HDL-SF-87-1 O FILE copy

February 1987

Angular Momentum Theory Applied to
Interactions in Solids

by Clyde A. Morrison

U.S. Army Laboratory Command
Harry Diamond Laboratories
Adelphi, MD 20783-1197

Approvad for public release; distribution unifimited.

o
=,
B

WL v <
------
(Y

DA
o
LR
RN
. ~
. M
f ‘
i o
F-3

e

R WL S R A YA A L R S



v B} A bt v Bl Rt Al et huie ol e ol e e et BeiBiath Stt htt Sind M Sal sl Sl Sab Sad ed Sk Sodl

i

t

. .

¥

The findings in this report are not to be construed as an official Depart- -

ment of the Army position unless so designated by other authorized )

documents. ,
Citation of manufactuiers' or irade names does not constitute an offi-

cial indorsen:ent or approval of the use thereof. i

Destroy this report when it is no ionger needed. Do not return it to the -
originator.




T TVETY T TV TR VT TR TR T TR T TR e 7 AR W WY W T T W YT TN T R T W RETEE

UNCLASSIFIED

REPORT DOCUMENTATION PAGE

7. REPORT SECURITY CLASSIFICATION 15. RESTRICTIVE MARKINGS
UNCLASSIFIED
28, SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT

Approved for public release; distribution uniimited.
2b. DECLASSIFICATION / DOWNGRAG,NG SCHEDULE

Lo
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S

HDI.-SR-87-1

6a. NAME OF PERFORMING ORGANIZATION 6b. o':nceﬂsvme?l. 7a. NAME OF MONITORING ORGANIZATION
. Har "y Diamor.d Laboratories (i applicable
Y ‘ SLCHD-RT-RA
6c. ADDRESS (City, State, and 2IP Cocle) 7b. ADDRESS (City, State, ard 2IP Code)
2800 Powder Mill Road
Adelphi, MD 20783-1197
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Of applicable)
Night Vision and Electro-Optics Center
8c. ADORESS (City, State, and 2IP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
Ft. Belvoir, VA 22060 ELEMENT NO. |NO.10.161102 | NO. ACCESSION NO.
61102A . AH44

1. TITLE (Include Security Classification)
Angular Momentum Theory Applied to Interactions in Solids

12. PERSONAL AUTHOR(S) Clyde A. Morrison
13a. TYPE OF REPORT 13b. TIME COVERED  NA 14. DATE OF REPORT (Year, Month, Day) ]‘sA PAGE COUNT
Summary/progress FROM 10 February 1987
16. SUPPLEMENTARY NOTATION S/ .. B
HDL project No: AE1655 AMS code: 611102.H440011
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP .1 Angular momentum theory, ‘group theory, érystal)f/ield interactions, spectroscopy
20 12 of solids, raresearth lons; transition-metal ions . &~

'9. ABSTRACT (Continue on reverse if necessary anc' identify by block number)

'?This report discusses those concepts of group theory that are applied to the spectra of impurity ions in crystals.
eginning with the simple hydrogen atom, spectroscopic notation and angular momentym operators are discussed. This
is followed by a general discussion of angular momentum theory including Clebsch/Goidon coefficients, the Wigner-
Eckart theorrem, unii spherical tensors, and Racah coefficients. The extension of these techniques to the electronic con-
' figuration, ru” . for N equivalent slectrons Is discussed. The theory of point groups as applied to ions In solids Is intro-
duced, aiong with the use of the International Tables of Crystallography and character tables. The phenomenological
theory of crystal fields is discussed in some detali along with the so-called freefion parameters characterizing the
Coulomb interaction, the spin-orbit interaction, and the Interconfiguration interaction. The use of tables of 3-j and 6-J sym-
bols used in the calculation of the matrix slements of the varlous Interactions is presented, along with other tables and
aids in the computation of the energy levels.

The point ion model of crystal-field interaction is discussed with particular emphasis on the work done at the Harr
Diamond Laburatories (HDL) on its development. The earlier work at HDL was applied to triply lonized rarefearth ions (40‘% \

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
R uncLAsSIFIEDUNUMITED [ SAME AS RET. [ DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) | 22c. OFFICE SYMBOL,
Clyde A. Morrison (202) 394-2042 SLCHD-RT-RA
DO FORM 1‘73, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete. UNCLASSIFIED  _ —  — —

1

“G:,,



- YR Y T — e — Y v ——

UNCLASSIFIED
SRCUKRITY CLASSIFICATION OF YHIS PAGR

-z -

EES
o i e

0 '," l’
; | 19. ABSTRACT (cont'd) AR T
\\ | X
N
slectronic configuration), and the preliminary extensions presently being undertaken at HDL are applied to the transition
metal ions with the electronic configurations n&” (n=3,4,8nd5). . s s o e N ‘.; o (-‘)
ot o . b 3 A

Finally, several interactions not yet considered at HDL are discussed; these will be investigated in the future.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

A A T R A A At e L



PREFACE

This 1s a collection of 1lectures given at a course
taught at Harry Diamond Laboratories between 12 December
1985 and 15 March 1986, The material covered consisted of a
complete rewrite, with protiems added, of a series of lec-
tures given at the Universidade Federal de Pernambuco,
Recife, Brazil, in November 1981. The persistent attendees
were Greg Turner, Mary Tobin, John Bruno, Chris Pennise,
John Goff, and Paul Hershall; each, in his or her own way,
contributed to additions or deletions of material. Sperial
thanks is due to John Bruno who, with considerable effort on
his part, arranged for the classrooms.
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1. INTRODUCTION AND REVIEW OF PREVIOUS LITERATURE

The purpose of this report is to provide students with a means to calcu-
late the energy levels of impurity ions in solids and analyze experimental
results. In order to achieve this goal it is necessary to review material
which many readers may have been exposed to elsewhere. This review is rather
brief, and the bibliography (sect. 1.4) ineludes references to specific sec-
tions of textbooks, monographs, or papers where the material is discussed in
more detail. Unfortunately, as in most fields of science, a number of dif-

- ferent notations (in various alphabets) are used in the literature; it is
hoped that this review will help overcome some of this difficulty.

Many mathematical results are presented without proof with a view towards
brevity. The review of angular momentum is directed towards the use of the
various tabulations of matrix elements, n-j symbols, and group tables, and our
study of group theory is simply directed toward the use of the abundant tables
of the 32 point groups.

Most of the discussion of c¢rystal-field theory is devoted to the point-
charge or point-multipole model. This is quite natural since most of 1its
recent development has been done by research workers at Harry Diamond Labora-
tories (HDL). Very recently, research workers under the direction of Paul
Caro in France have significantly extended the point-multipole crystal-field
model and their contributions are also discussed.

Finally, the ongoing work at HDL on the transition-metal ions is dis-
cussed. Most of these results are unpublished at present, but computer pro-
grams are used to illustrate directly the effect of various free-ion and
crystal-field interactions.

1.1 The Hydrogen Atom

We assume that we have an electron of charge -e, mass m, and an
infinitely massive nucleus of charge Ze. The nonrelativistic Hamiltonian for
U this system is

2 Ze
P._ 28 (1.1)
where p 18 the momentum of the electron. The time-independent Schrodinger
equation for this system is given by
Hy = Ey ,

2 2
N g2 _ Ze . 1.2
(—Ev r)w Ev (1.2)
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where we have used the relation P - -ihV. The bound solutions to equation
(1.2) satisfying all the boundary conditions are

Yoom ™ an(r)Yzm(e,cb) ) (1.3)

where the R_,(r) are the associated Laguerre polynomials and the Y, (8,¢) are
spherical harmonics. The radial functions R_,(r) are of little inferest here
and are not discussed further. The energy in équation (1.2) is
2 4
-.:-Z—.-IP_G_— (1.“) .

E
n ZnQﬁz

where n 2 1. The quantum number & (angular momentum) is restricted to the -
values

2<n, 1“0, 1’ 2 s e 3 (105)
and m, frequently referred to as the magnetic quantum number, is restricted to
L sms i . (1.6)

The spectroscopic notation for a sequence of £ values is

L= 0, 1, 2, 3, y, 5, 6, T oevs (1.7)
S, P, d, f, g, h, i, K eeo 3

along with the value of n the states are referred to as 1s, 2s, 2p, 338 ...
with the restriction given in equation (1.5).

The spherical harmonics are given by

im¢
Yzm(e’¢) = szsz(cos 8)e ) (1.8)

1/2 1/2
__qym [28 + 1 (- m)l]
Nlm (=1 [ m ] [%2V+ m)! : .

The sz(eos 8) are associated Legendre polynomials and are defined as

where

2ym/2 (d \m
Py(z) = (1= 222 (L) p () (1.9)
and the Legendre polynomials are
] d \¢ (.2 2
P,(2) = -——-(—-—) (25 - 1)~ . (1.10)
) 2211 dz
10
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The definitions given in (1.9) and (1.10) are restricted tom 2 0. For m < 0
we have

m
Y m-(-T)YEm ’ (1.11)

Q-

where Y*¥ 1s the complex conjugate of Y

Lm n’

The spherical harmonic¢s are normalized so that
* =
I Yzlm'(e'¢)ygm(e!¢) dn qug‘ém'm (1.12)
where dQ = sin 6 do d¢, and the integration covers the range 0 $ 6 s 7, 0 S ¢

g 2w,

1.2 Angular Momentum Algebra

In classical mechanics, the angular momentum of a particle is defined
by

I-;xs . (1.13)

Actually, we should qugify that the angular momentum so defined is about a
particuiar origin, and r is the vector distance from this origin to the par-
ticle with momentum P.

If we use the commutation relations
[xi,pj] - 1‘ﬁ61J (1.14)

with Xy = X, ¥y, or z, then we can obtain the commutation rules for angular
momentum,

[zx,zy] - me [zy,zz] = e, and [zz,zx] - mzy , (1.15)

which are the basic commutation rules for the Cartesian components of the
angular momentum, For convenience here we shall drop the 1 in the commutation
relations. This does not mean that we drop #i throughout; we restore # simply
by writing the interactions involving the angular momentum so that the H is
contalned in the constants. As an example of this, consider the spin-orbit
Hamiltonian

1 13U i
H, = F‘a—ri's ’ (1.16)

Ay Ny S 4 T T T O gy N R E o Vo) g O V) S L L S & LGNy
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with % and ; having units of angular mnomentum #i (the spin angular momentum,
i. we will discuss later). When these are written in terms of dimensionless
and s, we have

H, = 1
2" 7373

Q

U -+
= fes (1.17)

e ¥ Bl

where § and 3 obey the commutation rules in equation (1.15) but i = 1,

For our purposes here, we want to use the spherical representation

of I. which is given by .
1
fgg = - -_‘(2x RN I .
2
- 1.18
Bo = %, ( )
1
g, = — (2, -18) ,
1 /é- Yy
and the commutation rules are
r
L£0,2+1] - 9'.',1 ’
[2_1,10] ol TR (1.19)

The elgenfunctions of the angular momentum are the spherfcal har-
monics, Ylm(e'¢)’ and

2olim> = mfgm>
(1.20)

L. [wm> =+ L [(2:m)(%im+1)]1/2}£,mi1> ,
11 /3

where -

| 2m> = Yon(8:8) .

Frequently, we shall use the unit vector # to indicate the argument of Yzm'
thus:

Yom(0,¢) = You(F) .

12
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wWhen the Y m are wave funotions such as in equation (1.20), we have

R

Yom(F) = |2m> .
The orthogonality of the wave functions as given by equation (1.12)
is

<L'm'|Lm> = 800 Spmt

Further, we shall assume that the s8pin angular momentum, §, obeys the same
commutation relations as glven in equation (1.19); the two-component spinor
wave functions are represented by the wave function |sm >, 80 that the single-
electron wave function for orbital and spin angular momSntum is

|am >|sm > . (1.21)

The wave functions given by equation (1.21) then obey the following:

20|2m2>|sps> mz|2m2>|sms> '

(I)2|2m2>|sms> L(2+1) | 2mp> | sm>

. (1.22)
soltmy>|sm > = m_|tm >ism > ,

+ 2 .
(8)7|4m;> [sm > s(s+1)[am >|sm > , ;
where, of course, s = 1/2. A further property of the spherical harmonics is
given by

I¥gn(F) = (-1 %ygn(r) (1.23)

where the inversion operator is If = -f, a property that will be used fre-

v quently in our analysis. For other symmetry operations, an explicit expres-
sion for the spherical harmonics is convenient; table 1.1 is included for this
purpose. While many of the interaction terms of the Hamiltonian were derived
by using spherical harmonics, it 1is convenlient to 1introduce the tensor
operators

- yn \17/2 -
¢ @ = (zimr)  YgulP) (1.24)
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TABLE 1.1. SPHERICAL TENSOR3, C.,, IN RECTANGULAR COORDINATES

n.m M o n,m M e

55 <&M et

11 -E‘ x + 1y 54 -113/75 z(x + i)t

10 1 z 53 - -:-6 /35 (922 - r?)(x + 1y)3
52 —'2;6 z(322 - r2)(x + 1y)?

22 /37 (x + 1y)2 )
51 = :—3 V30 (212" « 142202 + p¥)(x + 1y)

21 -/3/2 z(x + iy) .
50 g 632" - 7022r2 + 15pY

20 % 322 - p?
66 —é—"g’z‘ (x + 1y)8

33 -3/ (xe )3 l
65 - ":’7 2(x + iy)°

32 /1578 z(x + 1y)?

VE) G4 g (1122 = r2)(x + 1y)"

31 - -% (522 - r2)(x + iy)
63 -0 z(1122 - 32)x » 1y)3

30 % 522 - 3p2
6 2 ’—;—;ﬁ (33z% - 1822r2 « r¥)(x + 1y)2

4y % (x + 1y)" 61 - '—f:i_g z(33z“ - 3Ozzr2 + Sru)(x + 1y)

43 @ z(x + 1y)3 60 % 23125 - 31524 + 10522 - 5

b2 q (122 = r@)(x + ty)?

b1 - [% 2(722 - 3r2)(x + 1y)

ko % 352“ - 30z%r2 + 3r? .

4Agultiplier to entry on the right.

s ST | -
ince Y, (r) = (-1) Yz,_m(r), we have

* 2 m ~
cp,(F) = (=0, Py . (1.25)
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The use of Cgn, rather than Yp, in the interaction terms eliminates almost all
the factors of 4r. An example of this is the ocoupling rule for spheriocal
harmonics (Rose, 1957, p 61):%

1/2
(2k+1)(2n+1)
Ye¥om = E [ T ETR SO <k(0In(0) |£€0)> <k(q)n(m)|2(q+m)> Yo qem
(1.26)
but
CeqCrm ™ g <k(0)n(0)|2(0)> <k(a)n(m)|lg+m)> Cp 0 - (1.2m)

In equations (1.206) and (1.27), all the tensor operators have the same argu-
ment. The quantities in angular brackets in equations (1.26) and (1.27) are
Clebsch-Gordan (C-G) coefficients, which we cover in section 2.

1.3 Problems

-

1. The inversion operator I converts the vector r to ~;. tiow that
I¥ym(F) = (=D%gn(F) .

2, 1If

N

CZ(X)(X’ y, z) » (x, -y, =-2) ,

C(y)(x, v, z) » (=x, y, =-2) ,

+

oh(x. Y, z) +» (x, v. -2) ,

Cz(z)(xv Y, z) + ("xr -y z) )
Co()(x, vy, 2) » (y, x, -2) ,

C (2 (x, vy, z) » (-y, -x, -z) ,

+

o(|x)(x, y, 2) + (-x, y, 2) ,

o(]y)(x, ¥, 2) » (x, =y, 2) ,

*References are listed, alphabetically by author, at the end of each section, along with
uncited bibliographic entries pertinent to each topic.
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o[ (x, y, 2) » (~y, =x, 2)

o(f2)(x, v, 2) + (y, x, 2) ,

show that

Ca(x)¥gpm = (-1yg_p(F)
Caly)Ygp(F) = (=1)2*my, o (F) ,

onYem(r) = (-1)&*my, (F)

inrq
e qu

Cz(z)ckq -

o (o1 k 1(n/2)q
Cp1)Cq = (=1)7e Cr-q

o (13K =(n/2)q
C2(2)Ckq (-1)"e Cpe

q

o(J_;()ckq = 10,000 = Cpq

14
o(ly)qu = IC,(y)C = (-1)7C,

o 1(n/2)q
c(Ll)qu e Cymg

=i{wn/2
o(l?)qu - o im )qck_

q

by using equations (1.8), (1.9), and (1.10), or by using table 1.1.

3. Using the generating function for Pl(cos 6), obtain the result

)
1 r<
— X T Pz(cos 8) ,
r>

where cos 6 = fq+fp and r< is the smallest of the vectors ry and r,. From the
addition theory of spherical harmonics, we have

L
* ~ ~
P, (cos @) = mg-z sz(r1)czm(r2) .

16
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The generating funotion for the Legendre polynomials is given in Rainville
(1960) as
, i

®»
) thz(z) » with |h| < 1 and 2z = 008 & .
L=0

[1 + h? - 2nz)'/?

4. _From the generating function for Py(z), show that Pg(1) = 1,
- -1y 4
Py(~1) = (-1)%, and

%
. Tocet (rae, (P) =1 .
me-f im Lm
. Show, in two ways, that the sum in problem 3 is (-1)m when ;2 - -31, for
arbitrary %.

5. By expanding rox I show that

Lo 4

ir x
r

“ 3
Var 3

which is a convenient form of the V operator for spherical problems.

1.4 Annotated Bibliography and References

Condon, E, U,, and H. Odabasi (1980), Atomic Structure, Cambridge University
Press, Cambridge, U.K. Chapters 3 and 4 give a thorough discussion of the
hydrogenic wave function. Pages 190 and 191 tabulate the radial wave
functions.

Judd, B. R. (1963), Operator Techniques in Atomic Spectroscopy, McGraw-Hill,
New York, NY. This outstanding textbook is frequently referred to in this
report; the book is almost completely free of typographical errors. The
problems in general are very difficult and require considerable time.
Only the preface and the first two pages are pertinent here.

Leighton, R. (1959), Principles of Modern Physics, McGraw-Hill, New York, NY,
chapter 5, The One Electron Atom.

Polo, S. R. (1961, June 1), Studies on Crystal Field Theory, Volume I--Text,
Volume II~-Tables, RCA Laboratories, under contract to Electronics Re-
- search Directorate, Air Force Cambridge Research Laboratories, Office of
Aerospace Research, contract No. AF 19(604)-5541., [Volume II gives date
as June 1, 1961.] The symmetry operations are discussed on pp 1-Uff;
Clebsch-Gordon coefficients on pp 8.1ff; and excellent tables of Py(z),

Pgm(z). and Yy, are given in the appendix, all in Vol. I.

Rainville, E. D. (1960), Special Functions, Macmillan, New York, NY. This is
just one of the numerous texts written by this outstanding teacher.

17

|
. www;mnnmmmummmmufmwzﬂfﬂx;xzxmm'\’ T A:.;n;wyu’{;ﬂ;‘mmsmmmmmwAmng



W Rose, M. E. (1957), Elementary Theory of Angular Momentum, Wiley, New York,
K NY, chapter II.

et Sobelman, I. I. (1979), Atomic Spectra and Radiative Transitions, Springer-
Verlag, New York, NY. This is a very excellent monograph and we fre-
Iy quently refer to Sobelman's derivations. Beware of typographical
) errors!! Pages 1 through 12 are pertinent.

f‘ Watanabe, H. (1966), Operator Methods in Ligand Field Theory, Prentice-Hall,
L4 Englewood Cliffs, NJ. Pages 11 and 12 are applicable here; also, the
introduction is interesting. We frequently refer t» this monograph. Most
Ky of the equations are free of typographical errors. Tables of explicit
N expressions for Y, , for 0 s & 3 6 are given {n appendix 1.2.
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2. CLEBSCH-GORDAN COEFFICIENTS

. For our purpose, it is convenient to define the Clebsch-Gordan (C-G)
coefficients as the coefficients in the transformation_ from two angular momen-
tum spaces, say, and s, to form the composite space 3. That. is,

[Jm> = § <eC)s(m-p) |4 (m)> |2u>|s,m-u> , (2.1)
o

where the quantity <&(u)s(m-u)|j(m)> is a C-G coefficient. The limits on the
sum in equation (2.1) are not given, as it is assumed (and will be assumed in
the following) that the sums cover all values for which the C-G coefficient
does not vanish. Since we wish to have an orthonormal basis, we have

<g'm' | Jm> = sjj,cm,
- I aws@w|Im> as@ i |st@n> (2.2)
since N
' |ou> = S, 0 and <symtou's,mep> =8 (2.3)
Thus, we have
§.vr = L <ACws(m~p)|J(m)> <2(w)s(m=p)|J'm)> , (2.4)

LEAN

an important and very useful result. If we agsume (correctly) that the same
coefficients connect the 5 space to the I and s spaces, we can obtain another
condition on the C-G coefficients, namely,

80010550 ? <£(mz)s[ms)|J(m2+ms)> <1'(m2)s'(ms)lj(m£+ms)> . (2.5)

19
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Some other relations among C-G coefficients are
<a(a)b(8)|a(Y)> = 0

it |a| > a, or |8] > b, or |Y| > e, (2.6)

and if Y »« o + B8

The C-G coefficients vanish unless the three angular momenta obey the triangle
condition, that is, |a = b| S ¢ Sa+ b for any permutation of a, b, or c.
Three of the most important symmetry relations of C-G coefficients are .

(_1)a+b-c

<ala)b(B)|e(Y)> = <a(-a)b(-8)|c(-7)> .

= (-1)%*P7% tp(p)ala)|elv)>

(2.7)
2¢c + 1

. aa 1/2
= (~-1) 2—b—+—1 <a(0)0('7)|b(-3)> ’

where a + § = Y

The coupling procedure given in equation (2.1) can be deceptive. If we had
formed the wave function |Jm> by coupling s to % as

[dm> = § <s()&(m=p) |j(m)> |su>|2,m-u> , (2.8)
u

the relation to equation (2.1) would be, from equation (2.7),

|jm> =} (-1)S+2-J<£(u)s(m-u)ljm> | 2u>|s,m=u> ,
n

in which we have changed the summing index u + m=-p. This overall phase factor
may have no effect, but in a long involved problem a switech from %-s to s-%
coupling can cause errors. Algebraic expressions for <a(a)b(B)|c(a+B)> are
given by Rose (1957, pp 224-225), for ¢ = 1/2, 1; algebraic expressions for
the related 3-j symbols for 1/2 S ¢ § 2 are given in Brink and Satchler (1962,
p 36). A few special C-G coefficients of interest are

1/2
2 1 T
<a(0)b(0)|e(0)> = (-1)8/2 ( ° ) () (2.9)
s + 1 T(s1)T(52]T(s3)

where
s1 = =a +b +c¢, 52 =3 -b +c , s3 = 3+bh-¢, 8=a+Db+c ,

20

R 7 S IREAT A AR A AN RN N B AAN Py LS WY L ) SRR LD T R A S AP s N =g o B Ay NS S T Tl A AL Y T ALY L R s YA N



and

T(s)

(5] i

[
m
® + N
+ N o
o P
+ +
e N
+ O
o

<a(a)b(B)|a+b(a+p)>

(3) Y aai Byt (2.10)

<a(a)0(0)|b(B)>

"
(=]

a,baa,B ’

<L(0)Kk+2(0)|2(0)> =

_ k1 [(2n+k+2)(28-k) J1/2
k+2 [;Zz-k-1)(21+k+3)J <2(0)k(0)[2(0)> .

The commutation relations for the spherical components of the angular
momentum of a single electron given in equation (1.19) can be written com-
pactly in terms of C~G coefficients as

[2,,2,] = /2 <10t [1Cusvd> 2, and (2.11)
[s,.8,] = V2 11| 1Cuewd> s, (2.12)

+v

The total angular orbital momentum operator for a system of N electrons is

N
L=3 %) , (2.13)
1

and the total spin angular momentum operator is
N >
3-731) . (2.14)
i

The spherical components of these operators obey the same commutation rela-
tions as equations (2,11) and (2.12), or

.j; ! .
;; [Lu,Lv] = /2 <)1) [ 1(u+v)> L4, and (2.15)
. [su,sv] = V2 <)1) |1 (uru)> S (2.16)
2?: 21
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Also, it should be noted that
[L 2 (D] = V2 A1) 1> 2, (1) and (2.17)

(1) . (2.18)

+v

[Su.sv(i)] = V2 A 1Gurv)> 8

Consequently, from using equations (2.15) through (2.18), we have

[Lu,qu(i)] = ATT) <k(@) 1) [klasm)> € o, (1) (2.19)
[Ju,ckq(i)] - [Lp,Cwq(i)] (2.20)

with
J=2+8 .

The Clebsch-Gordon coefficients used here are related to the 3-j symbols by

<ala)v(8)[o()> = V2531 (-n7APTV (2 T (2.21)

and the symmetry conditions on the 3-j symbol can be obtained from equation
(2.7). The 3-j symbols are extensively tabulated by Rotenberg et al (1969).

2.1 Problems

1. Show that
£21am> = ale+)|em>

§2|sm> = s(s+1)|sm> .
2. Consider the interaction (spin-orblt interaction)

>
HS’O bt CI‘S .

Show that the matrix elements of this interaction using the states given in
equation (2.1) are

rmHg_ [3m> = 2 L3N - 2R - s(s41) I8y, iy
Hint: ] = £ + 8; consider J°.

22
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2.2 Annotated Bibliography and References

Note: Check your favorite quantum mechanics text; there may be a
section on C-G coefficients or 3=j symbols.

Brink, D. M., and G. R. Satchler (1962), Angular Momentum, Clarendon Press,
Oxford, U.K.

Condon, E. U., and H. Odabasi (1980), Atomic Structure, Cambridge University
Press, Cambridge, U.K., appendices 2 and 3.

Condon, E. U,, and G. H. Shortley (1959), The Theory of Atomic Spectra, Cam-
bridge University Press, Cambridge, U.K. The C~G notation used by Condon
and Shortley is related to that used in this report as follows:

(393m13132dm) = <34(mq)in(my) |3 (m)>.

Edmonds, A. R. (1957), Angular Momentum in Quantum Mechanics, Princeton Uni-
versity Press, Princeton, NJ. Relationship of the Yzm of various authors
is given on page 21. His C K) are the same as those of Judd and are the
same as our C,.. The relation of the C-G coefficients to other notations
is given on page 52. This is a good book--but look out! It's loaded with
typographical errors.

Rose, M. E. (1957), Elementary Theory of Angular Momentum, Wiley, New York,
NY, chapter III. The relation of C-G coefficients to other symbols {is
given on page U41. The commutation rules for [Ju’TLM] in terms of C-G are
given on pages 84 and 85.

Rotenberg, M., R. Bevins, N. Metropolis, and J. K. Wooten, Jr. (1969), The 3-j
and 6-j Symbols, MIT Press, Cambridge, MA.
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3. WIGNER-ECKART THEOREM

The Wigner-Eckart theorem states that if we have a spherical tensor T, . in
the space spanned by the wave functions |JM> then the matrix elements are

<J'M'|qu|JM> = <J(M)k(Q)|d'(M')> <J'|Tk|J> (Rose, 1957) or
(3.1)

SUUESE A PR : v)(a1T,19)  (Judd, 1963; Wybourne, 1965).

The projection (q) dependence is contained in the C-G coefficients, and the

factors <J'|Tk|J> are called the reduced matrix elements.

If we have a mixed spherical tensor, rank k and projection A in spin
space, and rank k and projection q in orbital space, the Wigner-Eckart theorem

then is
<L'M!S'MS |T ILMLSMS> - <L(ML)k(q)|L'(ML)> <s(MS)m(A)|s'(Mé)> <L's'|T”k|Ls> .
(3.2) .

Since the C-G coefficient is purely a geometrical factor, all the physics is
contained in the reduced matrix element. The Wigner-Eckart theorem allows the
extraction of the gecmetrical factors from many complicated matrix elements;
it also serves as perhaps the main motivation for the development of Racah
algebra in dealing with angular momentum states.
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3.1 A Single d Electron in a Crystal Field

As an example of the use of the Wigner-Eckart theorem, we congider a
problem that is simple in tensor algebra but rather important in the spectra
of impurity ions in crystals: the case of a single 3d electron in an aXégl
orystal field. Such a system could be the doubly ionized scandium ion, S¢<’,
substituted for a doubly ionized constituent ion of approximately the same
ionic radius. The solid could be hexagonal with nearest neighbor lons located
along zﬁhe c-axis and the off-axis ions too distant to have an effect on
the Sc ion.

+
We assume that the remainder of the electrons on 802 are replaced by
an appropriate spherical potential. The wave functions for the system are
taken as

Y39 = Ryq¥on
(3.3)
= Ryl 2m>

and as indicated we ignore any effects of the spin in our approximation. 1In
general, the radial function, R,4, can be calculated by a numerical technique
such as Hartree-Fock. The Hamiltonian for the problem we consider is

Hegr = A2or2Cao(F) + AygriCyg(F) (3.4)

(an axial crystal {ield is defined as Akq = 0, q = 0) and we shall assume that

k
Bko = Ak0<r >

with

<rk> = fg rkRgd(r‘)r‘2 dr . (3.5)

The series in (3.4) is terminated through four-fold fields (Cuo); odd~-k terms,
if present, are omitted from the problem. The matrix elements of HCEF are
given by

am'[Hopplim> = B, <am'[C,o|em> + By, <am'[Cy |am> . (3.6)

25
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For the Sy site in yttrium aluminum garnet (YAG), the axial point oharge
lattice sums are

Azp = 6355 cm” 'A%,

Ayo = 25,089 om” /At .

For Sc2+

1.372 Az,

A
"3
[\
v
]

4.053 2",

N
)

F—
v
|

8719 om™',

2]
n
o

]

101,686 cm™)

o
=
o

[ |

5
If the site were cubic, Byg = 0 and Byy = —=— B, = 60,769.
T} 4o
By the Wigner-Eckert theorem we have, generally,

<1m'|qu|2m> = <(mk(q)|a(m)> <tfc, I2> (3.7)

and from (1.26) we have

oK +1 1/2
J i teoten @ = B2 amx@[umn> aok@][10)>  (3.8)

where we have rearranged the order of % and k in the C~G coefficients. By
using the relation of qu and qu in equation (3.8), we have

<2m'|qu|Em> = <A(m)k(q)|&(m*)> <2(0)k(0)]&(0)> (3.9
and from (3.7) we have the important result
<afe, |o> = <a(0)k(0)|a(0)> . (3.10)

In general

172
28 +1
are v - [Gery]  wok@|ro> .
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Thus using equation (3.9) in (3.6) we have

2m> = B, <2(m)2(0},2(m)> <2(0)2(0)|2(0)>
20 (3.11)

+ Byy <2(m)¥(0)]2(m)> <2(0)u(0)|2(0)>

and we notice from the symmetry properties of the C-G coeffircients (eq (2.7))
that <2(-m)k(0)]2(-m)> = <2(m)k(0)|2(m)>, so that the states with negative
projection (m < 0) have the same matrix elements as those with positive m.
Notice, also, that had we considered terms in the potential, qu, with k > U,
they would not contribute since <2(m)k(0)|2(m)> = 0 for k > A.

The C-G coetficients in equation (3,11) can be found in Rotenberg et

al (1969) (the relation of the C~G coefficients and 3-j symbols is given
therein) and are

<2(0)2(0)]2(0)> = -(2/1)'/2

<2(0)4(0)]2(0)> = (2/1) 7%,

c2(2(0)|2(1)> = -(1Am 2,

1/2
ca(nu(o)| 2ty - ZED

(200 [2(2)> = ~(2/1'/2

-t/
3

<2(2)u4(0)|2(2)>

It is perhaps easier to obtain the above C-G coefficients by using equation
(2.10).

Thus the energy is given by

Eo = 2820/7 + 28u0/7 ’ m=20 |,
E11 = 820/7 - uBMO/21 ’ m=+1 , (3.12)
Et? = *2820/7 + Bu0/21 ' m=t2 .




It should be noted that the trace E; + ZE, + 2E; vanishes. This is a general
feature of spherical tensors. Sinoe the dlagonal matrix elements are given by

<2.m|qu|2m> <A (m)k(0)|2(m)> <fc, Jo>

then

8
I <amlc, |am>

<afe, fo> T <atmk(o)|a(m)> .
m-—z m

The C-G coefflcient

<2(m)0(0)|&(m)>

]
—

- (-DF™ BEET <a(m)e(-m)|0(0)>
and

<A (m)k(0)|2(m)>

172
0 PEEL) T g mint-m [k(0)>

Therefore,

%
T <amk(0)[am> = ZX— ¥ cam)n(-m) k(0> <& (m)L(-m)]0(0)>
m=~£ Y2k+1 m
= (22*1)5k0 (3.13)

=0 (k >0, the only values of interest here) ,

where we have used the orthogonality condition given in equation (2.4).

The result given in equation (3.13) is a very useful check on the
calculation of the energy matrices, since it is very easy to make a mistake in
the evaluation of the C-G coefficients,

In our later work we will encounter problems where the matrix ele-
ments of the Hamiltonian <&m'|H|[&m> »« O, In these cases we have a set of
basis functions ¢ (such as |2m> avove) and we assume

v=1lae .
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From Schrodinger's equation we have

Hy = Ep or
) 8mm’m -2 amE¢m

and we multiply through by ¢%. and integrate to obtain

JaH

= a E or
ot mm'm m'

(3.1%)

g am[Hm'm B E‘sm'mj =0

which is the secular equation for determining the energy levels, E, of a
system.

All our efforts will be directed toward cbtaining equation (3.14) for
many electron systems. We shall use the methods of group theory and other
techniques tc reduce the number of components in equation (3.14) to a minimun.

In the previous example the matrix elements Hy., = 0 (ﬁ' = m) and the
energy levels were given by Hmm' If we consider a tetragonal orystal field
given by

Hope = BaoCan * BugCup * Buy(Cyy * Cyy) (3.15)

where By, is real, and B,_), = Byy, then the only matrix element different from
those of equation (3.12) is

Y70
<2-2|H,pp|22> = =57 B,
(3.16)
“Ha o
and the secular equation for these states (]|2:2>) is
Hao = F H.22
= 0 (3-17)
Ha2 Hop - F

with H_2_2 = H22 and H2_2 - H_22-

29
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Expanding the determinant in equation (3.17) gives

2 .2
(E -~ H,,)" = HIpp

22

B = Hap t [Hogp| ;

and from equations (3,12) and (3.16) we have (assuming By, > 0)

_2 1 Y70
E, 7By ~ 37 Byg * o7 Byy o |
(3.18) !
J
2 1 Y70 .
. = =580 ~ 37 By =~ 37 Byy

and with the energy levels EO and Et1 given in equation (3.12), we have all
the energy levels.

The wave functions corresponding to Et are
1
p, = — [|22> + |2-2>]
vz
y_ = 1--[|22> - |2-2>]1 .
/2

We then have all the energy levels of a single electron in a tetragonal j
field. In all cases we have found five energy levels, which is the number of i
states of the free ion (20 + 1 = 5),

An important result can be obtained for the tetragoral crystal field
if we let Byy = 0 and Byy = 5Bjy/v¥70. This is the limit of a cubic field; in
this 1imit, from equations (3.16) and (3.10), we have

EO Lol E* - 28“0/7 ’
(3.19)

By, =« E, o =hmy /21 .

The doubly degenerate level (E,,E,) is denoted E and the triply degenerate
level (Et1,E-) is denoted T2. hese labels are for the irreducible represen-
tation of the cubie group in the Mulligan notation; E is referred to as T3 and
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Tz as ' in the Bethe notation. The difference between the two sets of energy
levels given in equation (3.17) is frequently referred to as 10Dq and is

10Dq = 10800/21 or
(3.20)

B,. = 21Dg .

40

2
5

The quantity Dq or 10Dq is frequently reported as an experimentally determined
parameter in papers on optical data taken on transition-metal lons containing
d electrons whether in cubic sites or not. The relation given in equation
(3.20) holds for the many-electron configuration nd". The various coeffi-
cients such as Dq which are commonly used for other symmetries are given by
Konig and Kremer (1977).

3.2 Problems
1. A spherical component of the angular momentum of an electron,
ﬁa, has the matrix elements

<m' L [am> = <(m)1(a)[2(m")> <a]e]e>

from the Wigner-Eckart theorem. Also we have % |2m> = m|2m>. Using a table
of C-G coefficients (see Rose, 1957, appendix), evaluate <&(m)1(0)|%(m)> and
then show that

> = 2T

2. The tensor T,, has the property T¥ = (-1)qT . Consider the matrix
kq kq k-q
element

<2'm'|qu|Em>

and its hermitian conjugate

(<2'm'|qu|lm>)T = <Em|T;q|2'm'> .

8y using the Wigner-Eckart theorem on the above matrix element and its hermi-
tian conjugate show that

172
- 28 +1
(ElTk'2'> = (=1) [W] <R"|Tk|9'> .
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In many books the reduced matrix elements are written (z'|-rk|z) with
(2T 12') = var+1 <afT 2>
so that

-8
@t e = 07T @ gy .

3. An electron is trapped at a negative ion vacancy site In a
solid. Taking the effective potential the electron sees as

H=B8,.C

20C20 * Bpa(Cap *+ Cpop)

calculate the energy levels of the p state (Ym(F)) of the electron. (The C-G
coefficients can be found on page 225 of Rose, 1957). You will need

<Am|C o [Rm> = <L(m)2(0)[L(m)> <& (0)2(0)[R(0)> ,
<]C,[1=1> = <1(=0)2(2)[1(1)> <1(0)2(0) [ 1(0)>
<1(0)2(0)]1(0)> =
<1(£1)2(0)|1(£1)> =

<a(n2z2) 1> -

The answer can be obtained from

2
<10[H|10> = £ B,y

1
A1 [H[121> = - £ Byg

/6
<1H[1=1> = = == By, .
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4, By using the results given on page 101 of Ballhausen (1962) in
equations (3.12) and (3.16), show that

820 = -TDs ,

BUO = 21(Dq - Dt) ,

. 3
Byy = 5 Y70Dq .

Show that for a ¢crystal-field interaction of C3 symmetry

820 = -TDa ,

B,, = =14Dq - 21D1 ,

4o

Bys = 2/700q

as given on page 104 of Ballhausen (note that the term invdlving Buu in eq
(3.15) is replaced by 543(043 - Cu_3)).
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4. UNIT SPHERICAL TENSORS

4.1 Discussion

Because of the power of the Wigner-Ekhart theorem, it occurred to
Racah to cast the various operators representing the interactions in terms of
universal quantities that could be tabulated for a frequently used many-
particle system. Toward this end, Racah introduced the unit spherical tensors
for the electronic configuration nLN. which we define as

<R.'m'|ukq|£m> = Awk(@)|am")> &,

for the orbital space and

Kk
<2'm's'mé|vxq|2msms> = <&(mk(q)|2(m*)> <s(ms)x(x)|s(mé]> Spa18ggr
(4.1)
for orbital and spin space.
The generalization to an N-electron system is simply
N
qu - g ukq(i) and
{(4,2)
N
Kk Kk
qu E vxq(i) .
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A simple and often used example of these tensors in orbital space is

g Cegt) = E <tle, |22 Ueq (L)
(4.3)
- <ifc, |o> Ugq *

where
<Ae 1> = <a(0)k(0)[2(0)>

(we omit the upper limit on the i sum in the remainder of the discussion).
The angular momentum is simply related to unit tensors by .

L, = % 2 (1) = g <e]er vy, (1)
L, = e Uy, » and (4.4)
<je]r> - /ARF) .

An example of a tensor in a mixed spin and orbital space occurs in
the hyperfine interaction H5, given by

> 3
Hy = (288yu,/1) E Niei/r1 , (4.5)

where B Is the Bohr magneton, B,, is the nuclear magneton, UN is the nuclear
moment, and I i3 the nuclear spin. Now

N,o= -3, 3;1(;1-§i)/rf (4.6)
or
N (L) = 2, (1) - Y10 E <1(v)2(q=v)|1(q)> s,(4)C, o (1) (4.7)

(we show in sect. 6 how eq (4.7) is obtained from eq (4.6)).
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The part of N_(i) containing & (i) can be written in terms of Upgqr as
in the second part of equation (4.4): 1

(1) = ¢slsfo<sle,|o> v 2. (4.8)

q-v

g sv(i)Cz.q_v

A component of N = J ﬁi can be written
i

Ny = 2(a+T) Uig ™ Y10 /s(s+1) <2(0)2(0)|2(0)>

(4.9)
A 1 2
x g <1(v)2(gq=-v)|1(q)> LAYP
Thus, equation (4.5) can be written
- 3 *
Hg (ZBBNuN/I) <1/r7> g NJIE (4.10)

with Nq given by equation (4.9).

Various authors use different normalizations of the unit spherical
tensors. The relation of the spherical tensors used here to those tabulated

by Nielson and Koster (1963) and by Polo (1961) are

<L'S'a’|u, |LSa> - (L'Sa'lU(k)lLSa) 2R (4.11)
Y2LT+T
<Lrsta’ [VKILsa> = (L'star V9K |LSa) ZIEIXTD =5 .

[3(2L'+1)(25'+1)]

(4.12)
In addition Polo tabulates
(LS’ €K |Lsa)
) where

¢ se () . (4.13)

q { Kq

Nielson and Koster (1963) tabulate the reduced q@trix elements of Vlé only;
the rfguced matrix elements for the electronic nd" configuration of V' 5, vi3,
and V'’ are calculated by Wai-Kee Li (1971).
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5. RACAH COEFFICIENTS

The Racah coefficients arise in the coupling of three angular momenta
(Rose, 1957, p 107) to form a final resultant. In the coupling of the angular

momenta, we consider two coupling schemes:
scheme A: 31 + 32 - 312 , 312 + 33 . (5.1)
scheme B: 31 + 33 - 313 , 313 + 32 = ] . (5.2)

Coupling scheme A is represented by the wave function

IA) - 0 r% 0 <J1(m1 )Jz(m2)|312(m1*m2)> <J12(m1*m2)~j3(m3) |J(m)>

17273
(5.3)
x |J1m1J2m233m3> ;
acheme B is represented by the wave function
B> = T <3ymy)sylma)isy5lmyems)> <y S(memy), (my) |5 (m)>
m,m._m
17273
(5.4)

x |J1m1J2m2J3m3> .
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The coupling schemes A and B are conneoted by a unitary transformation

|B> = § <AlB>|A> (5.5)
A

the coefficients of the unitary transformation are determined by taking the
inner product of equation (5.3) with equation (5.14).

We define the Racah coefficlents as follows:

W(3ydq03q3953349) = ‘ = <AIB> . (5.6)
PRI (2, ,41) (20,401)]'E

Thus,

[(23,,+1)(20,3#1)) 72003, 3y 395094 4)

= 1 <ay(m)ay0my) ], (0 4my)> <y 5 (m +my )35 (mea, =my ) 3 (m)>
1

m,m,
(5.7
x <J1(ml)J3(m-m1-m2)lj13(m-m2)> <J13(m-m2)J2(m2]|J(m)> .
The following equation can be obtained from equation (5.7):
<32(m2]j1(m1)|J12(m1+m2)> <j12(m1+m2)J3(m-m1-m2)|J(m)>
: 1/2
= U [(29y,41)(20,5+1) ] " (35135584534 5) (5.8)

313

x <J1(m1)J3(m-m1-m2)|313(m-m2)> <J2(m2)J13(m-m2)|j(m)> ,
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which is a relationship used often in our analysis. For clarity we rewrita
(5.8) as

<a(a)b(B)|e(a+B)> <e(a+B)d(&-a=8)|c(s)>
(5.9)

=} /(2f+17)(2e+1) W(abcd;ef) <b(B)d(-a=B)|f(s=a)> <ala)f(-u)|c(s)>
£

(Rose, 1957). The Racah coefficient is related to the symmetrized "6-j"
symbol by the following equation:

W(abod; ef) = <-)a*b+°*d{g 2 :} . (5.10)

The symmetry of the "6-j" symbol is

{41 3, 33} {32 3, J3} {J1 35 Ja} {11 2, 13} 5115
bi ta) 2 Y Ag) W R te) U 32 s '

and all combinations of the relations in equation (5.7). The four iriads
(31 42 33), (371 22 23), (%9 J2 %3), and (&9 %2 J3) must b able to form a
triangle. That is,

3, =3, s 3583, +3;, (5.12)

with similar relations for the other triads.

An example of the use of Racah coefficients {s in the calculation of
single-electron matrix elements of the operator

Ek,q - g <k(q=A)1(A) k' (q)> Ck,q-xzx , (5.13)

:i
E
E

which arises in numerous applications. We consider the matrix element

<z'm'|Ek,q|zm> = <amk' (@)L (m")> <&'|E , [o> (5.14)

EN|
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by applying the Wigner-Eckart theorem, equation (3.1). Also, by taking the
same matrix element of equation (5.12) we have

' - - ’
<4 m'|Ek,q|2m> g <k(q=2)1(2) |k (q)> <z'm'|ck'q_xzklzm> . (5.15)
Now we further consider the matrix element in equation (5.14) to obtain

&'m'|C |am> = T <t'mrfc,

R'mt> <e'mtiL, [em: o, (5.16)
R‘ L m"

k,a-2 ¥ qeal

where we have used matrix algebra on the product of two operators. If we
apply the Wigner-Eckart theorem to the last matrix element in equation (5.16),
we obtain

<ammt e, [Rm> = <LmID L (m")> &0, o]y

2‘2"

also, m" = m + A as required by the C-G coefficient. We have previously 3hown
that

arijr> = AL+ Sgng (5.17)
Therefore,

<amm' |, [am> = <am 1) |en(med)> &, VAT . (5.18)

22"

Using these results in the remaining C-G coefficient in equation (5.16), we
have

<2'm'|Ck,q_Ail(m+k>> = <Am+ak(g=A) 2" (m")> <«arfe, [&> . (5.19)

Substituting the result of equations (5.19) and (5.18) into equation
(5.16), we have

Lrmrfc, ok Jem> = JETRHD<RC, [R> <R (m)1(A)|R(mer)>
K2q=27A K (5.20)

x <&(m+A)k(q=A)]R'(m')> '

giving the matrix element !n equation (5.15). If we substitute the result of
equation (5.20) into equation (5.15), then we have

<2'm'|Ek,q|Em> = AT+T) <«arfc, [e>s (5.21)
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where
S = g <k(@=A) 1) k' (Q)> <2(m)1(A) | :m*a)> <A (m+a)k(q=A)|2'(m*)> .
(5.22)
The last two C-G coefficients in equation (5.22) can be recoupled by using
equation (5.8) or
AmN)]Lmar)> <A(m+Adk(q=1) |2 (m')>
(5.23)

o L YT (AR WKL) <R (A)k(g=A)|f(q)> <A(m)f(q)]|e'(m')> .
£

The C-G coefficients in equation (5.23) can be rearranged by using the sym-
metry rules of equation (2.7) to give

1+k=2

<1{(Mk(g=A)|£(q)> = (=1) <k(q=A)1(A) | £(q)> (5.24)

This C-G coefficient and the first C-G coerficient in equation (5.22) are the
only two C-G coefficients containing A, so that

L <k(q=M)1(0) |k (qQ)> <k{q=2)1(N)[f(q)> = 8yt (5.25)
A

because of the orthogonality, as shown in equation (2.4), of the C-G coeffi-
cients. Thus, we get

5 = (=) R TETIIYELATY WK Ak <R(mK ()R (m)> ,  (5.26)

which when substituted into equation (5.21) gives

1+k=k'

<z'm'|Ek,q|zm> - (=1) YRR+ T) (22+1) {2k "+1) W(RIL'K;RKk') <z'|ck|¢>

(5.27)
x <L(m)k'(g)|e'(m")> .

Upon comparing the result given in equation (5.14) with eguation (5.27), we
have

B E 2> = (=0T u ey 2oy (20412 ot o 10> WORIR K RKYY
(5.28)
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which 1s a useful relation if we wished to express the tensor Ek. in terms of
unit spherical tensors; in that ocase we would speclalize equation (5.28)
to &' = 4 and simply replace C,, in equation (4.3) by E with the reducved
matrix element given by equation (5.28). We shall have frequent occasion to
express our results in terms of Racah coefficients by using equation (5.8).

5.1 Problems

It is frequently convenient to bulild spherical tensors of higher rank
by coupling products of angular momentum operators. One such tensor is

Tyq = L <1(@)1(q-a}k(q)> %

- ’ (a)
q " & a-a

where

+ _yyara Y
(zazq_u) AR R VRN C DA W

in which, by the properties of the C~G coefficient, k is restricted to 0 £ k §
2, The T, , thus constructed is patently a spherical tensor of rank k, projec-
tion q. The application of the Wigner-Eckart theorem (eq (3.1)) gives

<zm'|rkqlzm> = Lmk(@)|am)> <41 2> (b)

with m' = m + q.

Direst calculation of the matrix clements gives
A R - - t
< kaq|£m> E <1(a)1(q=a) |k(q)> <im |£a2q_a|£m> . (e)
By using the rules for matrix multiplication we have
Am' R R im> = Am'|f |2"m"> <A"m" | R am> . (a
ttg-gltm> = T canele, . )
Using the Wigner-Eckert theorem on the first matrix element in (d) gives

<Am'[L [ermr> = <t (mt)1(a)|2(m")> arje)e> . (e)
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But, as we have shown earlier, <a"|L|t> = /2{2+1) &,,, and the C-G coefficient
requires m" = m' - a. Substituting these results 1% % (d) gives i

""“"l’“a"q-ul""” = <h(m'=a)1(a)|(m")> <&(m)1(q=a)|L(m' =a)> R(R+1) ()

where we have used the same technique used in (e) on the second matrix element
in (d).

The two C~G coefficlents in (f) can be recoupled using equation (5.8)
in the text to give

<L(m)1(q=a)|2(m'-a)> <&(m'-a)1(a)|L(m')> (@)

= 3 VER1)(20+T) W(R181;8F) <1(q=a)1(a)|£(q)> <a(m)f(q)|elm*)> .
f

We now have the C-G coefficients uncoupled so that 1f we consider the sum
on a given in (a) and the C-G coefficient in (g), we have

I <1(@1(q=a) |k(Q)> <Ig-a)1(a){f(@)> = (-1)¥s,
o

where we have used

<@ 1(g=a) |k(Q)> = (-1)X <1(q-0)1(a) [k(Q)> .

Collecting all these parts together--(g), (f), and (h)--and substituting into
(c) we obtain

172

<2m”l'1’kq|2m> = 0Ruceen ke 2001 1 50101 52K) < (mk(q)|&(m*)> .

Comparing this result to (b) we obtain

1/72

A1 2> = GD¥een ke 200 12 Wt (h)

1. From the results obtained above, find the following:

for k = 0
A[To|a> = a(a+1) V2041 W(RIR15R0)

W(R121;20) = —/——  (Rose, 1957, p 113),

V3(2L+1)

=%(8+1)
AT le> = ——= .

3

.
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But, from (a)

To = z <1(a)1(-a)|0(o>> 2,0,

and
<@ 1(-a)]0(0)> = (-1)17% L <1(a)0(0)]1(a)>
V3

- (_1)1-a
/§ -
Substituting the above,
1 o
T = - 7% 5 (=17 _ 2 .
-2 hE
V3

also,
(I)2|2m> = L(8+1)|am>
<m' | Ty|m> = <%(m)0(0)|%(m)> <a]To|e>
1
- = ": 2(1*1) .
3
Show also

1

W(R1R1;21) =
VB [a(g+1)(20+1) 172

V(28+3)(28-1)
330 /R(R+1)(22+1) .

W(2121;02) =

Y { ) 172
<t o> - - 222D alr, 2> - [e(8+1)(22+3) (24=1)] .
4 W8

2. Given the results of problem 1, calculate the reduced matrix
elements of the tensor

Weq = g <HBIK(Q-B)[K(Q)> 2,T, o ¢
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where qu is given in the discussion at the beginning of section 5.1.

'{Q The reduced matrix elements of WKQ are given by the Wigner-Eckart

a theorem as

i <zm'|wKQ|zm> = <A(m)K(Q)[m*)> <ajw 2> .

.‘h: ‘
W ;
;H Then, by computing the matrix elements of wKQ by the methods of problem 1, '
' show that

. i) = =(=0*Ka(en e (K1) 12 Ty 2> Wik 52K

Evaluate <z|wk|2> for K = 0, 1, 2, 3. (The latter Racah coefficient is given
in the appendix in Rose, 1957.)

0 Show the following:

15

.“*

-'esl 172 !
i , } K(K+1) ) ;
Z WKLY} 2K) [;K(K+1)(2K+1)2(2+1)(22+1)] : k=K '

x [ (K+2z+2)(x+1)2(2z-x) 1172 ;

& W (K+12150L) = = | rogaTy (Re D RCLF 1) (2R TV ’ k=K+1, ¢

2 1172 '

. 101 (K+22+1)K (28 +1-K) - ;
N W{Lk=181;8K) [;(2K+1)K(2K-1)2(2£*1)(2+1)_ ' k=Kk=-1 . .

“;*:' Fy

ey s

i We write {
R 3.
_ Alwefe> = W tarfe> -
i 4
p ¥

35 Then, when K = 0, we have k = 1 and 3

Sill "

Ay « 82D

' %
A For K= 1, we have k = 0, 1, 2, and k

#ig )

5 g

i [R(+1)(28-1)(22+3)1 /2 )

<, (2> = - :

2/3

& [a(a+1)(22-1)(22+3)7 /2

0 AW, [2> = - z .

v
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For K = 3, we have k = 2 and

(2.|W3(2)|g,> - [(R=1)R(R+1)(R+2) (20-1) (20+3) 7' /2 .

3/70
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6. RACAH ALGEBRA

It is convenient in many vector problems to express the vectora in terms
of spherical bases given by

8y = 7(0y t 16 )12 ,
(6.1)

~ ~

eo - ez .
Then
8: - (‘1 )ua—u ’

8 x8, = =1VZ <11 1(urv)> Guay (6.2)

A*A

e,ey = Guv .

The vector K can be written

A=Je*a
g oW
~o
-7 er (6.3)
!
A-é.x'
M H
and
-8 =3 a*B (6.4)
y HH
= ] A B¥
uuu

=7 (-1)¥% B .
ﬁ( ) 4By
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Thus, g3 in equation (1.16) can be written

.-’- #*
f.3=7 R¥s (6.5)

So that the spin-orbit interaction given in equation (1.16) is immediately in
spherical tensors, since ¢ and s

are spherical tensors. That is, for the
many-electron configurationﬂ Lo

_yH 1!
Hy_o = &(r) E ATsles 1) (17 v . (6.6)

An example of Racah algebra is the reduction of the latter part of equation
(4.,6). That is, we wish to cast the interaction

1% 2 To0-3 + 3r(res)]

-

K

- <

* (6.7
.t .7 13Tq

R ;
e

where we have drgpped the subseript I on the components and introduced the
unit vectors r = r/r. First we note that

-~ A* ~
r = 2 eaC1a(r) (6.8)

as in equation (6.3), and we can write

red = ] (-1)3c1,B<F>s

. (6-9)
8 B

Then from (6.7) and (6.8)

- - - _1yB
Tq 8y * 301q(r) Y (-1) c,

- (r)s, .
8 B

The recoupling given in equation (1.27) can be used to get

C1qC1-p " E <1(0)1(0) [k(0)> <1(q)1(~8)]|k(q-B)> Cy,

Q-8 ° (6.11)




and since <1(0)1(0)[1(0)> = 0, the terms in (6.11) are restricted to k = 0 and
k = 2. Then we have

c = <1(0)1(0){0(03> <1(q)1(~q)|0C0)> &,

1q1-8 Q
(6.12)

+ <0 1(0)]|2(0)> <1(a)1(-B)|2(a-B)> Cp o

From the relation equation (2.10) we have <1(q)0({0)|1(q)> = 1 and by symmetry
(eq (2.7)) '

UO=)]0(0)> = (=173 (6.13)

and

-1y9
c.oc. L1 A0

10 (4B -
1C1-8 = 3 B,q = 3 1) <1B2Aa-B)|1(@)> C;

B ’
(6.14)

where we have used the symmetry relation of equation (2.7) on the C-G coef-
fictent <1(q)1(~B)|2(q=8)>; also <1(0)1(0)]2(0)> = -(2/5)1/2, The first term
in equation (6.14), when substituted into equation (6.10), cancels the ~8q
term, and the remainder gives

Tq = = /10 ] <1(B)2(q~B)|1(q)> s (6.15)
B

Bc2'Q'B !

w?éch is the form used in equation (4.T) where this interaction was cast into
V'< tensors.

As a further application of Racah algebra and some of the other material
discussed above, we shall derive the gradient formula (Rose, 1957, p 120). A
convenient form of the gradient operator is

~ 3 rxd
V-r-é-r-; ir

’ (6.16)

and we would like

grad ¢(r)qu(;) . [V,¢(r)qu] . (6.17)




First we observe that
-1)a ¢

= L (5126, <1(0)K(0) [K1(0)> C1(AIK(Q) k' (Q*A)> Cpr gy » (6.18)

where we have used the coupling rule for spherical harmonies, equation (1.27)
(Rose, 1957, p 61). Now we write

oy ag (-1')“*Béax88c1_a2_8 , (6.19)

and we use equation (6.2) to eliminate the cross product to produce

rxf = =1v2 T (1)} <1(a=a)1(a) [ 1(A)> EN I T (6.20)
A,ao

where we have replaced the sum on B by letting 8 = A -~ a. Now in calculating
the commutation we need only consider the operators in equation (6.20); thus,
we need

[c (6.21)

1-u2a—x'ckq] *

Since ¢(r) commutes with Ci-4%j;-o' We need not consider it at present. First
we expand the commutator to obtain

[01-a“a-x'°kq] = Cig*a2%q = SkC1-ata-r (6.22)
we then use
ga-xckq B [za-x'ckq] * qu“a-x (6.23)
in equation (6.22) to obtain
[C1-a£a-x'ckq] - Cl—a[za-x'ckq] * C1-ackqla-k - quc1—aza-k '

(6.24)



The last two terms cancel since C1-a and qu commute. Thus, we obtain

(€ —a¥amrCiq) = Ct-alamy'Ciq] (6.25)

(€4 cofamr'Ciq] = Cp-g’R(KF1) <k(@)1(a=2)|k(q+a-2)> C

1-a"a=1"'"kq (6.26)

k,q+a-x '

where we have used equation (2.19) with:Ly-j = %4-) (which are identical in
the commutation brackets). The result in equation (6.26) is not quite in the
form we want, but by using the coupling rule for spherical harmoniecs given in
equation (1.27), we finally obtain

[c,_aza_x,ckq] = /k(k+1) <k(q)1(a=2A)|k(q+a=A)>

(6.27)
x ) <k(0)1(0)|k"(0)> <k(g=a=A)1(=a)|k"(q=1)> Cutt ger *
k" 'q
In equations (6.16), (6.17), and (6.20), we need
[M,ckq] . (6.28)

We can see from equations {6.27) and (6.20) that, when this is formed, the
terms dependent on a are

S = ¥ <1(A=a)1(a)|1(1)> <k(q)1(a=2)|k(q+ta=))>
a

(6.29)
x <k(g+i=a)1(=a)|k"(q=A)> ;

that is,

. A
[edic ) =172 1 (=) e k(0 1(0)|k"(0)> VKTk*T) SCy .y (6:30)
a Aamk" '

with 8 given by equation (6.29). The 3um, S, given by equation (6.29) can be
reduced. First we write

<k(q)1(a=1) |k(g+a=2)> <k(g+a-2)1(=a)|k"(q-1)>

(6.31)

w § /T2F¥ 1) (2k+1) Wktk"1;ke) <1(a=A)1(=a)]|2(=2)> <k(q)t(=2)|k"(q-A)>
f
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where we have used equation (5.8). Thus, the sum over a contains the terms

I <ita=)1C-a)[1(=0)> <1(a=R)1(=a) [£(=1)> = &, (6.32)
a

by the orthogonality of the C-G coefficients. We ocan use equations (6.32) and
(6.31) in equation (6.29) to obtain

S = V3[2k+1) W(k1k™;k1) <k(g)1{=a)|k"{g=A)> . (6.33)

Using the results of equation (6.33) in equation (6.30) gives

[F;I,ckq] - 1/BR(KFTY(2k+TY | (-1)"6_A T <k(0)1(0) [K(0)> W <k1k"l;k1>
A k"
(6.34)

x <k(Q)1(A)|k"(q+)‘)> Cku.q+x ’

where we have changed the sign of A in the sum. Multiplying the results given
in equation (6.34) by =-i¢(r)/r and combining them with equation (6.28), we
have (changing k" to k')

An 3¢ .
[v,¢<r)ckq] - E (-1)%_, E' [5% + § Bk (K+1) (2k+1) W(K1k 1,k1ﬂ
(6.35)
x <k(0)1(0)|k'(0)> <k(q)1(2)|k'{g+r)> Crvoqer

The Racah coetficients in equation (6.35) are of simple form and are given by
Rose (1957, p 227). These are

ety e Kk 172 .
W(k1k'15k1) [6(?41)(2k+15] , k' mk + 1,
(6.36)
Sy PRCEANN LY ook
k(2k+1 ! '

which are the only values of k' allowed. These results used in equation
(6.18) can be written as

[v,8(r)C,q] § (-1, E' <k(@) TNk (@+1)> v qaDK 0(r)

(6.37)




where

]
oK' . ’[fiéT]1/2(%F . ;%1 , K'im k = 1 (6.370)
and we have used the result
&(01(0)[k+1(0)> = [KL]'/2 ang

<k(0)1(0) [k=1(0)> = '[§E§T]1/2

(from Rose, 19&7, p 22 aﬁ The two most, common forms of ¢(r) that we will
encounter are r" and 1/r*"', For ¢(r) = r", we obtain

k ' k=1 <
[Vu,r qu] ~ - KTEGTY k@1 ettand v¥ e, L (6.38)
and for ¢ = 1/rk+1,
k+1 k+2
[vu,m- qu] = - TEDTESTY k(@1 et @an> 1%,
(6.39)

The results given in equation (6.39) are easily checked for k = 0, since for k
= 0 we have

[V,,17r] = =cot@)1(w)[1(a+u)> 1/rzc1.Q+u . (6.39)

and from the prcperties of the C-G coefficients, we know that G = 0
and <0(0)1(u)|*(u)> = 1., Then

2
[vu,1/rc’q] =-C /o . (6.39b)
Also, we know from vector analysis that

grad 1/r = -F/r3 (6.39¢)

gy g




and

<+ PRYLN .
r=r g (=1) e C, - (6.39d)

Then we substitute equation (6.39d) in (6.39c) to obtain

2
(grad 1/r)u @ C1u/r ' (6.39%)

which is identical with the result of equation (6.39b). We shall use the
result given in equation (6.35) frequently later on, perticularly in the form
given in equations (6.38) and (6.39).

6.1 Problems
1. In section 3.1 we gonsidered the crystal-field Hamiltonian in the
form Hogp = B2gCpo(r) + ByoCyp(r) and obtained the energy splittings of &
single d electron. All the previous calculation was for the orbital states

only, neglecting the spin-orbit ccupling. For the states |Jm> with
= § + 8 we showed (in sect. 2.1, Problems) that

I'm'es|H___|jmes> 80 g 5 [IUH1) = 2UA1) = s(e+D)]
where the states |jmis> are
gmes> = § <&(w)s(m=p)|j(m)> |2ud|sm-p> .

M

For these same states show that

s, lrs> = (-1 TITETEIIEETTY Wikt s:09) <A(0K(0)[1(0)>

and evaluate this quantity for

L =2 ,
-1 '
s =5,
Jorj = % ) g (for -3 § J s 4+8),
k=2, 4,
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and the quantity { } is a 6-j symbol whioch oan be found in Rotenberg et al
{1969). Using the above results caloulate

<3 m]C g ldm> = <wIk(0)|3*(m)> <3'asle, J4re>

and obtain the following table for the matirix elements of the orystal t'ield.

tom ) m By Byo
2 3 I a3 wm
| 53; % .25. %. -/8735  ~2,%/21 i
3 % 2 2 a3 an
g '2‘ g g -2/7 1/21
% % 2 g ~6/35  2/21 |

To obtain the energy levels we leot

1

3 31
<$ 3lHcepl5 2 = Hyy o

5 1 5 1
<3 3lHcgpl5 53> = Hyy » and

31 5 1.
<5 3lHegpls 37 = Hy
(H21 H12). Then, for the n = 3 levels, we have the secular equation
¢ | -3) -z |
Hyp +H (3 =35) -8 H2 ,i
; -0
5
Hi2 Hyp + Mg (3= 3) - E

A
q
\
{
1
L
y
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with & similar result form = §° What is the raesult form = % ?

2. In the oonsideration of the nonrelativistic limit of the Diraoc
equation, a correotion to the nonrelativistic Hamiltonian arises of the form

2.2
aa
o_ |3V d 1
H! --—T—[.g;‘.b-r—‘—r-‘—z-T'I] ('a)

rfor terms involving the orbital motion only. In equation (a),
e2
a = the fine struocture oonstant ~ Ao’

2
ao v the first Bohr radius -11—-.
me

V « the potenttal energy (not necessarily spherically symmetric), T «(8,v].

Take V w fk(r)ckq(ﬁ) and show that
A ,
t.1 - E (-1) [2x'“kq]“-xfk(r>

A
- £, (r) vk(k+T) g (=17 <k(@1(R) [k(a*A)> C o)

Using this result show that

2ag [aty(r) o f(r) -
! - - S —— —— Ovamsarw——— -
H « [ o Ckq™) T3 Yk (k+1) § Q(=1)k(g+A)[k(a)> C 38,

Further, show that

%, | m>

< 'm' | ; <1(=2)k(q+.) [k (q)> Crqen

172

= [R0R+1)(20+1) (2k+1) ] " W(RIR ki 0k) <R(m)k(q)[2"(m')> <ar]c, [o>




and

2.2
a a
A'm'|H'|2> = = -—39 Flggr (F) <mk(ai|et(m')> are o>
P M 172
Fega' (M) = 3 32 ¢ === [R(R+1) (241D (k#1)(2k+1) ) " W(RIR K3 RK)

h(h1) + k(k+1) = £'(8'+1)
20R(2+1)(28+1 )k (k+1)(2k+1) 7172

W(R1A' ks LK) =

af ¢
(r) = = &y Ko fa(ae1) + kGer) = R1(R14DT

ar or 2r

Frag

If 4' = & and fk - Cor-K (Co is a constant), show that

2
| r€ ar RyFlgg(r)Rg =0
that is,

r‘k'-1 §_> - - k{k+1) (rk-2>

<k ar 2

3. In the basis of atates given by

ldm> = T <2(ws(m=p)|J(m)> 2> |sm=-p>
u

calculate the matrix elements of % énd the matrix elements of sx. Show that
the following statements are true:

L -
<grje)i> = (=) J[2(2+1)(29.+1)(23+1)]V2w(113's;23) ,
' 172 .
<J')s]d> = [a(s+1)(28+1)(2341)7 " “W(1s)'2;83)
4. We write a generalized spin-orbit interaction as the mixed tensor

Tl = ) <1(a)1(q~a)|k(q)> Eas

o

<q g-a
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and we wish to oalo lat} magrlx elements of T in the 20upled space (single
electron) |Jm> with 3 - + s, By the w1gner-§gtart t.heorem,

<Yt T lam> = <gmkla)|3r(m> <s]T B> (a)
whioh is the easy part. We now write the state Ijm) as

[dm> = § <a(u)s(m=y)|J(m)> |2p>|sm-u> (b)
M

and a similar expression for <J'm'|. so that the matrix elements given in (a)
are

<o | T gm> - I <1(a)1(q=a) |k(q)> I <a(u)s(m=u)|j(m)>
o TR

x <A(u)s(m'=pt) |31 (m')> <hu'|n |2w> (e)
Vmy ! -
x <sm'=y |sq_a|sm W
The Wigner-Eckart theorem can be used on the last two matrix elements in (¢)

to give

Apt|talfu> = <alw)ta)|ou)> VETR+T)
(d)

<sm'-u'|sq_u|sm-u> = <s(m-p)1(q=a)|s(m'=u*)> Vs(s+1)

where we have used < |e]e> = VA(R+T) and <s|s|s> = /s(s+1) .

The first C-G coefficient in (d) requires u'+u+a, and the second C-G
requires m-u+q-am'-u'; when u' is used, this results in m' = m+q, which
agrees with the restriction on m' given by the C-G coefficient in (a). Sub-
stituting the results of (d) into (c) gives

1 2 3
e, G — e ——
<J'm'|qu|Jm> =1 <1(a)1(q=a) |k(q)> <(u)s(m=u)|J(m)> <R(u+a)s(m+q+u-a)|j'(m*)>

ua
x <L(u)1(a) |2 (ura)> <s(m-u)1(u-a)|s(m+q-p-a)> [s(s+1)8(g+1)]' /2
e —————A
y 5 (e)
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and we shall refer to the C~GC noeffilcients by a number referring to the posi-
tion in the sum in equation (e). First we recouple 4 and 3 using equation
(5.9) to give

<A(u)1(a)|tlu+a)> <(u+a)s(m+q=p=a)|j'(m')>

= (=1) § /T2EFTV(20+T) W(1RJ a30r) <h(p)slmeq=u=a)|f{m+q=a)>
t
()

x <1(a)f (m+q=a)|J*(m*)>

where we have used the symmetry of the C-G on 4 to reverse the order of the
firat two angular momenta. We now recouple 5 in equation (e) with the first
C-G in equation (f) to give

<s(m-p)1(q-a) |s(m+q=-p=a)> <{n)s(m+q-u-a)|f(m+q-a)>

- (-0)MIIN Y AT (ZETTY W(istL;eg) ()
g

x <s(m-u)e(u)|g(m)> <1(q-a)g(m)|t(m+q-a)>

where we have used the symmetry of the C~-G to rearrange the order of the
angular momentum in both coefficients. The second C-G coefficient in (e) and
the first C-G coefficient in (g) are the only coefficients containing u, and

the sum is

1 <s(m=p)aCu)|g(m)> <R(u)s(m=p) | (m)> = (-1)37%"3, . (h)

u

8J

Collecting what remains of (e) using the results of (f), (g), and (h), we have

172

<grmt T, [gm> = (=1)90s(8+1)0(R+1) (25+1) (2+1) (20+1)]

kql

« ¥ (-1I/ZFT W10 8;0L W 18021 83)
£

x ) <1(a)1(q=a) |k(q)> <1(q~a)j(m)|f(m+q-a)>
o

x <1(a)f(m+q=a)|j'(m")> .




We now recouple the last two C~G ooefficients in (e') ¢ obtain

<1(q=a)J (@) | £ (m+q=a)> <1(a)f(m+q=a)|J'(m')>

o (=137 ym)1(a=a) | lmrq=a)> <Flmrq=a)1(a)]]'(n')> “
i

n (=133 § JTIRFTTTERTT w3190 1500) <1(q=a)1(a) |h(q)>
h
 <Jmh(q) |y (m*)> .
Finally, the sum over a with the remalning C-G in (e') and the first C-G in

(1) gives

! <1(a)1(q=a) |k(q)> <1(q=a)1(a)|n(q)> = (-U"chk ; (1)
o

substituting into (5a) produces

<I'm' [ Tyegldm> = (=1)K*I"[s(s41) (28+1)0(041) (2041 (2541) (2k+1) 1172

(e")
x <J(m)k(q)]|J'm")> S
where
S = § (=1 (ar+1) WOILI 8;08) W(TePLsng) WCI13T1;5PK) .
r
From Rose (1957, p 191) or from Judd (1963, p 54), we have
s = (-1)Ix(11k;2895885") ()

where X is the X-coefficient and is identical to a 9-j symbol.

By comparing (e") with equation (a) we obtain

<O LI> = (-0KHTH [(s+1) (28410 (R+1) (2041) (2§+1) (2k+1) 1172

(env)
x X(11k;e8i;883)
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From the i1‘ules for rearranging the arguments of an X-ooefficient, we have the
above equal to

X(R8jiasj'i11k)

and when k = 0 we get (Juid, 1963, p 67; Rose, 1957, p 192)

(=1yJ*1-hs
1/2

X(is);R83';110) = W(ists;J1) & (1)

[s(24+1)] 3N

(see also Brink and Satchler, 1962, p 119). The latter reference gives

X(Rsj;R83;111) = 0 ;
therefore

gl -0 .
From equations (1) and (e'''), we have

(=128 1 g (ae1) (28+1)00041) (2041) 172

w(%sgs;h1) (m)
Y3

<t Tgle> -

From Rose (1957, p 227), we have

—f-s+3+1

CRCR+1) + s(s+1) = J(3+1)] (n)

W(tste;g1) = &1 1
2[(R+1)(28+1)8(s+1)(28+1)]

and from equation (m)

(-1)

<j'|T0|J> - Ca(R+1) + s(a+1) - J(4+1)] . (o)

Now when k = 0 in qu as defined at the beginning,

Tog = L <1(a)1(g-a)|0(0)> & 5 _ 6

o qQ-a q,0
D ol )]1(a)
] e <1 (@ )O0(0){1()> & 8
: V3 oo
(p)
- - T % s
/3 a
- 112
/3




In seotion 6 we have shown that

1.3 <12 [32-17-3%
therefore

Imt .-..__1.. - - o
<J'm' | T,|Jm> v [3€3+1) = £(R+1) - 8(851)] 8y00840 (q)

and in equation (0), J = & + 8 = & £ 1/2, 2) = 24 ¢ 1; therefore,

-1¥ .o

sv that the result givaen in equation (o) agrees with equation (q) but is much
more diffiocult to obtain.

We have an interaction between two electrons giveh by

(2) .

Teq = I <a(a)b(q-a)|k(q)> Caal 10, g

a

By the above techniques obtain the reduced matrix element in the expression
<L'M‘!qu|LM> = <L(M)k(Q)|L'(M)> <L'|T, fL>

where the states are given by
[LM> = § <RCu)R(M-p) [L(M)> | Rus1>| AM=p;2>

M

where the last index in the angled brackets refers to the individual elec-
trons. Hint: The result should have something llike

X(abk;22L;28L) .
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7. FREE-ION HAMILTONIAN UNFILLED CONFIGURATION nlN [N <2022 + 1))

7.1 Background for Free Ions

The approximations made in the analysis of the spectra of ions are
not new. In fact, they go back to the old Bohr orbit theory. Since many
readers may not be familiar with these assumptions and may not remember many
of the concepts and most of the technical jargon used in the field of atomic
spectra, we review some of these briefly. We stick strictly to those concepts
which apply to transition-metal ions and rare-earth ions.

For the transition-metal ions we shall consider the doubly, triply,
and quadruply ionized states. For the rare-earth ions we consider only the
triply lonized case.

The electronic structure of the three series of doubly ionized
transition-metal ions is given in table 7.1. The triply lonized rare-earth
ions are characterized by the electronic structure shown in table 7.2. 1In the
rare-earth series, it is assumed that the atomic interactions are very strong;
thus, when an ion is placed in a crystal, the crystalline electric field acts
as a perturbation on the ion. In the transition-metal ions, the electronic
interaction with the crystal can in some cases be larger than the free-ion
interaction. Nevertheless, we shall continue to label the states using the
free-ion labels. This assumption allows the notation developed for the free
ion to be used, with the reservation that many of the "good" quantum numbers
of the free ion are not quite good when the ion is present in the crystal. It
1s assumed that the free ions have the zeroth-order Hamiltonian

N p2
i ,
Hy = 121 L—m + U(ri]] , {7.1)

where 3 is the momentum of the ith electron and IJ(ri) is an appropriate
sphericél average potential of the remaining electrons in the ion (other than
the N, niN). The single-electron solutions to equation (7.1) are taken in the
form

P = an(f‘)YQ‘m(r‘:) (7-2)
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e N TABLE 7.1. ELECTRONIC STRUCTURE OF
h TRANSITION-METAL IONS

, First series® Second series® Third series®
N z  x2* a3dV z  x2* gV z  x2* sdV
o 21 so 3 39 v 4 7 o sd!
e 22 T 342 o  zr 42 72 Hr 542
i 23 v 343 M Nb 43 73 Ta 543
24 cr 3t 42 Mo  hg" ™ W 544
25 Mn  3d° 43 Te  kd® 75 Re  5d°
) 26 Fe 3 w4 Ru  udb 76 o0s s54°
27 co 37 45 Rn  4d7 77 Ir  5d7
. 28 Nt 38 46 Pa  4ad® 78 Pt 548
29 cu 39 47 ag  4a? 79 Au 54
30 2zn 3d'0 48 cd  u4d'0 80 Hg 54'0

R 31 ca 3d"%s 49 In  uw'%s 80 T1 54'%s
B 32 Ge 3d'%4s2 50 sn  4d'05s2 81 P 5d'06s%

‘(1322322963323p6)3d" = (Ar cote)JdN

e bar core)(3d'%4s?apS4d”) = (kr corejad”
f§§: C(kr core)(4ai04rt455255 )5d" = (Lu’* corejsa¥
if TABLE 7.2. ELECTRONIC STRUCTURE OF
- TRIPLY IONIZED RARE~EARTH IONS
:x{:;\" Number Element Symbol  Outermost electron shell
.Eg ‘ 57 Lanthanum La 4a'04r05425,0
ol 58 Cerium Ce 4a'0ur 1592506
’ 59 Praseodymium Pr ua'°ur25a?-5p5
. 60 Neodymi um Nd 4a'Our 3582506
o 61 Promethlum P ua'Ourt5e26p6
bﬁ 62 Samar i um Sm 4a'0ur55425p6
g 63 Europium Eu ug! °ur55325p6
. 64 Gadolinium cd uu’°ur75325p6
. 65  Terbium ™ 4" OurB5e25p6
66 Dysprosium Dy ud'0ur95525,6
e 67  Holmium Ho 4g"Oug 10542556
- 68  Erbium Er ua"Oup! 159256
o 69  Thulium ™ 4a'Our!25425p6
B 70 Ytterbium tb 4a "Oug 3552556
:.ﬁ (A Lutetium Lu ua‘°ur"‘5525p6
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(Sehiff, 1968), where the Y m(F) are the spherical harmonics with & = 2 for
the transition-metal ions an% % = 3 for the rare-earth ions. (Remember that
. = 0O for s, L =1 for p,and £ = 2 for d electrons.) riI‘he radial functions in
equation (7.2) are taken to be the same for all the " in the ion, while the
angular functions, along with the spin of each electron, must form a determi-
nantal function so as to obey the exclusion principle. Depending on whatever
determinantal function is chosen, the radial functions ocan be found by some
self-consistent method. These radial functions (Freeman and Watson, 1962;
Fraga et al, 1976; Cowan and Griffin, 1976) have been found for the Hund
gro +d states of all the transition-metal and rare-earth ions from cerium
(Ce3*) through ytcerdbium (Yo3%),

The Hund ground state for the transition-metal 1ions with N § 5 and
the rare-earth ions with N $ 7 is given by assuming that all N spins are
parallel and that each angular momentum projection is the maximum allowed by
the exclusion principle (in eq (7.2), % is the angular momentum and m is its
projection). Thus, the Hund grounc state for two electrons 1s the det.ermi-
nantal funntion (unnormalized)

a(DYy (Da(@)Y, (@) = alDYy o (Da@)yy (@),

where a is the spin "up" wave function (B = spin down). A convenient notation
for such a determinant is

(,231) (7.3)

where the upper sign is the spin projection (+ =up, - = down) and £ and ¢ - 1
are the z projection of the angular momentum (m in gg (7.2)). Thus, the Hund
ground state equation (7.3) for 4f“ praseodymium (Pr°") has total spin, S, and
total angular momentum, L, given by

S=1/2 +1/2 =1 ,
L=2¢+2-1=2¢8-1=5 (for £, £ = 3) .

Hence, the ground state is L = 5, with multiplicity of 2S + 1 =_3. 1In the so-
called Russell-Saunders notation, this state is referred to as “H, as given by
the following: %

Total angular momentum, L, of ion: 01234567. ..

Russell-Saunders label for the state: SPDFGHIK. ..
(continues alphabetically)
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In this notag&on. thﬁ tefhnioal reference to such a state is a term; other
terms for Pr are , , and 'S (Condon and Shortley, 1959; Nielscn and
Koster, 1963). For the ion Ce *. which has one f electron, the atom notation
becomes identical_ to that of the ion, that is, 2 = L = 3 and s = S = 1/2 with
the single term “F. Those ilons in the series for N > 2% + 1 have the same
terms as for N ¢ 2 + 1, and their Hund states can be constructed simply a3

d, o1, e%2, oo2eh, 1, 071, 072, L. 2e(pen)) (7.4)

where the number of electrons is N = 28 + 1 + p. The lN gshell is completely
filled when N = 2(2% + 1), which for f electrons is triply lonized lutetium
(Lu“+). As an example,of equation (7.4), consider triply lonized terbium
(Tb3+). which has the Mfa configuration. The determinantal wave function is

+
1

+ 4+ -
"'2 -3 3} ] (7-5)

-

+ + +
{3210-

where total angular momentum L = 3 d total spin angular momentum S = 6/2 =
3. Thus, the Hund ground state is 'F. In all cases, the Hund term has been
found to have the lowest energy in atomic systems. In general, the wave
functions for the higher terms are very difficult to construct, but sophisti-
cated techniques have been devised for the orderly developmentNofl? set oﬁ
wave functions for each ion having the electronic configuration p°, 4%, and f

(Nielson and Koster, 1963). The Hamiltonian giyen in equation (7.1) has the
same value for all terms of the configuration nf ; consequently, we ignore Ho

in the future discussion.

7.2 Significant Free-Ion Interactions

A number of interactions within the ion do not depend on the partic-
ular solid or are modified when the fon enters a solid. These interactions
are termed the free-ion interactions. We discuss several such interactions
here.

7.2.1 Coulomb Interaction

The largest contribution to the Hamiltonian for the free ion is the
electrostatic interaction of the niN electrons, which may be written

N 2
Hy= 1 —— (7.6)
1> |r1J|
where
> > +
r‘i,j = r'i T‘J .
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Th +matrix elements of this interaction for the state {3 2} (the 34 term) of
Pr°" are

Suny 13> = B - 98B - (175 M 363) - (2580 n1uis7) (m

(Judd, 1963), where the F{K) are frequently referred to as the Slater
parameters.

The F(k) are radial expectation values given by
plk) 2 22 2
- Lkt ;m [Rng(r,)ﬂm(rz)] ry drrgdr, (7.8)
where

w 2 2
j; an(r)r dr = 1,

ir ri <r and

r
- _l if r, >r .
'y

For the dN ele Ft{ons the matrix elements of the Coulomb hnteraction are given
in terms of F » While the same interaction for the f' 3eries is given in
terms of new parameters E" by Nielson and Koster (1963), Nielson and Koster
give the matrix elements of the Coulomb interaction in the form

<e'L'S'|H, [aLS> = & 2 e (a'a, LorK (7.9)

LL' SS'

aﬂd they tabulate the coefficients ck(a'.a,L.S) for each of the states of
. Similarly, Nielson and Koster give for the matrix elementa of the Coulomb
interaction

@'L'S'[H oL = 6 855, L 8, (a'0,L,SES (7.10)
[
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and the ocoeffinients gk(a'.o.L.S) are given for sach of the states of N, 1n
equation (7.9) the values of k are 0, 2, and &, whiie in equation (7.10) the k
values are 0, 1, 2, and 3. The relation of E® to F k) is given in a number of
places (for example, Judd, 1963, p 206),

7.2.2 Spin-Orbit Interaction

The sefond interaction of reasonable magnitude in the free ion ias
the spin~-orbit coupling, which is

Hy, « 1 ‘(”1)i 8, , (7.11)
where ,
dU\ri]

: 1
g(r,) = - .
b 2m202 ri dr'1

This interacticn was derived from relativity theory in the Bohr orbit quantum
mechanics, but it is also a natural consequa?fe of a nonrelativistic approxi-
mation to the Dl~ac equation. Values of F and £ (where E = <n2|£(r)|n£>)
from Hartrse-Fock wave functicns are given in tablec 7.3 to 7.6. In the rare~
earth series, the interactinn H, is quite strong and is in general much larger
than the interaction of the rare-earth electrons with the crystal fields.

TABLE 7.3. HARTREE-FOCK VALUES FOR FREE-ION PARAMETERS
FOR DIVALTNT IONS WITH 3d" EZLECTRONIC
CONFIGURATION (Fraga et al, 1976)

z x2* N p(2) (em™; p(H) {em™ 1) Lyq em™"y  <r? (22 <> (Au)

o -

21 Se  3d' -- -- 85.95 0.7%i6 1.4997
22 T 34° 67,932 42,357 131.15 0.6716 0.9808
23 v 343 74,062 46,171 187.17 0.5677 0.7112
24 ¢ 3¢" 79,790 49,726 265. 60 0.4910 0. 5401
25 Mn  34° 35,637 53, 368 342.85 . 4277 0. 4145
26 Fe 348 89,877 55,927 441.38 0.3893 0.3527
27 ¢o  3d7 94, 600 58,817 561. 21 0.3525 0.2949
28 Nt 348 99,392 61,756 703.19 0. 3203 0.2u78

20 cu 347 . -- 869. 65 0.2923 0.2097




TABLZ 7.4, HARTREE<FOCK VALUES FOR FREE~ION
PARAMETERS FOR DIVALENT IONS WITH ELECTRONIC
CONFTGURATION 44" (Fraga et al, 1976)

2 . F(2) rl®) Tue <r?s s
Z X nd (em™")  (em™ ") (em™ ") (%) (Y
39 Y 4a? - - 312,00 1.5737  4.4402

% zr  ha? 51,177 33,321 432,03 1.2734  2.8974
M Nb 443 55,682 36,328  566.11 1,0769 2.0761
42 Mo 44" 59,873 39,117  T18.12 0.9316 1.5580
43 Te 44> 64,052 1,911 891.17 0.8145  1.1907
us  Ru  4d® 67,247 43,978 1081.70 0.7365 0.9369
4% Rh 4T 70.673 46,224 1299.11  0.6656 0.8126
46 pa g8 7u,108 #8480 1544.0F  0.6045 0.6Th4

47 Ag 449 - - 1820.08 0.5516 C.56ul

TABLE 7.5. HARTREE-FOCK VALUES FOR FREE-ION
PARAMETERS FOR DIVALENT TONHS WITH ELECTRONIC
CONFIGURATION 54" (Fraga et al, 1976)

z X nd®  (em™y  (em™")  (em™) (a%) (A%
71 Lu  5d . -- 1390.74 1.6197  4.6324

72 Hf 542 50,350 32,000 1773.59 1.3646  3.2437
543 54,008 35,526 2170.38 1.1926  2.4612
sa¥ 57,369 37,840 2594.40 1.0610  1.9385
54° 60,702 40,149  3052,92 0.9510  1.5467
sa® 63,123 w1,766 3530.75 0.8779  1.3277
sa7 65,755 43,550 4056.26 0.8087  1.1289
54 68,386 u5,344  4626.25 0.T4T4  0.96M9
549 -- -- 5247.58  0.6930  0.6646
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TABLE T.6. NONRELATIVISTIC HARTREE-FOCK INTEGRALS FOR TRIPLY IONIZED
RARE~EARTH IONS (Fraga et al, 1976)

N R r@ ey Y am ) B (amH g tem”) < (a2 < (Y <8 (a9

1 Ce - - - 778.14 1.1722 3.0818 18,549

2 Pr 105,120 66,213 47,78 919.16 1.0632 2.5217 11,492

3 Nd 109, 731 69,165 49,860 1069.87 0.97822 2,117 8.9525
y Pa 113,640 71,641 51,647 1228.24 0.91401 1.8701 7. 4224
5 Sa 17,222 73,893 53,269 1397.79  0.86059 1.6700 6.3365
6 Eu 120,085 76,204 54,937 1583.54 0.81064 1.4989 5.3%886
7 Gd 124, 644 78,585 56, 655 1786.68 0.76368 1.3267 4,5589
8 ™ 127,137 80,09 57,722 1990.51 0.73523 1.2508 u,2673
9 Dy 129,960 81.82? 58,962 2214.87 0.70484 1.1644 3.902

10 Ho 132,929 83,670 60, 281 2458.58 0.67481 1.0788 3.5296
11 Er 135,859 85,486 61,580 2719.76 G, 6471 1.0028 3.2111
12 Ta 138, 754 87,276 62,864  2999.22  0.62154  0.93514 2.9355
13 Yb - - - 3299.82 0.59678 0.87030 2.6713

Consequently, it is convenient to perform all the calculations in a
set of basis functions in which H; and H, are diagonal. The set of functions
that achieves this is the total»aqgulﬁg momentum function IJMJ>, where the
total angular momentum operator J = L + 5,

The spin-orbit interaction H2 given in equation (7.11) commutes
with the total angular momentum and, conseguently, siuce H1 also commutes
witg J2, the wave functions c¢an be characterized Dby the eigenvalues
of J2 and J,- That is, we can write y,, or |JM> for the wave functions with

J2|am> = g(as1)|oM>  and
(7.12)

g, [am> = Mfam> .

For any term of given L and $ (eigenvalues of ﬁz and §2). the values of J are
restricted to

IL -8 sJs |L+s| .
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Then the wave [‘unctions are ocustomarily written WJMLS or |JMLS>. and we have

£2|aM.s> = L(L+1)|JMLS>
82)gmLs> = S(s+1)|IMLS>
. (7.13)
J2jaMLs> = J(J+1)|oMLS>
J,|IMLS> = M|JMLS>
and
<J'M'L'S'|H, +H,[IMLS> « 85508t (7.14)

As implied in equation (7.14), the energy Hy and H, is independent of M, or
each J level of the free ion is 2J+1-fold degenerate. The matrix elements in
equation (7.14) do not vaniah generally for L' = L + 1 and S' = S £ 1; thus, L
and S are not striotly good quantum numbers. Nevertheless, the energy2§g¥els
are labeled as though they were, as in the Ryssell-Saunders notation, .
An example of the energy levels for the 4f< configuration of the free ion
(Pr3+) is given in table 7.7. Also included is the same ion, Pr *, in the
host materials lanthanum trichloride (LaCl3) and lanthanum trifluoride (LaF3).

The results {in table 7.7 are TABLE 7.7. FREE-ION ENERGY
intereésting in that they show that most of LEVELS OF TRIPLY IONIZED
the energy levels observed in the free ion PRASECDYMIUM AND CORRE-
are lowered when the ion is embedded in a SPONDING CENTROIDS IN TWO

CRYSTALS (all in om™ 1)

solid. This shift in the energy levels is a
(Dieke, 1968)

general effect and 1is not restricted to

Pr3*, but exists in all the rare-earth ions [LSN  Free LaCl;  LaFy
where a comparison with energy levels of the 3

free ion can be made. In fact, this shift Hy 0 0 0
has been observed by Low (1958a,b) in ions g 2,152 2,119 2,163
with an unfilled d shell. The first explan- 3“6 4,389 4,307 u,287

ation of this shift 1in energies was by
Morrison et al (1967), who showed that 1if
the ion under investigation was assumed to

¥, 4,997 4,848 5,015
3, 6,415 6,248 6,368

be embedded in a solid of homogeneous die- 39“ 6,855 6,684 6,831

lectric constant, €, then a decrease in the 1 .

Slater integrals is given by 1G“ 9,921 9,708 9,801
D, 17,334 16,640 16,847

a5 o —?(e-1) (ke1) <>/ [0 Lewk (e 1) 2o 21,3% 20,385 20,727
3p, 22,007 21,987 21,314

(7.15) 1y 22,212 21,327  --

3p, 23,160 22,142 22,546

where b is the radius of a fictitious cavity 1so 50,090 48,710 46,786

surrounding the rare-earth ion. The result

74




+

given in equation (7.15) was first successfully applied to co** in MgAl,0,.
Later, Newman (1973) showed that the shift in F(K) given in equation (7214)
was sufficiently large to predict the shifts in the energy levels for rare-
earth fons. More recently, Morrison (1980) derived the result

a,2 92

ar(k) ooy -i§%7g (k+1)<rk>? | (7.16)
i R
i

where a, 18 the polarii?bility of the Z, ligands at Ry and <rk> is the radial
expeotaéion value of r°. The result given in equation (7.16) is believed to
be more fundamental than that of equation (7.15) because the latter explicitly
accounts for the local coordination of the rare-earth metal ion. Morrison
(1980) gives a predicted shift in the spin-orbit parameter, 7, but because of
the smallness of the predicted shift and the errors in the fitting of the
experimental data, no comparisons were made.

Because of the lack of experimental data on the free-ion spectra of
rare-~earth %2“5- measurement of th?kihirt in the Slater integrals is possible
only for Pr2 . The experimental F for triply ionized rare earths in LaCl
have been obtained by Carnall et al (1978), and these results are given in
table 7.8, and the corresponding experimental values for the transition-metal
ifons are given in table 7.9. These data c¢an be used in conjunction with
equation (7.16) to obtain results that can perhaps be applied to an arbitrary
host material to predict a priori the energy level shift of that host.

TABLE 7.8, FREE~-ION PARAMETERS FOR TRIPLY IONIZED
RARE-EARTH IONS IN LaCl, OBTAINED FROM FITTING
EXPERIMENTAL DATA (all in ¢m !) (Carnall et al, 1978)
Values in parentheses were not varied in the fitting

Ion Fe o 1 a 8 Y z

Pr 68,368 50,008 32,743 22.9 -674  (1520) T4y
Nd 71.866 52,132 35,473  22.1 =650 1586 880
Pm 75,808 54,348 38,824  21.0 =645 1425 1022

Sm 78,125 56,809 40,091 21.6 ~T24 (1700) 1168
Eu 84,399 60,343 41,600 16.8 (-640) (1750) 1331

Gd 85,200 60,399 uu,847 (19) (-643) 16u4 (1513)
T 90,012 64,327 42,951 17.5 (-630)  (1880) 1707
Dy 92,750 65,699  45,5u9 17.2 -622 1881 1920
Ho 95,466 67,238 u6,724 17.2 -621 2092 2137
Er 98,203 69,647 49,087 15.9 -632 (2017) 2370




TABLE 7.9. BE ERIMENTAL VALUES QF FREE-ION
PARAMETERS (ora ') FOR DIVALENT 3d" ELECTRONIC
CONFIGURATION (Uylings et al, 1984)

z x& a0 KD g0 o g 8

22 T 3d° 54,927 32,206 118 20.52 -466.2
23 v 343 59,924 36,268 170 22,90 -480.8
24 cr  3d" 6u,798 40,288 231 25.83 -509.2
25 Mn  3d° 69,485 44,305 316 29,20 =-537.1
26 Fe 3d5 7u,282 u8,2m 22  33.21 -533.2
21 ¢Co 347 78,906 52,227 536 37.48 -532.u8
28 N1 308 83.514 56,164 668 42,49 -554.9

7.2.3 Interconfigurational Interaction

An interaction that has been frequently used in fitting the "free"
ion levels of a rare-earth ion or a transition-metal ion in a crystal is the
so-called interconfigurational mixing or the Trees interaction. For the rare-
earth ions this interaction has been parametrized by Wybourne and Rajnak
(Wybourne, 1965) and is

Hyo = al(L+1) + 80(02) + YG(R (7.17)

7)’

where a, 8. and Y are parameters adjusted to fit the experimental data. The
operator G(G,) is the Casimir operator for the group Gy, and G(R,) is the
similar operator for R, (note that L2 = L(L+1) is the Casimir's operator for
the group R,;). The values for these operators for all the stgtes are tabu-
lated by Wybourne (1965, p 73). The values for the state of f< are given in

table 7.10. The values of [+ 3% B, and Y obtained by TABLE 7.10. EIGEN-
fitting experimental data for the rare-earth.ions are VALUES OF CASIMIR'S
given in table 7.8. To my knowledge, no successful OPERATORS FOR STATE
attempts to derive theoretical values of o, B, and Y OF f

have been published. For the transition-metal ions the

Trees interaction in equation (7.17) uses «, but B State a 138 57

elther multiplies G(Rg) or the seniority operator Q 3p 2 12 s

(Wybourne, 1965). 3p 12 6 5

34 30 12 5

7.2.4. Other Interactions s 0 0 0

'p 6 14 7

Many other interactions are considered in g 20 14 7

the free ion, such as spin-other-orbit, orbit-orbit, 1 42 14 4
and configuration interaction. All these, to a

greater or lesser extent, improve the fit of theoretical energy levels to the
experimental data. We omit these interactions from further discussion since
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Hyo Hz. and Hyq give a sufficient representation of the free ion for our pur-
poses here. owever, we list a number of interactions including the above
which have been considered by various research workers (Wortman et al, 1973):

Hy = the Coulomb interaction

Hy = the spin-orbit interaotion

Hy = the orystal-tield interaction

Hy = the interaotion with a magnetic field (Zeeman effeot)
Hg = the hyperfine interaction

Hy = the spin-spin interaction

H7 = the nuclear quadrupole interaction
Hg = the spin-other-orblt interaction

Hy = the orbit-orbit interaction
H1° = the interconfigurational interaction
H11 = the spin-orystal-=field interaction

The notation listed above is that of Judd (1963), with a few obvious addi-
tions.

7.3 Summary

We have conslidered the Coulomb interaction, H,, and the spin-orbit
interaction, Hp, for the configuration ntN in the free ion. The wave func-
tions that are chosen as a basis for diagonalization of these interactions are
|JMLS>. and the resulting energy levels are labeled according to the Russell-
Saunders notation as given in section 7.1. This same notation (plus addi-
tional quantug numbers) is used for describing an ion in a crystal. The
values of <r"> that are needed in equations (7.15) and (7.16) are given in
table 7.6 for the rare-earth ions, and tables 7.2, 7.3, and 7.4 give the
corresponding values for the doubly ionized nd™ ions. The wave functions used
for the calculation of the energy levels of rare-earth and transition-metal
ions in a so0lid will be the ocombination that slmultangPusly diagonalizes H,
and Hy. While thii processnis not a good one for the 3d" configuration, it is
better for the H4d" and 5d° configurations and 1s excellent for the triply
ionized rare-earth {ons.

7.4 Problems

1. We have the tensor operator qu given by

(1) L]

N
'r»chq

kq {

1




(a) For N = 2 evaluate the matrix eiements of qu by using the statea
given by aequation (7.3). That is, show that

+ +
{l,z-1}*rkq{l.z-1) - [<as]e  lae> + car-1lc, ae-1>]8,

(b) By application of the Wigner-Eoksrt theorem to the problem in (a)
we have

{1.131}*qu{1,a31} = <L(LK(O)|L(L)> <LS]T, JLs>
with L = 24 - 1.

Using this result and the result in (a) show that

as|T,Jus> - SO {4 () (0)1040)> + <(E=1K(0) | 1(2-1)>]

where
172
(2L+1)(2L)1(2L)!}
<L(L)K(0)|L(L)> = [ At L 2L:ETTJ
and
<2(2)k(0)|R(L)> = as above with L = &,
Show also that
172
- -1y o |2 2= 1(20-1)1] 2
<R(R=1)k(0)|R(8=1)> [ IR | [28-k-k°] .
2. By extending the results obtained in problem 1 to the operator
N
qu - 121 qu(i) '
show that

N
<LLSS|T, o|LLSS> = ] <R(%=p)k(0)|2(&=p)> <&(0)k(0)[L(0)> |,
p=0

whereL-Nz-M—N-é-—-!—)-,S-

r =

’ N s 20 + 1,
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3, PFor N =29 + 1 what is the value of the fcllowing sum?

2%
Sy (k) = 1 <a(R-p)k(0)]a(a=p)>
p=0

4, The recursion relation
[k(k+1) = 28(8+1) + 2m°] <L(m)k(2)|%(m)>
N = =(2+m) (2=m+1) <R(m=1)k(0)|&(m=1)> = (L=m) (%+m+1) <L(m+1)k(0)|L(m+1)>
v can be used to reduce the number cf Clebsch-Gordon coefficients in problems 1

and 2. Obtain this recursion formula (see Rcse, 1957, chapter III).

5. For <.(0)k(0)|2(0)> derive the recursion formula (eq (2.10))

172
_ k1 [ (28+k+2) (28-k)
L RS IR+ [(EI:FTTTTEEIE435] <afey 12>

for even k. Thus since

slegl> =1,

any given k<L|Ck|2> can be evaluated algebraicly.
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8. CRYSTAL~FIELD INTERACTIONS--PHENOMENOLOGICAL THEORY OF CRYSTAL FIELDS
8.1 Discussion

In the presence of a orystal field we take the interaction of an ion
‘whose electronic configuration is niN as

N
-ZB Y ¢

ka L, kq(ri) , (8.1)

where the qu are unnormalized spherical harmonics given by

ckq(F) - [’-Hr/(2k+1)]1/2 (r) .

qu

The use of the Ckq in expressions for electronic interactions (along with
other shorthand notgtion that we will not use) is prastically universal. The
number of terms in equation (8.1) that need to be considered is limited by the
symmetry cf the site occupied by the particular ion., Also, since we will be
discussing only the naN cont'iguration, k is limjited to values of 4 for § = 2
and 6 for L = 3. This limitation arises because, independent of the basis
chosen, individual matrix elements of C will have to be considered, and

k
these are such that <&|C, [2> = 0 1f k > 2.}

For ouwr purposes in the discussion of the nonvanishing Bk of equa-
tion (8.1), it is sufficient to consider a single electron; thus, the Hamil-
tonian we consider is

H3 = z quckq ) (8.2)

Since H, must be hermitian, we have the property that By.q = (- 1)qu » Which
is the same as the C glven in equation (1.25). The<tasic assumption of
group theory s that H is invariant under all the operations of the groups
under consideration. éat is, we shall aysume that

OAH3 = H3 (8.3)
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where OA ‘s any operaticn of the group. Using equations (8.3) and (8.2) we i

have
- ¥
0, Hy z B %\Ckq (8.4)
kq !
where we assume that O, operates only on the electron coorrdinates. The qu !

econtain the dependence on r, but since r is invariant for all the 32 point
groups, there is no loss in generality. Thus, wt need only consider the re-
sults of 0,Ckq for all OA in a particular group. The lowest group C contains )
the identity operator only; consequently all qu are allowed, The group Ci
nontains the inversion operation I, and ICkq = (=1)"%Cyq+ 80 that equations

(8.3) and (8.4) give B, , = 0 for all odd k, while all By, with even k are
allowed. The group C, contains the operation C,, a rotation about the z-axis »
by 180°; thus C,C,, = (-1)qu . Consequently for the group T, all k values

are allowed and only the qu wgth even Q exlst.

The group Cs has the symmetry operator Ops given in problem 2 of
section 1. That is,

-1)K*a
Othq ( 1) qu ’
which, for even k, gives the same nonvani-hing qu as CZ' but for odd kK, q

must be odd, giving Byy, B31, and 833 for odd k < 5.

We next consider the two groups Cj and 8y. The symmetry operators

for the Cy %roup are Cy (a rotation about the z-axis Dy 90°), Cz, and
C
i

v -1 -
cg or C3' ( E).
For the fipst of these operations and using table 1.1 we have

- ing/2
Cuckq e qu ’ (8-5)

w—w W mm.

and no new restrictions are imposed by the symmetry operations C, and Cﬁ. The
nonvanishing crystal-field parameters are

qu-o

(lq] < k and k is any positive integer), unless q = 0, 4, 8, 12, ...

For the S, group, the symmetry operator Sy can be written Sy = ICH1,
s¢ that
~inase, (8.6)

K
Suckq = (-1) e kq

Thus, for even k, Sy has the same nonvanishing qu as Cy, but for odd k,

FMata W KE S5 S AT R B ER ] Tt el et i L T L S

unless q = +2, 6 ... with odd k and |q| § k. This condition gives rise to
the nonvanishing qu as B32, 852. 872, B76 v

b Sl g
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As a final example we consider the group Dy. The symmetry cperations

for this group are C,{x), C,(y), and Cy(z). From problem 2 of seotion 1 we |
have |

k
C,(x)C, = (=1)C,

q

_1)k*a
Cy)C, o = -1 %, (8.7)

q ’

Col2)C g = (%,

The last relation in equation (8.7) requires that q be even; from this result
the first two relations are identical. If the first relation in equation
(8.7) is substituted into equation (8.4) and the summing index q is changed to
~-q, we have
k
Beg " (=1) Bk- . (8.8)

q q

Since Bk-q - (~1)qB§q (see the discussion of eq (8.2)), and since q is even,

k
qu = (-1) B;q . (8.9)

The result given in equation (8.9) requires that B,, be real for even k and
imaginary for odd k; also Byg = 0 for all odd k, since Bko - B;o in general.

Using the above techniques and table 1.1 we obtain the results given
in tables 8.1 and 8.2, which are sufficient for d electrons; for f electrons,
however, the tables must be extended to k = 6, For the cubic groups the
operations are more involved; the crystal-field Hamiltonian is given {n table
8.3 for k § 6, which 1s sufficient for the rare earths.

Sometimes in the O group the (111) cubic 2xis is chosen as the z-
axis; the crystal. field is then given as

[111]

Hogr ~ = ByolCyo

3 Y1077 (Cu3 - Cu-3)]

b ST

- 1
+ 360[c60 + V35795 (c63 c6_3) + /TT7192 (Cgq + c6_6,] .

It may be of interest to note that the lowest odd-k term in the crystal field
for the O group is (from Polo, 1961)

Boul (Cqy = Cguy) = YT/TT (Cgp - Cog)] -
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TABLE 8.1. ALLOWED VALUES OF qu FOR POINT GROUPS 3 THROUGH 15%

b c B 822 83y B2 By Bz By
No. Group Byg aao 830 B“O — s——
Re Im Re Im Re Im Re Im Re Im Reé Im Re Im
3 Cz X 0 0 X X X X 0 0 X X 0 o X X X X X
] Co 0 X X X X X 0 X X 0 0o X X X X X X X
5 c2h 0 0 0 X X X 0 0 o o0 o 0o 0 } 4 X X X X
6 D, 0 0o 0 X X 0 Q0 6o 0o 0 X 0 o X X 0 x 0
7 CZV X 0 0 X X 0 X 0 0 X 0 0 0 X X 0 x o0
8 DZh 0. 0 0 X X O 0 0 0 0 O© 0 0 X X 0 X o0
9 Cy X 0 0 X 0O o0 X 0 0 0 0 0 0 X 0o o X X
10 Sy 0 0 0 X 0o 0. 0 0 0 X X 0 0 X 0 0 X X
AR Cuh 0 0 © X 0 0 0 0 0 0 0 0o 0 X 0 0 X X
12 Dy 0 0 0 X 0O o 0 0 0 ¢ 0 0 O X o 0 X 9
13 Cuv X 0 0 X 0 0 X 0 0 0 0 o0 o] X 0o 0o X o0
K] DBd 0 0 0 X 0 o0 0 o 0 X 0 o0 0 Y 0o 0 X 0
15 Duh 0 0 O X 0 0 0 0 0 0 0 0 0 X 0 o0 X o

2An X indicates the presence of By, and a O its absence. Missing 3kq arg 0.
brhe number is that given in Xosteg et al (1963).
CSchoenflies notation. For the relation to other notations, see Kostar et al (1963).

TABLE 8.2. ALLOWED VALUES OF 2rq FOR
POINT GROUPS 16 THHOUGH 27

B33 Bus
No.P  Group® By By By Byo
Re Im Re Im
16 Cy X X X X X X X X
17 Cyy 6o Xx 0 0 0 X X X
18 pg 6 x 0 0 X X X 0
19 Cqy X X X X 0 ¥ x 0
20 Dy © x o 0 0 X X 0
21 Cg X X X 0 0 X 0 0
2 Cqy © X X X 0 X 0 0
a3 cgp 6o x 0 0 0 X 0 0
an b © X 0 0 0 X 0 0
25 Cg, X X X 0 0 x 0 0
26 Dy ©o X X 0 0 X 0 0
21 g © x 0 0 0 X 0 0

2An X indicates the presence of By, &nd a 0 its
absgnce. Missing B, are 0.
2he number is that given in Koster et al (1963).
CSchoenflies notation. For the relation to other
notations, ses Koster et al (1¥63).
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TABLE 8.3 ALLOWED VALUES OF B, (k § 5)
FOR CUBIC GROUPS 28 THROUGH 32%+D

No. Group HegF

B/ T B3a(C3a *+ C3-p) * ByglCyg ¢ /5771 (Cyy + Cyoy)]

+ BgglCso ¥ V772 (Coy * Cgoy)]

29 Th Same as 28 but By = 0
30 oP Same as 29
K} Ty Same as 28
32 O Same as 30

rn all cases the signs of the B4q and BGq parameters are

correlated.
The z-axis is chos=n along the (001) cubic axis (see dis-

cussion of eq (8.10)).

A method of checking the results given in tables 8.1, 8.2, and 8.3 ia
by the use of the full rotation compatibility tables of Koster et al (1963).
These tables can be used to determine the number of times the identity repre-
sentation appears in a given C .. Actually the method can be used to find the
Ck that form basis functions for the idantity representation and can be
extended to other representations of the single group. For a given k in Crq®
we 100k for the number of r1's corresponding to Dk' and for the qu we use tﬁe
plus sign for even k and the minus sign for odd k (Iqu = (~-1) qu).

As an example we consider the C2 group. Using table 13 of Koster et
al (1963), we have Df = Ty +2r,, or one 'y which, from our previous work,
corresponds to Cip. Thus we have the parameter B, .. For D there are
three I'y's, which correspond to BZO and 822; since 822 is complex there are
three independent constants,

As a second example we choose the group Coy+ From table 2249? Kester
et al, for D7y we have one T, which corresponds to B,,; for D, we have
two r1's, which correspond to B 0 and ReBzz. Normally there wculd be three
B.,,s but from our previous results we know that By, is real., This process can
be repeated for all the point groups; the results are summarized in table 8.4,
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The results presented 1in
tables 8.1 through 8.3 were given
assuming a single electrun; however,
it is generally assumed that the ra~
dial dependence which is contalred in

is the same for all N electrons
in'a single configuration ntN. This
assumption is inherent in the
crystal-field interaction given 1in
eqguation (8.1).

Despite all the restrictions
imposed by the symmetry operations
used above, there exists still one
more restriction (possibly more in
some groups) that can be imposed on
the By,. This would be apparent if
we were to consider a particular
model for the ocomputation of the
Bk . Any such model would be based
on a coordinate system embedded in
the crystal and could be used to
determine, say, Bk for a particular
k and q. Now if we wished to change
to a wecond coordinate system ob-
tained from the first by a simple
rotation about the z-axis, we would
obtain, say, B& , and the two sets of
parameters are Felated by

- plad
B"{q e qu (8.11)

where ¢ is the angle of rotation.

This result, equation
(8.11), shows that we can choose ¢
such that we can make one of the qu
real and positive. To show this we
assume that B!  is the parameter we
would like to !g% real and positive.

First assume

B,,=a=-18 . (8.12)

KO

Then, from equation (4,10), we obtain

TABLE 8.4,

REPRESENTATION APPEARS IN qu

NUMBER OF TIMES IDENTITY

The number of r,'s for

No. roup =
k=1 2 3 4 85 6
3 C, 1 3 3 5 S5 17
4 Cq 2 3 4 5 6 7
5 Con 0 3 0 5 o0 7
6 D, o 2 1 3 2 4
7 Coy 1 2 2 3 3 &
8 Don 0 2 0 3 0 &
9 Cy 1 1 1 3 3 3
10 Sy o 1 2 3 2 3
1 Cun 0o t 0 3 0 3
12 Dy c 1t 0o 2 1 2
13 Cuy 1 1 1 2 2 2
14 D2d 0 1 1 2 1 2
15 Dyp o 1 0 2 o0 2
16 Cy 1 1 3 3 3 5
17 Cay o0 1 0 3 0 5
18 D3 c t 1 2 1t 3
19 C3y T 1 2 2 2 3
20 D34 o 1 6 2 0 3
21 Cg T 1 o1 1 13
22 Cay 6o 1t 2 1 2 3
23 Cén o 0 0o o0 o0 3
24 Dg o 1 0o 1 o0 2
25 Cey LA NS S S -
26 D3h 0 1 1 1 1 2
27 Den o 1+ o 1 o 2
28 T o o0 1 1 0 2
29 Ty o o0 o 1 0 2
30 0 6 0 0 1 o0 1
k1) Td 0 0 1 1 0 1
32 0h 0 0 0 1 0 1

BéQ = (a cos Qp + B 3in Q¢) + i(a sin Q¢ - B cos Q¢)
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The imaginary part of B;Q vanishes {f

or (8.13)

RJx

tan Q¢°

- 1 -1/8 px
¢ Q— tan (—-) + Q (8.14)
where p = 0, =1,

The real part of Bgg can be made positive for an appropriate choice
of p. The complete set of Byq is then obtalned from equation (8.11) with the
appropriate ¢ to give

tas, 8
¢ = . .
qu e qu (8.15)
In most of our work, the lowest for which k is even and q » 0 has been
chosen as real and positive. %gh for 02 point symmetry, the twofold
crystal-field interaction is written

with By, real and positive.

This reduction of the number of phenomenological crystal-field
parameters needed to fit the experimental data does not help much in the low-
symmetry point groups (point groups 1 through 8) and in fitting the rare-earth
ions. However, for the nd¥ fons it allows point groups 9 through 15 to be
fitted with the same set of phenomenological qu (B 20 Bu , and ReBuu). and
point groups 16 through 20 to be fitted with 320' Bu , and ReBy3. Thus, for
the computation of the energy levels, point groups 9 through 15 and 28 through
32 have Bygs Bygs» and ReBy, (in the cubic groups B o = 0, and By, 13 related
to Bygy; see table 8.3). Similarly, point groups 16 through 27 have By,, Byg,
and ReB (with Byz = 0 for point groups 21 to 27; see table 8.2) These
restrictions greatly reduce the computation.

8.2 Problems
1. Using the Hamiltonian in equation (8.2), prove the statement that
- (- 1)“5*
by assuming that H3 is real.
2. In the point grcup Sy, the tensors C4q.4 and Cgr form a basis

for '3 and Ty, respectively (table 25, Koster et al, 1963) om table 26 of
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Koster et al we have I‘? x Ty = Ty. Show that the tensors f'ormed by recoupling
the product C4.4Cyq using equation (1.27) form a basis for Tye

3. Using the same methods as in problem 2, determine what bases are
formed by C1oc1_1 and C1oc11 (010 is a basisa for I‘z).
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9. MATRIX ELEMENTS SF H3 IN TOTA!. ANGULAR MOMENTUM STATES FOR THE ELECTRONIC
CONFIGURATION nf

9.1 Discuasion
In order %o make full use of tabulated data in our calculations, it
is necessary to make some modifications in equation (8.1). Nielson and Koster
(1963) have calculated the reduced matrix elements of the unit spherical
tensors introduced by Racan. As was shown in equaticn (4.3), the quﬂi) can
be written in terms of those tensors as

K
C,.(1) = <&fc, |2 u (1) (9.1)
and kq K q

o (k)
% Cheqft) <afe, fe> U, , (9.2)

where

<afe o> = <a(oik(o)|a(o)> .
Thus equation (8.1) may be written

+ (k;
H Zq Beq <ic, o> Ug . (9.3)

The matrix elements of H3 in total orbital angular momentum states can now bs

written
<L'M!S'MLa’ |H, | LM SM a>
L '8 S .
3L (9.4)

= 855'8MgMy Eq By <tlcyle> <w(Mp)k(a)|Lr (M) <L'Sa’ Jutk) |Lsa>
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where

172
cw'sat Jut |Lsa> - 3{'7}}-1-] (Lrsat Ju™ Lsa) (9.5)

and the last expression in parentheses 1Is tabulated in Nielson and Koster
(1963),

Alternatively, we could use the tables of Polo (1961) to obtain the
matrix elements of H3 as given by

TMIZITME o !
<L'M/S'Mia |H3|LMLScx>

t

" Sssrdugny [ ng(-nL M (Fiy & ‘gL) (L'sa' fc %) |Lsa) (9.6)

where

is a 3j symbol and

(k)
c = ) C. (1) .
q Li=1 Ka

The result given in equation (9.6) is much more convenient to use for compu-
tation than is equation (9.4).

The spin-orbit energy, Hp, can be written as

1
-\ M

H, = ¢ /s(s*+1)L(&+1) } (-1)A Vl

A

2 (9.7)

The matrix elements in total orbital angular momentum states are

' M

<L'MLS'Méa'|H2|LMLSMSa> =z Ya(s+1)2(2+1) (-1) ML]‘I(A)IL'(ML))

x <S(MS)1(-A)IS'(Mé]> <L'S'a"|V”|LSa>
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where

172
<Lstat v |Lse> = ;% [(ZL'E%;}2§'+1)] (L'stafv''Lsa) ., (9.8)

and the reduced matrix element in parentheses !s tabulated by Nielson and
Koster (1963).
The matrix elements of H3 in total angular momentum states J
(J = £+3) can be written
<J'M'Sa'|H3|JMLSa>
(9.9)
=7 By e, 2> <IMIk(q){ar(mr)> <J'L'Sa'|Uk|JLSa>
kq
where

-] ! L . na—
<J'L'Sa’ Ju¥aLse> = (-0EL T TERT wikLars;La) (Lrsat UK |Lsa)  (9.10)

and again the reduced matrix element in parentheses is tabulated by Nielson
and Koster (1963). Also, the quantity <&|C,|%> in equation (9.9) is

<gic, f2> = <a(0)k(0)|2(0)> . (9.11)

The matrix elements of H2 in total angular momentum states, J, are given by

<J'M'L‘S'u'|H2|JMLSa>

(9.12)

1i
= =g AT T203T) W(S1I'L' 38 L) (LS a |V ' |LSa)8, jy Sppyr

where the reduced matrix elements in LS space are tabulated by Nielson and
Koster (1963).
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10. GROUP THEORETICAL CONSIDERATIONS

10.1 Discussion

We do not go into the details of group theory here but discuss the
use of the tables presented in numerous texts on group theory. An excellent
text for physicists is Tinkham (1964). For our discussion here, as in section
8, we use Koster et al (1963). This reference uses the Bethe notation for the
irreducible representations (ri); the relation of the Bethe notation to the
Mulligan notation (Ai' Bi' éte) 1is given in the appendices of Griffith
(1964). In our discussion we use the Bethe notation for all the single groups
and both notations for the cubic O group. In the double groups we use only
the Bethe notation.

As our first example we consider a single d electron in a corystal
field of S, symmetry. The crystal-field interaction can be obtained from

table 8.1; it is

Hy = ByoCog * BYsCan * B3sCais * ByCig * B,m(cuu + Cu-u) . (10.1)

If the spin-orbit interaction is small and the other configurations remote, we
can at present ignore the B32 term and assume that angular wave functions are
Y (|2m>). with -2 § m < 2,7 With these assumptions we use table 30 of Koster

et al (1963) to find that

+
D, + T

2 1t 2F2 + F3 + Pu ’ (10.2)
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where we have used the D% table since I|2m> = (-1)2|2m>; that is, the d elec-
trons have positive parity. > The Have functions for nd" alsce have positive
parify sinoe I|LSA"> = (-1) N|LsaN>. But for the £ electrons, I|LSE"> =
(-1 ILSf >, which is even for even N and odd for odd N. Thus, for a single
f electron we would use the D3 entry in table 30 of Koster et al. The result
given in equation (10.2) shows that the five d electron states, which are
degenerate in the free ion, would be split into four levels in the presence of
the crystal field; these levels are shown in figure 10.1, All the free-ion
degeneracy is removed except for the TI',,T'), degeneracy. We can dJdetect this
degeneracy in character table 25 of Koster et al (1563, p 50) by observing
that the product of the characters for Ty and Ty gives unity for all the group
operations of S§y. We can also check this product by directly taking the
matrix elements of Hy using wave functions that transform as T'y; or T, in §y.
To find the wave functions which transform according to the irreducible repre-
sentation, we use the operation SM on the states |2m>. That is,

-1
Syl2m> = I1C,."|2m>

(10.3)
- e'iﬂ!ﬂ/2|2m>
and for m = 0
Syl20> = 20> .
(a) (b)
o n n a

r r rsy T
3t 3 4

4 }‘ Ts Iz
r2 s I‘2

Figure 10.1. Hypothetical splitting of a single d electron in a crystal
field of Sy symmetry: (a) magnetic dipole and (b) electric dipole,




That 1s, the character is 1, so that |20> transforms as r, (see table 25 of
Koster et al). Also, since

Sy|2t2> = -|2z2>

the character is -1. From table 25 under the operation S), we find that the
states with character -1 are I',, so that the two wave functions |22> and |2-2>

transform as r2. Similarly,

Sylat1> = #i|2s1>

from table 25 we see that |21> transforms as r3 and |2-1> as Ty. It is not
difficult to show that

(21|H3|21> - <2-1|H3|2-1> , (10.4)

which shows directly that the energy levels for P3 and Pu are degenerate.

The matrix elements <2m'|H3|2m> of the crystal field are given by
table 10.1, where the results given for I'y are obtained from equation
(3.18). From the results of table 10.1, we obtain the energy levels given in
table 10.2 for Ti3+ for a particular choice of Bk . Table 10.2 also gives the
energy levels when the spin-orbit interaction is fncluded.

The decomposition of the free-ion state onto the S, symmetry given
in equation (10.2) gives the dimensions of the secular determinant which has
to be solved to determine the energy levels of the system. In the case con-
sidered in table 10.1, the dimensions of the secular determir.ants are 1 for
ry, rs, and Ty, and 2x2 for T'p. If for example we had an H state in Sy
symmetry (L = 5) of d', then, from table 30 of Koster et al (1963), we have

+
D5 - 311 + Mrz +3r, + 3lu (10.5)

3

and we would have to solve a 3x3 determinant for Ty, a xYy determinant for Py
and a 3x3 determinant for P3 or Iy.
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TABLE 10.1. MATRIX ELEMENTS OF TABL 30.2. ENERGY LEVELS FOR
CRYSTAL FIELD FOR A SINGLE d Ti77 (3d) IN Sy SYMMETRY?

S T p-
ELECTRON IN Sy SYMMETRY =0 T - 158 om i
Irreducible £ -1 . -1)
r 0 r 0
s - 280 * 5 By 1 5.8
l'2 395 F5.6 0
" 2 5 . K 5 . £z§ 5 'y 293N r7'8 2938
i 7 P20 * 21 Puo * 72T Py ry,; 3120 Tg e 3662
48,5 = 394.7 cm™Ly B,, = -7932
- s il 20 - 40
Ty - ; B20 + 5% BHO - fgg BRM cm ©, Byy = 3182 cm 1. These are
approximate gfystal-field‘param-
etars for Ti in the Ga site of
Gd35c26a3012, gadol inium scandium
1 y gallium garnet.
T3y 7 520 T 37 BHO IR = jrreducible representation

E = energy

If we wish to determine the energy levels experimentally, it is in-
formative to investigate the use of polarized radiation. The magnetic dipole
operator is

Hmd = usﬁ . (i + 2§)

(10.6)

vy Doglr, + 35,)

where B 1s the streangth of the magnetic field and u, is the Bohr magneton.
From group theory, we can deduce the transitions induced by equation (10.6) by
using first table 25 of Koster et al. This table shows that Lz and Sz are
basis functions for T4; L,; and S,y are basis functions for r3; and L.y and
S_1 are basis functions for T'y. Then from table 26 of Koster et al, we have,
for Bz (L, » Iy),




and for B|X or BJY (L, » Tao Ty)

F3 x P1 " P3 , Pu x I‘1 u PN ’
F3 x Iy =Ty Ty Ty = P3 ,
F3 x F3 = P2 ’ Pu x F3 ~ P1 ’
‘P3 x Ty =Ty Ty x Ty =Ty &

The allowed transitions (in absorption) are shown in figure 10.1a,
where the labeling 1s according to the c¢rientation of the light polarizer.
That is, the polarization is determined by the orientation of the eleotric
victor; for w polarization, E]Z (and B|Z), and for o polarization, E[Z (and
BlZ). '

The electric dipole operator is
&>
' - [ ]
Hed eﬁ r

- e g E;rc1a(F) . (10.7)

From table 25 (Koster et al, 1963), we find that Cio(2) is a basis for )
while C,4 1 (or x ¢+ iy) has the same representations as L$1. For Cyq» from
table 26 (Koster et al), we have

r, xr, =T ’

2

r, x Fu = T '

and the allowed transitions (in absorption) are shown in figure 10.1b. In the

electric dipole case we have to assume that the odd terms in the crystal field

given In equation (10.1) mix either the p or f configuration; otherwise, the
. electric dipole matrix elements vanish.

As a second example we consider the d3 configurarion in the erystal
rield given in equation (10.1). The Hund ground state is HF (S = 3/2, L = 3)
and the only other state with § = 3/2 is the 4p (all the states of pN, dN, and
fN are given on pages 1 through 3 in Nielson and Koster, 1963, and pages 15-
14 through 15-20 in Polo, 961). In the absence of spin-orbit coupling, the
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"p state is the only state that couples to the “F Hund ground state. From
table 30 of Knster et al we have

D+

3> T

+2r, + 2r

1 2 3,4

(10.3)

+
D, » T, + 1

1 1 3,4

and we have a 2x2 secular equation for I'1 and Tp, and a 3x3 secular equation
for the I3, 4 states. Operating on the states |LM> with the operator Sy pro-

duces the values ot M belonging to the different irreducible representations.
The resulting states are

130>, 10>, for T, ,

|3-2> , |32> , for T, , (10.9)

|3=1>, |33>, |1-1> , for Ty

The states for I3 are obtained by changing the projections (M » -M) of the Ty
states. The matrix elements of the crystal field for the states given in
equation (10.9) are presented in table 10.3. _ The results given in table 10.3
are also applicable to the configuration d’, provided that all values are
multiplied by minus one. This latter result is obtained by the rules for the
states conjugate to the &N configuration, which has U4+2-N electrons; these
rules are given in Nielson and Koster (1963). The results given in table 10.3
were taken from the Polo tables, and equation (9.6) was used. The 3-j symbols
were found in Rotenberg et al (1969).

Before the energy levels can be found using the results of table
10.3, the Coulomb interaction must be added to the diagonal elements. From
Nielson and Koster, these are

4 15 (2) _ 712 (W)
H1( F) = - T3 F - 157 F ,

(10.10)

Y 147 _(4)
H1( P) = - 77 F .

The energy levels of di n Sy, symmetry is given in table 10.4 for a represent-
ative set of Bgq and F kJ, Included in the table is the effect of spin-orbit
coupling, which we consider next.

The above examples have been restricted to the orbital angular

momentum only. This restricts the use of group theory to the single group.
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TABLE 10.3. MATRIX ELEMENTSﬁ IN S, SYMMETRY,
OF CRYSTAL FIELD FOR “F AND %P STATES OF nd3

Note: For the corresponding matrix elements

TABLE 10.4.
cr3+*

ENERGY LEVELS FOR
Y AND YP LEVELS

* IN Sy SYMMETRY?

for YF and YP states of nd7, multiply all =0 r = 275 cem™!
entries by -1, Free N

ion : Energy Energy

L'M LM P By By Byy IR (on-D) IR (on-1)

30 30 &1, W35 2/7 0 Y 0 Iy 0

30 10 Iy 12/35 -4/21 0 r3.u 352 r7.8 9y

10 10 Iy 2/5 0 0 F3'u 1,574 r7'8 249

3-2 3-2 F2 0 =1/3 0 PZ 2,203 P7’8 496

3-2 32 1, 0 0 /70/21 r 3,672 T 622

2 5,6

32 32 ) 0 -1/3 0 P5’6 788

31 3-1 'y -3/35 1721 0 Iy 8 1,713

3-1 33 Ty 0 0 Yi2/21 r 1,748

7.8 ’

3=1 -1 1y /6735  VE6/21 0 s g 1,783

33 33 1y 1/7 1/7 .0 g g 1,901
’

33 1-1 Ty 0 0 2/7/21 I's g 2,381

1-1 1-1 Ty -1/5 0] 0 r7'8 2,460

4Phe matrix elements of Iy are not given, I‘7,8 3,918

as they are equal to those for I',. Before Ty ¢ 3,930
the matrix 1s diagonalized, the Coulomb '

energzes [rom Nielson and Koster (1963) for

the *F and P states should be added to the "p r3 4 16,294 r5 6 16,286
dia%onal elements. ’ ’

IR = irreducible representation. Ty 16,504 r5,6 16,373
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7.8 16,442
P7’8 16,621
P7,8 16,71
T's 6 16,771

a .

B = 296.9 ¢~
20 2,840

1333 cn-1, F(z) =

cm *, Byy =

74,20
The l2 ?"' o1d5

1

4597

= 45,822 cm 1.
), and ¢ (275 cm™?)
values are for the free ion.

IR = irreducible representation.
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If we consider the case of the d3 as above but assume the ipin-orbit energy to
be strong, we use total angular momentuw states, J, with = t+§. We further
restriot the discussion to the states "Fy with 3/2 s J § 9/2. Thus, we have
the levels l'l“3/2, uFS/Zv Fps2, and “Fg/g to consider. From table 30 (Koster
et al) we obtain

+ T

+
D3jp *Tg6 *Tg8

+
Dgso * Tg,6 *2Tq 8

(10.11)

+ 2T + 2r7 g
»

+
D7 /2 5,6

+
Dgjo * 3Tg 6 * 27 8

and we see that the secular equation for r5 or Tg is 7x7, and for I's or I'g the
secular equation is also 7x7. We see that the inclusion of the spin-orbit
energy greatly increases the difficulty of the problem. The wave functions
belonging to the different irreducible representations can be obtained from
table 25 of Koster et al and are

1 1
|J 3+ 4>, where p =0, +1, ..., |5 + 4p| 54, for g
‘ (10,12)
3 .3
|g - 5+ Up> , where p = 0, 1, ..., | 5+ 4| s J, for P7 .

The resulting energy levels of the Cr3+ ion with the Slater parameters and the
spin-orbit constant from the free ion are given in table 10,4, gge erystal-
field parameters are rough estimates for the crystal field for Cr in the Ga
site (S,) in the material Gd3Scha3012.

The previous two examples were for the S§; group and were simple to
manipulate in that the group was cyelic (all the operations can be expressed
in terms of a single generator, Su).

We consider a single d electron in a crystal field of D, symmetry.
The crystal-field interaction, given by use of table 8.1, is

C,n + B,.(C - ImB

H 20 * By

3 = By 22 * Cpop) * ImByy(Cqp = Cy )

(10.13)

* ByoCuo * ByalCyp * Cyp) *+ By (Cyy + Cyy) -
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The operations of D, are given in table 17 of Koster et al and are C, = Cy(2),

Cé = Co(y), and C}§ = C_(x) . The result of these operations on | tm> 1s given
in problem 2 of chapter 1. These are

()| = (-0 eem>
Cy(z)|am> = (-)"|am> (10.14)
C (x)[em> = (-1)2|2-m> .

Now from table 21 of Koster et al, the |2m> states decompose to

+
D2+2r1 + T, +r3+ru , (10.15)

and the r1 states are

b, = j20> ,  L[|22> + |2-2>] (10.16)
/E .

which are essentially the c¢rystal potential for the Caq terms in equation
(10.13). :

For the other representation we take the combination

1. ,

v, = —L]|21> - |2-1>] for T, , {(10.17)
1

v, = — []22> - |2-2>] for T, , (10.18)

3 5 3

W= LCl2> +|2-1>] for T, (10.19)

V2

which can be verified by using eguation (10.14) and the character table for
the D, group in Koster et al.
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11. NUMERICAL EXAMPLE:

F, STATES OF Na3* (urd)

As a numerical example of th§+caloglation of the crystal-field splitting,
we calculate the splitting for Nd (Ur-) in a rield of Sy point symmetry. We
assume that the levels are pure uFJ. We assume that L, S, and J are all good
quantum numbers; then we consider matrix elements of H3 in equation (9.9) with
J'" = Jand L' = L, Thus,

MILS[H | IMLS> = T BE <I0K(Q)] M5 <IuK]a> <e(ok(0)|2(0)> . (11.1)
kq

The values of the reduced matrix elements <J|Uk|J> <, [e> for the F state
of Nd3* are as in table 11.1. 1In obtaining these values we have used Nielson
and Koster's results (1963) in equations (9.9) and (9.10) for the reduced
matrix elements, (LSJUK|LS), for L = 3 and S = 3/2; the Racah coefficients
(6-3 symbols) are found in Rotenberg et al (1969).

The calculation of the energy levels is made somewhat simpier by using
wave functions that transform according to some irreducible representation cf
the S, group (Koster et al, 1963). The irreducible representations of the S,
group are all one-dimensional, but, since the ion under investigation has an
odd number of electrons, the energy levels will be at least doubly degener-
ate. Thus, of the four irreducible representations--r5. Tgs Ty and TIg--only
two need be chosen; we chose I'g and T',. The energy corresponding to Ig is
degenerate with I's, and that corresponding to r8 is degenerate with F7. The
wave functions belonging to r7 with a particular J value are

IJ 8k + 1 R 2J + 1 " 2J -1
> ’ 3 S kg 3 ’
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TABLE 11.1 VALUES OF <J|uK|u> /2R+T <i|c, |2>?

J k=2 k=l kw6

3 1172

3 &3 0 0

5 11 1 1/2 1 1 1/2

> = = F [2-3-7] 0

71 __5_]1/2 _1_[ 1]1/2 _ﬁ[ 1 ]1/2
2 3 L3-7 23 |71 3 31113

9 1 __1_]1/2 N [ 13 ]1/2 5 [ 1 ]1/2
2 23 123 2+3 L2111 3 12¢3+11.13

ANote: 245 = 10, etc.

and those for Ty are

lJ8k-3> 2J - 3 ) 2J + 3
2 ’ 8 sk 8

where Kk is an integer, and the number of k values occurring for a given J is
the number of times a representation will occur. The number of Bk for the
caleium site (Su) in calcium tungstate is five: 320' BHO’ B60’ Buu, and
Bgy- Of these parameters only B6M is complex. The matrix elements of the
crystal field given in the above equation are presented explicitly under
particular states in the following paragraphs.

y
11'1 F3/2
This level of the free ion is split into two doublets by the crys-~
talline field. The wave functions corresponding to P7 and I‘5 are I% %
and |% - % > respectively. From equation (11.1) we have
31 31, .-2, - i)
<22|H3|22> 5% Bag E(I‘72 (11.2)
and
3.3 3_3,.2 - ( i)
<55l 5-5> =358, -El53) o (11.3)
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where the appropriate values of the reduced matrix elements in equations
(11,2) and (11.3) wera taken from table 11.1, The total splitting of the

"F3/2 state is then
y

4
11.2 Fg/»

Unlike the previous case, thié state contains two Fs's, and their

wave functions are lg g > and |g - % >. The wave function for the Ty state
51
is |5 5 >+ The energy for I, is
Sl 2Lty o AL (- 2 ,(.‘é)
<53 |H3| 55> = 755 [ UByy * 33 Buo] El, 5) - (11.5)

The netessary matrix elements for the energy in Fs are

55 55 1 25
(~§§|H3l 55) --7—0[5320*'313“0] -b11 s (11.6)
5.3 5.3, g -2 -
<3-35 M3l 5-5> =755 [Byo = 77 Byol ~ vy (r.m
5.3 w 53,. Ly .
<5-3 |H3| 552 py Byy = Dyp - (11.8)
The two energy levels corresponding to rs are
. Y . 1172
e (r, 2) - byy * by + [(0gy = bpp)" + b ok, ] (11.9)
105 3 3 ’ y
i 2 ., 1172
e, (t, 2) - byy * byp = [(bgy = by))" + by o03,] (11.10)
2\Ts 3 3 y y
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4

11.3 F7/2
This state contains two rs's and two P7's. The matrix elements
f‘or‘I‘7ar‘e
71 71 1 7. 55 9 50 -
<333l 35> =55 [~ 3By * 77 By * 73 Bgod =39y + (11.11)
7.1 T_7s..1 1 - 10 -
<z zlH3l 33> = g5 (1B + 58y - 13 Bgel = 2y, (11.12)
7.1 A N B § - 30 -
<3 -3 |H3| 55> " g9 [/E Byy = 33 y10 565] a,, - (11.13)
The two energy levels are
2 1/2
£ (r. 1) - 21 *agy * [ayy - apy)" v taypat)] (11.18)
1V 72 2 ! *
1/2
E(r. 1) - 21 *ag, - [lagy - ay,)" + Haypap,] (11.15)
2V 7 2 2 ' *

75 75 1 (11 13 50 _
T3 T.3, . By .35 .90 1.
<3 5 M3l 5-5> =55 [~ 338y, - 77 Byp = 73 Bgol = 2p > (1.7
7T_3 T2, .. /5% 20 577 -
<z-3 M3l 33> - g5 [/T57TW By, + 372172 B, ] = by, (11.18)

The corresponding energies are given by substituting the above values of b1J
into equations (11,9) and (11.10).

*The symbo! a,4 will be used for the matrix elements 1n I'7 and b” for those in I‘5 to avoid
introducing new symbols for each new value of J.
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3r 4
o 1.4 YRy

The number of F7's in this state is three, with two rs's. The

i& matrix elements of the crystal field for r7 are
.}‘:

R ;

o 39 99, .7 - 18 30 .

I <55 M0 55> =558 [68,, = Buo * 37 Bgol = 29 (11.19)
; 9L 1 @y el [-u4p -185 80, 7. ,
% <3730 35> =555 [-4Byg = 7 Byy = 57 Beol = 255 » (11,20
K 3.1 9.1, .1 22 - 1o -

N <3 -3 |H3| 53> " 358 [21320 = Byo 5 560] 233 (11.21)
p 91 99 7 (_6 150

S <333l 55> =555 -7 By + Sy Bgyl =2y, (11.22)
A

¥

o 3.1 91y . 1 .10 30 .

_% <5 -3 Ml 5§35 =555 [- = /5 By, + 37 By ay5 - (11.23)
e The three energies are given by the solutions of

a

g

o3t 3_ \..,2 - -

oy B - (ayy ray, *agli® « (aygay, + a)yag5 + aya55 - 358y - apal,)E

-c'.( - - -

.g, + a”a23a53 + a33a12a’1‘2 a”azza33 o .

o

73. The matrix elements for T are

]

X 95 95, .17 17 100 -

. <3531 55> =355 [Byg * 7 By * 57 Bgol = B4y (11.25)
W

l‘t

; 3.3 9 351 - -3 60 -

i 3 53l 3-5> =555 ["38 ~ 7By * 57 Bgol = by »  (11.26)
9 328, (-5 A58 -0 ]

o <5-3 |H3| 55> = 508 [ = V30 By, - 3 /8 BGu] by - (11.27)
t“l

§!(

. The energies Ej(rs g) and Ep(rs g) are given by equations (11.9) and (11.10),

respectively, using the bij given above.
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11.5 Caloulations

Three of the orystal-field parameters can be obtained quite simply
from the experimental data. These are 520' BHO' and 560' If we express the

y sums, Si' in terms of the Ei where the E1 are experimental data, then we
o obtain
"; Sg-172 " E By (rpd)

and
* S, = - 32 By, (11.28)
s2-~1—,1,-,1§320+5%5,40 ' (11.,29)
g 83 = 3% BZO + E%? BMO + 72%7 560 ’ (11.30)
N
y Sy = 5 820 = 795 Puo ° '1'%%‘7‘ Beo (11.31)
X
§ where S) is for the J = 9/2 level. These equations can be inverted to give

. B20 - - —5 S1 , (11.32)
O

&

¥ 2 =

é Buo 3331 + NZS2 ' (11.33)
, _ 1001 . _ 78 1287 .
Bo = T0 1 55 * T 53 - (11.34)
™

5.\

f The other crystal-field parameters are slightly more involved.
. From equations (11.9) and (11.10) we have

o 2 _ 21172

\ By = 3VTT [w1 "1] , (11.35)

where

IR ce (e, ) - 50, )
N, —f 5 * 25 and W, E1(’52 E,\Tg 3) -

To determine Bg),, we use equations (11.14) and (11.15) to give

1 2 2
a,at, = 1 [w2 - N2] (11.36)
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where

I .2 3 - AT I
Ny =g S -355,+558 ad W, E1("72 32(r72) .

A similar expression can be obtained using equations (11.16) and
(11.17) in equations (11.9) and (11.10), yielding

[w2 -'N2] . (11.37)

b 3 N3

1
* m .-
202 = 5

where
N = 13 - 1 - l) - l
N3 € S1 ZS2 + 5 S3 and W3 E1(P5 = EZ(FS > .

Substituting equations (11.13) and (11,14) into the left side of
equations (11,36) and (11.37), we obtain two equations for Bgy. These two
equations can be solved simultaneously for both real and imaginary parts of
Bsu to give

_11[3-99 2, .2 2 2y 2 2y]1/2
Rg = 55 | = (W + Wa = Ny = N7) - 6(W) N1):| , (11.38)
15299 (2 _ v2) _ afu? _ @) _ 7°99 (.2 _ .2
208 § = —13 (W3 N3) :(W1 2 ?}; (wg Nz) ' (11.39)
20/70 Rg (W - N7)

where B6N = R6eie.

All the crystal—fiﬁld pargmeters can be determined once the experi-
mental data are taken on the F3/2, FS/Z' and F7/2 levels.

As tecdious as the above procedures may have seemed, the crystal-
field parameters we obtain are only approximate, since we have ignored L-S
mixing by the spin-orbit coupling in the free ion and J mixing caused by the
erystal field. Nevertheless, the crystal-field parameters obtained by the
above procedure can serve as very good starting values in the ficttiing of a
more sor'isticated calculation to experimental crystal-field levels.

The crystal-field parameters Bk obtained by the above procedure
for Ng3* in CaW0, are given as follows, a&ong with crystal-field parameters
for the same ion but with full diagonalization, that is, L-5 mixing and J
mixing (Wortman et al, 1977).
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Bgy,

B B By Byy B
kq 20 0 60 Re Im
Calculated ,
above 403 ~635 711 -219 885 0 e
Calculated with
full diagon=- 509 -866 1042 =509 903 243

alization
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’ 12. CLASSICAL POINT-CHARGE MODEL

f 12.1 Discussion

In the simplest model of the crystal field, the point-charge model
introduced by Bethe (1929), the lattice is replaced by an array of point
charges placed at the nuclei of the constituent ions. A multipole expansion
o is made of the point-charge potential energy at the rare-earth site. Thus,
ie if Ryun(J) is the vector position of constituent j at site j in the &, m, nth
s cell, we have

5 -e Z
: Hy= 11— b, (12.1)
: tmn § |R, (§) - r]

2mn

where ﬁgmn = za + mb + nc + p y» and a, b, and c are lattice vectors. The
charge at site j is eZ and r is the position of an electron on the ion being
discussed. The multipglar expansion of equation (12.1) is

- r' . )
3 fmn J [Rgm(J)]k+1 kq kq' Amn J

The multipolar crystal-field components Akq are

)

A =-e® 1 T Z5kqlRamn )] (12.3)

- kq amn 3§ [Remn(3) JK*

e L

Thus the point-charge Hamiltonian is

N

) fckq(Fi) . (12.4)

) H, = 2 A¥
Ka 424
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where we have summed over all the N electron g In the uz“ configuration., 1If

all the lengths are measured in angstroms (10°° em), then
a z,C,..[R, (3]
Mg ™ - 2 v 108 [ ] .%kq “m?k+1 , (12.5)
mn § (Rypy(3)
where the fine-structure oon? Et’ a is ezfnc (thus, ao/Zw x 108 - 1&6 140),
ang1the units of Akq are om I? <r®> s in angstroms, then Akq<r >1is in

em .

The sum in equation (12,5) always converges=--even for the lowest k
value (k = 0)--if taken in the order indicated. That is, the sum over Jj is
performed with 2, m, and n fixed. The unit cell is neutral, that is,

12, =0 . (12.6)

In many (but not all) space groups, it is possible to choose an origin for the
lattice coordinates such that the dipole moment of the unit cell vanishes;
that is,

! 0.2, =0 , (12.7)

where 33 is the position of the jth charge in the unit cell. The result in
equation (12.7) ecan be anticipated by observing the point symmetry of the i{ons
in a specific solid. If the ions occupy Cq, Cy, Cg, Cpys Cps Cyy» C3, C3v’
Cg» or Cg, point symmetry (Schoenflies notation), then it is impossible”to
satis®y equation (12.7) with these =sites as the origin in a unit cell. If it
is possible to satisfy equation (12.7), then the sum given in equation {(12.5)
converges very rapidly. This can be shown fron the expansion

NN o
Crq(R-X) .. C¥ (R)
kq - 2a+2Kk) 172 . a a+k,a+q
|R=%|*"T aZ (2a32%) 77 <atadkta)|askara)> xic, (x) LAtk (12.8)

(Carlson and Rushbrooke, 1930). With 3 -xand B, (0) = R (where R (1)
R J mn Lmn
= ﬁzmn(o) + pj)' for the sum in equation (12.5) we have

p

1ne

|
|
|
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Z4CkqlRemn ()] U
gmn J -fﬂzmnm]k*’ - I (220 ataki@laskdara)

(12.9)
« Z Z,p8C (8 ) C;+k,a+q[§zmn(o)]
j 473 aarn [Rgmn(0) Jatk+l  °
Now if equation (12.7) is satisfied, then
JZ zJchm(pJ) -0 . (12.10)

Thus, the sum in equation (12.9) is for a > 1; we see that even for the lowest

term, k = 0, for large %, m, and n the individual terms decrease as

1/R2 _(0). While the expansions in equations (12.8) and (12.9) are good for |
dem&ﬂgtrating the rate of convergence, the computation of A&, by equation

(12.5) is more practical. However, in equation (12.5), the sum over j should

be done for each cell first, with fixed values of &, m, and n. 1In programming

language, this 1s expressed by stating that the j loop is the innermost of the

nested &, m, n, and j loops. In some lattices, the condition in equation

(12.7) may place some of the point charges on the cell faces. In these cases

it is a simple matter to palance these charges by an adjuatment to fractions
of equal charges on opposite faces,

The convention we use for our lattlice sums is that given in the
International Tables for Crystallography (1952); table 12.1 is reproduced from
volume I (the other two volumes give data strictly for x-ray crystallog-
raphers), The data used in the lattice sums are generally those reported in
Acta Crystallographica, section B (now predominately section C). Care should
be taken to make certain the correct setting is used.

Typical data used in the calculation of the lattice sums are given
in table 12,2 (LiYFy, calcium tungstate space group 88, scheelite structure).
All the data given in table 12.2 are given in the International Tables, except
that the x, y, and z coordinates are determined by x-ray diffraction. The
lattice constants a, b, and ¢ are also determined by x-ray diffraction and, as
customary, the true positions of the ions are xa, yb, and zc (these relations
hold for all the ions in a unit cell). The polarizability (from Kittel, 1956,
p 165) of each ion is given at the bottom of table 12.2. For this particular
solid, only the fluorine ions can have dipole moments that contribute to the
crystal field (we discuss the role of the dipole moments in sect. 14). Not
all the data for space group 88 are contained in table 12.2 because the

-

[J
]
,
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TABLE 12.1. CRYSTALLOGRAPHIC AXIAL AND ANGULAR RELATIONSHIPS
AND CHARACTERISTIC SYMMETRY OF CRYSTAL SYSTEMS

Space System Axial and angular X-ray data needed
group relationships for unit cell
1, 2 Triclinic awbowece a, b, ¢, a, B, Y

a e« B &Y » 90°
3t05 Monoclinie First setting a, b, ¢, Y
awbaweco

a = f = 90° Y

Second setting a, b, c, 8 ®
a«be=go
a =Y = 90° « 8

16 to T4 Orthorhombic awbaso a, b, ¢
a =B =Y « 90°
75 to 142 Tetragonal a=bas=e¢ a, ¢
o =f =7 = 9Q°
143 to 167 Trigonal (Rhombohedral axes) a, a
{may be taken as=bw=c¢
as subdivision a =« B =Y < 120° « 90°
hexagonal) a=baec
a = f = 90°
Y = 120°
168 to 194 Hexagonal a=bwc a, ¢
a = B8 = 90°
Y = 120°
195 to 230 Cubie asb=2¢ a

Source: International Tables, 1952, Vol. I, p 11, table 2.3.1,

TABLE 12.2. CRYSTALLOGRAPHIC DATA FOR LiYF)
(SCHEELITE, CaW0,), TETRAGONAL SPACE
GROUP 88 (FIRST SETTING), Z = 4

Ion Position Symmetry X y z

Y up Sy 0 0 172

Li la Sy 0 0 0

F 16f C, 0.2820 0.1642 0.0815

Note: a = 5.1668 A, b » a, c¢c = 10,733 A, o =
3
90°, 8 = 90°, Y = 90°, ay = 0.55 A%, a;; = 0.05 A",
ap * 1.04 A3 (reduced to 0.]104 in the lattice sum),

ZY - "'3, ZLi - +1' ZF = ""1.
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equivalent positions given in the International Tables are generated inside
the program. The centering position in the cell can be taken as either the Y
or L1 site, since these positions have S, symmetry, and their lowest crystal-
field component 1is AZO' Equation ?12.10) is therefore automatically
satisfied. The resulting lattice sum for the Y site in LiYF, for the param-
oters in table 12.2 is given in table 12.3. The sum covers all the complete
cells in a sphere of 30-A radius and should be an accurate result. Also
included in table 12.3 are the results for the dipole contributions due to the

presence of dipoles at the fluorine sites (see sect. 14).

AJ a second example, we choose a very low symmetry solid, YCls,
which is characterized by monoclinic space group 12. As can be seen in table
12.4, all the ions are in very low point-symmetry positions, and each position
can have a dipole moment (another way of saying this is that each position has
a onefold field, A1m)‘ We then have to consult the International Tables for a
higher symmetry positlon in order to satisfy equation (12.7), which in this
case is the site lde with Cy symmetry. The Cy point group has only the inver-
sion cperation, and all the odd=-n A vanish in this symmetry. Thus if the
position Y4e is used, equation (12.*? will automatically be satisfied. The
lattice sum for YCl, was also run over a lattice 30 x 30 x 30, and only the
even-n A are given in table 12.5. The dipole contributions were also calcu-
lated; these calculations were more complicated in this solid because of the
three types of sites (Y, Cly, Cla); all have a dipole moment. For many of the
Anm' the dipole contributions are much larger than the monopole terms. This
frequently happens when the handbook values for the dipole polarizabilities
are used. We have had more believable results when we reduce the polarizabil-
i1ty to cne tenth of the handbook value.

The lattice sums given in tables 12.3 and 12.5 are incomplete in

that the results are not in a usable form for many of our computer programs.
Before we can use these results, the Anm should be rotated using the standard

TABLE 12.3. LATTICE SUMS FOR Y SITE AT (0, 0, 1/2) FOR

LYF WITH Zy = 3, Zyy = =1, Zp = =1, ap = 0.104 A3

Lattice Monopole A, Dipole Anm Monopole and dipole
Sum Real Imaginary Real Imaginary Real Imaginary
AZO 1074 0 340 0 1414 0
A3s 373 859 -358 4.0 15 933
Ao ~1957 0 -98.1 0 -2055 0
Ayy ~2469 -2362 -3.83  -80.3 -2473 -2442
A52 1050 ~-2u456 1.28 -Th.7 1051 -2531
Ago -17.2 0 7.96 0 ~9.24 0
Aéu -615 "“20 -29003 “9.37 -61‘!‘ -u29
A72 -15.7 0.90 1.55 -9.94 -14,2 -9.04
Ats 250 -63.8 17.8 7.96 268 -55.9
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TABLE 12.4.

- R W AT e W YT WA Mt W 1% 3 .~ v v e -y ¢ —— 1

CRYSTALLOGRAPHIC DATA
FOR YCl3, MCNOCLINIC SPACE GROUP 12
(C2/m) (SECOND SETTING), Z = 4

Ion Position Symmetry b 4 z
Y hg Csh 0 0.166 0
C1,4 i1 C; 0.211 0 0.247
C1, 83 Cy 0.229 0.179 0.760
- e Cy 1/4 1/4 0

TABLE 12.5.
(0, 0.166, 0) FOR YCl3. EVEN-n A,

Charges:

Note: a = 6,92 A' bw 11,94 A, c = 6,44 A,
a = 90°, 8 =11,0°, Y = 90°,

qy = 3,

qci = ],
Polarizability: a, = 0.55 A%, a,, = 3.66 A3.

LATTICE SUMS FOR Y SITE AT

ONLY, ALL A, “REAL

Lattice sum Monopole Dipole Total
Ay 1738 3227 4965
Asy =913 2916 2003
Asp 245 2574 2819
Ayo -73.9 246 172
Ayq 85.8 -398 -312
Auz ","103 "‘707 6-,"
Aua 10.4 =TNn -781
Ayy -3.64 516 512
Ago -0.06 -80,2 ~80.3
Ag, -3.76 21.3 17.5
Ago 3.35 -27.4 -24.0
A63 -0.58 60.5 59.9
Agy 2.73 39.2 41.9
Ags 5.07 13.7 18.8
A66 8.1"‘ -65'9 -5708

by the angles a, 8, and Y, are

'
Anm

n
E Dm,m(a.B.Y)Anm, .
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Euler angle-rotation matrix, so that the lattice sums, Aﬁm' rotated from Anm

Explicit forms for the D;,m(a.B.Y) are given in Rose (1957, ch. 1IV).
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13. POINT-CHARGE MODEL DEVELOPED AT HDL

In the classical point-charge model, the crystal-field parameters, Bnm'
for the crystal-field interaction of the form

- * ¥
H,y anmzcnm(i) (13.1)
nm i
were calculated as
n .
Bym = <MOA L (13.2)

where the <r"'> are the expectation values of r" of the rare-earth ion, and the
A are the multipole components of the energy at the site occupied by the
rare-earth 1ilon. In the earlier models, the radial integrals used in the
evaluation of r" were taken from Hartree-Fock calculations (Freeman and
Watson, 1962), and the Anm were calculated using the point charges at the
valence values for the constituent ions. These calculations generally gave
the twofold field 10 times too large, the fourfold fields approximately in
good agreement, and the sixfold fields 10 times too small.

13.1 Screening and Wave Function Spread

Several errors in the classical theory were immediately obvious.
If the radial wave functiuns (Hartree-Fock) for the free ion were correct,
then these wave functions should give the cqrrect values for the Slater inte-
grals F2, F4, and F6., They did not for Pr3*, A simple procedure was then
applied. The radial wave functions were assumed t¢ be of the form

¢(P) - CRHF(TP) (13-3)
where 1t is a parameter, C is a normalization factor, and Ryp(r) are the Har-
tree~Fock radial wave functions. With the radial funection given by equation
(13.3), the Slater integrals become

i k
F' = TFHF ’ (13.4)
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aﬂd it was found that a value of t of approximately 0.75 was ne ged to it the
F® that are found by fitting the experimental speotr: of Pr- . Thus, the
Hartree-Fock radial wave functions had their maxima too near the origin and
needed to be spread out even in the free ion, and perhaps more spreading was
necessary for an ion in a solid.

From radial wave functions given in equation {(13.3), it is not
difTicult to show tnat
<E(r)> = <o|fle)|e>/<o| >
{13.5)
bl (f(r/T)>HF ’
80 that any quantity that has been calculated using Hartree-Fock functions is
immediately obtained, particularly
k> w <rkopsek (13.6)
A second error of the classical method was the omission of the
Sternheimer shielding factors (Sternheimer, 1951, 1966; Sternheimer et al,
1968). In 1952 Sternheimer showed that, in a multipolar expansion of the
energy of a point charge embedded in a solid, the r should be replaced by
r?(1 - o,), where the o, are the shielding factors. He further showed that
these factors were independent of azimuthal angle; that is, if the angular
variation in the multipolar expansion was given by Ynm§ the On gre independ-~
ent of m. The values of 9 have been calculated for Pr3* and Tm and are
U = 0,666 , gy =0.09 , g =0.04 forPr3t ,
(13.7)
oy = 0.545 , gy = 0.09 , o = 0.04 for ™m3* ,
where the replacement is
rl s pi(q - on) - (13.8)
More recent calculations of the shielding factors have been done (Sengupta and
Artman, 1970, and perhaps others) which we shall need if further refinements

of the theory are undertaken.

13.2 Effective Charge and Position

The erystal-field components, Anm’ are a funct{ n of the position
of the ions in a solid; in solids such as CaWOy the (wou) complex is known
to be covalent, That {3, the charges on the tungsten and the oxygen ions are




not necessarily at their valence values. If we let the charge on the tungsten
icn be Q. then we require that

Gy * Y9y = -2 (13.9)

with the charge on the oxygen being qgy. The result given in equation (13.9)
then assumes that the Ca site is purely ionic¢ with charge 2. This assump-
tion is consistent with many of the experimental results on compounds such as
Cawuy or Yvi,. We introduce a second parameter, the effective position of the
oxygen lon relative to the t\érigsten site that would reproduce the effective
dipole moment seen from the Ca site. This parameter, n, is introduced by

Ro-y(effective) = nRo_w(measured) ) (13.10)
where R .y is the distance from the oxygen nucleus to the tungsten nucleus.
Thus there are two parameters in the A__: , the effective charge (qw is

eliminated by eq (13.9)), and n, the effective distance of the oxygen site
from the tungsten site. The calculated crystal-field parameters Bnm then are

Bpp (15 9gsn) = <™ pp(t = op)apn(qgun)/a™ (13.11)

with the three parameters T, qg and n.

The experimental data that were taken at HDL on the rare-earth ions
in CakOy were analyzed using the effective spin-orbit Hamiltonian (Karayianis,
1970), and a set of phenomenological Bnm was obtained. These, gliven in table
13.1, are the B,, that the theory has to fit.

The fitting was done by minimizing the square quantity given by

Q= I[B (tqqmn) -8_1° , (13.12)
nm

where Bnm(r;qo,n) is given by equation (13.11), and Bnm is from table 13.1,
for each fon. The minimization was done with respect to t, qg, and n for each

fon. ~ Since the qp and n are TABLE 13.1. PHENOMENOLOGICAL B, FOR SIX

assumed to de ion independent RARE-EARTH IONS IN CaWo, (all 1n cm™ ')

and 1 is assumed to be host in-

dependent, the average 49 and n Bgy

were taken and fixed. The proc- Ion By Byo Byy Bgo

ess was then repeated with mini- Re Im

mization with respect to =<

only. This process ylelded the Nd 549 -942 1005 -17 947 1

following: Tb 48 -825 872 -290 595 160
Dy 428  ~-825 978 -7 ng 2.5
Ho 436  -66U4 779 ~-33 55 19

Q= -1.09 , n=0.977 . Er 404 -685 728 12 452 164

Tm 4§17 -688 754 17 506 359

(13.13)
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The t values were well fitted by
T = 0,767 - 0.00896N , (13.14)
where N is the number of f electrons in the counfiguration utN, The values of
0, used in the above were not varied in the minimizing process but were inter-
polated from the values given in equation (13.7); that is,
i, = 0.6902 - 0.0121N ,
06 = '0.0" (all N) Y
The predicted values of the B m(r;qo,n) for the entire rare-earth
series are given in table 13.2. The results given in table 13.2 when compared
to table 13.1 show that the di“ference between the derived Bnm(T,QO,n) and the
phenomenological B is greater for the low-N ions in the 4fN configuration.
This may be a defect in the theory, but not enough data on the low-N lons are
available for analysis. One of the significant results of the analysis was
that {t led to the reanalysis of the spectrum of Tb:CaW0, with a different
interpretation of the experimental data (Leavitt et al, 1974).

More recent work on CaW0, (Morrison et al, 1977) obtalns the fol-
lowing values:

o5 = 0.6846 - 0.00854N,
oy = 0.02356 + 0,00182N,
v = 0.75(1.0387 - 0.0123N),
0g = =0.04238 + 0.00014N,
qp = -1.150, and
n = 0.962.
The o, yalues 3ge interpolated from the calcglations of Erdos and Kang (1972) .
for Pr arnd Tm°~. The factors in equation (13.11) were combined so that
pp = <e™(1 - g )/, (13.16)

and the p, along with the t are given in table 13.3. Thus we have

Bnm(T‘QO'") = pnAnm(qO'n) . (13.17)
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At present we use the results given in table 13.3 to ocaloulate
orystal-field parameters given by equation (13.17) and use these parameters as
starting values to best fit experimental data. We generally use A (q,n) with
n = 1 in the process (q here is the effective charge on the fThands, not
necessarily oxygen). After obtaining the best-rit B,., we return to the
caloulation of A, (q) and vary q to obtain the best ?Tt by minimizing the

quantity

2
Q= n% (8, - pnAnm(q)] . (13.18)

Following this, we obtain the A _(q) for odd n and use them to caloulate the
intensities using the Judd~0felt theory.

TABLE 13.2. DERIVED CRYSTAL-FIELD PARAMETERS,
B (Tidgen) FOR 4f CONFIGURATION OF TRIPLY
IONIZED RARE-EARTH IONS (all in om ')

Bou

N Ton By  Byg  Byy Bgo

Re Im
1 Ce 41 -1429 1462 16 1251 52
2 Pr M2y -1224 1253 13 996 k2
3 Nd 408 -1059 1083 11 805 34
5 Pm 411 -1017 1041 10 764 32
5 Sm 408 -938 960 9 676 28
6 Eu 408 -887 908 8 626 26
7 Gd 406  -824 843 7 559 23
8 Tb 42y -856 876 8 591 25
9 Dy 428 -831 85 7 563 2A
10 Ho 17 =756 774 6 488 20
11 Er W5 =707 724 6 439 18
12 Tm 435 =729  T46 6 454 19
13 Yo 43 =701 TI7 6 429 18

TABLE 13.3. VALUES FOR 1, <rM.g, 0., AND p. FOR 4fN CONFIGURATION
OF TRIPLY IONIZED RARE-EARTH' TONS®

Ion N T <r-2>HF <ru>“F <;€;;F ap oy 9% P2 Py Pg
Ce 1 0.7693 0.3360 0.2709 0.4659 0.6757 0.0254 -0.0u22 0.1847 0.7536 2.3u17
Pr 2 0.7597 0.3041 0.2213 0.3459 0.6667 0.0272 -0.0421 0.1756 0.6u64 1,8754
Nd 3 0.7500 0,2803 0.1882 0.2715 0.6578 0.0290 -0.0420 0.1706 0.5776 1.5897
Pm y 0.7403 0.2621 0.1655 0.,2247 0.6488 0.0308 ~0.0418 0.1679 0.5339 1.4213
Sm 5 0.7306 0.2472 0.1488 0.1929 0.6298 0.0327 -0.0U417 0.1668 0.5049 1.3210
Bu 6 0.7210 0.2347 0.1353 0.1686 0.6309 0.0345 -0.0415 0.1666 0,4836 1.2503
Gd 7 0.7113  0,2232 0.1737 0.1477 0.6220 0.0363 -0.0414 0.1668 0.,u4656 1.1873
Tb 8 0.7016 0.2129 0.1131 0.1287 0.6130 0.0381 ~0.0413 0.1673 0.4990 1.1232
Dy 9 0.6919 0.2033 0.1037 J9.1119 0.60u1 0.0399 ~0.0411 0.1681 0,434 1.0614
Ho 10 0.6823 0.1945 0.0945 0.0981 0.5951 0.0418 -0.0410 0.1692 o0.4217 1.0119
Er 11 0.6726 0.1865 0.0883 0.0874 0.5861 0.0436 ~N.0408 0.,1706 0.4126 0.9826
Tm 12 0.6629 0.1790 0.0820 0,0787 0.5772 0.0u45L ~0.0407 0.1722 0,4053 0.9649
b 13 0.6532 0.1717 0.0753 0.0681 0.5683 0,0472 ~0.0406 0.1737 0.3938 0.9120

AThe units of <> . and P, are A",
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At present we have not inocluded the dipole oontribution to the
Anm(q) but intend to do so as soon as possible. The old n in the three~
parameter theory will be replaced by a, the polarizability of the constituent
ions in low-symmetry sites. We believe that this procedure (including “inding
new p, values) will give much better results than obtained by the older
theory. g¥1 our prfgeoted reanalyq}s wve will have the good phenomenologlcal
Bym for R° :LaF,, R®":LaCl,, and R? :LiYF) (these are reported by Morrison and
ngvitt, 1982), and will“soon have R? :¥,0,, in addition to the B for
R’ ":CaW0) used in the older theory. These data should be sufficient to form a
very stringent test of a newer three-parameter theory.

For the ndN ions (Xq for q = +2, +3, and +4,) we have taken the
values of F k) obtained by fitting the iree-ion data (Uylings et al, 1984)
along with the Hartree-Fock values of F( ) (Fraga et al, 1976) and obtained
values of t using equa&ion (13.4), Using these values of 1, we obtalned the
estimated values of <r"> from equation (13.6). The resulting <r¥> are given
in table 13.4,

The results given in table 13.4 along with reportea values of Ay (Morri-
son and Schmalbach, 1985) can be used in equation (13.2) to obtain eorystal-
fi2ld parameters, B, ., which can be used as starting values im‘Fitting the
experimental data. A similar process can be performed for the X q (q = 2, 3,
and 4) for the 4aN and 5d" series. However, because of the lack of free-io
parameters F K) for these ions, we shall have to interpolate from the 3d
series.

e —

TABLE 13.4, ESTIMATED VALUES OF §rk> (%) DIVALENT, TRIVALENT, AND
QUADRIVALENT IONS WITH 3dN ELECTRONIC CONFIGURATION

ndV | x2Y «r®a@  pha | X3t b b [ yBt (h2ye (e

3d; Sec 1.372 4,053 Ti 0.7658 1.281 '} 0.6217 1,298

3d Ti 1.073 2.505 ') 0.6689 0.9145 Cr 0.5172 0.8177
3d3 ' 0.8822 1.718 Cr 0.5776 0.6911 Mn 0.4911 0.7761
37 | cr 0.7823  1.23% | Mn  0.5054 0.5363 | Fe  0.3958 0.4955
3a2 Mn 0.6293 0.8973 | Fe  0.4436 0.4177 | Co  0.3648  0.4081
3d® | re  0.5576 0.7236 | co  0.4020 0.3506 | Ni  0.3304 0.3282
3dg Co 00,4917 0.5738 Ni 0.3627 0.2903 Cu 0.2982 0.2600
3d Ni 0.4353 0.4577 Cu 0.3280 0.2413 Zn 0.2708 0.1995

0 0

39 | cu  0.3871 .3678 | zn  0.2977 0.2016 | Ga  0.2291 .1296

2¢rky o/TE calculated using T = 0.76878 + 0.11128N.
ber¥syp/ Ty calculated using T = 0.811184 + 0.0073953N.,
C¢rKs g/ 1" calculated using T = 0.833540 + 0.0056609N.
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14, CRYSTAL-FIELD EFFECTS NOT YET FULLY INCORPORATED

14,1 Self-Consistent Point Dipole and Point Multipole

In section 12 we discussed the point-charge ocontribution to the
multipolar field components Anm' It was early reocognized by Hutohings and Ray
(1963) that the multipolar components of the oconstitugnt ions contribute to
the A, at the site occupied by the untilled shell nd”. For a point charge
ezi located at ﬁi from the origin ion site, we have the electric potential

- eZ1
o(F) = ——— (14.1)

>
|§1 - r|
The potential energy of one of the lN electrons at r is

u(r) = -ed(r)

(14,2)

eh Av 4 (R
A Comlric (Ry)

- -ezzi )
nm

where we have expanded the denominator of equation (14.1) in the spherical
tensors discussed in chapter 1., If we write equation (14.2) as

u(r) = § A;;mr-"cnmm (14,3)
nm
then
Z4Cnm(Ry)

ST (14.4)

Ar(ug) . "62 Z
i 1

y 128




where the sum on | oovers all the ions of ocharge eZ;, In the solid. This

result we derived in seotion 11, expressed in slightly different form. It
seems natural to extend equation (14,3) to the form

u(F) = I
m

k)® ~
. A%)rmnér) , (14.5)

WK

and r?&§be the A(k) to the various k-pole moments of ligands at ﬁ .

To relate
the A to the H@ltipole moments, Q... we need first to express the electric
potgn@Tal at the rare-earth electron due 0 the multipole moment erq(l)
at .

. i

The eleotrio potential due to a multipole distribution at ﬁi is
glven by

c R ;
o(F) =e ] (-1>kokq(1)(2k5§n)"2 < m)k(Q) |n+k (m+q)> Aok meq(Ry)

rc_(r)
n+k+1 nm
kq R
nm !

(14,6)

where }
(2k+2ny (2k+2n)!
2n (2n) T (2k)!

]
}

(the detgils of gpe derivation of this result are given in sect. 15). Thus,

since U(r) = ~e¢(r), we find, using equation (14.5), that
ALK) w -g2 T (-1)kq¥ (1)(2"*2k)1/2 <n(m)k(q)[n+k(m+q)> Cn+k,m+g(ﬁi)
nm q,1 kq 2n ’ RN+K+1 ‘
1
i

(14.7)

If we let k = 0 in equation (14,7), we obtain !
Crm(R1)
0) « -g2 nmy 71
A&m) e % Qso(i) R?*‘ (14.8)
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(if kK = 0, q = 0), whioh is identical to the result given in equation (14.4)
1t we 1denhtfy‘08°(1) with 2, (the number of charges) given there. The result
for kK = 1 {s

M) - o2 I At (D(232)! 72 <am)1(a) et (ava)> °"*;i\‘1‘;3§"1) :
(14.9)
Sinoe
@ 1(@) ne1tmea)> » (=117 (253)172 <1(=q)net (meq) |ntm)>
and ’
at = DR )
we can use these results in equation (14.9), to obtain
ML) - g2 qii /TRTI(Ee3) Qy (1) <Hadn+1(m=q)|n(m)> C“”ég%%(ni) .
(14.10)

which is identical to the result published by Morrison (1976), if we identify
eQ1q(1) = pyq(1) (pyq s the dipole momanf. component). Thus, if we knew the
de(i). we could easily calculate the A by using equation (14,7). Unfor-
tunately, the real diffioculty s determfﬁing the Q q(1). In what follows we
restrict our disocussion to the dipole case, k = %, and let eQ1q = pq and
express the results in Cartesian vectors.

At sites of low symmetry, an electric field can exist whose value
is determined by the various point charges of the solid. The electric field
due to the point charges of the solid at a site of low symmetry is given by

B0 - -1 afy (14.11)

and the field generated by the point dipoles is

E? =1 3§11£§1J:§1) - By (14.12)

5
1 R13 R3
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The dipole moment at site jJ is then given by

» 20 2d
Py = aﬁJ » u[éj ‘EJ] , (14.13)

where a 13 the polarizability of the ion at site j. (If more than one species
is oonsidered, the polarizability of each type must be used.) The sum in
equation (14,11) presents no problem and can be done quite simply. To perform
the sum in equation (14.12), it is oonvenient to assume a f'ixed coordinate
system in the unit cell and an associated reference point (say position 1);
then each dipole.poment. Py, can be related to the dipole located at the
reference moment, Pyr by the symmetry operation of the orystal. Similarly,

the field at each point, 3 can be related to §1. Having done this, we can
write

Bl - anep, (14.14)

and from equation (14.13)
> EO >
Py = a[ . g(1)-p1] . (14.15)

The result given in equation (14,15) can then be sclved for the dipole moment
By to give

B, = aB(1).ED (14.16)

where -1
B = (1 - aG) .

The result cbtained in equation (14,16) is rather interesting; if
the polarizability, a, is near the reciprocal of one of the eigenvalues of
the G matrix, then the dipole moment becomes excessively large. This is
suggestive of the type of catastrophe that occurs in the onset of a ferroelec-
tric transition. Such a situation would, perhaps, be mcdified by the inelu-
gion of the higher multipole moments in the calculation. It should be pointed
out that the G matrix defined in equations (14.12) and (14.15) is dependent
only on the lattice constants and the symmetry of the c¢rystal. The results
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here were expraessed {n terms of Cartesian coordinates but can equally well be
done in apherical tensors. If higher moments were oonsidered, the spheriocal
tensor form would be much more convenient. (This statement has been confirmed
by M. Faucher in private communication, 1982, She has extended the self-
consistent moments through quadrupole moments.)

14,2 Self-Consistent Results for Scheelite Structure

The prooedure given above is rather invelved, 30 we shall go into
the derivation of the G tensor for the scheelite structure (CaWOy, L1YF),
ete), The space group for scheelite is 88 in the International Tables; the
position of all the constituents is given in table 14,1, To be specifie,
LiYF, has been chosen; the fluorine is in site 1; x, y, and 2z have been chosen
as the reference points for the dipoles (u, v, w); and all other dipoles in
the unit cell are related to u, v, and w. No dipoles can exist at the ¥ or Li
sites since the lowest fields at these sites are quadrupole (k = 2).

To evaluate G for the scheelite structure, we choose the ion at
site 1 in table 14.1 as § in equation (14.,12)., The & in equation (14.5),
ineluding the translational veectors (L in x, m in y, n in 2z), is

Ry (eexpx)as o (meyp-y)asy + (nvzp=z)ed, (14.17)

where we shall, during this discussion, suppress the explicit dependence
of on L, m, and n. We write equation (14.12) as

E? - F‘: . I? , (14.18)
where
P
B9 . - )
1 (14.19)
1R§,1
and
td.37% RupeBy , (14.20)
1 { 3'151

ghere sums over &, m, and n are implicit. Theﬁ using table 14,1, we write
F? explicitly as

(14,21)
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TABLE 14,1, SPACE GROUP 88 (FIRST SETTING): COORDINATES OF ALL
IONS IN A UNIT CELL OF YLiF, AND DIPOLE MOMENTS OF FACH ION
(px. py. and P of site 1 are chosen as u, v, and w, respectively)

Site Ion X y 2 Px Py Py qu°
1 F X y z u v w 1
2 F y -x -z v ~u -w  (=D¥(n)4
3 F -X -y z “-u  -v W ¢ 19
. y F -y x -z -v u =w (-1
5 F 172 + x 172 + y 1/2 + 2 u v w I
. 6 F o 1/2+y 1/2-x 1/2-~2 v -~u =w (-1)¥1)Q
7 F 172 -x 1/2~-x 1/2-2 -4 =-v w (-1)9
8 F  1W/2-y 12-y 1/2+z -v u -w (-1¥-9
9 F X 172+y 1/4-2 u v -w (-1)K*q
10 F y 172 = x 174 + 2 v =u W (-1)9
1" F -X 1/2 -y 1/4~2 ~u =v -w (-1)K
12 F -y 1/72+x 1/4+2z2 -v u w (1)9
13 F 172 + x y -2 u v oW (-1)k*q
14 F 172 + y -x /4 +2 v -y w (-1)9
15 F 172 - x -y 4 -2 -u -V W (-1)k
16 F 172 - y X Y4 +z v u oW (1)
17 Li 0 0 0 - - - --
18 L1 o 1/2 12 T P --
19 L1 172 172 172 = == - --
20 L1 172 0 34 e ee e --
21 Y 0 .0 172 = - - --
. 22 Y 1/2 0 177 TR --
23 Y 172 1/2 0 T --
2y Y 0 0 72 IR RT -

2rhe last column relates those Qxq to the reference point qu.
Thus the qu for fluorine are all regated to gite 1.
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w——s N T v —r———————

Then we can write

8 i 8 1
Fla ] ‘é:ll- u+ I (;‘) v+ (0w . (14.22)
1=1 Roie1,1 1=t R 1

If we let G = G' + 3G" and restore the %, m, n sum, we have

8 (_1)1
G, = 1§ I - . (14,23)
xX 3
Lmen 1=1 R340q 4
8 i
G! = ¥ y (Gl Bl , (14,24)
¥y m,n i=1 R3
i 2i,1
G;z =0 . (14,25)
By similar methods we obtain
8 i1 1
G, - ) T (-1) =5 -3 (14,26)
L,m,n i=1 Ri R1+8

and the G' tensor is symmetrical.

To evaluate the G" term, the procedure is precisely the same as to
evaluate the G' term, except that we relate G" to equation (14.20). It is
convenient to express §11-§ explicitly in tabular form, as given in table
14,2, for easy reference whe* writing out each term of G". We shall not write
out the detailed expression as in equation (14.21), but this procedure gives

3
cn, = 121 (-1) [x21+1 x21x21] . (14.27)

8
1ry2
G", = - 3 (-1[x5, - x
1=1 21

Xy 21Y21_1] ’ (14,28)
8 1
"N g - - -
Gn, 121 (-1) [xiz1 X,,821.8] (14,29)
8 i
" U - -
Gy, 121 C0ryz, - v 02 ,8] (14.30)
8 1,2 _ 2
" g - - -
Gy, 121 -0z -z 0] (14.31)
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where TABLE 14.2. VALUES OF R+P FOR DIFFERENT
SITES IN SCHEELITE?

XY, = af.ﬁ;_lﬂ.i_) , Site Px Py Py R.B
R1.1 1 u v w x(1Nu + y(1)v + z(1w
2 2 2 v tu W x(2)v = y(2)u - z(2)w
x2 . axl) 3 “u v oW =x(3u - y(3)v 23w
i R? : 4 -v u W “x(4)v + y(l)u - z(Mw
’ 5 u v w x(5)u + y(5}v + z(5)w
Y2 azy(i)z 6 vV ~u W x(6)v - y(6)u - z(6)w
- g v -_:;’_—- ' 7 u  -v W ~x(Thu - y(T)v + z(T)w
i1 8 -v u  -w «x(8)v + y(8)u - z(8)w
. 9 u v =W x(Py + y(Dv - z2(Nw
Xiz1 = ESELLIELLZ ’ 10 vy ~-u W x(10)v = y(10)u + z(10}w
R i -u v W -x(11)u = y(11)v = 2(11)w
12 -v u w =x(12)v + y(12)u - z(12)w
and all Fhe sums in equations 13 u v - x(13)u + y(13)v = 2(13)w
EAZ’ZZAm ti;::§h251l;?1)angav: 1y v -u W x(14)v - y(1d)u + z(1¥)w
implied. The G" is symmetric 15 uoo-vooow o =x(i5)u - y(15)v - 2150w
(this can be shown directly 16 -y u W -x(16)v = y(16)u - z(16)w
from evaluating, for example, a ;
G;Zy and G;x 1nde‘5endently). z(“xﬁi,), : :;-xélj Xpe 90 = m At gy Yy

The equations for G' and G" were calculated for several lattices,
and the results are given in table 14.3. The_crystal axial fleld components,
An » were computed for CaWOy using a = 2.4 A° and oxygen charge of -2e, and
us?ng @ = 0.24 A° and oxygen charge of -e. The results are shown in table
14.4 (Morrison, 1976).

After the above work ha:’ been done, the dipole terms in the
Agm were programmed for a computer for all the 230 space groups. In the

TABLE 14.3. G TENSOR AND X-RAY DATA FOR SEVFRAL COMPOUNDS (/a0 P

Compound a ¢ X y z
CawWo, 5.248 11,376 0.2413 0.1511 0.0861
PbMoOy 5.4312 12,0165 0.2353 0.13660 0.08110
YLiFy 5.1668 10.733 0.2820 0.1642 0.0815
YVO, 7.120 6,289 0.1852 0 0.1749

Gyx ny Gyz ny C’yz G2z
Cawoy -0.252608 -0,0731076 -0.0979719 0,197101 -0.04022¢9 0.1234119
PbMo0,, -0.224152 -0.0758124  -0,0976969 0.168517 -0.0U426228 0.0768659
YLIFy -0.252131 ~0.0826652 ~0.125165 0.1925T1 -0.0446824 0.168842
Yvey, -0.734174 0 -0.241965 0.127677 ¥ -0.173784

tzihe reference site 1, in all the calculations, is the ligand at x, y, and z.
YVO, is not a s-heelite structure (YVO, is the gzircon structure, space group
141, in the International Tables) but can done in the scheelite structure by
translating the oxygen positions to the above (sea Karaylanis and Morrison, 1973).
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TABLE 14,4, AXIAL COMPONENTS OF CRYSTAL FIELD FOR TWO
VALUES OF POLARIZABILITY QF OXYGEN AND OXYGEN CHARGE

|

|

(em™1/2%) |

a=2.4R% Qo = "2¢ & = 0.24 A, qq, = -e |
Component, |
A° a4 A° Al <

no n0 1410] ro I

Ayo 10,115 -22,954 2321.1 -692,58 |
Apg  -1,215.4 14,975 -1919.6 332.25 |
Rgo 38,625 -897.94 7.2194 -10.206 }
l

|

program any number of inequivalent sites can have an associated dipole moment
(we only considered one type of site above). Recently the members of Caro's
group in France and de Sa's group in Brazil (Faucher and Malta, 1981) have
included the dipole and quadrupole moments in a self-consistent manner for
LaCl,; they have found that with the reported values of the dipcle and quadru-
pole polarizabilities the resultant Agm is much larger than Agm or Agm.

14,3 Self-Induced Effects

electrons to experience a field due to the reaction of the medium back on the
electrons. Both this type of field and the external fields due to the point
charges of the medium can exist. This reaction is identical to the classical
problem of a charged particle interacting with its induced image in a conduct~
ing plate or sphere. The interaction was recognized by Judd (1977), and it
was he who suggested the polarization of the ligands as a possible source of a
two-electrron crystal~field interaction. In this section we consider the
development of this interaction as derived earlier (Morrison, 1980), using the
same technique used in the earlier work. 1In later sections this interaction !
is developed in a more general way, deriving the multipolar interaction.

|

|

When a rare-earth ifon is immersed in a solid it is possible for its {
4

i

4

{

We consider an electron at ; on a rare-earth ion and a ligand at i
with polarizabvility a. The electric potential created by the electron is

O = ———, (14.32)

& -7

The electric field at the ligand is

é = -VR¢ ’

where VR indicates that the derivative should be taken with reapect to ﬁ.
Then,

-e(R - r)
——— (14,33)
& - 73
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The dipole mcment induced on the ligand is given by
p=of , (14, 34)

where a is the polarizabi;ity of the ligand.

Now if we oconsider & dipole from some arbitrary origin, the eleo-
tric potential at point 1 from that origin is

23
¢1 - 3 .
R

To find this potential at the electron itself, we let §1 = -(ﬁ - F). Then
equation (14,35) becomes

(14,.35)

<>

b BoF) (14.36)

1 - 73

¢, =

The energy of the electron interacting with this potential is given by

-€

> >
U(r’R) - '—2' ¢1 (r')
(14.37)
+> »
Lepe (B-F)
] ’
1R -7
where the 1/2 1s due to a self-interaction., We can write
&>
——ﬁ-;_’—r"-ﬂ -V —LT . (14,38)
IR - 7 & -7
) Then equation (14.37) becomes
UGB - 2P v =, (14.39)

and similarly

(14,40)




Using the result of equation (14,40) in equation (14.34) and substituting the
result into equation (14.39), we have

2
> -e 1 1
V(ER) - F-a (Vn ﬁ"“‘,‘,‘) ’ ("n Tﬁ""‘,ﬂ') ' (A

where Vl operates only on the function on its immediate right. To further
reduce é&e result given in equation (14.41), we consider the operation

2 2 2
Vo up) = Ve, ¢ v+ 2(vy, ) - (Ty,) (14,42)
If ¥y and v, satisfy Laplace's equation (which they do), then

Vz(w1w2) e 2(Vy, ) - (Vy,) . (14.43)

It we identify ¥, and y, with 1/|R - F| in equations (14.41) and (14.43), we
can write U(r,R) as

2

u(#,8) - 22— 2 T ‘ el (14, 44)
-r

To proceed further we must expand the factors on the right side of
equation (14,44), First we notice that

IR - ;]2 - B2+ p2 - 2R
(14.45)
2Rr [Rzz;rﬁ- ;ﬁ] .
If we let
t = BEE%ﬁﬁi . (14.46)
then
]E_%_;TE - 7w (79 (44T

with z = reR.
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The axpansion

el E (2n + 1)Q, ()P (z) (14.48)

is given by Rainville (1960); the leading term for large t is

n 2
Q(t) = —2A0 (14.49)
t (2n + 1)1
From equation (14.46) we have
2n+1 2 n+l
. .2 (n)"r .
Qn(t) (2n + 1)1 Rn*1 (14.30)

for large R.
Substituting the result of equation (14.50) into equation (14,47)
gives
2n, ,\2n
L -2l p (g (14.51)
IR~ r| (2n)!R

From the Legendre addition theorem (see sect. 1), we have

(14,52)

2 2 -
1 ) 2¢n(n1)e rn ¢ (F)

*
Cnm

The remaining necessary operation is VS, whicii can be written

1
V2 u —
R RZ dR

d_ (R2 d ) 2 (14,54)

@&’/ R
The only term in equation (14.53) that this operates on is

1 2 =
hevy C;m(ﬂ) (14,55)
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Using equations (14,54) and (1%.55). we have

;m(n) . (14.56)

-n- a (n+ Vy(n+2) n(n+1)
e ()] - oG - aml,

Finally,

2 1 > L 2(n + 1) A .
2tz cn ()] - 2ot en @) (14.57)
where we have uassd

(t)2cnm(§) - nin + 1)cnm(§) , (14.58)

a result we discussed in seation 1. The result in equation (14.57) substi-
tuted into equation (14.53) gives

: 1 22n*1(n1)(n + 1)1 e a a
Vﬁ W ne nl)l; (2“)! Rn-’-‘l Cm(r)cam(R) . (14.59)

The result given in equation (14.59) is substituted into equation (14.4%4),
This result, when summed over all ligands at ﬁ with polarizability Gy pro~

duces J
r— ~
2n+1 c* (R,)
- + 1)1 ~
ulr) = —§~ _2 % lf "%éﬁ)! ) ;2+MJ r‘ncnm(r’) ’ (14.60)
n? 3

If we write equation (14,.60) as we have previously done with the point-charge
model ,

U(r) = ng (Aﬁé)* r"Cnm(;] , (14.61)

we have

WSt - (9) Eatln + 101y tmlRy) (14.62)
3

nm —F (2}'1)! R]:jl‘*u

which are the seif-induced crystal-field components due to induced dipoles
only. Higher order multipole moments can be induced on the ligands, and these
multipoles will contribute a correction. From previous experience, we should
anticipate the total self-induced multipole fields to be of the form

[- ]
SI SI L,
Ay ™ ) 8 (k) (14.63)
k=1
SI
with the result above being Anm(1)‘
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As in the point-charge model, 1 we express all lengths 1in
angstroms and ay in angstroms ocubed, then equation (14,62) becomes

%o 220411 (n + 1)1 ¢ %3Cnm(Ry)
ASI(1) = ~(g2 x 108) o § T (14.64)

To express ASI in units of 0m'1/A". use the oconversion factor °o/8“ x 108 -
29,035. nm
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15. MISCELLANEOUS CRYSTAL-FIELD EFFECTS

15.1 Judd's Interaction for Two Electrons

The interaction considered here is a development of a suggestion by
Judd (1977) concerning a possible origin of two-electron crystal-field ef-
fects, Specifically, Judd suggested that such terms would arise if one of the
electrons in the configuration nah polarized a nearby ion, and the remaining
N - 1 electrons interacted with the induced multipolar moments. The investi-
gation of this interaction was performed later (Morrison, 1980), assuming only
a dipole polarizability. The interaction for two electrons that resulted is

. . ChqlR
V(1,2,R) = axa F(abk)r?caa(r1)rgcb’q_a(rz] <a(a)b(g-a)|k(q)> EEgBTH (15.1)
byk,q

where
o2
F(abk) = - ( = ) <a(0)bp(0)|k(0)> [(a+b+1)(a+b+2) - k(k+1)] ,

and a 1s the dipole polarizability of the ion at R.

The development of the result given in equation (15.,1) was similar
to that given in the derivation of the self-induced field in section 14.3.
For the full multipolar result we shall use more general methods.

The electric potential of an electron at F1, as seen at a ligand

at §. is

¢(§1) - , (15.2)
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The multipolar inducing field E,, at §1 can be defined by
i 2) - - - "
¢(|51 +x) m)!:‘ E* wnc (x) . (15.3)

By expanding equation (15.2), we obtain

. c* (Ry)xn n
(R, + %) = ~e ng (=1)n ":?+1 Con(X) (15.4)

then comparing equation (15.4) wlth equation (15.3) gives
= a(=-1)n R n+1
Epp = ©(-1) Cnm(R‘l)/n1 . (15.5)

The multipole moment, Qnm' is given by

Qun = %Epp (15.6)

where the multipole polarizability is Oy o

The electric potential at an arbitrary point §3 from a multipole
distribution is given by

Q* ¢ (R,)
a(R;) = —’—'m—R:;mT,-}— : (15.7)
3

and tha energy of an electron at ;2 interacting with the multipoles is

U= -ed, (§3 - -R,) (15.8)

with R, =R - r,. From equation (15.7), we obtain

2 2
Q* (-1)nc_ (R,)
U = ~Q nm nm 2 » (15.9)
Rn+1
nm 2 '
Now from equations (15.6) and (15.5) we have
c_ (r,)
_qyn _nm‘"1
Qp = o0 (-1 = (15.10)

1
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whioh, when substituted into equation (15.9), gives

. (2 .
U(F,Fz.ﬁ) . -g2 ng o C:;E?’) C:gf?a) . (15.11)
If we write
u(?,?z.ﬁ) -7 u(“)(F1F2.§) , (15.12)
nm
we have ’
Culm(E ER) - -efa ] “in®) Cra(R2) . (15.13)

n+t n+1
m & 2

f we were considering the self-interaction, at this point we would let ﬁz -

1 ang &ake half the results.’_ The sum on m would then collapse to unity and
u ")(r1r1,ﬁ) = -ez(an/Z)/R$"+‘.

However, the two-alectron interaction is more complicated. Ve use
the two-center expansions (Carlson and Rushbrooke, 1950; Judd, 1975) to obtain

cx (R, ) 1/2 rac_ (r,)

nm: 17 (2a+2n) - 1"aa* 1 * a
AR <atan(m)farn(osm)> —=tm—c2, o(R)

(15.14)
where §1 = § - F1, and

c. (R,) 172 rBc* (r,)

nm: 27 (2b+2n) 2°bg‘ 2 A

Rg+1 bg 2b <b(B)n(m)|b+n(B+m)> Rb+n+1 Cb+n.8+m(R) !

(15.15)
FY
where ﬁz = ﬁ - r'2.

As indicated in equation (15.11), equations (15.14) and (15.15) are
to be multiplied together. When these two equations are multiplied, the two
spherical tensors in R can be recoupled as

c;+n.a+m(§)cb+n.8+m(ﬁ) - (-nomm E <b+n(0)a+n(0) [k(0)>
(15.16)
R)

« <osn(B+mdatn(-a=m) | (8-a)> C, o (
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where we have used

x>

(R) (15.17)

o R) = (-1)a+m,
L;+n.u*m(R) (-1)a+mg

a+tn,-a=m
It should be noted that the resultant projection In equation (15.16),
[Ck,B-Q(R)]. {s independent of m. Thus with a proper recoupling of the C-G
coefficients in equations (15.14) and (15.15), the sum over m can be per-
formed, Selecting the independent terms from the product of equations (15.14)
and (15.15) and the result of equation (15.16), we have

s =1 (-n™e <ala)n(m)|a+n(atm)> <n(m)b(p)|b+n(8+m)>
m (15.18)

x <b*n(B+m)a+n(-a-m) |k (B=a)>

wiiich, when further reduced, gives

1/2
(n)¢» + 2\ 2 , 2a+2n\ (2b+2n

bg
(15.19)

c (R)s

a 2 \pb %) KiB-a"
* r'1Cac:.[r1)r‘ C*B(rz) Raub+2n+2

Thus the final desired result is obtained if we knew S. In equation (15.18)
we rearrange the C-G coefficients as follows:

172
<a(a)n(m)ja+n(a+m)> = (-1)3"® 255%—%ET:¥l> <a(~a)a+n{a+m)|n(m)> ,

(15.20)
L 1/2
<a(m)b(B)|b+n(B+m)> = (-1)"7 " (égag—é?ﬁill) <n(m)b+n(-8-m)|b(=8)> .

We then recouple (eq (5.8)) the two C~G coefficients on the right to glve

<a(-a)a+n(a+m)|n(m)> <n(m)b+n(-g~m)|b(-g)>

= } /(26+1)(2n+1) W(a,a+n,b,b+n;nf) <a+n{a+m)b+n(=-g~m)|f(a~B)>
£ (15.21)

x <a(=a)f(u=B)|b(~B)>
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The sum on m can now be performed; nots that the phase, (’1)“. in equation
(15.20) cancels the (-1)™ in equation (15.19) if we change the phase in the
first C-G coefficient on the right side of equation (15.21). This then fixes

the sums on f at k. Thus,

; 1/2
_,\k=b+n (2a+2n+1)(2b+2n+1)] -
S = (-1) [ Y 2k +1

(15.22)

x W(a,a+n,b,bnink) <a(-adk(a=5)|b(=B)> .

The C-G ir equation (15.22) can be rearranged to give

S = (-1)%[(2a+2n+1) (2b+2n+1) ] /%W (a,a+n,b,b+n;nk) <ala)b(B)|k(a=8)> .
(15.23)
If we let
F, (abk) = -(anez) <a+n(0)b+n(0) [k(0)> /(2a+2n+1)(2b+2n+1)
(15.24)
(a,a*n,b,ben; k)[(2a+2n> (2“2“ ]”2
x W(a,a*n,b,b+n;n 2a 2p | ’
then, substituting into equation (15.19), we have
(n)(h A7 R) = anb - . "
U (rirz,R) azb Fn(abk)r1r2 g <a(a)b(q~a) |k(q)> Caa(r1)cb,q-u(r2)
K,q
(15.25)

o (R)
* pa*b+2n+2

which is the final form of the two~electron multipolar interaction. To obtain
the result given in (15.1), we would have to relate <a+1(0)b+1(0)]k(0)> to
<a(0)b(0)]k(0)> and evaluate W(a,a+1,b,b+1;1k), both of which procedures can
be found in Rose (1957, pp 47, 277). 1If this is done, then squatlon (15.25)
will reduce to equation (15.1). 1In a solid the ligands at are such that,
when the sum is performed over the 1ligands, only certain k and q survive.
Much of the above derivation has been given by Judd (1976) in a different
context, and many of his elegant techniques could be used to simplify the
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resulting expressions. For example, using Judd's notation (1976), equation
(15.25) becomes

U(")(;1;2-§) - ag Fn(abk)r?rg[ga(F1)gb(ﬁz)]k + ¢, (R)/Ra+b+2n+2
“ (15.26)
where
[ga(r1)gb(r2)]kq - 5 <a(.a)b(Q"Q)|k(Q)> Caa(f‘1 )Cb’q_a(rz)
The tensor in orbical space, given in eguation (15,2%5),
Teq(a:®) = Y <ala)b(q=a) |k(q)> caq(r1)cb'q_u(p2] , (15.27)

o

should be considered carefully. Forr a fixed value of k the number of terms in
the sum over a and b is restricted by a + b < k; for equivalent electrons a
and b are restricted to even integers; and for 0 < (a,b) £ 6, the total number
of terms is not excessive. Eut since a and b can reach the maximum vaiue of 6
for the configuration an, the value of k in the k sum (similar to the lattiece
sum) must go up to 12, that is, k < 12,

If as in gprevious work (Morrisun, 1980) the sum over all the elec-
trons is performed ir equation (15.25) along with the sum over the ligands,
the results are

uM@) -2 TUME R LR (15.28)
i3 1

R

where the factor 1/2 accounts for the self-interaction terms that are present
when an electron interacts with i1ts own induced multipole, as well as for che
interactions that occur twicc when { #« j. This interaction contains a large
number of corrections to the free-ion parameters, a few of which are discussed
in the following.

15,2 Slater Integral Shifts

The Slater integrals for the free-ion interactions are given by the
Coulomb interaction as
e2
Hy = ] ——— , (15.29)

>y ¢, - FJI
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! which for equivalent electrons can be written
E Hy = 1 F(k) ] c} (rJ] kq( ) (15.30)
m; KiQ 1>3
?yg where
o
R
e )y 2 (™" K 2
e Frf e [ [ e [r (r,)]¢ dr,ar, .
- | 0 0r‘>k” ng‘ 2 172
o
’g: \ Since the interaction represented by equation (15.30) is spheri-
:2; cally symmetric in the space of all the electrons, corrections to the F( ) can
;Q only arise from terms. in an interaction that are spherically symmetric in the

space of the electrons. Thus, in equation (15.25) if we let k = 0, we have
such an interaction, and the following results are achieved:

L

S:t Fn(abO) = -anez (a+n(0)a+n(0)l0(0)> v/(2a+2n+1)(2b+2n+1)

¥

3

iy 1/2

! x W(a,a+n,a,a+n;n0) [(2a;§n) 2b;§n)] (15.31)
N

%
ATy - _anez(_1)a+n(2a;:n /Y2a+2n+t

If in equation (15.3%1) we use the relations

-e
. ‘~Q

- <a(a)b(-a)[00)> = (~1) /2T 6 (15.32)
n

R and

& W(a,a+n,a,a*n;n0) = (-1)"/[(2a+1)(2a+2n+1)]"/2

X

i
-§§ (Rose, 1957), then equation (15.25) becomes
e84

«F ‘ (n){ 2 a+2n apa Caa( JC a“(rz)

i UODEE R = cane 2 G 2n) E T2 R2a+2n+2 ' (15.33)
& which is the same form as equation (15.30). Thus,

t

" w0 - f e (62§ (22) k52 (15. 31)
ol n - % 2k / T2k+2n+2 .

N i a R

ot,fr i

]

:i rfor the Slater integral shifts, because of the electron multipolar interantion
s with the ligands of multipolar polarizabilities a,.
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15.3 Problems

1. If we have a charge distribution p(X) at the origin, then the
electric potential at r ia

tor |x| < |r|, show

where dty i3 the volume element at X. By expanding = e
t.hat [r ~ x

where
[ oGioxne G
Qun = ) p(x)x Cnm(x) de
is the multipolar moment of the charge distribution. What is the common name
for QOO and Q1m?

*2. It we consider the charge distribution in problem 1 to be at
the point r, show that the electric potential is

Q* C.__(r)

> nm nm
o) - I (-in R

3. The electric potential of a uniform electric field g is

o(X) = =X
or

¢x) = -3 E¥ XC (x) (a)

o 1m
when E and X are written {n spherical tensor form.
if we generalize equation (a) above to '
->~_ % n ~
ok + X) gm B* (R)xnc__(x) (b)

we can define the induced multipoie moment caused by a field Enm(ﬁ) as

Q@) = aE (&) . (e)
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By taking a point charge q, at ﬁ, show that the multipolar field at the origin
is

el Com'R)
‘rm = "% TR+l

and that
cnm(R)

"W . (d)

Qnm(R) - -qp

y, -'Using the results of problems 1, 2, and 3, show that the
potential at P due to the above multipole moments of an ion with
polarizability . is

c_(r)
nm
¢ = Em Qp(R) o7~

with Q,u(R) given in the last part of problem 3.

5. By considering a dielectric sphere of rgdlus a and dielectric
oconstant € in the presence of a point charge 9 at |r'[ > a, show that the
multipole polarizability of the sphere is

O P

o = [nte = 1a

This result can be obtained by solving the electrostatic problem of a dielec-
tric sphere in the presence of a point charge (Jackson, 1975).

R 6. Thg’ energy of Iinteraction of two rig}d qgarge distribu-~
ons p,(x) and p_(y) separate y s ce x|, ly s
el A(¥) and ep(y) 8 ted by a distance & (|| > |x|, |y]) 1

+ >
pA(X) drxpB(y) dty

U = JI .

K- %+ 5]

By using the two-center expansion (Judd, 1975) on the integrand, show that

Cg.’-b Q+B(ﬁ>

a+2b) 1/72
Rratb+1

2
U,, = L (-1)b
AB ad ( 2a
b8

<a(a)o(B)|a+bla+g)> Q, (A)Q, . (B)

where

Q, (M) = [ p,(K)x", (x) dr, , ete.
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The total energy for a asolid ognsigtingﬁof such multipoles would then be tae
sum over all A and B such that = Ry = Ry .

7. The energy of interaction of two iona, with the first having the
electronic oconfiguration nAng and the second i{on having the elactronics
configuration nang. can be obtained from the result ir problem 6 ty letting

Na
Qaa(A) = 121 r?caa(ri)
and
Ng
- b ™
Qba(B) 321 rJ”bBLrJ) .

The resulting interaction can be used to calculate enargy transfer from ion A
to B,
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