginning,

T 00 <1(ci)1(q-z)10(O)> 'aSq-a6q,O

(p)
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In seotion 6 we have shown that
•.;. • (1[2. t2 _ 2

therefore

<J'm'IToIJm> -- I [J(J+1) - (+1)- s ) 6anm6j'j (q)2/y

and in equation (o), j I A ± 1 -0 ± 1/2, 2j = 21, ± I therefore,

(_1 )2j -. 1

so that 'the result givwn in equation (o) agrees with equation (q) but is muoh
more diffioult to obtain.

We have an Interaction between two electrons given by

Tkq = • <a(a)b(q-a)lk(q)> Ca (M)Cb ,q1:(2)

By the above techniques obtain the reduced matrix element in the ,expression

<LMITkqILM> - <L(M)k(q)IL'(M')> <L'I'lIL>

where the states are given by

ILM> - I <V()Z•M-ii)I•.M)> Ijt;1>ILM-,;2>

where the last index in the angled brackets refers to the individual elec-
trons. Hint: The result should have something like

X(abk;1ZL;UtL)
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7. FREE-ION HAMILTONIAN UNFILLED CONFIGURATION nLN [N < 2(2Z + 1)]

7.1 Background for Free Ions

The approximations made in the analysis of the spectra of ions are
not new. In fact, they go back to the old Bohr orbit theory. Since many
readers may not be familiar with these assumptions and may not remember many
of the concepts and most of the technical jargon used in the field of atomic
spectra, we review some of these briefly. We stick strictly to those concepts
which apply to transition-metal ions and rare-earth ions.

For the transition-metal ions we shall consider the doubly, triply,
and quadruply ionized states. For the rare-earth ions we consider only the
triply ionized case.

The electronic structure of the three series of doubly ionized
transition-metal ions is given in table 7.1. The triply ionized rare-earth
ions are characterized by the electronic structure shown in table 7.2. In the
rare-earth series, it is assumed that the atomic interactions are very strong;
thus, when an ion is placed in a crystal, the crystalline electric field acts
as a perturbation on the ion. In the transition-metal ions, the electronic
interaction with the crystal can in some cases be larger than the free-ion
interaction. Nevertheless, we shall continue to label the states using the
free-ion labels. This assumption allows the notation developed for the free
ion to be used, with the reservation that many of the "good" quantum numbers
of the free ion are not quite good when the ion is present in the crystal. It
is assumed that the free ions have the zeroth-order Hamiltonian

Ho- [ + U(ri (7.1)

where p is the momentum of the ith electron and U(ri) is an appropriate
spheriol average potential of the remaining electrons in the ion (other than
the N, ntN). The single-electron solutions to equation (7.1) are taken in the
form

1• RnZ(r)Yjm(?_) (7.2)
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TABLE 7.1. ELECTRONIC STRUCTURE OF
TRANSITION-METAL IONS

First seriesa Second seriesb Third seriesc

Z X2 ÷ 3dN Z X22+ 4dN Z x 2 ÷ 5dN

21 So 3d 1  39 Y 4d1  71 Lu 5d 1

22 Ti 3d 2  40 Zr 4d 2  72 H" 5d 2

23 V 3d 3  41 Nb 4d3  73 Ta 5d 3

24 Cr 3d 4 42 Mo 4d 4  74 W 5d4

25 Mn 3d5 43 To Qd5  75 Re 5d 5

26 Fe 3d6 44 Ru •4d6  76 Os 5d 6

27 Co 3d 7  45 Rh 4d7  77 Ir 5d7

28 Ni 3d 8  46 Pd 4d 8  78 Pt 5d 8

29 Cu 3d 9  47 Ag Qd9  79 Au 5d 9

30 Zn 3d10 48 Cd 4d 10  80 Hg 5d 1 0

31 Ga 3d'1049 O 49 In 4d 1 0 5s 80 TI 5d 1 0 6s

32 Ge 3d1014s 2  50 Sn 4d 1O5s 2  81 Pb 5d 1 0 6s 2

a(16 22s2 2p623 323p6)3de * (Ar core)3dm

b(Ar core)(3d 0 4a 2 4p6 4dN) - (Kr core)4d1

c(Kr core)(4d O4f 1 4 5s 2 5p 6 )5dN - (Lu 3 + core)5d1

TABLE 7.2. ELECTRONIC STRUCTURE OF

TRIPLY IONIZED RARE-EARTH IONS

Number Element Symbol Outermost eleotron shell

57 Lanthanum La 4d14tO5ss2 5p 6

58 Cerium Ce 4dO14f15s25p 6

59 Praseodymium Pr 4d!014f25s25p 6

60 Neodymium Nd 4d' 0 4f 3 5s 2 5p 6

61 Promethium Pm 4dl104t45s26p 6

62 Samarium Sm 4d 0O4f 5 5s 2 5p 6

63 Europium Eu 4d! 0 4f 6 5s 2 5p 6

614 Gadolinium Gd 4da104f75s 2 5p 6

65 Terbium Tb 4d 104tf8 5s 2 5p 6

66 Dysprosium Dy 4d 1l4f 9 5s 2 5p 6

67 Holmium Ho 4d104flO5s25p 6

68 Erbium Er 4d1 0 14tl15s 2 5p 6

69 Thulium Tm 4d1 0 4t1 2 5s 2 5p 6

70 Ytterbium Yb 14d10f135825p 6

71 Lutetium Lu 4d10 4f14 5925p6
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(Schiff, 1968), where the Ym(r) ar'e the spherical harmonics with Z, - 2 for

the transition-metal ions and 3 for the rare-earth ions. (Remember that

I - 0 for s, 9. - 1 for p, and X = 2 for d electrons.) jhe radial functions in

equation (7.2) are taken to be the same for all the Z in the ion, while the

3ngular functions, along with the spin of each electron, must form a determi-

nantal function so as to obey the exclusion principle. Depending on whatever

determinantal function is chosen, the radial functions can be found by some

self-consistent method. These radial functions (Freeman and Watson, 1962;

Fraga et al, 1976; Cowan &id Griffin, 1976) have been found for the Hund

gro'd states of all the t.ransition-metal and rare-earth ions from cerium

(Ceo ) through ytterbium (ObW').

The Hund ground state for the transition-metal ions with N 9 5 and

the rare-earth ions with N S 7 is given by assuming that all N spins are

parallel and that each angular momentum projection is the maximum allowed by

the exclusion principle (in eq (7.2), 1 is the angular momentum and m is its

projection). Thus, the Hund ground state for two electrons is the determi-

nantal funntion (unnormalized)

(•)yt, (1)c%(.)Y tt.I (2) - a(1)Y Z,1-_I(1)c(2)Y ,9. ( 2 )

where a is the spin "up" wave function (B = spin down). A convenient notation

for such a determinant is

where the upper sign is the spin prcjeution (+ - up, - = down) and Z and I - 1
are the z projection of the angular momentum (m in (7.2)). Thus, the Hund
ground state equation (7.3) for 4f 2 praseodymium (Pr ) has total spin, S, and
total angular momentum, L, given by

S - 112 + 1/2 - 1I

L = t + Z. - 1 - 22 - 1 - 5 (for' f, L = 3)

Hence, the ground state is L - 5, with multiplicity of 2S + 1 =13. In the so-
called Russell-Saunders notation, this state is referred to as 3H, as given by
the following:

Total angular momentum, L, of ion: 0 1 2 3 4 5 6 7 . .

Russell-Saunders label for the state: S P D F G H I K .
(continues alphabetically)
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In this notation, t)!e tegIhnioal reference to such a state is a term; other
terms for Pr * are I, P, a d 1S (Condon and Shortley, 1959; Nielson and
Koster, 1963). For the ion Ce +, which has one f electron, the atom notation
becomes identical to that of the ion, that is, I - L - 3 and s - S - 1/2 with
the single term 2 F. Those ions in the series for N > 2Z + 1 have the same
terms as for N < 21 + 1, and their Hund states can be constructed simply as

[t, L!1, Z+2, ... 21+1, 1, Z:1, t-2, ..* 1-(-p+1)} (7.4)

where the number of electrons is N - 21 + 1 + p. The 9N shell is completely
fil~ed when N - 2(2Z + 1), which for f electrons is triply ionized lutetium
(Lu-+). As an example of equation (7.4), consider triply ionized terbium
(Tb3 +), which has the 4f configuration. The determinantal wave function is

÷4-4-4 + + --

(3 2 1 0 -1 -2 -3 3) , (7.5)

where total angular momentum L - 3 nd total spin angular momentum S - 6/2 -
3. Thus, the Hund ground state is F. In all oases, the Hund term has been
found to have the lowest energy in atomic systems. In general, the wave
ftunctions for the higher terms are very difficult to construct, but sophisti-
cated techniques have been devised for the orderly development of a set of
wave functions for each ion having the electronic configuration pN, dN, and fN

(Nielson and Koster, 1963). The Hamiltonian given in equation (7.1) has the
same value for all terms of the configuration nk ; consequently, we ignore H0
in the future discussion.

7.2 Significant Free-Ion Interactions

A number of interactions within the ion do not depend on the partic-
ular solid or are modi"ied when the ion enters a solid. These interactions
are termed the free-ion interactions. We discuss several such interactions
here.

7.2.1 Coulomb Interaction

The largest contribution to the Hamiltonian for the free ion is the
electrostatic interaction of the niN electrons, which may be written

N 2
H e (7.6)

i>j IIjjl

where

rtj -r rj

69

LI



÷4.

Thq matrix elements of this interaotton for the state (3 2) (the 3H term) ofPrJ+ are

<3H1H, 1 3H> - F() - 9F(2) - (17F(4)/363) - (25F(6)/14,157) (7.7)

(Judd, 1963), where the F(k) are frequently referred to as the Slater
parameters.

The F(k) are radial expectation values given by

(k) 2( k 22F .e o J r>o - [k1 n(r, )Rn2[(r2 ]2r2 drr 2 d2 2  , (7.8)

where

SRn2 (r)r dr 1

r< r I
-- - if ri < rj and

r> r,

r
-l Ifr > r an

r II j

For the dN electrons the matrix elements of the Coulomb Anteraction are given
in terms of F k , while 1he same interaction for the f 3eries is given in
terms of new parameters E by Nielson and Koster (1963). Nielson and Koster
give the matrix elements of the Coulomb interaction in the form

<a1'L'S'IHIIaLS> a 6 LL, 6SS, 1 ok(' ,(,a,L,S)F(k) (7.9)

ad they tabulate the coefficients ck(E;',a,L,S) for each of the states of
d Similarly, Nielson and Koster give for the matrix elements of the Coulomb
interaction

k<(''3 H 1OL>- 6 LL, 6SS' 1 gk(a',a,L,S)E , (7.10)
k
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and the coeffioients gk(ca',a,L,$) are given for eaoh of' thf, states of f In
equation (7.9) the values of k are 0, 2, and 4, whii.e in equation (7.10) the k
values are 0, 1, 2, and 3. The relation of E' to .F'K is given in a number of
places (for' example, Judd, 1963, p 206).

7.2.2 Spin-Orbit Interaction

The seiond interaction of reasonable magnitude in the free ion is
ýhe spin-orbit coupling, which is

NH 2 C-, (r )1,i 4.1 (7.11)

i-!

where
C• = 2 1 dUr,")

i) 2m 2 o2 ri drI

This interaotion was derived from relativity theory in the Bohr orbit quantum
mechanics, but it is also a natural consequ nee of a nonrelativistio approxi-
mation to the Di-ao equation. Values of Fro and ý (where & - <nkI&(r)In>
from Hartrse-Fook wave functions are given in table, 7.3 to 7.6. In the rare-
earth series, the interaction H2 is quite strong and is in general much larger
than the interaction of the rare-earth electrons with the crystal fields.

TABLE 7.3 HAnTREE-FgCK VALUES FO§ FREE-ION PARAMETERS
POR DIVALWNT IONS WITH 3d ELECTRONIC

CONFIGURATION (Fraga et al, 1976)

Z X2 + ndN F(2) (0m- 1 ) F('1 ) (4) I) g3d (om' 1 ) <r2 > (A2 ) <r4> (A4)

21 Sc 3d1  -- 85-95 0.' !6 1.4997

22 Ti 3d2  67,932 42,357 131.15 0.6716 0.9808

23 V 3d3  74,062 46,171 187.17 0.5677 0.7112

24 C 3d 4  79,790 49,726 265.60 0.4910 0.5401

25 Mn 3d5 35,637 53,368 342.85 0.4277 0.4145

26 Fe 3d6  89,877 55,927 441.38 0.3893 0.3527

27 Co 3d7  94,600 58,817 561L21 0.3525 0.2949

28 Ni 3d8  99,392 61,756 703.19 0.3203 0.2478

20 Cu 3d 9  .. 869.65 0.2923 0.2097
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TABLE 7.4. HARTREE-FOCK VALUES FOR FREE-ION
PARAMETERS FOR DIVAINT IONS WITH ELECTRONIC

CONFTIURATION 4d" (Fraga et al, 1976)

X2+ F(2) F(4) C;4C <r2> <r4 >
Z X2  ndN (om-1) (om-1) (om- 1 ) (A2 ) (A44 )

39 Y 4d 1  ... 312.00 1.5737 4.4402

40 Zr 102 51,177 33,321 432.03 1.2734 2.89r4

41 Nb 4d 3  55,682 36,328 566.11 1.0769 2.0761

42 Mo 4,14 59,873 39,117 713.12 0.9316 1.5580

43 Te 4d5  64,052 41,911 891.17 0.8145 1.1907

44 Ru 4d6  67,247 43,978 1081.70 0.7365 0.9869
45 Rh i4d7 70.673 46,224 1299.11 0.6656 0.8126

46 Pd 4d8 74,108 48,480 1544.04 0.6045 0.6744

47 Ag 4d9 .... 1820.08 0.5516 0.5644

TABLE 7.5. HARTREE-FOCK VALUES FOR FREE-ION
PARAMETERS FOR DIVA1eNT TONS WITH ELECTRONIC

CONFIGURATION 5d' (Fraea et al, 1976)

2. N F(2) F"")) 45d <r 2 > <r4>
X nN (om-1) (om- ) (om"1) (A 2 ) (A4 )

71 Lu 5d 1  .... 1390.74 1.6197 4.6324

72 Hf 5d2  50,350 33,000 1773.59 1.3646 3.2437

73 Ta 5d 3  54,C08 35,526 2170.38 1.1926 2.4612

74 W 5d 4  57,369 37,840 2594.40 1.0610 1.9385

75 Re 5d5  60,702 40,1 49 3052.92 0.9510 1.5467

76 Os 5d6  63,123 41,766 3530.75 0.8779 1.3277

77 Ir 5d7  65,755 43,550 4056.26 0.8087 1.1289

?8 Pt 5d8 68,388 45,344 4626.25 0.7474 0.96119

79 Au 5d9  .... 5247.58 0.6930 0.6646
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TABLE 7.6. NONRELATIV$STIC HARTREE-FOCK INTEGRALS FOR TRIPLY IONIZED
RARE-EARTH IONS (Fraga et al, 1976)

N 3m r( 2 ' (om 1 ) F(') (om'1) 10) (om'1) (om"') <r 2 > (A2 ) <r4) (A4 ) <r6> (A6 )

"" Ce ...... 778.114 1.1722 3.0818 15.5419

2 Pr 105,120 66,213 147,718 919.16 1.0632 2.5217 11.492

3 Nd 109,731 69,165 149,860 1069.87 0.97822 2.1317 8.9525
14 Pm 113,640 71,641 51,647 1228.24 0.91401 1.8701 7.14224

5 Sm 117,222 73,893 53,269 1397.79 0.86059 1.6700 6.3365

6 Eu 120,885 76,204 54,937 1583.54 0.81064 1.4989 5.3886

7 Gd 1214,644 78,585 56,655 1786.68 0.76368 1.3267 4.5589

8 Tb 127,137' 80,091 57,722 1990.51 0.73523 1.2508 14.2673

9 Dy 129,960 81,829 58,962 22114.87 0.70484 1.16644 3.902

10 Ho 132,929 83.670 60,281 2458.58 0.67481 1.0788 3.5296

11 Er 135,859 85,486 61,580 2719.76 0.64714 1.0028 3.2111

12 Tm 138,7511 87,276 62,864 2999.22 0.62154 0.93514 2.9355

13 Yb ...... 3299.82 0.59678 0.87030 2.6713

Consequently, it is convenient to perform all the calculations in a
set of basis functions in which H1 and H2 are diagonal, The set of functions
that achieves this is the total angular moment'um function IJMj>, where the
total angular momentum operator J - L + S.

The spin-orbit interaction H}2 given in equation (7.11) commutes
with t he total angular momentum and, consequently, since H, al.Q commutes
with 32, the wave functions can be characterized by the eigenvalues
of J 2 and Jz . That is, we can write *JM or IJM> for the wave functions with

12lJM> - JCJ-I)IJM> and

(7.12)

JzIJM> - MIJM>

For any term of given L and S (eigenvalues of j2 and ý2), the values of J are

restricted to

IL - SI s J IL + SI
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Then the wave functions are customarily written *JMLS or IJMLS>, and we have

t2IMu,1S> L(L+1)IJMLS> ,

g 2 ljMLS> - S(S+1)IJMLS> ,

32iJMLS> - J(J÷1)IJMLS> , (7.13)

JzIJMLS> - MjJMLS>

and

<J'M'L'S'IHI+H2 1JMLS> - 6jj' 6MM' (7.14)

As implied in equation (7.14), the energy H, and H2 is independent of M, or
each J level of the free ion is 2J+1-fold degenerate. The matrix elements in
equation (7.14) do not vanish generally for L' - L ± 1 and S' - S ± 1; thus, L
and S are not strictly good quantum numbers. Nevertheless, the energy 2eyels
are labeled as though they were, as in the Rijsell-Saunders notation, 2S÷+Lj.
An example of the energy levels for the 4f' configuration of thi free ion
(Pr 3 +) is given in table 7.7. Also included is the same ion, Pr +, in the
host materials lanthanum trichloride (LaCd 3 ) and lanthanum trifluoride (LaF 3 ).

The results in table 7.7 are TABLE 7.7. FREE-ION ENERGY
interesting in that they show that most of LEVELS OF TRIPLY IONIZED
the energy levels observed in the free ion PRASEODYMIUM AND CORRE-
are lowered when the ion is embedded in a SPONDING CENTROIDS IN TWO
solid. This shift in the energy levels is a CRYSTALS (all in cm 1)
geqeral effect and is not restricted to (Dieke, 1968)

Pr•÷, but exists in all the rare-earth ions [LS)J Free LaC1 3  LaF 3
where a comparison with energy levels of the 0 0 0
free ion can be made. In fact, this shift
has been observed by Low (1958a,b) in ions 3H5 2,152 2,119 2,163
with an unfilled d shell. The first explan- 3H6  11,389 4,307 4,287
ation of this shift in energies was by 3F 11,997 4,808 5,015
Morrison et al (1967), who showed that if 3 2
the ion under investigation was assumed to 3F3  6,415 6,248 6,368
be embedded in a solid of homogeneous die- 3F4  6,855 6,684 6,831
lectric constant, c, then a decrease in the 1G4  9,921 9,704 9,801
Slater integrals is given by ID2 1,9 41 6,60 1,8 47

(D2  17,332 16,6k0 16,8237
AF(k) .e 2 (c-l)(k÷1)<rk>2/{b 2k+ [c+k(c+1)]} , 3Po 21,390 20,385 20,727

1 22,007 21,987 21,314

(7.15) 1.6 22,212 21,327 --

3p2 23,160 22,1412 22,546
where b is the radius of a fictitious cavity 1so 50,090 48,710 46,786
surrounding the rare-earth ion. The result
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given in equation (7.15) was first successfully applied to Co++ in MgA120,,.
Later, Newman (1973) showed that the shift in F(M) given in equation (7.14)
was sufficiently large to predict the shifts in the energy levels for rare-
earth ions. More recently, Morrison (1980) derived the result

(k) = - " k2 (7.16)
AF ý~2k+~4 (k+!)<r > (-6

where a is the polarizability of the Z ligands at R, and <rk> is the radial
expectahion value of r . The result given in equation (7.116) is believed to
be more fundamental than that of equation (7.15) because the latter explicitly
accounts for the loeal coordination of the rare-earth metal ion. Morrison
(1980) gives a predicted shift in the spin-orbit parameter, C, but because of
the smallness of the predicted shift and the errors in the fitting of the
experimental data, no comparisons were made.

Because of the lack of experimental data on the free-ion spectra of
rare-earth ions, measurement of thqe hift in the Slater integrals is possible
only for Pr3+. The experimental F" for triply ionized rare earths in LaCI 3
have been obtained by Carnall et al (1978), and these results are given in
table 7.8, and the corresponding experimental values for the transition-metal
ions are given in table 7.9. These data can be used in conjunction with
equation (7.16) to obtain results that can perhaps be applied to an arbitrary
host material to predict a priori the energy level shift of that host.

TABLE 7.8. FREE-ION PARAMETERS FOR TRIPLY IONIZED
RARE-EARTH IONS IN LaCl 3 OBTAINED FROM FITTING

EXPERIMENTAL DATA (all in cm-1) (Carnall et al, 1978)
Values in parentheses were not varied in the fitting

Ion F2  FA1  F6  a 0 y

Pr 68,368 50,008 32,7413 22.9 -674 (1520) 71414

Nd 71,866 52,132 35,1473 22.1 -650 1586 880

Pm 75,808 511,3418 38,824 21.0 -6415 11425 1022

Sm 78,125 56,809 140,091 21.6 -7214 (1700) 1168

Eu 84,399 60,343 41.600 16.8 (-640) (1750) 1331

Gd 85,200 60,399 44,847 (19) (-643) 1644 (1513)

Tb 90,012 64,327 42,951 17.5 (-630) (1880) 1707

Dy 92,750 65,699 45,549 17.2 -622 1881 1920

Ho 95,466 67,238 46,724 17.2 -621 2092 2137

Er 98,203 69,647 49,087 15.9 -632 (2017) 2370
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TABLE 7.9. EXýERIMENTAL VALUES RF FREE-ION
PARAMETERS (ora' ) FOR DIVALENT 3d ELECTRONIC

CONFIGURATION (UylingEs et al, 1984)

z x2 ndN F 2 d B

22 TI 3d 2  54,927 32,206 118 20.52 -466.2

23 V 3d 3  59,924 36,268 170 22.90 -480.8

24 Cr 3d4 611,798 40.288 231 25.83 -509.2

25 Mn 3d 5  69,485 44,305 316 29.20 -537.1

26 Fe 3d 6  74,282 48,241 422 33.21 -533.2

27 Co 3d7 78,906 52,227 536 37.48 -532.48

28 Ni 3d 8  83.514 56,164 668 42.49 -554.9

7.2.3 Interconfigurational Interaction

An interaction that has been frequently used in fitting the "free"
ion levels of a rare-earth ion or a transition-metal ion in a crystal is the
so-called interconfigurational mixing or the Trees interaction. For the rare-
earth ions this interaction has been parametrized by WyboUrne and RaJnak
(Wybourne, 1965) and is

H 10 -,aL(L+1) + OG(G 2 ) + YG(R 7 ) , (7.17)

where a, 0, and Y are parameters adjusted to fit the experimental data. The
operator G(G 2 ) is the Casimir operator for the group G2 , and G(R7 ) is the
similar operator for R (note that L2 - L(L+1) is the Casimir's operator for
the group R3 ). The values for these operators for all the st tes are tabu-lated by Wybourne ("965, p 73). The values for the state of f are given in
table 7.10. The values of a, 0, and Y obtained by TABLE 7.10. EIGEN-
fitting experimental data for the rare-earth- ions are VALUES OF CASIMIR'S
given in table 7.8. To my knowledge, no successful OPERATORS FOR STATE
attempts to derive theoretical values of a, 8, and Y OF f
have been published. For the transition-metal ions the State 0 130 5Y
Trees interaction in equation (7.17) uses a, but 8
either multiplies G(R5 ) or the seniority operator Q 32 5
(Wybourne, 1965). 3F 12 6 5

3H 30 12 5
7.2.4. Other Interactions is 0 0 0

ID 6 14 7
Many other interactions are considered in IG 20 14 7

the free ion, such as spin-other-orbit, orbit-orbit, 1 42 14 7
and configuration interaction. All these, to a
greater or lesser extent, improve the fit of theoretical energy levels to the
experimental data. We omit these interactions from further discussion since
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H1, H2 , and H1 R give a sufficient representation of the free Ion for our pur-
poses here. lowever, we list a number of interactions including the above
which have been considered by various research workers (Wortman et al, 1973):

Hi 0 the Coulomb interaction

H2 a the spin-orbit interaction

H3 - the crystal-field interaction

H4 - the interaction with a magnetic field (Zeeman effect)

H5 = the hyperfine interaction

H6 - the spin-spin interaction

H7 - the nuclear quadrupole interaction

He - the spin-other-orbit interaction

H3 - the orbit-orbit interaction

H10 - the interconfigurational interaction

H11 - tne spin-crystal-field interaction

The notation listed above is that of Judd (1963), with a few obvious addi-

tions.

7.3 Summary

We have considered the Coulomb interaction, H1 , and the spin-orbit
interaction, H2 , for the configuration nLN in the free ion. The wave func-
tions that are chosen as a basis for diagonalization of these interactions are
IJMLS>, and the resulting energy levels are labeled according to the Russell-
Saunders notation as given in section 7.1. This same notation (plus addi-
tional quantum numbers) is used for describing an ion in a crystal. The
values of <r > that are needed in equations (7.15) and (7.16) are given in
table 7.6 for the rare-earth ions, and tables 7.2, 7.3, and 7.4 give the
corresponding values for the doubly ionized nd ions. The wave functions used
for the calculation of the energy levels of rare-earth and transition-metal
ions in a solid will be the combination that simultan Vpusly diagonalizes H,
and H2. While thit, process is not a good one for the 3d configuration, it is
better for the 4d" and 5dN configurations and is excellent for the triply
ionized rare-earth ions.

7.4 Problems

1. We have the tensor operator Tkq given by

N
Tkq - I Ckq(i)
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(a) For N - 2 evaluate the matrix elements of Tkq by using the states

given by equation (7.3). That is, show that

(tstZ1)*T kq {t,1!1) [ <LItC kqlitL> + <uZL1ICkq it-1>bqo

1b) By application of the Wigner-Eokart theorem to the problem in (a)
we have

{,Z+}*T kq{,+ - <L(L)k(O)l.(L)> <CSITkILS>

with 'L - 2Z - 1.

Using this result and the result in (a) show that

<ISI T <t(O)k(0) 1(O) >
<IJslTkILS> . <L(L.)k(O) ,.L(L)> ><2(R)k(O)!tt)>

where

S(2L+ 1)(2L)1(2L)I 1/2
SILL)>= (2L+k+I)(2L+k)!(2L'-k)!I

and

<I(1)k(O)lt(t)> - as above with L - Z.

Show also that

<i(i-1)k(0)Il(.-1)>- [(2Z+I)(2-'1)1(21-1)1] 1 /2 1 -kk2]L (21-k)l 1 2-'2

2. By extending the results obtained in problem 1 to the operator

N
Tkq = i Ckq(t )

show that

N
<LLSSITkO"LL.SS> - I <t(Z-p)k(O)It(I-p)> <1(O)k(O)1i(O)>

p=O

where L NZ N(N - 1) N 2t+1.

2
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3. ror N - 29. * 1 what is the value of the following sum?

21
SN(k) I Z <Z(t-p)k(O)jZ(1-p)>

pN O

4 . The recursion relation

[k(k+1) - 21(1+1) + 2m2 1 <L(ni)k(0)jt(m)>

- -(t+m)(1-m+1) <t(m-1)k(O)jI(m-1)> - (X-m)(9+m+1) <V(m+1)k(O)jl(m+1)>

can be used to reduce the number of Clebsch-Gordon coefficients in problems 1
and 2. Obtain this recursion formula (see Rose, 1957, chapter III).

5. For <Z(0)k(0)jZ(o)> derive the recursion formula (eq (2.10))

<tick+2It> - - k+1 (2t+k+2)(2X-k) 11/2k+2 k+2 L(2t-k-I)(21+k+3)J <tlCkl >

for even k. Thus since

Slcol .- 1

any given k<tlCklt> can be evaluated algebraicly.
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8. CRYSTAL-FIELD INTERACTIONS--PHENOMENOLOGICAL THEORY OF CRYSTAL FIELDS

8.1 Discussion

In the presence of a crystal field we take the interaction of an ion
whose electronic configuration' is ntN as

N
HB Y Ck() , (8.1)

kq kq kqi

where the Ckq are unnormalized spherical harmonics given by

Ckq (r) - [47,/(2k+1)] 1 2 Ykq(r)

The use of the Ck in expressions for electronic interactions (along with
other shorthand nothtion that we will not use) is practically universal. The
number of terms in equation (8.1) that need to be considered is limited by the
symmetry of the site occupied by the particular ion. Also, since we will be
discussing only the niN contfiguration, k is limited to values of 4 for I - 2
and 6 f or I - 3. This limitation arises because, independent of' the basis
chosen, individual matrix elements of Ckq will have to be considered, and
these are such that <ZICklt> - 0 if k > 2L.

For our purposes in the discussion of the nonvanishing Bko of' equa-
tion (8.1), it is sufficient to consider a single electron; thus, 2he Hamil-
tonian we consider is

H3 " Z B* qCkq (8.Z)
kq

Since H3 must be hermitian, we have the property that Bk.. - (-I)qB•q, which
is the same as the Ckq given in equation (1.25). The basic assumption of
group theory is that H is invariant under all the operations of' the groups
under consideration. Tgat is, we shall assume that

OH3 " H3 (8.3)
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wha-e 0 s any operation of the group. Using equations (8.3) and (8.2) we
have

OH , (8.,4)

kq qAkq

where we assume that 0 operates only on the electron coordinates. The Bkq

contain the dependence on r, but since r is invariant for all the 32 point

groups, there is no loss in generality. Thus, need only consider the re-

sults Of OoCkq for all OX in a particular group. The lowest group Ct contains

the identity operator only; consequently all Bk. are allowed. The group Ci
contains the inversion operation I, and ICkq - (- 1 )kCk t so that equations

(8.3) and (8.4) give Bkq o 0 for all odd k, while allskq with even k are

allowed. The group C2 contains the operation C2, a rotation about the z-axis

by 1800; thus C2Ckq - (-1)qck . Consequently for the group C2 all k values

are allowed and only the Bkq wqth even q exist.

The group C. has the symmetry operator ah' given in problem 2 of

section 1. That is,
Oh kq -- )kqkq P

which, for even k, gives the same nonvani:-hing Bkq as C2, but for odd k, q

must be odd, giving B1 1 , B3 1 , and 833 for odd k < 5.

We next consider the two groups C4 and S4 . The symmetry operators

for the C4 4'roup are C4 (a rotation about the z-axis by 900), C2 , and

Cý o C-1(C 14- E).

For the first of these operations and using table 1.1 we have

C 4Ckq e irq/2ok, , (8.5)

and no new restrictions are imposed by the symmetry operations C2 and Cý. The

nonvanishing crystal-field parameters are

Bkq - 0

(!qj < k and k is any positive integer), unless q - 0, ±4, ±8, ±12,

For the S4 group, the symmetry operator 34 can be written S4 4 ,

so that 
n

S4Ckq - (_-)k eiiTq/2C kq (8.6)

Thus, for even k, S 4 has the same nonvanishing Bkq as C4 , but for odd k,

Bkq 0

unless q - ±2, ±6 ... with odd k and Jqj ý k. This condition gives rise to

the nonvanishing Bkq as B3 2, B5 2 , B7 2, B76

82 '

m - Ai



As a final example we consider the group D2 . The symmetry operations
for this group are C2 (x), C2 (y), and C2 (z). From problem 2 of section 1 we
have

C2 (X)Ckq - (-1)kCk q

C2 (Y)Ckq - (- 1 )k+q Ckq (8.7)

C2 (Z)Ckq - (_1)qC q

The last relation in equation (8.7) requires that q be even; from this result
the first two relations are identical. If the first relation in equation
(8.7) is substituted into equation (8.4) and the summing index q is changed to
-q, we have

B kq- (-1)kBk-q . (8.8)

Since B - (-1)qB* (see the discussion of eq (8.2)), and since q is even,k-q kq

B - (-1) kB . (8.9)kqkq

The result given in equation (8.9) requires that Bkq be real for even k and
imaginary for odd k; also BkO= 0 for all odd k, since Bo B* in general.

Bko kO kO

Using the above techniques and table 1.1 we obtain the results given
in tables 8.1 and 8.2, which are sufficient for d electrons; for f electrons,
however, the tables must be extended to k - 6. For the cubic groups the
operations are more involved; the crystal-field Hamiltonian is given in table
8.3 for k S 6, whion is sufficient for the rare earths.

Sometimes in the 0 group the (111) cubic axis is chosen as the z-
axis; the crystal field is then given as

[111]HBCEF B 40C40 * - C43)]

+ B

+ B60 [C60 ± Y35967 (C63 - C6- 3 ) + /77/192 (C6 6 + C6(68.

It may be of interest to note that the lowe3t odd-k term in the crystal field
for the 0 group is (from Polo, 1961)

B9)4[c94 - c9-4 V77 (C98 - C9-8)]
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TABLE 8.1. ALLOWED VALUES OF Bkq FOR POINT GROUPS 3 THROUOH 15a

b a"1 822 531 B32  833 842 1544No. Groupc B1 B20  B 830 4
Re Im Re Im Re Im Re Re Re I Re Im Re Im

3 C2  X 0 0 X X X X 0 0 X X 0 0 X X X X X

4 Ca 0 XX X X X 0 X X 0 0 X X X X X X X

5 C2h 0 0 0 X X X 0 0 0 0 0 00 X X X X X

6 D2 0 0 0 X X 0 0 0 00 X 0 0 X X OX 0

7 C2 V X 0 0 X X 0 X 0 0 X 0 00 X x O x 0

8 D2h 0 0 0 X X 0 0 0 0 0 0 0 x x 0 x 0

9 C4 X 0 0 X 0 0 X 0 0 0 0 00 X 0 0 X X

10 S4 0 0 0 X 0 0. 0 0 0 X X 0 0 X 0 0 X X

11 Ca4  0 0 0 X 0 0 0 0 0 0 0 0 X 0 0 X X

12 D4 0 0 0 X 0 0 0 0 0 0 0 00 X 0 0 X 0

13 Cav X 0 0 X 0 0 X 0 0 0 0 00 X 0 0 X 0

14 D3d 0 0 0 X 00 0 0 0 X 0 00 y 0 0 X 0

15 D0h 0 00 0 0 0 0 0 0 0 0 X 0 0 X 0

aAn X indicates the presence of Bk_ and a 0 its absence. Niseiaig Bkq are 0.
bThe number is that given in Kostke et al (1963).
Cschoenflles notation. For the relation to other notations, see Kostnr et al (1963).

TABLE 8.2. ALLOWED VALUES OF B FOR
POINT GROUPS 16 THROUGH 27;k

B33  B43
No.b GroupC B10 B20 B3 0  - B40

Re Im Re Im

16 C3  X X X X X X X X

17 C31 0 X 0 0 0 X X X

18 P3 0 X 0 0 X X X 0
19 C3v X X X x 0 y X 0

20 D3d 0 X 0 0 0 X X 0

21 C6  X X X 0 0 X 0 0

22 C3 h 0 X X X 0 X 0 0

23 C6h 0 X 0 0 0 X 0 0
24 D6 0 X 0 0 0 X 0 0

25 C6 v X X X 0 0 X 0 0

26 D3h 0 X X 0 0 X 0 0

27 r6h 0 X 0 0 0 X 0 0

aAn X indicates the presence of Bkq aand a 0 its

abegnce. Missing B are 0.
9The number is tht given in Koster et &1 (1963).
CSchoenflies notation. For the relation to other

notations, see Koster et al (l63).
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TABLE 8.3 ALLOWED VALUES OF Bkq (k S 5)

FOR CUBIC GROUPS 28 THROUGH 328-b

No. Group HCEF

28 T B3 2 (C3 2 * C3- 2 ) ' B40[C40 ± /5117 (C44 C4-4)]

+ 1360[Co * /7/2 (c6 4 + C6_4]

29 Th Same as 28 but B3 2 - 0

30 0b Same as 29

ý1 Td Same as 28

32 Oh Same as 30

arn all cases the signs of the B4q and B6q parameters are

corielated.
The z-axis is chosen along the (001) cubic axis (see dis-

cussion of eq (8.10)).

A method of checking the results given in tables 8.1, 8.2, and 8.3 13
by the use of the full rotation compatibility tables of Koster et al (1963).
These tables can be used to determine the number of times the identity repre-
sentation appears in a given Ckq. Actually the method can be used to find the
Ckq that form basis functions for the idantity representation and can be
extended to other representations of the single •roup. For a given k in Ckn,
we look for the number of r 1's corresponding to Dk, and for the Ckq we use tfe
plus sign for even k and the minus sign for odd k (ICkq - (-1)kCkq).

As an example we consider the C2 group. Using table 13 of Koster et
al (1963), we have D- - rI + 2r, or one r, which, from our previous work,
corresponds to C00. Thus we nave the parameter B10. For Dt there are
three r,s, which correspond to B2 0 and B2 2 ; since B2 2 is complex there are
three independent constants.

As a second example we choose the group C2 v. From table 22 of Koster
et al, for DT we have one r, which corresponds to B1O; for D2 we have
two r1ls, which correspond to B2 0 and ReB2 2 , Normally there wculd be three
B2q, but from our previous results we know that B2 2 is real. This proness can
be repeated for all the point groups; the results are summarized in table 8.4.
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The results presented in TABLE 8.4. NUMBER OF TIMES IDENTITY
tables 8.1 through 8.3 were given REPRESENTATION APWEARS IN Ckq
assuming a single electrun; however,
it is generally assumed that the ra- The namber of rI's for
dial dependence which is contained in No. -roup 4
Bkq is the same for all N electrons k-I 2 3 4 5 6

ia single configuration n1N. This 3 C2  1 3 3 5 5 7
assumption is inherent In the 2 3 i 5 6 7
arystal-field interaction given in
equation (8.1). 5 C2h 0 3 0 5 0 7

6 D2 0 2 1 3 2 4
Despite all the restrictions 7 C2v 1 2 2 3 3 4

imposed by the symmetry operations
used above, there exists still one 8 2h0 2 0 3 0
more restriction (possibly more in 9 C4 1 1 1 3 3 3
some groups) that can be imposed on 10 S4 0 1 2 3 2 3
the Bkqr This would be apparent if 11 0 1 0 3 0 3
we were to consider a particular
model for the computation of the 12 D4 0 1 0 2 1 2
Bkq. Any such model would be based 13 C4v 1 1 1 2 2 2
on a coordinate system embedded in 14 0 1 1 2 1 2
the crystal and could be used to D0d
determine, say, Bk for a particular 15 D4h 0 1 0 2 0 2
k and q. Now if w% wished to change 16 C3  1 1 3 3 3 5
to a s•econd coordinate system ob- 17 C3 1  0 1 0 3 0 5
tained from the first by a simple 18 D3  0 1 1 2 1 3
rotation about the z-axis, we would
obtain, say, B1_, and the two sets of 19 C3y 1 1 2 2 2 3
parameters are %elated by 20 D3 d 0 1 0 2 0 3

B (8.11 ) 21 C6  1 1 1 1 1 3
kq kq 22 C3 h 0 1 2 1 2 3

where * is the angle of rotation. 23 C6h 0 0 0 0 0 3
24 D6 0 1 0 1 0 2

This result, equation 25 C6 v 1 1 1 1 1 2
(8.11), shows that we can choose * 26 D 0 1 1 1 1 2
such that we can make one of theBeq 2 3h
real and positive. To show this we
assume that B' is the parameter we 28 T 0 0 1 1 0 2
would like to be real and positive. 29 Th 0 0 0 1 0 2

First assume 30 0 0 0 0 1 0 1

31 Td 0 0 1 1 0 1

B -a-iB . (8.12) 32 Oh 0 0 0 1 0 1

Then, from equation (4.10), we obtain

B' - (a cos Q0 + B sin Q*) + i(a sin QO - B cos Q*)
KQ
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The imaginary part of BKI vanishes itKQ

tan Qo0 " or (8.13)

00 a 1 tan-'1E ÷ • (8.14)

where p - 0, ±i.

The real part of Bkq can be made positive for an appropriate choice
of p. The complete set of Bkq is then obtained from equation (8.11) with the
appropriate *o to give iq*o

B'q =• Bk . (8.15)
kq Bkq

In most of our work, the lowest B for which k is even and q * 0 has been
chosen as real and positive. Tns, fort C2 point symmetry, the twofold
crystal-field interaction is written

920C20 + B2 2 (C2 2 + C2-2) (8.16)

with B2 2 real and positive.

This reduction of the number of phenomenological crystal-field
parameters needed to fit the experimental data does not help much in the low-
symmetry point groups (point groups 1 through 8) and in fitting the rare-earth
ions. However, for the ndN ions it allows point groups 9 through 15 to be
fitted with the same set of phenomenological Bkq (B2 0 , B40 , and ReB44), and
point groups 16 through 20 to be fitted with B2 0 , B40 , and ReB43 . Thus, for
the computation of the energy levels, point groups 9 through 15 and 28 through
32 have B2 0, B40, and ReB44 (in the cubic groups B2 0 a 0, and B44 is related
to B40 ; see table 8.3). Similarly, point groups 16 through 27 have B2 0 , B40 ,
and ReBM3 (with B43 - 0 for point groups 21 to 27; see table 8.2). These
restrictions greatly reduce the computation.

8.2 Problems

1. Using the Hamiltonian in equation (8.2), prove the statement that

B -(_1)qBqk-q kq

by assuming that H3 is real.

2. In the point group SO, the tensors C1_1 and C41 form a basis
for r3 and r4, respectively (table 25, Koster et al, 1963). From table 26 of
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Koster et al we have r3 x r4 - rI. Show that the tensors formed by recoupling
the product CI.1C11 using equation (1.27) form a basis for r1.

3. Using the same methods as in problem 2, determine what bases are
formed by C10 C1. 1 and CtOC1 1 (C10 is a basis for r 2 ).

8.3 Annotated Biblioraphy and References
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Hufner, S. (1978), Optical Spectra of Transparent Rare Earth Compounds, Aca-
demic Press, New York, NY. Chapter 3 has much material which is appropri-
ate here.

Koster, G. F., J. 0. Dimmock, R. G. Wheeler, and H. Statz (1963), Properties
of the Thirty-Two Point Groups, MIT Press, Cambridge, MA.

Polo, S. Ft. (1961, June 1), Studies on Crystal Field Theory, Volume I--Text,
Volume II--Tables, RCA Laboratories, under contract to Electronics Re-
search Directorate, Air Force Cambridge Research Laboratories, Otfice of
Aerospace Research, Contract No. AF 19(604)-5541. [Volume II gives date
as June 1, 1961.)

Watanabe, H. (1966), Operator Methods in Ligand Field Theory, Prentice-Hall,
Englewood Cliffs, NJ, chapter 4.

Wybotwne, B. G. (1965), Spectroscopic Properties of Rare Earths, Wiley, New
York, NY, chapter 6. (Many entries in table 6-1 are incorrect. For the
correct relations, see C. A. Morrison and R. P. Leavitt, Handbook for the
Physics and Chemistry of Rare Earths, 1982, North Holland Publishers, New
York, NY, p 482.)
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9. MATRIX ELEMENTS RF H3 IN TOTAL, ANGULAR MOMENTUM STATES FOR THE ELECTRONIC
CONFIGURATION n#"

9.1 Discussion

In order to make full use of tabulated data in our calculations, it
is necessary to make some modifications in equation (8.1). Nielson and Koster
(1963) have calculated the reduced matrix elements of the unit spherical
tensors introduced by Racah. As was shown in equaticn (4.3), the Ckq(i) can
be written in terms of those tensors as

C (i) - <tic k u(1) (9.1)

I Ckq(i) - <fICklE> Uc) (9.2)
1. q

where

<tiCkl> - <Z(O1k(O)j1(O)>

Thus equation (8.1) may be written

H I Bkq <+ICk It> u(k) . (9.3)
3-k kq kt q

The matrix elements or H3 in total orbital angular momentum states can now De
written

<L'MIS'ý atI= IHLMLSMSC>L 3 3LS (9.4)

6ss�'MsM S q Btq <tICk1t> <L(ML)k(q)IL'(M)> <L'ScIU(k)ILSa>
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where

(L'S, IIu(k) ILS> . [2Z1 12 (L/2 s, Iu(k)ILSa) (9.5)

and the last expression in parentheses is tabulated in Nielson and Koster
(1963).

Alternatively, we could use the tables of Polo (1961) to obtain the

matrix elements of H3 as given by

<LM'S , IH3 ILMLS,>

6 6SS'6MAM ýq Baq(1l)L(.L q ML) (L'So? IlC(k)JLSa%) (9.6)

where
L-" k L/

q ML

is a 3J symbol and

c(k) Ck(i)
q "JCq

The result given in equation (9.6) is much more convenient to use for compu-
tation than is equati.on (9.4).

The spin-orbit energy, H2 , can be written as

A 1 (9.7)

H2 = , vs(s+1),(z+17) 1 (-1), V (A9"

The matrix elements in total orbital angular momentum states are
M f-M

<LIMLS'Ma1,IH21LMLSMsM > - /s(sa1)t(t+1) (-1)ML <L(ML)I(A)IL,(M!)>

X <S(Ms)I(-A)IS9(M0)> <L'SfaýIV111LSa>
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where

<LISlotIV1 1 LS> 2[ 21+1 11/2
V-3, L(2L'+.)(2s,+1) (L'S'•Iv'llLs=) , (9.8)

and the reduced matrix element in parentheses is tabulated by Nielson and
Koster (1963).

The matrix elements of H3 in total angular momentum states J
0 - t4) can be written

<J'MN'Si' H3 IJMLSm>

= 2 Bkq <il~ki> <J(M)k(q)jJ'(M')> <J'L'Sa'IU IJLSa>
kq

where

<J'L'Sa'IukIJLSa> - (-I)L-L'+J -J/•'JfZT W(kLJIS;L'J)(L'SalIUk ILSa) (9.10)

and again the reduced matrix element in parentheses is tabulated by Nielson
and Koster (1963). Also, the quantity <£ICk1Z> in equation (9.9) is

<tickit> - <Z(O)k(O)It(O)> . (9.11)

The matrix elements of H2 in total angular momentum states, J, are given by

<J'M'L'S'a' IH21JMLSO>

(9.12)

--V(Q.+1)(2Z+1) W(S1J'L,;SL)(LS'caIV' I LSa)6JJ,6MM, ,

where the reduced matrix elements in LS space are tabulated by Nielson and
Koster (1963).
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10. GROUP THEORETICAL CONSIDERATIONS

10.1 Discussion

We do not go into the details of group theory here but discuss the
use of the tables presented in numerous texts on group theory. An excellent
text for physicists is Tinkham (1964). For our discussion here, as in section
8, we use Koster et al (1963). This reference uses the Bethe notation for the
irreducible representations (ri); the relation of the Bethe notation to the
Mulligan notation (A1 , Bi, etc) is given in the appendices of Grif•ith
(1964). In our discussion we use the Bethe notation for all the single groups
and both notations for the cubic 0 group. In the double groups we use only
the Bethe notation.

As our first example we consider a single d electron in a crystal
field of S4 symmetry. The crystal-field interaction can be obtained from
table 8.1; it is

H-aB C + B* C +B C + BC + B (10.1)
3 2 0 C2 0  32 32 + 32 3-2 B4 0 C4 0  B4 4 (C4 4 + C4 4)

If the spin-orbit interaction is small and the other configurations remote, we
can at present ignore the B3 2 term and assume that angular wave functions are
Y2m (12m>), with -2 S m < 2. With these assumptions we use table 30 of Koster
et al (1963) to find that

D2 + rI + 212 + r3 ÷r 4  , (10.2)
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where we have used the D+ table since I 12m> - (-1) 2 12m>; that is, the d elec-
trons have positiv I parity. 2 The brave functions for ndN also have posktive
parix sirje 1ILSd > - (-1) 2NLSd >. But for the t electrons, IILSf > -
(-1) ILSf >, which is even for even N and odd for odd N. Thus, for a single
f electron we would use the D3  entry in table 30 of Koster et al. The result
given in equation (10.2) shows that the five d electron states, which are
degenerate in the free ion, would be split into tour levels in the presence of
the crystal field; these levels are shown in figure 10.1. All the free-ion
degeneracy is removed except for the r 3 ,r4 degeneracy. We can detect this
degeneracy in character table 25 of Koster et al (1963, p 50) by observing
that the product of the characters for r3 and r4 gives unity for all the group
operations Of S4. We can also check this product by directly taking the
matrix elements of H3 using wave functions that transform as r3 or r4 in S4.
To find the wave functions which transform according to the irreducible repre-
sentation, we use the operation S4 on the states 12m>. That is,

S412m> - IC4 1 12m>

(10.3)

- e- inm/2 12m>

and for m - 0

S4120> - 120>

(a) (b)

0 iT 1! 0

r3, r4 r 3 , r4
"2 rr2r 2 r r 2,

Figure 10.1. Hypothetical splitting of a single d electron in a crystal
field Of S4 symmetry: (a) magnetic dipole and (b) electric dipole.

i
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That is, the character is 1, so that 120> transforms as rI (see table 25 of

Koster et al). Also, since

S4 12±2> - -12±2>

the character is -1. From table 25 under the operation SO, we find that the
states with character -1 are r 2 , so that the two wave functions 122) and 12-2>
transform as r 2 . Similarly,

S 412±1> - ;il2±1>

from table 25 we see that 121> transforms as r3 and 12-1> as r 4 , It is not
difficult to show that

<211H 3 121> - <2-11H3 12-1> , (10.4)

which shows directly that the energy levels for r 3 and r4 are degenerate.

The matrix elements <2m'IH 3 12m> of the crystal field are given by
table 10.1, where the results given for 1'2 are obtained from equation
(3.18). From the results of table 10.1, we obtain the energy levels given in
table 10.2 for Ti 3  for a particular choice of Bkn. Table 10.2 also gives the
energy levels when the spin-orbit interaction is included.

The decomposition of the free-ion state onto the S4 symmetry given
in equation (10.2) gives the dimensions of the secular determinant which has
to be solved to determine the energy levels of the system. In the case con-
sidered in table 10.1, the dimensions of the secular determinants are 1 for
rF, r 3 , and r4, and jx2 for r 2 . If for example we had an H state in S4
symmetry (L - 5) of d , then, from table 30 of Koster et al (1963), we have

+D5 , 3r1 + 4r 2 + 3r 3 + 31-4 (10.5)

and we would have to solve a 3x3 determinant for rI, a 4x4 determinant for r 2 ,
and a 3x3 determinant for r 3 or r 4 .
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TABLE 10.1. MATRIX ELEMENTS OF TABLE.10.2. ENERGY LEVELS FOR
CRYSTAL FIELD FOR A SINGLE d Ti" (3d) IN S4 SYMMETRYa

ELECTRON IN S4 SYMMETRY I a 0 ; - 158 om- 1

Irreducible
representation Energy IR E (cm") IR E (om")

2 2 + 2  F1  0 r5,6 0
"" 20 7 40 r2  395 r5, 6  0

,+ 2 + 1 B10 r 2  2931 r 7 , 8  2938

7 20 21 BO +40 B1 4 4  r 3 ,4  3720 rr, 6  3662

r7, 8  3827

2aB20 - 394.7 cm-11 B4 0 - -7932-7 B B4 ci-, B4 - 3182 ce . These are
r2  7 20 21 40 21 4 c 44 eapproximate grystal-field param-

eters for TI In the Ga site of
Gd3 Sc 2 Ga3 01 2 , gadolinium scandium

1 14 gallium garnet.
r20 2 - 40 IR - irreducible representation8 - energy

If we wish to determine the energy levels experimentally, it is in-
formative to investigate the use of polarized radiation. The magnetic dipole
operator is

H md (t. + 29)
(10.6)

= S•B*(L + 2S ,

09

where B is the strength of the magnetic field and 1, is the Bohr magneton.
From group theory, we can deduce the transitions induced by equation (10.6) by
using first table 25 of Koster et al. This table shows that Lz and Sz are
basis functions for r"; L+1 and S+1 are basis functions for r3 ; and L_1 and
S.1 are basis functions for r14- Then from table 26 of Koster et al, we have,
for BIZ (Lz -+ r),

r r1 -r P

r1I x r 2  - r2 P

11 x r 3  w r 3 P

r1 x r4 = r4
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and for BIX or BIY M * +r3  r4)

r 3 x r 1 a r 3  , r4 x r1 W r 4

r3 x r2 w r4 , r 4  x r2  M r 3  ,

r 3 x r3  r2  , r 4 x r 3  r 1

r 3 x r 4 r1 r ,, x r4 r r2 .

The allowed transitions (in absorption) are shown in figure 10.1a,
where the labeling is according to the orientation of the light polarizer.
That is, the polarization is determined by the orientation of the electric
vector; for w polarization, EIZ (and BJZ), and for a polarization, EJZ (and
BIZ).

The electric dipole operator is

H' = eý +ed

W e ZErC . (10.7)

From table 25 (Koster et al, 1963), we find that Clo(z) is a basis for r 2
while C1±1 (or x ± iy) has the same representations as L For C1 0 , from
table 26 (Koster et al), we have

r 2 x r 1 r r2 ,

r 2 x r 2  r1  ,

r 2 X r3  r4

r2 x r4  r 3

and the allowed transitions (in absorption) are shown in figure 10.1b. In the
electric dipole case we have to assume that the odd terms in the crystal field
given in equation (10.1) mix either the p or f configuration; otherwise, the
electric dipole matrix elements vanish.

As a second example we consider the d3 configuration in the crystal
field given in equation (10.1). The Hund ground state is 4F (S U 3/2, L - 3)
and the only other state with S - 3/2 is the 4 p (all the states of pN, dN, and
fN are given on pages 1 through 3 in Nielson and Koster, 1963, and pages 15-
14 through 15-20 in Polo, 961). In the absence of spin-orbit coupling, the
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4p state is the only state that couples to the F Hund ground state. From
table 30 of Koster et al we have

D + 2r2 + 2r 3 ,

(10.8)

÷D1  r 1  + 'r3,4 '

and we have a 2x2 secular equation for r1 and r 2 , and a 3x3 secular equation
for the r3, 4 states. Operating on the states ILM> with the operator S4 pro-
duces the values ot M belonging to the different irreducible representations.
The resulting states are

130> , 110> , for 1̀ #

13-2> , 132> , for rP2  , (10.9)

13-1> , 133> , 11-1> , for r 4

The states for r 3 are obtained by changing the projections (M + -M) of the Pr1states. The matrix elements of the crystal field for the states given in
equation (10.9) are presented in table 10.3. The results given in table 10.3
are also applicable to the configuration d, provided that all values are
multiplied by minus one. This latter result is obtained by the rules for the
states conjugate to the %N configuration, which has 4%+2-N electrons; these
rules are given in Nielson and Koster (1963). The results given in table 10.3
were taken from the Polo tables, and equation (9.6) was used. The 3-j symbols
were found in Rotenberg et al (1969).

Before the energy levels can be found using the results of table
10.3, the Coulomb interaction must be added to the diagonal elements. From
Nielson and Koster, these are

-HI(4F) - -15 F(2) 72 (4)H _) 9 F ItlOF

(10.10)
H1 (4P) . 147 F(4)

The energy levels of d3 kn S4 symmetry is given in table 10.4 for a represent-
ative set of BKQ and F(. Included in the table is the effect of spin-orbit
coupling, which we consider next.

The above examples have been restricted to the orbital angular
momentum only. This restricts the use of group theory to the single group.
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TABLE 10.3. MATRIX ELEMENTS IN SU SYMMETRY, TABLE 10.4. ENERGY LEVELS FOR
OF CRYSTAL FIELD FOR 4 F AND 4 STAOES OF nd 3  Cr 3 + 4 F AND 4 P LEVELS

IN S• SYMMETRYa

Note: For the corresponding matrix elements

for 4F and 4 P states of nd 7 , multiply all - 0 - 275 om- 1

entries by -1 a Free
ion Energy Energy

L'M' L M IRb B2 0  B4 0  B4Ie IR (om-T) IR (om-I)

3 0 3 0 r1  -4/35 2/7 0 4 F r 1  0 r 5 , 6  0

3 0 1 0 r1  12/35 -4/21 0 r3,4 352 r 7 , 8  94

1 0 1 0 r, 2/5 0 0 r 3 , 4  1,574 r 7 , 8  249

3-2 3-2 r 2  0 -1/3 0 r2 2,203 r 7 ,8  496

3-2 3 2 r2  0 0 470/21 r2  3,672 r5 ,6  622

3 2 3 2 r 2  0 -1/3 0 r5 , 6  788

3-1 3-1 r 4  -3/35 1/21 0 r 7 , 8  1,713

3-1 3 3 r 4  0 0 /W/21 r 7 ,8  1,748
3-1 1-1 r4 2v6/35 VU/21 0 r5 , 6  1,783

3 3 3 3 r4  1/7 1/7 0 r5 ,6  1,901

3 3 1-1 r4 0 0 2V7-/21 r5 , 6  2,381

1-1 1-1 r4 -1/5 0 0 r 7 , 8  2,460

aThe matrix elements of r3 are not given, r7 ,8  3,918

as they are equal to those for r4 ' Before r5 6  3,930
the matrix is diagonalized, the Coulomb
eneruies from Nielson and Koster (1963) for
the F and 4P states should be added to the 4 p r3 , 4  16,294 r5 , 6  16,286
dia onal elements.

ZR irreducible representation. 16,504 r, 6  16,373
r7, 8  16,442

r7 ,8  16,621

r 7 ,8  16,741

r5,6 16,771

a2 296.9 c"1, B404597
cm- , B44 -' 1844 cm-I, F(2 ) -I
74,2-7 qm F(4) - 45,822 cm-.
The F 2), F 4), and C (275 cm")
values are for the free ion.

ZR - irreducible representation.
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If we consider the case of the d3 as above but assume the §pin-orbit energy to
be strong, we use total angular momentum, states, J, with J = t+•. We further
restrict the discussion tjo the states "Fj with 3/2 S J 9 9/2. Thus, we have
the levels 4 F3 / 2 , 4F5 /2, 4F7/2, and 4F9 / 2 to consider. From table 30 (Koster
et al) we obtain

D3/2* r 5 , 6 +7,8

D + 2r 8
5D/2 5 r,6 +27,8

(10.11)

7/2 r5 , 6 + 2r 7 ,8

D9/ 2  3r 5 , 6  2r7 ,8

and we see that the secular equation for r5 or r6 is 7x7, and for r 7 or r8 the
secular equation is also 7x7. We see that the inclusion of the spin-orbit
energy greatly increases the difficulty of the problem. The wave functions
belonging to the different irreducible representations can be obtained from
table 25 of Koster et al and are

j 4 1 + 4p> , where p - 0, ±1, .0.. 11 + 4pl S J, for r

(10.12)

j - + 4p> , where p - 0, ±1, ... , I- 3+ 4pl I J, for r7

The resulting energy levels of the Cr 3 ÷ ion with the Slater parameters and the
spin-orbit constant from the free ion are given in table 10.4. 1he crystal-
field parameters are rough estimates for the crystal field for Cr + in the Ga
site (SO in the material Gd3 Sc 2 Ga30 1 2 .

The previous two examples were for the S 4 group and were simple to
manipulate in that the group was cyclic (all the operations can be expressed
in terms of a single generator, S4 ).

We consider a single d electron in a crystal field of D2 symmetry.
The crystal-field interaction, given by use of table 8.1, is

H3 2 B20C20 + B2 2 (C2 2 + C2-2) IMB32(C32 - C3_2)

(10.13)

+ B40Co 4+ B4 2 (C 4 2 + C4-2) + B4 4 (C 4 4 + C4-4)

100



The operations of D2 are given In table 17 of Koster et al and are C2 - C2 (z),
C, - C(y), and C4 - C (x). The result of these bperations on Wtm> is given
in problem 2 of chapter 1. These are

C2 (y)l9tm> - (-1) +m •-m>

C2 (z)ltm> - (-1 )ml m> (10.14)

C2 (x)lIm> - (-1) It-M>

Now from table 21 of Koster et al, the 12m> states decompose to

+D2 + r2 r3 + r4  , (10.15)

and the r states are
1

*1 - j20> [122> + 12-2>] (10.16)r2

which are essentially the crystal potential for the C2q terms in equation
(10.13).

For the other representation we take the combination

2 I - 121> - 12.1>3 for r2 (10.17)

= -1 [122> - 12-2>] for r3 (10.18)

-4 - [121> + 12-1>] for r4 , (10.19)

which can be verified by using equation (10.14) and the character table for

the D2 group in Koster et al.
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11. NUMERICAL EXAMPLE: 4Fj STATES OF Nd3 + (4f 3 )

As a numerical example of th 1calculation of the crystal-field splitting,
we calculate the splitting for Nd (O4f) in a field of S 4 point symmetry. We
assume that the levels are pure 4Fj. We assume that L, S, and J are all good
quantum numbers; then we consider matrix elements of H3 in equation (9.9) with
J' - J and L' - L. Thus,

<JM'LSIH3IJMLS> - I B*q <J(M)k(q)fJ(M')> <JIUklJ> <1(0)k(O)It(0)> . (11.1)
kq

The values of the reduced matrix elements <jAuklj> <X1Ck1"> for the 4F state
of Nd 3 ÷ are as in table 11.1. In obtaining these values we have used Nielson
and Koster's results (1963) in equations (9.9) and (9.10) for the reduced
matrix elements, (LSIUkILS), for L - 3 and S - 3/2; the Racah coefficients
(6-J symbols) are found in Rotenberg et al (1969).

The calculation of the energy levels is made somewhat simpler by using
wave functions that transform according to some irreducible representation cf
the S4 group (Koster et al, 1963). The irreducible representations of the S4
group are all one-dimensional, but, since the ion under investigation has an
odd number of electrons, the energy levels will be at least doubly degener-
ate. Thus, of the four irreducible representations--r 5 , r6 , r 7 , and r 8 -- only
two need be chosen; we chose r5 and r The energy corresponding to r6 is
degenerate with r 5 , and that corresponding to r8 is degenerate with r 7 . The
wave functions belonging to r 7 with a particular J value are

8k + 1 2J + 1 2J - I

2 8 8

1.03

ha m . . . . . . . " . . .t



TABLE 11.1 VALUES OF <JluklJ> VF"• <flCkl >a

J k-2 k4k-6

3 2 r111/2 0 0

5 11 [7.] 1/2 1 [1.]1/2 0

2 2.--3 .3 - 77 L ]112 25 323_11_13

a Note: 2.5 = 10, etc.

and those for r5 are

8k - 3 2J - 3 2J + 3

2 8 8

where k is an integer, and the number of k values occurring for a given J is
the number of times a representation will occur. The number of Bkq for the
calcium site (S 4 ) in calcium tungstate is five: B2 0 , B4 0 , B6 0 , B44, and
B6 4 - Of these parameters only B6 4 is complex. The matrix elements of the
crystal field given in the above equation are presented explicitly under
particular states in the following paragraphs.

11.1 4F3/2

This level of the free ion is split into two doublets by the crys-

talline field. The wave functions corresponding to r7 and r5 are II >

and 13 > respectively. From equation (11.1.) we have

< 1• IH 1 L > - - - 20 - E (11.2)

and

<2 2 > 23 2 L (11.3)2 2 3



where the appropriate values of the reduced matrix elements in equations

(11.2) and (11.3) were taken from table 11.1. The total splitting of the
4F 3 / 2 state is then

4 (11.4)
25 820

11.2 4 F5 /2

Unlike the previous case, this state contains two r5 Is, and their
wave functions ar 5 > and 3-1>. The wave function for the r state

2 are >2 2 751

is 15 L >. The energy for r is

< iyH • >[-4B 2 o + B1 o] = E (11.5)

The necessary matrix elements for the energy in r5 are

55 r> 25 (11.6)
22 31 2 2 70 [5B2 0 + 4 B40O " (16

3_ 3[-B 200 5 B 4 0 ] 25 , (11.7)< 2 2 "31 2 > "7-'[B20 "1- "• 4 22

< , iH3 1 K > - 1  B 4 4 -b 1 2 .- (11.8)

The two energy levels corresponding to r 5 are

/b + b + [(b - b2 2 )2 + 4b 1 2b/ 2 ] 1 /2

E1 (r 5  ) 22 2 (11.9)

/ b11 + b2 2 - [(b 1 1 - b2 2 )2 + 4b 1 2b• 2 ] 1/ 2

E2 (r 5 2") 2 2 1 (11.10)
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11.3 4 F7/2

SThis state contains two r 's and two r 's. The matrix elements
Cur r7are

<21 IH 1 > -.- 29- -B 9 5 B -al0]11
2 2 31 2 99 7 20 BT 4 0 + 6 a 11  ' (11.11)

1 7 7 7 . 11 10< •- IH3i - > . [11B 2 0 + I B4 0 - L- B6 0j - a 2 2  , (11.12)

_2 2 _7,31 2 2 199 2 30 2 40 ] 361 2

<2 -2 1"H1 L > . [i B4 " B6-L , a1 2  . (11.13)

The two energy levels are

a1  + a + [(all - a 2 2 ) 2 + 4a 1 2 a* 1/2

"(r7 ) 1 22 2 (11.14)

S+ a1 1  a - [(a 1 1 - a2 2 ) 2 + 4a 12 a* ]I/2

"7) 1 22 2 . (11.15)

The matrix elements for r are*

S5 1H > - 1LL B 13 B 50 B - bI (11.16)

2 2 3• 2 2 99 " 7 B2 0  T• B74 0  13 6 (60 1

I3H31 1> . - 3 B0 , (11017)

2 2 - 31 2" - 2 9 9 [- B2 0 -7 B4 0 -1 B6 0 ] - (221 7

7 3 175 1 ~20]-b
13  -> -[/15/1• B144  -• B614 ] 1 (11.18)

2 2 H- 1- 7B +2 2123 21 2 > 99 44 13 641~' 12

The corresponding energies are given by substituting the above values of bij
into equations (11.9) and (11.10).

*The symbol alj will be used for the matrix elements in r7 and btj for those in r5 to avoid
introducing new symbols for each new value of J.
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11.4 4F9/2

The number of -'Ys in this state is three, with two r 5 's. The
matrix elements of the crystal field for r7 are

< H>.7[B L B +.03 39T 2 -- 7 1 4 0  91 B60 j a , (11.19)

< H3 IN 2- > - 7 20 - -1 B40 - L Be0 ] - a 2 2  (11.20)

< 'T 1H3 1 > . 7 [2B + 22 B 110 B6 (11.21)

39 B240  60- 9 ] a3 3

91 9> 7 6B9T 15 64] (.

9 - 7 >- 2- > . 7 +1 r- B64] - a 23  (11.23)<2 2 I31 2 2 3 [-9 7• 44 (1 641 2

The three energies are given by the solutions of

E _ (a 1 1 + a 2 2 + a ,2 - (ala 2 2 + aa + a2 2 a 33 - 3a * - a 12 af 2 )E

+ ~ a a*a + a a a*,2 - a a
11 23 23 3312 11 2233

The matrix elements for r5 are

< 2 .IH 2 ý > 7 [ - bl, (11.25)9B7 + 3 601
'312 2 3 96 20  40 +2 (1
< • -.... + LTB0 (11.26)

9 3[ i19 5> 7 4q V0b (11.27)
S- 2831 2 2 -396 • 44 9- B6 4 ] " (1212

The energies El(r 5 2) and E2 (r 5 9) are given by equations (11.9) and (11.10),

respectively, using the bij given above.
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11.5 Calculations

Three of the crystal-field parameters can be obtained quite simply
from the experimental data. These are B2 0 , B4 0 , and 560- If we express the
sums, S1 , in terms of the Ei where the Ei are experimental data, then we
obtain

SJ-1/2 E [ Ei(r 7Y)i

and

2S - -- B (11.28)1I 25 - 20

11S2 - - T--5 B20 + B40 (11.29)

2 8 40
S3  r" B20 + 93 B40 + 12-7 B6 0  (11.30)

1 7 4 40

$= B2 0 "7I• B 40 " -12"-iB 60  ' (11.31)

where S4 is for the J = 9/2 level. These equations can be inverted to give

B20 25 S, (11.32)

B40 -33S1 + 42S , (11.33)

6 1001 - 78 S + 1287

6o0 70 S1 - 25 -T S3 3(11.34)

The other crystal-field parameters are slightly more involved.
From equations (11.9) and (11.10) we have

[ -2 N] 1 1 2 , (11.35)

where
N 11 a

N1  -- S1 +;?S2 and ) - E2(5

To determine B6 4 , we use equations (11.14) and (11.15) to give

a*a - . [W2 - N2] (11.36)
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where

N ' 7 SS and W - E (~r 7 2 - 2(r 7 )

A similar expression can be obtained using equations (11.16) and
(11.17) in equations (11.9) and (11.10), yielding

b12b* a~~w 1 2 .N2 (11.37)

where

N 13~ -2S and W = - E r,3 S1 S2 3 252

Sub3tituting equations (11.13) and (11.14) into the left side of"
equations (11.36) and (11.37), we obtain two equations for B6 4. These two
equations can be solved simultaneously for both real and imaginary parts of
B64 to give

l a- 13 [-99 (w2 + -N 2 N) - 6(w -2 N2)]1/2 (11-38)

e -15-99 (W~ 2- N2) - 8(W 2 _ 2) 7- 99 (W 2 N2)( 1.9
20470 

-W

where B6 4 = R6 eiO.

All the crystal-field parameters can be determined once the experi-
mental data are taken on the F3 / 2 , F5 / 2 , and 4F 7 / 2 levels.

As tedious as the above procedures may have seemed, the crystal-
field parameters we obtain are only approximate, since we have ignored L-S
mixing by the spin-orbit coupling in the free ion and J mixing caused by the
crystal field. Nevertheless, the crystal-field parameters obtained by the
above procedure can serve as very good starting values in the ficting of a
more sor'.isticated calculation to experimental crystal-field levels.

The crystal-field parameters Bk obtained by the above procedure
for Nd3 + in CaWO4 are given as follows, "along with crystal-field parameters
for the same ion but with full diagonalization, that is, L-S mixing and J
mixing (Wortman et al, 1977).
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B6 4
Bkq B20  BiO B44 B60 Re Im

Calculated
above 403 -635 711 -219 885 0

Calculated with
full diagon- 509 -866 1042 -509 903 243
alization
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12. CLASSICAL POINT-CHARGE MODEL

12.1 Discussion

In the simplest model of the crystal field, the point-charge model
introduced by Bethe (1929), the lattice is replaced by an array of point
charges placed at the nuclei of' the constituent ions. A multipole expansion
is giade of the point-charge potential energy at the rare-earth site. Thus,
if Zmn(J) is the vector position of constituent j at site j in the 9, m, nth
cell, we have

H 3 " - Z ,(I12.1 )

mn J 1**mn(J)

where Rimn - ta + mb + no + p and a, b, and o are lattice vectors. The
charge at site j is eZ , and r is the position of an electron on the ion being
discussed. The multip lar expansion of equation (12.1) is

-e 2 Zjrk (
H -jr C r.) (12.2)

H3 mn j [Rim(j)]k+l kq Cq[imn

The multipolar crystal-field components Akq are

ZjCkq[�Rmn(J)]
A kq- -e 2  Zj[mn)^ (12.3)

kmn j [Rgmn(J)jk+l

Thus the point-charge Hamiltonian is

N
H3 - I A*q I rkCkri (12.4)

kq i-I
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iN

where we have summed over all the N electrong in the 4N conf iguration. If
all the lengths are measured in angstroms (10-0 am), then

A "Z 0X10 1 kq[Rzmn((12.5)(tO

Akq - 21 08 j [Rmn(j)]k+ (12.5)L• mn Jit~nc)

where the fine-structure constat, a _ e is e (thus, ao/2w x 108 - 116,140),
and1 the units of Akq are cm /A . If <rk> is in angstroms, then Akq<rk> Is in
cm

The sum in equation (12,5) always converges--even for the lowest k

value (k - 0)--if taken in the order indicated. That is, the sum over j is
performed with Z, m, and n fixed. The unit cell I.s neutral, that is,

SZ -0 . (12.6)

In many (but not all) space groups, it is possible to choose an origin for the
lattice coordinates such that the dipole moment of the unit cell vanishes;
that is,

Sz =0 , (12.7)

where is the position of the jth charge in the unit cell. The result in
equation (12.7) can be anticipated by observing the point symmetry of the ions
in a specific solid. If the ions occupy CI, C2, Cs, C2v, C4, C4v, C3, C3v,
C6 , or C6v point symmetry (Schoenflies notation), then it is impossIble to
satisfy equation (12.7) with these sites as the origin in a unit cell. If it
is posslble to satisfy equation (12.7), then the sum given in equation (12.5)
converges very rapidly. This can be shown fron the expansion

Ckq(R-x) 1/+2)l2  
______ (qCk+( 1 -)" (2a+2k1 <a(a)k(q)la+k(a+q)> xaC (•)C"+kxct+)l

IjjI_- +1 1 2a aa 'a+k+l

(Carlson and Rushbrooke, 1950). With p x a (0) - R (where = 0)

Emn(0) + +) for the sum in equation (12.5) we have

112



Z1Ckq['ERmn(J)] 2a+2k) 1 /2n Z -m ax a (a~C)k~q)la~k(ci÷q)>
, mn j [[R n )mn am

(12.9)

X Z pa0 (p) akg Lmn
i J aca [Rtmn(O)]a+k+l

Now if equation (12.7) is satisfied, then

X Z pjC1 (^j) - 0 . (12.10)j

Thus, the sum in equation (12.9) is for a > 1; we see that even for the lowest
term, k - 0, for large Z, m, and n the individual terms decrease as
1/R 2  (0). While the expansions in equations (12.8) and (12.9) are good for
dem&trating the rate of convergence, the computation of Akq by equation
(12.5) is more practical. However, in equation (12.5), the sum over j should
be done for each cell first, with fixed values of Z, m, and n. In programming
language, this is expressed by stating that the j loop is the innermost of the
nested Z, m, n, and j loops. In some lattices, the condition in equation
(12.7) may place some of the point charges on the cell faces. In these cases

* it Is a simple matter to oalance these charges by an adjustment to fractions
of equal charges on opposite faces.

The convention we use for our lattice sums is that given in the
International Tables for Crystallography (1952); table 12.1 is reproduced from
volume I (the other two volumes give data strictly for x-ray crystallog-
raphers). The data used In the lattice sums are generally those reported In
Acta Crystallographica, section B (now predominately section C). Care should
be taken to make certain the correct setting is used.

Typical data used in the calculation of the lattice sums are given
in table 12.2 (LiYF4, calcium tungstate space group 88, scheelite structure).
All the data given in table 12.2 are given in the International Tables, except
that the x, y, and z coordinates are determined by x-ray diffraction. The
lattice constants a, b, and c are also determined by x-ray diffraction and, as
customary, the true positions of the ions are xa, yb, and zc (these relations
hold for all the ions in a unit cell). The polarizability (from Kittel, 1956,
p 165) of each ion is given at the bottom of table 12.2. For this particular
solid, only the fluorine ions can have dipole moments that contribute to the
crystal field (we discuss the role of the dipole moments in sect. 14). Not
all the data for space group 88 are contained in table 12.2 because the
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TABLE 12.1. CRYSTALLOGRAPHIC AXIAL AND ANGULAR RELATIONSHIPS
AND CHARACTERISTIC SYMMETRY OF CRYSTAL SYSTEMS

Space System Axial and angular X-ray data needed
group relationships for unit cell

1, 2 Triclinic a * b o c a, b, o, t, 0, Y
a 0 B 0 Y 0 9o*

3 to 5 Monoolinio First setting a, b, a, Y
a, b, o

a 0 900 y

Second setting 8, b, c, 8

a •b ac
U u 900* 0 B

!6 to 74 Orthorhombio a b o a a, b, a
a B Y 90o

75 to 142 Tetragonal a = b o a a, c
a = y 900

143 to 167 Trigonal (Rhombohedral axes) a, a
(may be taken a - b - c
as subdivision a - B - Y < 1200 * 900
hexagonal) a - b c C

U = 0 900
Y - 1200

168 to 194 Hexagonal a - b w c a, a
a = B = 900
Y - 1200

195 to 230 Cubic a - b a a
a B -= Y 90

Source: International Tables, 1952, Vol. I, p 11, table 2.3.1.

TABLE 12.2. CRYSTALLOGRAPHIC DATA FOR LiYF 4
(SCHEELITE, CaWO4 ), TETRAGONAL SPACE

GROUP 88 (FIRST SETTING), Z - 4

Ion Position Symmetry x y z

Y 4b S4 0 0 1/2
Li 4a S4  0 0 0
F 16f C1  0.2820 0.1642 0.0815

Note: a - 5.1668 A, b - a, c - 10.733 A, (A -

900, B - 900, Y = 900, ay - 0.55 A, I aLi 0.05 A

aF 1.04 A3 (reduced to 0.104 in the lattice sum),

Zy +3, ZLi w +1, ZF = -1.
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equivalent positions given in the International Tables are generated inside

the program. The centering position in the cell can be taken as either the Y

or Li site, since these positions have SU symmetry, and their lowest crystal-

field component is A2 0 . Equation (12.10) is therefore automatically

satisfied. The resulting lattice sum for the Y site in LIYF4 for the param-

eters in table 12.2 is given in table 12.3. The sum covers all the complete

cells in a sphere of 30-A radius and should be an accurate result. Also

included in table 12.3 are the results for the dipole contributions due to the

presence of dipoles at the fluorine sites (see sect. 14).

Ai a second example, we choose a very low symmetry solid, YCl 3 ,
which is characterized by monoclinic space group 12. As can be seen in table
12.4, all the ions are in very low point-symmetry positions, and each position
can have a dipole moment (another way of saying this is that each position has
a onefold field, Aim). We then have to consult the International Tables for a

higher symmetry position in order to satisfy equation (12.7), which in this
case is the site 4e with Ci symmetry. The Ci point group has only the inver-
sion operation, and all the odd-n A vanish in this symmetry. Thus if the

position 4e is used, equation (12.ff will automatically be satisfied. The
lattice sum for YCl 3 was also run over a lattice 30 x 30 x 30, and only the
even-n Arn are given in table 12.5. The dipole contributions were also calcu-
lated; these calculations were more complicated in this solid because of the
three types of sites (Y, C 1 I, C1 2 ); all have a dipole moment. For many of the
Anm, the dipole contributions are much larger than the monopole terms. This
frequently happens when the handbook values for the dipole polarizabilities
are used. We have had more believable results when we reduce the polarizabil-
ity to one tenth of the handbook value.

The lattice sums given in tables 12.3 and 12.5 are incomplete in
that the results are not in a usable form for many of our computer programs.
Before we can use these results, the Anm should be rotated using the standard

TABLE 12.3. LATTICE SUMS FOR Y SITE AT (0, 0, 1/2) FOR
LiYF 4 WITH Zy - 3, ZLi - -1, ZF - -1, aF - O.104 A3

Lattice Monopole Anm Dipole Anm Monopole and dipole

sum Real Imaginary Real Imaginary Real Imaginary

A2 0  1074 0 3110 0 1414 0
A32  373 859 -358 74.0 15 933
A4 0  -1957 0 -98.1 0 -2055 0
A44 -2469 -2362 -3.83 -80.3 -2473 -2442
A5 2  1050 -2456 1.28 -714.7 1051 -2531
A6 0  -17.2 0 7.96 0 -9.24 0
A6 4  -615 -420 -29.03 -9.37 -6414 -429
A7 2  -15.7 0.90 1.55 -9.94 -14.2 -9.04
A7 6  250 -63.8 17.8 7.96 268 -55.9
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TABLE 12.4. CRYSTALLOGRAPHIC DATA
FOR YC13 , MCNOCLINIC SPACE GROUP 12

(C2/m) (SECOND SETTING), Z - 4

Ion Position Symmetry x y z

Y 4g C2  0 0.166 0
Cl1  41 Ce 0.211 0 0.247
C12  8j C1  0.229 0.179 0.760
-- 4e C1  1/4 1/4 0

Note: a - 6.92 A, b - 11.94 A, c - 6.44 A,
g o 900, 0 - 11.00, Y - 900, Charges: qy - 3,

qC= -1.
Poiarlzabllity: ar - 0.55 A3 , ac1 - 3.66 A3 .

TABLE 12.5. LATTICE SUMS FOR Y SITE AT
(0, 0.166, 0) FOR YCI , EVEN-n AM

ONLY, ALL Anm REAL

Lattice sum Monopole Dipole Total

A2 0  1738 3227 4965
A2 1  -913 2916 2003
A2 2  245 2574 2819
A40 -73.9 246 172
A4 1 85.8 -398 -312
A4 2 -41.3 47.7 6.4
A4 3 10.4 -791 -781

A4 4 -3.64 516 512
A6 0  -0.06 -80.2 -80.3
A6 1  -3.76 21.3 17.5A62 3.35 -27.4 -24.0
A6 3 -0.58 60.5 59.9
A64 2.73 39.2 41.9

A6 5  5.07 13.7 18.8
A6 6  8.14 -65.9 -57.8

Euler angle-rotation matrix, so that the lattice sums, A' rotated from
by the angles a, 0, and Y, are

n
A' - n D,(ct,B,Y)Anm m nm'"

m

Explicit forms for the Dn m(a,8,Y) are given in Rose (1957, ch. IV).
m'
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13. POINT-CHARGE MODEL DEVELOPED AT HDL

In the classical point-charge model, the crystal-field parameters, Bnm,
for the crystal-field interaction of the form

H n B C () (13.1)
3 nm Cm(i)

were calculated as

Bnm - <rn>A31 , (13.2)

where the <rn> are the expectation values of rn of the rare-earth ion, and the
Anm are the mnultipole components of the energy at the site occupied by the
rare-earth ion. In the earlier models, the radial integrals used in the
evaluation o' rn were taken from Hartree-Fock calculations (Freeman and
Watson, 1962), and the Arm were calculated using the point charges at the
valence values for the constituent ions. These calculations generally gave
the twofold field 10 times too large, the fourfold fields approximately in
good agreement, and the sixfold fields 10 times too small.

13.1 Screening and Wave Function Spread

Several errors in the classical theory were immediately obvious.
If the radial wave functions (Hartree-Fock) for the free ion were correct,
then these wave functions should give the coYrrect values for the Slater inte-
grals F 2 , F 4 , and F6 . They did not for Pr +. A simple procedure was then
applied. The radial wave functions were assumed to be of the form

0(r) - CRHF(¶r) (13.3)

where T is a parameter, C is a normalization factor, and RHF(r) are the Har-
tree-Fock radial wave functions. With the radial function given by equation
(13.3), the Slater integrals become

k k
F - TF (13.4)
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Fard it was found that a value of T of approximately 0.75 was neided to fit the
F that are found by fitting the experimental spectrx of Pry. Thus, the
Hartree-Fock radial wave functions had their maxima too near the origin and
needed to be spread out even in the free ion, and perhaps more spreading was
necessary for an ion in a solid.

From radial wave functions given in equation (13.3), It is not
dif'icult to snow tnat

<f'(r)> =<ýJf'(r)jý>/<ýJý>

(13.5)

- <f(r/x)>HF

so that any quantity that has been calculated using Hartree-Fock functions is

immediately obtained, particularly

<rk> - <rk>HF/¶k . (13.6)

A second error of the classical method was the omission of the
Sternheimer shielding factors (Sternheimer, 1951, 1966; Sternheimer et al,
1968). In 1952 Sternheimer showed that, in a multipolar expansion of the
energy of a point charge embedded in a solid, the rn should be replaced by
rn(l - an), where the On are the shielding factors. He further showed that
these factors were independent of azimuthal angle; that is, if the angular
variation in the multipolar expansion was given by Ynm' the an Iere independ-
ent of m. The values of an have been calculated for Pr3  and Tm and are

u2 - 0.666 , 04 - 0.09 , 06 - 0.04 for Pr 3 + ,

(13.7)

02 - 0.545 , a4 - 0.09 , 06 - 0.04 for Tm3 + ,

where the replacement is

rn + rn(1 - an) . (13.8)

More recent calculations of the shielding factors have been done (Sengupta and
Artman, 1970, and perhaps others) which we shall need if further refinements
of the theory are undertaken.

13.2 Effective Charge and Position

The crystal-field components, Atn, are a function of the position
of the ions in a solid; in solids such as CaW04 the (W04 ) complex is known
to be covalent. That is, the charges on the tungsten and the oxygen ions are
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not necessarily at their valence values. If we let the charge on the tungsten
ion be 044 then we require that

qW + 4qo - -2 (13.9)

with the charge on the o/cygen being qO. The result given in equation (13.9)
then assumes that the Ca- site is purely ionic with charge 2. This assump-
tion is consistent with many of the experimental results on compounds such as
Ga~iU4 or 1'v4. We introduce a second parameter, the effective position of the
oxygen ion relative to the t'ligsten site that would reproduce the effective
dipole moment seen from the Ca + site. This parameter, n, is introduced by

Ro-w(effective) - nRo.w(measrL~ed) , (13.10)

where RO-w is the distance from the oxygen nucleus to the tungsten nucleus.
Thus there are two parameters in the Ann: qO, the effective charge (qw is
eliminated by eq (13.9)), and n, the effeotive distance of the oxygen site
from the tungsten site. The calculated crystal-field parameters Bnm then are

-B(-r;qo,n) - <rn>HF(1 - un)Anm(qO,n)/Tn (13.11)

with the three parameters t, qo, and n.

The experimental data that were taken at HDL on the rare-earth ions
in CaW04 were analyzed using the effective spin-orbit Hamiltoni3n (Karayianis,
1970), and a set of phenomenological Bnm was obtained. These, given in table
13.1, are the Brm that the theory has to fit.

The fitting was done by minimizing the square quantity given by

Q - I [Bm (T;qo,n) "Br] 2m , (13.12)
nm

where Bnm(t;qo,n) is given by equation (13.11), and Bnm is from table 13.1,
for each ion. The minimization was done with respect to T, qo, and n for each
ion. Since the qo and n are TABLE 13.1. PHENOMENOLOGICAL B FOR SIX
assumed to be ion independent RARE-EARTH IONS IN CaWO4 (allrTn cmI1

and T is assumed to be host in-
dependent, the average q0 and n B64
were taken and fixed. The proc- Ion B2 0  B40  B44 B60
ess was then repeated with mini- Re Im
mization with respect to T

only. This process yielded the Nd 549 -942 1005 -17 947 1
following: Tb 468 -825 872 -290 595 160

Dy 428 -825 978 -7 i448 2.5
Ho 436 -664 779 -33 558 196

q0 = -1.09 , r - 0.977 • Er 4 04  -685 728 12 452 164
Tm 417 -688 7 5 4  17 506 359

(13.13)
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The -r values were well fitted by

- 0.767 - O.00896N , (13.14)

where N is the number of ,1 electrons in the configuration 4fN. The values of
an used in the above were not varied in the minimizing pý-ocess but were inter-
polated from the values given in equation (13.7); that is,

02 - 0.6902 - 0.0121N

04 - 0.09 (all N) , (13.15)

06 - -0.04 (all N)

The predicted values of the Bnm( t;q%,ri) for the entire rare-earth
series are given in table 13.2. The results given in table 13.2 when compared
to table 13.1 show that the di,•erence between the derived Bnm(T;qo,n) and the
phenomenological Bnm is greater for the low-N ions in the 4fN configuration.
This may be a defect in the theory, but not enough data on the low-N ions are
available for analysis. One of the significant results of the analysis was
that it led to the reanalysis of the spectrum of Tb:CaW0 4 with a different
interpretation of the experimental data (Leavitt et al, 1974).

More recent work on CaWO4 (Morrison et al, 1977) obtains the fol-

lowing values:

(2 - 0.6846 - 0.00854N,

04 - 0. 02356 + 0. 00182N,

S- 0.75(1.0387 - 0.0129N),

06 - -0.04238 + 0.00014N,

qo - -1.150, and

n - 0.962.

The f values afe interpolated from the calculations of Erdos and Kang (1972)
for Pr3+ and Tm3+. The factors in equation ('13.11) were combined so that

Pn " <rn>(1 - on)/,n , (13.16)

and the Pn along with the T are given in table 13.3. Thus we have

Bnm(-t;qo,n) - PnAnm(qo,n) (13.17)
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At present we use the results given in table 13.3 to calculate
crystal-field parameters given by equation (13.17) and use these parameters as

starting values to best fit experimental data. We generally use Anm(q,n) with
n - 1 in the process (q here is the ef•ectlve charge on the ligands, not

necessarily oxygen). After obtaining the best-fit Bnm we return to the

calculation of Anm(q) and vary q to obtain the best K-it by minimizing the

quantity

Q I [Brm - PnArn(q)] 2  (13.18)

rim

Following this, we obtain the An (q) for odd n and use them to calculate the

intensities using the Judd-Ofeltntheory.

TABLE 13.2. DERIVE%, CRYSTAL-FIELD PARAMETERS,
B m(T;q?,n) FOR 4f' CONFIGURATION OF TRIPLY

IONIZED RARE-EARTH IONS (all in em-1)

B6 4~

N Ion B2 0  B4 0  B 4 4  B6 0

Re Im

1 Ce 441 -1429 1462 16 1251 52
2 Pr 424 .-1224 1253 13 996 42
3 Nd 408 -1059 1083 11 805 34
4 Pm 411 -1017 1041 10 764 32

5 Sm 408 -938 960 9 676 28
6 Eu 408 -887 908 8 626 26
7 Gd 406 -824 843 7 559 23
8 Tb 424 -856 876 8 591 25
9 Dy 428 -831 851 7 563 24

10 Ho 417 -756 774 6 488 20
11 Er 415 -707 724 6 439 18
12 Tm 435 -729 746 6 454 19
13 Yb 434 -701 717 6 429 18

TABLE 13.3. VALUES FOR T, <r> ,, a ,AND p FOR 14fN CONFIGURATION
OF TRIPLY IONIZD RARE-EARTif IONSa

Ion N T <r2>HF <r 4 >11F <r 6 >HF 02  14 06 P2 P4 PI

Ce 1 0.7693 0.3360 0.2709 0.4659 0,6757 0.0254 -0.0422 0.1841 0.7536 2.3417
Pr 2 0.7597 0.3041 0.2213 0.3459 0.6667 0.0272 -0.0421 0.1756 0.6464 1.8754
Nd 3 0.7500 0.2803 0.1882 0.2715 0.6578 0.0290 -0.0420 0.1706 0.5776 1.5897
Pm 4 0.7403 0.2621 0.1655 0.2247 0.6488 0.0308 -0.0418 0.1679 0.5339 1.4213
Sm 5 0.7306 0.2472 0.1488 0.1929 0.6298 0.0327 -0.0417 0.1668 0.5049 1.3210
Eu 6 0.7210 0.2347 0.1353 0.1686 0.6309 0.0345 -0.0415 0.1666 0.4836 1.2503
Gd 7 0.7113 0.2232 0.1737 0.1477 0.6220 0.0363 -0.0414 0.1668 0.4656 1.1873
Tb 8 0.7016 0.2129 0.1131 0.1287 0.6130 0.0381 -0.0413 0.1673 0.4990 1.1232
Dy 9 0.6919 0.2033 0.1037 0.1119 0.6041 0.0399 -0.0411 0.1681 0.4341 1.0614
Ho 10 0.6823 0.1945 0.0945 0.0981 0.5951 0.0418 -0.0410 0.1692 0.4217 1.0119
Er 11 0.6726 0.1865 0.0883 0.0874 0.5861 0.0436 -0.01108 0.1706 0.4126 0.9826
Tm 12 0.6629 0.1790 0.0820 0.0787 0.5772 0.0454 -0.0407 0.1722 0.4053 0.9649
Yb 13 0.6532 0.1717 0.0753 0.0681 0.5083 0.0472 -0.0406 0.1737 0.3938 0.9120

aThe units of <rn>HF and Pn are An.
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At present we have not included the dipole contribution to the
Arm(q) but intend to do so as soon as possible. The old n in the three-
parameter theory will be replaced by a, the polarizabillity of the constituent
ions in low-symmetry sites. We believe that this procedure (including linding
new Pn values) will give much better results than obtained by the older
theory. In our prgected reanaly~sis we will have the good phenomenological
Bnm for R3 +3LaF3 , R .LaCl 3 , and R+4L1Y{4 (these are reported by Morrison and
Llavitt, 1982), and will soon have R :Y2 03 , in addition to the B for

:CaWO 4 used in the older theory. These data should be suffiolent to rm a
very stringent test of a newer three-parameter theory.

FF,) the ndN ions (Xq for q - +2, +3, and +4,) we have taken the
values of' obtained by fitting the Free-ion data (Uylings et al, 1984)
along with the Hartree-Fock values ofr F() (Fraga et al, 1976) and obtained
values of t using equaýion (13.4). Using these values of T, we obtained the
estimated values of <rk> from equation (13.6). The resulting <rk> are given
in table 13.4.

The results given in table 13.4 along with reportec values of Akq (Morri-
son and Schmalbach, 1985) can be used in equation (13.2) to obtain crystal-
field paraneters, Bkq, which can be used as starting values in fitting the
experimental data. A simlar process can be performed for the X+q (q - 2, 3,
and 4) f or the 4dM and 5d series. Howevcr, because of the lack of f'ree-io•
parameters F~k) for these ions, we shall have to interpolate from the 3du

series.

TABLE 13.4. ESTIMATED VALUES OF rrk> (Ak) DIVALENT, TRIVALENT, AND
QUADRIVALENT IONS WITH 3d ELECTRONIC CONFIGURATION

ndN X2+ <r2 >a <r4 >a X3* <r2 >b <r4 >b X4 + <r2 >C 7r>c

3d1  Sc 1.372 4.053 Ti 0.7958 1.281 V 0.6217 1.298
3d2  Ti 1.073 2.505 V 0.6689 0.9145 Cr 0.5172 0.8177
3d3  V 0.8822 1.718 Cr 0.5776 0.6911 Mn 0.4911 0.7761
3d4  Cr 0.7423 1.234 Mn 0.5054 0.5363 Fe 0.3958 0.4955
3d5  Mn 0.6293 0.8973 Fe 0.4436 0.4177 Co 0.3648 0.4081
3d6  Pe 0.5576 0.7236 Co 0.4020 0.3506 Ni 0.3304 0.3282
13d7  Co 0.4917 0.5738 Ni 0.3627 0.2903 Cu 0.2982 0.2600

3d Ni 0.4353 0.4577 Cu 0.3280 0.2413 Zn 0.2708 0.1995
3d9  Cu 0.3871 0.3678 Zn 0.2977 0.2016 Ga 0.2291 0.1296

a HFT calculated using T - 0.76878 + 0.11128N.
b<r >HF/Tk calculated using T = 0.811184 + 0.0073953N.
C<r >HF/T calculated using T = 0.833540 + 0.0056609N.
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114. CRYSTAL-FIELD EFFECTS NOT YET FULLY INCORPORATED

14.1 Self-Consistent Point Dipole and Point Multipole

In section 12 we discussed the point-charge contribution to the
multipolar f'ield components A., It was early recognized by Hutchings and Ray
(1963) that the multipolar, components of the oonstitu1 nt ions contribute to
the Anm at the site occupied by the unfilled shell nd . For a point charge
eZi located at from the origin ion site, we have the electric potential

eZ,
ri . (1 4. 1)

The potential energy of one of the X9N electrons at r is

U(r) - -eo(r)

(14.2)

m -e2Z1  C rn Rm~

where we have expanded the denominator of equation (14.1) in the spherical
tensors discussed in chapter 1. If we write equation (14.2) as

U(ir) - I A* rnC~ (r) (14.3)
nm rn n

then

AM0  -e2  ZiCnm(Ri) (14.4)

iI



where the sain on I oovers all the ions of charge eZi Jn the solid. This
result we derived in section 11, expressed In slightly different form. It
seems natural to extend equation (14.3) to the form

u() A(k)*rnC , (14.5)
nm,k TnT

andN t the A (k) to the various k-pole moments of ligand3 at A,. To relate
the A' to the M"ultipole moments, eQkq, we need first to express the electric
potrn'al_ at the rare-earth electron due to the multipole moment eQkq(i)

_ at

The electric potential due to a multipole distribution at i is
given by

e12 CR+k,m+qg(i) n
- e ('l)kQkq i)( 2k~n~) <n(m)k(q)ln+k(m+q)> n+1k+ rnCnm ()

kq H1
rim

(14.6)

where

(2k+2n) - (2k+2n);
S2n (2n)!I (2k)7!

(the details of the derivation of this result are given in sect. 15). Thus,
since U(r) - -eo(r), we find, using equation (14.5), that

A(k) -e 2  I (-1)kQ* (i)(2n+2k)1/ 2 <n(m)k(q)ln+km+q)> ,m(i)
run qqi jkq2n Rn+k+l

kq i (14.7)

If we let k - 0 in equation (14.7), we obtain

AM -e2  * Q~(j) Cnm(^i) (14.8)
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(if k - 0, q - 0), which is identical to the result given in equation (14.4)
if we identify QW0(1) with Zi (the number of charges) givon there. The result
for k w I is

AM A)" e2 qI Q Q(1)(2n+21/2 <n(m)1(qlln+1(m+q)> Cn+lm+( "i)

~ (14.9)

Since

<n(m)1(q)In+1(m+q)> - (-1)1-q (..)1/2 <1(-q)n+l(m+q)ln(m)>

and

Qiq - (- 1 -q

we can use these results in equation (14.9), to obtain

AM - -e2 I /(n+1)(2n, 3 qIQ(i) <1(q)n+l(m-q)jn(m)> Cn+i~m.q(Ri)ro 1qRn+2q,i R

(14.10)

which is identical to the result published by Morrison (1976), if we identify
eQiq(i) - Piq(i) (Plq is the dipole mom~n• component). Thus, if we knew the
Qkq(i), we could easily calculate the A by using equation (14.7). Unfor-
tunately, the real difficulty is determ•-ning the Qk1(i). In what follows we
restrict our discussion to the dipole case, k - 1,and let eQlq - Pq and
express the results in Cartesian vectors.

At sites of low symmetry, an electric field can exist whose value
is determined by the various point charges of the solid. The electric field
due to the point charges of the solid at a site of low symmetry is given by

to X qi Aij (14.11)

ij

and the field generated by the point dipoles is

__ _(Aijoi_ (14.12)
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The dipole moment at site j is then given by

- ag . a + , (14.13)

where a is the polarizability of the ion at site J. (If more than one species
is considered, the polarizability of each type must be used.) The sum in
equation (14.11) presents no problem and can be done quite simply. To perform
the sum in equation (14.12), it is convenient to assume a fixed coordinate
system in the unit cell and an associated reference point (say position 1);
then each dipole 4noment,,pj, can be related to the dipole located at the
reference moment, p,, by he symmetry operation of the crystal. Similarly,
the field at each point, J, can be related to Having done this, we can
write

S- = G(I).p 1  (14.14)

and from equation (14.13)

p a 0 + .(1 ,p (14.15)Pl 1 1 - "

The result given in equation (14.15) can then be solved for the dipole moment
ý1 to give

aB -.. 0 (14.16)

where

B 0 ( a - -

The result obtained in equation (14.16) is rather interesting; if
the polarizability, a, is near the reciprocal of one of the eigenvalues of
the G matrix, then the dipole moment becomes excessively large. This is
suggestive of the type of catastrophe that occurs in the onset of a ferroelec-
trio transition. Such a situation would, perhaps, be modified by the inclu-
sion of the higher- multipole moments in the calculation. It should be pointed
out that the G matrix defined in equations (14.12) and (14.15) is dependent
only on the lattice constants and the symmetry of' the crystal. The results

a
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here were expressed in terms of Cartesian coordinates but can equally well be
done in spherical tensors. If higher moments were considered, the spherical
tensor form would be much more convenient. (This statement has been confirmed
by M. Faucher in private communication, 1982. She has extended the self-
consistent moments through quadrupole moments.)

14.2 Self-Consistent Results for Scheelite Structure

The procedure given above is rather involved, so we shall go into
the derivation of the G tensor for the scheelite structure (CaWO 4 , LiYF 4 ,
etc). The space group for scheelite is 88 in the International Tables; the
position of all the constituents is given in table 14.1. To be specific,
LiYF 4 has been chosen; the f'luorine is in site 1; x, y, and z have been chosen
as the reference points for the dipoles (u, v, w); and all other dipoles in
the unit cell are related to u, v, and w. No dipoles can exist at the Y or Li
sites since the lowest fields at these sites are quadrupole (k - 2).

To evaluate G for the scheelite structure, we choose the ion at
site 1 in table 14.1 as j in equation (14.12). The in equation (14.5),
including the translational vectors (Z in x, m in y, n in z), is

, (L+xi-x)aex + (m+Yi-y)aey + (n-zi-z)cex , (14.17)

where we shall, during this discussion, suppress the explicit dependence
of' on Z, m, and n. We write equation (14.12) as

- d. .id (1.8
1 1 1'(4.8

where

Pd - Pi11.9
1 R3 (1.9

and

Id = 3 .i1"Pl (14.20)1 iI R5

where sums over E, m, and n are implicit. Then using table 14.1, we write
1 explicitly as

Fd u v +_3_u 3 v u v + _u
R R R R R R3

1,1 2,1 3,1 4,1 5,1 6,1 7,1(

(14.21)

v u v u v u v U V

R3  R3  R 3  R3  R3  R3  R3

8R , 1 9, 1 R 0,1 R1,1 R12,1 R13,1 R14,1 15,132
S~~132R16



TABLE 14.1. SPACE GROUP 88 (FIRST SETTING): COORDINATES OF ALL
IONS IN A UNIT CELL OF YLiF 4 AND DIPOLE MOMENTS OF EACH ION

"(pxs P., and p. of site 1 are chosen as u, v, and w, respeotively)

Site Ion x y z Px Py Pz Qkq

1 F x y z u v w 1

2 F y -x -z v -u -w

3 F -x -y z -u -v w (.)q

4 F -y x -z -v u -w

5 F 1/2 + x 1/2 + y 1/2 + z i V w

"6 F "1/2 + y 1/2 - x 1/2 - z v -u -w (-1)k(t)q

7 F 1/2 - x 1/2 - x 1/2 - z -u -v w

8 F 112 - y 1/ 2 - y 1/2 + z -v u -w

9 F x 1/2 + y 1/4 - z u v -w (-1)k+q

10 F y 1/2 - x 1/4 + z v -u w (-1)q

11 F -x 1/2 - y 1/4 - z -u -v -'w (-1)k

12 F -y 1/2 + x 1/4 + z -v u w (j)q

13 F 1/2 + x y 3/4 - z u v -w (-1)k+q

14 F 1/2 + y -x 3/4 + z v -u w (_ 1 )q

15 F 1/2 - x -y 3/4 - z -u -v -w (- 1 )k

16 F 1/2 - y x 3/4 + z -v u w

17 Li 0 0 0 ..... ...

18 Li 0 1/2 1/4 .. .. ....

19 Li 112 1/2 1/2 -- -- --

20 Li 112 0 3/4 ... .. .....

21 Y 0 0 1/2 .. .. ....

22 Y 1/2 0 1/4 -- -- --

23 Y 1/2 1/2 0 .. .. ..

24 Y 0 0 3/4 .. .. ...

aThe last column relates those Qk to the reference point Qkq"
Thus the Qkq for fluorine are all related to site 1.
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Then we can write

d 8 )i8 1
F d X (-1 u + (-) v + (O)w . (14.22)x J-1 1 -1 R32

2i+1,1 21,1

If* we let G - G' + 3G"' and restore the L, m, n sum, we have

8 )i=, x . (-1)
-=mn -i ---- ,( 1J..23)

xx %m~n -1 2i+1,1

8 i
XY -~ ~ i- R3-1 (114.214)

Xy •m~n =I 21,1

G' -O 0 (114.25)
xz

By similar methods we obtain

Z, R 3 Y (-1)- , (114.26)
zz ,m,n i-1 R+8

S~and the G_' tensor is symmetrical.

To evaluate the G" term, the procedure is precisely the same as to
evaluate the G' term, e xep~t that we relate _G" to equation (114.20). It is
convenient to-express •1•4explicitly in tabular form, as given "in table
114.2, for easy ref~erence wheA writing out each term of. G". We shall not write
out the detailed expression as in equation (114.21), but this procedure gives

8
G - - X (-1)i[~ 1 -2 ]2  , (114.27)xx[Xt1-X1i

8
G" -- X (_i)i[~ 2 ] (114.28)xy[X "2Yi-

SG~xz- - X (-1)i[x1 zi - xi+8 Zi+8 ] , (114.29)

i-1

8
G"Z - X (-1)i[yz2 - Z,8 (114.30)

S1 3(4

i21,

8

zz R
t~m~1 3-1

andtK~j th G teso issmercl



where TABLE 14.2. VALUES OF R.P FOR DIFFERENT

SITES IN SCHEELITEa

XiY a 2 x(i)y(i) Site Px Py P; 94

11 u V w X(1)u + y(1)v z(1)W

2 2 2 V -u -W X(2)v - y(2)u - z(2)w

2 a x(i) 3 -u -,, W -x(3)u - y(3)v + z(3)w

i " 5 4 -v u -w -x(4)v + y(4)u - z(4)w
W 5 u v w x(5)u + y(5)v + z(5)w

a2 yi 2  6 V -u -W (6)v - y(6)u - z(6)w
Y I R 7 u -v w -x(7)u - y(7)v + z(7)w

R 1 8 -v u -w -x(8)v + y(8)u - z(8)w

"9acx(i)z(i) u v -w x(9)y + y(9)v - z(9)w

X1Z = R5 , I0 v -u w x(10)v - y(10)u z(10)w
i, 1  i1 -u -V -w -X(11)u - y(01)v - Z(l1)W

12 -v u w -x(12)v + y(12)u - z(12)w

and all the sums in equations 13 u v -w x(13)u + Y(03)v- z(13)w

(14.27) through (14.31) have 14 v -u w x(14)v - y(14)u + z(14)w
the sum over 1, m, and n
implied. The G" is symmetric 15 -u -v -W -x(!5)u - y(15)v - z(15)w

(this can be shown directly 16 -v u w -x(16)v - y(1 6 )u - z(16)w

from evaluating, for example, aX(i) - I + - Y - M + Y 1

0" and G" independently). z(1) - n + zi - zj.
xy yx

The equations for G' and G" were calculated for several lattices,

and the results are given in table 14.3. The crystal axial field components,

An?$ were compute t for CaWO4 using a - 2.4 A3 and oxygen charge of -2e, and

using a = 0.24 A: and oxygen charge of -e. The results are shown in table
14.4 (Morrison, 1976).

After the above work hat' been done, the dipole terms in the
Ad were programmed for a computer for all the 230 space groups. In the

rni

TABLE 14.3. 0 TENSOR AND X-RAY DATA FOR SEVFRAL COMPOUNDS (1/A')a'b

Compound a c x y z

CaWO 4  5.248 11.376 0.2413 0.1511 0.0861
PbMoO4  5.4312 12.0165 0.2353 0.13660 0.08110
YLiF 4  5.1668 10.733 0.2820 0.1642 0.0815
YVO 4  7.120 6.289 0.1852 0 0.1749

Gxx oxy Gxz G yy Gyz OZZ

CaWO 4  -0.252608 -0.0731076 -0.0979719 0.197101 -0.040229 0.123419
PbMoO4  -0.224152 -0.0758124 -0.0976969 0.168517 -0.0426228 0.0768659

YWiF 4  -0.252131 -0.0826652 -0.125165 0.192571 -0.0446824 0.168842

YV0 4  -0.734174 0 -0.241965 0.127677 0 -0.173784

aThe reference site 1, in all the calculations, is the ligand at x, V, and z.
b1704 Is not a suheelite structure (YVO is the zircon structure, space group

141, in the International Tables) but can fe done in the scheelite structure by
translating the oxygen positions to the above (s0e Iaragianis and Norrison, 1973).
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TABLE 14.4. AXIAL COMPONENTS OF CRYSTAL FIELD FOR TWO
VALUES OF POLARIZABILITY OF OXYGEN AND OXYGEN CHARGE

(om 1 /A0)

a - 2.4 As, qox -2e -= 0.24 A', qo -e
Component A 0 Ad A

Ao Ad Ao A
nO no nO rO

A2 0  10,115 -22,954 2321.1 -692.58
A4 0  -4,215.4 14,975 -1919.6 332.25
A6 0  38.625 -897.94 7.2194 -10.206

program any number of inequivalent sites can have an associated dipole moment
(we only considered one type of site above). Recently the members of Caro's
group in France and de Sa's group in Brazil (Faucher and Malta, 1981) have
included the dipole and quadrupole moments in a self-consistent manner for
LaCl 3 ; they have f'ound that with the reported values of' the dipole and quadru-
pole polarizabilities the resultant Aq is much larger than A0  or Ad

rn nm rnm
14.3 Self-Induced Effects

When a rare-earth ion is immersed in a solid it is possible f'or its
electrons to experience a field due to the reaction of' the medium back on the
electrons. Both this type of fi'eld and the external fields due to the point
charges of' the medium can exist. This reaction is identical to the classical
problem of a charged particle interacting with its induced image in a conduct-
ing plate or sphere. The interaction was recognized by Judd (1977), and it
was he who suggested the polarization of the ligands as a possible source of a
two-electron crystal-f'ield interaction. In this section we consider the
development of this interaction as derived earlier (Morrison, 1980), using the
same technique used in the earlier work. In later sections this Interaction
is developed in a more general way, deriving the multipolar interaction.

We consider an electron at r on a rare-earth ion and a ligand at.
with polarizability a. The electric potential created by the electron is

S -e (14.32)

TA - 71

The electric field at the ligand is

• • -V 0

where VR indicates that the derivative should be taken with respect to A.
Then, I - -e(A - )(14.33)

S- +13
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The dipole moment induced on the ligand is given by

p (1J4-34)

where a is the polarizability of the ligand.

Now if we co sider a dipole from some arbitrary origin, the elec-trio potential at point R 1 from that origin is

S1 " 1 (14.35)

1
To find this potential at the electron itself, we let - - .). Then
equation (14. 3 5) becomes

p "r ) (14.36)

The energy of the electron interacting with this potential is given by

U(r",R) = -e 1 0(r)

(14.37)

e I - +)

where the 1/2 is due to a self-interaction. We can write

____• = _v 1
r (14.38)Ig - +13 IR -4 1

Then equation (14.37) becomes

U(,,) v 1 (14.39)

and similarly

eV 1 (14.40)
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Using the result of equation (111.140) in equation (14-341) and substituting the

result into equation (114.39), we have

-1(R 1) (14.41)

where V~ operates only on the function on its innediate right. To further
4-eduoc &~e result given in equation (14~.4~1), we consider the operation

V 2 1v 1*) 'V 2 + *p2V 2 *1 +2(v~l) - (výp2) .(1.4.142)

If ' and 1b2 satisfty Laplace's equation (which they do), then

V ( *)- 2(Vip1) ' (v*2) . (14A3)

If we identify ipi and *'2 with 1/IA - 'rin equations (114.141) and (114.143), we
can write U(r', ) as

2
U(ir,) 4 Vi 2 I_ 1 (114.144)

To proceed further we must expand the factors on the right side of
equation ('14.414). First we notice that

e2 2 2 4++
rj R + r -2r R

(114.45)

[R2 + r2 l
2R 1i2Rr r*R

If' we let

t R r (124.146)2rR

then

1 1 1 (1J4.47)
- 2rR - 4

with z r- R.
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The expansion

t z n (2n + 1)Qn(t)Pn(Z) (14.48)

is given by Rainville (1960); the leading term for larga t is

Qnt) n2+ (n ) (14.49)
n t (2n +1)1

From equation (14.46) we have

2 2n+1 (ni) 2  n+1

n (2n + R (14.50)

for large R.

Subs'Atuting the result of equation (14.50) into equation (14.47)
gives

S12 - Z 22nnl) - P (

JR rJ (2n) Rn+ 2  Pn(z) (14.51)

From the Legendre addition theorem (see sect. 1), we have

pn(Z) Pn(.)

(14.52)
"n,m c:C)C'R -

an d

1 22n(n!) 2  rn (;)T* (14.53)
JR - r 2  • --n-n•! Rn+ 2 Cnm nm

The remaining necessary operation is R which can be written

V2- d-2(2 (14.54)
R R2 dR (R) R

The only term in equation (14.53) that this operates on is

SC*() (14.55)
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Using equations (14.54) and (14.55), we have

V2[R-n.2c*(w) . (n + +1n + 2) n(n+ 1).

a2  - 1]C* (R (14.56)

Finally,

V2 I n.m.lc 2(n + 1)Rn+
R- " ',m R; (14.57)

where we have used

(t)2cr(.) . n'n + 1)c R) (14.58)

a result we discussed in section 1. The result in equation (14.57) substi-
tuted into equation (14.53) gives

V2 1 22 n+l(nl)(n + 1)1 rn . (14.59)IR - r12 n(2n) Rn-. Cnm run

The result given in equation (14.59) is substituted into equation (14.44).
This result, when summed over all ligands at j with polarizability aj, pro-
duces

2 22n+1 !(n + 1)! C(
nm J(2n)! +4 rnCnlm(;)( 4.0

J

If we write equation (14.60) as we have previously done with the point-charge
model,

U(r) - I (ASI)* rnC. r-() (14.61)
run

we have

ASI a (e) 22n+Inl(n + 1)! 1 +j' (14.62)
nm -7 _2n ) j Rn

which are the self-induced crystal-field components due to induced dipoles
only. Higher order nhultipole moments can be induced on the ligands, and these
multipoles will contribute a correction. 1rom previous experience, we should
anticipate the total sell-induced multipole fields to be of the form

A SI ASn(k) (14.63)

SI
with the result above being A n(1),

n-14
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As in the point-oharge model, it we express all lengths in
angstroms and aj in angstroms cubed, then equation (14.62) becomes

nmo 8X 22n+lnl(n + 01 Rn 1 (14.64)r 1>s .. (o201 j "n+

To express ASI in units of om-l/An, use the conversion factor ao/8w x 108

29,035. rim
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15. MISCELLANEOUS CRYSTAL-FIELD EFFECTS

15.1 Judd's Interaction for Two Electrons

The interaction considered here isi a development of a suggestion by
Judd (1977) concerning a possible origin of two-electron crystal-field ef-
feots. Specifically, Judd suggested that such terms would arise if one of the
electrons in the configuration n1N polarized a nearby ion, and the remaining
N - 1 electrons interacted with the induced multipolar moments. The investi-
gation of this interaction was performed later (Morrison, 1980), assuming only
a dipole polarizability. The interaction for two electrons that resulted is

ab (a )rb( C()(R)

V(1,2,R) - a F(abk)r , ,ar 1 )r2 bl~q-cm2) <aa+b+ 4  (15.1)

b,k,q

where

F(abk) - - (c e2 <a(O)b(0)jk(0)> E(a+b+l)(a+b+2) - k(k+l)]

and a is the dipole polarizability of the ion at R.

The development of the result given in equation (15.1) was similar
to that given in the derivation of the self-induced field in section 14.3.
For the f'ull multipolar result we shall use more general methods.

The electric potential of an electron at r1 as seen at a ligand

0(-1 -e ,(15.2V

where
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The multipolar inducing field EIm at can be defined by

+ x E* yYC(X . (15.3)
rm

By expanding equation (15.2), we obtain

+( ) - -e I (-O)n C I(15.4)
01+nm Rn*1 ' nm(^)(1.)

nm 1

then comparing equation (15.4) with equation (15.3) gives

Er - e(-1)nCn(R!)/RI+l * (15.5)

ranm

The multipole moment, Qnm, is given by

Qnm a %nEnm (15.6)

where the multipole polarizability is an.

The electric potential at an arbitrary point 3 from a multipole
distribution is given by

Q* c (R-)
3- • R•n I r (15.7)

and the energy of an electron at r 2 interacting with the multipoles is

U = -eQ ( 3  R2 ) (15.8)

with R2 - R - r 2 . From equation (15.7), we obtain

Q* (-1)nC R
U = -e rm (^2 (15.9)nm Rn+I

Now fron equations (15.6) and (15.5) we have
Q =eCnm-R1)

Qnm = ean(R1)n '+ (15.10)
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whioh, when substituted into equation (15.9), gives

r rr-- -e2  1 0 l R 2 (15.11)
nm 1 2

If we write
ur ~r,) -r u~) r,• (15.12)

nm

we have

U~n)(1 + _92 n(^1 ) cn,(Y2
u(n)(��r rA) - ae2 n m -+ (15.13)

•f we were considering the self-interaction, at this point we would let 92 -

UR1and ýake half the results. The sum on m would then collapse to unity and
()lrl ,A) - -e 2 ( an/2)/R"n+2.

However, the two-electron interaction is more complicated. We use

the two-center expansions (Carlson and Rushbrooke, 1950; Judd, 1975) to obtain

_____ I (2a+2n\ 1/2 rca R(,1(

Rn+l a 2a <a(a)n(m)j.n( Ra+n+l a~n,a+M(•)

(15.14)

where1 - r1 and

1 1/2

1r2 2(2b+2n 1/2 <b(B)n(m)_bn( $+m)> 2bi+2 mR)

R2+1 2b n nRb+nl b+n,$+m
2 bB (15.15)

where =2 " A r 2

As indicated In equation (15.11), equations (15.14) and (15.15) are
to be multiplied together. When these two equations are multiplied, the two
spherical tensors in R can be recoupled as

C , (i)c , (). (-1)ar3 I <b+n(O)a+n(O)jk(O)>
a+n-,0+m b~n,B~-m k

(15.16)

x <b+n(8+m)a+n(-,%-m)jk(O-a)> C k,$.a(R)R
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where we have used

C t*nm (R) . (-1)ct+mCa+n m(R) (15.17)

It should be noted that the resultant projection In equation (15.16),

1Ck,6-X(RJ), is independent of m. Thus with a proper recoupling of the C-G
coefficients in equations (15,14) and (15.15), the sum over m can be per-
formed. Selecting the independent terms from the product of equations (15.14)
and (15.15) and the result of equation (15.16), we have

S (-1)mt <a(a)n(m)Ia+n(atm)> <n(m)b(O)Ib+n(O+m)>
im (15.18)

x <b~n (O+m)a+n (-a-m)Ik (B-a) >,

which, when further reduced, gives

U (n) + =" e 2 <b~n(O)a+n(O)ik(O)> L\2n/ 2b /2

u 1nrl29) "e2'n ac2 k
, bO

'~(15. 19)

x raCa (^l rc (r^ )
aa 2 bB) 2 Ra+b+2n+2

rhus the final desired result is obtained if" wo know S. In equation (15.18)
we rearrange the C-G coefficients as follows:

<aC,)n(i)ja+n(a+m)> (-1) a-c 12a+ 2n+ 1)1/2
2n <a(-)a+n(1+m)jn(m)>

(15.20)

;<(m)b(B)Ib+n(a+m)> - (-1)n-m (2b + 2n + 1 <n()b+n(--m)b(-)>I \ ~~~~~~2b + "1<~~~(B-)b-)

We then recouiple (eq (5.8)) the two C-G coefficients on the right to give

I <a(-a)a+n(a4m)ln(m)> <n(m)b+n(-B-m)lb(-B)>

I- / I(2f+1)(2n+1) W(a,a+n,b,b+n;nf) <a+n(ci+m)b+n(-B-m)If(a-O)>
f (15.21)

x <a(-a)f(u-B) Jb(-B)>
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The sum on m can now be performed; note that the phase, (-1)m, in equation
(15.20) cancels the (- 1 )m in equation (15.19) if we change the phase In the
first C-0 coefficient on the right side of equation (15.21). This then fixes
the suns on f at k. Thus,

S a _1)k-b~n r(2a+2n+l)(2b+2n+ 1) / 1225/ 7
2b+1 J

(15.22)

x W(a,a+n,b,bn;nk) <a(-a)k(oi-6)lb(-B)>

The C-G in equation (15.22) can be rearranged to give

S - (-1)0[(2a+2n+l)(2b+2n+l)] 1 /2W(a,a+n,b,b+n;nk) <a(a)b(O)Ik(a-O)>

(15.23)

If we let

Fn(abk) - -(ance 2 ) <a+n(O)b+n(O)Ik(0)> V(2a+2n+1)(2b+2n+I)

(15.214)
n a 2b+2n 1]1/2

x Wa~a&n9bb4n~nk)L\ 2 a/ 2b J
then, substituting into equation (15.19), we have

r r R Fn(abk)rrbr I <a(a)b(q-a)jk(q)> Ca•(rl)Cbqcir2)

a,b 1
k,q

(15.25)

Ckq 0 f)
Rq+b+2n+2

which is the final form of the two-electron multipolar interaction. To obtain
the result given in (15.1), we would have to relate <a+1(0)b+1(0)Ik(O)> to
<a(O)b(O)jk(0)> and evaluate W(a,a+1,b,b+1;lk), both of which procedures can

* be found in Rose (1957, pp 47, 277). If this is done, then Iquation (15.25)
will reduce to equation (15.1). In a solid the ligands at R are such that,
when the sum is performed over the ligands, only certain k and q survive.
Much of the above derivation has been given by Judd (1976) in a different
context, and many of his elegant techniques could be used to simplify the
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resulting expressions. For example, using Judd's notation (1976), equation
(15.25) becomes

U (n) (*14,) r ,,A Fn(abk)rr[Cal)Cb( 2 )]k )/a+b+2+2

k (15.26)

where

[Ca(r1)qb(r2)1kq X <a(a)b(q-c)Ik(q)> Caa(1)Cbq.-.a(r 2 )

The tensor in orbical space, given in equation (15.25),

Tkq(a,b) - ) <a(a)b(q-a)Ik(q)> Ca•rl)Cb,qA(2) (15.27)

should be considered carefully. For a fixed value of k the number of terms in
the sum over a and b is restricted by a + b < k; for equivalent electrons a
and b are restricted to even integers; and for 0 < (a,b) < 6, the total number
of terms is not excessive. Eut since a and b can reach the maximum value of 6
for the configuration 4fn, the value of k in the k sum (similar to the lattics
sum) must go up to 12, that is, k < 12.

If as in previous work (Morrisun, 1980) the sum over all the elec-
trons is performed in equation (15.25) along with the sum over the ligands,
the results are

1- /2 r u(n(ir ÷ J, (15.28)
ij
R

where the factor 1/2 accounts for the self-interaction terms that are present
when an electron interacts with its own induced multipole, as well as for •he
interactions that occur twice when i * J. This interaction contains a Large
number of corrections to the free-ion paraimeters, a few of which are discussed
in the following.

15.2 Slater Integral Shifts

The Slater integrals for the free-ion interactions are given by the
Coulomb interaction as

2
H1 -, e, (15.29)

i>j I i - rJl
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"which for equivalent electrons can be written

H, I F(k) I C*q(rJ)Ckq(ri) (15.30)

k,q 
i>j

where

F(k) e2 f k r< [R (r) ]2 drIdr2F~k = 2 0 ;0 r>k+' n(2]

Since the inter'action represented by equation (15.30) is sp~heri-

cally symmetric in the space of all the electrons, corrections to the F([k) can
only arise from terms. In an interaction that are spherically symmetric in the
space of" the electrons. Thus, in equation (15.25) if we let k 0, we have
such an interaction, and the following results are achieved:

Fn(abO) -a n e <a+n(O)a+n(0)0(0)> /'(2a+2n+1)(2b+2n+1)

x W(a,a+n,a,a+nnO)( 2a+2n (2b+2n)] 1/2 (15.31)
W~aan~aa~nnO) 2a /\2b /

2 (1)a+n (a+2n)- -n e C- 2a )/,2a+2n~l

If in equation (15.31) we use the relations

<a(a)b(-a)0(0)> - (-1) -a/l2Tb- 6 ab (15.32)

and

W(a,a+n,a,a+n;nO) _ (-1)n/[(2a+1)(2a+2n+1)]1/2

(Rose, 1957), then equation (15.25) becomes

u(n)('rr 2 ,•) _e2 (2a+2n) aX ar^ c•( ( _ (15.33)2)
r 1 r2F -ane 2a r 1 r 2 R-a+ 2 n+2  (15.33)

which is the same form as equation (15.30). Thus,

tF(k) .- n(i)e 2  (2k+2n > (15. 3<4)

AFý a n\We 2k+2n+2(134i ~a

f'or the Slater integral shifts, because of the electron multipolar interaction
with the ligands of multipolar polarizabilities an.
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15.3 Problems

1. If we 4ave a charge distribution p(x) at the orig'n, then the
electric potential at r is

x

in - X o

where d~x is the volume element. at x. By expanding + I for I•I < Ir'I show
that Ir-

Q* C (r)+ ~nm nmIu rn+1
r nlr

where

Qm- f p(')xnC C() drx

is the multipolar moment of the charge distribution. What is the common name
for Q00 and Qim?

+2. If we consider the charge distribution in problem 1 to be at

the point r, show that the electric potential is

Q* C (r)
C,) . X. (-1)n I Ifr rn+1

3. The electric potential of a uniform electric field is

ý(X) . -x.4

or

f(x) - - K EmXC 1 (X) (a)
U'

when 9 and x are written in spherical tensor form.

It we generalize equation (a) above to

#(A + ') - - I En~m(A)xnC.m(^),

rim

we can define the induced multipole moment caused by a field EnM( as

Q r ) ( EA) . Cc)
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By taking a point charge qo at R, show that the multipolar field at the origin

is

C nm(R)
Ern M "qo Rn+0

and that,

Cnm(R)
Qnm(R) -- qoan Rn-+ (d)

"4. Using the results of' problems 1, 2, and 3, show that the
potential at + due to the above multipole moments of' an ion with
polarizability a n is

C Crm

r~m Qm()r n+ 1

with Qnm(R) given in the last part of problem 3.

5. By considering a dielectric sphere or ridius a and dielectric
constant c in the presence of a point charge qo at Irl > a, show that the
multipole polarizability of" the sphere is

a n - [n(c - 1)a 2 n+l]/(en - n + 1)

This result can be obtained by solving the electrostatic problem of a dielec-
tric sphere in the presence of a point charge (Jackson, 1975).

6. The, energy of interaction of two rigid cFarge distribu-
tions pA(W) and pB(+) separated by a distance 4 (j•j>> Ixl, jyl) is

UAB-J Pf"A(x) d xPB(') dTy

By using the two-center expansion (Judd, 1975) on the integr&nd, show that
UAB" (-) 2a+2b) 12 <a(a)b(S)Ia+b(C+B)> Qac(A)Q (B) Cf÷b•=*B(R)

bAB I /2a 1/ .,
adbO

where

QaO(A) - f PA(x)xl a (x) dTx , etc.
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The total energy for a solid o~nail~tin& of such multipoles would then be tne
sum over all A and B such tha ~A B

7. The energy of interaction of two ionas, with the f irst ha~ving the

electronic configuration nAi.A and the second ion having the el~ctronirý

configuration nBZNB, can be obtained fromi the result Ir. prob~lem 6 ty letting

NA

Qa (A) -jI rCac (i

and

NB

~b(B) * r~pbcýr)

The resulting interaction can be used to calculate energy transfer from ion A
to 9.
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